]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/perf_counter.c
perf_counter: Rename various fields
[mirror_ubuntu-zesty-kernel.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/hardirq.h>
24 #include <linux/rculist.h>
25 #include <linux/uaccess.h>
26 #include <linux/syscalls.h>
27 #include <linux/anon_inodes.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/perf_counter.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34 * Each CPU has a list of per CPU counters:
35 */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_tracking __read_mostly;
44 static atomic_t nr_munmap_tracking __read_mostly;
45 static atomic_t nr_comm_tracking __read_mostly;
46
47 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
48 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
49 int sysctl_perf_counter_limit __read_mostly = 100000; /* max NMIs per second */
50
51 /*
52 * Lock for (sysadmin-configurable) counter reservations:
53 */
54 static DEFINE_SPINLOCK(perf_resource_lock);
55
56 /*
57 * Architecture provided APIs - weak aliases:
58 */
59 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
60 {
61 return NULL;
62 }
63
64 void __weak hw_perf_disable(void) { barrier(); }
65 void __weak hw_perf_enable(void) { barrier(); }
66
67 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
68
69 int __weak
70 hw_perf_group_sched_in(struct perf_counter *group_leader,
71 struct perf_cpu_context *cpuctx,
72 struct perf_counter_context *ctx, int cpu)
73 {
74 return 0;
75 }
76
77 void __weak perf_counter_print_debug(void) { }
78
79 static DEFINE_PER_CPU(int, disable_count);
80
81 void __perf_disable(void)
82 {
83 __get_cpu_var(disable_count)++;
84 }
85
86 bool __perf_enable(void)
87 {
88 return !--__get_cpu_var(disable_count);
89 }
90
91 void perf_disable(void)
92 {
93 __perf_disable();
94 hw_perf_disable();
95 }
96
97 void perf_enable(void)
98 {
99 if (__perf_enable())
100 hw_perf_enable();
101 }
102
103 static void get_ctx(struct perf_counter_context *ctx)
104 {
105 atomic_inc(&ctx->refcount);
106 }
107
108 static void free_ctx(struct rcu_head *head)
109 {
110 struct perf_counter_context *ctx;
111
112 ctx = container_of(head, struct perf_counter_context, rcu_head);
113 kfree(ctx);
114 }
115
116 static void put_ctx(struct perf_counter_context *ctx)
117 {
118 if (atomic_dec_and_test(&ctx->refcount)) {
119 if (ctx->parent_ctx)
120 put_ctx(ctx->parent_ctx);
121 if (ctx->task)
122 put_task_struct(ctx->task);
123 call_rcu(&ctx->rcu_head, free_ctx);
124 }
125 }
126
127 /*
128 * Get the perf_counter_context for a task and lock it.
129 * This has to cope with with the fact that until it is locked,
130 * the context could get moved to another task.
131 */
132 static struct perf_counter_context *
133 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
134 {
135 struct perf_counter_context *ctx;
136
137 rcu_read_lock();
138 retry:
139 ctx = rcu_dereference(task->perf_counter_ctxp);
140 if (ctx) {
141 /*
142 * If this context is a clone of another, it might
143 * get swapped for another underneath us by
144 * perf_counter_task_sched_out, though the
145 * rcu_read_lock() protects us from any context
146 * getting freed. Lock the context and check if it
147 * got swapped before we could get the lock, and retry
148 * if so. If we locked the right context, then it
149 * can't get swapped on us any more.
150 */
151 spin_lock_irqsave(&ctx->lock, *flags);
152 if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
153 spin_unlock_irqrestore(&ctx->lock, *flags);
154 goto retry;
155 }
156 }
157 rcu_read_unlock();
158 return ctx;
159 }
160
161 /*
162 * Get the context for a task and increment its pin_count so it
163 * can't get swapped to another task. This also increments its
164 * reference count so that the context can't get freed.
165 */
166 static struct perf_counter_context *perf_pin_task_context(struct task_struct *task)
167 {
168 struct perf_counter_context *ctx;
169 unsigned long flags;
170
171 ctx = perf_lock_task_context(task, &flags);
172 if (ctx) {
173 ++ctx->pin_count;
174 get_ctx(ctx);
175 spin_unlock_irqrestore(&ctx->lock, flags);
176 }
177 return ctx;
178 }
179
180 static void perf_unpin_context(struct perf_counter_context *ctx)
181 {
182 unsigned long flags;
183
184 spin_lock_irqsave(&ctx->lock, flags);
185 --ctx->pin_count;
186 spin_unlock_irqrestore(&ctx->lock, flags);
187 put_ctx(ctx);
188 }
189
190 /*
191 * Add a counter from the lists for its context.
192 * Must be called with ctx->mutex and ctx->lock held.
193 */
194 static void
195 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
196 {
197 struct perf_counter *group_leader = counter->group_leader;
198
199 /*
200 * Depending on whether it is a standalone or sibling counter,
201 * add it straight to the context's counter list, or to the group
202 * leader's sibling list:
203 */
204 if (group_leader == counter)
205 list_add_tail(&counter->list_entry, &ctx->counter_list);
206 else {
207 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
208 group_leader->nr_siblings++;
209 }
210
211 list_add_rcu(&counter->event_entry, &ctx->event_list);
212 ctx->nr_counters++;
213 }
214
215 /*
216 * Remove a counter from the lists for its context.
217 * Must be called with ctx->mutex and ctx->lock held.
218 */
219 static void
220 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
221 {
222 struct perf_counter *sibling, *tmp;
223
224 if (list_empty(&counter->list_entry))
225 return;
226 ctx->nr_counters--;
227
228 list_del_init(&counter->list_entry);
229 list_del_rcu(&counter->event_entry);
230
231 if (counter->group_leader != counter)
232 counter->group_leader->nr_siblings--;
233
234 /*
235 * If this was a group counter with sibling counters then
236 * upgrade the siblings to singleton counters by adding them
237 * to the context list directly:
238 */
239 list_for_each_entry_safe(sibling, tmp,
240 &counter->sibling_list, list_entry) {
241
242 list_move_tail(&sibling->list_entry, &ctx->counter_list);
243 sibling->group_leader = sibling;
244 }
245 }
246
247 static void
248 counter_sched_out(struct perf_counter *counter,
249 struct perf_cpu_context *cpuctx,
250 struct perf_counter_context *ctx)
251 {
252 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
253 return;
254
255 counter->state = PERF_COUNTER_STATE_INACTIVE;
256 counter->tstamp_stopped = ctx->time;
257 counter->pmu->disable(counter);
258 counter->oncpu = -1;
259
260 if (!is_software_counter(counter))
261 cpuctx->active_oncpu--;
262 ctx->nr_active--;
263 if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
264 cpuctx->exclusive = 0;
265 }
266
267 static void
268 group_sched_out(struct perf_counter *group_counter,
269 struct perf_cpu_context *cpuctx,
270 struct perf_counter_context *ctx)
271 {
272 struct perf_counter *counter;
273
274 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
275 return;
276
277 counter_sched_out(group_counter, cpuctx, ctx);
278
279 /*
280 * Schedule out siblings (if any):
281 */
282 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
283 counter_sched_out(counter, cpuctx, ctx);
284
285 if (group_counter->hw_event.exclusive)
286 cpuctx->exclusive = 0;
287 }
288
289 /*
290 * Cross CPU call to remove a performance counter
291 *
292 * We disable the counter on the hardware level first. After that we
293 * remove it from the context list.
294 */
295 static void __perf_counter_remove_from_context(void *info)
296 {
297 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
298 struct perf_counter *counter = info;
299 struct perf_counter_context *ctx = counter->ctx;
300
301 /*
302 * If this is a task context, we need to check whether it is
303 * the current task context of this cpu. If not it has been
304 * scheduled out before the smp call arrived.
305 */
306 if (ctx->task && cpuctx->task_ctx != ctx)
307 return;
308
309 spin_lock(&ctx->lock);
310 /*
311 * Protect the list operation against NMI by disabling the
312 * counters on a global level.
313 */
314 perf_disable();
315
316 counter_sched_out(counter, cpuctx, ctx);
317
318 list_del_counter(counter, ctx);
319
320 if (!ctx->task) {
321 /*
322 * Allow more per task counters with respect to the
323 * reservation:
324 */
325 cpuctx->max_pertask =
326 min(perf_max_counters - ctx->nr_counters,
327 perf_max_counters - perf_reserved_percpu);
328 }
329
330 perf_enable();
331 spin_unlock(&ctx->lock);
332 }
333
334
335 /*
336 * Remove the counter from a task's (or a CPU's) list of counters.
337 *
338 * Must be called with ctx->mutex held.
339 *
340 * CPU counters are removed with a smp call. For task counters we only
341 * call when the task is on a CPU.
342 *
343 * If counter->ctx is a cloned context, callers must make sure that
344 * every task struct that counter->ctx->task could possibly point to
345 * remains valid. This is OK when called from perf_release since
346 * that only calls us on the top-level context, which can't be a clone.
347 * When called from perf_counter_exit_task, it's OK because the
348 * context has been detached from its task.
349 */
350 static void perf_counter_remove_from_context(struct perf_counter *counter)
351 {
352 struct perf_counter_context *ctx = counter->ctx;
353 struct task_struct *task = ctx->task;
354
355 if (!task) {
356 /*
357 * Per cpu counters are removed via an smp call and
358 * the removal is always sucessful.
359 */
360 smp_call_function_single(counter->cpu,
361 __perf_counter_remove_from_context,
362 counter, 1);
363 return;
364 }
365
366 retry:
367 task_oncpu_function_call(task, __perf_counter_remove_from_context,
368 counter);
369
370 spin_lock_irq(&ctx->lock);
371 /*
372 * If the context is active we need to retry the smp call.
373 */
374 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
375 spin_unlock_irq(&ctx->lock);
376 goto retry;
377 }
378
379 /*
380 * The lock prevents that this context is scheduled in so we
381 * can remove the counter safely, if the call above did not
382 * succeed.
383 */
384 if (!list_empty(&counter->list_entry)) {
385 list_del_counter(counter, ctx);
386 }
387 spin_unlock_irq(&ctx->lock);
388 }
389
390 static inline u64 perf_clock(void)
391 {
392 return cpu_clock(smp_processor_id());
393 }
394
395 /*
396 * Update the record of the current time in a context.
397 */
398 static void update_context_time(struct perf_counter_context *ctx)
399 {
400 u64 now = perf_clock();
401
402 ctx->time += now - ctx->timestamp;
403 ctx->timestamp = now;
404 }
405
406 /*
407 * Update the total_time_enabled and total_time_running fields for a counter.
408 */
409 static void update_counter_times(struct perf_counter *counter)
410 {
411 struct perf_counter_context *ctx = counter->ctx;
412 u64 run_end;
413
414 if (counter->state < PERF_COUNTER_STATE_INACTIVE)
415 return;
416
417 counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
418
419 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
420 run_end = counter->tstamp_stopped;
421 else
422 run_end = ctx->time;
423
424 counter->total_time_running = run_end - counter->tstamp_running;
425 }
426
427 /*
428 * Update total_time_enabled and total_time_running for all counters in a group.
429 */
430 static void update_group_times(struct perf_counter *leader)
431 {
432 struct perf_counter *counter;
433
434 update_counter_times(leader);
435 list_for_each_entry(counter, &leader->sibling_list, list_entry)
436 update_counter_times(counter);
437 }
438
439 /*
440 * Cross CPU call to disable a performance counter
441 */
442 static void __perf_counter_disable(void *info)
443 {
444 struct perf_counter *counter = info;
445 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
446 struct perf_counter_context *ctx = counter->ctx;
447
448 /*
449 * If this is a per-task counter, need to check whether this
450 * counter's task is the current task on this cpu.
451 */
452 if (ctx->task && cpuctx->task_ctx != ctx)
453 return;
454
455 spin_lock(&ctx->lock);
456
457 /*
458 * If the counter is on, turn it off.
459 * If it is in error state, leave it in error state.
460 */
461 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
462 update_context_time(ctx);
463 update_counter_times(counter);
464 if (counter == counter->group_leader)
465 group_sched_out(counter, cpuctx, ctx);
466 else
467 counter_sched_out(counter, cpuctx, ctx);
468 counter->state = PERF_COUNTER_STATE_OFF;
469 }
470
471 spin_unlock(&ctx->lock);
472 }
473
474 /*
475 * Disable a counter.
476 *
477 * If counter->ctx is a cloned context, callers must make sure that
478 * every task struct that counter->ctx->task could possibly point to
479 * remains valid. This condition is satisifed when called through
480 * perf_counter_for_each_child or perf_counter_for_each because they
481 * hold the top-level counter's child_mutex, so any descendant that
482 * goes to exit will block in sync_child_counter.
483 * When called from perf_pending_counter it's OK because counter->ctx
484 * is the current context on this CPU and preemption is disabled,
485 * hence we can't get into perf_counter_task_sched_out for this context.
486 */
487 static void perf_counter_disable(struct perf_counter *counter)
488 {
489 struct perf_counter_context *ctx = counter->ctx;
490 struct task_struct *task = ctx->task;
491
492 if (!task) {
493 /*
494 * Disable the counter on the cpu that it's on
495 */
496 smp_call_function_single(counter->cpu, __perf_counter_disable,
497 counter, 1);
498 return;
499 }
500
501 retry:
502 task_oncpu_function_call(task, __perf_counter_disable, counter);
503
504 spin_lock_irq(&ctx->lock);
505 /*
506 * If the counter is still active, we need to retry the cross-call.
507 */
508 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
509 spin_unlock_irq(&ctx->lock);
510 goto retry;
511 }
512
513 /*
514 * Since we have the lock this context can't be scheduled
515 * in, so we can change the state safely.
