]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/perf_counter.c
Input: xpad - add USB ID for the drumkit controller from Rock Band
[mirror_ubuntu-jammy-kernel.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/hardirq.h>
24 #include <linux/rculist.h>
25 #include <linux/uaccess.h>
26 #include <linux/syscalls.h>
27 #include <linux/anon_inodes.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/perf_counter.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34 * Each CPU has a list of per CPU counters:
35 */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_counters __read_mostly;
44 static atomic_t nr_comm_counters __read_mostly;
45
46 /*
47 * perf counter paranoia level:
48 * 0 - not paranoid
49 * 1 - disallow cpu counters to unpriv
50 * 2 - disallow kernel profiling to unpriv
51 */
52 int sysctl_perf_counter_paranoid __read_mostly;
53
54 static inline bool perf_paranoid_cpu(void)
55 {
56 return sysctl_perf_counter_paranoid > 0;
57 }
58
59 static inline bool perf_paranoid_kernel(void)
60 {
61 return sysctl_perf_counter_paranoid > 1;
62 }
63
64 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
65
66 /*
67 * max perf counter sample rate
68 */
69 int sysctl_perf_counter_sample_rate __read_mostly = 100000;
70
71 static atomic64_t perf_counter_id;
72
73 /*
74 * Lock for (sysadmin-configurable) counter reservations:
75 */
76 static DEFINE_SPINLOCK(perf_resource_lock);
77
78 /*
79 * Architecture provided APIs - weak aliases:
80 */
81 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
82 {
83 return NULL;
84 }
85
86 void __weak hw_perf_disable(void) { barrier(); }
87 void __weak hw_perf_enable(void) { barrier(); }
88
89 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
90
91 int __weak
92 hw_perf_group_sched_in(struct perf_counter *group_leader,
93 struct perf_cpu_context *cpuctx,
94 struct perf_counter_context *ctx, int cpu)
95 {
96 return 0;
97 }
98
99 void __weak perf_counter_print_debug(void) { }
100
101 static DEFINE_PER_CPU(int, disable_count);
102
103 void __perf_disable(void)
104 {
105 __get_cpu_var(disable_count)++;
106 }
107
108 bool __perf_enable(void)
109 {
110 return !--__get_cpu_var(disable_count);
111 }
112
113 void perf_disable(void)
114 {
115 __perf_disable();
116 hw_perf_disable();
117 }
118
119 void perf_enable(void)
120 {
121 if (__perf_enable())
122 hw_perf_enable();
123 }
124
125 static void get_ctx(struct perf_counter_context *ctx)
126 {
127 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
128 }
129
130 static void free_ctx(struct rcu_head *head)
131 {
132 struct perf_counter_context *ctx;
133
134 ctx = container_of(head, struct perf_counter_context, rcu_head);
135 kfree(ctx);
136 }
137
138 static void put_ctx(struct perf_counter_context *ctx)
139 {
140 if (atomic_dec_and_test(&ctx->refcount)) {
141 if (ctx->parent_ctx)
142 put_ctx(ctx->parent_ctx);
143 if (ctx->task)
144 put_task_struct(ctx->task);
145 call_rcu(&ctx->rcu_head, free_ctx);
146 }
147 }
148
149 static void unclone_ctx(struct perf_counter_context *ctx)
150 {
151 if (ctx->parent_ctx) {
152 put_ctx(ctx->parent_ctx);
153 ctx->parent_ctx = NULL;
154 }
155 }
156
157 /*
158 * If we inherit counters we want to return the parent counter id
159 * to userspace.
160 */
161 static u64 primary_counter_id(struct perf_counter *counter)
162 {
163 u64 id = counter->id;
164
165 if (counter->parent)
166 id = counter->parent->id;
167
168 return id;
169 }
170
171 /*
172 * Get the perf_counter_context for a task and lock it.
173 * This has to cope with with the fact that until it is locked,
174 * the context could get moved to another task.
175 */
176 static struct perf_counter_context *
177 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
178 {
179 struct perf_counter_context *ctx;
180
181 rcu_read_lock();
182 retry:
183 ctx = rcu_dereference(task->perf_counter_ctxp);
184 if (ctx) {
185 /*
186 * If this context is a clone of another, it might
187 * get swapped for another underneath us by
188 * perf_counter_task_sched_out, though the
189 * rcu_read_lock() protects us from any context
190 * getting freed. Lock the context and check if it
191 * got swapped before we could get the lock, and retry
192 * if so. If we locked the right context, then it
193 * can't get swapped on us any more.
194 */
195 spin_lock_irqsave(&ctx->lock, *flags);
196 if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
197 spin_unlock_irqrestore(&ctx->lock, *flags);
198 goto retry;
199 }
200
201 if (!atomic_inc_not_zero(&ctx->refcount)) {
202 spin_unlock_irqrestore(&ctx->lock, *flags);
203 ctx = NULL;
204 }
205 }
206 rcu_read_unlock();
207 return ctx;
208 }
209
210 /*
211 * Get the context for a task and increment its pin_count so it
212 * can't get swapped to another task. This also increments its
213 * reference count so that the context can't get freed.
214 */
215 static struct perf_counter_context *perf_pin_task_context(struct task_struct *task)
216 {
217 struct perf_counter_context *ctx;
218 unsigned long flags;
219
220 ctx = perf_lock_task_context(task, &flags);
221 if (ctx) {
222 ++ctx->pin_count;
223 spin_unlock_irqrestore(&ctx->lock, flags);
224 }
225 return ctx;
226 }
227
228 static void perf_unpin_context(struct perf_counter_context *ctx)
229 {
230 unsigned long flags;
231
232 spin_lock_irqsave(&ctx->lock, flags);
233 --ctx->pin_count;
234 spin_unlock_irqrestore(&ctx->lock, flags);
235 put_ctx(ctx);
236 }
237
238 /*
239 * Add a counter from the lists for its context.
240 * Must be called with ctx->mutex and ctx->lock held.
241 */
242 static void
243 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
244 {
245 struct perf_counter *group_leader = counter->group_leader;
246
247 /*
248 * Depending on whether it is a standalone or sibling counter,
249 * add it straight to the context's counter list, or to the group
250 * leader's sibling list:
251 */
252 if (group_leader == counter)
253 list_add_tail(&counter->list_entry, &ctx->counter_list);
254 else {
255 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
256 group_leader->nr_siblings++;
257 }
258
259 list_add_rcu(&counter->event_entry, &ctx->event_list);
260 ctx->nr_counters++;
261 if (counter->attr.inherit_stat)
262 ctx->nr_stat++;
263 }
264
265 /*
266 * Remove a counter from the lists for its context.
267 * Must be called with ctx->mutex and ctx->lock held.
268 */
269 static void
270 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
271 {
272 struct perf_counter *sibling, *tmp;
273
274 if (list_empty(&counter->list_entry))
275 return;
276 ctx->nr_counters--;
277 if (counter->attr.inherit_stat)
278 ctx->nr_stat--;
279
280 list_del_init(&counter->list_entry);
281 list_del_rcu(&counter->event_entry);
282
283 if (counter->group_leader != counter)
284 counter->group_leader->nr_siblings--;
285
286 /*
287 * If this was a group counter with sibling counters then
288 * upgrade the siblings to singleton counters by adding them
289 * to the context list directly:
290 */
291 list_for_each_entry_safe(sibling, tmp,
292 &counter->sibling_list, list_entry) {
293
294 list_move_tail(&sibling->list_entry, &ctx->counter_list);
295 sibling->group_leader = sibling;
296 }
297 }
298
299 static void
300 counter_sched_out(struct perf_counter *counter,
301 struct perf_cpu_context *cpuctx,
302 struct perf_counter_context *ctx)
303 {
304 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
305 return;
306
307 counter->state = PERF_COUNTER_STATE_INACTIVE;
308 counter->tstamp_stopped = ctx->time;
309 counter->pmu->disable(counter);
310 counter->oncpu = -1;
311
312 if (!is_software_counter(counter))
313 cpuctx->active_oncpu--;
314 ctx->nr_active--;
315 if (counter->attr.exclusive || !cpuctx->active_oncpu)
316 cpuctx->exclusive = 0;
317 }
318
319 static void
320 group_sched_out(struct perf_counter *group_counter,
321 struct perf_cpu_context *cpuctx,
322 struct perf_counter_context *ctx)
323 {
324 struct perf_counter *counter;
325
326 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
327 return;
328
329 counter_sched_out(group_counter, cpuctx, ctx);
330
331 /*
332 * Schedule out siblings (if any):
333 */
334 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
335 counter_sched_out(counter, cpuctx, ctx);
336
337 if (group_counter->attr.exclusive)
338 cpuctx->exclusive = 0;
339 }
340
341 /*
342 * Cross CPU call to remove a performance counter
343 *
344 * We disable the counter on the hardware level first. After that we
345 * remove it from the context list.
346 */
347 static void __perf_counter_remove_from_context(void *info)
348 {
349 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
350 struct perf_counter *counter = info;
351 struct perf_counter_context *ctx = counter->ctx;
352
353 /*
354 * If this is a task context, we need to check whether it is
355 * the current task context of this cpu. If not it has been
356 * scheduled out before the smp call arrived.
357 */
358 if (ctx->task && cpuctx->task_ctx != ctx)
359 return;
360
361 spin_lock(&ctx->lock);
362 /*
363 * Protect the list operation against NMI by disabling the
364 * counters on a global level.
365 */
366 perf_disable();
367
368 counter_sched_out(counter, cpuctx, ctx);
369
370 list_del_counter(counter, ctx);
371
372 if (!ctx->task) {
373 /*
374 * Allow more per task counters with respect to the
375 * reservation:
376 */
377 cpuctx->max_pertask =
378 min(perf_max_counters - ctx->nr_counters,
379 perf_max_counters - perf_reserved_percpu);
380 }
381
382 perf_enable();
383 spin_unlock(&ctx->lock);
384 }
385
386
387 /*
388 * Remove the counter from a task's (or a CPU's) list of counters.
389 *
390 * Must be called with ctx->mutex held.
391 *
392 * CPU counters are removed with a smp call. For task counters we only
393 * call when the task is on a CPU.
394 *
395 * If counter->ctx is a cloned context, callers must make sure that
396 * every task struct that counter->ctx->task could possibly point to
397 * remains valid. This is OK when called from perf_release since
398 * that only calls us on the top-level context, which can't be a clone.
399 * When called from perf_counter_exit_task, it's OK because the
400 * context has been detached from its task.
401 */
402 static void perf_counter_remove_from_context(struct perf_counter *counter)
403 {
404 struct perf_counter_context *ctx = counter->ctx;
405 struct task_struct *task = ctx->task;
406
407 if (!task) {
408 /*
409 * Per cpu counters are removed via an smp call and
410 * the removal is always sucessful.
411 */
412 smp_call_function_single(counter->cpu,
413 __perf_counter_remove_from_context,
414 counter, 1);
415 return;
416 }
417
418 retry:
419 task_oncpu_function_call(task, __perf_counter_remove_from_context,
420 counter);
421
422 spin_lock_irq(&ctx->lock);
423 /*
424 * If the context is active we need to retry the smp call.
425 */
426 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
427 spin_unlock_irq(&ctx->lock);
428 goto retry;
429 }
430
431 /*
432 * The lock prevents that this context is scheduled in so we
433 * can remove the counter safely, if the call above did not
434 * succeed.
435 */
436 if (!list_empty(&counter->list_entry)) {
437 list_del_counter(counter, ctx);
438 }
439 spin_unlock_irq(&ctx->lock);
440 }
441
442 static inline u64 perf_clock(void)
443 {
444 return cpu_clock(smp_processor_id());
445 }
446
447 /*
448 * Update the record of the current time in a context.
449 */
450 static void update_context_time(struct perf_counter_context *ctx)
451 {
452 u64 now = perf_clock();
453
454 ctx->time += now - ctx->timestamp;
455 ctx->timestamp = now;
456 }
457
458 /*
459 * Update the total_time_enabled and total_time_running fields for a counter.
460 */
461 static void update_counter_times(struct perf_counter *counter)
462 {
463 struct perf_counter_context *ctx = counter->ctx;
464 u64 run_end;
465
466 if (counter->state < PERF_COUNTER_STATE_INACTIVE)
467 return;
468
469 counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
470
471 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
472 run_end = counter->tstamp_stopped;
473 else
474 run_end = ctx->time;
475
476 counter->total_time_running = run_end - counter->tstamp_running;
477 }
478
479 /*
480 * Update total_time_enabled and total_time_running for all counters in a group.
481 */
482 static void update_group_times(struct perf_counter *leader)
483 {
484 struct perf_counter *counter;
485
486 update_counter_times(leader);
487 list_for_each_entry(counter, &leader->sibling_list, list_entry)
488 update_counter_times(counter);
489 }
490
491 /*
492 * Cross CPU call to disable a performance counter
493 */
494 static void __perf_counter_disable(void *info)
495 {
496 struct perf_counter *counter = info;
497 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
498 struct perf_counter_context *ctx = counter->ctx;
499
500 /*
501 * If this is a per-task counter, need to check whether this
502 * counter's task is the current task on this cpu.
503 */
504 if (ctx->task && cpuctx->task_ctx != ctx)
505 return;
506
507 spin_lock(&ctx->lock);
508
509 /*
510 * If the counter is on, turn it off.
511 * If it is in error state, leave it in error state.
512 */
513 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
514 update_context_time(ctx);
515 update_counter_times(counter);
516 if (counter == counter->group_leader)
517 group_sched_out(counter, cpuctx, ctx);
518 else
519 counter_sched_out(counter, cpuctx, ctx);
520 counter->state = PERF_COUNTER_STATE_OFF;
521 }
522
523 spin_unlock(&ctx->lock);
524 }
525
526 /*
527 * Disable a counter.
528 *
529 * If counter->ctx is a cloned context, callers must make sure that
530 * every task struct that counter->ctx->task could possibly point to
531 * remains valid. This condition is satisifed when called through
532 * perf_counter_for_each_child or perf_counter_for_each because they
533 * hold the top-level counter's child_mutex, so any descendant that
534 * goes to exit will block in sync_child_counter.
535 * When called from perf_pending_counter it's OK because counter->ctx
536 * is the current context on this CPU and preemption is disabled,
537 * hence we can't get into perf_counter_task_sched_out for this context.
538 */
539 static void perf_counter_disable(struct perf_counter *counter)
540 {
541 struct perf_counter_context *ctx = counter->ctx;
542 struct task_struct *task = ctx->task;
543
544 if (!task) {
545 /*
546 * Disable the counter on the cpu that it's on
547 */
548 smp_call_function_single(counter->cpu, __perf_counter_disable,
549 counter, 1);
550 return;
551 }
552
553 retry:
554 task_oncpu_function_call(task, __perf_counter_disable, counter);
555
556 spin_lock_irq(&ctx->lock);
557 /*
558 * If the counter is still active, we need to retry the cross-call.
559 */
560 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
561 spin_unlock_irq(&ctx->lock);
562 goto retry;
563 }
564
565 /*
566 * Since we have the lock this context can't be scheduled
567 * in, so we can change the state safely.
568 */
569 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
570 update_counter_times(counter);
571 counter->state = PERF_COUNTER_STATE_OFF;
572 }
573
574 spin_unlock_irq(&ctx->lock);
575 }
576
577 static int
578 counter_sched_in(struct perf_counter *counter,
579 struct perf_cpu_context *cpuctx,
580 struct perf_counter_context *ctx,
581 int cpu)
582 {
583 if (counter->state <= PERF_COUNTER_STATE_OFF)
584 return 0;
585
586 counter->state = PERF_COUNTER_STATE_ACTIVE;
587 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
588 /*
589 * The new state must be visible before we turn it on in the hardware:
590 */
591 smp_wmb();
592
593 if (counter->pmu->enable(counter)) {
594 counter->state = PERF_COUNTER_STATE_INACTIVE;
595 counter->oncpu = -1;
596 return -EAGAIN;
597 }
598
599 counter->tstamp_running += ctx->time - counter->tstamp_stopped;
600
601 if (!is_software_counter(counter))
602 cpuctx->active_oncpu++;
603 ctx->nr_active++;
604
605 if (counter->attr.exclusive)
606 cpuctx->exclusive = 1;
607
608 return 0;
609 }
610
611 static int
612 group_sched_in(struct perf_counter *group_counter,
613 struct perf_cpu_context *cpuctx,
614 struct perf_counter_context *ctx,
615 int cpu)
616 {
617 struct perf_counter *counter, *partial_group;
618 int ret;
619
620 if (group_counter->state == PERF_COUNTER_STATE_OFF)
621 return 0;
622
623 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
624 if (ret)
625 return ret < 0 ? ret : 0;
626
627 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
628 return -EAGAIN;
629
630 /*
631 * Schedule in siblings as one group (if any):
632 */
633 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
634 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
635 partial_group = counter;
636 goto group_error;
637 }
638 }
639
640 return 0;
641
642 group_error:
643 /*
644 * Groups can be scheduled in as one unit only, so undo any
645 * partial group before returning:
646 */
647 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
648 if (counter == partial_group)
649 break;
650 counter_sched_out(counter, cpuctx, ctx);
651 }
652 counter_sched_out(group_counter, cpuctx, ctx);
653
654 return -EAGAIN;
655 }
656
657 /*
658 * Return 1 for a group consisting entirely of software counters,
659 * 0 if the group contains any hardware counters.
