]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/perf_counter.c
Merge branch 'core-fixes-for-linus-2' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-bionic-kernel.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/hardirq.h>
24 #include <linux/rculist.h>
25 #include <linux/uaccess.h>
26 #include <linux/syscalls.h>
27 #include <linux/anon_inodes.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/perf_counter.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34 * Each CPU has a list of per CPU counters:
35 */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_counters __read_mostly;
44 static atomic_t nr_comm_counters __read_mostly;
45
46 /*
47 * perf counter paranoia level:
48 * 0 - not paranoid
49 * 1 - disallow cpu counters to unpriv
50 * 2 - disallow kernel profiling to unpriv
51 */
52 int sysctl_perf_counter_paranoid __read_mostly;
53
54 static inline bool perf_paranoid_cpu(void)
55 {
56 return sysctl_perf_counter_paranoid > 0;
57 }
58
59 static inline bool perf_paranoid_kernel(void)
60 {
61 return sysctl_perf_counter_paranoid > 1;
62 }
63
64 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
65
66 /*
67 * max perf counter sample rate
68 */
69 int sysctl_perf_counter_sample_rate __read_mostly = 100000;
70
71 static atomic64_t perf_counter_id;
72
73 /*
74 * Lock for (sysadmin-configurable) counter reservations:
75 */
76 static DEFINE_SPINLOCK(perf_resource_lock);
77
78 /*
79 * Architecture provided APIs - weak aliases:
80 */
81 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
82 {
83 return NULL;
84 }
85
86 void __weak hw_perf_disable(void) { barrier(); }
87 void __weak hw_perf_enable(void) { barrier(); }
88
89 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
90
91 int __weak
92 hw_perf_group_sched_in(struct perf_counter *group_leader,
93 struct perf_cpu_context *cpuctx,
94 struct perf_counter_context *ctx, int cpu)
95 {
96 return 0;
97 }
98
99 void __weak perf_counter_print_debug(void) { }
100
101 static DEFINE_PER_CPU(int, disable_count);
102
103 void __perf_disable(void)
104 {
105 __get_cpu_var(disable_count)++;
106 }
107
108 bool __perf_enable(void)
109 {
110 return !--__get_cpu_var(disable_count);
111 }
112
113 void perf_disable(void)
114 {
115 __perf_disable();
116 hw_perf_disable();
117 }
118
119 void perf_enable(void)
120 {
121 if (__perf_enable())
122 hw_perf_enable();
123 }
124
125 static void get_ctx(struct perf_counter_context *ctx)
126 {
127 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
128 }
129
130 static void free_ctx(struct rcu_head *head)
131 {
132 struct perf_counter_context *ctx;
133
134 ctx = container_of(head, struct perf_counter_context, rcu_head);
135 kfree(ctx);
136 }
137
138 static void put_ctx(struct perf_counter_context *ctx)
139 {
140 if (atomic_dec_and_test(&ctx->refcount)) {
141 if (ctx->parent_ctx)
142 put_ctx(ctx->parent_ctx);
143 if (ctx->task)
144 put_task_struct(ctx->task);
145 call_rcu(&ctx->rcu_head, free_ctx);
146 }
147 }
148
149 /*
150 * Get the perf_counter_context for a task and lock it.
151 * This has to cope with with the fact that until it is locked,
152 * the context could get moved to another task.
153 */
154 static struct perf_counter_context *
155 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
156 {
157 struct perf_counter_context *ctx;
158
159 rcu_read_lock();
160 retry:
161 ctx = rcu_dereference(task->perf_counter_ctxp);
162 if (ctx) {
163 /*
164 * If this context is a clone of another, it might
165 * get swapped for another underneath us by
166 * perf_counter_task_sched_out, though the
167 * rcu_read_lock() protects us from any context
168 * getting freed. Lock the context and check if it
169 * got swapped before we could get the lock, and retry
170 * if so. If we locked the right context, then it
171 * can't get swapped on us any more.
172 */
173 spin_lock_irqsave(&ctx->lock, *flags);
174 if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
175 spin_unlock_irqrestore(&ctx->lock, *flags);
176 goto retry;
177 }
178
179 if (!atomic_inc_not_zero(&ctx->refcount)) {
180 spin_unlock_irqrestore(&ctx->lock, *flags);
181 ctx = NULL;
182 }
183 }
184 rcu_read_unlock();
185 return ctx;
186 }
187
188 /*
189 * Get the context for a task and increment its pin_count so it
190 * can't get swapped to another task. This also increments its
191 * reference count so that the context can't get freed.
192 */
193 static struct perf_counter_context *perf_pin_task_context(struct task_struct *task)
194 {
195 struct perf_counter_context *ctx;
196 unsigned long flags;
197
198 ctx = perf_lock_task_context(task, &flags);
199 if (ctx) {
200 ++ctx->pin_count;
201 spin_unlock_irqrestore(&ctx->lock, flags);
202 }
203 return ctx;
204 }
205
206 static void perf_unpin_context(struct perf_counter_context *ctx)
207 {
208 unsigned long flags;
209
210 spin_lock_irqsave(&ctx->lock, flags);
211 --ctx->pin_count;
212 spin_unlock_irqrestore(&ctx->lock, flags);
213 put_ctx(ctx);
214 }
215
216 /*
217 * Add a counter from the lists for its context.
218 * Must be called with ctx->mutex and ctx->lock held.
219 */
220 static void
221 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
222 {
223 struct perf_counter *group_leader = counter->group_leader;
224
225 /*
226 * Depending on whether it is a standalone or sibling counter,
227 * add it straight to the context's counter list, or to the group
228 * leader's sibling list:
229 */
230 if (group_leader == counter)
231 list_add_tail(&counter->list_entry, &ctx->counter_list);
232 else {
233 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
234 group_leader->nr_siblings++;
235 }
236
237 list_add_rcu(&counter->event_entry, &ctx->event_list);
238 ctx->nr_counters++;
239 if (counter->attr.inherit_stat)
240 ctx->nr_stat++;
241 }
242
243 /*
244 * Remove a counter from the lists for its context.
245 * Must be called with ctx->mutex and ctx->lock held.
246 */
247 static void
248 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
249 {
250 struct perf_counter *sibling, *tmp;
251
252 if (list_empty(&counter->list_entry))
253 return;
254 ctx->nr_counters--;
255 if (counter->attr.inherit_stat)
256 ctx->nr_stat--;
257
258 list_del_init(&counter->list_entry);
259 list_del_rcu(&counter->event_entry);
260
261 if (counter->group_leader != counter)
262 counter->group_leader->nr_siblings--;
263
264 /*
265 * If this was a group counter with sibling counters then
266 * upgrade the siblings to singleton counters by adding them
267 * to the context list directly:
268 */
269 list_for_each_entry_safe(sibling, tmp,
270 &counter->sibling_list, list_entry) {
271
272 list_move_tail(&sibling->list_entry, &ctx->counter_list);
273 sibling->group_leader = sibling;
274 }
275 }
276
277 static void
278 counter_sched_out(struct perf_counter *counter,
279 struct perf_cpu_context *cpuctx,
280 struct perf_counter_context *ctx)
281 {
282 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
283 return;
284
285 counter->state = PERF_COUNTER_STATE_INACTIVE;
286 counter->tstamp_stopped = ctx->time;
287 counter->pmu->disable(counter);
288 counter->oncpu = -1;
289
290 if (!is_software_counter(counter))
291 cpuctx->active_oncpu--;
292 ctx->nr_active--;
293 if (counter->attr.exclusive || !cpuctx->active_oncpu)
294 cpuctx->exclusive = 0;
295 }
296
297 static void
298 group_sched_out(struct perf_counter *group_counter,
299 struct perf_cpu_context *cpuctx,
300 struct perf_counter_context *ctx)
301 {
302 struct perf_counter *counter;
303
304 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
305 return;
306
307 counter_sched_out(group_counter, cpuctx, ctx);
308
309 /*
310 * Schedule out siblings (if any):
311 */
312 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
313 counter_sched_out(counter, cpuctx, ctx);
314
315 if (group_counter->attr.exclusive)
316 cpuctx->exclusive = 0;
317 }
318
319 /*
320 * Cross CPU call to remove a performance counter
321 *
322 * We disable the counter on the hardware level first. After that we
323 * remove it from the context list.
324 */
325 static void __perf_counter_remove_from_context(void *info)
326 {
327 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
328 struct perf_counter *counter = info;
329 struct perf_counter_context *ctx = counter->ctx;
330
331 /*
332 * If this is a task context, we need to check whether it is
333 * the current task context of this cpu. If not it has been
334 * scheduled out before the smp call arrived.
335 */
336 if (ctx->task && cpuctx->task_ctx != ctx)
337 return;
338
339 spin_lock(&ctx->lock);
340 /*
341 * Protect the list operation against NMI by disabling the
342 * counters on a global level.
343 */
344 perf_disable();
345
346 counter_sched_out(counter, cpuctx, ctx);
347
348 list_del_counter(counter, ctx);
349
350 if (!ctx->task) {
351 /*
352 * Allow more per task counters with respect to the
353 * reservation:
354 */
355 cpuctx->max_pertask =
356 min(perf_max_counters - ctx->nr_counters,
357 perf_max_counters - perf_reserved_percpu);
358 }
359
360 perf_enable();
361 spin_unlock(&ctx->lock);
362 }
363
364
365 /*
366 * Remove the counter from a task's (or a CPU's) list of counters.
367 *
368 * Must be called with ctx->mutex held.
369 *
370 * CPU counters are removed with a smp call. For task counters we only
371 * call when the task is on a CPU.
372 *
373 * If counter->ctx is a cloned context, callers must make sure that
374 * every task struct that counter->ctx->task could possibly point to
375 * remains valid. This is OK when called from perf_release since
376 * that only calls us on the top-level context, which can't be a clone.
377 * When called from perf_counter_exit_task, it's OK because the
378 * context has been detached from its task.
379 */
380 static void perf_counter_remove_from_context(struct perf_counter *counter)
381 {
382 struct perf_counter_context *ctx = counter->ctx;
383 struct task_struct *task = ctx->task;
384
385 if (!task) {
386 /*
387 * Per cpu counters are removed via an smp call and
388 * the removal is always sucessful.
389 */
390 smp_call_function_single(counter->cpu,
391 __perf_counter_remove_from_context,
392 counter, 1);
393 return;
394 }
395
396 retry:
397 task_oncpu_function_call(task, __perf_counter_remove_from_context,
398 counter);
399
400 spin_lock_irq(&ctx->lock);
401 /*
402 * If the context is active we need to retry the smp call.
403 */
404 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
405 spin_unlock_irq(&ctx->lock);
406 goto retry;
407 }
408
409 /*
410 * The lock prevents that this context is scheduled in so we
411 * can remove the counter safely, if the call above did not
412 * succeed.
413 */
414 if (!list_empty(&counter->list_entry)) {
415 list_del_counter(counter, ctx);
416 }
417 spin_unlock_irq(&ctx->lock);
418 }
419
420 static inline u64 perf_clock(void)
421 {
422 return cpu_clock(smp_processor_id());
423 }
424
425 /*
426 * Update the record of the current time in a context.
427 */
428 static void update_context_time(struct perf_counter_context *ctx)
429 {
430 u64 now = perf_clock();
431
432 ctx->time += now - ctx->timestamp;
433 ctx->timestamp = now;
434 }
435
436 /*
437 * Update the total_time_enabled and total_time_running fields for a counter.
438 */
439 static void update_counter_times(struct perf_counter *counter)
440 {
441 struct perf_counter_context *ctx = counter->ctx;
442 u64 run_end;
443
444 if (counter->state < PERF_COUNTER_STATE_INACTIVE)
445 return;
446
447 counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
448
449 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
450 run_end = counter->tstamp_stopped;
451 else
452 run_end = ctx->time;
453
454 counter->total_time_running = run_end - counter->tstamp_running;
455 }
456
457 /*
458 * Update total_time_enabled and total_time_running for all counters in a group.
459 */
460 static void update_group_times(struct perf_counter *leader)
461 {
462 struct perf_counter *counter;
463
464 update_counter_times(leader);
465 list_for_each_entry(counter, &leader->sibling_list, list_entry)
466 update_counter_times(counter);
467 }
468
469 /*
470 * Cross CPU call to disable a performance counter
471 */
472 static void __perf_counter_disable(void *info)
473 {
474 struct perf_counter *counter = info;
475 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
476 struct perf_counter_context *ctx = counter->ctx;
477
478 /*
479 * If this is a per-task counter, need to check whether this
480 * counter's task is the current task on this cpu.
481 */
482 if (ctx->task && cpuctx->task_ctx != ctx)
483 return;
484
485 spin_lock(&ctx->lock);
486
487 /*
488 * If the counter is on, turn it off.
489 * If it is in error state, leave it in error state.
490 */
491 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
492 update_context_time(ctx);
493 update_counter_times(counter);
494 if (counter == counter->group_leader)
495 group_sched_out(counter, cpuctx, ctx);
496 else
497 counter_sched_out(counter, cpuctx, ctx);
498 counter->state = PERF_COUNTER_STATE_OFF;
499 }
500
501 spin_unlock(&ctx->lock);
502 }
503
504 /*
505 * Disable a counter.
506 *
507 * If counter->ctx is a cloned context, callers must make sure that
508 * every task struct that counter->ctx->task could possibly point to
509 * remains valid. This condition is satisifed when called through
510 * perf_counter_for_each_child or perf_counter_for_each because they
511 * hold the top-level counter's child_mutex, so any descendant that
512 * goes to exit will block in sync_child_counter.
513 * When called from perf_pending_counter it's OK because counter->ctx
514 * is the current context on this CPU and preemption is disabled,
515 * hence we can't get into perf_counter_task_sched_out for this context.
516 */
517 static void perf_counter_disable(struct perf_counter *counter)
518 {
519 struct perf_counter_context *ctx = counter->ctx;
520 struct task_struct *task = ctx->task;
521
522 if (!task) {
523 /*
524 * Disable the counter on the cpu that it's on
525 */
526 smp_call_function_single(counter->cpu, __perf_counter_disable,
527 counter, 1);
528 return;
529 }
530
531 retry:
532 task_oncpu_function_call(task, __perf_counter_disable, counter);
533
534 spin_lock_irq(&ctx->lock);
535 /*
536 * If the counter is still active, we need to retry the cross-call.
537 */
538 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
539 spin_unlock_irq(&ctx->lock);
540 goto retry;
541 }
542
543 /*
544 * Since we have the lock this context can't be scheduled
545 * in, so we can change the state safely.
546 */
547 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
548 update_counter_times(counter);
549 counter->state = PERF_COUNTER_STATE_OFF;
550 }
551
552 spin_unlock_irq(&ctx->lock);
553 }
554
555 static int
556 counter_sched_in(struct perf_counter *counter,
557 struct perf_cpu_context *cpuctx,
558 struct perf_counter_context *ctx,
559 int cpu)
560 {
561 if (counter->state <= PERF_COUNTER_STATE_OFF)
562 return 0;
563
564 counter->state = PERF_COUNTER_STATE_ACTIVE;
565 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
566 /*
567 * The new state must be visible before we turn it on in the hardware:
568 */
569 smp_wmb();
570
571 if (counter->pmu->enable(counter)) {
572 counter->state = PERF_COUNTER_STATE_INACTIVE;
573 counter->oncpu = -1;
574 return -EAGAIN;
575 }
576
577 counter->tstamp_running += ctx->time - counter->tstamp_stopped;
578
579 if (!is_software_counter(counter))
580 cpuctx->active_oncpu++;
581 ctx->nr_active++;
582
583 if (counter->attr.exclusive)
584 cpuctx->exclusive = 1;
585
586 return 0;
587 }
588
589 static int
590 group_sched_in(struct perf_counter *group_counter,
591 struct perf_cpu_context *cpuctx,
592 struct perf_counter_context *ctx,
593 int cpu)
594 {
595 struct perf_counter *counter, *partial_group;
596 int ret;
597
598 if (group_counter->state == PERF_COUNTER_STATE_OFF)
599 return 0;
600
601 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
602 if (ret)
603 return ret < 0 ? ret : 0;
604
605 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
606 return -EAGAIN;
607
608 /*
609 * Schedule in siblings as one group (if any):
610 */
611 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
612 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
613 partial_group = counter;
614 goto group_error;
615 }
616 }
617
618 return 0;
619
620 group_error:
621 /*
622 * Groups can be scheduled in as one unit only, so undo any
623 * partial group before returning:
624 */
625 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
626 if (counter == partial_group)
627 break;
628 counter_sched_out(counter, cpuctx, ctx);
629 }
630 counter_sched_out(group_counter, cpuctx, ctx);
631
632 return -EAGAIN;
633 }
634
635 /*
636 * Return 1 for a group consisting entirely of software counters,
637 * 0 if the group contains any hardware counters.