516 */
517 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
518 update_counter_times(counter);
519 counter->state = PERF_COUNTER_STATE_OFF;
520 }
521
522 spin_unlock_irq(&ctx->lock);
523 }
524
525 static int
526 counter_sched_in(struct perf_counter *counter,
527 struct perf_cpu_context *cpuctx,
528 struct perf_counter_context *ctx,
529 int cpu)
530 {
531 if (counter->state <= PERF_COUNTER_STATE_OFF)
532 return 0;
533
534 counter->state = PERF_COUNTER_STATE_ACTIVE;
535 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
536 /*
537 * The new state must be visible before we turn it on in the hardware:
538 */
539 smp_wmb();
540
541 if (counter->pmu->enable(counter)) {
542 counter->state = PERF_COUNTER_STATE_INACTIVE;
543 counter->oncpu = -1;
544 return -EAGAIN;
545 }
546
547 counter->tstamp_running += ctx->time - counter->tstamp_stopped;
548
549 if (!is_software_counter(counter))
550 cpuctx->active_oncpu++;
551 ctx->nr_active++;
552
553 if (counter->hw_event.exclusive)
554 cpuctx->exclusive = 1;
555
556 return 0;
557 }
558
559 static int
560 group_sched_in(struct perf_counter *group_counter,
561 struct perf_cpu_context *cpuctx,
562 struct perf_counter_context *ctx,
563 int cpu)
564 {
565 struct perf_counter *counter, *partial_group;
566 int ret;
567
568 if (group_counter->state == PERF_COUNTER_STATE_OFF)
569 return 0;
570
571 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
572 if (ret)
573 return ret < 0 ? ret : 0;
574
575 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
576 return -EAGAIN;
577
578 /*
579 * Schedule in siblings as one group (if any):
580 */
581 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
582 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
583 partial_group = counter;
584 goto group_error;
585 }
586 }
587
588 return 0;
589
590 group_error:
591 /*
592 * Groups can be scheduled in as one unit only, so undo any
593 * partial group before returning:
594 */
595 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
596 if (counter == partial_group)
597 break;
598 counter_sched_out(counter, cpuctx, ctx);
599 }
600 counter_sched_out(group_counter, cpuctx, ctx);
601
602 return -EAGAIN;
603 }
604
605 /*
606 * Return 1 for a group consisting entirely of software counters,
607 * 0 if the group contains any hardware counters.
608 */
609 static int is_software_only_group(struct perf_counter *leader)
610 {
611 struct perf_counter *counter;
612
613 if (!is_software_counter(leader))
614 return 0;
615
616 list_for_each_entry(counter, &leader->sibling_list, list_entry)
617 if (!is_software_counter(counter))
618 return 0;
619
620 return 1;
621 }
622
623 /*
624 * Work out whether we can put this counter group on the CPU now.
625 */
626 static int group_can_go_on(struct perf_counter *counter,
627 struct perf_cpu_context *cpuctx,
628 int can_add_hw)
629 {
630 /*
631 * Groups consisting entirely of software counters can always go on.
632 */
633 if (is_software_only_group(counter))
634 return 1;
635 /*
636 * If an exclusive group is already on, no other hardware
637 * counters can go on.
638 */
639 if (cpuctx->exclusive)
640 return 0;
641 /*
642 * If this group is exclusive and there are already
643 * counters on the CPU, it can't go on.
644 */
645 if (counter->hw_event.exclusive && cpuctx->active_oncpu)
646 return 0;
647 /*
648 * Otherwise, try to add it if all previous groups were able
649 * to go on.
650 */
651 return can_add_hw;
652 }
653
654 static void add_counter_to_ctx(struct perf_counter *counter,
655 struct perf_counter_context *ctx)
656 {
657 list_add_counter(counter, ctx);
658 counter->tstamp_enabled = ctx->time;
659 counter->tstamp_running = ctx->time;
660 counter->tstamp_stopped = ctx->time;
661 }
662
663 /*
664 * Cross CPU call to install and enable a performance counter
665 *
666 * Must be called with ctx->mutex held
667 */
668 static void __perf_install_in_context(void *info)
669 {
670 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
671 struct perf_counter *counter = info;
672 struct perf_counter_context *ctx = counter->ctx;
673 struct perf_counter *leader = counter->group_leader;
674 int cpu = smp_processor_id();
675 int err;
676
677 /*
678 * If this is a task context, we need to check whether it is
679 * the current task context of this cpu. If not it has been
680 * scheduled out before the smp call arrived.
681 * Or possibly this is the right context but it isn't
682 * on this cpu because it had no counters.
683 */
684 if (ctx->task && cpuctx->task_ctx != ctx) {
685 if (cpuctx->task_ctx || ctx->task != current)
686 return;
687 cpuctx->task_ctx = ctx;
688 }
689
690 spin_lock(&ctx->lock);
691 ctx->is_active = 1;
692 update_context_time(ctx);
693
694 /*
695 * Protect the list operation against NMI by disabling the
696 * counters on a global level. NOP for non NMI based counters.
697 */
698 perf_disable();
699
700 add_counter_to_ctx(counter, ctx);
701
702 /*
703 * Don't put the counter on if it is disabled or if
704 * it is in a group and the group isn't on.
705 */
706 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
707 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
708 goto unlock;
709
710 /*
711 * An exclusive counter can't go on if there are already active
712 * hardware counters, and no hardware counter can go on if there
713 * is already an exclusive counter on.
714 */
715 if (!group_can_go_on(counter, cpuctx, 1))
716 err = -EEXIST;
717 else
718 err = counter_sched_in(counter, cpuctx, ctx, cpu);
719
720 if (err) {
721 /*
722 * This counter couldn't go on. If it is in a group
723 * then we have to pull the whole group off.
724 * If the counter group is pinned then put it in error state.
725 */
726 if (leader != counter)
727 group_sched_out(leader, cpuctx, ctx);
728 if (leader->hw_event.pinned) {
729 update_group_times(leader);
730 leader->state = PERF_COUNTER_STATE_ERROR;
731 }
732 }
733
734 if (!err && !ctx->task && cpuctx->max_pertask)
735 cpuctx->max_pertask--;
736
737 unlock:
738 perf_enable();
739
740 spin_unlock(&ctx->lock);
741 }
742
743 /*
744 * Attach a performance counter to a context
745 *
746 * First we add the counter to the list with the hardware enable bit
747 * in counter->hw_config cleared.
748 *
749 * If the counter is attached to a task which is on a CPU we use a smp
750 * call to enable it in the task context. The task might have been
751 * scheduled away, but we check this in the smp call again.
752 *
753 * Must be called with ctx->mutex held.
754 */
755 static void
756 perf_install_in_context(struct perf_counter_context *ctx,
757 struct perf_counter *counter,
758 int cpu)
759 {
760 struct task_struct *task = ctx->task;
761
762 if (!task) {
763 /*
764 * Per cpu counters are installed via an smp call and
765 * the install is always sucessful.
766 */
767 smp_call_function_single(cpu, __perf_install_in_context,
768 counter, 1);
769 return;
770 }
771
772 retry:
773 task_oncpu_function_call(task, __perf_install_in_context,
774 counter);
775
776 spin_lock_irq(&ctx->lock);
777 /*
778 * we need to retry the smp call.
779 */
780 if (ctx->is_active && list_empty(&counter->list_entry)) {
781 spin_unlock_irq(&ctx->lock);
782 goto retry;
783 }
784
785 /*
786 * The lock prevents that this context is scheduled in so we
787 * can add the counter safely, if it the call above did not
788 * succeed.
789 */
790 if (list_empty(&counter->list_entry))
791 add_counter_to_ctx(counter, ctx);
792 spin_unlock_irq(&ctx->lock);
793 }
794
795 /*
796 * Cross CPU call to enable a performance counter
797 */
798 static void __perf_counter_enable(void *info)
799 {
800 struct perf_counter *counter = info;
801 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
802 struct perf_counter_context *ctx = counter->ctx;
803 struct perf_counter *leader = counter->group_leader;
804 int err;
805
806 /*
807 * If this is a per-task counter, need to check whether this
808 * counter's task is the current task on this cpu.
809 */
810 if (ctx->task && cpuctx->task_ctx != ctx) {
811 if (cpuctx->task_ctx || ctx->task != current)
812 return;
813 cpuctx->task_ctx = ctx;
814 }
815
816 spin_lock(&ctx->lock);
817 ctx->is_active = 1;
818 update_context_time(ctx);
819
820 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
821 goto unlock;
822 counter->state = PERF_COUNTER_STATE_INACTIVE;
823 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
824
825 /*
826 * If the counter is in a group and isn't the group leader,
827 * then don't put it on unless the group is on.
828 */
829 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
830 goto unlock;
831
832 if (!group_can_go_on(counter, cpuctx, 1)) {
833 err = -EEXIST;
834 } else {
835 perf_disable();
836 if (counter == leader)
837 err = group_sched_in(counter, cpuctx, ctx,
838 smp_processor_id());
839 else
840 err = counter_sched_in(counter, cpuctx, ctx,
841 smp_processor_id());
842 perf_enable();
843 }
844
845 if (err) {
846 /*
847 * If this counter can't go on and it's part of a
848 * group, then the whole group has to come off.
849 */
850 if (leader != counter)
851 group_sched_out(leader, cpuctx, ctx);
852 if (leader->hw_event.pinned) {
853 update_group_times(leader);
854 leader->state = PERF_COUNTER_STATE_ERROR;
855 }
856 }
857
858 unlock:
859 spin_unlock(&ctx->lock);
860 }
861
862 /*
863 * Enable a counter.
864 *
865 * If counter->ctx is a cloned context, callers must make sure that
866 * every task struct that counter->ctx->task could possibly point to
867 * remains valid. This condition is satisfied when called through
868 * perf_counter_for_each_child or perf_counter_for_each as described
869 * for perf_counter_disable.
870 */
871 static void perf_counter_enable(struct perf_counter *counter)
872 {
873 struct perf_counter_context *ctx = counter->ctx;
874 struct task_struct *task = ctx->task;
875
876 if (!task) {
877 /*
878 * Enable the counter on the cpu that it's on
879 */
880 smp_call_function_single(counter->cpu, __perf_counter_enable,
881 counter, 1);
882 return;
883 }
884
885 spin_lock_irq(&ctx->lock);
886 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
887 goto out;
888
889 /*
890 * If the counter is in error state, clear that first.
891 * That way, if we see the counter in error state below, we
892 * know that it has gone back into error state, as distinct
893 * from the task having been scheduled away before the
894 * cross-call arrived.
895 */
896 if (counter->state == PERF_COUNTER_STATE_ERROR)
897 counter->state = PERF_COUNTER_STATE_OFF;
898
899 retry:
900 spin_unlock_irq(&ctx->lock);
901 task_oncpu_function_call(task, __perf_counter_enable, counter);
902
903 spin_lock_irq(&ctx->lock);
904
905 /*
906 * If the context is active and the counter is still off,
907 * we need to retry the cross-call.
908 */
909 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
910 goto retry;
911
912 /*
913 * Since we have the lock this context can't be scheduled
914 * in, so we can change the state safely.
915 */
916 if (counter->state == PERF_COUNTER_STATE_OFF) {
917 counter->state = PERF_COUNTER_STATE_INACTIVE;
918 counter->tstamp_enabled =
919 ctx->time - counter->total_time_enabled;
920 }
921 out:
922 spin_unlock_irq(&ctx->lock);
923 }
924
925 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
926 {
927 /*
928 * not supported on inherited counters
929 */
930 if (counter->hw_event.inherit)
931 return -EINVAL;
932
933 atomic_add(refresh, &counter->event_limit);
934 perf_counter_enable(counter);
935
936 return 0;
937 }
938
939 void __perf_counter_sched_out(struct perf_counter_context *ctx,
940 struct perf_cpu_context *cpuctx)
941 {
942 struct perf_counter *counter;
943
944 spin_lock(&ctx->lock);
945 ctx->is_active = 0;
946 if (likely(!ctx->nr_counters))
947 goto out;
948 update_context_time(ctx);
949
950 perf_disable();
951 if (ctx->nr_active) {
952 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
953 if (counter != counter->group_leader)
954 counter_sched_out(counter, cpuctx, ctx);
955 else
956 group_sched_out(counter, cpuctx, ctx);
957 }
958 }
959 perf_enable();
960 out:
961 spin_unlock(&ctx->lock);
962 }
963
964 /*
965 * Test whether two contexts are equivalent, i.e. whether they
966 * have both been cloned from the same version of the same context
967 * and they both have the same number of enabled counters.
968 * If the number of enabled counters is the same, then the set
969 * of enabled counters should be the same, because these are both
970 * inherited contexts, therefore we can't access individual counters
971 * in them directly with an fd; we can only enable/disable all
972 * counters via prctl, or enable/disable all counters in a family
973 * via ioctl, which will have the same effect on both contexts.
974 */
975 static int context_equiv(struct perf_counter_context *ctx1,
976 struct perf_counter_context *ctx2)
977 {
978 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
979 && ctx1->parent_gen == ctx2->parent_gen
980 && !ctx1->pin_count && !ctx2->pin_count;
981 }
982
983 /*
984 * Called from scheduler to remove the counters of the current task,
985 * with interrupts disabled.
986 *
987 * We stop each counter and update the counter value in counter->count.
988 *
989 * This does not protect us against NMI, but disable()
990 * sets the disabled bit in the control field of counter _before_
991 * accessing the counter control register. If a NMI hits, then it will
992 * not restart the counter.
993 */
994 void perf_counter_task_sched_out(struct task_struct *task,
995 struct task_struct *next, int cpu)
996 {
997 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
998 struct perf_counter_context *ctx = task->perf_counter_ctxp;
999 struct perf_counter_context *next_ctx;
1000 struct perf_counter_context *parent;
1001 struct pt_regs *regs;
1002 int do_switch = 1;
1003
1004 regs = task_pt_regs(task);
1005 perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
1006
1007 if (likely(!ctx || !cpuctx->task_ctx))
1008 return;
1009
1010 update_context_time(ctx);
1011
1012 rcu_read_lock();
1013 parent = rcu_dereference(ctx->parent_ctx);
1014 next_ctx = next->perf_counter_ctxp;
1015 if (parent && next_ctx &&
1016 rcu_dereference(next_ctx->parent_ctx) == parent) {
1017 /*
1018 * Looks like the two contexts are clones, so we might be
1019 * able to optimize the context switch. We lock both
1020 * contexts and check that they are clones under the
1021 * lock (including re-checking that neither has been
1022 * uncloned in the meantime). It doesn't matter which
1023 * order we take the locks because no other cpu could
1024 * be trying to lock both of these tasks.
1025 */
1026 spin_lock(&ctx->lock);
1027 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1028 if (context_equiv(ctx, next_ctx)) {
1029 /*
1030 * XXX do we need a memory barrier of sorts
1031 * wrt to rcu_dereference() of perf_counter_ctxp
1032 */
1033 task->perf_counter_ctxp = next_ctx;
1034 next->perf_counter_ctxp = ctx;
1035 ctx->task = next;
1036 next_ctx->task = task;
1037 do_switch = 0;
1038 }
1039 spin_unlock(&next_ctx->lock);
1040 spin_unlock(&ctx->lock);
1041 }
1042 rcu_read_unlock();
1043
1044 if (do_switch) {
1045 __perf_counter_sched_out(ctx, cpuctx);
1046 cpuctx->task_ctx = NULL;
1047 }
1048 }
1049
1050 /*
1051 * Called with IRQs disabled
1052 */
1053 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
1054 {
1055 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1056
1057 if (!cpuctx->task_ctx)
1058 return;
1059
1060 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1061 return;
1062
1063 __perf_counter_sched_out(ctx, cpuctx);
1064 cpuctx->task_ctx = NULL;
1065 }
1066
1067 /*
1068 * Called with IRQs disabled
1069 */
1070 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
1071 {
1072 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1073 }
1074
1075 static void
1076 __perf_counter_sched_in(struct perf_counter_context *ctx,
1077 struct perf_cpu_context *cpuctx, int cpu)
1078 {
1079 struct perf_counter *counter;
1080 int can_add_hw = 1;
1081
1082 spin_lock(&ctx->lock);
1083 ctx->is_active = 1;
1084 if (likely(!ctx->nr_counters))
1085 goto out;
1086
1087 ctx->timestamp = perf_clock();
1088
1089 perf_disable();
1090
1091 /*
1092 * First go through the list and put on any pinned groups
1093 * in order to give them the best chance of going on.
