]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/perf_counter.c
perf_counter: Simplify context cleanup
[mirror_ubuntu-hirsute-kernel.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/ptrace.h>
20 #include <linux/percpu.h>
21 #include <linux/vmstat.h>
22 #include <linux/hardirq.h>
23 #include <linux/rculist.h>
24 #include <linux/uaccess.h>
25 #include <linux/syscalls.h>
26 #include <linux/anon_inodes.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/perf_counter.h>
29 #include <linux/dcache.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34 * Each CPU has a list of per CPU counters:
35 */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_tracking __read_mostly;
44 static atomic_t nr_munmap_tracking __read_mostly;
45 static atomic_t nr_comm_tracking __read_mostly;
46
47 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
48 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
49
50 /*
51 * Lock for (sysadmin-configurable) counter reservations:
52 */
53 static DEFINE_SPINLOCK(perf_resource_lock);
54
55 /*
56 * Architecture provided APIs - weak aliases:
57 */
58 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
59 {
60 return NULL;
61 }
62
63 void __weak hw_perf_disable(void) { barrier(); }
64 void __weak hw_perf_enable(void) { barrier(); }
65
66 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
67 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
68 struct perf_cpu_context *cpuctx,
69 struct perf_counter_context *ctx, int cpu)
70 {
71 return 0;
72 }
73
74 void __weak perf_counter_print_debug(void) { }
75
76 static DEFINE_PER_CPU(int, disable_count);
77
78 void __perf_disable(void)
79 {
80 __get_cpu_var(disable_count)++;
81 }
82
83 bool __perf_enable(void)
84 {
85 return !--__get_cpu_var(disable_count);
86 }
87
88 void perf_disable(void)
89 {
90 __perf_disable();
91 hw_perf_disable();
92 }
93
94 void perf_enable(void)
95 {
96 if (__perf_enable())
97 hw_perf_enable();
98 }
99
100 static void get_ctx(struct perf_counter_context *ctx)
101 {
102 atomic_inc(&ctx->refcount);
103 }
104
105 static void put_ctx(struct perf_counter_context *ctx)
106 {
107 if (atomic_dec_and_test(&ctx->refcount)) {
108 if (ctx->parent_ctx)
109 put_ctx(ctx->parent_ctx);
110 kfree(ctx);
111 }
112 }
113
114 /*
115 * Add a counter from the lists for its context.
116 * Must be called with ctx->mutex and ctx->lock held.
117 */
118 static void
119 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
120 {
121 struct perf_counter *group_leader = counter->group_leader;
122
123 /*
124 * Depending on whether it is a standalone or sibling counter,
125 * add it straight to the context's counter list, or to the group
126 * leader's sibling list:
127 */
128 if (group_leader == counter)
129 list_add_tail(&counter->list_entry, &ctx->counter_list);
130 else {
131 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
132 group_leader->nr_siblings++;
133 }
134
135 list_add_rcu(&counter->event_entry, &ctx->event_list);
136 ctx->nr_counters++;
137 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
138 ctx->nr_enabled++;
139 }
140
141 /*
142 * Remove a counter from the lists for its context.
143 * Must be called with ctx->mutex and ctx->lock held.
144 */
145 static void
146 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
147 {
148 struct perf_counter *sibling, *tmp;
149
150 if (list_empty(&counter->list_entry))
151 return;
152 ctx->nr_counters--;
153 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
154 ctx->nr_enabled--;
155
156 list_del_init(&counter->list_entry);
157 list_del_rcu(&counter->event_entry);
158
159 if (counter->group_leader != counter)
160 counter->group_leader->nr_siblings--;
161
162 /*
163 * If this was a group counter with sibling counters then
164 * upgrade the siblings to singleton counters by adding them
165 * to the context list directly:
166 */
167 list_for_each_entry_safe(sibling, tmp,
168 &counter->sibling_list, list_entry) {
169
170 list_move_tail(&sibling->list_entry, &ctx->counter_list);
171 sibling->group_leader = sibling;
172 }
173 }
174
175 static void
176 counter_sched_out(struct perf_counter *counter,
177 struct perf_cpu_context *cpuctx,
178 struct perf_counter_context *ctx)
179 {
180 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
181 return;
182
183 counter->state = PERF_COUNTER_STATE_INACTIVE;
184 counter->tstamp_stopped = ctx->time;
185 counter->pmu->disable(counter);
186 counter->oncpu = -1;
187
188 if (!is_software_counter(counter))
189 cpuctx->active_oncpu--;
190 ctx->nr_active--;
191 if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
192 cpuctx->exclusive = 0;
193 }
194
195 static void
196 group_sched_out(struct perf_counter *group_counter,
197 struct perf_cpu_context *cpuctx,
198 struct perf_counter_context *ctx)
199 {
200 struct perf_counter *counter;
201
202 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
203 return;
204
205 counter_sched_out(group_counter, cpuctx, ctx);
206
207 /*
208 * Schedule out siblings (if any):
209 */
210 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
211 counter_sched_out(counter, cpuctx, ctx);
212
213 if (group_counter->hw_event.exclusive)
214 cpuctx->exclusive = 0;
215 }
216
217 /*
218 * Mark this context as not being a clone of another.
219 * Called when counters are added to or removed from this context.
220 * We also increment our generation number so that anything that
221 * was cloned from this context before this will not match anything
222 * cloned from this context after this.
223 */
224 static void unclone_ctx(struct perf_counter_context *ctx)
225 {
226 ++ctx->generation;
227 if (!ctx->parent_ctx)
228 return;
229 put_ctx(ctx->parent_ctx);
230 ctx->parent_ctx = NULL;
231 }
232
233 /*
234 * Cross CPU call to remove a performance counter
235 *
236 * We disable the counter on the hardware level first. After that we
237 * remove it from the context list.
238 */
239 static void __perf_counter_remove_from_context(void *info)
240 {
241 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
242 struct perf_counter *counter = info;
243 struct perf_counter_context *ctx = counter->ctx;
244 unsigned long flags;
245
246 /*
247 * If this is a task context, we need to check whether it is
248 * the current task context of this cpu. If not it has been
249 * scheduled out before the smp call arrived.
250 */
251 if (ctx->task && cpuctx->task_ctx != ctx)
252 return;
253
254 spin_lock_irqsave(&ctx->lock, flags);
255 /*
256 * Protect the list operation against NMI by disabling the
257 * counters on a global level.
258 */
259 perf_disable();
260
261 counter_sched_out(counter, cpuctx, ctx);
262
263 list_del_counter(counter, ctx);
264
265 if (!ctx->task) {
266 /*
267 * Allow more per task counters with respect to the
268 * reservation:
269 */
270 cpuctx->max_pertask =
271 min(perf_max_counters - ctx->nr_counters,
272 perf_max_counters - perf_reserved_percpu);
273 }
274
275 perf_enable();
276 spin_unlock_irqrestore(&ctx->lock, flags);
277 }
278
279
280 /*
281 * Remove the counter from a task's (or a CPU's) list of counters.
282 *
283 * Must be called with ctx->mutex held.
284 *
285 * CPU counters are removed with a smp call. For task counters we only
286 * call when the task is on a CPU.
287 */
288 static void perf_counter_remove_from_context(struct perf_counter *counter)
289 {
290 struct perf_counter_context *ctx = counter->ctx;
291 struct task_struct *task = ctx->task;
292
293 unclone_ctx(ctx);
294 if (!task) {
295 /*
296 * Per cpu counters are removed via an smp call and
297 * the removal is always sucessful.
298 */
299 smp_call_function_single(counter->cpu,
300 __perf_counter_remove_from_context,
301 counter, 1);
302 return;
303 }
304
305 retry:
306 task_oncpu_function_call(task, __perf_counter_remove_from_context,
307 counter);
308
309 spin_lock_irq(&ctx->lock);
310 /*
311 * If the context is active we need to retry the smp call.
312 */
313 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
314 spin_unlock_irq(&ctx->lock);
315 goto retry;
316 }
317
318 /*
319 * The lock prevents that this context is scheduled in so we
320 * can remove the counter safely, if the call above did not
321 * succeed.
322 */
323 if (!list_empty(&counter->list_entry)) {
324 list_del_counter(counter, ctx);
325 }
326 spin_unlock_irq(&ctx->lock);
327 }
328
329 static inline u64 perf_clock(void)
330 {
331 return cpu_clock(smp_processor_id());
332 }
333
334 /*
335 * Update the record of the current time in a context.
336 */
337 static void update_context_time(struct perf_counter_context *ctx)
338 {
339 u64 now = perf_clock();
340
341 ctx->time += now - ctx->timestamp;
342 ctx->timestamp = now;
343 }
344
345 /*
346 * Update the total_time_enabled and total_time_running fields for a counter.
347 */
348 static void update_counter_times(struct perf_counter *counter)
349 {
350 struct perf_counter_context *ctx = counter->ctx;
351 u64 run_end;
352
353 if (counter->state < PERF_COUNTER_STATE_INACTIVE)
354 return;
355
356 counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
357
358 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
359 run_end = counter->tstamp_stopped;
360 else
361 run_end = ctx->time;
362
363 counter->total_time_running = run_end - counter->tstamp_running;
364 }
365
366 /*
367 * Update total_time_enabled and total_time_running for all counters in a group.
368 */
369 static void update_group_times(struct perf_counter *leader)
370 {
371 struct perf_counter *counter;
372
373 update_counter_times(leader);
374 list_for_each_entry(counter, &leader->sibling_list, list_entry)
375 update_counter_times(counter);
376 }
377
378 /*
379 * Cross CPU call to disable a performance counter
380 */
381 static void __perf_counter_disable(void *info)
382 {
383 struct perf_counter *counter = info;
384 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
385 struct perf_counter_context *ctx = counter->ctx;
386 unsigned long flags;
387
388 /*
389 * If this is a per-task counter, need to check whether this
390 * counter's task is the current task on this cpu.
391 */
392 if (ctx->task && cpuctx->task_ctx != ctx)
393 return;
394
395 spin_lock_irqsave(&ctx->lock, flags);
396
397 /*
398 * If the counter is on, turn it off.
399 * If it is in error state, leave it in error state.
400 */
401 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
402 update_context_time(ctx);
403 update_counter_times(counter);
404 if (counter == counter->group_leader)
405 group_sched_out(counter, cpuctx, ctx);
406 else
407 counter_sched_out(counter, cpuctx, ctx);
408 counter->state = PERF_COUNTER_STATE_OFF;
409 ctx->nr_enabled--;
410 }
411
412 spin_unlock_irqrestore(&ctx->lock, flags);
413 }
414
415 /*
416 * Disable a counter.
417 */
418 static void perf_counter_disable(struct perf_counter *counter)
419 {
420 struct perf_counter_context *ctx = counter->ctx;
421 struct task_struct *task = ctx->task;
422
423 if (!task) {
424 /*
425 * Disable the counter on the cpu that it's on
426 */
427 smp_call_function_single(counter->cpu, __perf_counter_disable,
428 counter, 1);
429 return;
430 }
431
432 retry:
433 task_oncpu_function_call(task, __perf_counter_disable, counter);
434
435 spin_lock_irq(&ctx->lock);
436 /*
437 * If the counter is still active, we need to retry the cross-call.