660 */
661 static int is_software_only_group(struct perf_counter *leader)
662 {
663 struct perf_counter *counter;
664
665 if (!is_software_counter(leader))
666 return 0;
667
668 list_for_each_entry(counter, &leader->sibling_list, list_entry)
669 if (!is_software_counter(counter))
670 return 0;
671
672 return 1;
673 }
674
675 /*
676 * Work out whether we can put this counter group on the CPU now.
677 */
678 static int group_can_go_on(struct perf_counter *counter,
679 struct perf_cpu_context *cpuctx,
680 int can_add_hw)
681 {
682 /*
683 * Groups consisting entirely of software counters can always go on.
684 */
685 if (is_software_only_group(counter))
686 return 1;
687 /*
688 * If an exclusive group is already on, no other hardware
689 * counters can go on.
690 */
691 if (cpuctx->exclusive)
692 return 0;
693 /*
694 * If this group is exclusive and there are already
695 * counters on the CPU, it can't go on.
696 */
697 if (counter->attr.exclusive && cpuctx->active_oncpu)
698 return 0;
699 /*
700 * Otherwise, try to add it if all previous groups were able
701 * to go on.
702 */
703 return can_add_hw;
704 }
705
706 static void add_counter_to_ctx(struct perf_counter *counter,
707 struct perf_counter_context *ctx)
708 {
709 list_add_counter(counter, ctx);
710 counter->tstamp_enabled = ctx->time;
711 counter->tstamp_running = ctx->time;
712 counter->tstamp_stopped = ctx->time;
713 }
714
715 /*
716 * Cross CPU call to install and enable a performance counter
717 *
718 * Must be called with ctx->mutex held
719 */
720 static void __perf_install_in_context(void *info)
721 {
722 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
723 struct perf_counter *counter = info;
724 struct perf_counter_context *ctx = counter->ctx;
725 struct perf_counter *leader = counter->group_leader;
726 int cpu = smp_processor_id();
727 int err;
728
729 /*
730 * If this is a task context, we need to check whether it is
731 * the current task context of this cpu. If not it has been
732 * scheduled out before the smp call arrived.
733 * Or possibly this is the right context but it isn't
734 * on this cpu because it had no counters.
735 */
736 if (ctx->task && cpuctx->task_ctx != ctx) {
737 if (cpuctx->task_ctx || ctx->task != current)
738 return;
739 cpuctx->task_ctx = ctx;
740 }
741
742 spin_lock(&ctx->lock);
743 ctx->is_active = 1;
744 update_context_time(ctx);
745
746 /*
747 * Protect the list operation against NMI by disabling the
748 * counters on a global level. NOP for non NMI based counters.
749 */
750 perf_disable();
751
752 add_counter_to_ctx(counter, ctx);
753
754 /*
755 * Don't put the counter on if it is disabled or if
756 * it is in a group and the group isn't on.
757 */
758 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
759 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
760 goto unlock;
761
762 /*
763 * An exclusive counter can't go on if there are already active
764 * hardware counters, and no hardware counter can go on if there
765 * is already an exclusive counter on.
766 */
767 if (!group_can_go_on(counter, cpuctx, 1))
768 err = -EEXIST;
769 else
770 err = counter_sched_in(counter, cpuctx, ctx, cpu);
771
772 if (err) {
773 /*
774 * This counter couldn't go on. If it is in a group
775 * then we have to pull the whole group off.
776 * If the counter group is pinned then put it in error state.
777 */
778 if (leader != counter)
779 group_sched_out(leader, cpuctx, ctx);
780 if (leader->attr.pinned) {
781 update_group_times(leader);
782 leader->state = PERF_COUNTER_STATE_ERROR;
783 }
784 }
785
786 if (!err && !ctx->task && cpuctx->max_pertask)
787 cpuctx->max_pertask--;
788
789 unlock:
790 perf_enable();
791
792 spin_unlock(&ctx->lock);
793 }
794
795 /*
796 * Attach a performance counter to a context
797 *
798 * First we add the counter to the list with the hardware enable bit
799 * in counter->hw_config cleared.
800 *
801 * If the counter is attached to a task which is on a CPU we use a smp
802 * call to enable it in the task context. The task might have been
803 * scheduled away, but we check this in the smp call again.
804 *
805 * Must be called with ctx->mutex held.
806 */
807 static void
808 perf_install_in_context(struct perf_counter_context *ctx,
809 struct perf_counter *counter,
810 int cpu)
811 {
812 struct task_struct *task = ctx->task;
813
814 if (!task) {
815 /*
816 * Per cpu counters are installed via an smp call and
817 * the install is always sucessful.
818 */
819 smp_call_function_single(cpu, __perf_install_in_context,
820 counter, 1);
821 return;
822 }
823
824 retry:
825 task_oncpu_function_call(task, __perf_install_in_context,
826 counter);
827
828 spin_lock_irq(&ctx->lock);
829 /*
830 * we need to retry the smp call.
831 */
832 if (ctx->is_active && list_empty(&counter->list_entry)) {
833 spin_unlock_irq(&ctx->lock);
834 goto retry;
835 }
836
837 /*
838 * The lock prevents that this context is scheduled in so we
839 * can add the counter safely, if it the call above did not
840 * succeed.
841 */
842 if (list_empty(&counter->list_entry))
843 add_counter_to_ctx(counter, ctx);
844 spin_unlock_irq(&ctx->lock);
845 }
846
847 /*
848 * Cross CPU call to enable a performance counter
849 */
850 static void __perf_counter_enable(void *info)
851 {
852 struct perf_counter *counter = info;
853 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
854 struct perf_counter_context *ctx = counter->ctx;
855 struct perf_counter *leader = counter->group_leader;
856 int err;
857
858 /*
859 * If this is a per-task counter, need to check whether this
860 * counter's task is the current task on this cpu.
861 */
862 if (ctx->task && cpuctx->task_ctx != ctx) {
863 if (cpuctx->task_ctx || ctx->task != current)
864 return;
865 cpuctx->task_ctx = ctx;
866 }
867
868 spin_lock(&ctx->lock);
869 ctx->is_active = 1;
870 update_context_time(ctx);
871
872 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
873 goto unlock;
874 counter->state = PERF_COUNTER_STATE_INACTIVE;
875 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
876
877 /*
878 * If the counter is in a group and isn't the group leader,
879 * then don't put it on unless the group is on.
880 */
881 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
882 goto unlock;
883
884 if (!group_can_go_on(counter, cpuctx, 1)) {
885 err = -EEXIST;
886 } else {
887 perf_disable();
888 if (counter == leader)
889 err = group_sched_in(counter, cpuctx, ctx,
890 smp_processor_id());
891 else
892 err = counter_sched_in(counter, cpuctx, ctx,
893 smp_processor_id());
894 perf_enable();
895 }
896
897 if (err) {
898 /*
899 * If this counter can't go on and it's part of a
900 * group, then the whole group has to come off.
901 */
902 if (leader != counter)
903 group_sched_out(leader, cpuctx, ctx);
904 if (leader->attr.pinned) {
905 update_group_times(leader);
906 leader->state = PERF_COUNTER_STATE_ERROR;
907 }
908 }
909
910 unlock:
911 spin_unlock(&ctx->lock);
912 }
913
914 /*
915 * Enable a counter.
916 *
917 * If counter->ctx is a cloned context, callers must make sure that
918 * every task struct that counter->ctx->task could possibly point to
919 * remains valid. This condition is satisfied when called through
920 * perf_counter_for_each_child or perf_counter_for_each as described
921 * for perf_counter_disable.
922 */
923 static void perf_counter_enable(struct perf_counter *counter)
924 {
925 struct perf_counter_context *ctx = counter->ctx;
926 struct task_struct *task = ctx->task;
927
928 if (!task) {
929 /*
930 * Enable the counter on the cpu that it's on
931 */
932 smp_call_function_single(counter->cpu, __perf_counter_enable,
933 counter, 1);
934 return;
935 }
936
937 spin_lock_irq(&ctx->lock);
938 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
939 goto out;
940
941 /*
942 * If the counter is in error state, clear that first.
943 * That way, if we see the counter in error state below, we
944 * know that it has gone back into error state, as distinct
945 * from the task having been scheduled away before the
946 * cross-call arrived.
947 */
948 if (counter->state == PERF_COUNTER_STATE_ERROR)
949 counter->state = PERF_COUNTER_STATE_OFF;
950
951 retry:
952 spin_unlock_irq(&ctx->lock);
953 task_oncpu_function_call(task, __perf_counter_enable, counter);
954
955 spin_lock_irq(&ctx->lock);
956
957 /*
958 * If the context is active and the counter is still off,
959 * we need to retry the cross-call.
960 */
961 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
962 goto retry;
963
964 /*
965 * Since we have the lock this context can't be scheduled
966 * in, so we can change the state safely.
967 */
968 if (counter->state == PERF_COUNTER_STATE_OFF) {
969 counter->state = PERF_COUNTER_STATE_INACTIVE;
970 counter->tstamp_enabled =
971 ctx->time - counter->total_time_enabled;
972 }
973 out:
974 spin_unlock_irq(&ctx->lock);
975 }
976
977 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
978 {
979 /*
980 * not supported on inherited counters
981 */
982 if (counter->attr.inherit)
983 return -EINVAL;
984
985 atomic_add(refresh, &counter->event_limit);
986 perf_counter_enable(counter);
987
988 return 0;
989 }
990
991 void __perf_counter_sched_out(struct perf_counter_context *ctx,
992 struct perf_cpu_context *cpuctx)
993 {
994 struct perf_counter *counter;
995
996 spin_lock(&ctx->lock);
997 ctx->is_active = 0;
998 if (likely(!ctx->nr_counters))
999 goto out;
1000 update_context_time(ctx);
1001
1002 perf_disable();
1003 if (ctx->nr_active) {
1004 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1005 if (counter != counter->group_leader)
1006 counter_sched_out(counter, cpuctx, ctx);
1007 else
1008 group_sched_out(counter, cpuctx, ctx);
1009 }
1010 }
1011 perf_enable();
1012 out:
1013 spin_unlock(&ctx->lock);
1014 }
1015
1016 /*
1017 * Test whether two contexts are equivalent, i.e. whether they
1018 * have both been cloned from the same version of the same context
1019 * and they both have the same number of enabled counters.
1020 * If the number of enabled counters is the same, then the set
1021 * of enabled counters should be the same, because these are both
1022 * inherited contexts, therefore we can't access individual counters
1023 * in them directly with an fd; we can only enable/disable all
1024 * counters via prctl, or enable/disable all counters in a family
1025 * via ioctl, which will have the same effect on both contexts.
1026 */
1027 static int context_equiv(struct perf_counter_context *ctx1,
1028 struct perf_counter_context *ctx2)
1029 {
1030 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1031 && ctx1->parent_gen == ctx2->parent_gen
1032 && !ctx1->pin_count && !ctx2->pin_count;
1033 }
1034
1035 static void __perf_counter_read(void *counter);
1036
1037 static void __perf_counter_sync_stat(struct perf_counter *counter,
1038 struct perf_counter *next_counter)
1039 {
1040 u64 value;
1041
1042 if (!counter->attr.inherit_stat)
1043 return;
1044
1045 /*
1046 * Update the counter value, we cannot use perf_counter_read()
1047 * because we're in the middle of a context switch and have IRQs
1048 * disabled, which upsets smp_call_function_single(), however
1049 * we know the counter must be on the current CPU, therefore we
1050 * don't need to use it.
1051 */
1052 switch (counter->state) {
1053 case PERF_COUNTER_STATE_ACTIVE:
1054 __perf_counter_read(counter);
1055 break;
1056
1057 case PERF_COUNTER_STATE_INACTIVE:
1058 update_counter_times(counter);
1059 break;
1060
1061 default:
1062 break;
1063 }
1064
1065 /*
1066 * In order to keep per-task stats reliable we need to flip the counter
1067 * values when we flip the contexts.
1068 */
1069 value = atomic64_read(&next_counter->count);
1070 value = atomic64_xchg(&counter->count, value);
1071 atomic64_set(&next_counter->count, value);
1072
1073 swap(counter->total_time_enabled, next_counter->total_time_enabled);
1074 swap(counter->total_time_running, next_counter->total_time_running);
1075
1076 /*
1077 * Since we swizzled the values, update the user visible data too.
1078 */
1079 perf_counter_update_userpage(counter);
1080 perf_counter_update_userpage(next_counter);
1081 }
1082
1083 #define list_next_entry(pos, member) \
1084 list_entry(pos->member.next, typeof(*pos), member)
1085
1086 static void perf_counter_sync_stat(struct perf_counter_context *ctx,
1087 struct perf_counter_context *next_ctx)
1088 {
1089 struct perf_counter *counter, *next_counter;
1090
1091 if (!ctx->nr_stat)
1092 return;
1093
1094 counter = list_first_entry(&ctx->event_list,
1095 struct perf_counter, event_entry);
1096
1097 next_counter = list_first_entry(&next_ctx->event_list,
1098 struct perf_counter, event_entry);
1099
1100 while (&counter->event_entry != &ctx->event_list &&
1101 &next_counter->event_entry != &next_ctx->event_list) {
1102
1103 __perf_counter_sync_stat(counter, next_counter);
1104
1105 counter = list_next_entry(counter, event_entry);
1106 next_counter = list_next_entry(counter, event_entry);
1107 }
1108 }
1109
1110 /*
1111 * Called from scheduler to remove the counters of the current task,
1112 * with interrupts disabled.
1113 *
1114 * We stop each counter and update the counter value in counter->count.
1115 *
1116 * This does not protect us against NMI, but disable()
1117 * sets the disabled bit in the control field of counter _before_
1118 * accessing the counter control register. If a NMI hits, then it will
1119 * not restart the counter.
1120 */
1121 void perf_counter_task_sched_out(struct task_struct *task,
1122 struct task_struct *next, int cpu)
1123 {
1124 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1125 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1126 struct perf_counter_context *next_ctx;
1127 struct perf_counter_context *parent;
1128 struct pt_regs *regs;
1129 int do_switch = 1;
1130
1131 regs = task_pt_regs(task);
1132 perf_swcounter_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1133
1134 if (likely(!ctx || !cpuctx->task_ctx))
1135 return;
1136
1137 update_context_time(ctx);
1138
1139 rcu_read_lock();
1140 parent = rcu_dereference(ctx->parent_ctx);
1141 next_ctx = next->perf_counter_ctxp;
1142 if (parent && next_ctx &&
1143 rcu_dereference(next_ctx->parent_ctx) == parent) {
1144 /*
1145 * Looks like the two contexts are clones, so we might be
1146 * able to optimize the context switch. We lock both
1147 * contexts and check that they are clones under the
1148 * lock (including re-checking that neither has been
1149 * uncloned in the meantime). It doesn't matter which
1150 * order we take the locks because no other cpu could
1151 * be trying to lock both of these tasks.
1152 */
1153 spin_lock(&ctx->lock);
1154 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1155 if (context_equiv(ctx, next_ctx)) {
1156 /*
1157 * XXX do we need a memory barrier of sorts
1158 * wrt to rcu_dereference() of perf_counter_ctxp
1159 */
1160 task->perf_counter_ctxp = next_ctx;
1161 next->perf_counter_ctxp = ctx;
1162 ctx->task = next;
1163 next_ctx->task = task;
1164 do_switch = 0;
1165
1166 perf_counter_sync_stat(ctx, next_ctx);
1167 }
1168 spin_unlock(&next_ctx->lock);
1169 spin_unlock(&ctx->lock);
1170 }
1171 rcu_read_unlock();
1172
1173 if (do_switch) {
1174 __perf_counter_sched_out(ctx, cpuctx);
1175 cpuctx->task_ctx = NULL;
1176 }
1177 }
1178
1179 /*
1180 * Called with IRQs disabled
1181 */
1182 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
1183 {
1184 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1185
1186 if (!cpuctx->task_ctx)
1187 return;
1188
1189 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1190 return;
1191
1192 __perf_counter_sched_out(ctx, cpuctx);
1193 cpuctx->task_ctx = NULL;
1194 }
1195
1196 /*
1197 * Called with IRQs disabled
1198 */
1199 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
1200 {
1201 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1202 }
1203
1204 static void
1205 __perf_counter_sched_in(struct perf_counter_context *ctx,
1206 struct perf_cpu_context *cpuctx, int cpu)
1207 {
1208 struct perf_counter *counter;
1209 int can_add_hw = 1;
1210
1211 spin_lock(&ctx->lock);
1212 ctx->is_active = 1;
1213 if (likely(!ctx->nr_counters))
1214 goto out;
1215
1216 ctx->timestamp = perf_clock();
1217
1218 perf_disable();
1219
1220 /*
1221 * First go through the list and put on any pinned groups
1222 * in order to give them the best chance of going on.