1094 */
1095 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1096 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1097 !counter->hw_event.pinned)
1098 continue;
1099 if (counter->cpu != -1 && counter->cpu != cpu)
1100 continue;
1101
1102 if (counter != counter->group_leader)
1103 counter_sched_in(counter, cpuctx, ctx, cpu);
1104 else {
1105 if (group_can_go_on(counter, cpuctx, 1))
1106 group_sched_in(counter, cpuctx, ctx, cpu);
1107 }
1108
1109 /*
1110 * If this pinned group hasn't been scheduled,
1111 * put it in error state.
1112 */
1113 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1114 update_group_times(counter);
1115 counter->state = PERF_COUNTER_STATE_ERROR;
1116 }
1117 }
1118
1119 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1120 /*
1121 * Ignore counters in OFF or ERROR state, and
1122 * ignore pinned counters since we did them already.
1123 */
1124 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1125 counter->hw_event.pinned)
1126 continue;
1127
1128 /*
1129 * Listen to the 'cpu' scheduling filter constraint
1130 * of counters:
1131 */
1132 if (counter->cpu != -1 && counter->cpu != cpu)
1133 continue;
1134
1135 if (counter != counter->group_leader) {
1136 if (counter_sched_in(counter, cpuctx, ctx, cpu))
1137 can_add_hw = 0;
1138 } else {
1139 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1140 if (group_sched_in(counter, cpuctx, ctx, cpu))
1141 can_add_hw = 0;
1142 }
1143 }
1144 }
1145 perf_enable();
1146 out:
1147 spin_unlock(&ctx->lock);
1148 }
1149
1150 /*
1151 * Called from scheduler to add the counters of the current task
1152 * with interrupts disabled.
1153 *
1154 * We restore the counter value and then enable it.
1155 *
1156 * This does not protect us against NMI, but enable()
1157 * sets the enabled bit in the control field of counter _before_
1158 * accessing the counter control register. If a NMI hits, then it will
1159 * keep the counter running.
1160 */
1161 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1162 {
1163 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1164 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1165
1166 if (likely(!ctx))
1167 return;
1168 if (cpuctx->task_ctx == ctx)
1169 return;
1170 __perf_counter_sched_in(ctx, cpuctx, cpu);
1171 cpuctx->task_ctx = ctx;
1172 }
1173
1174 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1175 {
1176 struct perf_counter_context *ctx = &cpuctx->ctx;
1177
1178 __perf_counter_sched_in(ctx, cpuctx, cpu);
1179 }
1180
1181 #define MAX_INTERRUPTS (~0ULL)
1182
1183 static void perf_log_throttle(struct perf_counter *counter, int enable);
1184 static void perf_log_period(struct perf_counter *counter, u64 period);
1185
1186 static void perf_adjust_freq(struct perf_counter_context *ctx)
1187 {
1188 struct perf_counter *counter;
1189 u64 interrupts, sample_period;
1190 u64 events, period;
1191 s64 delta;
1192
1193 spin_lock(&ctx->lock);
1194 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1195 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1196 continue;
1197
1198 interrupts = counter->hw.interrupts;
1199 counter->hw.interrupts = 0;
1200
1201 if (interrupts == MAX_INTERRUPTS) {
1202 perf_log_throttle(counter, 1);
1203 counter->pmu->unthrottle(counter);
1204 interrupts = 2*sysctl_perf_counter_limit/HZ;
1205 }
1206
1207 if (!counter->hw_event.freq || !counter->hw_event.sample_freq)
1208 continue;
1209
1210 events = HZ * interrupts * counter->hw.sample_period;
1211 period = div64_u64(events, counter->hw_event.sample_freq);
1212
1213 delta = (s64)(1 + period - counter->hw.sample_period);
1214 delta >>= 1;
1215
1216 sample_period = counter->hw.sample_period + delta;
1217
1218 if (!sample_period)
1219 sample_period = 1;
1220
1221 perf_log_period(counter, sample_period);
1222
1223 counter->hw.sample_period = sample_period;
1224 }
1225 spin_unlock(&ctx->lock);
1226 }
1227
1228 /*
1229 * Round-robin a context's counters:
1230 */
1231 static void rotate_ctx(struct perf_counter_context *ctx)
1232 {
1233 struct perf_counter *counter;
1234
1235 if (!ctx->nr_counters)
1236 return;
1237
1238 spin_lock(&ctx->lock);
1239 /*
1240 * Rotate the first entry last (works just fine for group counters too):
1241 */
1242 perf_disable();
1243 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1244 list_move_tail(&counter->list_entry, &ctx->counter_list);
1245 break;
1246 }
1247 perf_enable();
1248
1249 spin_unlock(&ctx->lock);
1250 }
1251
1252 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1253 {
1254 struct perf_cpu_context *cpuctx;
1255 struct perf_counter_context *ctx;
1256
1257 if (!atomic_read(&nr_counters))
1258 return;
1259
1260 cpuctx = &per_cpu(perf_cpu_context, cpu);
1261 ctx = curr->perf_counter_ctxp;
1262
1263 perf_adjust_freq(&cpuctx->ctx);
1264 if (ctx)
1265 perf_adjust_freq(ctx);
1266
1267 perf_counter_cpu_sched_out(cpuctx);
1268 if (ctx)
1269 __perf_counter_task_sched_out(ctx);
1270
1271 rotate_ctx(&cpuctx->ctx);
1272 if (ctx)
1273 rotate_ctx(ctx);
1274
1275 perf_counter_cpu_sched_in(cpuctx, cpu);
1276 if (ctx)
1277 perf_counter_task_sched_in(curr, cpu);
1278 }
1279
1280 /*
1281 * Cross CPU call to read the hardware counter
1282 */
1283 static void __read(void *info)
1284 {
1285 struct perf_counter *counter = info;
1286 struct perf_counter_context *ctx = counter->ctx;
1287 unsigned long flags;
1288
1289 local_irq_save(flags);
1290 if (ctx->is_active)
1291 update_context_time(ctx);
1292 counter->pmu->read(counter);
1293 update_counter_times(counter);
1294 local_irq_restore(flags);
1295 }
1296
1297 static u64 perf_counter_read(struct perf_counter *counter)
1298 {
1299 /*
1300 * If counter is enabled and currently active on a CPU, update the
1301 * value in the counter structure:
1302 */
1303 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1304 smp_call_function_single(counter->oncpu,
1305 __read, counter, 1);
1306 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1307 update_counter_times(counter);
1308 }
1309
1310 return atomic64_read(&counter->count);
1311 }
1312
1313 /*
1314 * Initialize the perf_counter context in a task_struct:
1315 */
1316 static void
1317 __perf_counter_init_context(struct perf_counter_context *ctx,
1318 struct task_struct *task)
1319 {
1320 memset(ctx, 0, sizeof(*ctx));
1321 spin_lock_init(&ctx->lock);
1322 mutex_init(&ctx->mutex);
1323 INIT_LIST_HEAD(&ctx->counter_list);
1324 INIT_LIST_HEAD(&ctx->event_list);
1325 atomic_set(&ctx->refcount, 1);
1326 ctx->task = task;
1327 }
1328
1329 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1330 {
1331 struct perf_counter_context *parent_ctx;
1332 struct perf_counter_context *ctx;
1333 struct perf_cpu_context *cpuctx;
1334 struct task_struct *task;
1335 unsigned long flags;
1336 int err;
1337
1338 /*
1339 * If cpu is not a wildcard then this is a percpu counter:
1340 */
1341 if (cpu != -1) {
1342 /* Must be root to operate on a CPU counter: */
1343 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1344 return ERR_PTR(-EACCES);
1345
1346 if (cpu < 0 || cpu > num_possible_cpus())
1347 return ERR_PTR(-EINVAL);
1348
1349 /*
1350 * We could be clever and allow to attach a counter to an
1351 * offline CPU and activate it when the CPU comes up, but
1352 * that's for later.
1353 */
1354 if (!cpu_isset(cpu, cpu_online_map))
1355 return ERR_PTR(-ENODEV);
1356
1357 cpuctx = &per_cpu(perf_cpu_context, cpu);
1358 ctx = &cpuctx->ctx;
1359 get_ctx(ctx);
1360
1361 return ctx;
1362 }
1363
1364 rcu_read_lock();
1365 if (!pid)
1366 task = current;
1367 else
1368 task = find_task_by_vpid(pid);
1369 if (task)
1370 get_task_struct(task);
1371 rcu_read_unlock();
1372
1373 if (!task)
1374 return ERR_PTR(-ESRCH);
1375
1376 /*
1377 * Can't attach counters to a dying task.
1378 */
1379 err = -ESRCH;
1380 if (task->flags & PF_EXITING)
1381 goto errout;
1382
1383 /* Reuse ptrace permission checks for now. */
1384 err = -EACCES;
1385 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1386 goto errout;
1387
1388 retry:
1389 ctx = perf_lock_task_context(task, &flags);
1390 if (ctx) {
1391 parent_ctx = ctx->parent_ctx;
1392 if (parent_ctx) {
1393 put_ctx(parent_ctx);
1394 ctx->parent_ctx = NULL; /* no longer a clone */
1395 }
1396 /*
1397 * Get an extra reference before dropping the lock so that
1398 * this context won't get freed if the task exits.
1399 */
1400 get_ctx(ctx);
1401 spin_unlock_irqrestore(&ctx->lock, flags);
1402 }
1403
1404 if (!ctx) {
1405 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1406 err = -ENOMEM;
1407 if (!ctx)
1408 goto errout;
1409 __perf_counter_init_context(ctx, task);
1410 get_ctx(ctx);
1411 if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1412 /*
1413 * We raced with some other task; use
1414 * the context they set.
1415 */
1416 kfree(ctx);
1417 goto retry;
1418 }
1419 get_task_struct(task);
1420 }
1421
1422 put_task_struct(task);
1423 return ctx;
1424
1425 errout:
1426 put_task_struct(task);
1427 return ERR_PTR(err);
1428 }
1429
1430 static void free_counter_rcu(struct rcu_head *head)
1431 {
1432 struct perf_counter *counter;
1433
1434 counter = container_of(head, struct perf_counter, rcu_head);
1435 if (counter->ns)
1436 put_pid_ns(counter->ns);
1437 kfree(counter);
1438 }
1439
1440 static void perf_pending_sync(struct perf_counter *counter);
1441
1442 static void free_counter(struct perf_counter *counter)
1443 {
1444 perf_pending_sync(counter);
1445
1446 atomic_dec(&nr_counters);
1447 if (counter->hw_event.mmap)
1448 atomic_dec(&nr_mmap_tracking);
1449 if (counter->hw_event.munmap)
1450 atomic_dec(&nr_munmap_tracking);
1451 if (counter->hw_event.comm)
1452 atomic_dec(&nr_comm_tracking);
1453
1454 if (counter->destroy)
1455 counter->destroy(counter);
1456
1457 put_ctx(counter->ctx);
1458 call_rcu(&counter->rcu_head, free_counter_rcu);
1459 }
1460
1461 /*
1462 * Called when the last reference to the file is gone.
1463 */
1464 static int perf_release(struct inode *inode, struct file *file)
1465 {
1466 struct perf_counter *counter = file->private_data;
1467 struct perf_counter_context *ctx = counter->ctx;
1468
1469 file->private_data = NULL;
1470
1471 WARN_ON_ONCE(ctx->parent_ctx);
1472 mutex_lock(&ctx->mutex);
1473 perf_counter_remove_from_context(counter);
1474 mutex_unlock(&ctx->mutex);
1475
1476 mutex_lock(&counter->owner->perf_counter_mutex);
1477 list_del_init(&counter->owner_entry);
1478 mutex_unlock(&counter->owner->perf_counter_mutex);
1479 put_task_struct(counter->owner);
1480
1481 free_counter(counter);
1482
1483 return 0;
1484 }
1485
1486 /*
1487 * Read the performance counter - simple non blocking version for now
1488 */
1489 static ssize_t
1490 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1491 {
1492 u64 values[3];
1493 int n;
1494
1495 /*
1496 * Return end-of-file for a read on a counter that is in
1497 * error state (i.e. because it was pinned but it couldn't be
1498 * scheduled on to the CPU at some point).
1499 */
1500 if (counter->state == PERF_COUNTER_STATE_ERROR)
1501 return 0;
1502
1503 WARN_ON_ONCE(counter->ctx->parent_ctx);
1504 mutex_lock(&counter->child_mutex);
1505 values[0] = perf_counter_read(counter);
1506 n = 1;
1507 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1508 values[n++] = counter->total_time_enabled +
1509 atomic64_read(&counter->child_total_time_enabled);
1510 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1511 values[n++] = counter->total_time_running +
1512 atomic64_read(&counter->child_total_time_running);
1513 if (counter->hw_event.read_format & PERF_FORMAT_ID)
1514 values[n++] = counter->id;
1515 mutex_unlock(&counter->child_mutex);
1516
1517 if (count < n * sizeof(u64))
1518 return -EINVAL;
1519 count = n * sizeof(u64);
1520
1521 if (copy_to_user(buf, values, count))
1522 return -EFAULT;
1523
1524 return count;
1525 }
1526
1527 static ssize_t
1528 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1529 {
1530 struct perf_counter *counter = file->private_data;
1531
1532 return perf_read_hw(counter, buf, count);
1533 }
1534
1535 static unsigned int perf_poll(struct file *file, poll_table *wait)
1536 {
1537 struct perf_counter *counter = file->private_data;
1538 struct perf_mmap_data *data;
1539 unsigned int events = POLL_HUP;
1540
1541 rcu_read_lock();
1542 data = rcu_dereference(counter->data);
1543 if (data)
1544 events = atomic_xchg(&data->poll, 0);
1545 rcu_read_unlock();
1546
1547 poll_wait(file, &counter->waitq, wait);
1548
1549 return events;
1550 }
1551
1552 static void perf_counter_reset(struct perf_counter *counter)
1553 {
1554 (void)perf_counter_read(counter);
1555 atomic64_set(&counter->count, 0);
1556 perf_counter_update_userpage(counter);
1557 }
1558
1559 static void perf_counter_for_each_sibling(struct perf_counter *counter,
1560 void (*func)(struct perf_counter *))
1561 {
1562 struct perf_counter_context *ctx = counter->ctx;
1563 struct perf_counter *sibling;
1564
1565 WARN_ON_ONCE(ctx->parent_ctx);
1566 mutex_lock(&ctx->mutex);
1567 counter = counter->group_leader;
1568
1569 func(counter);
1570 list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1571 func(sibling);
1572 mutex_unlock(&ctx->mutex);
1573 }
1574
1575 /*
1576 * Holding the top-level counter's child_mutex means that any
1577 * descendant process that has inherited this counter will block
1578 * in sync_child_counter if it goes to exit, thus satisfying the
1579 * task existence requirements of perf_counter_enable/disable.