438 */
439 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
440 spin_unlock_irq(&ctx->lock);
441 goto retry;
442 }
443
444 /*
445 * Since we have the lock this context can't be scheduled
446 * in, so we can change the state safely.
447 */
448 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
449 update_counter_times(counter);
450 counter->state = PERF_COUNTER_STATE_OFF;
451 ctx->nr_enabled--;
452 }
453
454 spin_unlock_irq(&ctx->lock);
455 }
456
457 static int
458 counter_sched_in(struct perf_counter *counter,
459 struct perf_cpu_context *cpuctx,
460 struct perf_counter_context *ctx,
461 int cpu)
462 {
463 if (counter->state <= PERF_COUNTER_STATE_OFF)
464 return 0;
465
466 counter->state = PERF_COUNTER_STATE_ACTIVE;
467 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
468 /*
469 * The new state must be visible before we turn it on in the hardware:
470 */
471 smp_wmb();
472
473 if (counter->pmu->enable(counter)) {
474 counter->state = PERF_COUNTER_STATE_INACTIVE;
475 counter->oncpu = -1;
476 return -EAGAIN;
477 }
478
479 counter->tstamp_running += ctx->time - counter->tstamp_stopped;
480
481 if (!is_software_counter(counter))
482 cpuctx->active_oncpu++;
483 ctx->nr_active++;
484
485 if (counter->hw_event.exclusive)
486 cpuctx->exclusive = 1;
487
488 return 0;
489 }
490
491 static int
492 group_sched_in(struct perf_counter *group_counter,
493 struct perf_cpu_context *cpuctx,
494 struct perf_counter_context *ctx,
495 int cpu)
496 {
497 struct perf_counter *counter, *partial_group;
498 int ret;
499
500 if (group_counter->state == PERF_COUNTER_STATE_OFF)
501 return 0;
502
503 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
504 if (ret)
505 return ret < 0 ? ret : 0;
506
507 group_counter->prev_state = group_counter->state;
508 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
509 return -EAGAIN;
510
511 /*
512 * Schedule in siblings as one group (if any):
513 */
514 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
515 counter->prev_state = counter->state;
516 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
517 partial_group = counter;
518 goto group_error;
519 }
520 }
521
522 return 0;
523
524 group_error:
525 /*
526 * Groups can be scheduled in as one unit only, so undo any
527 * partial group before returning:
528 */
529 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
530 if (counter == partial_group)
531 break;
532 counter_sched_out(counter, cpuctx, ctx);
533 }
534 counter_sched_out(group_counter, cpuctx, ctx);
535
536 return -EAGAIN;
537 }
538
539 /*
540 * Return 1 for a group consisting entirely of software counters,
541 * 0 if the group contains any hardware counters.
542 */
543 static int is_software_only_group(struct perf_counter *leader)
544 {
545 struct perf_counter *counter;
546
547 if (!is_software_counter(leader))
548 return 0;
549
550 list_for_each_entry(counter, &leader->sibling_list, list_entry)
551 if (!is_software_counter(counter))
552 return 0;
553
554 return 1;
555 }
556
557 /*
558 * Work out whether we can put this counter group on the CPU now.
559 */
560 static int group_can_go_on(struct perf_counter *counter,
561 struct perf_cpu_context *cpuctx,
562 int can_add_hw)
563 {
564 /*
565 * Groups consisting entirely of software counters can always go on.
566 */
567 if (is_software_only_group(counter))
568 return 1;
569 /*
570 * If an exclusive group is already on, no other hardware
571 * counters can go on.
572 */
573 if (cpuctx->exclusive)
574 return 0;
575 /*
576 * If this group is exclusive and there are already
577 * counters on the CPU, it can't go on.
578 */
579 if (counter->hw_event.exclusive && cpuctx->active_oncpu)
580 return 0;
581 /*
582 * Otherwise, try to add it if all previous groups were able
583 * to go on.
584 */
585 return can_add_hw;
586 }
587
588 static void add_counter_to_ctx(struct perf_counter *counter,
589 struct perf_counter_context *ctx)
590 {
591 list_add_counter(counter, ctx);
592 counter->prev_state = PERF_COUNTER_STATE_OFF;
593 counter->tstamp_enabled = ctx->time;
594 counter->tstamp_running = ctx->time;
595 counter->tstamp_stopped = ctx->time;
596 }
597
598 /*
599 * Cross CPU call to install and enable a performance counter
600 *
601 * Must be called with ctx->mutex held
602 */
603 static void __perf_install_in_context(void *info)
604 {
605 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
606 struct perf_counter *counter = info;
607 struct perf_counter_context *ctx = counter->ctx;
608 struct perf_counter *leader = counter->group_leader;
609 int cpu = smp_processor_id();
610 unsigned long flags;
611 int err;
612
613 /*
614 * If this is a task context, we need to check whether it is
615 * the current task context of this cpu. If not it has been
616 * scheduled out before the smp call arrived.
617 * Or possibly this is the right context but it isn't
618 * on this cpu because it had no counters.
619 */
620 if (ctx->task && cpuctx->task_ctx != ctx) {
621 if (cpuctx->task_ctx || ctx->task != current)
622 return;
623 cpuctx->task_ctx = ctx;
624 }
625
626 spin_lock_irqsave(&ctx->lock, flags);
627 ctx->is_active = 1;
628 update_context_time(ctx);
629
630 /*
631 * Protect the list operation against NMI by disabling the
632 * counters on a global level. NOP for non NMI based counters.
633 */
634 perf_disable();
635
636 add_counter_to_ctx(counter, ctx);
637
638 /*
639 * Don't put the counter on if it is disabled or if
640 * it is in a group and the group isn't on.
641 */
642 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
643 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
644 goto unlock;
645
646 /*
647 * An exclusive counter can't go on if there are already active
648 * hardware counters, and no hardware counter can go on if there
649 * is already an exclusive counter on.
650 */
651 if (!group_can_go_on(counter, cpuctx, 1))
652 err = -EEXIST;
653 else
654 err = counter_sched_in(counter, cpuctx, ctx, cpu);
655
656 if (err) {
657 /*
658 * This counter couldn't go on. If it is in a group
659 * then we have to pull the whole group off.
660 * If the counter group is pinned then put it in error state.
661 */
662 if (leader != counter)
663 group_sched_out(leader, cpuctx, ctx);
664 if (leader->hw_event.pinned) {
665 update_group_times(leader);
666 leader->state = PERF_COUNTER_STATE_ERROR;
667 }
668 }
669
670 if (!err && !ctx->task && cpuctx->max_pertask)
671 cpuctx->max_pertask--;
672
673 unlock:
674 perf_enable();
675
676 spin_unlock_irqrestore(&ctx->lock, flags);
677 }
678
679 /*
680 * Attach a performance counter to a context
681 *
682 * First we add the counter to the list with the hardware enable bit
683 * in counter->hw_config cleared.
684 *
685 * If the counter is attached to a task which is on a CPU we use a smp
686 * call to enable it in the task context. The task might have been
687 * scheduled away, but we check this in the smp call again.
688 *
689 * Must be called with ctx->mutex held.
690 */
691 static void
692 perf_install_in_context(struct perf_counter_context *ctx,
693 struct perf_counter *counter,
694 int cpu)
695 {
696 struct task_struct *task = ctx->task;
697
698 if (!task) {
699 /*
700 * Per cpu counters are installed via an smp call and
701 * the install is always sucessful.
702 */
703 smp_call_function_single(cpu, __perf_install_in_context,
704 counter, 1);
705 return;
706 }
707
708 retry:
709 task_oncpu_function_call(task, __perf_install_in_context,
710 counter);
711
712 spin_lock_irq(&ctx->lock);
713 /*
714 * we need to retry the smp call.
715 */
716 if (ctx->is_active && list_empty(&counter->list_entry)) {
717 spin_unlock_irq(&ctx->lock);
718 goto retry;
719 }
720
721 /*
722 * The lock prevents that this context is scheduled in so we
723 * can add the counter safely, if it the call above did not
724 * succeed.
725 */
726 if (list_empty(&counter->list_entry))
727 add_counter_to_ctx(counter, ctx);
728 spin_unlock_irq(&ctx->lock);
729 }
730
731 /*
732 * Cross CPU call to enable a performance counter
733 */
734 static void __perf_counter_enable(void *info)
735 {
736 struct perf_counter *counter = info;
737 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
738 struct perf_counter_context *ctx = counter->ctx;
739 struct perf_counter *leader = counter->group_leader;
740 unsigned long flags;
741 int err;
742
743 /*
744 * If this is a per-task counter, need to check whether this
745 * counter's task is the current task on this cpu.
746 */
747 if (ctx->task && cpuctx->task_ctx != ctx) {
748 if (cpuctx->task_ctx || ctx->task != current)
749 return;
750 cpuctx->task_ctx = ctx;
751 }
752
753 spin_lock_irqsave(&ctx->lock, flags);
754 ctx->is_active = 1;
755 update_context_time(ctx);
756
757 counter->prev_state = counter->state;
758 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
759 goto unlock;
760 counter->state = PERF_COUNTER_STATE_INACTIVE;
761 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
762 ctx->nr_enabled++;
763
764 /*
765 * If the counter is in a group and isn't the group leader,
766 * then don't put it on unless the group is on.
767 */
768 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
769 goto unlock;
770
771 if (!group_can_go_on(counter, cpuctx, 1)) {
772 err = -EEXIST;
773 } else {
774 perf_disable();
775 if (counter == leader)
776 err = group_sched_in(counter, cpuctx, ctx,
777 smp_processor_id());
778 else
779 err = counter_sched_in(counter, cpuctx, ctx,
780 smp_processor_id());
781 perf_enable();
782 }
783
784 if (err) {
785 /*
786 * If this counter can't go on and it's part of a
787 * group, then the whole group has to come off.
788 */
789 if (leader != counter)
790 group_sched_out(leader, cpuctx, ctx);
791 if (leader->hw_event.pinned) {
792 update_group_times(leader);
793 leader->state = PERF_COUNTER_STATE_ERROR;
794 }
795 }
796
797 unlock:
798 spin_unlock_irqrestore(&ctx->lock, flags);
799 }
800
801 /*
802 * Enable a counter.
803 */
804 static void perf_counter_enable(struct perf_counter *counter)
805 {
806 struct perf_counter_context *ctx = counter->ctx;
807 struct task_struct *task = ctx->task;
808
809 if (!task) {
810 /*
811 * Enable the counter on the cpu that it's on
812 */
813 smp_call_function_single(counter->cpu, __perf_counter_enable,
814 counter, 1);
815 return;
816 }
817
818 spin_lock_irq(&ctx->lock);
819 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
820 goto out;
821
822 /*
823 * If the counter is in error state, clear that first.
824 * That way, if we see the counter in error state below, we
825 * know that it has gone back into error state, as distinct
826 * from the task having been scheduled away before the
827 * cross-call arrived.