638 */
639 static int is_software_only_group(struct perf_counter *leader)
640 {
641 struct perf_counter *counter;
642
643 if (!is_software_counter(leader))
644 return 0;
645
646 list_for_each_entry(counter, &leader->sibling_list, list_entry)
647 if (!is_software_counter(counter))
648 return 0;
649
650 return 1;
651 }
652
653 /*
654 * Work out whether we can put this counter group on the CPU now.
655 */
656 static int group_can_go_on(struct perf_counter *counter,
657 struct perf_cpu_context *cpuctx,
658 int can_add_hw)
659 {
660 /*
661 * Groups consisting entirely of software counters can always go on.
662 */
663 if (is_software_only_group(counter))
664 return 1;
665 /*
666 * If an exclusive group is already on, no other hardware
667 * counters can go on.
668 */
669 if (cpuctx->exclusive)
670 return 0;
671 /*
672 * If this group is exclusive and there are already
673 * counters on the CPU, it can't go on.
674 */
675 if (counter->attr.exclusive && cpuctx->active_oncpu)
676 return 0;
677 /*
678 * Otherwise, try to add it if all previous groups were able
679 * to go on.
680 */
681 return can_add_hw;
682 }
683
684 static void add_counter_to_ctx(struct perf_counter *counter,
685 struct perf_counter_context *ctx)
686 {
687 list_add_counter(counter, ctx);
688 counter->tstamp_enabled = ctx->time;
689 counter->tstamp_running = ctx->time;
690 counter->tstamp_stopped = ctx->time;
691 }
692
693 /*
694 * Cross CPU call to install and enable a performance counter
695 *
696 * Must be called with ctx->mutex held
697 */
698 static void __perf_install_in_context(void *info)
699 {
700 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
701 struct perf_counter *counter = info;
702 struct perf_counter_context *ctx = counter->ctx;
703 struct perf_counter *leader = counter->group_leader;
704 int cpu = smp_processor_id();
705 int err;
706
707 /*
708 * If this is a task context, we need to check whether it is
709 * the current task context of this cpu. If not it has been
710 * scheduled out before the smp call arrived.
711 * Or possibly this is the right context but it isn't
712 * on this cpu because it had no counters.
713 */
714 if (ctx->task && cpuctx->task_ctx != ctx) {
715 if (cpuctx->task_ctx || ctx->task != current)
716 return;
717 cpuctx->task_ctx = ctx;
718 }
719
720 spin_lock(&ctx->lock);
721 ctx->is_active = 1;
722 update_context_time(ctx);
723
724 /*
725 * Protect the list operation against NMI by disabling the
726 * counters on a global level. NOP for non NMI based counters.
727 */
728 perf_disable();
729
730 add_counter_to_ctx(counter, ctx);
731
732 /*
733 * Don't put the counter on if it is disabled or if
734 * it is in a group and the group isn't on.
735 */
736 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
737 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
738 goto unlock;
739
740 /*
741 * An exclusive counter can't go on if there are already active
742 * hardware counters, and no hardware counter can go on if there
743 * is already an exclusive counter on.
744 */
745 if (!group_can_go_on(counter, cpuctx, 1))
746 err = -EEXIST;
747 else
748 err = counter_sched_in(counter, cpuctx, ctx, cpu);
749
750 if (err) {
751 /*
752 * This counter couldn't go on. If it is in a group
753 * then we have to pull the whole group off.
754 * If the counter group is pinned then put it in error state.
755 */
756 if (leader != counter)
757 group_sched_out(leader, cpuctx, ctx);
758 if (leader->attr.pinned) {
759 update_group_times(leader);
760 leader->state = PERF_COUNTER_STATE_ERROR;
761 }
762 }
763
764 if (!err && !ctx->task && cpuctx->max_pertask)
765 cpuctx->max_pertask--;
766
767 unlock:
768 perf_enable();
769
770 spin_unlock(&ctx->lock);
771 }
772
773 /*
774 * Attach a performance counter to a context
775 *
776 * First we add the counter to the list with the hardware enable bit
777 * in counter->hw_config cleared.
778 *
779 * If the counter is attached to a task which is on a CPU we use a smp
780 * call to enable it in the task context. The task might have been
781 * scheduled away, but we check this in the smp call again.
782 *
783 * Must be called with ctx->mutex held.
784 */
785 static void
786 perf_install_in_context(struct perf_counter_context *ctx,
787 struct perf_counter *counter,
788 int cpu)
789 {
790 struct task_struct *task = ctx->task;
791
792 if (!task) {
793 /*
794 * Per cpu counters are installed via an smp call and
795 * the install is always sucessful.
796 */
797 smp_call_function_single(cpu, __perf_install_in_context,
798 counter, 1);
799 return;
800 }
801
802 retry:
803 task_oncpu_function_call(task, __perf_install_in_context,
804 counter);
805
806 spin_lock_irq(&ctx->lock);
807 /*
808 * we need to retry the smp call.
809 */
810 if (ctx->is_active && list_empty(&counter->list_entry)) {
811 spin_unlock_irq(&ctx->lock);
812 goto retry;
813 }
814
815 /*
816 * The lock prevents that this context is scheduled in so we
817 * can add the counter safely, if it the call above did not
818 * succeed.
819 */
820 if (list_empty(&counter->list_entry))
821 add_counter_to_ctx(counter, ctx);
822 spin_unlock_irq(&ctx->lock);
823 }
824
825 /*
826 * Cross CPU call to enable a performance counter
827 */
828 static void __perf_counter_enable(void *info)
829 {
830 struct perf_counter *counter = info;
831 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
832 struct perf_counter_context *ctx = counter->ctx;
833 struct perf_counter *leader = counter->group_leader;
834 int err;
835
836 /*
837 * If this is a per-task counter, need to check whether this
838 * counter's task is the current task on this cpu.
839 */
840 if (ctx->task && cpuctx->task_ctx != ctx) {
841 if (cpuctx->task_ctx || ctx->task != current)
842 return;
843 cpuctx->task_ctx = ctx;
844 }
845
846 spin_lock(&ctx->lock);
847 ctx->is_active = 1;
848 update_context_time(ctx);
849
850 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
851 goto unlock;
852 counter->state = PERF_COUNTER_STATE_INACTIVE;
853 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
854
855 /*
856 * If the counter is in a group and isn't the group leader,
857 * then don't put it on unless the group is on.
858 */
859 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
860 goto unlock;
861
862 if (!group_can_go_on(counter, cpuctx, 1)) {
863 err = -EEXIST;
864 } else {
865 perf_disable();
866 if (counter == leader)
867 err = group_sched_in(counter, cpuctx, ctx,
868 smp_processor_id());
869 else
870 err = counter_sched_in(counter, cpuctx, ctx,
871 smp_processor_id());
872 perf_enable();
873 }
874
875 if (err) {
876 /*
877 * If this counter can't go on and it's part of a
878 * group, then the whole group has to come off.
879 */
880 if (leader != counter)
881 group_sched_out(leader, cpuctx, ctx);
882 if (leader->attr.pinned) {
883 update_group_times(leader);
884 leader->state = PERF_COUNTER_STATE_ERROR;
885 }
886 }
887
888 unlock:
889 spin_unlock(&ctx->lock);
890 }
891
892 /*
893 * Enable a counter.
894 *
895 * If counter->ctx is a cloned context, callers must make sure that
896 * every task struct that counter->ctx->task could possibly point to
897 * remains valid. This condition is satisfied when called through
898 * perf_counter_for_each_child or perf_counter_for_each as described
899 * for perf_counter_disable.
900 */
901 static void perf_counter_enable(struct perf_counter *counter)
902 {
903 struct perf_counter_context *ctx = counter->ctx;
904 struct task_struct *task = ctx->task;
905
906 if (!task) {
907 /*
908 * Enable the counter on the cpu that it's on
909 */
910 smp_call_function_single(counter->cpu, __perf_counter_enable,
911 counter, 1);
912 return;
913 }
914
915 spin_lock_irq(&ctx->lock);
916 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
917 goto out;
918
919 /*
920 * If the counter is in error state, clear that first.
921 * That way, if we see the counter in error state below, we
922 * know that it has gone back into error state, as distinct
923 * from the task having been scheduled away before the
924 * cross-call arrived.
925 */
926 if (counter->state == PERF_COUNTER_STATE_ERROR)
927 counter->state = PERF_COUNTER_STATE_OFF;
928
929 retry:
930 spin_unlock_irq(&ctx->lock);
931 task_oncpu_function_call(task, __perf_counter_enable, counter);
932
933 spin_lock_irq(&ctx->lock);
934
935 /*
936 * If the context is active and the counter is still off,
937 * we need to retry the cross-call.
938 */
939 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
940 goto retry;
941
942 /*
943 * Since we have the lock this context can't be scheduled
944 * in, so we can change the state safely.
945 */
946 if (counter->state == PERF_COUNTER_STATE_OFF) {
947 counter->state = PERF_COUNTER_STATE_INACTIVE;
948 counter->tstamp_enabled =
949 ctx->time - counter->total_time_enabled;
950 }
951 out:
952 spin_unlock_irq(&ctx->lock);
953 }
954
955 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
956 {
957 /*
958 * not supported on inherited counters
959 */
960 if (counter->attr.inherit)
961 return -EINVAL;
962
963 atomic_add(refresh, &counter->event_limit);
964 perf_counter_enable(counter);
965
966 return 0;
967 }
968
969 void __perf_counter_sched_out(struct perf_counter_context *ctx,
970 struct perf_cpu_context *cpuctx)
971 {
972 struct perf_counter *counter;
973
974 spin_lock(&ctx->lock);
975 ctx->is_active = 0;
976 if (likely(!ctx->nr_counters))
977 goto out;
978 update_context_time(ctx);
979
980 perf_disable();
981 if (ctx->nr_active) {
982 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
983 if (counter != counter->group_leader)
984 counter_sched_out(counter, cpuctx, ctx);
985 else
986 group_sched_out(counter, cpuctx, ctx);
987 }
988 }
989 perf_enable();
990 out:
991 spin_unlock(&ctx->lock);
992 }
993
994 /*
995 * Test whether two contexts are equivalent, i.e. whether they
996 * have both been cloned from the same version of the same context
997 * and they both have the same number of enabled counters.
998 * If the number of enabled counters is the same, then the set
999 * of enabled counters should be the same, because these are both
1000 * inherited contexts, therefore we can't access individual counters
1001 * in them directly with an fd; we can only enable/disable all
1002 * counters via prctl, or enable/disable all counters in a family
1003 * via ioctl, which will have the same effect on both contexts.
1004 */
1005 static int context_equiv(struct perf_counter_context *ctx1,
1006 struct perf_counter_context *ctx2)
1007 {
1008 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1009 && ctx1->parent_gen == ctx2->parent_gen
1010 && !ctx1->pin_count && !ctx2->pin_count;
1011 }
1012
1013 static void __perf_counter_read(void *counter);
1014
1015 static void __perf_counter_sync_stat(struct perf_counter *counter,
1016 struct perf_counter *next_counter)
1017 {
1018 u64 value;
1019
1020 if (!counter->attr.inherit_stat)
1021 return;
1022
1023 /*
1024 * Update the counter value, we cannot use perf_counter_read()
1025 * because we're in the middle of a context switch and have IRQs
1026 * disabled, which upsets smp_call_function_single(), however
1027 * we know the counter must be on the current CPU, therefore we
1028 * don't need to use it.
1029 */
1030 switch (counter->state) {
1031 case PERF_COUNTER_STATE_ACTIVE:
1032 __perf_counter_read(counter);
1033 break;
1034
1035 case PERF_COUNTER_STATE_INACTIVE:
1036 update_counter_times(counter);
1037 break;
1038
1039 default:
1040 break;
1041 }
1042
1043 /*
1044 * In order to keep per-task stats reliable we need to flip the counter
1045 * values when we flip the contexts.
1046 */
1047 value = atomic64_read(&next_counter->count);
1048 value = atomic64_xchg(&counter->count, value);
1049 atomic64_set(&next_counter->count, value);
1050
1051 swap(counter->total_time_enabled, next_counter->total_time_enabled);
1052 swap(counter->total_time_running, next_counter->total_time_running);
1053
1054 /*
1055 * Since we swizzled the values, update the user visible data too.
1056 */
1057 perf_counter_update_userpage(counter);
1058 perf_counter_update_userpage(next_counter);
1059 }
1060
1061 #define list_next_entry(pos, member) \
1062 list_entry(pos->member.next, typeof(*pos), member)
1063
1064 static void perf_counter_sync_stat(struct perf_counter_context *ctx,
1065 struct perf_counter_context *next_ctx)
1066 {
1067 struct perf_counter *counter, *next_counter;
1068
1069 if (!ctx->nr_stat)
1070 return;
1071
1072 counter = list_first_entry(&ctx->event_list,
1073 struct perf_counter, event_entry);
1074
1075 next_counter = list_first_entry(&next_ctx->event_list,
1076 struct perf_counter, event_entry);
1077
1078 while (&counter->event_entry != &ctx->event_list &&
1079 &next_counter->event_entry != &next_ctx->event_list) {
1080
1081 __perf_counter_sync_stat(counter, next_counter);
1082
1083 counter = list_next_entry(counter, event_entry);
1084 next_counter = list_next_entry(counter, event_entry);
1085 }
1086 }
1087
1088 /*
1089 * Called from scheduler to remove the counters of the current task,
1090 * with interrupts disabled.
1091 *
1092 * We stop each counter and update the counter value in counter->count.
1093 *
1094 * This does not protect us against NMI, but disable()
1095 * sets the disabled bit in the control field of counter _before_
1096 * accessing the counter control register. If a NMI hits, then it will
1097 * not restart the counter.
1098 */
1099 void perf_counter_task_sched_out(struct task_struct *task,
1100 struct task_struct *next, int cpu)
1101 {
1102 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1103 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1104 struct perf_counter_context *next_ctx;
1105 struct perf_counter_context *parent;
1106 struct pt_regs *regs;
1107 int do_switch = 1;
1108
1109 regs = task_pt_regs(task);
1110 perf_swcounter_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1111
1112 if (likely(!ctx || !cpuctx->task_ctx))
1113 return;
1114
1115 update_context_time(ctx);
1116
1117 rcu_read_lock();
1118 parent = rcu_dereference(ctx->parent_ctx);
1119 next_ctx = next->perf_counter_ctxp;
1120 if (parent && next_ctx &&
1121 rcu_dereference(next_ctx->parent_ctx) == parent) {
1122 /*
1123 * Looks like the two contexts are clones, so we might be
1124 * able to optimize the context switch. We lock both
1125 * contexts and check that they are clones under the
1126 * lock (including re-checking that neither has been
1127 * uncloned in the meantime). It doesn't matter which
1128 * order we take the locks because no other cpu could
1129 * be trying to lock both of these tasks.
1130 */
1131 spin_lock(&ctx->lock);
1132 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1133 if (context_equiv(ctx, next_ctx)) {
1134 /*
1135 * XXX do we need a memory barrier of sorts
1136 * wrt to rcu_dereference() of perf_counter_ctxp
1137 */
1138 task->perf_counter_ctxp = next_ctx;
1139 next->perf_counter_ctxp = ctx;
1140 ctx->task = next;
1141 next_ctx->task = task;
1142 do_switch = 0;
1143
1144 perf_counter_sync_stat(ctx, next_ctx);
1145 }
1146 spin_unlock(&next_ctx->lock);
1147 spin_unlock(&ctx->lock);
1148 }
1149 rcu_read_unlock();
1150
1151 if (do_switch) {
1152 __perf_counter_sched_out(ctx, cpuctx);
1153 cpuctx->task_ctx = NULL;
1154 }
1155 }
1156
1157 /*
1158 * Called with IRQs disabled
1159 */
1160 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
1161 {
1162 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1163
1164 if (!cpuctx->task_ctx)
1165 return;
1166
1167 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1168 return;
1169
1170 __perf_counter_sched_out(ctx, cpuctx);
1171 cpuctx->task_ctx = NULL;
1172 }
1173
1174 /*
1175 * Called with IRQs disabled
1176 */
1177 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
1178 {
1179 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1180 }
1181
1182 static void
1183 __perf_counter_sched_in(struct perf_counter_context *ctx,
1184 struct perf_cpu_context *cpuctx, int cpu)
1185 {
1186 struct perf_counter *counter;
1187 int can_add_hw = 1;
1188
1189 spin_lock(&ctx->lock);
1190 ctx->is_active = 1;
1191 if (likely(!ctx->nr_counters))
1192 goto out;
1193
1194 ctx->timestamp = perf_clock();
1195
1196 perf_disable();
1197
1198 /*
1199 * First go through the list and put on any pinned groups
1200 * in order to give them the best chance of going on.