1580 */
1581 static void perf_counter_for_each_child(struct perf_counter *counter,
1582 void (*func)(struct perf_counter *))
1583 {
1584 struct perf_counter *child;
1585
1586 WARN_ON_ONCE(counter->ctx->parent_ctx);
1587 mutex_lock(&counter->child_mutex);
1588 func(counter);
1589 list_for_each_entry(child, &counter->child_list, child_list)
1590 func(child);
1591 mutex_unlock(&counter->child_mutex);
1592 }
1593
1594 static void perf_counter_for_each(struct perf_counter *counter,
1595 void (*func)(struct perf_counter *))
1596 {
1597 struct perf_counter *child;
1598
1599 WARN_ON_ONCE(counter->ctx->parent_ctx);
1600 mutex_lock(&counter->child_mutex);
1601 perf_counter_for_each_sibling(counter, func);
1602 list_for_each_entry(child, &counter->child_list, child_list)
1603 perf_counter_for_each_sibling(child, func);
1604 mutex_unlock(&counter->child_mutex);
1605 }
1606
1607 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1608 {
1609 struct perf_counter *counter = file->private_data;
1610 void (*func)(struct perf_counter *);
1611 u32 flags = arg;
1612
1613 switch (cmd) {
1614 case PERF_COUNTER_IOC_ENABLE:
1615 func = perf_counter_enable;
1616 break;
1617 case PERF_COUNTER_IOC_DISABLE:
1618 func = perf_counter_disable;
1619 break;
1620 case PERF_COUNTER_IOC_RESET:
1621 func = perf_counter_reset;
1622 break;
1623
1624 case PERF_COUNTER_IOC_REFRESH:
1625 return perf_counter_refresh(counter, arg);
1626 default:
1627 return -ENOTTY;
1628 }
1629
1630 if (flags & PERF_IOC_FLAG_GROUP)
1631 perf_counter_for_each(counter, func);
1632 else
1633 perf_counter_for_each_child(counter, func);
1634
1635 return 0;
1636 }
1637
1638 int perf_counter_task_enable(void)
1639 {
1640 struct perf_counter *counter;
1641
1642 mutex_lock(&current->perf_counter_mutex);
1643 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1644 perf_counter_for_each_child(counter, perf_counter_enable);
1645 mutex_unlock(&current->perf_counter_mutex);
1646
1647 return 0;
1648 }
1649
1650 int perf_counter_task_disable(void)
1651 {
1652 struct perf_counter *counter;
1653
1654 mutex_lock(&current->perf_counter_mutex);
1655 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1656 perf_counter_for_each_child(counter, perf_counter_disable);
1657 mutex_unlock(&current->perf_counter_mutex);
1658
1659 return 0;
1660 }
1661
1662 /*
1663 * Callers need to ensure there can be no nesting of this function, otherwise
1664 * the seqlock logic goes bad. We can not serialize this because the arch
1665 * code calls this from NMI context.
1666 */
1667 void perf_counter_update_userpage(struct perf_counter *counter)
1668 {
1669 struct perf_counter_mmap_page *userpg;
1670 struct perf_mmap_data *data;
1671
1672 rcu_read_lock();
1673 data = rcu_dereference(counter->data);
1674 if (!data)
1675 goto unlock;
1676
1677 userpg = data->user_page;
1678
1679 /*
1680 * Disable preemption so as to not let the corresponding user-space
1681 * spin too long if we get preempted.
1682 */
1683 preempt_disable();
1684 ++userpg->lock;
1685 barrier();
1686 userpg->index = counter->hw.idx;
1687 userpg->offset = atomic64_read(&counter->count);
1688 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1689 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1690
1691 barrier();
1692 ++userpg->lock;
1693 preempt_enable();
1694 unlock:
1695 rcu_read_unlock();
1696 }
1697
1698 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1699 {
1700 struct perf_counter *counter = vma->vm_file->private_data;
1701 struct perf_mmap_data *data;
1702 int ret = VM_FAULT_SIGBUS;
1703
1704 rcu_read_lock();
1705 data = rcu_dereference(counter->data);
1706 if (!data)
1707 goto unlock;
1708
1709 if (vmf->pgoff == 0) {
1710 vmf->page = virt_to_page(data->user_page);
1711 } else {
1712 int nr = vmf->pgoff - 1;
1713
1714 if ((unsigned)nr > data->nr_pages)
1715 goto unlock;
1716
1717 vmf->page = virt_to_page(data->data_pages[nr]);
1718 }
1719 get_page(vmf->page);
1720 ret = 0;
1721 unlock:
1722 rcu_read_unlock();
1723
1724 return ret;
1725 }
1726
1727 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1728 {
1729 struct perf_mmap_data *data;
1730 unsigned long size;
1731 int i;
1732
1733 WARN_ON(atomic_read(&counter->mmap_count));
1734
1735 size = sizeof(struct perf_mmap_data);
1736 size += nr_pages * sizeof(void *);
1737
1738 data = kzalloc(size, GFP_KERNEL);
1739 if (!data)
1740 goto fail;
1741
1742 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1743 if (!data->user_page)
1744 goto fail_user_page;
1745
1746 for (i = 0; i < nr_pages; i++) {
1747 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1748 if (!data->data_pages[i])
1749 goto fail_data_pages;
1750 }
1751
1752 data->nr_pages = nr_pages;
1753 atomic_set(&data->lock, -1);
1754
1755 rcu_assign_pointer(counter->data, data);
1756
1757 return 0;
1758
1759 fail_data_pages:
1760 for (i--; i >= 0; i--)
1761 free_page((unsigned long)data->data_pages[i]);
1762
1763 free_page((unsigned long)data->user_page);
1764
1765 fail_user_page:
1766 kfree(data);
1767
1768 fail:
1769 return -ENOMEM;
1770 }
1771
1772 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1773 {
1774 struct perf_mmap_data *data;
1775 int i;
1776
1777 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
1778
1779 free_page((unsigned long)data->user_page);
1780 for (i = 0; i < data->nr_pages; i++)
1781 free_page((unsigned long)data->data_pages[i]);
1782 kfree(data);
1783 }
1784
1785 static void perf_mmap_data_free(struct perf_counter *counter)
1786 {
1787 struct perf_mmap_data *data = counter->data;
1788
1789 WARN_ON(atomic_read(&counter->mmap_count));
1790
1791 rcu_assign_pointer(counter->data, NULL);
1792 call_rcu(&data->rcu_head, __perf_mmap_data_free);
1793 }
1794
1795 static void perf_mmap_open(struct vm_area_struct *vma)
1796 {
1797 struct perf_counter *counter = vma->vm_file->private_data;
1798
1799 atomic_inc(&counter->mmap_count);
1800 }
1801
1802 static void perf_mmap_close(struct vm_area_struct *vma)
1803 {
1804 struct perf_counter *counter = vma->vm_file->private_data;
1805
1806 WARN_ON_ONCE(counter->ctx->parent_ctx);
1807 if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) {
1808 struct user_struct *user = current_user();
1809
1810 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1811 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1812 perf_mmap_data_free(counter);
1813 mutex_unlock(&counter->mmap_mutex);
1814 }
1815 }
1816
1817 static struct vm_operations_struct perf_mmap_vmops = {
1818 .open = perf_mmap_open,
1819 .close = perf_mmap_close,
1820 .fault = perf_mmap_fault,
1821 };
1822
1823 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1824 {
1825 struct perf_counter *counter = file->private_data;
1826 unsigned long user_locked, user_lock_limit;
1827 struct user_struct *user = current_user();
1828 unsigned long locked, lock_limit;
1829 unsigned long vma_size;
1830 unsigned long nr_pages;
1831 long user_extra, extra;
1832 int ret = 0;
1833
1834 if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1835 return -EINVAL;
1836
1837 vma_size = vma->vm_end - vma->vm_start;
1838 nr_pages = (vma_size / PAGE_SIZE) - 1;
1839
1840 /*
1841 * If we have data pages ensure they're a power-of-two number, so we
1842 * can do bitmasks instead of modulo.
1843 */
1844 if (nr_pages != 0 && !is_power_of_2(nr_pages))
1845 return -EINVAL;
1846
1847 if (vma_size != PAGE_SIZE * (1 + nr_pages))
1848 return -EINVAL;
1849
1850 if (vma->vm_pgoff != 0)
1851 return -EINVAL;
1852
1853 WARN_ON_ONCE(counter->ctx->parent_ctx);
1854 mutex_lock(&counter->mmap_mutex);
1855 if (atomic_inc_not_zero(&counter->mmap_count)) {
1856 if (nr_pages != counter->data->nr_pages)
1857 ret = -EINVAL;
1858 goto unlock;
1859 }
1860
1861 user_extra = nr_pages + 1;
1862 user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1863
1864 /*
1865 * Increase the limit linearly with more CPUs:
1866 */
1867 user_lock_limit *= num_online_cpus();
1868
1869 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1870
1871 extra = 0;
1872 if (user_locked > user_lock_limit)
1873 extra = user_locked - user_lock_limit;
1874
1875 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1876 lock_limit >>= PAGE_SHIFT;
1877 locked = vma->vm_mm->locked_vm + extra;
1878
1879 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1880 ret = -EPERM;
1881 goto unlock;
1882 }
1883
1884 WARN_ON(counter->data);
1885 ret = perf_mmap_data_alloc(counter, nr_pages);
1886 if (ret)
1887 goto unlock;
1888
1889 atomic_set(&counter->mmap_count, 1);
1890 atomic_long_add(user_extra, &user->locked_vm);
1891 vma->vm_mm->locked_vm += extra;
1892 counter->data->nr_locked = extra;
1893 unlock:
1894 mutex_unlock(&counter->mmap_mutex);
1895
1896 vma->vm_flags &= ~VM_MAYWRITE;
1897 vma->vm_flags |= VM_RESERVED;
1898 vma->vm_ops = &perf_mmap_vmops;
1899
1900 return ret;
1901 }
1902
1903 static int perf_fasync(int fd, struct file *filp, int on)
1904 {
1905 struct inode *inode = filp->f_path.dentry->d_inode;
1906 struct perf_counter *counter = filp->private_data;
1907 int retval;
1908
1909 mutex_lock(&inode->i_mutex);
1910 retval = fasync_helper(fd, filp, on, &counter->fasync);
1911 mutex_unlock(&inode->i_mutex);
1912
1913 if (retval < 0)
1914 return retval;
1915
1916 return 0;
1917 }
1918
1919 static const struct file_operations perf_fops = {
1920 .release = perf_release,
1921 .read = perf_read,
1922 .poll = perf_poll,
1923 .unlocked_ioctl = perf_ioctl,
1924 .compat_ioctl = perf_ioctl,
1925 .mmap = perf_mmap,
1926 .fasync = perf_fasync,
1927 };
1928
1929 /*
1930 * Perf counter wakeup
1931 *
1932 * If there's data, ensure we set the poll() state and publish everything
1933 * to user-space before waking everybody up.
1934 */
1935
1936 void perf_counter_wakeup(struct perf_counter *counter)
1937 {
1938 wake_up_all(&counter->waitq);
1939
1940 if (counter->pending_kill) {
1941 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1942 counter->pending_kill = 0;
1943 }
1944 }
1945
1946 /*
1947 * Pending wakeups
1948 *
1949 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1950 *
1951 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1952 * single linked list and use cmpxchg() to add entries lockless.
1953 */
1954
1955 static void perf_pending_counter(struct perf_pending_entry *entry)
1956 {
1957 struct perf_counter *counter = container_of(entry,
1958 struct perf_counter, pending);
1959
1960 if (counter->pending_disable) {
1961 counter->pending_disable = 0;
1962 perf_counter_disable(counter);
1963 }
1964
1965 if (counter->pending_wakeup) {
1966 counter->pending_wakeup = 0;
1967 perf_counter_wakeup(counter);
1968 }
1969 }
1970
1971 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1972
1973 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1974 PENDING_TAIL,
1975 };
1976
1977 static void perf_pending_queue(struct perf_pending_entry *entry,
1978 void (*func)(struct perf_pending_entry *))
1979 {
1980 struct perf_pending_entry **head;
1981
1982 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1983 return;
1984
1985 entry->func = func;
1986
1987 head = &get_cpu_var(perf_pending_head);
1988
1989 do {
1990 entry->next = *head;
1991 } while (cmpxchg(head, entry->next, entry) != entry->next);
1992
1993 set_perf_counter_pending();
1994
1995 put_cpu_var(perf_pending_head);
1996 }
1997
1998 static int __perf_pending_run(void)
1999 {
2000 struct perf_pending_entry *list;
2001 int nr = 0;
2002
2003 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2004 while (list != PENDING_TAIL) {
2005 void (*func)(struct perf_pending_entry *);
2006 struct perf_pending_entry *entry = list;
2007
2008 list = list->next;
2009
2010 func = entry->func;
2011 entry->next = NULL;
2012 /*
2013 * Ensure we observe the unqueue before we issue the wakeup,
2014 * so that we won't be waiting forever.
2015 * -- see perf_not_pending().
2016 */
2017 smp_wmb();
2018
2019 func(entry);
2020 nr++;
2021 }
2022
2023 return nr;
2024 }
2025
2026 static inline int perf_not_pending(struct perf_counter *counter)
2027 {
2028 /*
2029 * If we flush on whatever cpu we run, there is a chance we don't
2030 * need to wait.