828 */
829 if (counter->state == PERF_COUNTER_STATE_ERROR)
830 counter->state = PERF_COUNTER_STATE_OFF;
831
832 retry:
833 spin_unlock_irq(&ctx->lock);
834 task_oncpu_function_call(task, __perf_counter_enable, counter);
835
836 spin_lock_irq(&ctx->lock);
837
838 /*
839 * If the context is active and the counter is still off,
840 * we need to retry the cross-call.
841 */
842 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
843 goto retry;
844
845 /*
846 * Since we have the lock this context can't be scheduled
847 * in, so we can change the state safely.
848 */
849 if (counter->state == PERF_COUNTER_STATE_OFF) {
850 counter->state = PERF_COUNTER_STATE_INACTIVE;
851 counter->tstamp_enabled =
852 ctx->time - counter->total_time_enabled;
853 ctx->nr_enabled++;
854 }
855 out:
856 spin_unlock_irq(&ctx->lock);
857 }
858
859 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
860 {
861 /*
862 * not supported on inherited counters
863 */
864 if (counter->hw_event.inherit)
865 return -EINVAL;
866
867 atomic_add(refresh, &counter->event_limit);
868 perf_counter_enable(counter);
869
870 return 0;
871 }
872
873 void __perf_counter_sched_out(struct perf_counter_context *ctx,
874 struct perf_cpu_context *cpuctx)
875 {
876 struct perf_counter *counter;
877
878 spin_lock(&ctx->lock);
879 ctx->is_active = 0;
880 if (likely(!ctx->nr_counters))
881 goto out;
882 update_context_time(ctx);
883
884 perf_disable();
885 if (ctx->nr_active) {
886 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
887 if (counter != counter->group_leader)
888 counter_sched_out(counter, cpuctx, ctx);
889 else
890 group_sched_out(counter, cpuctx, ctx);
891 }
892 }
893 perf_enable();
894 out:
895 spin_unlock(&ctx->lock);
896 }
897
898 /*
899 * Test whether two contexts are equivalent, i.e. whether they
900 * have both been cloned from the same version of the same context
901 * and they both have the same number of enabled counters.
902 * If the number of enabled counters is the same, then the set
903 * of enabled counters should be the same, because these are both
904 * inherited contexts, therefore we can't access individual counters
905 * in them directly with an fd; we can only enable/disable all
906 * counters via prctl, or enable/disable all counters in a family
907 * via ioctl, which will have the same effect on both contexts.
908 */
909 static int context_equiv(struct perf_counter_context *ctx1,
910 struct perf_counter_context *ctx2)
911 {
912 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
913 && ctx1->parent_gen == ctx2->parent_gen
914 && ctx1->nr_enabled == ctx2->nr_enabled;
915 }
916
917 /*
918 * Called from scheduler to remove the counters of the current task,
919 * with interrupts disabled.
920 *
921 * We stop each counter and update the counter value in counter->count.
922 *
923 * This does not protect us against NMI, but disable()
924 * sets the disabled bit in the control field of counter _before_
925 * accessing the counter control register. If a NMI hits, then it will
926 * not restart the counter.
927 */
928 void perf_counter_task_sched_out(struct task_struct *task,
929 struct task_struct *next, int cpu)
930 {
931 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
932 struct perf_counter_context *ctx = task->perf_counter_ctxp;
933 struct perf_counter_context *next_ctx;
934 struct pt_regs *regs;
935
936 if (likely(!ctx || !cpuctx->task_ctx))
937 return;
938
939 update_context_time(ctx);
940
941 regs = task_pt_regs(task);
942 perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
943
944 next_ctx = next->perf_counter_ctxp;
945 if (next_ctx && context_equiv(ctx, next_ctx)) {
946 task->perf_counter_ctxp = next_ctx;
947 next->perf_counter_ctxp = ctx;
948 ctx->task = next;
949 next_ctx->task = task;
950 return;
951 }
952
953 __perf_counter_sched_out(ctx, cpuctx);
954
955 cpuctx->task_ctx = NULL;
956 }
957
958 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
959 {
960 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
961
962 if (!cpuctx->task_ctx)
963 return;
964 __perf_counter_sched_out(ctx, cpuctx);
965 cpuctx->task_ctx = NULL;
966 }
967
968 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
969 {
970 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
971 }
972
973 static void
974 __perf_counter_sched_in(struct perf_counter_context *ctx,
975 struct perf_cpu_context *cpuctx, int cpu)
976 {
977 struct perf_counter *counter;
978 int can_add_hw = 1;
979
980 spin_lock(&ctx->lock);
981 ctx->is_active = 1;
982 if (likely(!ctx->nr_counters))
983 goto out;
984
985 ctx->timestamp = perf_clock();
986
987 perf_disable();
988
989 /*
990 * First go through the list and put on any pinned groups
991 * in order to give them the best chance of going on.
992 */
993 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
994 if (counter->state <= PERF_COUNTER_STATE_OFF ||
995 !counter->hw_event.pinned)
996 continue;
997 if (counter->cpu != -1 && counter->cpu != cpu)
998 continue;
999
1000 if (counter != counter->group_leader)
1001 counter_sched_in(counter, cpuctx, ctx, cpu);
1002 else {
1003 if (group_can_go_on(counter, cpuctx, 1))
1004 group_sched_in(counter, cpuctx, ctx, cpu);
1005 }
1006
1007 /*
1008 * If this pinned group hasn't been scheduled,
1009 * put it in error state.
1010 */
1011 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1012 update_group_times(counter);
1013 counter->state = PERF_COUNTER_STATE_ERROR;
1014 }
1015 }
1016
1017 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1018 /*
1019 * Ignore counters in OFF or ERROR state, and
1020 * ignore pinned counters since we did them already.
1021 */
1022 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1023 counter->hw_event.pinned)
1024 continue;
1025
1026 /*
1027 * Listen to the 'cpu' scheduling filter constraint
1028 * of counters:
1029 */
1030 if (counter->cpu != -1 && counter->cpu != cpu)
1031 continue;
1032
1033 if (counter != counter->group_leader) {
1034 if (counter_sched_in(counter, cpuctx, ctx, cpu))
1035 can_add_hw = 0;
1036 } else {
1037 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1038 if (group_sched_in(counter, cpuctx, ctx, cpu))
1039 can_add_hw = 0;
1040 }
1041 }
1042 }
1043 perf_enable();
1044 out:
1045 spin_unlock(&ctx->lock);
1046 }
1047
1048 /*
1049 * Called from scheduler to add the counters of the current task
1050 * with interrupts disabled.
1051 *
1052 * We restore the counter value and then enable it.
1053 *
1054 * This does not protect us against NMI, but enable()
1055 * sets the enabled bit in the control field of counter _before_
1056 * accessing the counter control register. If a NMI hits, then it will
1057 * keep the counter running.
1058 */
1059 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1060 {
1061 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1062 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1063
1064 if (likely(!ctx))
1065 return;
1066 if (cpuctx->task_ctx == ctx)
1067 return;
1068 __perf_counter_sched_in(ctx, cpuctx, cpu);
1069 cpuctx->task_ctx = ctx;
1070 }
1071
1072 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1073 {
1074 struct perf_counter_context *ctx = &cpuctx->ctx;
1075
1076 __perf_counter_sched_in(ctx, cpuctx, cpu);
1077 }
1078
1079 int perf_counter_task_disable(void)
1080 {
1081 struct task_struct *curr = current;
1082 struct perf_counter_context *ctx = curr->perf_counter_ctxp;
1083 struct perf_counter *counter;
1084 unsigned long flags;
1085
1086 if (!ctx || !ctx->nr_counters)
1087 return 0;
1088
1089 local_irq_save(flags);
1090
1091 __perf_counter_task_sched_out(ctx);
1092
1093 spin_lock(&ctx->lock);
1094
1095 /*
1096 * Disable all the counters:
1097 */
1098 perf_disable();
1099
1100 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1101 if (counter->state != PERF_COUNTER_STATE_ERROR) {
1102 update_group_times(counter);
1103 counter->state = PERF_COUNTER_STATE_OFF;
1104 }
1105 }
1106
1107 perf_enable();
1108
1109 spin_unlock_irqrestore(&ctx->lock, flags);
1110
1111 return 0;
1112 }
1113
1114 int perf_counter_task_enable(void)
1115 {
1116 struct task_struct *curr = current;
1117 struct perf_counter_context *ctx = curr->perf_counter_ctxp;
1118 struct perf_counter *counter;
1119 unsigned long flags;
1120 int cpu;
1121
1122 if (!ctx || !ctx->nr_counters)
1123 return 0;
1124
1125 local_irq_save(flags);
1126 cpu = smp_processor_id();
1127
1128 __perf_counter_task_sched_out(ctx);
1129
1130 spin_lock(&ctx->lock);
1131
1132 /*
1133 * Disable all the counters:
1134 */
1135 perf_disable();
1136
1137 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1138 if (counter->state > PERF_COUNTER_STATE_OFF)
1139 continue;
1140 counter->state = PERF_COUNTER_STATE_INACTIVE;
1141 counter->tstamp_enabled =
1142 ctx->time - counter->total_time_enabled;
1143 counter->hw_event.disabled = 0;
1144 }
1145 perf_enable();
1146
1147 spin_unlock(&ctx->lock);
1148
1149 perf_counter_task_sched_in(curr, cpu);
1150
1151 local_irq_restore(flags);
1152
1153 return 0;
1154 }
1155
1156 static void perf_log_period(struct perf_counter *counter, u64 period);
1157
1158 static void perf_adjust_freq(struct perf_counter_context *ctx)
1159 {
1160 struct perf_counter *counter;
1161 u64 irq_period;
1162 u64 events, period;
1163 s64 delta;
1164
1165 spin_lock(&ctx->lock);
1166 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1167 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1168 continue;
1169
1170 if (!counter->hw_event.freq || !counter->hw_event.irq_freq)
1171 continue;
1172
1173 events = HZ * counter->hw.interrupts * counter->hw.irq_period;
1174 period = div64_u64(events, counter->hw_event.irq_freq);
1175
1176 delta = (s64)(1 + period - counter->hw.irq_period);
1177 delta >>= 1;
1178
1179 irq_period = counter->hw.irq_period + delta;
1180
1181 if (!irq_period)
1182 irq_period = 1;
1183
1184 perf_log_period(counter, irq_period);
1185
1186 counter->hw.irq_period = irq_period;
1187 counter->hw.interrupts = 0;
1188 }
1189 spin_unlock(&ctx->lock);
1190 }
1191
1192 /*
1193 * Round-robin a context's counters:
1194 */
1195 static void rotate_ctx(struct perf_counter_context *ctx)
1196 {
1197 struct perf_counter *counter;
1198
1199 if (!ctx->nr_counters)
1200 return;
1201
1202 spin_lock(&ctx->lock);
1203 /*
1204 * Rotate the first entry last (works just fine for group counters too):
1205 */
1206 perf_disable();
1207 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1208 list_move_tail(&counter->list_entry, &ctx->counter_list);
1209 break;
1210 }
1211 perf_enable();
1212
1213 spin_unlock(&ctx->lock);
1214 }
1215
1216 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1217 {
1218 struct perf_cpu_context *cpuctx;
1219 struct perf_counter_context *ctx;
1220
1221 if (!atomic_read(&nr_counters))
1222 return;
1223
1224 cpuctx = &per_cpu(perf_cpu_context, cpu);
1225 ctx = curr->perf_counter_ctxp;
1226
1227 perf_adjust_freq(&cpuctx->ctx);
1228 if (ctx)
1229 perf_adjust_freq(ctx);
1230
1231 perf_counter_cpu_sched_out(cpuctx);
1232 if (ctx)
1233 __perf_counter_task_sched_out(ctx);
1234
1235 rotate_ctx(&cpuctx->ctx);
1236 if (ctx)
1237 rotate_ctx(ctx);
1238
1239 perf_counter_cpu_sched_in(cpuctx, cpu);
1240 if (ctx)
1241 perf_counter_task_sched_in(curr, cpu);
1242 }
1243
1244 /*
1245 * Cross CPU call to read the hardware counter
1246 */
1247 static void __read(void *info)
1248 {
1249 struct perf_counter *counter = info;
1250 struct perf_counter_context *ctx = counter->ctx;
1251 unsigned long flags;
1252
1253 local_irq_save(flags);
1254 if (ctx->is_active)
1255 update_context_time(ctx);
1256 counter->pmu->read(counter);
1257 update_counter_times(counter);
1258 local_irq_restore(flags);
1259 }
1260
1261 static u64 perf_counter_read(struct perf_counter *counter)
1262 {
1263 /*
1264 * If counter is enabled and currently active on a CPU, update the
1265 * value in the counter structure:
1266 */
1267 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1268 smp_call_function_single(counter->oncpu,
1269 __read, counter, 1);
1270 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1271 update_counter_times(counter);
1272 }
1273
1274 return atomic64_read(&counter->count);
1275 }
1276
1277 /*
1278 * Initialize the perf_counter context in a task_struct:
1279 */
1280 static void
1281 __perf_counter_init_context(struct perf_counter_context *ctx,
1282 struct task_struct *task)
1283 {
1284 memset(ctx, 0, sizeof(*ctx));
1285 spin_lock_init(&ctx->lock);
1286 mutex_init(&ctx->mutex);
1287 INIT_LIST_HEAD(&ctx->counter_list);
1288 INIT_LIST_HEAD(&ctx->event_list);
1289 atomic_set(&ctx->refcount, 1);
1290 ctx->task = task;
1291 }
1292
1293 static void put_context(struct perf_counter_context *ctx)
1294 {
1295 if (ctx->task)
1296 put_task_struct(ctx->task);
1297 }
1298
1299 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1300 {
1301 struct perf_cpu_context *cpuctx;
1302 struct perf_counter_context *ctx;
1303 struct perf_counter_context *tctx;
1304 struct task_struct *task;
1305
1306 /*
1307 * If cpu is not a wildcard then this is a percpu counter:
1308 */
1309 if (cpu != -1) {
1310 /* Must be root to operate on a CPU counter: */
1311 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1312 return ERR_PTR(-EACCES);
1313
1314 if (cpu < 0 || cpu > num_possible_cpus())
1315 return ERR_PTR(-EINVAL);
1316
1317 /*
1318 * We could be clever and allow to attach a counter to an
1319 * offline CPU and activate it when the CPU comes up, but
1320 * that's for later.