1201 */
1202 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1203 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1204 !counter->attr.pinned)
1205 continue;
1206 if (counter->cpu != -1 && counter->cpu != cpu)
1207 continue;
1208
1209 if (counter != counter->group_leader)
1210 counter_sched_in(counter, cpuctx, ctx, cpu);
1211 else {
1212 if (group_can_go_on(counter, cpuctx, 1))
1213 group_sched_in(counter, cpuctx, ctx, cpu);
1214 }
1215
1216 /*
1217 * If this pinned group hasn't been scheduled,
1218 * put it in error state.
1219 */
1220 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1221 update_group_times(counter);
1222 counter->state = PERF_COUNTER_STATE_ERROR;
1223 }
1224 }
1225
1226 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1227 /*
1228 * Ignore counters in OFF or ERROR state, and
1229 * ignore pinned counters since we did them already.
1230 */
1231 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1232 counter->attr.pinned)
1233 continue;
1234
1235 /*
1236 * Listen to the 'cpu' scheduling filter constraint
1237 * of counters:
1238 */
1239 if (counter->cpu != -1 && counter->cpu != cpu)
1240 continue;
1241
1242 if (counter != counter->group_leader) {
1243 if (counter_sched_in(counter, cpuctx, ctx, cpu))
1244 can_add_hw = 0;
1245 } else {
1246 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1247 if (group_sched_in(counter, cpuctx, ctx, cpu))
1248 can_add_hw = 0;
1249 }
1250 }
1251 }
1252 perf_enable();
1253 out:
1254 spin_unlock(&ctx->lock);
1255 }
1256
1257 /*
1258 * Called from scheduler to add the counters of the current task
1259 * with interrupts disabled.
1260 *
1261 * We restore the counter value and then enable it.
1262 *
1263 * This does not protect us against NMI, but enable()
1264 * sets the enabled bit in the control field of counter _before_
1265 * accessing the counter control register. If a NMI hits, then it will
1266 * keep the counter running.
1267 */
1268 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1269 {
1270 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1271 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1272
1273 if (likely(!ctx))
1274 return;
1275 if (cpuctx->task_ctx == ctx)
1276 return;
1277 __perf_counter_sched_in(ctx, cpuctx, cpu);
1278 cpuctx->task_ctx = ctx;
1279 }
1280
1281 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1282 {
1283 struct perf_counter_context *ctx = &cpuctx->ctx;
1284
1285 __perf_counter_sched_in(ctx, cpuctx, cpu);
1286 }
1287
1288 #define MAX_INTERRUPTS (~0ULL)
1289
1290 static void perf_log_throttle(struct perf_counter *counter, int enable);
1291 static void perf_log_period(struct perf_counter *counter, u64 period);
1292
1293 static void perf_adjust_period(struct perf_counter *counter, u64 events)
1294 {
1295 struct hw_perf_counter *hwc = &counter->hw;
1296 u64 period, sample_period;
1297 s64 delta;
1298
1299 events *= hwc->sample_period;
1300 period = div64_u64(events, counter->attr.sample_freq);
1301
1302 delta = (s64)(period - hwc->sample_period);
1303 delta = (delta + 7) / 8; /* low pass filter */
1304
1305 sample_period = hwc->sample_period + delta;
1306
1307 if (!sample_period)
1308 sample_period = 1;
1309
1310 perf_log_period(counter, sample_period);
1311
1312 hwc->sample_period = sample_period;
1313 }
1314
1315 static void perf_ctx_adjust_freq(struct perf_counter_context *ctx)
1316 {
1317 struct perf_counter *counter;
1318 struct hw_perf_counter *hwc;
1319 u64 interrupts, freq;
1320
1321 spin_lock(&ctx->lock);
1322 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1323 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1324 continue;
1325
1326 hwc = &counter->hw;
1327
1328 interrupts = hwc->interrupts;
1329 hwc->interrupts = 0;
1330
1331 /*
1332 * unthrottle counters on the tick
1333 */
1334 if (interrupts == MAX_INTERRUPTS) {
1335 perf_log_throttle(counter, 1);
1336 counter->pmu->unthrottle(counter);
1337 interrupts = 2*sysctl_perf_counter_sample_rate/HZ;
1338 }
1339
1340 if (!counter->attr.freq || !counter->attr.sample_freq)
1341 continue;
1342
1343 /*
1344 * if the specified freq < HZ then we need to skip ticks
1345 */
1346 if (counter->attr.sample_freq < HZ) {
1347 freq = counter->attr.sample_freq;
1348
1349 hwc->freq_count += freq;
1350 hwc->freq_interrupts += interrupts;
1351
1352 if (hwc->freq_count < HZ)
1353 continue;
1354
1355 interrupts = hwc->freq_interrupts;
1356 hwc->freq_interrupts = 0;
1357 hwc->freq_count -= HZ;
1358 } else
1359 freq = HZ;
1360
1361 perf_adjust_period(counter, freq * interrupts);
1362
1363 /*
1364 * In order to avoid being stalled by an (accidental) huge
1365 * sample period, force reset the sample period if we didn't
1366 * get any events in this freq period.
1367 */
1368 if (!interrupts) {
1369 perf_disable();
1370 counter->pmu->disable(counter);
1371 atomic64_set(&hwc->period_left, 0);
1372 counter->pmu->enable(counter);
1373 perf_enable();
1374 }
1375 }
1376 spin_unlock(&ctx->lock);
1377 }
1378
1379 /*
1380 * Round-robin a context's counters:
1381 */
1382 static void rotate_ctx(struct perf_counter_context *ctx)
1383 {
1384 struct perf_counter *counter;
1385
1386 if (!ctx->nr_counters)
1387 return;
1388
1389 spin_lock(&ctx->lock);
1390 /*
1391 * Rotate the first entry last (works just fine for group counters too):
1392 */
1393 perf_disable();
1394 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1395 list_move_tail(&counter->list_entry, &ctx->counter_list);
1396 break;
1397 }
1398 perf_enable();
1399
1400 spin_unlock(&ctx->lock);
1401 }
1402
1403 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1404 {
1405 struct perf_cpu_context *cpuctx;
1406 struct perf_counter_context *ctx;
1407
1408 if (!atomic_read(&nr_counters))
1409 return;
1410
1411 cpuctx = &per_cpu(perf_cpu_context, cpu);
1412 ctx = curr->perf_counter_ctxp;
1413
1414 perf_ctx_adjust_freq(&cpuctx->ctx);
1415 if (ctx)
1416 perf_ctx_adjust_freq(ctx);
1417
1418 perf_counter_cpu_sched_out(cpuctx);
1419 if (ctx)
1420 __perf_counter_task_sched_out(ctx);
1421
1422 rotate_ctx(&cpuctx->ctx);
1423 if (ctx)
1424 rotate_ctx(ctx);
1425
1426 perf_counter_cpu_sched_in(cpuctx, cpu);
1427 if (ctx)
1428 perf_counter_task_sched_in(curr, cpu);
1429 }
1430
1431 /*
1432 * Enable all of a task's counters that have been marked enable-on-exec.
1433 * This expects task == current.
1434 */
1435 static void perf_counter_enable_on_exec(struct task_struct *task)
1436 {
1437 struct perf_counter_context *ctx;
1438 struct perf_counter *counter;
1439 unsigned long flags;
1440 int enabled = 0;
1441
1442 local_irq_save(flags);
1443 ctx = task->perf_counter_ctxp;
1444 if (!ctx || !ctx->nr_counters)
1445 goto out;
1446
1447 __perf_counter_task_sched_out(ctx);
1448
1449 spin_lock(&ctx->lock);
1450
1451 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1452 if (!counter->attr.enable_on_exec)
1453 continue;
1454 counter->attr.enable_on_exec = 0;
1455 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
1456 continue;
1457 counter->state = PERF_COUNTER_STATE_INACTIVE;
1458 counter->tstamp_enabled =
1459 ctx->time - counter->total_time_enabled;
1460 enabled = 1;
1461 }
1462
1463 /*
1464 * Unclone this context if we enabled any counter.
1465 */
1466 if (enabled && ctx->parent_ctx) {
1467 put_ctx(ctx->parent_ctx);
1468 ctx->parent_ctx = NULL;
1469 }
1470
1471 spin_unlock(&ctx->lock);
1472
1473 perf_counter_task_sched_in(task, smp_processor_id());
1474 out:
1475 local_irq_restore(flags);
1476 }
1477
1478 /*
1479 * Cross CPU call to read the hardware counter
1480 */
1481 static void __perf_counter_read(void *info)
1482 {
1483 struct perf_counter *counter = info;
1484 struct perf_counter_context *ctx = counter->ctx;
1485 unsigned long flags;
1486
1487 local_irq_save(flags);
1488 if (ctx->is_active)
1489 update_context_time(ctx);
1490 counter->pmu->read(counter);
1491 update_counter_times(counter);
1492 local_irq_restore(flags);
1493 }
1494
1495 static u64 perf_counter_read(struct perf_counter *counter)
1496 {
1497 /*
1498 * If counter is enabled and currently active on a CPU, update the
1499 * value in the counter structure:
1500 */
1501 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1502 smp_call_function_single(counter->oncpu,
1503 __perf_counter_read, counter, 1);
1504 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1505 update_counter_times(counter);
1506 }
1507
1508 return atomic64_read(&counter->count);
1509 }
1510
1511 /*
1512 * Initialize the perf_counter context in a task_struct:
1513 */
1514 static void
1515 __perf_counter_init_context(struct perf_counter_context *ctx,
1516 struct task_struct *task)
1517 {
1518 memset(ctx, 0, sizeof(*ctx));
1519 spin_lock_init(&ctx->lock);
1520 mutex_init(&ctx->mutex);
1521 INIT_LIST_HEAD(&ctx->counter_list);
1522 INIT_LIST_HEAD(&ctx->event_list);
1523 atomic_set(&ctx->refcount, 1);
1524 ctx->task = task;
1525 }
1526
1527 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1528 {
1529 struct perf_counter_context *parent_ctx;
1530 struct perf_counter_context *ctx;
1531 struct perf_cpu_context *cpuctx;
1532 struct task_struct *task;
1533 unsigned long flags;
1534 int err;
1535
1536 /*
1537 * If cpu is not a wildcard then this is a percpu counter:
1538 */
1539 if (cpu != -1) {
1540 /* Must be root to operate on a CPU counter: */
1541 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1542 return ERR_PTR(-EACCES);
1543
1544 if (cpu < 0 || cpu > num_possible_cpus())
1545 return ERR_PTR(-EINVAL);
1546
1547 /*
1548 * We could be clever and allow to attach a counter to an
1549 * offline CPU and activate it when the CPU comes up, but
1550 * that's for later.
1551 */
1552 if (!cpu_isset(cpu, cpu_online_map))
1553 return ERR_PTR(-ENODEV);
1554
1555 cpuctx = &per_cpu(perf_cpu_context, cpu);
1556 ctx = &cpuctx->ctx;
1557 get_ctx(ctx);
1558
1559 return ctx;
1560 }
1561
1562 rcu_read_lock();
1563 if (!pid)
1564 task = current;
1565 else
1566 task = find_task_by_vpid(pid);
1567 if (task)
1568 get_task_struct(task);
1569 rcu_read_unlock();
1570
1571 if (!task)
1572 return ERR_PTR(-ESRCH);
1573
1574 /*
1575 * Can't attach counters to a dying task.
1576 */
1577 err = -ESRCH;
1578 if (task->flags & PF_EXITING)
1579 goto errout;
1580
1581 /* Reuse ptrace permission checks for now. */
1582 err = -EACCES;
1583 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1584 goto errout;
1585
1586 retry:
1587 ctx = perf_lock_task_context(task, &flags);
1588 if (ctx) {
1589 parent_ctx = ctx->parent_ctx;
1590 if (parent_ctx) {
1591 put_ctx(parent_ctx);
1592 ctx->parent_ctx = NULL; /* no longer a clone */
1593 }
1594 spin_unlock_irqrestore(&ctx->lock, flags);
1595 }
1596
1597 if (!ctx) {
1598 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1599 err = -ENOMEM;
1600 if (!ctx)
1601 goto errout;
1602 __perf_counter_init_context(ctx, task);
1603 get_ctx(ctx);
1604 if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1605 /*
1606 * We raced with some other task; use
1607 * the context they set.
1608 */
1609 kfree(ctx);
1610 goto retry;
1611 }
1612 get_task_struct(task);
1613 }
1614
1615 put_task_struct(task);
1616 return ctx;
1617
1618 errout:
1619 put_task_struct(task);
1620 return ERR_PTR(err);
1621 }
1622
1623 static void free_counter_rcu(struct rcu_head *head)
1624 {
1625 struct perf_counter *counter;
1626
1627 counter = container_of(head, struct perf_counter, rcu_head);
1628 if (counter->ns)
1629 put_pid_ns(counter->ns);
1630 kfree(counter);
1631 }
1632
1633 static void perf_pending_sync(struct perf_counter *counter);
1634
1635 static void free_counter(struct perf_counter *counter)
1636 {
1637 perf_pending_sync(counter);
1638
1639 if (!counter->parent) {
1640 atomic_dec(&nr_counters);
1641 if (counter->attr.mmap)
1642 atomic_dec(&nr_mmap_counters);
1643 if (counter->attr.comm)
1644 atomic_dec(&nr_comm_counters);
1645 }
1646
1647 if (counter->destroy)
1648 counter->destroy(counter);
1649
1650 put_ctx(counter->ctx);
1651 call_rcu(&counter->rcu_head, free_counter_rcu);
1652 }
1653
1654 /*
1655 * Called when the last reference to the file is gone.
1656 */
1657 static int perf_release(struct inode *inode, struct file *file)
1658 {
1659 struct perf_counter *counter = file->private_data;
1660 struct perf_counter_context *ctx = counter->ctx;
1661
1662 file->private_data = NULL;
1663
1664 WARN_ON_ONCE(ctx->parent_ctx);
1665 mutex_lock(&ctx->mutex);
1666 perf_counter_remove_from_context(counter);
1667 mutex_unlock(&ctx->mutex);
1668
1669 mutex_lock(&counter->owner->perf_counter_mutex);
1670 list_del_init(&counter->owner_entry);
1671 mutex_unlock(&counter->owner->perf_counter_mutex);
1672 put_task_struct(counter->owner);
1673
1674 free_counter(counter);
1675
1676 return 0;
1677 }
1678
1679 /*
1680 * Read the performance counter - simple non blocking version for now
1681 */
1682 static ssize_t
1683 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1684 {
1685 u64 values[4];
1686 int n;
1687
1688 /*
1689 * Return end-of-file for a read on a counter that is in
1690 * error state (i.e. because it was pinned but it couldn't be
1691 * scheduled on to the CPU at some point).
1692 */
1693 if (counter->state == PERF_COUNTER_STATE_ERROR)
1694 return 0;
1695
1696 WARN_ON_ONCE(counter->ctx->parent_ctx);
1697 mutex_lock(&counter->child_mutex);
1698 values[0] = perf_counter_read(counter);
1699 n = 1;
1700 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1701 values[n++] = counter->total_time_enabled +
1702 atomic64_read(&counter->child_total_time_enabled);
1703 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1704 values[n++] = counter->total_time_running +
1705 atomic64_read(&counter->child_total_time_running);
1706 if (counter->attr.read_format & PERF_FORMAT_ID)
1707 values[n++] = counter->id;
1708 mutex_unlock(&counter->child_mutex);
1709
1710 if (count < n * sizeof(u64))
1711 return -EINVAL;
1712 count = n * sizeof(u64);
1713
1714 if (copy_to_user(buf, values, count))
1715 return -EFAULT;
1716
1717 return count;
1718 }
1719
1720 static ssize_t
1721 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1722 {
1723 struct perf_counter *counter = file->private_data;
1724
1725 return perf_read_hw(counter, buf, count);
1726 }
1727
1728 static unsigned int perf_poll(struct file *file, poll_table *wait)
1729 {
1730 struct perf_counter *counter = file->private_data;
1731 struct perf_mmap_data *data;
1732 unsigned int events = POLL_HUP;
1733
1734 rcu_read_lock();
1735 data = rcu_dereference(counter->data);
1736 if (data)
1737 events = atomic_xchg(&data->poll, 0);
1738 rcu_read_unlock();
1739
1740 poll_wait(file, &counter->waitq, wait);
1741
1742 return events;
1743 }
1744
1745 static void perf_counter_reset(struct perf_counter *counter)
1746 {
1747 (void)perf_counter_read(counter);
1748 atomic64_set(&counter->count, 0);
1749 perf_counter_update_userpage(counter);
1750 }
1751
1752 /*
1753 * Holding the top-level counter's child_mutex means that any
1754 * descendant process that has inherited this counter will block
1755 * in sync_child_counter if it goes to exit, thus satisfying the
1756 * task existence requirements of perf_counter_enable/disable.