1223 */
1224 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1225 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1226 !counter->attr.pinned)
1227 continue;
1228 if (counter->cpu != -1 && counter->cpu != cpu)
1229 continue;
1230
1231 if (counter != counter->group_leader)
1232 counter_sched_in(counter, cpuctx, ctx, cpu);
1233 else {
1234 if (group_can_go_on(counter, cpuctx, 1))
1235 group_sched_in(counter, cpuctx, ctx, cpu);
1236 }
1237
1238 /*
1239 * If this pinned group hasn't been scheduled,
1240 * put it in error state.
1241 */
1242 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1243 update_group_times(counter);
1244 counter->state = PERF_COUNTER_STATE_ERROR;
1245 }
1246 }
1247
1248 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1249 /*
1250 * Ignore counters in OFF or ERROR state, and
1251 * ignore pinned counters since we did them already.
1252 */
1253 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1254 counter->attr.pinned)
1255 continue;
1256
1257 /*
1258 * Listen to the 'cpu' scheduling filter constraint
1259 * of counters:
1260 */
1261 if (counter->cpu != -1 && counter->cpu != cpu)
1262 continue;
1263
1264 if (counter != counter->group_leader) {
1265 if (counter_sched_in(counter, cpuctx, ctx, cpu))
1266 can_add_hw = 0;
1267 } else {
1268 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1269 if (group_sched_in(counter, cpuctx, ctx, cpu))
1270 can_add_hw = 0;
1271 }
1272 }
1273 }
1274 perf_enable();
1275 out:
1276 spin_unlock(&ctx->lock);
1277 }
1278
1279 /*
1280 * Called from scheduler to add the counters of the current task
1281 * with interrupts disabled.
1282 *
1283 * We restore the counter value and then enable it.
1284 *
1285 * This does not protect us against NMI, but enable()
1286 * sets the enabled bit in the control field of counter _before_
1287 * accessing the counter control register. If a NMI hits, then it will
1288 * keep the counter running.
1289 */
1290 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1291 {
1292 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1293 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1294
1295 if (likely(!ctx))
1296 return;
1297 if (cpuctx->task_ctx == ctx)
1298 return;
1299 __perf_counter_sched_in(ctx, cpuctx, cpu);
1300 cpuctx->task_ctx = ctx;
1301 }
1302
1303 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1304 {
1305 struct perf_counter_context *ctx = &cpuctx->ctx;
1306
1307 __perf_counter_sched_in(ctx, cpuctx, cpu);
1308 }
1309
1310 #define MAX_INTERRUPTS (~0ULL)
1311
1312 static void perf_log_throttle(struct perf_counter *counter, int enable);
1313
1314 static void perf_adjust_period(struct perf_counter *counter, u64 events)
1315 {
1316 struct hw_perf_counter *hwc = &counter->hw;
1317 u64 period, sample_period;
1318 s64 delta;
1319
1320 events *= hwc->sample_period;
1321 period = div64_u64(events, counter->attr.sample_freq);
1322
1323 delta = (s64)(period - hwc->sample_period);
1324 delta = (delta + 7) / 8; /* low pass filter */
1325
1326 sample_period = hwc->sample_period + delta;
1327
1328 if (!sample_period)
1329 sample_period = 1;
1330
1331 hwc->sample_period = sample_period;
1332 }
1333
1334 static void perf_ctx_adjust_freq(struct perf_counter_context *ctx)
1335 {
1336 struct perf_counter *counter;
1337 struct hw_perf_counter *hwc;
1338 u64 interrupts, freq;
1339
1340 spin_lock(&ctx->lock);
1341 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1342 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1343 continue;
1344
1345 hwc = &counter->hw;
1346
1347 interrupts = hwc->interrupts;
1348 hwc->interrupts = 0;
1349
1350 /*
1351 * unthrottle counters on the tick
1352 */
1353 if (interrupts == MAX_INTERRUPTS) {
1354 perf_log_throttle(counter, 1);
1355 counter->pmu->unthrottle(counter);
1356 interrupts = 2*sysctl_perf_counter_sample_rate/HZ;
1357 }
1358
1359 if (!counter->attr.freq || !counter->attr.sample_freq)
1360 continue;
1361
1362 /*
1363 * if the specified freq < HZ then we need to skip ticks
1364 */
1365 if (counter->attr.sample_freq < HZ) {
1366 freq = counter->attr.sample_freq;
1367
1368 hwc->freq_count += freq;
1369 hwc->freq_interrupts += interrupts;
1370
1371 if (hwc->freq_count < HZ)
1372 continue;
1373
1374 interrupts = hwc->freq_interrupts;
1375 hwc->freq_interrupts = 0;
1376 hwc->freq_count -= HZ;
1377 } else
1378 freq = HZ;
1379
1380 perf_adjust_period(counter, freq * interrupts);
1381
1382 /*
1383 * In order to avoid being stalled by an (accidental) huge
1384 * sample period, force reset the sample period if we didn't
1385 * get any events in this freq period.
1386 */
1387 if (!interrupts) {
1388 perf_disable();
1389 counter->pmu->disable(counter);
1390 atomic64_set(&hwc->period_left, 0);
1391 counter->pmu->enable(counter);
1392 perf_enable();
1393 }
1394 }
1395 spin_unlock(&ctx->lock);
1396 }
1397
1398 /*
1399 * Round-robin a context's counters:
1400 */
1401 static void rotate_ctx(struct perf_counter_context *ctx)
1402 {
1403 struct perf_counter *counter;
1404
1405 if (!ctx->nr_counters)
1406 return;
1407
1408 spin_lock(&ctx->lock);
1409 /*
1410 * Rotate the first entry last (works just fine for group counters too):
1411 */
1412 perf_disable();
1413 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1414 list_move_tail(&counter->list_entry, &ctx->counter_list);
1415 break;
1416 }
1417 perf_enable();
1418
1419 spin_unlock(&ctx->lock);
1420 }
1421
1422 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1423 {
1424 struct perf_cpu_context *cpuctx;
1425 struct perf_counter_context *ctx;
1426
1427 if (!atomic_read(&nr_counters))
1428 return;
1429
1430 cpuctx = &per_cpu(perf_cpu_context, cpu);
1431 ctx = curr->perf_counter_ctxp;
1432
1433 perf_ctx_adjust_freq(&cpuctx->ctx);
1434 if (ctx)
1435 perf_ctx_adjust_freq(ctx);
1436
1437 perf_counter_cpu_sched_out(cpuctx);
1438 if (ctx)
1439 __perf_counter_task_sched_out(ctx);
1440
1441 rotate_ctx(&cpuctx->ctx);
1442 if (ctx)
1443 rotate_ctx(ctx);
1444
1445 perf_counter_cpu_sched_in(cpuctx, cpu);
1446 if (ctx)
1447 perf_counter_task_sched_in(curr, cpu);
1448 }
1449
1450 /*
1451 * Enable all of a task's counters that have been marked enable-on-exec.
1452 * This expects task == current.
1453 */
1454 static void perf_counter_enable_on_exec(struct task_struct *task)
1455 {
1456 struct perf_counter_context *ctx;
1457 struct perf_counter *counter;
1458 unsigned long flags;
1459 int enabled = 0;
1460
1461 local_irq_save(flags);
1462 ctx = task->perf_counter_ctxp;
1463 if (!ctx || !ctx->nr_counters)
1464 goto out;
1465
1466 __perf_counter_task_sched_out(ctx);
1467
1468 spin_lock(&ctx->lock);
1469
1470 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1471 if (!counter->attr.enable_on_exec)
1472 continue;
1473 counter->attr.enable_on_exec = 0;
1474 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
1475 continue;
1476 counter->state = PERF_COUNTER_STATE_INACTIVE;
1477 counter->tstamp_enabled =
1478 ctx->time - counter->total_time_enabled;
1479 enabled = 1;
1480 }
1481
1482 /*
1483 * Unclone this context if we enabled any counter.
1484 */
1485 if (enabled)
1486 unclone_ctx(ctx);
1487
1488 spin_unlock(&ctx->lock);
1489
1490 perf_counter_task_sched_in(task, smp_processor_id());
1491 out:
1492 local_irq_restore(flags);
1493 }
1494
1495 /*
1496 * Cross CPU call to read the hardware counter
1497 */
1498 static void __perf_counter_read(void *info)
1499 {
1500 struct perf_counter *counter = info;
1501 struct perf_counter_context *ctx = counter->ctx;
1502 unsigned long flags;
1503
1504 local_irq_save(flags);
1505 if (ctx->is_active)
1506 update_context_time(ctx);
1507 counter->pmu->read(counter);
1508 update_counter_times(counter);
1509 local_irq_restore(flags);
1510 }
1511
1512 static u64 perf_counter_read(struct perf_counter *counter)
1513 {
1514 /*
1515 * If counter is enabled and currently active on a CPU, update the
1516 * value in the counter structure:
1517 */
1518 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1519 smp_call_function_single(counter->oncpu,
1520 __perf_counter_read, counter, 1);
1521 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1522 update_counter_times(counter);
1523 }
1524
1525 return atomic64_read(&counter->count);
1526 }
1527
1528 /*
1529 * Initialize the perf_counter context in a task_struct:
1530 */
1531 static void
1532 __perf_counter_init_context(struct perf_counter_context *ctx,
1533 struct task_struct *task)
1534 {
1535 memset(ctx, 0, sizeof(*ctx));
1536 spin_lock_init(&ctx->lock);
1537 mutex_init(&ctx->mutex);
1538 INIT_LIST_HEAD(&ctx->counter_list);
1539 INIT_LIST_HEAD(&ctx->event_list);
1540 atomic_set(&ctx->refcount, 1);
1541 ctx->task = task;
1542 }
1543
1544 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1545 {
1546 struct perf_counter_context *ctx;
1547 struct perf_cpu_context *cpuctx;
1548 struct task_struct *task;
1549 unsigned long flags;
1550 int err;
1551
1552 /*
1553 * If cpu is not a wildcard then this is a percpu counter:
1554 */
1555 if (cpu != -1) {
1556 /* Must be root to operate on a CPU counter: */
1557 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1558 return ERR_PTR(-EACCES);
1559
1560 if (cpu < 0 || cpu > num_possible_cpus())
1561 return ERR_PTR(-EINVAL);
1562
1563 /*
1564 * We could be clever and allow to attach a counter to an
1565 * offline CPU and activate it when the CPU comes up, but
1566 * that's for later.
1567 */
1568 if (!cpu_isset(cpu, cpu_online_map))
1569 return ERR_PTR(-ENODEV);
1570
1571 cpuctx = &per_cpu(perf_cpu_context, cpu);
1572 ctx = &cpuctx->ctx;
1573 get_ctx(ctx);
1574
1575 return ctx;
1576 }
1577
1578 rcu_read_lock();
1579 if (!pid)
1580 task = current;
1581 else
1582 task = find_task_by_vpid(pid);
1583 if (task)
1584 get_task_struct(task);
1585 rcu_read_unlock();
1586
1587 if (!task)
1588 return ERR_PTR(-ESRCH);
1589
1590 /*
1591 * Can't attach counters to a dying task.
1592 */
1593 err = -ESRCH;
1594 if (task->flags & PF_EXITING)
1595 goto errout;
1596
1597 /* Reuse ptrace permission checks for now. */
1598 err = -EACCES;
1599 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1600 goto errout;
1601
1602 retry:
1603 ctx = perf_lock_task_context(task, &flags);
1604 if (ctx) {
1605 unclone_ctx(ctx);
1606 spin_unlock_irqrestore(&ctx->lock, flags);
1607 }
1608
1609 if (!ctx) {
1610 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1611 err = -ENOMEM;
1612 if (!ctx)
1613 goto errout;
1614 __perf_counter_init_context(ctx, task);
1615 get_ctx(ctx);
1616 if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1617 /*
1618 * We raced with some other task; use
1619 * the context they set.
1620 */
1621 kfree(ctx);
1622 goto retry;
1623 }
1624 get_task_struct(task);
1625 }
1626
1627 put_task_struct(task);
1628 return ctx;
1629
1630 errout:
1631 put_task_struct(task);
1632 return ERR_PTR(err);
1633 }
1634
1635 static void free_counter_rcu(struct rcu_head *head)
1636 {
1637 struct perf_counter *counter;
1638
1639 counter = container_of(head, struct perf_counter, rcu_head);
1640 if (counter->ns)
1641 put_pid_ns(counter->ns);
1642 kfree(counter);
1643 }
1644
1645 static void perf_pending_sync(struct perf_counter *counter);
1646
1647 static void free_counter(struct perf_counter *counter)
1648 {
1649 perf_pending_sync(counter);
1650
1651 if (!counter->parent) {
1652 atomic_dec(&nr_counters);
1653 if (counter->attr.mmap)
1654 atomic_dec(&nr_mmap_counters);
1655 if (counter->attr.comm)
1656 atomic_dec(&nr_comm_counters);
1657 }
1658
1659 if (counter->destroy)
1660 counter->destroy(counter);
1661
1662 put_ctx(counter->ctx);
1663 call_rcu(&counter->rcu_head, free_counter_rcu);
1664 }
1665
1666 /*
1667 * Called when the last reference to the file is gone.
1668 */
1669 static int perf_release(struct inode *inode, struct file *file)
1670 {
1671 struct perf_counter *counter = file->private_data;
1672 struct perf_counter_context *ctx = counter->ctx;
1673
1674 file->private_data = NULL;
1675
1676 WARN_ON_ONCE(ctx->parent_ctx);
1677 mutex_lock(&ctx->mutex);
1678 perf_counter_remove_from_context(counter);
1679 mutex_unlock(&ctx->mutex);
1680
1681 mutex_lock(&counter->owner->perf_counter_mutex);
1682 list_del_init(&counter->owner_entry);
1683 mutex_unlock(&counter->owner->perf_counter_mutex);
1684 put_task_struct(counter->owner);
1685
1686 free_counter(counter);
1687
1688 return 0;
1689 }
1690
1691 /*
1692 * Read the performance counter - simple non blocking version for now
1693 */
1694 static ssize_t
1695 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1696 {
1697 u64 values[4];
1698 int n;
1699
1700 /*
1701 * Return end-of-file for a read on a counter that is in
1702 * error state (i.e. because it was pinned but it couldn't be
1703 * scheduled on to the CPU at some point).
1704 */
1705 if (counter->state == PERF_COUNTER_STATE_ERROR)
1706 return 0;
1707
1708 WARN_ON_ONCE(counter->ctx->parent_ctx);
1709 mutex_lock(&counter->child_mutex);
1710 values[0] = perf_counter_read(counter);
1711 n = 1;
1712 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1713 values[n++] = counter->total_time_enabled +
1714 atomic64_read(&counter->child_total_time_enabled);
1715 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1716 values[n++] = counter->total_time_running +
1717 atomic64_read(&counter->child_total_time_running);
1718 if (counter->attr.read_format & PERF_FORMAT_ID)
1719 values[n++] = primary_counter_id(counter);
1720 mutex_unlock(&counter->child_mutex);
1721
1722 if (count < n * sizeof(u64))
1723 return -EINVAL;
1724 count = n * sizeof(u64);
1725
1726 if (copy_to_user(buf, values, count))
1727 return -EFAULT;
1728
1729 return count;
1730 }
1731
1732 static ssize_t
1733 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1734 {
1735 struct perf_counter *counter = file->private_data;
1736
1737 return perf_read_hw(counter, buf, count);
1738 }
1739
1740 static unsigned int perf_poll(struct file *file, poll_table *wait)
1741 {
1742 struct perf_counter *counter = file->private_data;
1743 struct perf_mmap_data *data;
1744 unsigned int events = POLL_HUP;
1745
1746 rcu_read_lock();
1747 data = rcu_dereference(counter->data);
1748 if (data)
1749 events = atomic_xchg(&data->poll, 0);
1750 rcu_read_unlock();
1751
1752 poll_wait(file, &counter->waitq, wait);
1753
1754 return events;
1755 }
1756
1757 static void perf_counter_reset(struct perf_counter *counter)
1758 {
1759 (void)perf_counter_read(counter);
1760 atomic64_set(&counter->count, 0);
1761 perf_counter_update_userpage(counter);
1762 }
1763
1764 /*
1765 * Holding the top-level counter's child_mutex means that any
1766 * descendant process that has inherited this counter will block
1767 * in sync_child_counter if it goes to exit, thus satisfying the
1768 * task existence requirements of perf_counter_enable/disable.