1321 */
1322 if (!cpu_isset(cpu, cpu_online_map))
1323 return ERR_PTR(-ENODEV);
1324
1325 cpuctx = &per_cpu(perf_cpu_context, cpu);
1326 ctx = &cpuctx->ctx;
1327
1328 return ctx;
1329 }
1330
1331 rcu_read_lock();
1332 if (!pid)
1333 task = current;
1334 else
1335 task = find_task_by_vpid(pid);
1336 if (task)
1337 get_task_struct(task);
1338 rcu_read_unlock();
1339
1340 if (!task)
1341 return ERR_PTR(-ESRCH);
1342
1343 /* Reuse ptrace permission checks for now. */
1344 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1345 put_task_struct(task);
1346 return ERR_PTR(-EACCES);
1347 }
1348
1349 ctx = task->perf_counter_ctxp;
1350 if (!ctx) {
1351 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1352 if (!ctx) {
1353 put_task_struct(task);
1354 return ERR_PTR(-ENOMEM);
1355 }
1356 __perf_counter_init_context(ctx, task);
1357 /*
1358 * Make sure other cpus see correct values for *ctx
1359 * once task->perf_counter_ctxp is visible to them.
1360 */
1361 smp_wmb();
1362 tctx = cmpxchg(&task->perf_counter_ctxp, NULL, ctx);
1363 if (tctx) {
1364 /*
1365 * We raced with some other task; use
1366 * the context they set.
1367 */
1368 kfree(ctx);
1369 ctx = tctx;
1370 }
1371 }
1372
1373 return ctx;
1374 }
1375
1376 static void free_counter_rcu(struct rcu_head *head)
1377 {
1378 struct perf_counter *counter;
1379
1380 counter = container_of(head, struct perf_counter, rcu_head);
1381 put_ctx(counter->ctx);
1382 kfree(counter);
1383 }
1384
1385 static void perf_pending_sync(struct perf_counter *counter);
1386
1387 static void free_counter(struct perf_counter *counter)
1388 {
1389 perf_pending_sync(counter);
1390
1391 atomic_dec(&nr_counters);
1392 if (counter->hw_event.mmap)
1393 atomic_dec(&nr_mmap_tracking);
1394 if (counter->hw_event.munmap)
1395 atomic_dec(&nr_munmap_tracking);
1396 if (counter->hw_event.comm)
1397 atomic_dec(&nr_comm_tracking);
1398
1399 if (counter->destroy)
1400 counter->destroy(counter);
1401
1402 call_rcu(&counter->rcu_head, free_counter_rcu);
1403 }
1404
1405 /*
1406 * Called when the last reference to the file is gone.
1407 */
1408 static int perf_release(struct inode *inode, struct file *file)
1409 {
1410 struct perf_counter *counter = file->private_data;
1411 struct perf_counter_context *ctx = counter->ctx;
1412
1413 file->private_data = NULL;
1414
1415 mutex_lock(&ctx->mutex);
1416 perf_counter_remove_from_context(counter);
1417 mutex_unlock(&ctx->mutex);
1418
1419 free_counter(counter);
1420 put_context(ctx);
1421
1422 return 0;
1423 }
1424
1425 /*
1426 * Read the performance counter - simple non blocking version for now
1427 */
1428 static ssize_t
1429 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1430 {
1431 u64 values[3];
1432 int n;
1433
1434 /*
1435 * Return end-of-file for a read on a counter that is in
1436 * error state (i.e. because it was pinned but it couldn't be
1437 * scheduled on to the CPU at some point).
1438 */
1439 if (counter->state == PERF_COUNTER_STATE_ERROR)
1440 return 0;
1441
1442 mutex_lock(&counter->child_mutex);
1443 values[0] = perf_counter_read(counter);
1444 n = 1;
1445 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1446 values[n++] = counter->total_time_enabled +
1447 atomic64_read(&counter->child_total_time_enabled);
1448 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1449 values[n++] = counter->total_time_running +
1450 atomic64_read(&counter->child_total_time_running);
1451 mutex_unlock(&counter->child_mutex);
1452
1453 if (count < n * sizeof(u64))
1454 return -EINVAL;
1455 count = n * sizeof(u64);
1456
1457 if (copy_to_user(buf, values, count))
1458 return -EFAULT;
1459
1460 return count;
1461 }
1462
1463 static ssize_t
1464 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1465 {
1466 struct perf_counter *counter = file->private_data;
1467
1468 return perf_read_hw(counter, buf, count);
1469 }
1470
1471 static unsigned int perf_poll(struct file *file, poll_table *wait)
1472 {
1473 struct perf_counter *counter = file->private_data;
1474 struct perf_mmap_data *data;
1475 unsigned int events = POLL_HUP;
1476
1477 rcu_read_lock();
1478 data = rcu_dereference(counter->data);
1479 if (data)
1480 events = atomic_xchg(&data->poll, 0);
1481 rcu_read_unlock();
1482
1483 poll_wait(file, &counter->waitq, wait);
1484
1485 return events;
1486 }
1487
1488 static void perf_counter_reset(struct perf_counter *counter)
1489 {
1490 (void)perf_counter_read(counter);
1491 atomic64_set(&counter->count, 0);
1492 perf_counter_update_userpage(counter);
1493 }
1494
1495 static void perf_counter_for_each_sibling(struct perf_counter *counter,
1496 void (*func)(struct perf_counter *))
1497 {
1498 struct perf_counter_context *ctx = counter->ctx;
1499 struct perf_counter *sibling;
1500
1501 mutex_lock(&ctx->mutex);
1502 counter = counter->group_leader;
1503
1504 func(counter);
1505 list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1506 func(sibling);
1507 mutex_unlock(&ctx->mutex);
1508 }
1509
1510 static void perf_counter_for_each_child(struct perf_counter *counter,
1511 void (*func)(struct perf_counter *))
1512 {
1513 struct perf_counter *child;
1514
1515 mutex_lock(&counter->child_mutex);
1516 func(counter);
1517 list_for_each_entry(child, &counter->child_list, child_list)
1518 func(child);
1519 mutex_unlock(&counter->child_mutex);
1520 }
1521
1522 static void perf_counter_for_each(struct perf_counter *counter,
1523 void (*func)(struct perf_counter *))
1524 {
1525 struct perf_counter *child;
1526
1527 mutex_lock(&counter->child_mutex);
1528 perf_counter_for_each_sibling(counter, func);
1529 list_for_each_entry(child, &counter->child_list, child_list)
1530 perf_counter_for_each_sibling(child, func);
1531 mutex_unlock(&counter->child_mutex);
1532 }
1533
1534 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1535 {
1536 struct perf_counter *counter = file->private_data;
1537 void (*func)(struct perf_counter *);
1538 u32 flags = arg;
1539
1540 switch (cmd) {
1541 case PERF_COUNTER_IOC_ENABLE:
1542 func = perf_counter_enable;
1543 break;
1544 case PERF_COUNTER_IOC_DISABLE:
1545 func = perf_counter_disable;
1546 break;
1547 case PERF_COUNTER_IOC_RESET:
1548 func = perf_counter_reset;
1549 break;
1550
1551 case PERF_COUNTER_IOC_REFRESH:
1552 return perf_counter_refresh(counter, arg);
1553 default:
1554 return -ENOTTY;
1555 }
1556
1557 if (flags & PERF_IOC_FLAG_GROUP)
1558 perf_counter_for_each(counter, func);
1559 else
1560 perf_counter_for_each_child(counter, func);
1561
1562 return 0;
1563 }
1564
1565 /*
1566 * Callers need to ensure there can be no nesting of this function, otherwise
1567 * the seqlock logic goes bad. We can not serialize this because the arch
1568 * code calls this from NMI context.