1757 */
1758 static void perf_counter_for_each_child(struct perf_counter *counter,
1759 void (*func)(struct perf_counter *))
1760 {
1761 struct perf_counter *child;
1762
1763 WARN_ON_ONCE(counter->ctx->parent_ctx);
1764 mutex_lock(&counter->child_mutex);
1765 func(counter);
1766 list_for_each_entry(child, &counter->child_list, child_list)
1767 func(child);
1768 mutex_unlock(&counter->child_mutex);
1769 }
1770
1771 static void perf_counter_for_each(struct perf_counter *counter,
1772 void (*func)(struct perf_counter *))
1773 {
1774 struct perf_counter_context *ctx = counter->ctx;
1775 struct perf_counter *sibling;
1776
1777 WARN_ON_ONCE(ctx->parent_ctx);
1778 mutex_lock(&ctx->mutex);
1779 counter = counter->group_leader;
1780
1781 perf_counter_for_each_child(counter, func);
1782 func(counter);
1783 list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1784 perf_counter_for_each_child(counter, func);
1785 mutex_unlock(&ctx->mutex);
1786 }
1787
1788 static int perf_counter_period(struct perf_counter *counter, u64 __user *arg)
1789 {
1790 struct perf_counter_context *ctx = counter->ctx;
1791 unsigned long size;
1792 int ret = 0;
1793 u64 value;
1794
1795 if (!counter->attr.sample_period)
1796 return -EINVAL;
1797
1798 size = copy_from_user(&value, arg, sizeof(value));
1799 if (size != sizeof(value))
1800 return -EFAULT;
1801
1802 if (!value)
1803 return -EINVAL;
1804
1805 spin_lock_irq(&ctx->lock);
1806 if (counter->attr.freq) {
1807 if (value > sysctl_perf_counter_sample_rate) {
1808 ret = -EINVAL;
1809 goto unlock;
1810 }
1811
1812 counter->attr.sample_freq = value;
1813 } else {
1814 perf_log_period(counter, value);
1815
1816 counter->attr.sample_period = value;
1817 counter->hw.sample_period = value;
1818 }
1819 unlock:
1820 spin_unlock_irq(&ctx->lock);
1821
1822 return ret;
1823 }
1824
1825 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1826 {
1827 struct perf_counter *counter = file->private_data;
1828 void (*func)(struct perf_counter *);
1829 u32 flags = arg;
1830
1831 switch (cmd) {
1832 case PERF_COUNTER_IOC_ENABLE:
1833 func = perf_counter_enable;
1834 break;
1835 case PERF_COUNTER_IOC_DISABLE:
1836 func = perf_counter_disable;
1837 break;
1838 case PERF_COUNTER_IOC_RESET:
1839 func = perf_counter_reset;
1840 break;
1841
1842 case PERF_COUNTER_IOC_REFRESH:
1843 return perf_counter_refresh(counter, arg);
1844
1845 case PERF_COUNTER_IOC_PERIOD:
1846 return perf_counter_period(counter, (u64 __user *)arg);
1847
1848 default:
1849 return -ENOTTY;
1850 }
1851
1852 if (flags & PERF_IOC_FLAG_GROUP)
1853 perf_counter_for_each(counter, func);
1854 else
1855 perf_counter_for_each_child(counter, func);
1856
1857 return 0;
1858 }
1859
1860 int perf_counter_task_enable(void)
1861 {
1862 struct perf_counter *counter;
1863
1864 mutex_lock(&current->perf_counter_mutex);
1865 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1866 perf_counter_for_each_child(counter, perf_counter_enable);
1867 mutex_unlock(&current->perf_counter_mutex);
1868
1869 return 0;
1870 }
1871
1872 int perf_counter_task_disable(void)
1873 {
1874 struct perf_counter *counter;
1875
1876 mutex_lock(&current->perf_counter_mutex);
1877 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1878 perf_counter_for_each_child(counter, perf_counter_disable);
1879 mutex_unlock(&current->perf_counter_mutex);
1880
1881 return 0;
1882 }
1883
1884 static int perf_counter_index(struct perf_counter *counter)
1885 {
1886 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1887 return 0;
1888
1889 return counter->hw.idx + 1 - PERF_COUNTER_INDEX_OFFSET;
1890 }
1891
1892 /*
1893 * Callers need to ensure there can be no nesting of this function, otherwise
1894 * the seqlock logic goes bad. We can not serialize this because the arch
1895 * code calls this from NMI context.
1896 */
1897 void perf_counter_update_userpage(struct perf_counter *counter)
1898 {
1899 struct perf_counter_mmap_page *userpg;
1900 struct perf_mmap_data *data;
1901
1902 rcu_read_lock();
1903 data = rcu_dereference(counter->data);
1904 if (!data)
1905 goto unlock;
1906
1907 userpg = data->user_page;
1908
1909 /*
1910 * Disable preemption so as to not let the corresponding user-space
1911 * spin too long if we get preempted.
1912 */
1913 preempt_disable();
1914 ++userpg->lock;
1915 barrier();
1916 userpg->index = perf_counter_index(counter);
1917 userpg->offset = atomic64_read(&counter->count);
1918 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1919 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1920
1921 userpg->time_enabled = counter->total_time_enabled +
1922 atomic64_read(&counter->child_total_time_enabled);
1923
1924 userpg->time_running = counter->total_time_running +
1925 atomic64_read(&counter->child_total_time_running);
1926
1927 barrier();
1928 ++userpg->lock;
1929 preempt_enable();
1930 unlock:
1931 rcu_read_unlock();
1932 }
1933
1934 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1935 {
1936 struct perf_counter *counter = vma->vm_file->private_data;
1937 struct perf_mmap_data *data;
1938 int ret = VM_FAULT_SIGBUS;
1939
1940 if (vmf->flags & FAULT_FLAG_MKWRITE) {
1941 if (vmf->pgoff == 0)
1942 ret = 0;
1943 return ret;
1944 }
1945
1946 rcu_read_lock();
1947 data = rcu_dereference(counter->data);
1948 if (!data)
1949 goto unlock;
1950
1951 if (vmf->pgoff == 0) {
1952 vmf->page = virt_to_page(data->user_page);
1953 } else {
1954 int nr = vmf->pgoff - 1;
1955
1956 if ((unsigned)nr > data->nr_pages)
1957 goto unlock;
1958
1959 if (vmf->flags & FAULT_FLAG_WRITE)
1960 goto unlock;
1961
1962 vmf->page = virt_to_page(data->data_pages[nr]);
1963 }
1964
1965 get_page(vmf->page);
1966 vmf->page->mapping = vma->vm_file->f_mapping;
1967 vmf->page->index = vmf->pgoff;
1968
1969 ret = 0;
1970 unlock:
1971 rcu_read_unlock();
1972
1973 return ret;
1974 }
1975
1976 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1977 {
1978 struct perf_mmap_data *data;
1979 unsigned long size;
1980 int i;
1981
1982 WARN_ON(atomic_read(&counter->mmap_count));
1983
1984 size = sizeof(struct perf_mmap_data);
1985 size += nr_pages * sizeof(void *);
1986
1987 data = kzalloc(size, GFP_KERNEL);
1988 if (!data)
1989 goto fail;
1990
1991 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1992 if (!data->user_page)
1993 goto fail_user_page;
1994
1995 for (i = 0; i < nr_pages; i++) {
1996 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1997 if (!data->data_pages[i])
1998 goto fail_data_pages;
1999 }
2000
2001 data->nr_pages = nr_pages;
2002 atomic_set(&data->lock, -1);
2003
2004 rcu_assign_pointer(counter->data, data);
2005
2006 return 0;
2007
2008 fail_data_pages:
2009 for (i--; i >= 0; i--)
2010 free_page((unsigned long)data->data_pages[i]);
2011
2012 free_page((unsigned long)data->user_page);
2013
2014 fail_user_page:
2015 kfree(data);
2016
2017 fail:
2018 return -ENOMEM;
2019 }
2020
2021 static void perf_mmap_free_page(unsigned long addr)
2022 {
2023 struct page *page = virt_to_page((void *)addr);
2024
2025 page->mapping = NULL;
2026 __free_page(page);
2027 }
2028
2029 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
2030 {
2031 struct perf_mmap_data *data;
2032 int i;
2033
2034 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2035
2036 perf_mmap_free_page((unsigned long)data->user_page);
2037 for (i = 0; i < data->nr_pages; i++)
2038 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2039
2040 kfree(data);
2041 }
2042
2043 static void perf_mmap_data_free(struct perf_counter *counter)
2044 {
2045 struct perf_mmap_data *data = counter->data;
2046
2047 WARN_ON(atomic_read(&counter->mmap_count));
2048
2049 rcu_assign_pointer(counter->data, NULL);
2050 call_rcu(&data->rcu_head, __perf_mmap_data_free);
2051 }
2052
2053 static void perf_mmap_open(struct vm_area_struct *vma)
2054 {
2055 struct perf_counter *counter = vma->vm_file->private_data;
2056
2057 atomic_inc(&counter->mmap_count);
2058 }
2059
2060 static void perf_mmap_close(struct vm_area_struct *vma)
2061 {
2062 struct perf_counter *counter = vma->vm_file->private_data;
2063
2064 WARN_ON_ONCE(counter->ctx->parent_ctx);
2065 if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) {
2066 struct user_struct *user = current_user();
2067
2068 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
2069 vma->vm_mm->locked_vm -= counter->data->nr_locked;
2070 perf_mmap_data_free(counter);
2071 mutex_unlock(&counter->mmap_mutex);
2072 }
2073 }
2074
2075 static struct vm_operations_struct perf_mmap_vmops = {
2076 .open = perf_mmap_open,
2077 .close = perf_mmap_close,
2078 .fault = perf_mmap_fault,
2079 .page_mkwrite = perf_mmap_fault,
2080 };
2081
2082 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2083 {
2084 struct perf_counter *counter = file->private_data;
2085 unsigned long user_locked, user_lock_limit;
2086 struct user_struct *user = current_user();
2087 unsigned long locked, lock_limit;
2088 unsigned long vma_size;
2089 unsigned long nr_pages;
2090 long user_extra, extra;
2091 int ret = 0;
2092
2093 if (!(vma->vm_flags & VM_SHARED))
2094 return -EINVAL;
2095
2096 vma_size = vma->vm_end - vma->vm_start;
2097 nr_pages = (vma_size / PAGE_SIZE) - 1;
2098
2099 /*
2100 * If we have data pages ensure they're a power-of-two number, so we
2101 * can do bitmasks instead of modulo.
2102 */
2103 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2104 return -EINVAL;
2105
2106 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2107 return -EINVAL;
2108
2109 if (vma->vm_pgoff != 0)
2110 return -EINVAL;
2111
2112 WARN_ON_ONCE(counter->ctx->parent_ctx);
2113 mutex_lock(&counter->mmap_mutex);
2114 if (atomic_inc_not_zero(&counter->mmap_count)) {
2115 if (nr_pages != counter->data->nr_pages)
2116 ret = -EINVAL;
2117 goto unlock;
2118 }
2119
2120 user_extra = nr_pages + 1;
2121 user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
2122
2123 /*
2124 * Increase the limit linearly with more CPUs:
2125 */
2126 user_lock_limit *= num_online_cpus();
2127
2128 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2129
2130 extra = 0;
2131 if (user_locked > user_lock_limit)
2132 extra = user_locked - user_lock_limit;
2133
2134 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2135 lock_limit >>= PAGE_SHIFT;
2136 locked = vma->vm_mm->locked_vm + extra;
2137
2138 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
2139 ret = -EPERM;
2140 goto unlock;
2141 }
2142
2143 WARN_ON(counter->data);
2144 ret = perf_mmap_data_alloc(counter, nr_pages);
2145 if (ret)
2146 goto unlock;
2147
2148 atomic_set(&counter->mmap_count, 1);
2149 atomic_long_add(user_extra, &user->locked_vm);
2150 vma->vm_mm->locked_vm += extra;
2151 counter->data->nr_locked = extra;
2152 if (vma->vm_flags & VM_WRITE)
2153 counter->data->writable = 1;
2154
2155 unlock:
2156 mutex_unlock(&counter->mmap_mutex);
2157
2158 vma->vm_flags |= VM_RESERVED;
2159 vma->vm_ops = &perf_mmap_vmops;
2160
2161 return ret;
2162 }
2163
2164 static int perf_fasync(int fd, struct file *filp, int on)
2165 {
2166 struct inode *inode = filp->f_path.dentry->d_inode;
2167 struct perf_counter *counter = filp->private_data;
2168 int retval;
2169
2170 mutex_lock(&inode->i_mutex);
2171 retval = fasync_helper(fd, filp, on, &counter->fasync);
2172 mutex_unlock(&inode->i_mutex);
2173
2174 if (retval < 0)
2175 return retval;
2176
2177 return 0;
2178 }
2179
2180 static const struct file_operations perf_fops = {
2181 .release = perf_release,
2182 .read = perf_read,
2183 .poll = perf_poll,
2184 .unlocked_ioctl = perf_ioctl,
2185 .compat_ioctl = perf_ioctl,
2186 .mmap = perf_mmap,
2187 .fasync = perf_fasync,
2188 };
2189
2190 /*
2191 * Perf counter wakeup
2192 *
2193 * If there's data, ensure we set the poll() state and publish everything
2194 * to user-space before waking everybody up.
2195 */
2196
2197 void perf_counter_wakeup(struct perf_counter *counter)
2198 {
2199 wake_up_all(&counter->waitq);
2200
2201 if (counter->pending_kill) {
2202 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
2203 counter->pending_kill = 0;
2204 }
2205 }
2206
2207 /*
2208 * Pending wakeups
2209 *
2210 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2211 *
2212 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2213 * single linked list and use cmpxchg() to add entries lockless.
2214 */
2215
2216 static void perf_pending_counter(struct perf_pending_entry *entry)
2217 {
2218 struct perf_counter *counter = container_of(entry,
2219 struct perf_counter, pending);
2220
2221 if (counter->pending_disable) {
2222 counter->pending_disable = 0;
2223 perf_counter_disable(counter);
2224 }
2225
2226 if (counter->pending_wakeup) {
2227 counter->pending_wakeup = 0;
2228 perf_counter_wakeup(counter);
2229 }
2230 }
2231
2232 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2233
2234 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2235 PENDING_TAIL,
2236 };
2237
2238 static void perf_pending_queue(struct perf_pending_entry *entry,
2239 void (*func)(struct perf_pending_entry *))
2240 {
2241 struct perf_pending_entry **head;
2242
2243 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2244 return;
2245
2246 entry->func = func;
2247
2248 head = &get_cpu_var(perf_pending_head);
2249
2250 do {
2251 entry->next = *head;
2252 } while (cmpxchg(head, entry->next, entry) != entry->next);
2253
2254 set_perf_counter_pending();
2255
2256 put_cpu_var(perf_pending_head);
2257 }
2258
2259 static int __perf_pending_run(void)
2260 {
2261 struct perf_pending_entry *list;
2262 int nr = 0;
2263
2264 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2265 while (list != PENDING_TAIL) {
2266 void (*func)(struct perf_pending_entry *);
2267 struct perf_pending_entry *entry = list;
2268
2269 list = list->next;
2270
2271 func = entry->func;
2272 entry->next = NULL;
2273 /*
2274 * Ensure we observe the unqueue before we issue the wakeup,
2275 * so that we won't be waiting forever.
2276 * -- see perf_not_pending().
2277 */
2278 smp_wmb();
2279
2280 func(entry);
2281 nr++;
2282 }
2283
2284 return nr;
2285 }
2286
2287 static inline int perf_not_pending(struct perf_counter *counter)
2288 {
2289 /*
2290 * If we flush on whatever cpu we run, there is a chance we don't
2291 * need to wait.
2292 */
2293 get_cpu();
2294 __perf_pending_run();
2295 put_cpu();
2296
2297 /*
2298 * Ensure we see the proper queue state before going to sleep
2299 * so that we do not miss the wakeup. -- see perf_pending_handle()
2300 */
2301 smp_rmb();
2302 return counter->pending.next == NULL;
2303 }
2304
2305 static void perf_pending_sync(struct perf_counter *counter)
2306 {
2307 wait_event(counter->waitq, perf_not_pending(counter));
2308 }
2309
2310 void perf_counter_do_pending(void)
2311 {
2312 __perf_pending_run();
2313 }
2314
2315 /*
2316 * Callchain support -- arch specific
2317 */
2318
2319 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2320 {
2321 return NULL;
2322 }
2323
2324 /*
2325 * Output
2326 */
2327
2328 struct perf_output_handle {
2329 struct perf_counter *counter;
2330 struct perf_mmap_data *data;
2331 unsigned long head;
2332 unsigned long offset;
2333 int nmi;
2334 int sample;
2335 int locked;
2336 unsigned long flags;
2337 };
2338
2339 static bool perf_output_space(struct perf_mmap_data *data,
2340 unsigned int offset, unsigned int head)
2341 {
2342 unsigned long tail;
2343 unsigned long mask;
2344
2345 if (!data->writable)
2346 return true;
2347
2348 mask = (data->nr_pages << PAGE_SHIFT) - 1;
2349 /*
2350 * Userspace could choose to issue a mb() before updating the tail
2351 * pointer. So that all reads will be completed before the write is
2352 * issued.