1769 */
1770 static void perf_counter_for_each_child(struct perf_counter *counter,
1771 void (*func)(struct perf_counter *))
1772 {
1773 struct perf_counter *child;
1774
1775 WARN_ON_ONCE(counter->ctx->parent_ctx);
1776 mutex_lock(&counter->child_mutex);
1777 func(counter);
1778 list_for_each_entry(child, &counter->child_list, child_list)
1779 func(child);
1780 mutex_unlock(&counter->child_mutex);
1781 }
1782
1783 static void perf_counter_for_each(struct perf_counter *counter,
1784 void (*func)(struct perf_counter *))
1785 {
1786 struct perf_counter_context *ctx = counter->ctx;
1787 struct perf_counter *sibling;
1788
1789 WARN_ON_ONCE(ctx->parent_ctx);
1790 mutex_lock(&ctx->mutex);
1791 counter = counter->group_leader;
1792
1793 perf_counter_for_each_child(counter, func);
1794 func(counter);
1795 list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1796 perf_counter_for_each_child(counter, func);
1797 mutex_unlock(&ctx->mutex);
1798 }
1799
1800 static int perf_counter_period(struct perf_counter *counter, u64 __user *arg)
1801 {
1802 struct perf_counter_context *ctx = counter->ctx;
1803 unsigned long size;
1804 int ret = 0;
1805 u64 value;
1806
1807 if (!counter->attr.sample_period)
1808 return -EINVAL;
1809
1810 size = copy_from_user(&value, arg, sizeof(value));
1811 if (size != sizeof(value))
1812 return -EFAULT;
1813
1814 if (!value)
1815 return -EINVAL;
1816
1817 spin_lock_irq(&ctx->lock);
1818 if (counter->attr.freq) {
1819 if (value > sysctl_perf_counter_sample_rate) {
1820 ret = -EINVAL;
1821 goto unlock;
1822 }
1823
1824 counter->attr.sample_freq = value;
1825 } else {
1826 counter->attr.sample_period = value;
1827 counter->hw.sample_period = value;
1828 }
1829 unlock:
1830 spin_unlock_irq(&ctx->lock);
1831
1832 return ret;
1833 }
1834
1835 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1836 {
1837 struct perf_counter *counter = file->private_data;
1838 void (*func)(struct perf_counter *);
1839 u32 flags = arg;
1840
1841 switch (cmd) {
1842 case PERF_COUNTER_IOC_ENABLE:
1843 func = perf_counter_enable;
1844 break;
1845 case PERF_COUNTER_IOC_DISABLE:
1846 func = perf_counter_disable;
1847 break;
1848 case PERF_COUNTER_IOC_RESET:
1849 func = perf_counter_reset;
1850 break;
1851
1852 case PERF_COUNTER_IOC_REFRESH:
1853 return perf_counter_refresh(counter, arg);
1854
1855 case PERF_COUNTER_IOC_PERIOD:
1856 return perf_counter_period(counter, (u64 __user *)arg);
1857
1858 default:
1859 return -ENOTTY;
1860 }
1861
1862 if (flags & PERF_IOC_FLAG_GROUP)
1863 perf_counter_for_each(counter, func);
1864 else
1865 perf_counter_for_each_child(counter, func);
1866
1867 return 0;
1868 }
1869
1870 int perf_counter_task_enable(void)
1871 {
1872 struct perf_counter *counter;
1873
1874 mutex_lock(&current->perf_counter_mutex);
1875 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1876 perf_counter_for_each_child(counter, perf_counter_enable);
1877 mutex_unlock(&current->perf_counter_mutex);
1878
1879 return 0;
1880 }
1881
1882 int perf_counter_task_disable(void)
1883 {
1884 struct perf_counter *counter;
1885
1886 mutex_lock(&current->perf_counter_mutex);
1887 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1888 perf_counter_for_each_child(counter, perf_counter_disable);
1889 mutex_unlock(&current->perf_counter_mutex);
1890
1891 return 0;
1892 }
1893
1894 static int perf_counter_index(struct perf_counter *counter)
1895 {
1896 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1897 return 0;
1898
1899 return counter->hw.idx + 1 - PERF_COUNTER_INDEX_OFFSET;
1900 }
1901
1902 /*
1903 * Callers need to ensure there can be no nesting of this function, otherwise
1904 * the seqlock logic goes bad. We can not serialize this because the arch
1905 * code calls this from NMI context.
1906 */
1907 void perf_counter_update_userpage(struct perf_counter *counter)
1908 {
1909 struct perf_counter_mmap_page *userpg;
1910 struct perf_mmap_data *data;
1911
1912 rcu_read_lock();
1913 data = rcu_dereference(counter->data);
1914 if (!data)
1915 goto unlock;
1916
1917 userpg = data->user_page;
1918
1919 /*
1920 * Disable preemption so as to not let the corresponding user-space
1921 * spin too long if we get preempted.
1922 */
1923 preempt_disable();
1924 ++userpg->lock;
1925 barrier();
1926 userpg->index = perf_counter_index(counter);
1927 userpg->offset = atomic64_read(&counter->count);
1928 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1929 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1930
1931 userpg->time_enabled = counter->total_time_enabled +
1932 atomic64_read(&counter->child_total_time_enabled);
1933
1934 userpg->time_running = counter->total_time_running +
1935 atomic64_read(&counter->child_total_time_running);
1936
1937 barrier();
1938 ++userpg->lock;
1939 preempt_enable();
1940 unlock:
1941 rcu_read_unlock();
1942 }
1943
1944 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1945 {
1946 struct perf_counter *counter = vma->vm_file->private_data;
1947 struct perf_mmap_data *data;
1948 int ret = VM_FAULT_SIGBUS;
1949
1950 if (vmf->flags & FAULT_FLAG_MKWRITE) {
1951 if (vmf->pgoff == 0)
1952 ret = 0;
1953 return ret;
1954 }
1955
1956 rcu_read_lock();
1957 data = rcu_dereference(counter->data);
1958 if (!data)
1959 goto unlock;
1960
1961 if (vmf->pgoff == 0) {
1962 vmf->page = virt_to_page(data->user_page);
1963 } else {
1964 int nr = vmf->pgoff - 1;
1965
1966 if ((unsigned)nr > data->nr_pages)
1967 goto unlock;
1968
1969 if (vmf->flags & FAULT_FLAG_WRITE)
1970 goto unlock;
1971
1972 vmf->page = virt_to_page(data->data_pages[nr]);
1973 }
1974
1975 get_page(vmf->page);
1976 vmf->page->mapping = vma->vm_file->f_mapping;
1977 vmf->page->index = vmf->pgoff;
1978
1979 ret = 0;
1980 unlock:
1981 rcu_read_unlock();
1982
1983 return ret;
1984 }
1985
1986 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1987 {
1988 struct perf_mmap_data *data;
1989 unsigned long size;
1990 int i;
1991
1992 WARN_ON(atomic_read(&counter->mmap_count));
1993
1994 size = sizeof(struct perf_mmap_data);
1995 size += nr_pages * sizeof(void *);
1996
1997 data = kzalloc(size, GFP_KERNEL);
1998 if (!data)
1999 goto fail;
2000
2001 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2002 if (!data->user_page)
2003 goto fail_user_page;
2004
2005 for (i = 0; i < nr_pages; i++) {
2006 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2007 if (!data->data_pages[i])
2008 goto fail_data_pages;
2009 }
2010
2011 data->nr_pages = nr_pages;
2012 atomic_set(&data->lock, -1);
2013
2014 rcu_assign_pointer(counter->data, data);
2015
2016 return 0;
2017
2018 fail_data_pages:
2019 for (i--; i >= 0; i--)
2020 free_page((unsigned long)data->data_pages[i]);
2021
2022 free_page((unsigned long)data->user_page);
2023
2024 fail_user_page:
2025 kfree(data);
2026
2027 fail:
2028 return -ENOMEM;
2029 }
2030
2031 static void perf_mmap_free_page(unsigned long addr)
2032 {
2033 struct page *page = virt_to_page((void *)addr);
2034
2035 page->mapping = NULL;
2036 __free_page(page);
2037 }
2038
2039 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
2040 {
2041 struct perf_mmap_data *data;
2042 int i;
2043
2044 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2045
2046 perf_mmap_free_page((unsigned long)data->user_page);
2047 for (i = 0; i < data->nr_pages; i++)
2048 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2049
2050 kfree(data);
2051 }
2052
2053 static void perf_mmap_data_free(struct perf_counter *counter)
2054 {
2055 struct perf_mmap_data *data = counter->data;
2056
2057 WARN_ON(atomic_read(&counter->mmap_count));
2058
2059 rcu_assign_pointer(counter->data, NULL);
2060 call_rcu(&data->rcu_head, __perf_mmap_data_free);
2061 }
2062
2063 static void perf_mmap_open(struct vm_area_struct *vma)
2064 {
2065 struct perf_counter *counter = vma->vm_file->private_data;
2066
2067 atomic_inc(&counter->mmap_count);
2068 }
2069
2070 static void perf_mmap_close(struct vm_area_struct *vma)
2071 {
2072 struct perf_counter *counter = vma->vm_file->private_data;
2073
2074 WARN_ON_ONCE(counter->ctx->parent_ctx);
2075 if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) {
2076 struct user_struct *user = current_user();
2077
2078 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
2079 vma->vm_mm->locked_vm -= counter->data->nr_locked;
2080 perf_mmap_data_free(counter);
2081 mutex_unlock(&counter->mmap_mutex);
2082 }
2083 }
2084
2085 static struct vm_operations_struct perf_mmap_vmops = {
2086 .open = perf_mmap_open,
2087 .close = perf_mmap_close,
2088 .fault = perf_mmap_fault,
2089 .page_mkwrite = perf_mmap_fault,
2090 };
2091
2092 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2093 {
2094 struct perf_counter *counter = file->private_data;
2095 unsigned long user_locked, user_lock_limit;
2096 struct user_struct *user = current_user();
2097 unsigned long locked, lock_limit;
2098 unsigned long vma_size;
2099 unsigned long nr_pages;
2100 long user_extra, extra;
2101 int ret = 0;
2102
2103 if (!(vma->vm_flags & VM_SHARED))
2104 return -EINVAL;
2105
2106 vma_size = vma->vm_end - vma->vm_start;
2107 nr_pages = (vma_size / PAGE_SIZE) - 1;
2108
2109 /*
2110 * If we have data pages ensure they're a power-of-two number, so we
2111 * can do bitmasks instead of modulo.
2112 */
2113 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2114 return -EINVAL;
2115
2116 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2117 return -EINVAL;
2118
2119 if (vma->vm_pgoff != 0)
2120 return -EINVAL;
2121
2122 WARN_ON_ONCE(counter->ctx->parent_ctx);
2123 mutex_lock(&counter->mmap_mutex);
2124 if (atomic_inc_not_zero(&counter->mmap_count)) {
2125 if (nr_pages != counter->data->nr_pages)
2126 ret = -EINVAL;
2127 goto unlock;
2128 }
2129
2130 user_extra = nr_pages + 1;
2131 user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
2132
2133 /*
2134 * Increase the limit linearly with more CPUs:
2135 */
2136 user_lock_limit *= num_online_cpus();
2137
2138 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2139
2140 extra = 0;
2141 if (user_locked > user_lock_limit)
2142 extra = user_locked - user_lock_limit;
2143
2144 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2145 lock_limit >>= PAGE_SHIFT;
2146 locked = vma->vm_mm->locked_vm + extra;
2147
2148 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
2149 ret = -EPERM;
2150 goto unlock;
2151 }
2152
2153 WARN_ON(counter->data);
2154 ret = perf_mmap_data_alloc(counter, nr_pages);
2155 if (ret)
2156 goto unlock;
2157
2158 atomic_set(&counter->mmap_count, 1);
2159 atomic_long_add(user_extra, &user->locked_vm);
2160 vma->vm_mm->locked_vm += extra;
2161 counter->data->nr_locked = extra;
2162 if (vma->vm_flags & VM_WRITE)
2163 counter->data->writable = 1;
2164
2165 unlock:
2166 mutex_unlock(&counter->mmap_mutex);
2167
2168 vma->vm_flags |= VM_RESERVED;
2169 vma->vm_ops = &perf_mmap_vmops;
2170
2171 return ret;
2172 }
2173
2174 static int perf_fasync(int fd, struct file *filp, int on)
2175 {
2176 struct inode *inode = filp->f_path.dentry->d_inode;
2177 struct perf_counter *counter = filp->private_data;
2178 int retval;
2179
2180 mutex_lock(&inode->i_mutex);
2181 retval = fasync_helper(fd, filp, on, &counter->fasync);
2182 mutex_unlock(&inode->i_mutex);
2183
2184 if (retval < 0)
2185 return retval;
2186
2187 return 0;
2188 }
2189
2190 static const struct file_operations perf_fops = {
2191 .release = perf_release,
2192 .read = perf_read,
2193 .poll = perf_poll,
2194 .unlocked_ioctl = perf_ioctl,
2195 .compat_ioctl = perf_ioctl,
2196 .mmap = perf_mmap,
2197 .fasync = perf_fasync,
2198 };
2199
2200 /*
2201 * Perf counter wakeup
2202 *
2203 * If there's data, ensure we set the poll() state and publish everything
2204 * to user-space before waking everybody up.
2205 */
2206
2207 void perf_counter_wakeup(struct perf_counter *counter)
2208 {
2209 wake_up_all(&counter->waitq);
2210
2211 if (counter->pending_kill) {
2212 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
2213 counter->pending_kill = 0;
2214 }
2215 }
2216
2217 /*
2218 * Pending wakeups
2219 *
2220 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2221 *
2222 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2223 * single linked list and use cmpxchg() to add entries lockless.
2224 */
2225
2226 static void perf_pending_counter(struct perf_pending_entry *entry)
2227 {
2228 struct perf_counter *counter = container_of(entry,
2229 struct perf_counter, pending);
2230
2231 if (counter->pending_disable) {
2232 counter->pending_disable = 0;
2233 perf_counter_disable(counter);
2234 }
2235
2236 if (counter->pending_wakeup) {
2237 counter->pending_wakeup = 0;
2238 perf_counter_wakeup(counter);
2239 }
2240 }
2241
2242 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2243
2244 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2245 PENDING_TAIL,
2246 };
2247
2248 static void perf_pending_queue(struct perf_pending_entry *entry,
2249 void (*func)(struct perf_pending_entry *))
2250 {
2251 struct perf_pending_entry **head;
2252
2253 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2254 return;
2255
2256 entry->func = func;
2257
2258 head = &get_cpu_var(perf_pending_head);
2259
2260 do {
2261 entry->next = *head;
2262 } while (cmpxchg(head, entry->next, entry) != entry->next);
2263
2264 set_perf_counter_pending();
2265
2266 put_cpu_var(perf_pending_head);
2267 }
2268
2269 static int __perf_pending_run(void)
2270 {
2271 struct perf_pending_entry *list;
2272 int nr = 0;
2273
2274 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2275 while (list != PENDING_TAIL) {
2276 void (*func)(struct perf_pending_entry *);
2277 struct perf_pending_entry *entry = list;
2278
2279 list = list->next;
2280
2281 func = entry->func;
2282 entry->next = NULL;
2283 /*
2284 * Ensure we observe the unqueue before we issue the wakeup,
2285 * so that we won't be waiting forever.
2286 * -- see perf_not_pending().
2287 */
2288 smp_wmb();
2289
2290 func(entry);
2291 nr++;
2292 }
2293
2294 return nr;
2295 }
2296
2297 static inline int perf_not_pending(struct perf_counter *counter)
2298 {
2299 /*
2300 * If we flush on whatever cpu we run, there is a chance we don't
2301 * need to wait.
2302 */
2303 get_cpu();
2304 __perf_pending_run();
2305 put_cpu();
2306
2307 /*
2308 * Ensure we see the proper queue state before going to sleep
2309 * so that we do not miss the wakeup. -- see perf_pending_handle()
2310 */
2311 smp_rmb();
2312 return counter->pending.next == NULL;
2313 }
2314
2315 static void perf_pending_sync(struct perf_counter *counter)
2316 {
2317 wait_event(counter->waitq, perf_not_pending(counter));
2318 }
2319
2320 void perf_counter_do_pending(void)
2321 {
2322 __perf_pending_run();
2323 }
2324
2325 /*
2326 * Callchain support -- arch specific
2327 */
2328
2329 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2330 {
2331 return NULL;
2332 }
2333
2334 /*
2335 * Output
2336 */
2337
2338 struct perf_output_handle {
2339 struct perf_counter *counter;
2340 struct perf_mmap_data *data;
2341 unsigned long head;
2342 unsigned long offset;
2343 int nmi;
2344 int sample;
2345 int locked;
2346 unsigned long flags;
2347 };
2348
2349 static bool perf_output_space(struct perf_mmap_data *data,
2350 unsigned int offset, unsigned int head)
2351 {
2352 unsigned long tail;
2353 unsigned long mask;
2354
2355 if (!data->writable)
2356 return true;
2357
2358 mask = (data->nr_pages << PAGE_SHIFT) - 1;
2359 /*
2360 * Userspace could choose to issue a mb() before updating the tail
2361 * pointer. So that all reads will be completed before the write is
2362 * issued.