1569 */
1570 void perf_counter_update_userpage(struct perf_counter *counter)
1571 {
1572 struct perf_mmap_data *data;
1573 struct perf_counter_mmap_page *userpg;
1574
1575 rcu_read_lock();
1576 data = rcu_dereference(counter->data);
1577 if (!data)
1578 goto unlock;
1579
1580 userpg = data->user_page;
1581
1582 /*
1583 * Disable preemption so as to not let the corresponding user-space
1584 * spin too long if we get preempted.
1585 */
1586 preempt_disable();
1587 ++userpg->lock;
1588 barrier();
1589 userpg->index = counter->hw.idx;
1590 userpg->offset = atomic64_read(&counter->count);
1591 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1592 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1593
1594 barrier();
1595 ++userpg->lock;
1596 preempt_enable();
1597 unlock:
1598 rcu_read_unlock();
1599 }
1600
1601 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1602 {
1603 struct perf_counter *counter = vma->vm_file->private_data;
1604 struct perf_mmap_data *data;
1605 int ret = VM_FAULT_SIGBUS;
1606
1607 rcu_read_lock();
1608 data = rcu_dereference(counter->data);
1609 if (!data)
1610 goto unlock;
1611
1612 if (vmf->pgoff == 0) {
1613 vmf->page = virt_to_page(data->user_page);
1614 } else {
1615 int nr = vmf->pgoff - 1;
1616
1617 if ((unsigned)nr > data->nr_pages)
1618 goto unlock;
1619
1620 vmf->page = virt_to_page(data->data_pages[nr]);
1621 }
1622 get_page(vmf->page);
1623 ret = 0;
1624 unlock:
1625 rcu_read_unlock();
1626
1627 return ret;
1628 }
1629
1630 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1631 {
1632 struct perf_mmap_data *data;
1633 unsigned long size;
1634 int i;
1635
1636 WARN_ON(atomic_read(&counter->mmap_count));
1637
1638 size = sizeof(struct perf_mmap_data);
1639 size += nr_pages * sizeof(void *);
1640
1641 data = kzalloc(size, GFP_KERNEL);
1642 if (!data)
1643 goto fail;
1644
1645 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1646 if (!data->user_page)
1647 goto fail_user_page;
1648
1649 for (i = 0; i < nr_pages; i++) {
1650 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1651 if (!data->data_pages[i])
1652 goto fail_data_pages;
1653 }
1654
1655 data->nr_pages = nr_pages;
1656 atomic_set(&data->lock, -1);
1657
1658 rcu_assign_pointer(counter->data, data);
1659
1660 return 0;
1661
1662 fail_data_pages:
1663 for (i--; i >= 0; i--)
1664 free_page((unsigned long)data->data_pages[i]);
1665
1666 free_page((unsigned long)data->user_page);
1667
1668 fail_user_page:
1669 kfree(data);
1670
1671 fail:
1672 return -ENOMEM;
1673 }
1674
1675 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1676 {
1677 struct perf_mmap_data *data = container_of(rcu_head,
1678 struct perf_mmap_data, rcu_head);
1679 int i;
1680
1681 free_page((unsigned long)data->user_page);
1682 for (i = 0; i < data->nr_pages; i++)
1683 free_page((unsigned long)data->data_pages[i]);
1684 kfree(data);
1685 }
1686
1687 static void perf_mmap_data_free(struct perf_counter *counter)
1688 {
1689 struct perf_mmap_data *data = counter->data;
1690
1691 WARN_ON(atomic_read(&counter->mmap_count));
1692
1693 rcu_assign_pointer(counter->data, NULL);
1694 call_rcu(&data->rcu_head, __perf_mmap_data_free);
1695 }
1696
1697 static void perf_mmap_open(struct vm_area_struct *vma)
1698 {
1699 struct perf_counter *counter = vma->vm_file->private_data;
1700
1701 atomic_inc(&counter->mmap_count);
1702 }
1703
1704 static void perf_mmap_close(struct vm_area_struct *vma)
1705 {
1706 struct perf_counter *counter = vma->vm_file->private_data;
1707
1708 if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1709 &counter->mmap_mutex)) {
1710 struct user_struct *user = current_user();
1711
1712 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1713 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1714 perf_mmap_data_free(counter);
1715 mutex_unlock(&counter->mmap_mutex);
1716 }
1717 }
1718
1719 static struct vm_operations_struct perf_mmap_vmops = {
1720 .open = perf_mmap_open,
1721 .close = perf_mmap_close,
1722 .fault = perf_mmap_fault,
1723 };
1724
1725 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1726 {
1727 struct perf_counter *counter = file->private_data;
1728 struct user_struct *user = current_user();
1729 unsigned long vma_size;
1730 unsigned long nr_pages;
1731 unsigned long user_locked, user_lock_limit;
1732 unsigned long locked, lock_limit;
1733 long user_extra, extra;
1734 int ret = 0;
1735
1736 if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1737 return -EINVAL;
1738
1739 vma_size = vma->vm_end - vma->vm_start;
1740 nr_pages = (vma_size / PAGE_SIZE) - 1;
1741
1742 /*
1743 * If we have data pages ensure they're a power-of-two number, so we
1744 * can do bitmasks instead of modulo.
1745 */
1746 if (nr_pages != 0 && !is_power_of_2(nr_pages))
1747 return -EINVAL;
1748
1749 if (vma_size != PAGE_SIZE * (1 + nr_pages))
1750 return -EINVAL;
1751
1752 if (vma->vm_pgoff != 0)
1753 return -EINVAL;
1754
1755 mutex_lock(&counter->mmap_mutex);
1756 if (atomic_inc_not_zero(&counter->mmap_count)) {
1757 if (nr_pages != counter->data->nr_pages)
1758 ret = -EINVAL;
1759 goto unlock;
1760 }
1761
1762 user_extra = nr_pages + 1;
1763 user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1764 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1765
1766 extra = 0;
1767 if (user_locked > user_lock_limit)
1768 extra = user_locked - user_lock_limit;
1769
1770 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1771 lock_limit >>= PAGE_SHIFT;
1772 locked = vma->vm_mm->locked_vm + extra;
1773
1774 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1775 ret = -EPERM;
1776 goto unlock;
1777 }
1778
1779 WARN_ON(counter->data);
1780 ret = perf_mmap_data_alloc(counter, nr_pages);
1781 if (ret)
1782 goto unlock;
1783
1784 atomic_set(&counter->mmap_count, 1);
1785 atomic_long_add(user_extra, &user->locked_vm);
1786 vma->vm_mm->locked_vm += extra;
1787 counter->data->nr_locked = extra;
1788 unlock:
1789 mutex_unlock(&counter->mmap_mutex);
1790
1791 vma->vm_flags &= ~VM_MAYWRITE;
1792 vma->vm_flags |= VM_RESERVED;
1793 vma->vm_ops = &perf_mmap_vmops;
1794
1795 return ret;
1796 }
1797
1798 static int perf_fasync(int fd, struct file *filp, int on)
1799 {
1800 struct perf_counter *counter = filp->private_data;
1801 struct inode *inode = filp->f_path.dentry->d_inode;
1802 int retval;
1803
1804 mutex_lock(&inode->i_mutex);
1805 retval = fasync_helper(fd, filp, on, &counter->fasync);
1806 mutex_unlock(&inode->i_mutex);
1807
1808 if (retval < 0)
1809 return retval;
1810
1811 return 0;
1812 }
1813
1814 static const struct file_operations perf_fops = {
1815 .release = perf_release,
1816 .read = perf_read,
1817 .poll = perf_poll,
1818 .unlocked_ioctl = perf_ioctl,
1819 .compat_ioctl = perf_ioctl,
1820 .mmap = perf_mmap,
1821 .fasync = perf_fasync,
1822 };
1823
1824 /*
1825 * Perf counter wakeup
1826 *
1827 * If there's data, ensure we set the poll() state and publish everything
1828 * to user-space before waking everybody up.
1829 */
1830
1831 void perf_counter_wakeup(struct perf_counter *counter)
1832 {
1833 wake_up_all(&counter->waitq);
1834
1835 if (counter->pending_kill) {
1836 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1837 counter->pending_kill = 0;
1838 }
1839 }
1840
1841 /*
1842 * Pending wakeups
1843 *
1844 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1845 *
1846 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1847 * single linked list and use cmpxchg() to add entries lockless.
1848 */
1849
1850 static void perf_pending_counter(struct perf_pending_entry *entry)
1851 {
1852 struct perf_counter *counter = container_of(entry,
1853 struct perf_counter, pending);
1854
1855 if (counter->pending_disable) {
1856 counter->pending_disable = 0;
1857 perf_counter_disable(counter);
1858 }
1859
1860 if (counter->pending_wakeup) {
1861 counter->pending_wakeup = 0;
1862 perf_counter_wakeup(counter);
1863 }
1864 }
1865
1866 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1867
1868 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1869 PENDING_TAIL,
1870 };
1871
1872 static void perf_pending_queue(struct perf_pending_entry *entry,
1873 void (*func)(struct perf_pending_entry *))
1874 {
1875 struct perf_pending_entry **head;
1876
1877 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1878 return;
1879
1880 entry->func = func;
1881
1882 head = &get_cpu_var(perf_pending_head);
1883
1884 do {
1885 entry->next = *head;
1886 } while (cmpxchg(head, entry->next, entry) != entry->next);
1887
1888 set_perf_counter_pending();
1889
1890 put_cpu_var(perf_pending_head);
1891 }
1892
1893 static int __perf_pending_run(void)
1894 {
1895 struct perf_pending_entry *list;
1896 int nr = 0;
1897
1898 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1899 while (list != PENDING_TAIL) {
1900 void (*func)(struct perf_pending_entry *);
1901 struct perf_pending_entry *entry = list;
1902
1903 list = list->next;
1904
1905 func = entry->func;
1906 entry->next = NULL;
1907 /*
1908 * Ensure we observe the unqueue before we issue the wakeup,
1909 * so that we won't be waiting forever.
1910 * -- see perf_not_pending().
1911 */
1912 smp_wmb();
1913
1914 func(entry);
1915 nr++;
1916 }
1917
1918 return nr;
1919 }
1920
1921 static inline int perf_not_pending(struct perf_counter *counter)
1922 {
1923 /*
1924 * If we flush on whatever cpu we run, there is a chance we don't
1925 * need to wait.
1926 */
1927 get_cpu();
1928 __perf_pending_run();
1929 put_cpu();
1930
1931 /*
1932 * Ensure we see the proper queue state before going to sleep
1933 * so that we do not miss the wakeup. -- see perf_pending_handle()
1934 */
1935 smp_rmb();
1936 return counter->pending.next == NULL;
1937 }
1938
1939 static void perf_pending_sync(struct perf_counter *counter)
1940 {
1941 wait_event(counter->waitq, perf_not_pending(counter));
1942 }
1943
1944 void perf_counter_do_pending(void)
1945 {
1946 __perf_pending_run();
1947 }
1948
1949 /*
1950 * Callchain support -- arch specific
1951 */
1952
1953 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1954 {
1955 return NULL;
1956 }
1957
1958 /*
1959 * Output
1960 */
1961
1962 struct perf_output_handle {
1963 struct perf_counter *counter;
1964 struct perf_mmap_data *data;
1965 unsigned int offset;
1966 unsigned int head;
1967 int nmi;
1968 int overflow;
1969 int locked;
1970 unsigned long flags;
1971 };
1972
1973 static void perf_output_wakeup(struct perf_output_handle *handle)
1974 {
1975 atomic_set(&handle->data->poll, POLL_IN);
1976
1977 if (handle->nmi) {
1978 handle->counter->pending_wakeup = 1;
1979 perf_pending_queue(&handle->counter->pending,
1980 perf_pending_counter);
1981 } else
1982 perf_counter_wakeup(handle->counter);
1983 }
1984
1985 /*
1986 * Curious locking construct.