2353 */
2354 tail = ACCESS_ONCE(data->user_page->data_tail);
2355 smp_rmb();
2356
2357 offset = (offset - tail) & mask;
2358 head = (head - tail) & mask;
2359
2360 if ((int)(head - offset) < 0)
2361 return false;
2362
2363 return true;
2364 }
2365
2366 static void perf_output_wakeup(struct perf_output_handle *handle)
2367 {
2368 atomic_set(&handle->data->poll, POLL_IN);
2369
2370 if (handle->nmi) {
2371 handle->counter->pending_wakeup = 1;
2372 perf_pending_queue(&handle->counter->pending,
2373 perf_pending_counter);
2374 } else
2375 perf_counter_wakeup(handle->counter);
2376 }
2377
2378 /*
2379 * Curious locking construct.
2380 *
2381 * We need to ensure a later event doesn't publish a head when a former
2382 * event isn't done writing. However since we need to deal with NMIs we
2383 * cannot fully serialize things.
2384 *
2385 * What we do is serialize between CPUs so we only have to deal with NMI
2386 * nesting on a single CPU.
2387 *
2388 * We only publish the head (and generate a wakeup) when the outer-most
2389 * event completes.
2390 */
2391 static void perf_output_lock(struct perf_output_handle *handle)
2392 {
2393 struct perf_mmap_data *data = handle->data;
2394 int cpu;
2395
2396 handle->locked = 0;
2397
2398 local_irq_save(handle->flags);
2399 cpu = smp_processor_id();
2400
2401 if (in_nmi() && atomic_read(&data->lock) == cpu)
2402 return;
2403
2404 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2405 cpu_relax();
2406
2407 handle->locked = 1;
2408 }
2409
2410 static void perf_output_unlock(struct perf_output_handle *handle)
2411 {
2412 struct perf_mmap_data *data = handle->data;
2413 unsigned long head;
2414 int cpu;
2415
2416 data->done_head = data->head;
2417
2418 if (!handle->locked)
2419 goto out;
2420
2421 again:
2422 /*
2423 * The xchg implies a full barrier that ensures all writes are done
2424 * before we publish the new head, matched by a rmb() in userspace when
2425 * reading this position.
2426 */
2427 while ((head = atomic_long_xchg(&data->done_head, 0)))
2428 data->user_page->data_head = head;
2429
2430 /*
2431 * NMI can happen here, which means we can miss a done_head update.
2432 */
2433
2434 cpu = atomic_xchg(&data->lock, -1);
2435 WARN_ON_ONCE(cpu != smp_processor_id());
2436
2437 /*
2438 * Therefore we have to validate we did not indeed do so.
2439 */
2440 if (unlikely(atomic_long_read(&data->done_head))) {
2441 /*
2442 * Since we had it locked, we can lock it again.
2443 */
2444 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2445 cpu_relax();
2446
2447 goto again;
2448 }
2449
2450 if (atomic_xchg(&data->wakeup, 0))
2451 perf_output_wakeup(handle);
2452 out:
2453 local_irq_restore(handle->flags);
2454 }
2455
2456 static void perf_output_copy(struct perf_output_handle *handle,
2457 const void *buf, unsigned int len)
2458 {
2459 unsigned int pages_mask;
2460 unsigned int offset;
2461 unsigned int size;
2462 void **pages;
2463
2464 offset = handle->offset;
2465 pages_mask = handle->data->nr_pages - 1;
2466 pages = handle->data->data_pages;
2467
2468 do {
2469 unsigned int page_offset;
2470 int nr;
2471
2472 nr = (offset >> PAGE_SHIFT) & pages_mask;
2473 page_offset = offset & (PAGE_SIZE - 1);
2474 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2475
2476 memcpy(pages[nr] + page_offset, buf, size);
2477
2478 len -= size;
2479 buf += size;
2480 offset += size;
2481 } while (len);
2482
2483 handle->offset = offset;
2484
2485 /*
2486 * Check we didn't copy past our reservation window, taking the
2487 * possible unsigned int wrap into account.
2488 */
2489 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2490 }
2491
2492 #define perf_output_put(handle, x) \
2493 perf_output_copy((handle), &(x), sizeof(x))
2494
2495 static int perf_output_begin(struct perf_output_handle *handle,
2496 struct perf_counter *counter, unsigned int size,
2497 int nmi, int sample)
2498 {
2499 struct perf_mmap_data *data;
2500 unsigned int offset, head;
2501 int have_lost;
2502 struct {
2503 struct perf_event_header header;
2504 u64 id;
2505 u64 lost;
2506 } lost_event;
2507
2508 /*
2509 * For inherited counters we send all the output towards the parent.
2510 */
2511 if (counter->parent)
2512 counter = counter->parent;
2513
2514 rcu_read_lock();
2515 data = rcu_dereference(counter->data);
2516 if (!data)
2517 goto out;
2518
2519 handle->data = data;
2520 handle->counter = counter;
2521 handle->nmi = nmi;
2522 handle->sample = sample;
2523
2524 if (!data->nr_pages)
2525 goto fail;
2526
2527 have_lost = atomic_read(&data->lost);
2528 if (have_lost)
2529 size += sizeof(lost_event);
2530
2531 perf_output_lock(handle);
2532
2533 do {
2534 offset = head = atomic_long_read(&data->head);
2535 head += size;
2536 if (unlikely(!perf_output_space(data, offset, head)))
2537 goto fail;
2538 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2539
2540 handle->offset = offset;
2541 handle->head = head;
2542
2543 if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
2544 atomic_set(&data->wakeup, 1);
2545
2546 if (have_lost) {
2547 lost_event.header.type = PERF_EVENT_LOST;
2548 lost_event.header.misc = 0;
2549 lost_event.header.size = sizeof(lost_event);
2550 lost_event.id = counter->id;
2551 lost_event.lost = atomic_xchg(&data->lost, 0);
2552
2553 perf_output_put(handle, lost_event);
2554 }
2555
2556 return 0;
2557
2558 fail:
2559 atomic_inc(&data->lost);
2560 perf_output_unlock(handle);
2561 out:
2562 rcu_read_unlock();
2563
2564 return -ENOSPC;
2565 }
2566
2567 static void perf_output_end(struct perf_output_handle *handle)
2568 {
2569 struct perf_counter *counter = handle->counter;
2570 struct perf_mmap_data *data = handle->data;
2571
2572 int wakeup_events = counter->attr.wakeup_events;
2573
2574 if (handle->sample && wakeup_events) {
2575 int events = atomic_inc_return(&data->events);
2576 if (events >= wakeup_events) {
2577 atomic_sub(wakeup_events, &data->events);
2578 atomic_set(&data->wakeup, 1);
2579 }
2580 }
2581
2582 perf_output_unlock(handle);
2583 rcu_read_unlock();
2584 }
2585
2586 static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p)
2587 {
2588 /*
2589 * only top level counters have the pid namespace they were created in
2590 */
2591 if (counter->parent)
2592 counter = counter->parent;
2593
2594 return task_tgid_nr_ns(p, counter->ns);
2595 }
2596
2597 static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p)
2598 {
2599 /*
2600 * only top level counters have the pid namespace they were created in
2601 */
2602 if (counter->parent)
2603 counter = counter->parent;
2604
2605 return task_pid_nr_ns(p, counter->ns);
2606 }
2607
2608 static void perf_counter_output(struct perf_counter *counter, int nmi,
2609 struct perf_sample_data *data)
2610 {
2611 int ret;
2612 u64 sample_type = counter->attr.sample_type;
2613 struct perf_output_handle handle;
2614 struct perf_event_header header;
2615 u64 ip;
2616 struct {
2617 u32 pid, tid;
2618 } tid_entry;
2619 struct {
2620 u64 id;
2621 u64 counter;
2622 } group_entry;
2623 struct perf_callchain_entry *callchain = NULL;
2624 int callchain_size = 0;
2625 u64 time;
2626 struct {
2627 u32 cpu, reserved;
2628 } cpu_entry;
2629
2630 header.type = PERF_EVENT_SAMPLE;
2631 header.size = sizeof(header);
2632
2633 header.misc = 0;
2634 header.misc |= perf_misc_flags(data->regs);
2635
2636 if (sample_type & PERF_SAMPLE_IP) {
2637 ip = perf_instruction_pointer(data->regs);
2638 header.size += sizeof(ip);
2639 }
2640
2641 if (sample_type & PERF_SAMPLE_TID) {
2642 /* namespace issues */
2643 tid_entry.pid = perf_counter_pid(counter, current);
2644 tid_entry.tid = perf_counter_tid(counter, current);
2645
2646 header.size += sizeof(tid_entry);
2647 }
2648
2649 if (sample_type & PERF_SAMPLE_TIME) {
2650 /*
2651 * Maybe do better on x86 and provide cpu_clock_nmi()
2652 */
2653 time = sched_clock();
2654
2655 header.size += sizeof(u64);
2656 }
2657
2658 if (sample_type & PERF_SAMPLE_ADDR)
2659 header.size += sizeof(u64);
2660
2661 if (sample_type & PERF_SAMPLE_ID)
2662 header.size += sizeof(u64);
2663
2664 if (sample_type & PERF_SAMPLE_CPU) {
2665 header.size += sizeof(cpu_entry);
2666
2667 cpu_entry.cpu = raw_smp_processor_id();
2668 cpu_entry.reserved = 0;
2669 }
2670
2671 if (sample_type & PERF_SAMPLE_PERIOD)
2672 header.size += sizeof(u64);
2673
2674 if (sample_type & PERF_SAMPLE_GROUP) {
2675 header.size += sizeof(u64) +
2676 counter->nr_siblings * sizeof(group_entry);
2677 }
2678
2679 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2680 callchain = perf_callchain(data->regs);
2681
2682 if (callchain) {
2683 callchain_size = (1 + callchain->nr) * sizeof(u64);
2684 header.size += callchain_size;
2685 } else
2686 header.size += sizeof(u64);
2687 }
2688
2689 ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2690 if (ret)
2691 return;
2692
2693 perf_output_put(&handle, header);
2694
2695 if (sample_type & PERF_SAMPLE_IP)
2696 perf_output_put(&handle, ip);
2697
2698 if (sample_type & PERF_SAMPLE_TID)
2699 perf_output_put(&handle, tid_entry);
2700
2701 if (sample_type & PERF_SAMPLE_TIME)
2702 perf_output_put(&handle, time);
2703
2704 if (sample_type & PERF_SAMPLE_ADDR)
2705 perf_output_put(&handle, data->addr);
2706
2707 if (sample_type & PERF_SAMPLE_ID)
2708 perf_output_put(&handle, counter->id);
2709
2710 if (sample_type & PERF_SAMPLE_CPU)
2711 perf_output_put(&handle, cpu_entry);
2712
2713 if (sample_type & PERF_SAMPLE_PERIOD)
2714 perf_output_put(&handle, data->period);
2715
2716 /*
2717 * XXX PERF_SAMPLE_GROUP vs inherited counters seems difficult.
2718 */
2719 if (sample_type & PERF_SAMPLE_GROUP) {
2720 struct perf_counter *leader, *sub;
2721 u64 nr = counter->nr_siblings;
2722
2723 perf_output_put(&handle, nr);
2724
2725 leader = counter->group_leader;
2726 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2727 if (sub != counter)
2728 sub->pmu->read(sub);
2729
2730 group_entry.id = sub->id;
2731 group_entry.counter = atomic64_read(&sub->count);
2732
2733 perf_output_put(&handle, group_entry);
2734 }
2735 }
2736
2737 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2738 if (callchain)
2739 perf_output_copy(&handle, callchain, callchain_size);
2740 else {
2741 u64 nr = 0;
2742 perf_output_put(&handle, nr);
2743 }
2744 }
2745
2746 perf_output_end(&handle);
2747 }
2748
2749 /*
2750 * read event
2751 */
2752
2753 struct perf_read_event {
2754 struct perf_event_header header;
2755
2756 u32 pid;
2757 u32 tid;
2758 u64 value;
2759 u64 format[3];
2760 };
2761
2762 static void
2763 perf_counter_read_event(struct perf_counter *counter,
2764 struct task_struct *task)
2765 {
2766 struct perf_output_handle handle;
2767 struct perf_read_event event = {
2768 .header = {
2769 .type = PERF_EVENT_READ,
2770 .misc = 0,
2771 .size = sizeof(event) - sizeof(event.format),
2772 },
2773 .pid = perf_counter_pid(counter, task),
2774 .tid = perf_counter_tid(counter, task),
2775 .value = atomic64_read(&counter->count),
2776 };
2777 int ret, i = 0;
2778
2779 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2780 event.header.size += sizeof(u64);
2781 event.format[i++] = counter->total_time_enabled;
2782 }
2783
2784 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2785 event.header.size += sizeof(u64);
2786 event.format[i++] = counter->total_time_running;
2787 }
2788
2789 if (counter->attr.read_format & PERF_FORMAT_ID) {
2790 u64 id;
2791
2792 event.header.size += sizeof(u64);
2793 if (counter->parent)
2794 id = counter->parent->id;
2795 else
2796 id = counter->id;
2797
2798 event.format[i++] = id;
2799 }
2800
2801 ret = perf_output_begin(&handle, counter, event.header.size, 0, 0);
2802 if (ret)
2803 return;
2804
2805 perf_output_copy(&handle, &event, event.header.size);
2806 perf_output_end(&handle);
2807 }
2808
2809 /*
2810 * fork tracking
2811 */
2812
2813 struct perf_fork_event {
2814 struct task_struct *task;
2815
2816 struct {
2817 struct perf_event_header header;
2818
2819 u32 pid;
2820 u32 ppid;
2821 } event;
2822 };
2823
2824 static void perf_counter_fork_output(struct perf_counter *counter,
2825 struct perf_fork_event *fork_event)
2826 {
2827 struct perf_output_handle handle;
2828 int size = fork_event->event.header.size;
2829 struct task_struct *task = fork_event->task;
2830 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2831
2832 if (ret)
2833 return;
2834
2835 fork_event->event.pid = perf_counter_pid(counter, task);
2836 fork_event->event.ppid = perf_counter_pid(counter, task->real_parent);
2837
2838 perf_output_put(&handle, fork_event->event);
2839 perf_output_end(&handle);
2840 }
2841
2842 static int perf_counter_fork_match(struct perf_counter *counter)
2843 {
2844 if (counter->attr.comm || counter->attr.mmap)
2845 return 1;
2846
2847 return 0;
2848 }
2849
2850 static void perf_counter_fork_ctx(struct perf_counter_context *ctx,
2851 struct perf_fork_event *fork_event)
2852 {
2853 struct perf_counter *counter;
2854
2855 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2856 return;
2857
2858 rcu_read_lock();
2859 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2860 if (perf_counter_fork_match(counter))
2861 perf_counter_fork_output(counter, fork_event);
2862 }
2863 rcu_read_unlock();
2864 }
2865
2866 static void perf_counter_fork_event(struct perf_fork_event *fork_event)
2867 {
2868 struct perf_cpu_context *cpuctx;
2869 struct perf_counter_context *ctx;
2870
2871 cpuctx = &get_cpu_var(perf_cpu_context);
2872 perf_counter_fork_ctx(&cpuctx->ctx, fork_event);
2873 put_cpu_var(perf_cpu_context);
2874
2875 rcu_read_lock();
2876 /*
2877 * doesn't really matter which of the child contexts the
2878 * events ends up in.