2031 */
2032 get_cpu();
2033 __perf_pending_run();
2034 put_cpu();
2035
2036 /*
2037 * Ensure we see the proper queue state before going to sleep
2038 * so that we do not miss the wakeup. -- see perf_pending_handle()
2039 */
2040 smp_rmb();
2041 return counter->pending.next == NULL;
2042 }
2043
2044 static void perf_pending_sync(struct perf_counter *counter)
2045 {
2046 wait_event(counter->waitq, perf_not_pending(counter));
2047 }
2048
2049 void perf_counter_do_pending(void)
2050 {
2051 __perf_pending_run();
2052 }
2053
2054 /*
2055 * Callchain support -- arch specific
2056 */
2057
2058 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2059 {
2060 return NULL;
2061 }
2062
2063 /*
2064 * Output
2065 */
2066
2067 struct perf_output_handle {
2068 struct perf_counter *counter;
2069 struct perf_mmap_data *data;
2070 unsigned int offset;
2071 unsigned int head;
2072 int nmi;
2073 int overflow;
2074 int locked;
2075 unsigned long flags;
2076 };
2077
2078 static void perf_output_wakeup(struct perf_output_handle *handle)
2079 {
2080 atomic_set(&handle->data->poll, POLL_IN);
2081
2082 if (handle->nmi) {
2083 handle->counter->pending_wakeup = 1;
2084 perf_pending_queue(&handle->counter->pending,
2085 perf_pending_counter);
2086 } else
2087 perf_counter_wakeup(handle->counter);
2088 }
2089
2090 /*
2091 * Curious locking construct.
2092 *
2093 * We need to ensure a later event doesn't publish a head when a former
2094 * event isn't done writing. However since we need to deal with NMIs we
2095 * cannot fully serialize things.
2096 *
2097 * What we do is serialize between CPUs so we only have to deal with NMI
2098 * nesting on a single CPU.
2099 *
2100 * We only publish the head (and generate a wakeup) when the outer-most
2101 * event completes.
2102 */
2103 static void perf_output_lock(struct perf_output_handle *handle)
2104 {
2105 struct perf_mmap_data *data = handle->data;
2106 int cpu;
2107
2108 handle->locked = 0;
2109
2110 local_irq_save(handle->flags);
2111 cpu = smp_processor_id();
2112
2113 if (in_nmi() && atomic_read(&data->lock) == cpu)
2114 return;
2115
2116 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2117 cpu_relax();
2118
2119 handle->locked = 1;
2120 }
2121
2122 static void perf_output_unlock(struct perf_output_handle *handle)
2123 {
2124 struct perf_mmap_data *data = handle->data;
2125 int head, cpu;
2126
2127 data->done_head = data->head;
2128
2129 if (!handle->locked)
2130 goto out;
2131
2132 again:
2133 /*
2134 * The xchg implies a full barrier that ensures all writes are done
2135 * before we publish the new head, matched by a rmb() in userspace when
2136 * reading this position.
2137 */
2138 while ((head = atomic_xchg(&data->done_head, 0)))
2139 data->user_page->data_head = head;
2140
2141 /*
2142 * NMI can happen here, which means we can miss a done_head update.
2143 */
2144
2145 cpu = atomic_xchg(&data->lock, -1);
2146 WARN_ON_ONCE(cpu != smp_processor_id());
2147
2148 /*
2149 * Therefore we have to validate we did not indeed do so.
2150 */
2151 if (unlikely(atomic_read(&data->done_head))) {
2152 /*
2153 * Since we had it locked, we can lock it again.
2154 */
2155 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2156 cpu_relax();
2157
2158 goto again;
2159 }
2160
2161 if (atomic_xchg(&data->wakeup, 0))
2162 perf_output_wakeup(handle);
2163 out:
2164 local_irq_restore(handle->flags);
2165 }
2166
2167 static int perf_output_begin(struct perf_output_handle *handle,
2168 struct perf_counter *counter, unsigned int size,
2169 int nmi, int overflow)
2170 {
2171 struct perf_mmap_data *data;
2172 unsigned int offset, head;
2173
2174 /*
2175 * For inherited counters we send all the output towards the parent.
2176 */
2177 if (counter->parent)
2178 counter = counter->parent;
2179
2180 rcu_read_lock();
2181 data = rcu_dereference(counter->data);
2182 if (!data)
2183 goto out;
2184
2185 handle->data = data;
2186 handle->counter = counter;
2187 handle->nmi = nmi;
2188 handle->overflow = overflow;
2189
2190 if (!data->nr_pages)
2191 goto fail;
2192
2193 perf_output_lock(handle);
2194
2195 do {
2196 offset = head = atomic_read(&data->head);
2197 head += size;
2198 } while (atomic_cmpxchg(&data->head, offset, head) != offset);
2199
2200 handle->offset = offset;
2201 handle->head = head;
2202
2203 if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
2204 atomic_set(&data->wakeup, 1);
2205
2206 return 0;
2207
2208 fail:
2209 perf_output_wakeup(handle);
2210 out:
2211 rcu_read_unlock();
2212
2213 return -ENOSPC;
2214 }
2215
2216 static void perf_output_copy(struct perf_output_handle *handle,
2217 void *buf, unsigned int len)
2218 {
2219 unsigned int pages_mask;
2220 unsigned int offset;
2221 unsigned int size;
2222 void **pages;
2223
2224 offset = handle->offset;
2225 pages_mask = handle->data->nr_pages - 1;
2226 pages = handle->data->data_pages;
2227
2228 do {
2229 unsigned int page_offset;
2230 int nr;
2231
2232 nr = (offset >> PAGE_SHIFT) & pages_mask;
2233 page_offset = offset & (PAGE_SIZE - 1);
2234 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2235
2236 memcpy(pages[nr] + page_offset, buf, size);
2237
2238 len -= size;
2239 buf += size;
2240 offset += size;
2241 } while (len);
2242
2243 handle->offset = offset;
2244
2245 /*
2246 * Check we didn't copy past our reservation window, taking the
2247 * possible unsigned int wrap into account.
2248 */
2249 WARN_ON_ONCE(((int)(handle->head - handle->offset)) < 0);
2250 }
2251
2252 #define perf_output_put(handle, x) \
2253 perf_output_copy((handle), &(x), sizeof(x))
2254
2255 static void perf_output_end(struct perf_output_handle *handle)
2256 {
2257 struct perf_counter *counter = handle->counter;
2258 struct perf_mmap_data *data = handle->data;
2259
2260 int wakeup_events = counter->hw_event.wakeup_events;
2261
2262 if (handle->overflow && wakeup_events) {
2263 int events = atomic_inc_return(&data->events);
2264 if (events >= wakeup_events) {
2265 atomic_sub(wakeup_events, &data->events);
2266 atomic_set(&data->wakeup, 1);
2267 }
2268 }
2269
2270 perf_output_unlock(handle);
2271 rcu_read_unlock();
2272 }
2273
2274 static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p)
2275 {
2276 /*
2277 * only top level counters have the pid namespace they were created in
2278 */
2279 if (counter->parent)
2280 counter = counter->parent;
2281
2282 return task_tgid_nr_ns(p, counter->ns);
2283 }
2284
2285 static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p)
2286 {
2287 /*
2288 * only top level counters have the pid namespace they were created in
2289 */
2290 if (counter->parent)
2291 counter = counter->parent;
2292
2293 return task_pid_nr_ns(p, counter->ns);
2294 }
2295
2296 static void perf_counter_output(struct perf_counter *counter,
2297 int nmi, struct pt_regs *regs, u64 addr)
2298 {
2299 int ret;
2300 u64 sample_type = counter->hw_event.sample_type;
2301 struct perf_output_handle handle;
2302 struct perf_event_header header;
2303 u64 ip;
2304 struct {
2305 u32 pid, tid;
2306 } tid_entry;
2307 struct {
2308 u64 id;
2309 u64 counter;
2310 } group_entry;
2311 struct perf_callchain_entry *callchain = NULL;
2312 int callchain_size = 0;
2313 u64 time;
2314 struct {
2315 u32 cpu, reserved;
2316 } cpu_entry;
2317
2318 header.type = 0;
2319 header.size = sizeof(header);
2320
2321 header.misc = PERF_EVENT_MISC_OVERFLOW;
2322 header.misc |= perf_misc_flags(regs);
2323
2324 if (sample_type & PERF_SAMPLE_IP) {
2325 ip = perf_instruction_pointer(regs);
2326 header.type |= PERF_SAMPLE_IP;
2327 header.size += sizeof(ip);
2328 }
2329
2330 if (sample_type & PERF_SAMPLE_TID) {
2331 /* namespace issues */
2332 tid_entry.pid = perf_counter_pid(counter, current);
2333 tid_entry.tid = perf_counter_tid(counter, current);
2334
2335 header.type |= PERF_SAMPLE_TID;
2336 header.size += sizeof(tid_entry);
2337 }
2338
2339 if (sample_type & PERF_SAMPLE_TIME) {
2340 /*
2341 * Maybe do better on x86 and provide cpu_clock_nmi()
2342 */
2343 time = sched_clock();
2344
2345 header.type |= PERF_SAMPLE_TIME;
2346 header.size += sizeof(u64);
2347 }
2348
2349 if (sample_type & PERF_SAMPLE_ADDR) {
2350 header.type |= PERF_SAMPLE_ADDR;
2351 header.size += sizeof(u64);
2352 }
2353
2354 if (sample_type & PERF_SAMPLE_CONFIG) {
2355 header.type |= PERF_SAMPLE_CONFIG;
2356 header.size += sizeof(u64);
2357 }
2358
2359 if (sample_type & PERF_SAMPLE_CPU) {
2360 header.type |= PERF_SAMPLE_CPU;
2361 header.size += sizeof(cpu_entry);
2362
2363 cpu_entry.cpu = raw_smp_processor_id();
2364 }
2365
2366 if (sample_type & PERF_SAMPLE_GROUP) {
2367 header.type |= PERF_SAMPLE_GROUP;
2368 header.size += sizeof(u64) +
2369 counter->nr_siblings * sizeof(group_entry);
2370 }
2371
2372 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2373 callchain = perf_callchain(regs);
2374
2375 if (callchain) {
2376 callchain_size = (1 + callchain->nr) * sizeof(u64);
2377
2378 header.type |= PERF_SAMPLE_CALLCHAIN;
2379 header.size += callchain_size;
2380 }
2381 }
2382
2383 ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2384 if (ret)
2385 return;
2386
2387 perf_output_put(&handle, header);
2388
2389 if (sample_type & PERF_SAMPLE_IP)
2390 perf_output_put(&handle, ip);
2391
2392 if (sample_type & PERF_SAMPLE_TID)
2393 perf_output_put(&handle, tid_entry);
2394
2395 if (sample_type & PERF_SAMPLE_TIME)
2396 perf_output_put(&handle, time);
2397
2398 if (sample_type & PERF_SAMPLE_ADDR)
2399 perf_output_put(&handle, addr);
2400
2401 if (sample_type & PERF_SAMPLE_CONFIG)
2402 perf_output_put(&handle, counter->hw_event.config);
2403
2404 if (sample_type & PERF_SAMPLE_CPU)
2405 perf_output_put(&handle, cpu_entry);
2406
2407 /*
2408 * XXX PERF_SAMPLE_GROUP vs inherited counters seems difficult.
2409 */
2410 if (sample_type & PERF_SAMPLE_GROUP) {
2411 struct perf_counter *leader, *sub;
2412 u64 nr = counter->nr_siblings;
2413
2414 perf_output_put(&handle, nr);
2415
2416 leader = counter->group_leader;
2417 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2418 if (sub != counter)
2419 sub->pmu->read(sub);
2420
2421 group_entry.id = sub->id;
2422 group_entry.counter = atomic64_read(&sub->count);
2423
2424 perf_output_put(&handle, group_entry);
2425 }
2426 }
2427
2428 if (callchain)
2429 perf_output_copy(&handle, callchain, callchain_size);
2430
2431 perf_output_end(&handle);
2432 }
2433
2434 /*
2435 * comm tracking
2436 */
2437
2438 struct perf_comm_event {
2439 struct task_struct *task;
2440 char *comm;
2441 int comm_size;
2442
2443 struct {
2444 struct perf_event_header header;
2445
2446 u32 pid;
2447 u32 tid;
2448 } event;
2449 };
2450
2451 static void perf_counter_comm_output(struct perf_counter *counter,
2452 struct perf_comm_event *comm_event)
2453 {
2454 struct perf_output_handle handle;
2455 int size = comm_event->event.header.size;
2456 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2457
2458 if (ret)
2459 return;
2460
2461 comm_event->event.pid = perf_counter_pid(counter, comm_event->task);
2462 comm_event->event.tid = perf_counter_tid(counter, comm_event->task);
2463
2464 perf_output_put(&handle, comm_event->event);
2465 perf_output_copy(&handle, comm_event->comm,
2466 comm_event->comm_size);
2467 perf_output_end(&handle);
2468 }
2469
2470 static int perf_counter_comm_match(struct perf_counter *counter,
2471 struct perf_comm_event *comm_event)
2472 {
2473 if (counter->hw_event.comm &&
2474 comm_event->event.header.type == PERF_EVENT_COMM)
2475 return 1;
2476
2477 return 0;
2478 }
2479
2480 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2481 struct perf_comm_event *comm_event)
2482 {
2483 struct perf_counter *counter;
2484
2485 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2486 return;
2487
2488 rcu_read_lock();
2489 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2490 if (perf_counter_comm_match(counter, comm_event))
2491 perf_counter_comm_output(counter, comm_event);
2492 }
2493 rcu_read_unlock();
2494 }
2495
2496 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2497 {
2498 struct perf_cpu_context *cpuctx;
2499 struct perf_counter_context *ctx;
2500 unsigned int size;
2501 char *comm = comm_event->task->comm;
2502
2503 size = ALIGN(strlen(comm)+1, sizeof(u64));
2504
2505 comm_event->comm = comm;
2506 comm_event->comm_size = size;
2507
2508 comm_event->event.header.size = sizeof(comm_event->event) + size;
2509
2510 cpuctx = &get_cpu_var(perf_cpu_context);
2511 perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2512 put_cpu_var(perf_cpu_context);
2513
2514 rcu_read_lock();
2515 /*
2516 * doesn't really matter which of the child contexts the
2517 * events ends up in.