1987 *
1988 * We need to ensure a later event doesn't publish a head when a former
1989 * event isn't done writing. However since we need to deal with NMIs we
1990 * cannot fully serialize things.
1991 *
1992 * What we do is serialize between CPUs so we only have to deal with NMI
1993 * nesting on a single CPU.
1994 *
1995 * We only publish the head (and generate a wakeup) when the outer-most
1996 * event completes.
1997 */
1998 static void perf_output_lock(struct perf_output_handle *handle)
1999 {
2000 struct perf_mmap_data *data = handle->data;
2001 int cpu;
2002
2003 handle->locked = 0;
2004
2005 local_irq_save(handle->flags);
2006 cpu = smp_processor_id();
2007
2008 if (in_nmi() && atomic_read(&data->lock) == cpu)
2009 return;
2010
2011 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2012 cpu_relax();
2013
2014 handle->locked = 1;
2015 }
2016
2017 static void perf_output_unlock(struct perf_output_handle *handle)
2018 {
2019 struct perf_mmap_data *data = handle->data;
2020 int head, cpu;
2021
2022 data->done_head = data->head;
2023
2024 if (!handle->locked)
2025 goto out;
2026
2027 again:
2028 /*
2029 * The xchg implies a full barrier that ensures all writes are done
2030 * before we publish the new head, matched by a rmb() in userspace when
2031 * reading this position.
2032 */
2033 while ((head = atomic_xchg(&data->done_head, 0)))
2034 data->user_page->data_head = head;
2035
2036 /*
2037 * NMI can happen here, which means we can miss a done_head update.
2038 */
2039
2040 cpu = atomic_xchg(&data->lock, -1);
2041 WARN_ON_ONCE(cpu != smp_processor_id());
2042
2043 /*
2044 * Therefore we have to validate we did not indeed do so.
2045 */
2046 if (unlikely(atomic_read(&data->done_head))) {
2047 /*
2048 * Since we had it locked, we can lock it again.
2049 */
2050 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2051 cpu_relax();
2052
2053 goto again;
2054 }
2055
2056 if (atomic_xchg(&data->wakeup, 0))
2057 perf_output_wakeup(handle);
2058 out:
2059 local_irq_restore(handle->flags);
2060 }
2061
2062 static int perf_output_begin(struct perf_output_handle *handle,
2063 struct perf_counter *counter, unsigned int size,
2064 int nmi, int overflow)
2065 {
2066 struct perf_mmap_data *data;
2067 unsigned int offset, head;
2068
2069 /*
2070 * For inherited counters we send all the output towards the parent.
2071 */
2072 if (counter->parent)
2073 counter = counter->parent;
2074
2075 rcu_read_lock();
2076 data = rcu_dereference(counter->data);
2077 if (!data)
2078 goto out;
2079
2080 handle->data = data;
2081 handle->counter = counter;
2082 handle->nmi = nmi;
2083 handle->overflow = overflow;
2084
2085 if (!data->nr_pages)
2086 goto fail;
2087
2088 perf_output_lock(handle);
2089
2090 do {
2091 offset = head = atomic_read(&data->head);
2092 head += size;
2093 } while (atomic_cmpxchg(&data->head, offset, head) != offset);
2094
2095 handle->offset = offset;
2096 handle->head = head;
2097
2098 if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
2099 atomic_set(&data->wakeup, 1);
2100
2101 return 0;
2102
2103 fail:
2104 perf_output_wakeup(handle);
2105 out:
2106 rcu_read_unlock();
2107
2108 return -ENOSPC;
2109 }
2110
2111 static void perf_output_copy(struct perf_output_handle *handle,
2112 void *buf, unsigned int len)
2113 {
2114 unsigned int pages_mask;
2115 unsigned int offset;
2116 unsigned int size;
2117 void **pages;
2118
2119 offset = handle->offset;
2120 pages_mask = handle->data->nr_pages - 1;
2121 pages = handle->data->data_pages;
2122
2123 do {
2124 unsigned int page_offset;
2125 int nr;
2126
2127 nr = (offset >> PAGE_SHIFT) & pages_mask;
2128 page_offset = offset & (PAGE_SIZE - 1);
2129 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2130
2131 memcpy(pages[nr] + page_offset, buf, size);
2132
2133 len -= size;
2134 buf += size;
2135 offset += size;
2136 } while (len);
2137
2138 handle->offset = offset;
2139
2140 /*
2141 * Check we didn't copy past our reservation window, taking the
2142 * possible unsigned int wrap into account.
2143 */
2144 WARN_ON_ONCE(((int)(handle->head - handle->offset)) < 0);
2145 }
2146
2147 #define perf_output_put(handle, x) \
2148 perf_output_copy((handle), &(x), sizeof(x))
2149
2150 static void perf_output_end(struct perf_output_handle *handle)
2151 {
2152 struct perf_counter *counter = handle->counter;
2153 struct perf_mmap_data *data = handle->data;
2154
2155 int wakeup_events = counter->hw_event.wakeup_events;
2156
2157 if (handle->overflow && wakeup_events) {
2158 int events = atomic_inc_return(&data->events);
2159 if (events >= wakeup_events) {
2160 atomic_sub(wakeup_events, &data->events);
2161 atomic_set(&data->wakeup, 1);
2162 }
2163 }
2164
2165 perf_output_unlock(handle);
2166 rcu_read_unlock();
2167 }
2168
2169 static void perf_counter_output(struct perf_counter *counter,
2170 int nmi, struct pt_regs *regs, u64 addr)
2171 {
2172 int ret;
2173 u64 record_type = counter->hw_event.record_type;
2174 struct perf_output_handle handle;
2175 struct perf_event_header header;
2176 u64 ip;
2177 struct {
2178 u32 pid, tid;
2179 } tid_entry;
2180 struct {
2181 u64 event;
2182 u64 counter;
2183 } group_entry;
2184 struct perf_callchain_entry *callchain = NULL;
2185 int callchain_size = 0;
2186 u64 time;
2187 struct {
2188 u32 cpu, reserved;
2189 } cpu_entry;
2190
2191 header.type = 0;
2192 header.size = sizeof(header);
2193
2194 header.misc = PERF_EVENT_MISC_OVERFLOW;
2195 header.misc |= perf_misc_flags(regs);
2196
2197 if (record_type & PERF_RECORD_IP) {
2198 ip = perf_instruction_pointer(regs);
2199 header.type |= PERF_RECORD_IP;
2200 header.size += sizeof(ip);
2201 }
2202
2203 if (record_type & PERF_RECORD_TID) {
2204 /* namespace issues */
2205 tid_entry.pid = current->group_leader->pid;
2206 tid_entry.tid = current->pid;
2207
2208 header.type |= PERF_RECORD_TID;
2209 header.size += sizeof(tid_entry);
2210 }
2211
2212 if (record_type & PERF_RECORD_TIME) {
2213 /*
2214 * Maybe do better on x86 and provide cpu_clock_nmi()
2215 */
2216 time = sched_clock();
2217
2218 header.type |= PERF_RECORD_TIME;
2219 header.size += sizeof(u64);
2220 }
2221
2222 if (record_type & PERF_RECORD_ADDR) {
2223 header.type |= PERF_RECORD_ADDR;
2224 header.size += sizeof(u64);
2225 }
2226
2227 if (record_type & PERF_RECORD_CONFIG) {
2228 header.type |= PERF_RECORD_CONFIG;
2229 header.size += sizeof(u64);
2230 }
2231
2232 if (record_type & PERF_RECORD_CPU) {
2233 header.type |= PERF_RECORD_CPU;
2234 header.size += sizeof(cpu_entry);
2235
2236 cpu_entry.cpu = raw_smp_processor_id();
2237 }
2238
2239 if (record_type & PERF_RECORD_GROUP) {
2240 header.type |= PERF_RECORD_GROUP;
2241 header.size += sizeof(u64) +
2242 counter->nr_siblings * sizeof(group_entry);
2243 }
2244
2245 if (record_type & PERF_RECORD_CALLCHAIN) {
2246 callchain = perf_callchain(regs);
2247
2248 if (callchain) {
2249 callchain_size = (1 + callchain->nr) * sizeof(u64);
2250
2251 header.type |= PERF_RECORD_CALLCHAIN;
2252 header.size += callchain_size;
2253 }
2254 }
2255
2256 ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2257 if (ret)
2258 return;
2259
2260 perf_output_put(&handle, header);
2261
2262 if (record_type & PERF_RECORD_IP)
2263 perf_output_put(&handle, ip);
2264
2265 if (record_type & PERF_RECORD_TID)
2266 perf_output_put(&handle, tid_entry);
2267
2268 if (record_type & PERF_RECORD_TIME)
2269 perf_output_put(&handle, time);
2270
2271 if (record_type & PERF_RECORD_ADDR)
2272 perf_output_put(&handle, addr);
2273
2274 if (record_type & PERF_RECORD_CONFIG)
2275 perf_output_put(&handle, counter->hw_event.config);
2276
2277 if (record_type & PERF_RECORD_CPU)
2278 perf_output_put(&handle, cpu_entry);
2279
2280 /*
2281 * XXX PERF_RECORD_GROUP vs inherited counters seems difficult.