2879 */
2880 ctx = rcu_dereference(current->perf_counter_ctxp);
2881 if (ctx)
2882 perf_counter_fork_ctx(ctx, fork_event);
2883 rcu_read_unlock();
2884 }
2885
2886 void perf_counter_fork(struct task_struct *task)
2887 {
2888 struct perf_fork_event fork_event;
2889
2890 if (!atomic_read(&nr_comm_counters) &&
2891 !atomic_read(&nr_mmap_counters))
2892 return;
2893
2894 fork_event = (struct perf_fork_event){
2895 .task = task,
2896 .event = {
2897 .header = {
2898 .type = PERF_EVENT_FORK,
2899 .size = sizeof(fork_event.event),
2900 },
2901 },
2902 };
2903
2904 perf_counter_fork_event(&fork_event);
2905 }
2906
2907 /*
2908 * comm tracking
2909 */
2910
2911 struct perf_comm_event {
2912 struct task_struct *task;
2913 char *comm;
2914 int comm_size;
2915
2916 struct {
2917 struct perf_event_header header;
2918
2919 u32 pid;
2920 u32 tid;
2921 } event;
2922 };
2923
2924 static void perf_counter_comm_output(struct perf_counter *counter,
2925 struct perf_comm_event *comm_event)
2926 {
2927 struct perf_output_handle handle;
2928 int size = comm_event->event.header.size;
2929 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2930
2931 if (ret)
2932 return;
2933
2934 comm_event->event.pid = perf_counter_pid(counter, comm_event->task);
2935 comm_event->event.tid = perf_counter_tid(counter, comm_event->task);
2936
2937 perf_output_put(&handle, comm_event->event);
2938 perf_output_copy(&handle, comm_event->comm,
2939 comm_event->comm_size);
2940 perf_output_end(&handle);
2941 }
2942
2943 static int perf_counter_comm_match(struct perf_counter *counter)
2944 {
2945 if (counter->attr.comm)
2946 return 1;
2947
2948 return 0;
2949 }
2950
2951 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2952 struct perf_comm_event *comm_event)
2953 {
2954 struct perf_counter *counter;
2955
2956 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2957 return;
2958
2959 rcu_read_lock();
2960 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2961 if (perf_counter_comm_match(counter))
2962 perf_counter_comm_output(counter, comm_event);
2963 }
2964 rcu_read_unlock();
2965 }
2966
2967 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2968 {
2969 struct perf_cpu_context *cpuctx;
2970 struct perf_counter_context *ctx;
2971 unsigned int size;
2972 char *comm = comm_event->task->comm;
2973
2974 size = ALIGN(strlen(comm)+1, sizeof(u64));
2975
2976 comm_event->comm = comm;
2977 comm_event->comm_size = size;
2978
2979 comm_event->event.header.size = sizeof(comm_event->event) + size;
2980
2981 cpuctx = &get_cpu_var(perf_cpu_context);
2982 perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2983 put_cpu_var(perf_cpu_context);
2984
2985 rcu_read_lock();
2986 /*
2987 * doesn't really matter which of the child contexts the
2988 * events ends up in.
2989 */
2990 ctx = rcu_dereference(current->perf_counter_ctxp);
2991 if (ctx)
2992 perf_counter_comm_ctx(ctx, comm_event);
2993 rcu_read_unlock();
2994 }
2995
2996 void perf_counter_comm(struct task_struct *task)
2997 {
2998 struct perf_comm_event comm_event;
2999
3000 if (task->perf_counter_ctxp)
3001 perf_counter_enable_on_exec(task);
3002
3003 if (!atomic_read(&nr_comm_counters))
3004 return;
3005
3006 comm_event = (struct perf_comm_event){
3007 .task = task,
3008 .event = {
3009 .header = { .type = PERF_EVENT_COMM, },
3010 },
3011 };
3012
3013 perf_counter_comm_event(&comm_event);
3014 }
3015
3016 /*
3017 * mmap tracking
3018 */
3019
3020 struct perf_mmap_event {
3021 struct vm_area_struct *vma;
3022
3023 const char *file_name;
3024 int file_size;
3025
3026 struct {
3027 struct perf_event_header header;
3028
3029 u32 pid;
3030 u32 tid;
3031 u64 start;
3032 u64 len;
3033 u64 pgoff;
3034 } event;
3035 };
3036
3037 static void perf_counter_mmap_output(struct perf_counter *counter,
3038 struct perf_mmap_event *mmap_event)
3039 {
3040 struct perf_output_handle handle;
3041 int size = mmap_event->event.header.size;
3042 int ret = perf_output_begin(&handle, counter, size, 0, 0);
3043
3044 if (ret)
3045 return;
3046
3047 mmap_event->event.pid = perf_counter_pid(counter, current);
3048 mmap_event->event.tid = perf_counter_tid(counter, current);
3049
3050 perf_output_put(&handle, mmap_event->event);
3051 perf_output_copy(&handle, mmap_event->file_name,
3052 mmap_event->file_size);
3053 perf_output_end(&handle);
3054 }
3055
3056 static int perf_counter_mmap_match(struct perf_counter *counter,
3057 struct perf_mmap_event *mmap_event)
3058 {
3059 if (counter->attr.mmap)
3060 return 1;
3061
3062 return 0;
3063 }
3064
3065 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
3066 struct perf_mmap_event *mmap_event)
3067 {
3068 struct perf_counter *counter;
3069
3070 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3071 return;
3072
3073 rcu_read_lock();
3074 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3075 if (perf_counter_mmap_match(counter, mmap_event))
3076 perf_counter_mmap_output(counter, mmap_event);
3077 }
3078 rcu_read_unlock();
3079 }
3080
3081 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
3082 {
3083 struct perf_cpu_context *cpuctx;
3084 struct perf_counter_context *ctx;
3085 struct vm_area_struct *vma = mmap_event->vma;
3086 struct file *file = vma->vm_file;
3087 unsigned int size;
3088 char tmp[16];
3089 char *buf = NULL;
3090 const char *name;
3091
3092 if (file) {
3093 buf = kzalloc(PATH_MAX, GFP_KERNEL);
3094 if (!buf) {
3095 name = strncpy(tmp, "//enomem", sizeof(tmp));
3096 goto got_name;
3097 }
3098 name = d_path(&file->f_path, buf, PATH_MAX);
3099 if (IS_ERR(name)) {
3100 name = strncpy(tmp, "//toolong", sizeof(tmp));
3101 goto got_name;
3102 }
3103 } else {
3104 name = arch_vma_name(mmap_event->vma);
3105 if (name)
3106 goto got_name;
3107
3108 if (!vma->vm_mm) {
3109 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3110 goto got_name;
3111 }
3112
3113 name = strncpy(tmp, "//anon", sizeof(tmp));
3114 goto got_name;
3115 }
3116
3117 got_name:
3118 size = ALIGN(strlen(name)+1, sizeof(u64));
3119
3120 mmap_event->file_name = name;
3121 mmap_event->file_size = size;
3122
3123 mmap_event->event.header.size = sizeof(mmap_event->event) + size;
3124
3125 cpuctx = &get_cpu_var(perf_cpu_context);
3126 perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
3127 put_cpu_var(perf_cpu_context);
3128
3129 rcu_read_lock();
3130 /*
3131 * doesn't really matter which of the child contexts the
3132 * events ends up in.
3133 */
3134 ctx = rcu_dereference(current->perf_counter_ctxp);
3135 if (ctx)
3136 perf_counter_mmap_ctx(ctx, mmap_event);
3137 rcu_read_unlock();
3138
3139 kfree(buf);
3140 }
3141
3142 void __perf_counter_mmap(struct vm_area_struct *vma)
3143 {
3144 struct perf_mmap_event mmap_event;
3145
3146 if (!atomic_read(&nr_mmap_counters))
3147 return;
3148
3149 mmap_event = (struct perf_mmap_event){
3150 .vma = vma,
3151 .event = {
3152 .header = { .type = PERF_EVENT_MMAP, },
3153 .start = vma->vm_start,
3154 .len = vma->vm_end - vma->vm_start,
3155 .pgoff = vma->vm_pgoff,
3156 },
3157 };
3158
3159 perf_counter_mmap_event(&mmap_event);
3160 }
3161
3162 /*
3163 * Log sample_period changes so that analyzing tools can re-normalize the
3164 * event flow.
3165 */
3166
3167 struct freq_event {
3168 struct perf_event_header header;
3169 u64 time;
3170 u64 id;
3171 u64 period;
3172 };
3173
3174 static void perf_log_period(struct perf_counter *counter, u64 period)
3175 {
3176 struct perf_output_handle handle;
3177 struct freq_event event;
3178 int ret;
3179
3180 if (counter->hw.sample_period == period)
3181 return;
3182
3183 if (counter->attr.sample_type & PERF_SAMPLE_PERIOD)
3184 return;
3185
3186 event = (struct freq_event) {
3187 .header = {
3188 .type = PERF_EVENT_PERIOD,
3189 .misc = 0,
3190 .size = sizeof(event),
3191 },
3192 .time = sched_clock(),
3193 .id = counter->id,
3194 .period = period,
3195 };
3196
3197 ret = perf_output_begin(&handle, counter, sizeof(event), 1, 0);
3198 if (ret)
3199 return;
3200
3201 perf_output_put(&handle, event);
3202 perf_output_end(&handle);
3203 }
3204
3205 /*
3206 * IRQ throttle logging
3207 */
3208
3209 static void perf_log_throttle(struct perf_counter *counter, int enable)
3210 {
3211 struct perf_output_handle handle;
3212 int ret;
3213
3214 struct {
3215 struct perf_event_header header;
3216 u64 time;
3217 u64 id;
3218 } throttle_event = {
3219 .header = {
3220 .type = PERF_EVENT_THROTTLE + 1,
3221 .misc = 0,
3222 .size = sizeof(throttle_event),
3223 },
3224 .time = sched_clock(),
3225 .id = counter->id,
3226 };
3227
3228 ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
3229 if (ret)
3230 return;
3231
3232 perf_output_put(&handle, throttle_event);
3233 perf_output_end(&handle);
3234 }
3235
3236 /*
3237 * Generic counter overflow handling, sampling.
3238 */
3239
3240 int perf_counter_overflow(struct perf_counter *counter, int nmi,
3241 struct perf_sample_data *data)
3242 {
3243 int events = atomic_read(&counter->event_limit);
3244 int throttle = counter->pmu->unthrottle != NULL;
3245 struct hw_perf_counter *hwc = &counter->hw;
3246 int ret = 0;
3247
3248 if (!throttle) {
3249 hwc->interrupts++;
3250 } else {
3251 if (hwc->interrupts != MAX_INTERRUPTS) {
3252 hwc->interrupts++;
3253 if (HZ * hwc->interrupts >
3254 (u64)sysctl_perf_counter_sample_rate) {
3255 hwc->interrupts = MAX_INTERRUPTS;
3256 perf_log_throttle(counter, 0);
3257 ret = 1;
3258 }
3259 } else {
3260 /*
3261 * Keep re-disabling counters even though on the previous
3262 * pass we disabled it - just in case we raced with a
3263 * sched-in and the counter got enabled again:
3264 */
3265 ret = 1;
3266 }
3267 }
3268
3269 if (counter->attr.freq) {
3270 u64 now = sched_clock();
3271 s64 delta = now - hwc->freq_stamp;
3272
3273 hwc->freq_stamp = now;
3274
3275 if (delta > 0 && delta < TICK_NSEC)
3276 perf_adjust_period(counter, NSEC_PER_SEC / (int)delta);
3277 }
3278
3279 /*
3280 * XXX event_limit might not quite work as expected on inherited
3281 * counters
3282 */
3283
3284 counter->pending_kill = POLL_IN;
3285 if (events && atomic_dec_and_test(&counter->event_limit)) {
3286 ret = 1;
3287 counter->pending_kill = POLL_HUP;
3288 if (nmi) {
3289 counter->pending_disable = 1;
3290 perf_pending_queue(&counter->pending,
3291 perf_pending_counter);
3292 } else
3293 perf_counter_disable(counter);
3294 }
3295
3296 perf_counter_output(counter, nmi, data);
3297 return ret;
3298 }
3299
3300 /*
3301 * Generic software counter infrastructure
3302 */
3303
3304 static void perf_swcounter_update(struct perf_counter *counter)
3305 {
3306 struct hw_perf_counter *hwc = &counter->hw;
3307 u64 prev, now;
3308 s64 delta;
3309
3310 again:
3311 prev = atomic64_read(&hwc->prev_count);
3312 now = atomic64_read(&hwc->count);
3313 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
3314 goto again;
3315
3316 delta = now - prev;
3317
3318 atomic64_add(delta, &counter->count);
3319 atomic64_sub(delta, &hwc->period_left);
3320 }
3321
3322 static void perf_swcounter_set_period(struct perf_counter *counter)
3323 {
3324 struct hw_perf_counter *hwc = &counter->hw;
3325 s64 left = atomic64_read(&hwc->period_left);
3326 s64 period = hwc->sample_period;
3327
3328 if (unlikely(left <= -period)) {
3329 left = period;
3330 atomic64_set(&hwc->period_left, left);
3331 hwc->last_period = period;
3332 }
3333
3334 if (unlikely(left <= 0)) {
3335 left += period;
3336 atomic64_add(period, &hwc->period_left);
3337 hwc->last_period = period;
3338 }
3339
3340 atomic64_set(&hwc->prev_count, -left);
3341 atomic64_set(&hwc->count, -left);
3342 }
3343
3344 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
3345 {
3346 enum hrtimer_restart ret = HRTIMER_RESTART;
3347 struct perf_sample_data data;
3348 struct perf_counter *counter;
3349 u64 period;
3350
3351 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
3352 counter->pmu->read(counter);
3353
3354 data.addr = 0;
3355 data.regs = get_irq_regs();
3356 /*
3357 * In case we exclude kernel IPs or are somehow not in interrupt
3358 * context, provide the next best thing, the user IP.
3359 */
3360 if ((counter->attr.exclude_kernel || !data.regs) &&
3361 !counter->attr.exclude_user)
3362 data.regs = task_pt_regs(current);
3363
3364 if (data.regs) {
3365 if (perf_counter_overflow(counter, 0, &data))
3366 ret = HRTIMER_NORESTART;
3367 }
3368
3369 period = max_t(u64, 10000, counter->hw.sample_period);
3370 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3371
3372 return ret;
3373 }
3374
3375 static void perf_swcounter_overflow(struct perf_counter *counter,
3376 int nmi, struct perf_sample_data *data)
3377 {
3378 data->period = counter->hw.last_period;
3379
3380 perf_swcounter_update(counter);
3381 perf_swcounter_set_period(counter);
3382 if (perf_counter_overflow(counter, nmi, data))
3383 /* soft-disable the counter */
3384 ;
3385 }
3386
3387 static int perf_swcounter_is_counting(struct perf_counter *counter)
3388 {
3389 struct perf_counter_context *ctx;
3390 unsigned long flags;
3391 int count;
3392
3393 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
3394 return 1;
3395
3396 if (counter->state != PERF_COUNTER_STATE_INACTIVE)
3397 return 0;
3398
3399 /*
3400 * If the counter is inactive, it could be just because
3401 * its task is scheduled out, or because it's in a group
3402 * which could not go on the PMU. We want to count in
3403 * the first case but not the second. If the context is
3404 * currently active then an inactive software counter must
3405 * be the second case. If it's not currently active then
3406 * we need to know whether the counter was active when the
3407 * context was last active, which we can determine by
3408 * comparing counter->tstamp_stopped with ctx->time.
3409 *
3410 * We are within an RCU read-side critical section,
3411 * which protects the existence of *ctx.
3412 */
3413 ctx = counter->ctx;
3414 spin_lock_irqsave(&ctx->lock, flags);
3415 count = 1;
3416 /* Re-check state now we have the lock */
3417 if (counter->state < PERF_COUNTER_STATE_INACTIVE ||
3418 counter->ctx->is_active ||
3419 counter->tstamp_stopped < ctx->time)
3420 count = 0;
3421 spin_unlock_irqrestore(&ctx->lock, flags);
3422 return count;
3423 }
3424
3425 static int perf_swcounter_match(struct perf_counter *counter,
3426 enum perf_type_id type,
3427 u32 event, struct pt_regs *regs)
3428 {
3429 if (!perf_swcounter_is_counting(counter))
3430 return 0;
3431
3432 if (counter->attr.type != type)
3433 return 0;
3434 if (counter->attr.config != event)
3435 return 0;
3436
3437 if (regs) {
3438 if (counter->attr.exclude_user && user_mode(regs))
3439 return 0;
3440
3441 if (counter->attr.exclude_kernel && !user_mode(regs))
3442 return 0;
3443 }
3444
3445 return 1;
3446 }
3447
3448 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
3449 int nmi, struct perf_sample_data *data)
3450 {
3451 int neg = atomic64_add_negative(nr, &counter->hw.count);
3452
3453 if (counter->hw.sample_period && !neg && data->regs)
3454 perf_swcounter_overflow(counter, nmi, data);
3455 }
3456
3457 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
3458 enum perf_type_id type,
3459 u32 event, u64 nr, int nmi,
3460 struct perf_sample_data *data)
3461 {
3462 struct perf_counter *counter;
3463
3464 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3465 return;
3466
3467 rcu_read_lock();
3468 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3469 if (perf_swcounter_match(counter, type, event, data->regs))
3470 perf_swcounter_add(counter, nr, nmi, data);
3471 }
3472 rcu_read_unlock();
3473 }
3474
3475 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
3476 {
3477 if (in_nmi())
3478 return &cpuctx->recursion[3];
3479
3480 if (in_irq())
3481 return &cpuctx->recursion[2];
3482
3483 if (in_softirq())
3484 return &cpuctx->recursion[1];
3485
3486 return &cpuctx->recursion[0];
3487 }
3488
3489 static void do_perf_swcounter_event(enum perf_type_id type, u32 event,
3490 u64 nr, int nmi,
3491 struct perf_sample_data *data)
3492 {
3493 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3494 int *recursion = perf_swcounter_recursion_context(cpuctx);
3495 struct perf_counter_context *ctx;
3496
3497 if (*recursion)
3498 goto out;
3499
3500 (*recursion)++;
3501 barrier();
3502
3503 perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
3504 nr, nmi, data);
3505 rcu_read_lock();
3506 /*
3507 * doesn't really matter which of the child contexts the
3508 * events ends up in.