2518 */
2519 ctx = rcu_dereference(current->perf_counter_ctxp);
2520 if (ctx)
2521 perf_counter_comm_ctx(ctx, comm_event);
2522 rcu_read_unlock();
2523 }
2524
2525 void perf_counter_comm(struct task_struct *task)
2526 {
2527 struct perf_comm_event comm_event;
2528
2529 if (!atomic_read(&nr_comm_tracking))
2530 return;
2531
2532 comm_event = (struct perf_comm_event){
2533 .task = task,
2534 .event = {
2535 .header = { .type = PERF_EVENT_COMM, },
2536 },
2537 };
2538
2539 perf_counter_comm_event(&comm_event);
2540 }
2541
2542 /*
2543 * mmap tracking
2544 */
2545
2546 struct perf_mmap_event {
2547 struct file *file;
2548 char *file_name;
2549 int file_size;
2550
2551 struct {
2552 struct perf_event_header header;
2553
2554 u32 pid;
2555 u32 tid;
2556 u64 start;
2557 u64 len;
2558 u64 pgoff;
2559 } event;
2560 };
2561
2562 static void perf_counter_mmap_output(struct perf_counter *counter,
2563 struct perf_mmap_event *mmap_event)
2564 {
2565 struct perf_output_handle handle;
2566 int size = mmap_event->event.header.size;
2567 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2568
2569 if (ret)
2570 return;
2571
2572 mmap_event->event.pid = perf_counter_pid(counter, current);
2573 mmap_event->event.tid = perf_counter_tid(counter, current);
2574
2575 perf_output_put(&handle, mmap_event->event);
2576 perf_output_copy(&handle, mmap_event->file_name,
2577 mmap_event->file_size);
2578 perf_output_end(&handle);
2579 }
2580
2581 static int perf_counter_mmap_match(struct perf_counter *counter,
2582 struct perf_mmap_event *mmap_event)
2583 {
2584 if (counter->hw_event.mmap &&
2585 mmap_event->event.header.type == PERF_EVENT_MMAP)
2586 return 1;
2587
2588 if (counter->hw_event.munmap &&
2589 mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2590 return 1;
2591
2592 return 0;
2593 }
2594
2595 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2596 struct perf_mmap_event *mmap_event)
2597 {
2598 struct perf_counter *counter;
2599
2600 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2601 return;
2602
2603 rcu_read_lock();
2604 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2605 if (perf_counter_mmap_match(counter, mmap_event))
2606 perf_counter_mmap_output(counter, mmap_event);
2607 }
2608 rcu_read_unlock();
2609 }
2610
2611 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2612 {
2613 struct perf_cpu_context *cpuctx;
2614 struct perf_counter_context *ctx;
2615 struct file *file = mmap_event->file;
2616 unsigned int size;
2617 char tmp[16];
2618 char *buf = NULL;
2619 char *name;
2620
2621 if (file) {
2622 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2623 if (!buf) {
2624 name = strncpy(tmp, "//enomem", sizeof(tmp));
2625 goto got_name;
2626 }
2627 name = d_path(&file->f_path, buf, PATH_MAX);
2628 if (IS_ERR(name)) {
2629 name = strncpy(tmp, "//toolong", sizeof(tmp));
2630 goto got_name;
2631 }
2632 } else {
2633 name = strncpy(tmp, "//anon", sizeof(tmp));
2634 goto got_name;
2635 }
2636
2637 got_name:
2638 size = ALIGN(strlen(name)+1, sizeof(u64));
2639
2640 mmap_event->file_name = name;
2641 mmap_event->file_size = size;
2642
2643 mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2644
2645 cpuctx = &get_cpu_var(perf_cpu_context);
2646 perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2647 put_cpu_var(perf_cpu_context);
2648
2649 rcu_read_lock();
2650 /*
2651 * doesn't really matter which of the child contexts the
2652 * events ends up in.
2653 */
2654 ctx = rcu_dereference(current->perf_counter_ctxp);
2655 if (ctx)
2656 perf_counter_mmap_ctx(ctx, mmap_event);
2657 rcu_read_unlock();
2658
2659 kfree(buf);
2660 }
2661
2662 void perf_counter_mmap(unsigned long addr, unsigned long len,
2663 unsigned long pgoff, struct file *file)
2664 {
2665 struct perf_mmap_event mmap_event;
2666
2667 if (!atomic_read(&nr_mmap_tracking))
2668 return;
2669
2670 mmap_event = (struct perf_mmap_event){
2671 .file = file,
2672 .event = {
2673 .header = { .type = PERF_EVENT_MMAP, },
2674 .start = addr,
2675 .len = len,
2676 .pgoff = pgoff,
2677 },
2678 };
2679
2680 perf_counter_mmap_event(&mmap_event);
2681 }
2682
2683 void perf_counter_munmap(unsigned long addr, unsigned long len,
2684 unsigned long pgoff, struct file *file)
2685 {
2686 struct perf_mmap_event mmap_event;
2687
2688 if (!atomic_read(&nr_munmap_tracking))
2689 return;
2690
2691 mmap_event = (struct perf_mmap_event){
2692 .file = file,
2693 .event = {
2694 .header = { .type = PERF_EVENT_MUNMAP, },
2695 .start = addr,
2696 .len = len,
2697 .pgoff = pgoff,
2698 },
2699 };
2700
2701 perf_counter_mmap_event(&mmap_event);
2702 }
2703
2704 /*
2705 * Log sample_period changes so that analyzing tools can re-normalize the
2706 * event flow.
2707 */
2708
2709 static void perf_log_period(struct perf_counter *counter, u64 period)
2710 {
2711 struct perf_output_handle handle;
2712 int ret;
2713
2714 struct {
2715 struct perf_event_header header;
2716 u64 time;
2717 u64 period;
2718 } freq_event = {
2719 .header = {
2720 .type = PERF_EVENT_PERIOD,
2721 .misc = 0,
2722 .size = sizeof(freq_event),
2723 },
2724 .time = sched_clock(),
2725 .period = period,
2726 };
2727
2728 if (counter->hw.sample_period == period)
2729 return;
2730
2731 ret = perf_output_begin(&handle, counter, sizeof(freq_event), 0, 0);
2732 if (ret)
2733 return;
2734
2735 perf_output_put(&handle, freq_event);
2736 perf_output_end(&handle);
2737 }
2738
2739 /*
2740 * IRQ throttle logging
2741 */
2742
2743 static void perf_log_throttle(struct perf_counter *counter, int enable)
2744 {
2745 struct perf_output_handle handle;
2746 int ret;
2747
2748 struct {
2749 struct perf_event_header header;
2750 u64 time;
2751 } throttle_event = {
2752 .header = {
2753 .type = PERF_EVENT_THROTTLE + 1,
2754 .misc = 0,
2755 .size = sizeof(throttle_event),
2756 },
2757 .time = sched_clock(),
2758 };
2759
2760 ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
2761 if (ret)
2762 return;
2763
2764 perf_output_put(&handle, throttle_event);
2765 perf_output_end(&handle);
2766 }
2767
2768 /*
2769 * Generic counter overflow handling.
2770 */
2771
2772 int perf_counter_overflow(struct perf_counter *counter,
2773 int nmi, struct pt_regs *regs, u64 addr)
2774 {
2775 int events = atomic_read(&counter->event_limit);
2776 int throttle = counter->pmu->unthrottle != NULL;
2777 int ret = 0;
2778
2779 if (!throttle) {
2780 counter->hw.interrupts++;
2781 } else if (counter->hw.interrupts != MAX_INTERRUPTS) {
2782 counter->hw.interrupts++;
2783 if (HZ*counter->hw.interrupts > (u64)sysctl_perf_counter_limit) {
2784 counter->hw.interrupts = MAX_INTERRUPTS;
2785 perf_log_throttle(counter, 0);
2786 ret = 1;
2787 }
2788 }
2789
2790 /*
2791 * XXX event_limit might not quite work as expected on inherited
2792 * counters
2793 */
2794
2795 counter->pending_kill = POLL_IN;
2796 if (events && atomic_dec_and_test(&counter->event_limit)) {
2797 ret = 1;
2798 counter->pending_kill = POLL_HUP;
2799 if (nmi) {
2800 counter->pending_disable = 1;
2801 perf_pending_queue(&counter->pending,
2802 perf_pending_counter);
2803 } else
2804 perf_counter_disable(counter);
2805 }
2806
2807 perf_counter_output(counter, nmi, regs, addr);
2808 return ret;
2809 }
2810
2811 /*
2812 * Generic software counter infrastructure
2813 */
2814
2815 static void perf_swcounter_update(struct perf_counter *counter)
2816 {
2817 struct hw_perf_counter *hwc = &counter->hw;
2818 u64 prev, now;
2819 s64 delta;
2820
2821 again:
2822 prev = atomic64_read(&hwc->prev_count);
2823 now = atomic64_read(&hwc->count);
2824 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2825 goto again;
2826
2827 delta = now - prev;
2828
2829 atomic64_add(delta, &counter->count);
2830 atomic64_sub(delta, &hwc->period_left);
2831 }
2832
2833 static void perf_swcounter_set_period(struct perf_counter *counter)
2834 {
2835 struct hw_perf_counter *hwc = &counter->hw;
2836 s64 left = atomic64_read(&hwc->period_left);
2837 s64 period = hwc->sample_period;
2838
2839 if (unlikely(left <= -period)) {
2840 left = period;
2841 atomic64_set(&hwc->period_left, left);
2842 }
2843
2844 if (unlikely(left <= 0)) {
2845 left += period;
2846 atomic64_add(period, &hwc->period_left);
2847 }
2848
2849 atomic64_set(&hwc->prev_count, -left);
2850 atomic64_set(&hwc->count, -left);
2851 }
2852
2853 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2854 {
2855 enum hrtimer_restart ret = HRTIMER_RESTART;
2856 struct perf_counter *counter;
2857 struct pt_regs *regs;
2858 u64 period;
2859
2860 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2861 counter->pmu->read(counter);
2862
2863 regs = get_irq_regs();
2864 /*
2865 * In case we exclude kernel IPs or are somehow not in interrupt
2866 * context, provide the next best thing, the user IP.
2867 */
2868 if ((counter->hw_event.exclude_kernel || !regs) &&
2869 !counter->hw_event.exclude_user)
2870 regs = task_pt_regs(current);
2871
2872 if (regs) {
2873 if (perf_counter_overflow(counter, 0, regs, 0))
2874 ret = HRTIMER_NORESTART;
2875 }
2876
2877 period = max_t(u64, 10000, counter->hw.sample_period);
2878 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
2879
2880 return ret;
2881 }
2882
2883 static void perf_swcounter_overflow(struct perf_counter *counter,
2884 int nmi, struct pt_regs *regs, u64 addr)
2885 {
2886 perf_swcounter_update(counter);
2887 perf_swcounter_set_period(counter);
2888 if (perf_counter_overflow(counter, nmi, regs, addr))
2889 /* soft-disable the counter */
2890 ;
2891
2892 }
2893
2894 static int perf_swcounter_is_counting(struct perf_counter *counter)
2895 {
2896 struct perf_counter_context *ctx;
2897 unsigned long flags;
2898 int count;
2899
2900 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
2901 return 1;
2902
2903 if (counter->state != PERF_COUNTER_STATE_INACTIVE)
2904 return 0;
2905
2906 /*
2907 * If the counter is inactive, it could be just because
2908 * its task is scheduled out, or because it's in a group
2909 * which could not go on the PMU. We want to count in
2910 * the first case but not the second. If the context is
2911 * currently active then an inactive software counter must
2912 * be the second case. If it's not currently active then
2913 * we need to know whether the counter was active when the
2914 * context was last active, which we can determine by
2915 * comparing counter->tstamp_stopped with ctx->time.
2916 *
2917 * We are within an RCU read-side critical section,
2918 * which protects the existence of *ctx.
2919 */
2920 ctx = counter->ctx;
2921 spin_lock_irqsave(&ctx->lock, flags);
2922 count = 1;
2923 /* Re-check state now we have the lock */
2924 if (counter->state < PERF_COUNTER_STATE_INACTIVE ||
2925 counter->ctx->is_active ||
2926 counter->tstamp_stopped < ctx->time)
2927 count = 0;
2928 spin_unlock_irqrestore(&ctx->lock, flags);
2929 return count;
2930 }
2931
2932 static int perf_swcounter_match(struct perf_counter *counter,
2933 enum perf_event_types type,
2934 u32 event, struct pt_regs *regs)
2935 {
2936 u64 event_config;
2937
2938 event_config = ((u64) type << PERF_COUNTER_TYPE_SHIFT) | event;
2939
2940 if (!perf_swcounter_is_counting(counter))
2941 return 0;
2942
2943 if (counter->hw_event.config != event_config)
2944 return 0;
2945
2946 if (regs) {
2947 if (counter->hw_event.exclude_user && user_mode(regs))
2948 return 0;
2949
2950 if (counter->hw_event.exclude_kernel && !user_mode(regs))
2951 return 0;
2952 }
2953
2954 return 1;
2955 }
2956
2957 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2958 int nmi, struct pt_regs *regs, u64 addr)
2959 {
2960 int neg = atomic64_add_negative(nr, &counter->hw.count);
2961
2962 if (counter->hw.sample_period && !neg && regs)
2963 perf_swcounter_overflow(counter, nmi, regs, addr);
2964 }
2965
2966 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2967 enum perf_event_types type, u32 event,
2968 u64 nr, int nmi, struct pt_regs *regs,
2969 u64 addr)
2970 {
2971 struct perf_counter *counter;
2972
2973 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2974 return;
2975
2976 rcu_read_lock();
2977 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2978 if (perf_swcounter_match(counter, type, event, regs))
2979 perf_swcounter_add(counter, nr, nmi, regs, addr);
2980 }
2981 rcu_read_unlock();
2982 }
2983
2984 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2985 {
2986 if (in_nmi())
2987 return &cpuctx->recursion[3];
2988
2989 if (in_irq())
2990 return &cpuctx->recursion[2];
2991
2992 if (in_softirq())
2993 return &cpuctx->recursion[1];
2994
2995 return &cpuctx->recursion[0];
2996 }
2997
2998 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2999 u64 nr, int nmi, struct pt_regs *regs,
3000 u64 addr)
3001 {
3002 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3003 int *recursion = perf_swcounter_recursion_context(cpuctx);
3004 struct perf_counter_context *ctx;
3005
3006 if (*recursion)
3007 goto out;
3008
3009 (*recursion)++;
3010 barrier();
3011
3012 perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
3013 nr, nmi, regs, addr);
3014 rcu_read_lock();
3015 /*
3016 * doesn't really matter which of the child contexts the
3017 * events ends up in.