2282 */
2283 if (record_type & PERF_RECORD_GROUP) {
2284 struct perf_counter *leader, *sub;
2285 u64 nr = counter->nr_siblings;
2286
2287 perf_output_put(&handle, nr);
2288
2289 leader = counter->group_leader;
2290 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2291 if (sub != counter)
2292 sub->pmu->read(sub);
2293
2294 group_entry.event = sub->hw_event.config;
2295 group_entry.counter = atomic64_read(&sub->count);
2296
2297 perf_output_put(&handle, group_entry);
2298 }
2299 }
2300
2301 if (callchain)
2302 perf_output_copy(&handle, callchain, callchain_size);
2303
2304 perf_output_end(&handle);
2305 }
2306
2307 /*
2308 * comm tracking
2309 */
2310
2311 struct perf_comm_event {
2312 struct task_struct *task;
2313 char *comm;
2314 int comm_size;
2315
2316 struct {
2317 struct perf_event_header header;
2318
2319 u32 pid;
2320 u32 tid;
2321 } event;
2322 };
2323
2324 static void perf_counter_comm_output(struct perf_counter *counter,
2325 struct perf_comm_event *comm_event)
2326 {
2327 struct perf_output_handle handle;
2328 int size = comm_event->event.header.size;
2329 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2330
2331 if (ret)
2332 return;
2333
2334 perf_output_put(&handle, comm_event->event);
2335 perf_output_copy(&handle, comm_event->comm,
2336 comm_event->comm_size);
2337 perf_output_end(&handle);
2338 }
2339
2340 static int perf_counter_comm_match(struct perf_counter *counter,
2341 struct perf_comm_event *comm_event)
2342 {
2343 if (counter->hw_event.comm &&
2344 comm_event->event.header.type == PERF_EVENT_COMM)
2345 return 1;
2346
2347 return 0;
2348 }
2349
2350 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2351 struct perf_comm_event *comm_event)
2352 {
2353 struct perf_counter *counter;
2354
2355 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2356 return;
2357
2358 rcu_read_lock();
2359 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2360 if (perf_counter_comm_match(counter, comm_event))
2361 perf_counter_comm_output(counter, comm_event);
2362 }
2363 rcu_read_unlock();
2364 }
2365
2366 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2367 {
2368 struct perf_cpu_context *cpuctx;
2369 unsigned int size;
2370 char *comm = comm_event->task->comm;
2371
2372 size = ALIGN(strlen(comm)+1, sizeof(u64));
2373
2374 comm_event->comm = comm;
2375 comm_event->comm_size = size;
2376
2377 comm_event->event.header.size = sizeof(comm_event->event) + size;
2378
2379 cpuctx = &get_cpu_var(perf_cpu_context);
2380 perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2381 put_cpu_var(perf_cpu_context);
2382
2383 perf_counter_comm_ctx(current->perf_counter_ctxp, comm_event);
2384 }
2385
2386 void perf_counter_comm(struct task_struct *task)
2387 {
2388 struct perf_comm_event comm_event;
2389
2390 if (!atomic_read(&nr_comm_tracking))
2391 return;
2392 if (!current->perf_counter_ctxp)
2393 return;
2394
2395 comm_event = (struct perf_comm_event){
2396 .task = task,
2397 .event = {
2398 .header = { .type = PERF_EVENT_COMM, },
2399 .pid = task->group_leader->pid,
2400 .tid = task->pid,
2401 },
2402 };
2403
2404 perf_counter_comm_event(&comm_event);
2405 }
2406
2407 /*
2408 * mmap tracking
2409 */
2410
2411 struct perf_mmap_event {
2412 struct file *file;
2413 char *file_name;
2414 int file_size;
2415
2416 struct {
2417 struct perf_event_header header;
2418
2419 u32 pid;
2420 u32 tid;
2421 u64 start;
2422 u64 len;
2423 u64 pgoff;
2424 } event;
2425 };
2426
2427 static void perf_counter_mmap_output(struct perf_counter *counter,
2428 struct perf_mmap_event *mmap_event)
2429 {
2430 struct perf_output_handle handle;
2431 int size = mmap_event->event.header.size;
2432 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2433
2434 if (ret)
2435 return;
2436
2437 perf_output_put(&handle, mmap_event->event);
2438 perf_output_copy(&handle, mmap_event->file_name,
2439 mmap_event->file_size);
2440 perf_output_end(&handle);
2441 }
2442
2443 static int perf_counter_mmap_match(struct perf_counter *counter,
2444 struct perf_mmap_event *mmap_event)
2445 {
2446 if (counter->hw_event.mmap &&
2447 mmap_event->event.header.type == PERF_EVENT_MMAP)
2448 return 1;
2449
2450 if (counter->hw_event.munmap &&
2451 mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2452 return 1;
2453
2454 return 0;
2455 }
2456
2457 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2458 struct perf_mmap_event *mmap_event)
2459 {
2460 struct perf_counter *counter;
2461
2462 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2463 return;
2464
2465 rcu_read_lock();
2466 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2467 if (perf_counter_mmap_match(counter, mmap_event))
2468 perf_counter_mmap_output(counter, mmap_event);
2469 }
2470 rcu_read_unlock();
2471 }
2472
2473 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2474 {
2475 struct perf_cpu_context *cpuctx;
2476 struct file *file = mmap_event->file;
2477 unsigned int size;
2478 char tmp[16];
2479 char *buf = NULL;
2480 char *name;
2481
2482 if (file) {
2483 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2484 if (!buf) {
2485 name = strncpy(tmp, "//enomem", sizeof(tmp));
2486 goto got_name;
2487 }
2488 name = d_path(&file->f_path, buf, PATH_MAX);
2489 if (IS_ERR(name)) {
2490 name = strncpy(tmp, "//toolong", sizeof(tmp));
2491 goto got_name;
2492 }
2493 } else {
2494 name = strncpy(tmp, "//anon", sizeof(tmp));
2495 goto got_name;
2496 }
2497
2498 got_name:
2499 size = ALIGN(strlen(name)+1, sizeof(u64));
2500
2501 mmap_event->file_name = name;
2502 mmap_event->file_size = size;
2503
2504 mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2505
2506 cpuctx = &get_cpu_var(perf_cpu_context);
2507 perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2508 put_cpu_var(perf_cpu_context);
2509
2510 perf_counter_mmap_ctx(current->perf_counter_ctxp, mmap_event);
2511
2512 kfree(buf);
2513 }
2514
2515 void perf_counter_mmap(unsigned long addr, unsigned long len,
2516 unsigned long pgoff, struct file *file)
2517 {
2518 struct perf_mmap_event mmap_event;
2519
2520 if (!atomic_read(&nr_mmap_tracking))
2521 return;
2522 if (!current->perf_counter_ctxp)
2523 return;
2524
2525 mmap_event = (struct perf_mmap_event){
2526 .file = file,
2527 .event = {
2528 .header = { .type = PERF_EVENT_MMAP, },
2529 .pid = current->group_leader->pid,
2530 .tid = current->pid,
2531 .start = addr,
2532 .len = len,
2533 .pgoff = pgoff,
2534 },
2535 };
2536
2537 perf_counter_mmap_event(&mmap_event);
2538 }
2539
2540 void perf_counter_munmap(unsigned long addr, unsigned long len,
2541 unsigned long pgoff, struct file *file)
2542 {
2543 struct perf_mmap_event mmap_event;
2544
2545 if (!atomic_read(&nr_munmap_tracking))
2546 return;
2547
2548 mmap_event = (struct perf_mmap_event){
2549 .file = file,
2550 .event = {
2551 .header = { .type = PERF_EVENT_MUNMAP, },
2552 .pid = current->group_leader->pid,
2553 .tid = current->pid,
2554 .start = addr,
2555 .len = len,
2556 .pgoff = pgoff,
2557 },
2558 };
2559
2560 perf_counter_mmap_event(&mmap_event);
2561 }
2562
2563 /*
2564 * Log irq_period changes so that analyzing tools can re-normalize the
2565 * event flow.
2566 */
2567
2568 static void perf_log_period(struct perf_counter *counter, u64 period)
2569 {
2570 struct perf_output_handle handle;
2571 int ret;
2572
2573 struct {
2574 struct perf_event_header header;
2575 u64 time;
2576 u64 period;
2577 } freq_event = {
2578 .header = {
2579 .type = PERF_EVENT_PERIOD,
2580 .misc = 0,
2581 .size = sizeof(freq_event),
2582 },
2583 .time = sched_clock(),
2584 .period = period,
2585 };
2586
2587 if (counter->hw.irq_period == period)
2588 return;
2589
2590 ret = perf_output_begin(&handle, counter, sizeof(freq_event), 0, 0);
2591 if (ret)
2592 return;
2593
2594 perf_output_put(&handle, freq_event);
2595 perf_output_end(&handle);
2596 }
2597
2598 /*
2599 * Generic counter overflow handling.
2600 */
2601
2602 int perf_counter_overflow(struct perf_counter *counter,
2603 int nmi, struct pt_regs *regs, u64 addr)
2604 {
2605 int events = atomic_read(&counter->event_limit);
2606 int ret = 0;
2607
2608 counter->hw.interrupts++;
2609
2610 /*
2611 * XXX event_limit might not quite work as expected on inherited
2612 * counters
2613 */
2614
2615 counter->pending_kill = POLL_IN;
2616 if (events && atomic_dec_and_test(&counter->event_limit)) {
2617 ret = 1;
2618 counter->pending_kill = POLL_HUP;
2619 if (nmi) {
2620 counter->pending_disable = 1;
2621 perf_pending_queue(&counter->pending,
2622 perf_pending_counter);
2623 } else
2624 perf_counter_disable(counter);
2625 }
2626
2627 perf_counter_output(counter, nmi, regs, addr);
2628 return ret;
2629 }
2630
2631 /*
2632 * Generic software counter infrastructure
2633 */
2634
2635 static void perf_swcounter_update(struct perf_counter *counter)
2636 {
2637 struct hw_perf_counter *hwc = &counter->hw;
2638 u64 prev, now;
2639 s64 delta;
2640
2641 again:
2642 prev = atomic64_read(&hwc->prev_count);
2643 now = atomic64_read(&hwc->count);
2644 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2645 goto again;
2646
2647 delta = now - prev;
2648
2649 atomic64_add(delta, &counter->count);
2650 atomic64_sub(delta, &hwc->period_left);
2651 }
2652
2653 static void perf_swcounter_set_period(struct perf_counter *counter)
2654 {
2655 struct hw_perf_counter *hwc = &counter->hw;
2656 s64 left = atomic64_read(&hwc->period_left);
2657 s64 period = hwc->irq_period;
2658
2659 if (unlikely(left <= -period)) {
2660 left = period;
2661 atomic64_set(&hwc->period_left, left);
2662 }
2663
2664 if (unlikely(left <= 0)) {
2665 left += period;
2666 atomic64_add(period, &hwc->period_left);
2667 }
2668
2669 atomic64_set(&hwc->prev_count, -left);
2670 atomic64_set(&hwc->count, -left);
2671 }
2672
2673 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2674 {
2675 enum hrtimer_restart ret = HRTIMER_RESTART;
2676 struct perf_counter *counter;
2677 struct pt_regs *regs;
2678 u64 period;
2679
2680 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2681 counter->pmu->read(counter);
2682
2683 regs = get_irq_regs();
2684 /*
2685 * In case we exclude kernel IPs or are somehow not in interrupt
2686 * context, provide the next best thing, the user IP.