3509 */
3510 ctx = rcu_dereference(current->perf_counter_ctxp);
3511 if (ctx)
3512 perf_swcounter_ctx_event(ctx, type, event, nr, nmi, data);
3513 rcu_read_unlock();
3514
3515 barrier();
3516 (*recursion)--;
3517
3518 out:
3519 put_cpu_var(perf_cpu_context);
3520 }
3521
3522 void __perf_swcounter_event(u32 event, u64 nr, int nmi,
3523 struct pt_regs *regs, u64 addr)
3524 {
3525 struct perf_sample_data data = {
3526 .regs = regs,
3527 .addr = addr,
3528 };
3529
3530 do_perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, &data);
3531 }
3532
3533 static void perf_swcounter_read(struct perf_counter *counter)
3534 {
3535 perf_swcounter_update(counter);
3536 }
3537
3538 static int perf_swcounter_enable(struct perf_counter *counter)
3539 {
3540 perf_swcounter_set_period(counter);
3541 return 0;
3542 }
3543
3544 static void perf_swcounter_disable(struct perf_counter *counter)
3545 {
3546 perf_swcounter_update(counter);
3547 }
3548
3549 static const struct pmu perf_ops_generic = {
3550 .enable = perf_swcounter_enable,
3551 .disable = perf_swcounter_disable,
3552 .read = perf_swcounter_read,
3553 };
3554
3555 /*
3556 * Software counter: cpu wall time clock
3557 */
3558
3559 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
3560 {
3561 int cpu = raw_smp_processor_id();
3562 s64 prev;
3563 u64 now;
3564
3565 now = cpu_clock(cpu);
3566 prev = atomic64_read(&counter->hw.prev_count);
3567 atomic64_set(&counter->hw.prev_count, now);
3568 atomic64_add(now - prev, &counter->count);
3569 }
3570
3571 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
3572 {
3573 struct hw_perf_counter *hwc = &counter->hw;
3574 int cpu = raw_smp_processor_id();
3575
3576 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3577 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3578 hwc->hrtimer.function = perf_swcounter_hrtimer;
3579 if (hwc->sample_period) {
3580 u64 period = max_t(u64, 10000, hwc->sample_period);
3581 __hrtimer_start_range_ns(&hwc->hrtimer,
3582 ns_to_ktime(period), 0,
3583 HRTIMER_MODE_REL, 0);
3584 }
3585
3586 return 0;
3587 }
3588
3589 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
3590 {
3591 if (counter->hw.sample_period)
3592 hrtimer_cancel(&counter->hw.hrtimer);
3593 cpu_clock_perf_counter_update(counter);
3594 }
3595
3596 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
3597 {
3598 cpu_clock_perf_counter_update(counter);
3599 }
3600
3601 static const struct pmu perf_ops_cpu_clock = {
3602 .enable = cpu_clock_perf_counter_enable,
3603 .disable = cpu_clock_perf_counter_disable,
3604 .read = cpu_clock_perf_counter_read,
3605 };
3606
3607 /*
3608 * Software counter: task time clock
3609 */
3610
3611 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
3612 {
3613 u64 prev;
3614 s64 delta;
3615
3616 prev = atomic64_xchg(&counter->hw.prev_count, now);
3617 delta = now - prev;
3618 atomic64_add(delta, &counter->count);
3619 }
3620
3621 static int task_clock_perf_counter_enable(struct perf_counter *counter)
3622 {
3623 struct hw_perf_counter *hwc = &counter->hw;
3624 u64 now;
3625
3626 now = counter->ctx->time;
3627
3628 atomic64_set(&hwc->prev_count, now);
3629 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3630 hwc->hrtimer.function = perf_swcounter_hrtimer;
3631 if (hwc->sample_period) {
3632 u64 period = max_t(u64, 10000, hwc->sample_period);
3633 __hrtimer_start_range_ns(&hwc->hrtimer,
3634 ns_to_ktime(period), 0,
3635 HRTIMER_MODE_REL, 0);
3636 }
3637
3638 return 0;
3639 }
3640
3641 static void task_clock_perf_counter_disable(struct perf_counter *counter)
3642 {
3643 if (counter->hw.sample_period)
3644 hrtimer_cancel(&counter->hw.hrtimer);
3645 task_clock_perf_counter_update(counter, counter->ctx->time);
3646
3647 }
3648
3649 static void task_clock_perf_counter_read(struct perf_counter *counter)
3650 {
3651 u64 time;
3652
3653 if (!in_nmi()) {
3654 update_context_time(counter->ctx);
3655 time = counter->ctx->time;
3656 } else {
3657 u64 now = perf_clock();
3658 u64 delta = now - counter->ctx->timestamp;
3659 time = counter->ctx->time + delta;
3660 }
3661
3662 task_clock_perf_counter_update(counter, time);
3663 }
3664
3665 static const struct pmu perf_ops_task_clock = {
3666 .enable = task_clock_perf_counter_enable,
3667 .disable = task_clock_perf_counter_disable,
3668 .read = task_clock_perf_counter_read,
3669 };
3670
3671 #ifdef CONFIG_EVENT_PROFILE
3672 void perf_tpcounter_event(int event_id)
3673 {
3674 struct perf_sample_data data = {
3675 .regs = get_irq_regs();
3676 .addr = 0,
3677 };
3678
3679 if (!data.regs)
3680 data.regs = task_pt_regs(current);
3681
3682 do_perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, &data);
3683 }
3684 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3685
3686 extern int ftrace_profile_enable(int);
3687 extern void ftrace_profile_disable(int);
3688
3689 static void tp_perf_counter_destroy(struct perf_counter *counter)
3690 {
3691 ftrace_profile_disable(perf_event_id(&counter->attr));
3692 }
3693
3694 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3695 {
3696 int event_id = perf_event_id(&counter->attr);
3697 int ret;
3698
3699 ret = ftrace_profile_enable(event_id);
3700 if (ret)
3701 return NULL;
3702
3703 counter->destroy = tp_perf_counter_destroy;
3704
3705 return &perf_ops_generic;
3706 }
3707 #else
3708 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3709 {
3710 return NULL;
3711 }
3712 #endif
3713
3714 atomic_t perf_swcounter_enabled[PERF_COUNT_SW_MAX];
3715
3716 static void sw_perf_counter_destroy(struct perf_counter *counter)
3717 {
3718 u64 event = counter->attr.config;
3719
3720 WARN_ON(counter->parent);
3721
3722 atomic_dec(&perf_swcounter_enabled[event]);
3723 }
3724
3725 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3726 {
3727 const struct pmu *pmu = NULL;
3728 u64 event = counter->attr.config;
3729
3730 /*
3731 * Software counters (currently) can't in general distinguish
3732 * between user, kernel and hypervisor events.
3733 * However, context switches and cpu migrations are considered
3734 * to be kernel events, and page faults are never hypervisor
3735 * events.
3736 */
3737 switch (event) {
3738 case PERF_COUNT_SW_CPU_CLOCK:
3739 pmu = &perf_ops_cpu_clock;
3740
3741 break;
3742 case PERF_COUNT_SW_TASK_CLOCK:
3743 /*
3744 * If the user instantiates this as a per-cpu counter,
3745 * use the cpu_clock counter instead.
3746 */
3747 if (counter->ctx->task)
3748 pmu = &perf_ops_task_clock;
3749 else
3750 pmu = &perf_ops_cpu_clock;
3751
3752 break;
3753 case PERF_COUNT_SW_PAGE_FAULTS:
3754 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
3755 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
3756 case PERF_COUNT_SW_CONTEXT_SWITCHES:
3757 case PERF_COUNT_SW_CPU_MIGRATIONS:
3758 if (!counter->parent) {
3759 atomic_inc(&perf_swcounter_enabled[event]);
3760 counter->destroy = sw_perf_counter_destroy;
3761 }
3762 pmu = &perf_ops_generic;
3763 break;
3764 }
3765
3766 return pmu;
3767 }
3768
3769 /*
3770 * Allocate and initialize a counter structure
3771 */
3772 static struct perf_counter *
3773 perf_counter_alloc(struct perf_counter_attr *attr,
3774 int cpu,
3775 struct perf_counter_context *ctx,
3776 struct perf_counter *group_leader,
3777 struct perf_counter *parent_counter,
3778 gfp_t gfpflags)
3779 {
3780 const struct pmu *pmu;
3781 struct perf_counter *counter;
3782 struct hw_perf_counter *hwc;
3783 long err;
3784
3785 counter = kzalloc(sizeof(*counter), gfpflags);
3786 if (!counter)
3787 return ERR_PTR(-ENOMEM);
3788
3789 /*
3790 * Single counters are their own group leaders, with an
3791 * empty sibling list:
3792 */
3793 if (!group_leader)
3794 group_leader = counter;
3795
3796 mutex_init(&counter->child_mutex);
3797 INIT_LIST_HEAD(&counter->child_list);
3798
3799 INIT_LIST_HEAD(&counter->list_entry);
3800 INIT_LIST_HEAD(&counter->event_entry);
3801 INIT_LIST_HEAD(&counter->sibling_list);
3802 init_waitqueue_head(&counter->waitq);
3803
3804 mutex_init(&counter->mmap_mutex);
3805
3806 counter->cpu = cpu;
3807 counter->attr = *attr;
3808 counter->group_leader = group_leader;
3809 counter->pmu = NULL;
3810 counter->ctx = ctx;
3811 counter->oncpu = -1;
3812
3813 counter->parent = parent_counter;
3814
3815 counter->ns = get_pid_ns(current->nsproxy->pid_ns);
3816 counter->id = atomic64_inc_return(&perf_counter_id);
3817
3818 counter->state = PERF_COUNTER_STATE_INACTIVE;
3819
3820 if (attr->disabled)
3821 counter->state = PERF_COUNTER_STATE_OFF;
3822
3823 pmu = NULL;
3824
3825 hwc = &counter->hw;
3826 hwc->sample_period = attr->sample_period;
3827 if (attr->freq && attr->sample_freq)
3828 hwc->sample_period = 1;
3829
3830 atomic64_set(&hwc->period_left, hwc->sample_period);
3831
3832 /*
3833 * we currently do not support PERF_SAMPLE_GROUP on inherited counters
3834 */
3835 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_GROUP))
3836 goto done;
3837
3838 switch (attr->type) {
3839 case PERF_TYPE_RAW:
3840 case PERF_TYPE_HARDWARE:
3841 case PERF_TYPE_HW_CACHE:
3842 pmu = hw_perf_counter_init(counter);
3843 break;
3844
3845 case PERF_TYPE_SOFTWARE:
3846 pmu = sw_perf_counter_init(counter);
3847 break;
3848
3849 case PERF_TYPE_TRACEPOINT:
3850 pmu = tp_perf_counter_init(counter);
3851 break;
3852
3853 default:
3854 break;
3855 }
3856 done:
3857 err = 0;
3858 if (!pmu)
3859 err = -EINVAL;
3860 else if (IS_ERR(pmu))
3861 err = PTR_ERR(pmu);
3862
3863 if (err) {
3864 if (counter->ns)
3865 put_pid_ns(counter->ns);
3866 kfree(counter);
3867 return ERR_PTR(err);
3868 }
3869
3870 counter->pmu = pmu;
3871
3872 if (!counter->parent) {
3873 atomic_inc(&nr_counters);
3874 if (counter->attr.mmap)
3875 atomic_inc(&nr_mmap_counters);
3876 if (counter->attr.comm)
3877 atomic_inc(&nr_comm_counters);
3878 }
3879
3880 return counter;
3881 }
3882
3883 static int perf_copy_attr(struct perf_counter_attr __user *uattr,
3884 struct perf_counter_attr *attr)
3885 {
3886 int ret;
3887 u32 size;
3888
3889 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
3890 return -EFAULT;
3891
3892 /*
3893 * zero the full structure, so that a short copy will be nice.
3894 */
3895 memset(attr, 0, sizeof(*attr));
3896
3897 ret = get_user(size, &uattr->size);
3898 if (ret)
3899 return ret;
3900
3901 if (size > PAGE_SIZE) /* silly large */
3902 goto err_size;
3903
3904 if (!size) /* abi compat */
3905 size = PERF_ATTR_SIZE_VER0;
3906
3907 if (size < PERF_ATTR_SIZE_VER0)
3908 goto err_size;
3909
3910 /*
3911 * If we're handed a bigger struct than we know of,
3912 * ensure all the unknown bits are 0.
3913 */
3914 if (size > sizeof(*attr)) {
3915 unsigned long val;
3916 unsigned long __user *addr;
3917 unsigned long __user *end;
3918
3919 addr = PTR_ALIGN((void __user *)uattr + sizeof(*attr),
3920 sizeof(unsigned long));
3921 end = PTR_ALIGN((void __user *)uattr + size,
3922 sizeof(unsigned long));
3923
3924 for (; addr < end; addr += sizeof(unsigned long)) {
3925 ret = get_user(val, addr);
3926 if (ret)
3927 return ret;
3928 if (val)
3929 goto err_size;
3930 }
3931 }
3932
3933 ret = copy_from_user(attr, uattr, size);
3934 if (ret)
3935 return -EFAULT;
3936
3937 /*
3938 * If the type exists, the corresponding creation will verify
3939 * the attr->config.
3940 */
3941 if (attr->type >= PERF_TYPE_MAX)
3942 return -EINVAL;
3943
3944 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
3945 return -EINVAL;
3946
3947 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
3948 return -EINVAL;
3949
3950 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
3951 return -EINVAL;
3952
3953 out:
3954 return ret;
3955
3956 err_size:
3957 put_user(sizeof(*attr), &uattr->size);
3958 ret = -E2BIG;
3959 goto out;
3960 }
3961
3962 /**
3963 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
3964 *
3965 * @attr_uptr: event type attributes for monitoring/sampling
3966 * @pid: target pid
3967 * @cpu: target cpu
3968 * @group_fd: group leader counter fd
3969 */
3970 SYSCALL_DEFINE5(perf_counter_open,
3971 struct perf_counter_attr __user *, attr_uptr,
3972 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
3973 {
3974 struct perf_counter *counter, *group_leader;
3975 struct perf_counter_attr attr;
3976 struct perf_counter_context *ctx;
3977 struct file *counter_file = NULL;
3978 struct file *group_file = NULL;
3979 int fput_needed = 0;
3980 int fput_needed2 = 0;
3981 int ret;
3982
3983 /* for future expandability... */
3984 if (flags)
3985 return -EINVAL;
3986
3987 ret = perf_copy_attr(attr_uptr, &attr);
3988 if (ret)
3989 return ret;
3990
3991 if (!attr.exclude_kernel) {
3992 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
3993 return -EACCES;
3994 }
3995
3996 if (attr.freq) {
3997 if (attr.sample_freq > sysctl_perf_counter_sample_rate)
3998 return -EINVAL;
3999 }
4000
4001 /*
4002 * Get the target context (task or percpu):
4003 */
4004 ctx = find_get_context(pid, cpu);
4005 if (IS_ERR(ctx))
4006 return PTR_ERR(ctx);
4007
4008 /*
4009 * Look up the group leader (we will attach this counter to it):
4010 */
4011 group_leader = NULL;
4012 if (group_fd != -1) {
4013 ret = -EINVAL;
4014 group_file = fget_light(group_fd, &fput_needed);
4015 if (!group_file)
4016 goto err_put_context;
4017 if (group_file->f_op != &perf_fops)
4018 goto err_put_context;
4019
4020 group_leader = group_file->private_data;
4021 /*
4022 * Do not allow a recursive hierarchy (this new sibling
4023 * becoming part of another group-sibling):
4024 */
4025 if (group_leader->group_leader != group_leader)
4026 goto err_put_context;
4027 /*
4028 * Do not allow to attach to a group in a different
4029 * task or CPU context:
4030 */
4031 if (group_leader->ctx != ctx)
4032 goto err_put_context;
4033 /*
4034 * Only a group leader can be exclusive or pinned
4035 */
4036 if (attr.exclusive || attr.pinned)
4037 goto err_put_context;
4038 }
4039
4040 counter = perf_counter_alloc(&attr, cpu, ctx, group_leader,
4041 NULL, GFP_KERNEL);
4042 ret = PTR_ERR(counter);
4043 if (IS_ERR(counter))
4044 goto err_put_context;
4045
4046 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
4047 if (ret < 0)
4048 goto err_free_put_context;
4049
4050 counter_file = fget_light(ret, &fput_needed2);
4051 if (!counter_file)
4052 goto err_free_put_context;
4053
4054 counter->filp = counter_file;
4055 WARN_ON_ONCE(ctx->parent_ctx);
4056 mutex_lock(&ctx->mutex);
4057 perf_install_in_context(ctx, counter, cpu);
4058 ++ctx->generation;
4059 mutex_unlock(&ctx->mutex);
4060
4061 counter->owner = current;
4062 get_task_struct(current);
4063 mutex_lock(&current->perf_counter_mutex);
4064 list_add_tail(&counter->owner_entry, &current->perf_counter_list);
4065 mutex_unlock(&current->perf_counter_mutex);
4066
4067 fput_light(counter_file, fput_needed2);
4068
4069 out_fput:
4070 fput_light(group_file, fput_needed);
4071
4072 return ret;
4073
4074 err_free_put_context:
4075 kfree(counter);
4076
4077 err_put_context:
4078 put_ctx(ctx);
4079
4080 goto out_fput;
4081 }
4082
4083 /*
4084 * inherit a counter from parent task to child task:
4085 */
4086 static struct perf_counter *
4087 inherit_counter(struct perf_counter *parent_counter,
4088 struct task_struct *parent,
4089 struct perf_counter_context *parent_ctx,
4090 struct task_struct *child,
4091 struct perf_counter *group_leader,
4092 struct perf_counter_context *child_ctx)
4093 {
4094 struct perf_counter *child_counter;
4095
4096 /*
4097 * Instead of creating recursive hierarchies of counters,
4098 * we link inherited counters back to the original parent,
4099 * which has a filp for sure, which we use as the reference
4100 * count:
4101 */
4102 if (parent_counter->parent)
4103 parent_counter = parent_counter->parent;
4104
4105 child_counter = perf_counter_alloc(&parent_counter->attr,
4106 parent_counter->cpu, child_ctx,
4107 group_leader, parent_counter,
4108 GFP_KERNEL);
4109 if (IS_ERR(child_counter))
4110 return child_counter;
4111 get_ctx(child_ctx);
4112
4113 /*
4114 * Make the child state follow the state of the parent counter,
4115 * not its attr.disabled bit. We hold the parent's mutex,
4116 * so we won't race with perf_counter_{en, dis}able_family.