3018 */
3019 ctx = rcu_dereference(current->perf_counter_ctxp);
3020 if (ctx)
3021 perf_swcounter_ctx_event(ctx, type, event, nr, nmi, regs, addr);
3022 rcu_read_unlock();
3023
3024 barrier();
3025 (*recursion)--;
3026
3027 out:
3028 put_cpu_var(perf_cpu_context);
3029 }
3030
3031 void
3032 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
3033 {
3034 __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
3035 }
3036
3037 static void perf_swcounter_read(struct perf_counter *counter)
3038 {
3039 perf_swcounter_update(counter);
3040 }
3041
3042 static int perf_swcounter_enable(struct perf_counter *counter)
3043 {
3044 perf_swcounter_set_period(counter);
3045 return 0;
3046 }
3047
3048 static void perf_swcounter_disable(struct perf_counter *counter)
3049 {
3050 perf_swcounter_update(counter);
3051 }
3052
3053 static const struct pmu perf_ops_generic = {
3054 .enable = perf_swcounter_enable,
3055 .disable = perf_swcounter_disable,
3056 .read = perf_swcounter_read,
3057 };
3058
3059 /*
3060 * Software counter: cpu wall time clock
3061 */
3062
3063 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
3064 {
3065 int cpu = raw_smp_processor_id();
3066 s64 prev;
3067 u64 now;
3068
3069 now = cpu_clock(cpu);
3070 prev = atomic64_read(&counter->hw.prev_count);
3071 atomic64_set(&counter->hw.prev_count, now);
3072 atomic64_add(now - prev, &counter->count);
3073 }
3074
3075 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
3076 {
3077 struct hw_perf_counter *hwc = &counter->hw;
3078 int cpu = raw_smp_processor_id();
3079
3080 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3081 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3082 hwc->hrtimer.function = perf_swcounter_hrtimer;
3083 if (hwc->sample_period) {
3084 u64 period = max_t(u64, 10000, hwc->sample_period);
3085 __hrtimer_start_range_ns(&hwc->hrtimer,
3086 ns_to_ktime(period), 0,
3087 HRTIMER_MODE_REL, 0);
3088 }
3089
3090 return 0;
3091 }
3092
3093 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
3094 {
3095 if (counter->hw.sample_period)
3096 hrtimer_cancel(&counter->hw.hrtimer);
3097 cpu_clock_perf_counter_update(counter);
3098 }
3099
3100 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
3101 {
3102 cpu_clock_perf_counter_update(counter);
3103 }
3104
3105 static const struct pmu perf_ops_cpu_clock = {
3106 .enable = cpu_clock_perf_counter_enable,
3107 .disable = cpu_clock_perf_counter_disable,
3108 .read = cpu_clock_perf_counter_read,
3109 };
3110
3111 /*
3112 * Software counter: task time clock
3113 */
3114
3115 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
3116 {
3117 u64 prev;
3118 s64 delta;
3119
3120 prev = atomic64_xchg(&counter->hw.prev_count, now);
3121 delta = now - prev;
3122 atomic64_add(delta, &counter->count);
3123 }
3124
3125 static int task_clock_perf_counter_enable(struct perf_counter *counter)
3126 {
3127 struct hw_perf_counter *hwc = &counter->hw;
3128 u64 now;
3129
3130 now = counter->ctx->time;
3131
3132 atomic64_set(&hwc->prev_count, now);
3133 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3134 hwc->hrtimer.function = perf_swcounter_hrtimer;
3135 if (hwc->sample_period) {
3136 u64 period = max_t(u64, 10000, hwc->sample_period);
3137 __hrtimer_start_range_ns(&hwc->hrtimer,
3138 ns_to_ktime(period), 0,
3139 HRTIMER_MODE_REL, 0);
3140 }
3141
3142 return 0;
3143 }
3144
3145 static void task_clock_perf_counter_disable(struct perf_counter *counter)
3146 {
3147 if (counter->hw.sample_period)
3148 hrtimer_cancel(&counter->hw.hrtimer);
3149 task_clock_perf_counter_update(counter, counter->ctx->time);
3150
3151 }
3152
3153 static void task_clock_perf_counter_read(struct perf_counter *counter)
3154 {
3155 u64 time;
3156
3157 if (!in_nmi()) {
3158 update_context_time(counter->ctx);
3159 time = counter->ctx->time;
3160 } else {
3161 u64 now = perf_clock();
3162 u64 delta = now - counter->ctx->timestamp;
3163 time = counter->ctx->time + delta;
3164 }
3165
3166 task_clock_perf_counter_update(counter, time);
3167 }
3168
3169 static const struct pmu perf_ops_task_clock = {
3170 .enable = task_clock_perf_counter_enable,
3171 .disable = task_clock_perf_counter_disable,
3172 .read = task_clock_perf_counter_read,
3173 };
3174
3175 /*
3176 * Software counter: cpu migrations
3177 */
3178 void perf_counter_task_migration(struct task_struct *task, int cpu)
3179 {
3180 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3181 struct perf_counter_context *ctx;
3182
3183 perf_swcounter_ctx_event(&cpuctx->ctx, PERF_TYPE_SOFTWARE,
3184 PERF_COUNT_CPU_MIGRATIONS,
3185 1, 1, NULL, 0);
3186
3187 ctx = perf_pin_task_context(task);
3188 if (ctx) {
3189 perf_swcounter_ctx_event(ctx, PERF_TYPE_SOFTWARE,
3190 PERF_COUNT_CPU_MIGRATIONS,
3191 1, 1, NULL, 0);
3192 perf_unpin_context(ctx);
3193 }
3194 }
3195
3196 #ifdef CONFIG_EVENT_PROFILE
3197 void perf_tpcounter_event(int event_id)
3198 {
3199 struct pt_regs *regs = get_irq_regs();
3200
3201 if (!regs)
3202 regs = task_pt_regs(current);
3203
3204 __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
3205 }
3206 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3207
3208 extern int ftrace_profile_enable(int);
3209 extern void ftrace_profile_disable(int);
3210
3211 static void tp_perf_counter_destroy(struct perf_counter *counter)
3212 {
3213 ftrace_profile_disable(perf_event_id(&counter->hw_event));
3214 }
3215
3216 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3217 {
3218 int event_id = perf_event_id(&counter->hw_event);
3219 int ret;
3220
3221 ret = ftrace_profile_enable(event_id);
3222 if (ret)
3223 return NULL;
3224
3225 counter->destroy = tp_perf_counter_destroy;
3226 counter->hw.sample_period = counter->hw_event.sample_period;
3227
3228 return &perf_ops_generic;
3229 }
3230 #else
3231 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3232 {
3233 return NULL;
3234 }
3235 #endif
3236
3237 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3238 {
3239 const struct pmu *pmu = NULL;
3240
3241 /*
3242 * Software counters (currently) can't in general distinguish
3243 * between user, kernel and hypervisor events.
3244 * However, context switches and cpu migrations are considered
3245 * to be kernel events, and page faults are never hypervisor
3246 * events.
3247 */
3248 switch (perf_event_id(&counter->hw_event)) {
3249 case PERF_COUNT_CPU_CLOCK:
3250 pmu = &perf_ops_cpu_clock;
3251
3252 break;
3253 case PERF_COUNT_TASK_CLOCK:
3254 /*
3255 * If the user instantiates this as a per-cpu counter,
3256 * use the cpu_clock counter instead.
3257 */
3258 if (counter->ctx->task)
3259 pmu = &perf_ops_task_clock;
3260 else
3261 pmu = &perf_ops_cpu_clock;
3262
3263 break;
3264 case PERF_COUNT_PAGE_FAULTS:
3265 case PERF_COUNT_PAGE_FAULTS_MIN:
3266 case PERF_COUNT_PAGE_FAULTS_MAJ:
3267 case PERF_COUNT_CONTEXT_SWITCHES:
3268 case PERF_COUNT_CPU_MIGRATIONS:
3269 pmu = &perf_ops_generic;
3270 break;
3271 }
3272
3273 return pmu;
3274 }
3275
3276 /*
3277 * Allocate and initialize a counter structure
3278 */
3279 static struct perf_counter *
3280 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
3281 int cpu,
3282 struct perf_counter_context *ctx,
3283 struct perf_counter *group_leader,
3284 gfp_t gfpflags)
3285 {
3286 const struct pmu *pmu;
3287 struct perf_counter *counter;
3288 struct hw_perf_counter *hwc;
3289 long err;
3290
3291 counter = kzalloc(sizeof(*counter), gfpflags);
3292 if (!counter)
3293 return ERR_PTR(-ENOMEM);
3294
3295 /*
3296 * Single counters are their own group leaders, with an
3297 * empty sibling list:
3298 */
3299 if (!group_leader)
3300 group_leader = counter;
3301
3302 mutex_init(&counter->child_mutex);
3303 INIT_LIST_HEAD(&counter->child_list);
3304
3305 INIT_LIST_HEAD(&counter->list_entry);
3306 INIT_LIST_HEAD(&counter->event_entry);
3307 INIT_LIST_HEAD(&counter->sibling_list);
3308 init_waitqueue_head(&counter->waitq);
3309
3310 mutex_init(&counter->mmap_mutex);
3311
3312 counter->cpu = cpu;
3313 counter->hw_event = *hw_event;
3314 counter->group_leader = group_leader;
3315 counter->pmu = NULL;
3316 counter->ctx = ctx;
3317 counter->oncpu = -1;
3318
3319 counter->state = PERF_COUNTER_STATE_INACTIVE;
3320 if (hw_event->disabled)
3321 counter->state = PERF_COUNTER_STATE_OFF;
3322
3323 pmu = NULL;
3324
3325 hwc = &counter->hw;
3326 if (hw_event->freq && hw_event->sample_freq)
3327 hwc->sample_period = div64_u64(TICK_NSEC, hw_event->sample_freq);
3328 else
3329 hwc->sample_period = hw_event->sample_period;
3330
3331 /*
3332 * we currently do not support PERF_SAMPLE_GROUP on inherited counters
3333 */
3334 if (hw_event->inherit && (hw_event->sample_type & PERF_SAMPLE_GROUP))
3335 goto done;
3336
3337 if (perf_event_raw(hw_event)) {
3338 pmu = hw_perf_counter_init(counter);
3339 goto done;
3340 }
3341
3342 switch (perf_event_type(hw_event)) {
3343 case PERF_TYPE_HARDWARE:
3344 pmu = hw_perf_counter_init(counter);
3345 break;
3346
3347 case PERF_TYPE_SOFTWARE:
3348 pmu = sw_perf_counter_init(counter);
3349 break;
3350
3351 case PERF_TYPE_TRACEPOINT:
3352 pmu = tp_perf_counter_init(counter);
3353 break;
3354 }
3355 done:
3356 err = 0;
3357 if (!pmu)
3358 err = -EINVAL;
3359 else if (IS_ERR(pmu))
3360 err = PTR_ERR(pmu);
3361
3362 if (err) {
3363 kfree(counter);
3364 return ERR_PTR(err);
3365 }
3366
3367 counter->pmu = pmu;
3368
3369 atomic_inc(&nr_counters);
3370 if (counter->hw_event.mmap)
3371 atomic_inc(&nr_mmap_tracking);
3372 if (counter->hw_event.munmap)
3373 atomic_inc(&nr_munmap_tracking);
3374 if (counter->hw_event.comm)
3375 atomic_inc(&nr_comm_tracking);
3376
3377 return counter;
3378 }
3379
3380 static atomic64_t perf_counter_id;
3381
3382 /**
3383 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
3384 *
3385 * @hw_event_uptr: event type attributes for monitoring/sampling
3386 * @pid: target pid
3387 * @cpu: target cpu
3388 * @group_fd: group leader counter fd
3389 */
3390 SYSCALL_DEFINE5(perf_counter_open,
3391 const struct perf_counter_hw_event __user *, hw_event_uptr,
3392 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
3393 {
3394 struct perf_counter *counter, *group_leader;
3395 struct perf_counter_hw_event hw_event;
3396 struct perf_counter_context *ctx;
3397 struct file *counter_file = NULL;
3398 struct file *group_file = NULL;
3399 int fput_needed = 0;
3400 int fput_needed2 = 0;
3401 int ret;
3402
3403 /* for future expandability... */
3404 if (flags)
3405 return -EINVAL;
3406
3407 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
3408 return -EFAULT;
3409
3410 /*
3411 * Get the target context (task or percpu):
3412 */
3413 ctx = find_get_context(pid, cpu);
3414 if (IS_ERR(ctx))
3415 return PTR_ERR(ctx);
3416
3417 /*
3418 * Look up the group leader (we will attach this counter to it):
3419 */
3420 group_leader = NULL;
3421 if (group_fd != -1) {
3422 ret = -EINVAL;
3423 group_file = fget_light(group_fd, &fput_needed);
3424 if (!group_file)
3425 goto err_put_context;
3426 if (group_file->f_op != &perf_fops)
3427 goto err_put_context;
3428
3429 group_leader = group_file->private_data;
3430 /*
3431 * Do not allow a recursive hierarchy (this new sibling
3432 * becoming part of another group-sibling):
3433 */
3434 if (group_leader->group_leader != group_leader)
3435 goto err_put_context;
3436 /*
3437 * Do not allow to attach to a group in a different
3438 * task or CPU context:
3439 */
3440 if (group_leader->ctx != ctx)
3441 goto err_put_context;
3442 /*
3443 * Only a group leader can be exclusive or pinned
3444 */
3445 if (hw_event.exclusive || hw_event.pinned)
3446 goto err_put_context;
3447 }
3448
3449 counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
3450 GFP_KERNEL);
3451 ret = PTR_ERR(counter);
3452 if (IS_ERR(counter))
3453 goto err_put_context;
3454
3455 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
3456 if (ret < 0)
3457 goto err_free_put_context;
3458
3459 counter_file = fget_light(ret, &fput_needed2);
3460 if (!counter_file)
3461 goto err_free_put_context;
3462
3463 counter->filp = counter_file;
3464 WARN_ON_ONCE(ctx->parent_ctx);
3465 mutex_lock(&ctx->mutex);
3466 perf_install_in_context(ctx, counter, cpu);
3467 ++ctx->generation;
3468 mutex_unlock(&ctx->mutex);
3469
3470 counter->owner = current;
3471 get_task_struct(current);
3472 mutex_lock(&current->perf_counter_mutex);
3473 list_add_tail(&counter->owner_entry, &current->perf_counter_list);
3474 mutex_unlock(&current->perf_counter_mutex);
3475
3476 counter->ns = get_pid_ns(current->nsproxy->pid_ns);
3477 counter->id = atomic64_inc_return(&perf_counter_id);
3478
3479 fput_light(counter_file, fput_needed2);
3480
3481 out_fput:
3482 fput_light(group_file, fput_needed);
3483
3484 return ret;
3485
3486 err_free_put_context:
3487 kfree(counter);
3488
3489 err_put_context:
3490 put_ctx(ctx);
3491
3492 goto out_fput;
3493 }
3494
3495 /*
3496 * inherit a counter from parent task to child task:
3497 */
3498 static struct perf_counter *
3499 inherit_counter(struct perf_counter *parent_counter,
3500 struct task_struct *parent,
3501 struct perf_counter_context *parent_ctx,
3502 struct task_struct *child,
3503 struct perf_counter *group_leader,
3504 struct perf_counter_context *child_ctx)
3505 {
3506 struct perf_counter *child_counter;
3507
3508 /*
3509 * Instead of creating recursive hierarchies of counters,
3510 * we link inherited counters back to the original parent,
3511 * which has a filp for sure, which we use as the reference
3512 * count:
3513 */
3514 if (parent_counter->parent)
3515 parent_counter = parent_counter->parent;
3516
3517 child_counter = perf_counter_alloc(&parent_counter->hw_event,
3518 parent_counter->cpu, child_ctx,
3519 group_leader, GFP_KERNEL);
3520 if (IS_ERR(child_counter))
3521 return child_counter;
3522 get_ctx(child_ctx);
3523
3524 /*
3525 * Make the child state follow the state of the parent counter,
3526 * not its hw_event.disabled bit. We hold the parent's mutex,
3527 * so we won't race with perf_counter_{en, dis}able_family.