2363 */
2364 tail = ACCESS_ONCE(data->user_page->data_tail);
2365 smp_rmb();
2366
2367 offset = (offset - tail) & mask;
2368 head = (head - tail) & mask;
2369
2370 if ((int)(head - offset) < 0)
2371 return false;
2372
2373 return true;
2374 }
2375
2376 static void perf_output_wakeup(struct perf_output_handle *handle)
2377 {
2378 atomic_set(&handle->data->poll, POLL_IN);
2379
2380 if (handle->nmi) {
2381 handle->counter->pending_wakeup = 1;
2382 perf_pending_queue(&handle->counter->pending,
2383 perf_pending_counter);
2384 } else
2385 perf_counter_wakeup(handle->counter);
2386 }
2387
2388 /*
2389 * Curious locking construct.
2390 *
2391 * We need to ensure a later event doesn't publish a head when a former
2392 * event isn't done writing. However since we need to deal with NMIs we
2393 * cannot fully serialize things.
2394 *
2395 * What we do is serialize between CPUs so we only have to deal with NMI
2396 * nesting on a single CPU.
2397 *
2398 * We only publish the head (and generate a wakeup) when the outer-most
2399 * event completes.
2400 */
2401 static void perf_output_lock(struct perf_output_handle *handle)
2402 {
2403 struct perf_mmap_data *data = handle->data;
2404 int cpu;
2405
2406 handle->locked = 0;
2407
2408 local_irq_save(handle->flags);
2409 cpu = smp_processor_id();
2410
2411 if (in_nmi() && atomic_read(&data->lock) == cpu)
2412 return;
2413
2414 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2415 cpu_relax();
2416
2417 handle->locked = 1;
2418 }
2419
2420 static void perf_output_unlock(struct perf_output_handle *handle)
2421 {
2422 struct perf_mmap_data *data = handle->data;
2423 unsigned long head;
2424 int cpu;
2425
2426 data->done_head = data->head;
2427
2428 if (!handle->locked)
2429 goto out;
2430
2431 again:
2432 /*
2433 * The xchg implies a full barrier that ensures all writes are done
2434 * before we publish the new head, matched by a rmb() in userspace when
2435 * reading this position.
2436 */
2437 while ((head = atomic_long_xchg(&data->done_head, 0)))
2438 data->user_page->data_head = head;
2439
2440 /*
2441 * NMI can happen here, which means we can miss a done_head update.
2442 */
2443
2444 cpu = atomic_xchg(&data->lock, -1);
2445 WARN_ON_ONCE(cpu != smp_processor_id());
2446
2447 /*
2448 * Therefore we have to validate we did not indeed do so.
2449 */
2450 if (unlikely(atomic_long_read(&data->done_head))) {
2451 /*
2452 * Since we had it locked, we can lock it again.
2453 */
2454 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2455 cpu_relax();
2456
2457 goto again;
2458 }
2459
2460 if (atomic_xchg(&data->wakeup, 0))
2461 perf_output_wakeup(handle);
2462 out:
2463 local_irq_restore(handle->flags);
2464 }
2465
2466 static void perf_output_copy(struct perf_output_handle *handle,
2467 const void *buf, unsigned int len)
2468 {
2469 unsigned int pages_mask;
2470 unsigned int offset;
2471 unsigned int size;
2472 void **pages;
2473
2474 offset = handle->offset;
2475 pages_mask = handle->data->nr_pages - 1;
2476 pages = handle->data->data_pages;
2477
2478 do {
2479 unsigned int page_offset;
2480 int nr;
2481
2482 nr = (offset >> PAGE_SHIFT) & pages_mask;
2483 page_offset = offset & (PAGE_SIZE - 1);
2484 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2485
2486 memcpy(pages[nr] + page_offset, buf, size);
2487
2488 len -= size;
2489 buf += size;
2490 offset += size;
2491 } while (len);
2492
2493 handle->offset = offset;
2494
2495 /*
2496 * Check we didn't copy past our reservation window, taking the
2497 * possible unsigned int wrap into account.
2498 */
2499 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2500 }
2501
2502 #define perf_output_put(handle, x) \
2503 perf_output_copy((handle), &(x), sizeof(x))
2504
2505 static int perf_output_begin(struct perf_output_handle *handle,
2506 struct perf_counter *counter, unsigned int size,
2507 int nmi, int sample)
2508 {
2509 struct perf_mmap_data *data;
2510 unsigned int offset, head;
2511 int have_lost;
2512 struct {
2513 struct perf_event_header header;
2514 u64 id;
2515 u64 lost;
2516 } lost_event;
2517
2518 /*
2519 * For inherited counters we send all the output towards the parent.
2520 */
2521 if (counter->parent)
2522 counter = counter->parent;
2523
2524 rcu_read_lock();
2525 data = rcu_dereference(counter->data);
2526 if (!data)
2527 goto out;
2528
2529 handle->data = data;
2530 handle->counter = counter;
2531 handle->nmi = nmi;
2532 handle->sample = sample;
2533
2534 if (!data->nr_pages)
2535 goto fail;
2536
2537 have_lost = atomic_read(&data->lost);
2538 if (have_lost)
2539 size += sizeof(lost_event);
2540
2541 perf_output_lock(handle);
2542
2543 do {
2544 offset = head = atomic_long_read(&data->head);
2545 head += size;
2546 if (unlikely(!perf_output_space(data, offset, head)))
2547 goto fail;
2548 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2549
2550 handle->offset = offset;
2551 handle->head = head;
2552
2553 if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
2554 atomic_set(&data->wakeup, 1);
2555
2556 if (have_lost) {
2557 lost_event.header.type = PERF_EVENT_LOST;
2558 lost_event.header.misc = 0;
2559 lost_event.header.size = sizeof(lost_event);
2560 lost_event.id = counter->id;
2561 lost_event.lost = atomic_xchg(&data->lost, 0);
2562
2563 perf_output_put(handle, lost_event);
2564 }
2565
2566 return 0;
2567
2568 fail:
2569 atomic_inc(&data->lost);
2570 perf_output_unlock(handle);
2571 out:
2572 rcu_read_unlock();
2573
2574 return -ENOSPC;
2575 }
2576
2577 static void perf_output_end(struct perf_output_handle *handle)
2578 {
2579 struct perf_counter *counter = handle->counter;
2580 struct perf_mmap_data *data = handle->data;
2581
2582 int wakeup_events = counter->attr.wakeup_events;
2583
2584 if (handle->sample && wakeup_events) {
2585 int events = atomic_inc_return(&data->events);
2586 if (events >= wakeup_events) {
2587 atomic_sub(wakeup_events, &data->events);
2588 atomic_set(&data->wakeup, 1);
2589 }
2590 }
2591
2592 perf_output_unlock(handle);
2593 rcu_read_unlock();
2594 }
2595
2596 static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p)
2597 {
2598 /*
2599 * only top level counters have the pid namespace they were created in
2600 */
2601 if (counter->parent)
2602 counter = counter->parent;
2603
2604 return task_tgid_nr_ns(p, counter->ns);
2605 }
2606
2607 static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p)
2608 {
2609 /*
2610 * only top level counters have the pid namespace they were created in
2611 */
2612 if (counter->parent)
2613 counter = counter->parent;
2614
2615 return task_pid_nr_ns(p, counter->ns);
2616 }
2617
2618 static void perf_counter_output(struct perf_counter *counter, int nmi,
2619 struct perf_sample_data *data)
2620 {
2621 int ret;
2622 u64 sample_type = counter->attr.sample_type;
2623 struct perf_output_handle handle;
2624 struct perf_event_header header;
2625 u64 ip;
2626 struct {
2627 u32 pid, tid;
2628 } tid_entry;
2629 struct {
2630 u64 id;
2631 u64 counter;
2632 } group_entry;
2633 struct perf_callchain_entry *callchain = NULL;
2634 int callchain_size = 0;
2635 u64 time;
2636 struct {
2637 u32 cpu, reserved;
2638 } cpu_entry;
2639
2640 header.type = PERF_EVENT_SAMPLE;
2641 header.size = sizeof(header);
2642
2643 header.misc = 0;
2644 header.misc |= perf_misc_flags(data->regs);
2645
2646 if (sample_type & PERF_SAMPLE_IP) {
2647 ip = perf_instruction_pointer(data->regs);
2648 header.size += sizeof(ip);
2649 }
2650
2651 if (sample_type & PERF_SAMPLE_TID) {
2652 /* namespace issues */
2653 tid_entry.pid = perf_counter_pid(counter, current);
2654 tid_entry.tid = perf_counter_tid(counter, current);
2655
2656 header.size += sizeof(tid_entry);
2657 }
2658
2659 if (sample_type & PERF_SAMPLE_TIME) {
2660 /*
2661 * Maybe do better on x86 and provide cpu_clock_nmi()
2662 */
2663 time = sched_clock();
2664
2665 header.size += sizeof(u64);
2666 }
2667
2668 if (sample_type & PERF_SAMPLE_ADDR)
2669 header.size += sizeof(u64);
2670
2671 if (sample_type & PERF_SAMPLE_ID)
2672 header.size += sizeof(u64);
2673
2674 if (sample_type & PERF_SAMPLE_STREAM_ID)
2675 header.size += sizeof(u64);
2676
2677 if (sample_type & PERF_SAMPLE_CPU) {
2678 header.size += sizeof(cpu_entry);
2679
2680 cpu_entry.cpu = raw_smp_processor_id();
2681 cpu_entry.reserved = 0;
2682 }
2683
2684 if (sample_type & PERF_SAMPLE_PERIOD)
2685 header.size += sizeof(u64);
2686
2687 if (sample_type & PERF_SAMPLE_GROUP) {
2688 header.size += sizeof(u64) +
2689 counter->nr_siblings * sizeof(group_entry);
2690 }
2691
2692 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2693 callchain = perf_callchain(data->regs);
2694
2695 if (callchain) {
2696 callchain_size = (1 + callchain->nr) * sizeof(u64);
2697 header.size += callchain_size;
2698 } else
2699 header.size += sizeof(u64);
2700 }
2701
2702 ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2703 if (ret)
2704 return;
2705
2706 perf_output_put(&handle, header);
2707
2708 if (sample_type & PERF_SAMPLE_IP)
2709 perf_output_put(&handle, ip);
2710
2711 if (sample_type & PERF_SAMPLE_TID)
2712 perf_output_put(&handle, tid_entry);
2713
2714 if (sample_type & PERF_SAMPLE_TIME)
2715 perf_output_put(&handle, time);
2716
2717 if (sample_type & PERF_SAMPLE_ADDR)
2718 perf_output_put(&handle, data->addr);
2719
2720 if (sample_type & PERF_SAMPLE_ID) {
2721 u64 id = primary_counter_id(counter);
2722
2723 perf_output_put(&handle, id);
2724 }
2725
2726 if (sample_type & PERF_SAMPLE_STREAM_ID)
2727 perf_output_put(&handle, counter->id);
2728
2729 if (sample_type & PERF_SAMPLE_CPU)
2730 perf_output_put(&handle, cpu_entry);
2731
2732 if (sample_type & PERF_SAMPLE_PERIOD)
2733 perf_output_put(&handle, data->period);
2734
2735 /*
2736 * XXX PERF_SAMPLE_GROUP vs inherited counters seems difficult.
2737 */
2738 if (sample_type & PERF_SAMPLE_GROUP) {
2739 struct perf_counter *leader, *sub;
2740 u64 nr = counter->nr_siblings;
2741
2742 perf_output_put(&handle, nr);
2743
2744 leader = counter->group_leader;
2745 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2746 if (sub != counter)
2747 sub->pmu->read(sub);
2748
2749 group_entry.id = primary_counter_id(sub);
2750 group_entry.counter = atomic64_read(&sub->count);
2751
2752 perf_output_put(&handle, group_entry);
2753 }
2754 }
2755
2756 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2757 if (callchain)
2758 perf_output_copy(&handle, callchain, callchain_size);
2759 else {
2760 u64 nr = 0;
2761 perf_output_put(&handle, nr);
2762 }
2763 }
2764
2765 perf_output_end(&handle);
2766 }
2767
2768 /*
2769 * read event
2770 */
2771
2772 struct perf_read_event {
2773 struct perf_event_header header;
2774
2775 u32 pid;
2776 u32 tid;
2777 u64 value;
2778 u64 format[3];
2779 };
2780
2781 static void
2782 perf_counter_read_event(struct perf_counter *counter,
2783 struct task_struct *task)
2784 {
2785 struct perf_output_handle handle;
2786 struct perf_read_event event = {
2787 .header = {
2788 .type = PERF_EVENT_READ,
2789 .misc = 0,
2790 .size = sizeof(event) - sizeof(event.format),
2791 },
2792 .pid = perf_counter_pid(counter, task),
2793 .tid = perf_counter_tid(counter, task),
2794 .value = atomic64_read(&counter->count),
2795 };
2796 int ret, i = 0;
2797
2798 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2799 event.header.size += sizeof(u64);
2800 event.format[i++] = counter->total_time_enabled;
2801 }
2802
2803 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2804 event.header.size += sizeof(u64);
2805 event.format[i++] = counter->total_time_running;
2806 }
2807
2808 if (counter->attr.read_format & PERF_FORMAT_ID) {
2809 event.header.size += sizeof(u64);
2810 event.format[i++] = primary_counter_id(counter);
2811 }
2812
2813 ret = perf_output_begin(&handle, counter, event.header.size, 0, 0);
2814 if (ret)
2815 return;
2816
2817 perf_output_copy(&handle, &event, event.header.size);
2818 perf_output_end(&handle);
2819 }
2820
2821 /*
2822 * fork tracking
2823 */
2824
2825 struct perf_fork_event {
2826 struct task_struct *task;
2827
2828 struct {
2829 struct perf_event_header header;
2830
2831 u32 pid;
2832 u32 ppid;
2833 } event;
2834 };
2835
2836 static void perf_counter_fork_output(struct perf_counter *counter,
2837 struct perf_fork_event *fork_event)
2838 {
2839 struct perf_output_handle handle;
2840 int size = fork_event->event.header.size;
2841 struct task_struct *task = fork_event->task;
2842 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2843
2844 if (ret)
2845 return;
2846
2847 fork_event->event.pid = perf_counter_pid(counter, task);
2848 fork_event->event.ppid = perf_counter_pid(counter, task->real_parent);
2849
2850 perf_output_put(&handle, fork_event->event);
2851 perf_output_end(&handle);
2852 }
2853
2854 static int perf_counter_fork_match(struct perf_counter *counter)
2855 {
2856 if (counter->attr.comm || counter->attr.mmap)
2857 return 1;
2858
2859 return 0;
2860 }
2861
2862 static void perf_counter_fork_ctx(struct perf_counter_context *ctx,
2863 struct perf_fork_event *fork_event)
2864 {
2865 struct perf_counter *counter;
2866
2867 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2868 return;
2869
2870 rcu_read_lock();
2871 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2872 if (perf_counter_fork_match(counter))
2873 perf_counter_fork_output(counter, fork_event);
2874 }
2875 rcu_read_unlock();
2876 }
2877
2878 static void perf_counter_fork_event(struct perf_fork_event *fork_event)
2879 {
2880 struct perf_cpu_context *cpuctx;
2881 struct perf_counter_context *ctx;
2882
2883 cpuctx = &get_cpu_var(perf_cpu_context);
2884 perf_counter_fork_ctx(&cpuctx->ctx, fork_event);
2885 put_cpu_var(perf_cpu_context);
2886
2887 rcu_read_lock();
2888 /*
2889 * doesn't really matter which of the child contexts the
2890 * events ends up in.