4117 */
4118 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
4119 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
4120 else
4121 child_counter->state = PERF_COUNTER_STATE_OFF;
4122
4123 if (parent_counter->attr.freq)
4124 child_counter->hw.sample_period = parent_counter->hw.sample_period;
4125
4126 /*
4127 * Link it up in the child's context:
4128 */
4129 add_counter_to_ctx(child_counter, child_ctx);
4130
4131 /*
4132 * Get a reference to the parent filp - we will fput it
4133 * when the child counter exits. This is safe to do because
4134 * we are in the parent and we know that the filp still
4135 * exists and has a nonzero count:
4136 */
4137 atomic_long_inc(&parent_counter->filp->f_count);
4138
4139 /*
4140 * Link this into the parent counter's child list
4141 */
4142 WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
4143 mutex_lock(&parent_counter->child_mutex);
4144 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
4145 mutex_unlock(&parent_counter->child_mutex);
4146
4147 return child_counter;
4148 }
4149
4150 static int inherit_group(struct perf_counter *parent_counter,
4151 struct task_struct *parent,
4152 struct perf_counter_context *parent_ctx,
4153 struct task_struct *child,
4154 struct perf_counter_context *child_ctx)
4155 {
4156 struct perf_counter *leader;
4157 struct perf_counter *sub;
4158 struct perf_counter *child_ctr;
4159
4160 leader = inherit_counter(parent_counter, parent, parent_ctx,
4161 child, NULL, child_ctx);
4162 if (IS_ERR(leader))
4163 return PTR_ERR(leader);
4164 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
4165 child_ctr = inherit_counter(sub, parent, parent_ctx,
4166 child, leader, child_ctx);
4167 if (IS_ERR(child_ctr))
4168 return PTR_ERR(child_ctr);
4169 }
4170 return 0;
4171 }
4172
4173 static void sync_child_counter(struct perf_counter *child_counter,
4174 struct task_struct *child)
4175 {
4176 struct perf_counter *parent_counter = child_counter->parent;
4177 u64 child_val;
4178
4179 if (child_counter->attr.inherit_stat)
4180 perf_counter_read_event(child_counter, child);
4181
4182 child_val = atomic64_read(&child_counter->count);
4183
4184 /*
4185 * Add back the child's count to the parent's count:
4186 */
4187 atomic64_add(child_val, &parent_counter->count);
4188 atomic64_add(child_counter->total_time_enabled,
4189 &parent_counter->child_total_time_enabled);
4190 atomic64_add(child_counter->total_time_running,
4191 &parent_counter->child_total_time_running);
4192
4193 /*
4194 * Remove this counter from the parent's list
4195 */
4196 WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
4197 mutex_lock(&parent_counter->child_mutex);
4198 list_del_init(&child_counter->child_list);
4199 mutex_unlock(&parent_counter->child_mutex);
4200
4201 /*
4202 * Release the parent counter, if this was the last
4203 * reference to it.
4204 */
4205 fput(parent_counter->filp);
4206 }
4207
4208 static void
4209 __perf_counter_exit_task(struct perf_counter *child_counter,
4210 struct perf_counter_context *child_ctx,
4211 struct task_struct *child)
4212 {
4213 struct perf_counter *parent_counter;
4214
4215 update_counter_times(child_counter);
4216 perf_counter_remove_from_context(child_counter);
4217
4218 parent_counter = child_counter->parent;
4219 /*
4220 * It can happen that parent exits first, and has counters
4221 * that are still around due to the child reference. These
4222 * counters need to be zapped - but otherwise linger.
4223 */
4224 if (parent_counter) {
4225 sync_child_counter(child_counter, child);
4226 free_counter(child_counter);
4227 }
4228 }
4229
4230 /*
4231 * When a child task exits, feed back counter values to parent counters.
4232 */
4233 void perf_counter_exit_task(struct task_struct *child)
4234 {
4235 struct perf_counter *child_counter, *tmp;
4236 struct perf_counter_context *child_ctx;
4237 unsigned long flags;
4238
4239 if (likely(!child->perf_counter_ctxp))
4240 return;
4241
4242 local_irq_save(flags);
4243 /*
4244 * We can't reschedule here because interrupts are disabled,
4245 * and either child is current or it is a task that can't be
4246 * scheduled, so we are now safe from rescheduling changing
4247 * our context.
4248 */
4249 child_ctx = child->perf_counter_ctxp;
4250 __perf_counter_task_sched_out(child_ctx);
4251
4252 /*
4253 * Take the context lock here so that if find_get_context is
4254 * reading child->perf_counter_ctxp, we wait until it has
4255 * incremented the context's refcount before we do put_ctx below.
4256 */
4257 spin_lock(&child_ctx->lock);
4258 child->perf_counter_ctxp = NULL;
4259 if (child_ctx->parent_ctx) {
4260 /*
4261 * This context is a clone; unclone it so it can't get
4262 * swapped to another process while we're removing all
4263 * the counters from it.
4264 */
4265 put_ctx(child_ctx->parent_ctx);
4266 child_ctx->parent_ctx = NULL;
4267 }
4268 spin_unlock(&child_ctx->lock);
4269 local_irq_restore(flags);
4270
4271 /*
4272 * We can recurse on the same lock type through:
4273 *
4274 * __perf_counter_exit_task()
4275 * sync_child_counter()
4276 * fput(parent_counter->filp)
4277 * perf_release()
4278 * mutex_lock(&ctx->mutex)
4279 *
4280 * But since its the parent context it won't be the same instance.
4281 */
4282 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4283
4284 again:
4285 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
4286 list_entry)
4287 __perf_counter_exit_task(child_counter, child_ctx, child);
4288
4289 /*
4290 * If the last counter was a group counter, it will have appended all
4291 * its siblings to the list, but we obtained 'tmp' before that which
4292 * will still point to the list head terminating the iteration.
4293 */
4294 if (!list_empty(&child_ctx->counter_list))
4295 goto again;
4296
4297 mutex_unlock(&child_ctx->mutex);
4298
4299 put_ctx(child_ctx);
4300 }
4301
4302 /*
4303 * free an unexposed, unused context as created by inheritance by
4304 * init_task below, used by fork() in case of fail.
4305 */
4306 void perf_counter_free_task(struct task_struct *task)
4307 {
4308 struct perf_counter_context *ctx = task->perf_counter_ctxp;
4309 struct perf_counter *counter, *tmp;
4310
4311 if (!ctx)
4312 return;
4313
4314 mutex_lock(&ctx->mutex);
4315 again:
4316 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) {
4317 struct perf_counter *parent = counter->parent;
4318
4319 if (WARN_ON_ONCE(!parent))
4320 continue;
4321
4322 mutex_lock(&parent->child_mutex);
4323 list_del_init(&counter->child_list);
4324 mutex_unlock(&parent->child_mutex);
4325
4326 fput(parent->filp);
4327
4328 list_del_counter(counter, ctx);
4329 free_counter(counter);
4330 }
4331
4332 if (!list_empty(&ctx->counter_list))
4333 goto again;
4334
4335 mutex_unlock(&ctx->mutex);
4336
4337 put_ctx(ctx);
4338 }
4339
4340 /*
4341 * Initialize the perf_counter context in task_struct
4342 */
4343 int perf_counter_init_task(struct task_struct *child)
4344 {
4345 struct perf_counter_context *child_ctx, *parent_ctx;
4346 struct perf_counter_context *cloned_ctx;
4347 struct perf_counter *counter;
4348 struct task_struct *parent = current;
4349 int inherited_all = 1;
4350 int ret = 0;
4351
4352 child->perf_counter_ctxp = NULL;
4353
4354 mutex_init(&child->perf_counter_mutex);
4355 INIT_LIST_HEAD(&child->perf_counter_list);
4356
4357 if (likely(!parent->perf_counter_ctxp))
4358 return 0;
4359
4360 /*
4361 * This is executed from the parent task context, so inherit
4362 * counters that have been marked for cloning.
4363 * First allocate and initialize a context for the child.
4364 */
4365
4366 child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
4367 if (!child_ctx)
4368 return -ENOMEM;
4369
4370 __perf_counter_init_context(child_ctx, child);
4371 child->perf_counter_ctxp = child_ctx;
4372 get_task_struct(child);
4373
4374 /*
4375 * If the parent's context is a clone, pin it so it won't get
4376 * swapped under us.
4377 */
4378 parent_ctx = perf_pin_task_context(parent);
4379
4380 /*
4381 * No need to check if parent_ctx != NULL here; since we saw
4382 * it non-NULL earlier, the only reason for it to become NULL
4383 * is if we exit, and since we're currently in the middle of
4384 * a fork we can't be exiting at the same time.
4385 */
4386
4387 /*
4388 * Lock the parent list. No need to lock the child - not PID
4389 * hashed yet and not running, so nobody can access it.
4390 */
4391 mutex_lock(&parent_ctx->mutex);
4392
4393 /*
4394 * We dont have to disable NMIs - we are only looking at
4395 * the list, not manipulating it:
4396 */
4397 list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
4398 if (counter != counter->group_leader)
4399 continue;
4400
4401 if (!counter->attr.inherit) {
4402 inherited_all = 0;
4403 continue;
4404 }
4405
4406 ret = inherit_group(counter, parent, parent_ctx,
4407 child, child_ctx);
4408 if (ret) {
4409 inherited_all = 0;
4410 break;
4411 }
4412 }
4413
4414 if (inherited_all) {
4415 /*
4416 * Mark the child context as a clone of the parent
4417 * context, or of whatever the parent is a clone of.
4418 * Note that if the parent is a clone, it could get
4419 * uncloned at any point, but that doesn't matter
4420 * because the list of counters and the generation
4421 * count can't have changed since we took the mutex.
4422 */
4423 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
4424 if (cloned_ctx) {
4425 child_ctx->parent_ctx = cloned_ctx;
4426 child_ctx->parent_gen = parent_ctx->parent_gen;
4427 } else {
4428 child_ctx->parent_ctx = parent_ctx;
4429 child_ctx->parent_gen = parent_ctx->generation;
4430 }
4431 get_ctx(child_ctx->parent_ctx);
4432 }
4433
4434 mutex_unlock(&parent_ctx->mutex);
4435
4436 perf_unpin_context(parent_ctx);
4437
4438 return ret;
4439 }
4440
4441 static void __cpuinit perf_counter_init_cpu(int cpu)
4442 {
4443 struct perf_cpu_context *cpuctx;
4444
4445 cpuctx = &per_cpu(perf_cpu_context, cpu);
4446 __perf_counter_init_context(&cpuctx->ctx, NULL);
4447
4448 spin_lock(&perf_resource_lock);
4449 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
4450 spin_unlock(&perf_resource_lock);
4451
4452 hw_perf_counter_setup(cpu);
4453 }
4454
4455 #ifdef CONFIG_HOTPLUG_CPU
4456 static void __perf_counter_exit_cpu(void *info)
4457 {
4458 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4459 struct perf_counter_context *ctx = &cpuctx->ctx;
4460 struct perf_counter *counter, *tmp;
4461
4462 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
4463 __perf_counter_remove_from_context(counter);
4464 }
4465 static void perf_counter_exit_cpu(int cpu)
4466 {
4467 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4468 struct perf_counter_context *ctx = &cpuctx->ctx;
4469
4470 mutex_lock(&ctx->mutex);
4471 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
4472 mutex_unlock(&ctx->mutex);
4473 }
4474 #else
4475 static inline void perf_counter_exit_cpu(int cpu) { }
4476 #endif
4477
4478 static int __cpuinit
4479 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
4480 {
4481 unsigned int cpu = (long)hcpu;
4482
4483 switch (action) {
4484
4485 case CPU_UP_PREPARE:
4486 case CPU_UP_PREPARE_FROZEN:
4487 perf_counter_init_cpu(cpu);
4488 break;
4489
4490 case CPU_DOWN_PREPARE:
4491 case CPU_DOWN_PREPARE_FROZEN:
4492 perf_counter_exit_cpu(cpu);
4493 break;
4494
4495 default:
4496 break;
4497 }
4498
4499 return NOTIFY_OK;
4500 }
4501
4502 /*
4503 * This has to have a higher priority than migration_notifier in sched.c.
4504 */
4505 static struct notifier_block __cpuinitdata perf_cpu_nb = {
4506 .notifier_call = perf_cpu_notify,
4507 .priority = 20,
4508 };
4509
4510 void __init perf_counter_init(void)
4511 {
4512 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
4513 (void *)(long)smp_processor_id());
4514 register_cpu_notifier(&perf_cpu_nb);
4515 }
4516
4517 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
4518 {
4519 return sprintf(buf, "%d\n", perf_reserved_percpu);
4520 }
4521
4522 static ssize_t
4523 perf_set_reserve_percpu(struct sysdev_class *class,
4524 const char *buf,
4525 size_t count)
4526 {
4527 struct perf_cpu_context *cpuctx;
4528 unsigned long val;
4529 int err, cpu, mpt;
4530
4531 err = strict_strtoul(buf, 10, &val);
4532 if (err)
4533 return err;
4534 if (val > perf_max_counters)
4535 return -EINVAL;
4536
4537 spin_lock(&perf_resource_lock);
4538 perf_reserved_percpu = val;
4539 for_each_online_cpu(cpu) {
4540 cpuctx = &per_cpu(perf_cpu_context, cpu);
4541 spin_lock_irq(&cpuctx->ctx.lock);
4542 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
4543 perf_max_counters - perf_reserved_percpu);
4544 cpuctx->max_pertask = mpt;
4545 spin_unlock_irq(&cpuctx->ctx.lock);
4546 }
4547 spin_unlock(&perf_resource_lock);
4548
4549 return count;
4550 }
4551
4552 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
4553 {
4554 return sprintf(buf, "%d\n", perf_overcommit);
4555 }
4556
4557 static ssize_t
4558 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
4559 {
4560 unsigned long val;
4561 int err;
4562
4563 err = strict_strtoul(buf, 10, &val);
4564 if (err)
4565 return err;
4566 if (val > 1)
4567 return -EINVAL;
4568
4569 spin_lock(&perf_resource_lock);
4570 perf_overcommit = val;
4571 spin_unlock(&perf_resource_lock);
4572
4573 return count;
4574 }
4575
4576 static SYSDEV_CLASS_ATTR(
4577 reserve_percpu,
4578 0644,
4579 perf_show_reserve_percpu,
4580 perf_set_reserve_percpu
4581 );
4582
4583 static SYSDEV_CLASS_ATTR(
4584 overcommit,
4585 0644,
4586 perf_show_overcommit,
4587 perf_set_overcommit
4588 );
4589
4590 static struct attribute *perfclass_attrs[] = {
4591 &attr_reserve_percpu.attr,
4592 &attr_overcommit.attr,
4593 NULL
4594 };
4595
4596 static struct attribute_group perfclass_attr_group = {
4597 .attrs = perfclass_attrs,
4598 .name = "perf_counters",
4599 };
4600
4601 static int __init perf_counter_sysfs_init(void)
4602 {
4603 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
4604 &perfclass_attr_group);
4605 }
4606 device_initcall(perf_counter_sysfs_init);