3528 */
3529 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3530 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3531 else
3532 child_counter->state = PERF_COUNTER_STATE_OFF;
3533
3534 /*
3535 * Link it up in the child's context:
3536 */
3537 add_counter_to_ctx(child_counter, child_ctx);
3538
3539 child_counter->parent = parent_counter;
3540 /*
3541 * inherit into child's child as well:
3542 */
3543 child_counter->hw_event.inherit = 1;
3544
3545 /*
3546 * Get a reference to the parent filp - we will fput it
3547 * when the child counter exits. This is safe to do because
3548 * we are in the parent and we know that the filp still
3549 * exists and has a nonzero count:
3550 */
3551 atomic_long_inc(&parent_counter->filp->f_count);
3552
3553 /*
3554 * Link this into the parent counter's child list
3555 */
3556 WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3557 mutex_lock(&parent_counter->child_mutex);
3558 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3559 mutex_unlock(&parent_counter->child_mutex);
3560
3561 return child_counter;
3562 }
3563
3564 static int inherit_group(struct perf_counter *parent_counter,
3565 struct task_struct *parent,
3566 struct perf_counter_context *parent_ctx,
3567 struct task_struct *child,
3568 struct perf_counter_context *child_ctx)
3569 {
3570 struct perf_counter *leader;
3571 struct perf_counter *sub;
3572 struct perf_counter *child_ctr;
3573
3574 leader = inherit_counter(parent_counter, parent, parent_ctx,
3575 child, NULL, child_ctx);
3576 if (IS_ERR(leader))
3577 return PTR_ERR(leader);
3578 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3579 child_ctr = inherit_counter(sub, parent, parent_ctx,
3580 child, leader, child_ctx);
3581 if (IS_ERR(child_ctr))
3582 return PTR_ERR(child_ctr);
3583 }
3584 return 0;
3585 }
3586
3587 static void sync_child_counter(struct perf_counter *child_counter,
3588 struct perf_counter *parent_counter)
3589 {
3590 u64 child_val;
3591
3592 child_val = atomic64_read(&child_counter->count);
3593
3594 /*
3595 * Add back the child's count to the parent's count:
3596 */
3597 atomic64_add(child_val, &parent_counter->count);
3598 atomic64_add(child_counter->total_time_enabled,
3599 &parent_counter->child_total_time_enabled);
3600 atomic64_add(child_counter->total_time_running,
3601 &parent_counter->child_total_time_running);
3602
3603 /*
3604 * Remove this counter from the parent's list
3605 */
3606 WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3607 mutex_lock(&parent_counter->child_mutex);
3608 list_del_init(&child_counter->child_list);
3609 mutex_unlock(&parent_counter->child_mutex);
3610
3611 /*
3612 * Release the parent counter, if this was the last
3613 * reference to it.
3614 */
3615 fput(parent_counter->filp);
3616 }
3617
3618 static void
3619 __perf_counter_exit_task(struct perf_counter *child_counter,
3620 struct perf_counter_context *child_ctx)
3621 {
3622 struct perf_counter *parent_counter;
3623
3624 update_counter_times(child_counter);
3625 perf_counter_remove_from_context(child_counter);
3626
3627 parent_counter = child_counter->parent;
3628 /*
3629 * It can happen that parent exits first, and has counters
3630 * that are still around due to the child reference. These
3631 * counters need to be zapped - but otherwise linger.
3632 */
3633 if (parent_counter) {
3634 sync_child_counter(child_counter, parent_counter);
3635 free_counter(child_counter);
3636 }
3637 }
3638
3639 /*
3640 * When a child task exits, feed back counter values to parent counters.
3641 */
3642 void perf_counter_exit_task(struct task_struct *child)
3643 {
3644 struct perf_counter *child_counter, *tmp;
3645 struct perf_counter_context *child_ctx;
3646 unsigned long flags;
3647
3648 if (likely(!child->perf_counter_ctxp))
3649 return;
3650
3651 local_irq_save(flags);
3652 /*
3653 * We can't reschedule here because interrupts are disabled,
3654 * and either child is current or it is a task that can't be
3655 * scheduled, so we are now safe from rescheduling changing
3656 * our context.
3657 */
3658 child_ctx = child->perf_counter_ctxp;
3659 __perf_counter_task_sched_out(child_ctx);
3660
3661 /*
3662 * Take the context lock here so that if find_get_context is
3663 * reading child->perf_counter_ctxp, we wait until it has
3664 * incremented the context's refcount before we do put_ctx below.
3665 */
3666 spin_lock(&child_ctx->lock);
3667 child->perf_counter_ctxp = NULL;
3668 if (child_ctx->parent_ctx) {
3669 /*
3670 * This context is a clone; unclone it so it can't get
3671 * swapped to another process while we're removing all
3672 * the counters from it.
3673 */
3674 put_ctx(child_ctx->parent_ctx);
3675 child_ctx->parent_ctx = NULL;
3676 }
3677 spin_unlock(&child_ctx->lock);
3678 local_irq_restore(flags);
3679
3680 mutex_lock(&child_ctx->mutex);
3681
3682 again:
3683 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3684 list_entry)
3685 __perf_counter_exit_task(child_counter, child_ctx);
3686
3687 /*
3688 * If the last counter was a group counter, it will have appended all
3689 * its siblings to the list, but we obtained 'tmp' before that which
3690 * will still point to the list head terminating the iteration.
3691 */
3692 if (!list_empty(&child_ctx->counter_list))
3693 goto again;
3694
3695 mutex_unlock(&child_ctx->mutex);
3696
3697 put_ctx(child_ctx);
3698 }
3699
3700 /*
3701 * free an unexposed, unused context as created by inheritance by
3702 * init_task below, used by fork() in case of fail.
3703 */
3704 void perf_counter_free_task(struct task_struct *task)
3705 {
3706 struct perf_counter_context *ctx = task->perf_counter_ctxp;
3707 struct perf_counter *counter, *tmp;
3708
3709 if (!ctx)
3710 return;
3711
3712 mutex_lock(&ctx->mutex);
3713 again:
3714 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) {
3715 struct perf_counter *parent = counter->parent;
3716
3717 if (WARN_ON_ONCE(!parent))
3718 continue;
3719
3720 mutex_lock(&parent->child_mutex);
3721 list_del_init(&counter->child_list);
3722 mutex_unlock(&parent->child_mutex);
3723
3724 fput(parent->filp);
3725
3726 list_del_counter(counter, ctx);
3727 free_counter(counter);
3728 }
3729
3730 if (!list_empty(&ctx->counter_list))
3731 goto again;
3732
3733 mutex_unlock(&ctx->mutex);
3734
3735 put_ctx(ctx);
3736 }
3737
3738 /*
3739 * Initialize the perf_counter context in task_struct
3740 */
3741 int perf_counter_init_task(struct task_struct *child)
3742 {
3743 struct perf_counter_context *child_ctx, *parent_ctx;
3744 struct perf_counter_context *cloned_ctx;
3745 struct perf_counter *counter;
3746 struct task_struct *parent = current;
3747 int inherited_all = 1;
3748 int ret = 0;
3749
3750 child->perf_counter_ctxp = NULL;
3751
3752 mutex_init(&child->perf_counter_mutex);
3753 INIT_LIST_HEAD(&child->perf_counter_list);
3754
3755 if (likely(!parent->perf_counter_ctxp))
3756 return 0;
3757
3758 /*
3759 * This is executed from the parent task context, so inherit
3760 * counters that have been marked for cloning.
3761 * First allocate and initialize a context for the child.
3762 */
3763
3764 child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
3765 if (!child_ctx)
3766 return -ENOMEM;
3767
3768 __perf_counter_init_context(child_ctx, child);
3769 child->perf_counter_ctxp = child_ctx;
3770 get_task_struct(child);
3771
3772 /*
3773 * If the parent's context is a clone, pin it so it won't get
3774 * swapped under us.
3775 */
3776 parent_ctx = perf_pin_task_context(parent);
3777
3778 /*
3779 * No need to check if parent_ctx != NULL here; since we saw
3780 * it non-NULL earlier, the only reason for it to become NULL
3781 * is if we exit, and since we're currently in the middle of
3782 * a fork we can't be exiting at the same time.
3783 */
3784
3785 /*
3786 * Lock the parent list. No need to lock the child - not PID
3787 * hashed yet and not running, so nobody can access it.
3788 */
3789 mutex_lock(&parent_ctx->mutex);
3790
3791 /*
3792 * We dont have to disable NMIs - we are only looking at
3793 * the list, not manipulating it:
3794 */
3795 list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
3796 if (counter != counter->group_leader)
3797 continue;
3798
3799 if (!counter->hw_event.inherit) {
3800 inherited_all = 0;
3801 continue;
3802 }
3803
3804 ret = inherit_group(counter, parent, parent_ctx,
3805 child, child_ctx);
3806 if (ret) {
3807 inherited_all = 0;
3808 break;
3809 }
3810 }
3811
3812 if (inherited_all) {
3813 /*
3814 * Mark the child context as a clone of the parent
3815 * context, or of whatever the parent is a clone of.
3816 * Note that if the parent is a clone, it could get
3817 * uncloned at any point, but that doesn't matter
3818 * because the list of counters and the generation
3819 * count can't have changed since we took the mutex.
3820 */
3821 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
3822 if (cloned_ctx) {
3823 child_ctx->parent_ctx = cloned_ctx;
3824 child_ctx->parent_gen = parent_ctx->parent_gen;
3825 } else {
3826 child_ctx->parent_ctx = parent_ctx;
3827 child_ctx->parent_gen = parent_ctx->generation;
3828 }
3829 get_ctx(child_ctx->parent_ctx);
3830 }
3831
3832 mutex_unlock(&parent_ctx->mutex);
3833
3834 perf_unpin_context(parent_ctx);
3835
3836 return ret;
3837 }
3838
3839 static void __cpuinit perf_counter_init_cpu(int cpu)
3840 {
3841 struct perf_cpu_context *cpuctx;
3842
3843 cpuctx = &per_cpu(perf_cpu_context, cpu);
3844 __perf_counter_init_context(&cpuctx->ctx, NULL);
3845
3846 spin_lock(&perf_resource_lock);
3847 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3848 spin_unlock(&perf_resource_lock);
3849
3850 hw_perf_counter_setup(cpu);
3851 }
3852
3853 #ifdef CONFIG_HOTPLUG_CPU
3854 static void __perf_counter_exit_cpu(void *info)
3855 {
3856 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3857 struct perf_counter_context *ctx = &cpuctx->ctx;
3858 struct perf_counter *counter, *tmp;
3859
3860 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3861 __perf_counter_remove_from_context(counter);
3862 }
3863 static void perf_counter_exit_cpu(int cpu)
3864 {
3865 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3866 struct perf_counter_context *ctx = &cpuctx->ctx;
3867
3868 mutex_lock(&ctx->mutex);
3869 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3870 mutex_unlock(&ctx->mutex);
3871 }
3872 #else
3873 static inline void perf_counter_exit_cpu(int cpu) { }
3874 #endif
3875
3876 static int __cpuinit
3877 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3878 {
3879 unsigned int cpu = (long)hcpu;
3880
3881 switch (action) {
3882
3883 case CPU_UP_PREPARE:
3884 case CPU_UP_PREPARE_FROZEN:
3885 perf_counter_init_cpu(cpu);
3886 break;
3887
3888 case CPU_DOWN_PREPARE:
3889 case CPU_DOWN_PREPARE_FROZEN:
3890 perf_counter_exit_cpu(cpu);
3891 break;
3892
3893 default:
3894 break;
3895 }
3896
3897 return NOTIFY_OK;
3898 }
3899
3900 /*
3901 * This has to have a higher priority than migration_notifier in sched.c.
3902 */
3903 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3904 .notifier_call = perf_cpu_notify,
3905 .priority = 20,
3906 };
3907
3908 void __init perf_counter_init(void)
3909 {
3910 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3911 (void *)(long)smp_processor_id());
3912 register_cpu_notifier(&perf_cpu_nb);
3913 }
3914
3915 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3916 {
3917 return sprintf(buf, "%d\n", perf_reserved_percpu);
3918 }
3919
3920 static ssize_t
3921 perf_set_reserve_percpu(struct sysdev_class *class,
3922 const char *buf,
3923 size_t count)
3924 {
3925 struct perf_cpu_context *cpuctx;
3926 unsigned long val;
3927 int err, cpu, mpt;
3928
3929 err = strict_strtoul(buf, 10, &val);
3930 if (err)
3931 return err;
3932 if (val > perf_max_counters)
3933 return -EINVAL;
3934
3935 spin_lock(&perf_resource_lock);
3936 perf_reserved_percpu = val;
3937 for_each_online_cpu(cpu) {
3938 cpuctx = &per_cpu(perf_cpu_context, cpu);
3939 spin_lock_irq(&cpuctx->ctx.lock);
3940 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3941 perf_max_counters - perf_reserved_percpu);
3942 cpuctx->max_pertask = mpt;
3943 spin_unlock_irq(&cpuctx->ctx.lock);
3944 }
3945 spin_unlock(&perf_resource_lock);
3946
3947 return count;
3948 }
3949
3950 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3951 {
3952 return sprintf(buf, "%d\n", perf_overcommit);
3953 }
3954
3955 static ssize_t
3956 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3957 {
3958 unsigned long val;
3959 int err;
3960
3961 err = strict_strtoul(buf, 10, &val);
3962 if (err)
3963 return err;
3964 if (val > 1)
3965 return -EINVAL;
3966
3967 spin_lock(&perf_resource_lock);
3968 perf_overcommit = val;
3969 spin_unlock(&perf_resource_lock);
3970
3971 return count;
3972 }
3973
3974 static SYSDEV_CLASS_ATTR(
3975 reserve_percpu,
3976 0644,
3977 perf_show_reserve_percpu,
3978 perf_set_reserve_percpu
3979 );
3980
3981 static SYSDEV_CLASS_ATTR(
3982 overcommit,
3983 0644,
3984 perf_show_overcommit,
3985 perf_set_overcommit
3986 );
3987
3988 static struct attribute *perfclass_attrs[] = {
3989 &attr_reserve_percpu.attr,
3990 &attr_overcommit.attr,
3991 NULL
3992 };
3993
3994 static struct attribute_group perfclass_attr_group = {
3995 .attrs = perfclass_attrs,
3996 .name = "perf_counters",
3997 };
3998
3999 static int __init perf_counter_sysfs_init(void)
4000 {
4001 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
4002 &perfclass_attr_group);
4003 }
4004 device_initcall(perf_counter_sysfs_init);