2891 */
2892 ctx = rcu_dereference(current->perf_counter_ctxp);
2893 if (ctx)
2894 perf_counter_fork_ctx(ctx, fork_event);
2895 rcu_read_unlock();
2896 }
2897
2898 void perf_counter_fork(struct task_struct *task)
2899 {
2900 struct perf_fork_event fork_event;
2901
2902 if (!atomic_read(&nr_comm_counters) &&
2903 !atomic_read(&nr_mmap_counters))
2904 return;
2905
2906 fork_event = (struct perf_fork_event){
2907 .task = task,
2908 .event = {
2909 .header = {
2910 .type = PERF_EVENT_FORK,
2911 .misc = 0,
2912 .size = sizeof(fork_event.event),
2913 },
2914 /* .pid */
2915 /* .ppid */
2916 },
2917 };
2918
2919 perf_counter_fork_event(&fork_event);
2920 }
2921
2922 /*
2923 * comm tracking
2924 */
2925
2926 struct perf_comm_event {
2927 struct task_struct *task;
2928 char *comm;
2929 int comm_size;
2930
2931 struct {
2932 struct perf_event_header header;
2933
2934 u32 pid;
2935 u32 tid;
2936 } event;
2937 };
2938
2939 static void perf_counter_comm_output(struct perf_counter *counter,
2940 struct perf_comm_event *comm_event)
2941 {
2942 struct perf_output_handle handle;
2943 int size = comm_event->event.header.size;
2944 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2945
2946 if (ret)
2947 return;
2948
2949 comm_event->event.pid = perf_counter_pid(counter, comm_event->task);
2950 comm_event->event.tid = perf_counter_tid(counter, comm_event->task);
2951
2952 perf_output_put(&handle, comm_event->event);
2953 perf_output_copy(&handle, comm_event->comm,
2954 comm_event->comm_size);
2955 perf_output_end(&handle);
2956 }
2957
2958 static int perf_counter_comm_match(struct perf_counter *counter)
2959 {
2960 if (counter->attr.comm)
2961 return 1;
2962
2963 return 0;
2964 }
2965
2966 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2967 struct perf_comm_event *comm_event)
2968 {
2969 struct perf_counter *counter;
2970
2971 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2972 return;
2973
2974 rcu_read_lock();
2975 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2976 if (perf_counter_comm_match(counter))
2977 perf_counter_comm_output(counter, comm_event);
2978 }
2979 rcu_read_unlock();
2980 }
2981
2982 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2983 {
2984 struct perf_cpu_context *cpuctx;
2985 struct perf_counter_context *ctx;
2986 unsigned int size;
2987 char comm[TASK_COMM_LEN];
2988
2989 memset(comm, 0, sizeof(comm));
2990 strncpy(comm, comm_event->task->comm, sizeof(comm));
2991 size = ALIGN(strlen(comm)+1, sizeof(u64));
2992
2993 comm_event->comm = comm;
2994 comm_event->comm_size = size;
2995
2996 comm_event->event.header.size = sizeof(comm_event->event) + size;
2997
2998 cpuctx = &get_cpu_var(perf_cpu_context);
2999 perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
3000 put_cpu_var(perf_cpu_context);
3001
3002 rcu_read_lock();
3003 /*
3004 * doesn't really matter which of the child contexts the
3005 * events ends up in.
3006 */
3007 ctx = rcu_dereference(current->perf_counter_ctxp);
3008 if (ctx)
3009 perf_counter_comm_ctx(ctx, comm_event);
3010 rcu_read_unlock();
3011 }
3012
3013 void perf_counter_comm(struct task_struct *task)
3014 {
3015 struct perf_comm_event comm_event;
3016
3017 if (task->perf_counter_ctxp)
3018 perf_counter_enable_on_exec(task);
3019
3020 if (!atomic_read(&nr_comm_counters))
3021 return;
3022
3023 comm_event = (struct perf_comm_event){
3024 .task = task,
3025 /* .comm */
3026 /* .comm_size */
3027 .event = {
3028 .header = {
3029 .type = PERF_EVENT_COMM,
3030 .misc = 0,
3031 /* .size */
3032 },
3033 /* .pid */
3034 /* .tid */
3035 },
3036 };
3037
3038 perf_counter_comm_event(&comm_event);
3039 }
3040
3041 /*
3042 * mmap tracking
3043 */
3044
3045 struct perf_mmap_event {
3046 struct vm_area_struct *vma;
3047
3048 const char *file_name;
3049 int file_size;
3050
3051 struct {
3052 struct perf_event_header header;
3053
3054 u32 pid;
3055 u32 tid;
3056 u64 start;
3057 u64 len;
3058 u64 pgoff;
3059 } event;
3060 };
3061
3062 static void perf_counter_mmap_output(struct perf_counter *counter,
3063 struct perf_mmap_event *mmap_event)
3064 {
3065 struct perf_output_handle handle;
3066 int size = mmap_event->event.header.size;
3067 int ret = perf_output_begin(&handle, counter, size, 0, 0);
3068
3069 if (ret)
3070 return;
3071
3072 mmap_event->event.pid = perf_counter_pid(counter, current);
3073 mmap_event->event.tid = perf_counter_tid(counter, current);
3074
3075 perf_output_put(&handle, mmap_event->event);
3076 perf_output_copy(&handle, mmap_event->file_name,
3077 mmap_event->file_size);
3078 perf_output_end(&handle);
3079 }
3080
3081 static int perf_counter_mmap_match(struct perf_counter *counter,
3082 struct perf_mmap_event *mmap_event)
3083 {
3084 if (counter->attr.mmap)
3085 return 1;
3086
3087 return 0;
3088 }
3089
3090 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
3091 struct perf_mmap_event *mmap_event)
3092 {
3093 struct perf_counter *counter;
3094
3095 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3096 return;
3097
3098 rcu_read_lock();
3099 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3100 if (perf_counter_mmap_match(counter, mmap_event))
3101 perf_counter_mmap_output(counter, mmap_event);
3102 }
3103 rcu_read_unlock();
3104 }
3105
3106 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
3107 {
3108 struct perf_cpu_context *cpuctx;
3109 struct perf_counter_context *ctx;
3110 struct vm_area_struct *vma = mmap_event->vma;
3111 struct file *file = vma->vm_file;
3112 unsigned int size;
3113 char tmp[16];
3114 char *buf = NULL;
3115 const char *name;
3116
3117 memset(tmp, 0, sizeof(tmp));
3118
3119 if (file) {
3120 /*
3121 * d_path works from the end of the buffer backwards, so we
3122 * need to add enough zero bytes after the string to handle
3123 * the 64bit alignment we do later.
3124 */
3125 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3126 if (!buf) {
3127 name = strncpy(tmp, "//enomem", sizeof(tmp));
3128 goto got_name;
3129 }
3130 name = d_path(&file->f_path, buf, PATH_MAX);
3131 if (IS_ERR(name)) {
3132 name = strncpy(tmp, "//toolong", sizeof(tmp));
3133 goto got_name;
3134 }
3135 } else {
3136 if (arch_vma_name(mmap_event->vma)) {
3137 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3138 sizeof(tmp));
3139 goto got_name;
3140 }
3141
3142 if (!vma->vm_mm) {
3143 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3144 goto got_name;
3145 }
3146
3147 name = strncpy(tmp, "//anon", sizeof(tmp));
3148 goto got_name;
3149 }
3150
3151 got_name:
3152 size = ALIGN(strlen(name)+1, sizeof(u64));
3153
3154 mmap_event->file_name = name;
3155 mmap_event->file_size = size;
3156
3157 mmap_event->event.header.size = sizeof(mmap_event->event) + size;
3158
3159 cpuctx = &get_cpu_var(perf_cpu_context);
3160 perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
3161 put_cpu_var(perf_cpu_context);
3162
3163 rcu_read_lock();
3164 /*
3165 * doesn't really matter which of the child contexts the
3166 * events ends up in.
3167 */
3168 ctx = rcu_dereference(current->perf_counter_ctxp);
3169 if (ctx)
3170 perf_counter_mmap_ctx(ctx, mmap_event);
3171 rcu_read_unlock();
3172
3173 kfree(buf);
3174 }
3175
3176 void __perf_counter_mmap(struct vm_area_struct *vma)
3177 {
3178 struct perf_mmap_event mmap_event;
3179
3180 if (!atomic_read(&nr_mmap_counters))
3181 return;
3182
3183 mmap_event = (struct perf_mmap_event){
3184 .vma = vma,
3185 /* .file_name */
3186 /* .file_size */
3187 .event = {
3188 .header = {
3189 .type = PERF_EVENT_MMAP,
3190 .misc = 0,
3191 /* .size */
3192 },
3193 /* .pid */
3194 /* .tid */
3195 .start = vma->vm_start,
3196 .len = vma->vm_end - vma->vm_start,
3197 .pgoff = vma->vm_pgoff,
3198 },
3199 };
3200
3201 perf_counter_mmap_event(&mmap_event);
3202 }
3203
3204 /*
3205 * IRQ throttle logging
3206 */
3207
3208 static void perf_log_throttle(struct perf_counter *counter, int enable)
3209 {
3210 struct perf_output_handle handle;
3211 int ret;
3212
3213 struct {
3214 struct perf_event_header header;
3215 u64 time;
3216 u64 id;
3217 u64 stream_id;
3218 } throttle_event = {
3219 .header = {
3220 .type = PERF_EVENT_THROTTLE,
3221 .misc = 0,
3222 .size = sizeof(throttle_event),
3223 },
3224 .time = sched_clock(),
3225 .id = primary_counter_id(counter),
3226 .stream_id = counter->id,
3227 };
3228
3229 if (enable)
3230 throttle_event.header.type = PERF_EVENT_UNTHROTTLE;
3231
3232 ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
3233 if (ret)
3234 return;
3235
3236 perf_output_put(&handle, throttle_event);
3237 perf_output_end(&handle);
3238 }
3239
3240 /*
3241 * Generic counter overflow handling, sampling.
3242 */
3243
3244 int perf_counter_overflow(struct perf_counter *counter, int nmi,
3245 struct perf_sample_data *data)
3246 {
3247 int events = atomic_read(&counter->event_limit);
3248 int throttle = counter->pmu->unthrottle != NULL;
3249 struct hw_perf_counter *hwc = &counter->hw;
3250 int ret = 0;
3251
3252 if (!throttle) {
3253 hwc->interrupts++;
3254 } else {
3255 if (hwc->interrupts != MAX_INTERRUPTS) {
3256 hwc->interrupts++;
3257 if (HZ * hwc->interrupts >
3258 (u64)sysctl_perf_counter_sample_rate) {
3259 hwc->interrupts = MAX_INTERRUPTS;
3260 perf_log_throttle(counter, 0);
3261 ret = 1;
3262 }
3263 } else {
3264 /*
3265 * Keep re-disabling counters even though on the previous
3266 * pass we disabled it - just in case we raced with a
3267 * sched-in and the counter got enabled again:
3268 */
3269 ret = 1;
3270 }
3271 }
3272
3273 if (counter->attr.freq) {
3274 u64 now = sched_clock();
3275 s64 delta = now - hwc->freq_stamp;
3276
3277 hwc->freq_stamp = now;
3278
3279 if (delta > 0 && delta < TICK_NSEC)
3280 perf_adjust_period(counter, NSEC_PER_SEC / (int)delta);
3281 }
3282
3283 /*
3284 * XXX event_limit might not quite work as expected on inherited
3285 * counters
3286 */
3287
3288 counter->pending_kill = POLL_IN;
3289 if (events && atomic_dec_and_test(&counter->event_limit)) {
3290 ret = 1;
3291 counter->pending_kill = POLL_HUP;
3292 if (nmi) {
3293 counter->pending_disable = 1;
3294 perf_pending_queue(&counter->pending,
3295 perf_pending_counter);
3296 } else
3297 perf_counter_disable(counter);
3298 }
3299
3300 perf_counter_output(counter, nmi, data);
3301 return ret;
3302 }
3303
3304 /*
3305 * Generic software counter infrastructure
3306 */
3307
3308 static void perf_swcounter_update(struct perf_counter *counter)
3309 {
3310 struct hw_perf_counter *hwc = &counter->hw;
3311 u64 prev, now;
3312 s64 delta;
3313
3314 again:
3315 prev = atomic64_read(&hwc->prev_count);
3316 now = atomic64_read(&hwc->count);
3317 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
3318 goto again;
3319
3320 delta = now - prev;
3321
3322 atomic64_add(delta, &counter->count);
3323 atomic64_sub(delta, &hwc->period_left);
3324 }
3325
3326 static void perf_swcounter_set_period(struct perf_counter *counter)
3327 {
3328 struct hw_perf_counter *hwc = &counter->hw;
3329 s64 left = atomic64_read(&hwc->period_left);
3330 s64 period = hwc->sample_period;
3331
3332 if (unlikely(left <= -period)) {
3333 left = period;
3334 atomic64_set(&hwc->period_left, left);
3335 hwc->last_period = period;
3336 }
3337
3338 if (unlikely(left <= 0)) {
3339 left += period;
3340 atomic64_add(period, &hwc->period_left);
3341 hwc->last_period = period;
3342 }
3343
3344 atomic64_set(&hwc->prev_count, -left);
3345 atomic64_set(&hwc->count, -left);
3346 }
3347
3348 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
3349 {
3350 enum hrtimer_restart ret = HRTIMER_RESTART;
3351 struct perf_sample_data data;
3352 struct perf_counter *counter;
3353 u64 period;
3354
3355 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
3356 counter->pmu->read(counter);
3357
3358 data.addr = 0;
3359 data.regs = get_irq_regs();
3360 /*
3361 * In case we exclude kernel IPs or are somehow not in interrupt
3362 * context, provide the next best thing, the user IP.
3363 */
3364 if ((counter->attr.exclude_kernel || !data.regs) &&
3365 !counter->attr.exclude_user)
3366 data.regs = task_pt_regs(current);
3367
3368 if (data.regs) {
3369 if (perf_counter_overflow(counter, 0, &data))
3370 ret = HRTIMER_NORESTART;
3371 }
3372
3373 period = max_t(u64, 10000, counter->hw.sample_period);
3374 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3375
3376 return ret;
3377 }
3378
3379 static void perf_swcounter_overflow(struct perf_counter *counter,
3380 int nmi, struct perf_sample_data *data)
3381 {
3382 data->period = counter->hw.last_period;
3383
3384 perf_swcounter_update(counter);
3385 perf_swcounter_set_period(counter);
3386 if (perf_counter_overflow(counter, nmi, data))
3387 /* soft-disable the counter */
3388 ;
3389 }
3390
3391 static int perf_swcounter_is_counting(struct perf_counter *counter)
3392 {
3393 struct perf_counter_context *ctx;
3394 unsigned long flags;
3395 int count;
3396
3397 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
3398 return 1;
3399
3400 if (counter->state != PERF_COUNTER_STATE_INACTIVE)
3401 return 0;
3402
3403 /*
3404 * If the counter is inactive, it could be just because
3405 * its task is scheduled out, or because it's in a group
3406 * which could not go on the PMU. We want to count in
3407 * the first case but not the second. If the context is
3408 * currently active then an inactive software counter must
3409 * be the second case. If it's not currently active then
3410 * we need to know whether the counter was active when the
3411 * context was last active, which we can determine by
3412 * comparing counter->tstamp_stopped with ctx->time.
3413 *
3414 * We are within an RCU read-side critical section,
3415 * which protects the existence of *ctx.
3416 */
3417 ctx = counter->ctx;
3418 spin_lock_irqsave(&ctx->lock, flags);
3419 count = 1;
3420 /* Re-check state now we have the lock */
3421 if (counter->state < PERF_COUNTER_STATE_INACTIVE ||
3422 counter->ctx->is_active ||
3423 counter->tstamp_stopped < ctx->time)
3424 count = 0;
3425 spin_unlock_irqrestore(&ctx->lock, flags);
3426 return count;
3427 }
3428
3429 static int perf_swcounter_match(struct perf_counter *counter,
3430 enum perf_type_id type,
3431 u32 event, struct pt_regs *regs)
3432 {
3433 if (!perf_swcounter_is_counting(counter))
3434 return 0;
3435
3436 if (counter->attr.type != type)
3437 return 0;
3438 if (counter->attr.config != event)
3439 return 0;
3440
3441 if (regs) {
3442 if (counter->attr.exclude_user && user_mode(regs))
3443 return 0;
3444
3445 if (counter->attr.exclude_kernel && !user_mode(regs))
3446 return 0;
3447 }
3448
3449 return 1;
3450 }
3451
3452 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
3453 int nmi, struct perf_sample_data *data)
3454 {
3455 int neg = atomic64_add_negative(nr, &counter->hw.count);
3456
3457 if (counter->hw.sample_period && !neg && data->regs)
3458 perf_swcounter_overflow(counter, nmi, data);
3459 }
3460
3461 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
3462 enum perf_type_id type,
3463 u32 event, u64 nr, int nmi,
3464 struct perf_sample_data *data)
3465 {
3466 struct perf_counter *counter;
3467
3468 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3469 return;
3470
3471 rcu_read_lock();
3472 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3473 if (perf_swcounter_match(counter, type, event, data->regs))
3474 perf_swcounter_add(counter, nr, nmi, data);
3475 }
3476 rcu_read_unlock();
3477 }
3478
3479 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
3480 {
3481 if (in_nmi())
3482 return &cpuctx->recursion[3];
3483
3484 if (in_irq())
3485 return &cpuctx->recursion[2];
3486
3487 if (in_softirq())
3488 return &cpuctx->recursion[1];
3489
3490 return &cpuctx->recursion[0];
3491 }
3492
3493 static void do_perf_swcounter_event(enum perf_type_id type, u32 event,
3494 u64 nr, int nmi,
3495 struct perf_sample_data *data)
3496 {
3497 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3498 int *recursion = perf_swcounter_recursion_context(cpuctx);
3499 struct perf_counter_context *ctx;
3500
3501 if (*recursion)
3502 goto out;
3503
3504 (*recursion)++;
3505 barrier();
3506
3507 perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
3508 nr, nmi, data);
3509 rcu_read_lock();
3510 /*
3511 * doesn't really matter which of the child contexts the
3512 * events ends up in.
3513 */
3514 ctx = rcu_dereference(current->perf_counter_ctxp);
3515 if (ctx)
3516 perf_swcounter_ctx_event(ctx, type, event, nr, nmi, data);
3517 rcu_read_unlock();
3518
3519 barrier();
3520 (*recursion)--;
3521
3522 out:
3523 put_cpu_var(perf_cpu_context);
3524 }
3525
3526 void __perf_swcounter_event(u32 event, u64 nr, int nmi,
3527 struct pt_regs *regs, u64 addr)
3528 {
3529 struct perf_sample_data data = {
3530 .regs = regs,
3531 .addr = addr,
3532 };
3533
3534 do_perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, &data);
3535 }
3536
3537 static void perf_swcounter_read(struct perf_counter *counter)
3538 {
3539 perf_swcounter_update(counter);
3540 }
3541
3542 static int perf_swcounter_enable(struct perf_counter *counter)
3543 {
3544 perf_swcounter_set_period(counter);
3545 return 0;
3546 }
3547
3548 static void perf_swcounter_disable(struct perf_counter *counter)
3549 {
3550 perf_swcounter_update(counter);
3551 }
3552
3553 static const struct pmu perf_ops_generic = {
3554 .enable = perf_swcounter_enable,
3555 .disable = perf_swcounter_disable,
3556 .read = perf_swcounter_read,
3557 };
3558
3559 /*
3560 * Software counter: cpu wall time clock
3561 */
3562
3563 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
3564 {
3565 int cpu = raw_smp_processor_id();
3566 s64 prev;
3567 u64 now;
3568
3569 now = cpu_clock(cpu);
3570 prev = atomic64_read(&counter->hw.prev_count);
3571 atomic64_set(&counter->hw.prev_count, now);
3572 atomic64_add(now - prev, &counter->count);
3573 }
3574
3575 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
3576 {
3577 struct hw_perf_counter *hwc = &counter->hw;
3578 int cpu = raw_smp_processor_id();
3579
3580 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3581 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3582 hwc->hrtimer.function = perf_swcounter_hrtimer;
3583 if (hwc->sample_period) {
3584 u64 period = max_t(u64, 10000, hwc->sample_period);
3585 __hrtimer_start_range_ns(&hwc->hrtimer,
3586 ns_to_ktime(period), 0,
3587 HRTIMER_MODE_REL, 0);
3588 }
3589
3590 return 0;
3591 }
3592
3593 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
3594 {
3595 if (counter->hw.sample_period)
3596 hrtimer_cancel(&counter->hw.hrtimer);
3597 cpu_clock_perf_counter_update(counter);
3598 }
3599
3600 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
3601 {
3602 cpu_clock_perf_counter_update(counter);
3603 }
3604
3605 static const struct pmu perf_ops_cpu_clock = {
3606 .enable = cpu_clock_perf_counter_enable,
3607 .disable = cpu_clock_perf_counter_disable,
3608 .read = cpu_clock_perf_counter_read,
3609 };
3610
3611 /*
3612 * Software counter: task time clock
3613 */
3614
3615 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
3616 {
3617 u64 prev;
3618 s64 delta;
3619
3620 prev = atomic64_xchg(&counter->hw.prev_count, now);
3621 delta = now - prev;
3622 atomic64_add(delta, &counter->count);
3623 }
3624
3625 static int task_clock_perf_counter_enable(struct perf_counter *counter)
3626 {
3627 struct hw_perf_counter *hwc = &counter->hw;
3628 u64 now;
3629
3630 now = counter->ctx->time;
3631
3632 atomic64_set(&hwc->prev_count, now);
3633 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3634 hwc->hrtimer.function = perf_swcounter_hrtimer;
3635 if (hwc->sample_period) {
3636 u64 period = max_t(u64, 10000, hwc->sample_period);
3637 __hrtimer_start_range_ns(&hwc->hrtimer,
3638 ns_to_ktime(period), 0,
3639 HRTIMER_MODE_REL, 0);
3640 }
3641
3642 return 0;
3643 }
3644
3645 static void task_clock_perf_counter_disable(struct perf_counter *counter)
3646 {
3647 if (counter->hw.sample_period)
3648 hrtimer_cancel(&counter->hw.hrtimer);
3649 task_clock_perf_counter_update(counter, counter->ctx->time);
3650
3651 }
3652
3653 static void task_clock_perf_counter_read(struct perf_counter *counter)
3654 {
3655 u64 time;
3656
3657 if (!in_nmi()) {
3658 update_context_time(counter->ctx);
3659 time = counter->ctx->time;
3660 } else {
3661 u64 now = perf_clock();
3662 u64 delta = now - counter->ctx->timestamp;
3663 time = counter->ctx->time + delta;
3664 }
3665
3666 task_clock_perf_counter_update(counter, time);
3667 }
3668
3669 static const struct pmu perf_ops_task_clock = {
3670 .enable = task_clock_perf_counter_enable,
3671 .disable = task_clock_perf_counter_disable,
3672 .read = task_clock_perf_counter_read,
3673 };
3674
3675 #ifdef CONFIG_EVENT_PROFILE
3676 void perf_tpcounter_event(int event_id)
3677 {
3678 struct perf_sample_data data = {
3679 .regs = get_irq_regs(),
3680 .addr = 0,
3681 };
3682
3683 if (!data.regs)
3684 data.regs = task_pt_regs(current);
3685
3686 do_perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, &data);
3687 }
3688 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3689
3690 extern int ftrace_profile_enable(int);
3691 extern void ftrace_profile_disable(int);
3692
3693 static void tp_perf_counter_destroy(struct perf_counter *counter)
3694 {
3695 ftrace_profile_disable(counter->attr.config);
3696 }
3697
3698 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3699 {
3700 if (ftrace_profile_enable(counter->attr.config))
3701 return NULL;
3702
3703 counter->destroy = tp_perf_counter_destroy;
3704
3705 return &perf_ops_generic;
3706 }
3707 #else
3708 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3709 {
3710 return NULL;
3711 }
3712 #endif
3713
3714 atomic_t perf_swcounter_enabled[PERF_COUNT_SW_MAX];
3715
3716 static void sw_perf_counter_destroy(struct perf_counter *counter)
3717 {
3718 u64 event = counter->attr.config;
3719
3720 WARN_ON(counter->parent);
3721
3722 atomic_dec(&perf_swcounter_enabled[event]);
3723 }
3724
3725 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3726 {
3727 const struct pmu *pmu = NULL;
3728 u64 event = counter->attr.config;
3729
3730 /*
3731 * Software counters (currently) can't in general distinguish
3732 * between user, kernel and hypervisor events.
3733 * However, context switches and cpu migrations are considered
3734 * to be kernel events, and page faults are never hypervisor
3735 * events.
3736 */
3737 switch (event) {
3738 case PERF_COUNT_SW_CPU_CLOCK:
3739 pmu = &perf_ops_cpu_clock;
3740
3741 break;
3742 case PERF_COUNT_SW_TASK_CLOCK:
3743 /*
3744 * If the user instantiates this as a per-cpu counter,
3745 * use the cpu_clock counter instead.
3746 */
3747 if (counter->ctx->task)
3748 pmu = &perf_ops_task_clock;
3749 else
3750 pmu = &perf_ops_cpu_clock;
3751
3752 break;
3753 case PERF_COUNT_SW_PAGE_FAULTS:
3754 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
3755 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
3756 case PERF_COUNT_SW_CONTEXT_SWITCHES:
3757 case PERF_COUNT_SW_CPU_MIGRATIONS:
3758 if (!counter->parent) {
3759 atomic_inc(&perf_swcounter_enabled[event]);
3760 counter->destroy = sw_perf_counter_destroy;
3761 }
3762 pmu = &perf_ops_generic;
3763 break;
3764 }
3765
3766 return pmu;
3767 }
3768
3769 /*
3770 * Allocate and initialize a counter structure
3771 */
3772 static struct perf_counter *
3773 perf_counter_alloc(struct perf_counter_attr *attr,
3774 int cpu,
3775 struct perf_counter_context *ctx,
3776 struct perf_counter *group_leader,
3777 struct perf_counter *parent_counter,
3778 gfp_t gfpflags)
3779 {
3780 const struct pmu *pmu;
3781 struct perf_counter *counter;
3782 struct hw_perf_counter *hwc;
3783 long err;
3784
3785 counter = kzalloc(sizeof(*counter), gfpflags);
3786 if (!counter)
3787 return ERR_PTR(-ENOMEM);
3788
3789 /*
3790 * Single counters are their own group leaders, with an
3791 * empty sibling list:
3792 */
3793 if (!group_leader)
3794 group_leader = counter;
3795
3796 mutex_init(&counter->child_mutex);
3797 INIT_LIST_HEAD(&counter->child_list);
3798
3799 INIT_LIST_HEAD(&counter->list_entry);
3800 INIT_LIST_HEAD(&counter->event_entry);
3801 INIT_LIST_HEAD(&counter->sibling_list);
3802 init_waitqueue_head(&counter->waitq);
3803
3804 mutex_init(&counter->mmap_mutex);
3805
3806 counter->cpu = cpu;
3807 counter->attr = *attr;
3808 counter->group_leader = group_leader;
3809 counter->pmu = NULL;
3810 counter->ctx = ctx;
3811 counter->oncpu = -1;
3812
3813 counter->parent = parent_counter;
3814
3815 counter->ns = get_pid_ns(current->nsproxy->pid_ns);
3816 counter->id = atomic64_inc_return(&perf_counter_id);
3817
3818 counter->state = PERF_COUNTER_STATE_INACTIVE;
3819
3820 if (attr->disabled)
3821 counter->state = PERF_COUNTER_STATE_OFF;
3822
3823 pmu = NULL;
3824
3825 hwc = &counter->hw;
3826 hwc->sample_period = attr->sample_period;
3827 if (attr->freq && attr->sample_freq)
3828 hwc->sample_period = 1;
3829
3830 atomic64_set(&hwc->period_left, hwc->sample_period);
3831
3832 /*
3833 * we currently do not support PERF_SAMPLE_GROUP on inherited counters
3834 */
3835 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_GROUP))
3836 goto done;
3837
3838 switch (attr->type) {
3839 case PERF_TYPE_RAW:
3840 case PERF_TYPE_HARDWARE:
3841 case PERF_TYPE_HW_CACHE:
3842 pmu = hw_perf_counter_init(counter);
3843 break;
3844
3845 case PERF_TYPE_SOFTWARE:
3846 pmu = sw_perf_counter_init(counter);
3847 break;
3848
3849 case PERF_TYPE_TRACEPOINT:
3850 pmu = tp_perf_counter_init(counter);
3851 break;
3852
3853 default:
3854 break;
3855 }
3856 done:
3857 err = 0;
3858 if (!pmu)
3859 err = -EINVAL;
3860 else if (IS_ERR(pmu))
3861 err = PTR_ERR(pmu);
3862
3863 if (err) {
3864 if (counter->ns)
3865 put_pid_ns(counter->ns);
3866 kfree(counter);
3867 return ERR_PTR(err);
3868 }
3869
3870 counter->pmu = pmu;
3871
3872 if (!counter->parent) {
3873 atomic_inc(&nr_counters);
3874 if (counter->attr.mmap)
3875 atomic_inc(&nr_mmap_counters);
3876 if (counter->attr.comm)
3877 atomic_inc(&nr_comm_counters);
3878 }
3879
3880 return counter;
3881 }
3882
3883 static int perf_copy_attr(struct perf_counter_attr __user *uattr,
3884 struct perf_counter_attr *attr)
3885 {
3886 int ret;
3887 u32 size;
3888
3889 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
3890 return -EFAULT;
3891
3892 /*
3893 * zero the full structure, so that a short copy will be nice.
3894 */
3895 memset(attr, 0, sizeof(*attr));
3896
3897 ret = get_user(size, &uattr->size);
3898 if (ret)
3899 return ret;
3900
3901 if (size > PAGE_SIZE) /* silly large */
3902 goto err_size;
3903
3904 if (!size) /* abi compat */
3905 size = PERF_ATTR_SIZE_VER0;
3906
3907 if (size < PERF_ATTR_SIZE_VER0)
3908 goto err_size;
3909
3910 /*
3911 * If we're handed a bigger struct than we know of,
3912 * ensure all the unknown bits are 0.
3913 */
3914 if (size > sizeof(*attr)) {
3915 unsigned long val;
3916 unsigned long __user *addr;
3917 unsigned long __user *end;
3918
3919 addr = PTR_ALIGN((void __user *)uattr + sizeof(*attr),
3920 sizeof(unsigned long));
3921 end = PTR_ALIGN((void __user *)uattr + size,
3922 sizeof(unsigned long));
3923
3924 for (; addr < end; addr += sizeof(unsigned long)) {
3925 ret = get_user(val, addr);
3926 if (ret)
3927 return ret;
3928 if (val)
3929 goto err_size;
3930 }
3931 }
3932
3933 ret = copy_from_user(attr, uattr, size);
3934 if (ret)
3935 return -EFAULT;
3936
3937 /*
3938 * If the type exists, the corresponding creation will verify
3939 * the attr->config.
3940 */
3941 if (attr->type >= PERF_TYPE_MAX)
3942 return -EINVAL;
3943
3944 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
3945 return -EINVAL;
3946
3947 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
3948 return -EINVAL;
3949
3950 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
3951 return -EINVAL;
3952
3953 out:
3954 return ret;
3955
3956 err_size:
3957 put_user(sizeof(*attr), &uattr->size);
3958 ret = -E2BIG;
3959 goto out;
3960 }
3961
3962 /**
3963 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
3964 *
3965 * @attr_uptr: event type attributes for monitoring/sampling
3966 * @pid: target pid
3967 * @cpu: target cpu
3968 * @group_fd: group leader counter fd
3969 */
3970 SYSCALL_DEFINE5(perf_counter_open,
3971 struct perf_counter_attr __user *, attr_uptr,
3972 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
3973 {
3974 struct perf_counter *counter, *group_leader;
3975 struct perf_counter_attr attr;
3976 struct perf_counter_context *ctx;
3977 struct file *counter_file = NULL;
3978 struct file *group_file = NULL;
3979 int fput_needed = 0;
3980 int fput_needed2 = 0;
3981 int ret;
3982
3983 /* for future expandability... */
3984 if (flags)
3985 return -EINVAL;
3986
3987 ret = perf_copy_attr(attr_uptr, &attr);
3988 if (ret)
3989 return ret;
3990
3991 if (!attr.exclude_kernel) {
3992 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
3993 return -EACCES;
3994 }
3995
3996 if (attr.freq) {
3997 if (attr.sample_freq > sysctl_perf_counter_sample_rate)
3998 return -EINVAL;
3999 }
4000
4001 /*
4002 * Get the target context (task or percpu):
4003 */
4004 ctx = find_get_context(pid, cpu);
4005 if (IS_ERR(ctx))
4006 return PTR_ERR(ctx);
4007
4008 /*
4009 * Look up the group leader (we will attach this counter to it):
4010 */
4011 group_leader = NULL;
4012 if (group_fd != -1) {
4013 ret = -EINVAL;
4014 group_file = fget_light(group_fd, &fput_needed);
4015 if (!group_file)
4016 goto err_put_context;
4017 if (group_file->f_op != &perf_fops)
4018 goto err_put_context;
4019
4020 group_leader = group_file->private_data;
4021 /*
4022 * Do not allow a recursive hierarchy (this new sibling
4023 * becoming part of another group-sibling):
4024 */
4025 if (group_leader->group_leader != group_leader)
4026 goto err_put_context;
4027 /*
4028 * Do not allow to attach to a group in a different
4029 * task or CPU context:
4030 */
4031 if (group_leader->ctx != ctx)
4032 goto err_put_context;
4033 /*
4034 * Only a group leader can be exclusive or pinned
4035 */
4036 if (attr.exclusive || attr.pinned)
4037 goto err_put_context;
4038 }
4039
4040 counter = perf_counter_alloc(&attr, cpu, ctx, group_leader,
4041 NULL, GFP_KERNEL);
4042 ret = PTR_ERR(counter);
4043 if (IS_ERR(counter))
4044 goto err_put_context;
4045
4046 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
4047 if (ret < 0)
4048 goto err_free_put_context;
4049
4050 counter_file = fget_light(ret, &fput_needed2);
4051 if (!counter_file)
4052 goto err_free_put_context;
4053
4054 counter->filp = counter_file;
4055 WARN_ON_ONCE(ctx->parent_ctx);
4056 mutex_lock(&ctx->mutex);
4057 perf_install_in_context(ctx, counter, cpu);
4058 ++ctx->generation;
4059 mutex_unlock(&ctx->mutex);
4060
4061 counter->owner = current;
4062 get_task_struct(current);
4063 mutex_lock(&current->perf_counter_mutex);
4064 list_add_tail(&counter->owner_entry, &current->perf_counter_list);
4065 mutex_unlock(&current->perf_counter_mutex);
4066
4067 fput_light(counter_file, fput_needed2);
4068
4069 out_fput:
4070 fput_light(group_file, fput_needed);
4071
4072 return ret;
4073
4074 err_free_put_context:
4075 kfree(counter);
4076
4077 err_put_context:
4078 put_ctx(ctx);
4079
4080 goto out_fput;
4081 }
4082
4083 /*
4084 * inherit a counter from parent task to child task:
4085 */
4086 static struct perf_counter *
4087 inherit_counter(struct perf_counter *parent_counter,
4088 struct task_struct *parent,
4089 struct perf_counter_context *parent_ctx,
4090 struct task_struct *child,
4091 struct perf_counter *group_leader,
4092 struct perf_counter_context *child_ctx)
4093 {
4094 struct perf_counter *child_counter;
4095
4096 /*
4097 * Instead of creating recursive hierarchies of counters,
4098 * we link inherited counters back to the original parent,
4099 * which has a filp for sure, which we use as the reference
4100 * count:
4101 */
4102 if (parent_counter->parent)
4103 parent_counter = parent_counter->parent;
4104
4105 child_counter = perf_counter_alloc(&parent_counter->attr,
4106 parent_counter->cpu, child_ctx,
4107 group_leader, parent_counter,
4108 GFP_KERNEL);
4109 if (IS_ERR(child_counter))
4110 return child_counter;
4111 get_ctx(child_ctx);
4112
4113 /*
4114 * Make the child state follow the state of the parent counter,
4115 * not its attr.disabled bit. We hold the parent's mutex,
4116 * so we won't race with perf_counter_{en, dis}able_family.
4117 */
4118 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
4119 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
4120 else
4121 child_counter->state = PERF_COUNTER_STATE_OFF;
4122
4123 if (parent_counter->attr.freq)
4124 child_counter->hw.sample_period = parent_counter->hw.sample_period;
4125
4126 /*
4127 * Link it up in the child's context:
4128 */
4129 add_counter_to_ctx(child_counter, child_ctx);
4130
4131 /*
4132 * Get a reference to the parent filp - we will fput it
4133 * when the child counter exits. This is safe to do because
4134 * we are in the parent and we know that the filp still
4135 * exists and has a nonzero count:
4136 */
4137 atomic_long_inc(&parent_counter->filp->f_count);
4138
4139 /*
4140 * Link this into the parent counter's child list
4141 */
4142 WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
4143 mutex_lock(&parent_counter->child_mutex);
4144 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
4145 mutex_unlock(&parent_counter->child_mutex);
4146
4147 return child_counter;
4148 }
4149
4150 static int inherit_group(struct perf_counter *parent_counter,
4151 struct task_struct *parent,
4152 struct perf_counter_context *parent_ctx,
4153 struct task_struct *child,
4154 struct perf_counter_context *child_ctx)
4155 {
4156 struct perf_counter *leader;
4157 struct perf_counter *sub;
4158 struct perf_counter *child_ctr;
4159
4160 leader = inherit_counter(parent_counter, parent, parent_ctx,
4161 child, NULL, child_ctx);
4162 if (IS_ERR(leader))
4163 return PTR_ERR(leader);
4164 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
4165 child_ctr = inherit_counter(sub, parent, parent_ctx,
4166 child, leader, child_ctx);
4167 if (IS_ERR(child_ctr))
4168 return PTR_ERR(child_ctr);
4169 }
4170 return 0;
4171 }
4172
4173 static void sync_child_counter(struct perf_counter *child_counter,
4174 struct task_struct *child)
4175 {
4176 struct perf_counter *parent_counter = child_counter->parent;
4177 u64 child_val;
4178
4179 if (child_counter->attr.inherit_stat)
4180 perf_counter_read_event(child_counter, child);
4181
4182 child_val = atomic64_read(&child_counter->count);
4183
4184 /*
4185 * Add back the child's count to the parent's count:
4186 */
4187 atomic64_add(child_val, &parent_counter->count);
4188 atomic64_add(child_counter->total_time_enabled,
4189 &parent_counter->child_total_time_enabled);
4190 atomic64_add(child_counter->total_time_running,
4191 &parent_counter->child_total_time_running);
4192
4193 /*
4194 * Remove this counter from the parent's list
4195 */
4196 WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
4197 mutex_lock(&parent_counter->child_mutex);
4198 list_del_init(&child_counter->child_list);
4199 mutex_unlock(&parent_counter->child_mutex);
4200
4201 /*
4202 * Release the parent counter, if this was the last
4203 * reference to it.
4204 */
4205 fput(parent_counter->filp);
4206 }
4207
4208 static void
4209 __perf_counter_exit_task(struct perf_counter *child_counter,
4210 struct perf_counter_context *child_ctx,
4211 struct task_struct *child)
4212 {
4213 struct perf_counter *parent_counter;
4214
4215 update_counter_times(child_counter);
4216 perf_counter_remove_from_context(child_counter);
4217
4218 parent_counter = child_counter->parent;
4219 /*
4220 * It can happen that parent exits first, and has counters
4221 * that are still around due to the child reference. These
4222 * counters need to be zapped - but otherwise linger.
4223 */
4224 if (parent_counter) {
4225 sync_child_counter(child_counter, child);
4226 free_counter(child_counter);
4227 }
4228 }
4229
4230 /*
4231 * When a child task exits, feed back counter values to parent counters.
4232 */
4233 void perf_counter_exit_task(struct task_struct *child)
4234 {
4235 struct perf_counter *child_counter, *tmp;
4236 struct perf_counter_context *child_ctx;
4237 unsigned long flags;
4238
4239 if (likely(!child->perf_counter_ctxp))
4240 return;
4241
4242 local_irq_save(flags);
4243 /*
4244 * We can't reschedule here because interrupts are disabled,
4245 * and either child is current or it is a task that can't be
4246 * scheduled, so we are now safe from rescheduling changing
4247 * our context.
4248 */
4249 child_ctx = child->perf_counter_ctxp;
4250 __perf_counter_task_sched_out(child_ctx);
4251
4252 /*
4253 * Take the context lock here so that if find_get_context is
4254 * reading child->perf_counter_ctxp, we wait until it has
4255 * incremented the context's refcount before we do put_ctx below.
4256 */
4257 spin_lock(&child_ctx->lock);
4258 child->perf_counter_ctxp = NULL;
4259 /*
4260 * If this context is a clone; unclone it so it can't get
4261 * swapped to another process while we're removing all
4262 * the counters from it.
4263 */
4264 unclone_ctx(child_ctx);
4265 spin_unlock(&child_ctx->lock);
4266 local_irq_restore(flags);
4267
4268 /*
4269 * We can recurse on the same lock type through:
4270 *
4271 * __perf_counter_exit_task()
4272 * sync_child_counter()
4273 * fput(parent_counter->filp)
4274 * perf_release()
4275 * mutex_lock(&ctx->mutex)
4276 *
4277 * But since its the parent context it won't be the same instance.
4278 */
4279 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4280
4281 again:
4282 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
4283 list_entry)
4284 __perf_counter_exit_task(child_counter, child_ctx, child);
4285
4286 /*
4287 * If the last counter was a group counter, it will have appended all
4288 * its siblings to the list, but we obtained 'tmp' before that which
4289 * will still point to the list head terminating the iteration.
4290 */
4291 if (!list_empty(&child_ctx->counter_list))
4292 goto again;
4293
4294 mutex_unlock(&child_ctx->mutex);
4295
4296 put_ctx(child_ctx);
4297 }
4298
4299 /*
4300 * free an unexposed, unused context as created by inheritance by
4301 * init_task below, used by fork() in case of fail.
4302 */
4303 void perf_counter_free_task(struct task_struct *task)
4304 {
4305 struct perf_counter_context *ctx = task->perf_counter_ctxp;
4306 struct perf_counter *counter, *tmp;
4307
4308 if (!ctx)
4309 return;
4310
4311 mutex_lock(&ctx->mutex);
4312 again:
4313 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) {
4314 struct perf_counter *parent = counter->parent;
4315
4316 if (WARN_ON_ONCE(!parent))
4317 continue;
4318
4319 mutex_lock(&parent->child_mutex);
4320 list_del_init(&counter->child_list);
4321 mutex_unlock(&parent->child_mutex);
4322
4323 fput(parent->filp);
4324
4325 list_del_counter(counter, ctx);
4326 free_counter(counter);
4327 }
4328
4329 if (!list_empty(&ctx->counter_list))
4330 goto again;
4331
4332 mutex_unlock(&ctx->mutex);
4333
4334 put_ctx(ctx);
4335 }
4336
4337 /*
4338 * Initialize the perf_counter context in task_struct
4339 */
4340 int perf_counter_init_task(struct task_struct *child)
4341 {
4342 struct perf_counter_context *child_ctx, *parent_ctx;
4343 struct perf_counter_context *cloned_ctx;
4344 struct perf_counter *counter;
4345 struct task_struct *parent = current;
4346 int inherited_all = 1;
4347 int ret = 0;
4348
4349 child->perf_counter_ctxp = NULL;
4350
4351 mutex_init(&child->perf_counter_mutex);
4352 INIT_LIST_HEAD(&child->perf_counter_list);
4353
4354 if (likely(!parent->perf_counter_ctxp))
4355 return 0;
4356
4357 /*
4358 * This is executed from the parent task context, so inherit
4359 * counters that have been marked for cloning.
4360 * First allocate and initialize a context for the child.
4361 */
4362
4363 child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
4364 if (!child_ctx)
4365 return -ENOMEM;
4366
4367 __perf_counter_init_context(child_ctx, child);
4368 child->perf_counter_ctxp = child_ctx;
4369 get_task_struct(child);
4370
4371 /*
4372 * If the parent's context is a clone, pin it so it won't get
4373 * swapped under us.
4374 */
4375 parent_ctx = perf_pin_task_context(parent);
4376
4377 /*
4378 * No need to check if parent_ctx != NULL here; since we saw
4379 * it non-NULL earlier, the only reason for it to become NULL
4380 * is if we exit, and since we're currently in the middle of
4381 * a fork we can't be exiting at the same time.
4382 */
4383
4384 /*
4385 * Lock the parent list. No need to lock the child - not PID
4386 * hashed yet and not running, so nobody can access it.
4387 */
4388 mutex_lock(&parent_ctx->mutex);
4389
4390 /*
4391 * We dont have to disable NMIs - we are only looking at
4392 * the list, not manipulating it:
4393 */
4394 list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
4395 if (counter != counter->group_leader)
4396 continue;
4397
4398 if (!counter->attr.inherit) {
4399 inherited_all = 0;
4400 continue;
4401 }
4402
4403 ret = inherit_group(counter, parent, parent_ctx,
4404 child, child_ctx);
4405 if (ret) {
4406 inherited_all = 0;
4407 break;
4408 }
4409 }
4410
4411 if (inherited_all) {
4412 /*
4413 * Mark the child context as a clone of the parent
4414 * context, or of whatever the parent is a clone of.
4415 * Note that if the parent is a clone, it could get
4416 * uncloned at any point, but that doesn't matter
4417 * because the list of counters and the generation
4418 * count can't have changed since we took the mutex.
4419 */
4420 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
4421 if (cloned_ctx) {
4422 child_ctx->parent_ctx = cloned_ctx;
4423 child_ctx->parent_gen = parent_ctx->parent_gen;
4424 } else {
4425 child_ctx->parent_ctx = parent_ctx;
4426 child_ctx->parent_gen = parent_ctx->generation;
4427 }
4428 get_ctx(child_ctx->parent_ctx);
4429 }
4430
4431 mutex_unlock(&parent_ctx->mutex);
4432
4433 perf_unpin_context(parent_ctx);
4434
4435 return ret;
4436 }
4437
4438 static void __cpuinit perf_counter_init_cpu(int cpu)
4439 {
4440 struct perf_cpu_context *cpuctx;
4441
4442 cpuctx = &per_cpu(perf_cpu_context, cpu);
4443 __perf_counter_init_context(&cpuctx->ctx, NULL);
4444
4445 spin_lock(&perf_resource_lock);
4446 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
4447 spin_unlock(&perf_resource_lock);
4448
4449 hw_perf_counter_setup(cpu);
4450 }
4451
4452 #ifdef CONFIG_HOTPLUG_CPU
4453 static void __perf_counter_exit_cpu(void *info)
4454 {
4455 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4456 struct perf_counter_context *ctx = &cpuctx->ctx;
4457 struct perf_counter *counter, *tmp;
4458
4459 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
4460 __perf_counter_remove_from_context(counter);
4461 }
4462 static void perf_counter_exit_cpu(int cpu)
4463 {
4464 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4465 struct perf_counter_context *ctx = &cpuctx->ctx;
4466
4467 mutex_lock(&ctx->mutex);
4468 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
4469 mutex_unlock(&ctx->mutex);
4470 }
4471 #else
4472 static inline void perf_counter_exit_cpu(int cpu) { }
4473 #endif
4474
4475 static int __cpuinit
4476 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
4477 {
4478 unsigned int cpu = (long)hcpu;
4479
4480 switch (action) {
4481
4482 case CPU_UP_PREPARE:
4483 case CPU_UP_PREPARE_FROZEN:
4484 perf_counter_init_cpu(cpu);
4485 break;
4486
4487 case CPU_DOWN_PREPARE:
4488 case CPU_DOWN_PREPARE_FROZEN:
4489 perf_counter_exit_cpu(cpu);
4490 break;
4491
4492 default:
4493 break;
4494 }
4495
4496 return NOTIFY_OK;
4497 }
4498
4499 /*
4500 * This has to have a higher priority than migration_notifier in sched.c.
4501 */
4502 static struct notifier_block __cpuinitdata perf_cpu_nb = {
4503 .notifier_call = perf_cpu_notify,
4504 .priority = 20,
4505 };
4506
4507 void __init perf_counter_init(void)
4508 {
4509 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
4510 (void *)(long)smp_processor_id());
4511 register_cpu_notifier(&perf_cpu_nb);
4512 }
4513
4514 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
4515 {
4516 return sprintf(buf, "%d\n", perf_reserved_percpu);
4517 }
4518
4519 static ssize_t
4520 perf_set_reserve_percpu(struct sysdev_class *class,
4521 const char *buf,
4522 size_t count)
4523 {
4524 struct perf_cpu_context *cpuctx;
4525 unsigned long val;
4526 int err, cpu, mpt;
4527
4528 err = strict_strtoul(buf, 10, &val);
4529 if (err)
4530 return err;
4531 if (val > perf_max_counters)
4532 return -EINVAL;
4533
4534 spin_lock(&perf_resource_lock);
4535 perf_reserved_percpu = val;
4536 for_each_online_cpu(cpu) {
4537 cpuctx = &per_cpu(perf_cpu_context, cpu);
4538 spin_lock_irq(&cpuctx->ctx.lock);
4539 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
4540 perf_max_counters - perf_reserved_percpu);
4541 cpuctx->max_pertask = mpt;
4542 spin_unlock_irq(&cpuctx->ctx.lock);
4543 }
4544 spin_unlock(&perf_resource_lock);
4545
4546 return count;
4547 }
4548
4549 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
4550 {
4551 return sprintf(buf, "%d\n", perf_overcommit);
4552 }
4553
4554 static ssize_t
4555 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
4556 {
4557 unsigned long val;
4558 int err;
4559
4560 err = strict_strtoul(buf, 10, &val);
4561 if (err)
4562 return err;
4563 if (val > 1)
4564 return -EINVAL;
4565
4566 spin_lock(&perf_resource_lock);
4567 perf_overcommit = val;
4568 spin_unlock(&perf_resource_lock);
4569
4570 return count;
4571 }
4572
4573 static SYSDEV_CLASS_ATTR(
4574 reserve_percpu,
4575 0644,
4576 perf_show_reserve_percpu,
4577 perf_set_reserve_percpu
4578 );
4579
4580 static SYSDEV_CLASS_ATTR(
4581 overcommit,
4582 0644,
4583 perf_show_overcommit,
4584 perf_set_overcommit
4585 );
4586
4587 static struct attribute *perfclass_attrs[] = {
4588 &attr_reserve_percpu.attr,
4589 &attr_overcommit.attr,
4590 NULL
4591 };
4592
4593 static struct attribute_group perfclass_attr_group = {
4594 .attrs = perfclass_attrs,
4595 .name = "perf_counters",
4596 };
4597
4598 static int __init perf_counter_sysfs_init(void)
4599 {
4600 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
4601 &perfclass_attr_group);
4602 }
4603 device_initcall(perf_counter_sysfs_init);