2687 */
2688 if ((counter->hw_event.exclude_kernel || !regs) &&
2689 !counter->hw_event.exclude_user)
2690 regs = task_pt_regs(current);
2691
2692 if (regs) {
2693 if (perf_counter_overflow(counter, 0, regs, 0))
2694 ret = HRTIMER_NORESTART;
2695 }
2696
2697 period = max_t(u64, 10000, counter->hw.irq_period);
2698 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
2699
2700 return ret;
2701 }
2702
2703 static void perf_swcounter_overflow(struct perf_counter *counter,
2704 int nmi, struct pt_regs *regs, u64 addr)
2705 {
2706 perf_swcounter_update(counter);
2707 perf_swcounter_set_period(counter);
2708 if (perf_counter_overflow(counter, nmi, regs, addr))
2709 /* soft-disable the counter */
2710 ;
2711
2712 }
2713
2714 static int perf_swcounter_match(struct perf_counter *counter,
2715 enum perf_event_types type,
2716 u32 event, struct pt_regs *regs)
2717 {
2718 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2719 return 0;
2720
2721 if (perf_event_raw(&counter->hw_event))
2722 return 0;
2723
2724 if (perf_event_type(&counter->hw_event) != type)
2725 return 0;
2726
2727 if (perf_event_id(&counter->hw_event) != event)
2728 return 0;
2729
2730 if (counter->hw_event.exclude_user && user_mode(regs))
2731 return 0;
2732
2733 if (counter->hw_event.exclude_kernel && !user_mode(regs))
2734 return 0;
2735
2736 return 1;
2737 }
2738
2739 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2740 int nmi, struct pt_regs *regs, u64 addr)
2741 {
2742 int neg = atomic64_add_negative(nr, &counter->hw.count);
2743 if (counter->hw.irq_period && !neg)
2744 perf_swcounter_overflow(counter, nmi, regs, addr);
2745 }
2746
2747 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2748 enum perf_event_types type, u32 event,
2749 u64 nr, int nmi, struct pt_regs *regs,
2750 u64 addr)
2751 {
2752 struct perf_counter *counter;
2753
2754 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2755 return;
2756
2757 rcu_read_lock();
2758 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2759 if (perf_swcounter_match(counter, type, event, regs))
2760 perf_swcounter_add(counter, nr, nmi, regs, addr);
2761 }
2762 rcu_read_unlock();
2763 }
2764
2765 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2766 {
2767 if (in_nmi())
2768 return &cpuctx->recursion[3];
2769
2770 if (in_irq())
2771 return &cpuctx->recursion[2];
2772
2773 if (in_softirq())
2774 return &cpuctx->recursion[1];
2775
2776 return &cpuctx->recursion[0];
2777 }
2778
2779 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2780 u64 nr, int nmi, struct pt_regs *regs,
2781 u64 addr)
2782 {
2783 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2784 int *recursion = perf_swcounter_recursion_context(cpuctx);
2785
2786 if (*recursion)
2787 goto out;
2788
2789 (*recursion)++;
2790 barrier();
2791
2792 perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
2793 nr, nmi, regs, addr);
2794 if (cpuctx->task_ctx) {
2795 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2796 nr, nmi, regs, addr);
2797 }
2798
2799 barrier();
2800 (*recursion)--;
2801
2802 out:
2803 put_cpu_var(perf_cpu_context);
2804 }
2805
2806 void
2807 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2808 {
2809 __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2810 }
2811
2812 static void perf_swcounter_read(struct perf_counter *counter)
2813 {
2814 perf_swcounter_update(counter);
2815 }
2816
2817 static int perf_swcounter_enable(struct perf_counter *counter)
2818 {
2819 perf_swcounter_set_period(counter);
2820 return 0;
2821 }
2822
2823 static void perf_swcounter_disable(struct perf_counter *counter)
2824 {
2825 perf_swcounter_update(counter);
2826 }
2827
2828 static const struct pmu perf_ops_generic = {
2829 .enable = perf_swcounter_enable,
2830 .disable = perf_swcounter_disable,
2831 .read = perf_swcounter_read,
2832 };
2833
2834 /*
2835 * Software counter: cpu wall time clock
2836 */
2837
2838 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2839 {
2840 int cpu = raw_smp_processor_id();
2841 s64 prev;
2842 u64 now;
2843
2844 now = cpu_clock(cpu);
2845 prev = atomic64_read(&counter->hw.prev_count);
2846 atomic64_set(&counter->hw.prev_count, now);
2847 atomic64_add(now - prev, &counter->count);
2848 }
2849
2850 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2851 {
2852 struct hw_perf_counter *hwc = &counter->hw;
2853 int cpu = raw_smp_processor_id();
2854
2855 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2856 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2857 hwc->hrtimer.function = perf_swcounter_hrtimer;
2858 if (hwc->irq_period) {
2859 u64 period = max_t(u64, 10000, hwc->irq_period);
2860 __hrtimer_start_range_ns(&hwc->hrtimer,
2861 ns_to_ktime(period), 0,
2862 HRTIMER_MODE_REL, 0);
2863 }
2864
2865 return 0;
2866 }
2867
2868 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2869 {
2870 if (counter->hw.irq_period)
2871 hrtimer_cancel(&counter->hw.hrtimer);
2872 cpu_clock_perf_counter_update(counter);
2873 }
2874
2875 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2876 {
2877 cpu_clock_perf_counter_update(counter);
2878 }
2879
2880 static const struct pmu perf_ops_cpu_clock = {
2881 .enable = cpu_clock_perf_counter_enable,
2882 .disable = cpu_clock_perf_counter_disable,
2883 .read = cpu_clock_perf_counter_read,
2884 };
2885
2886 /*
2887 * Software counter: task time clock
2888 */
2889
2890 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2891 {
2892 u64 prev;
2893 s64 delta;
2894
2895 prev = atomic64_xchg(&counter->hw.prev_count, now);
2896 delta = now - prev;
2897 atomic64_add(delta, &counter->count);
2898 }
2899
2900 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2901 {
2902 struct hw_perf_counter *hwc = &counter->hw;
2903 u64 now;
2904
2905 now = counter->ctx->time;
2906
2907 atomic64_set(&hwc->prev_count, now);
2908 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2909 hwc->hrtimer.function = perf_swcounter_hrtimer;
2910 if (hwc->irq_period) {
2911 u64 period = max_t(u64, 10000, hwc->irq_period);
2912 __hrtimer_start_range_ns(&hwc->hrtimer,
2913 ns_to_ktime(period), 0,
2914 HRTIMER_MODE_REL, 0);
2915 }
2916
2917 return 0;
2918 }
2919
2920 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2921 {
2922 if (counter->hw.irq_period)
2923 hrtimer_cancel(&counter->hw.hrtimer);
2924 task_clock_perf_counter_update(counter, counter->ctx->time);
2925
2926 }
2927
2928 static void task_clock_perf_counter_read(struct perf_counter *counter)
2929 {
2930 u64 time;
2931
2932 if (!in_nmi()) {
2933 update_context_time(counter->ctx);
2934 time = counter->ctx->time;
2935 } else {
2936 u64 now = perf_clock();
2937 u64 delta = now - counter->ctx->timestamp;
2938 time = counter->ctx->time + delta;
2939 }
2940
2941 task_clock_perf_counter_update(counter, time);
2942 }
2943
2944 static const struct pmu perf_ops_task_clock = {
2945 .enable = task_clock_perf_counter_enable,
2946 .disable = task_clock_perf_counter_disable,
2947 .read = task_clock_perf_counter_read,
2948 };
2949
2950 /*
2951 * Software counter: cpu migrations
2952 */
2953
2954 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2955 {
2956 struct task_struct *curr = counter->ctx->task;
2957
2958 if (curr)
2959 return curr->se.nr_migrations;
2960 return cpu_nr_migrations(smp_processor_id());
2961 }
2962
2963 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2964 {
2965 u64 prev, now;
2966 s64 delta;
2967
2968 prev = atomic64_read(&counter->hw.prev_count);
2969 now = get_cpu_migrations(counter);
2970
2971 atomic64_set(&counter->hw.prev_count, now);
2972
2973 delta = now - prev;
2974
2975 atomic64_add(delta, &counter->count);
2976 }
2977
2978 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2979 {
2980 cpu_migrations_perf_counter_update(counter);
2981 }
2982
2983 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2984 {
2985 if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2986 atomic64_set(&counter->hw.prev_count,
2987 get_cpu_migrations(counter));
2988 return 0;
2989 }
2990
2991 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2992 {
2993 cpu_migrations_perf_counter_update(counter);
2994 }
2995
2996 static const struct pmu perf_ops_cpu_migrations = {
2997 .enable = cpu_migrations_perf_counter_enable,
2998 .disable = cpu_migrations_perf_counter_disable,
2999 .read = cpu_migrations_perf_counter_read,
3000 };
3001
3002 #ifdef CONFIG_EVENT_PROFILE
3003 void perf_tpcounter_event(int event_id)
3004 {
3005 struct pt_regs *regs = get_irq_regs();
3006
3007 if (!regs)
3008 regs = task_pt_regs(current);
3009
3010 __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
3011 }
3012 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3013
3014 extern int ftrace_profile_enable(int);
3015 extern void ftrace_profile_disable(int);
3016
3017 static void tp_perf_counter_destroy(struct perf_counter *counter)
3018 {
3019 ftrace_profile_disable(perf_event_id(&counter->hw_event));
3020 }
3021
3022 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3023 {
3024 int event_id = perf_event_id(&counter->hw_event);
3025 int ret;
3026
3027 ret = ftrace_profile_enable(event_id);
3028 if (ret)
3029 return NULL;
3030
3031 counter->destroy = tp_perf_counter_destroy;
3032 counter->hw.irq_period = counter->hw_event.irq_period;
3033
3034 return &perf_ops_generic;
3035 }
3036 #else
3037 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3038 {
3039 return NULL;
3040 }
3041 #endif
3042
3043 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3044 {
3045 const struct pmu *pmu = NULL;
3046
3047 /*
3048 * Software counters (currently) can't in general distinguish
3049 * between user, kernel and hypervisor events.
3050 * However, context switches and cpu migrations are considered
3051 * to be kernel events, and page faults are never hypervisor
3052 * events.
3053 */
3054 switch (perf_event_id(&counter->hw_event)) {
3055 case PERF_COUNT_CPU_CLOCK:
3056 pmu = &perf_ops_cpu_clock;
3057
3058 break;
3059 case PERF_COUNT_TASK_CLOCK:
3060 /*
3061 * If the user instantiates this as a per-cpu counter,
3062 * use the cpu_clock counter instead.
3063 */
3064 if (counter->ctx->task)
3065 pmu = &perf_ops_task_clock;
3066 else
3067 pmu = &perf_ops_cpu_clock;
3068
3069 break;
3070 case PERF_COUNT_PAGE_FAULTS:
3071 case PERF_COUNT_PAGE_FAULTS_MIN:
3072 case PERF_COUNT_PAGE_FAULTS_MAJ:
3073 case PERF_COUNT_CONTEXT_SWITCHES:
3074 pmu = &perf_ops_generic;
3075 break;
3076 case PERF_COUNT_CPU_MIGRATIONS:
3077 if (!counter->hw_event.exclude_kernel)
3078 pmu = &perf_ops_cpu_migrations;
3079 break;
3080 }
3081
3082 return pmu;
3083 }
3084
3085 /*
3086 * Allocate and initialize a counter structure
3087 */
3088 static struct perf_counter *
3089 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
3090 int cpu,
3091 struct perf_counter_context *ctx,
3092 struct perf_counter *group_leader,
3093 gfp_t gfpflags)
3094 {
3095 const struct pmu *pmu;
3096 struct perf_counter *counter;
3097 struct hw_perf_counter *hwc;
3098 long err;
3099
3100 counter = kzalloc(sizeof(*counter), gfpflags);
3101 if (!counter)
3102 return ERR_PTR(-ENOMEM);
3103
3104 /*
3105 * Single counters are their own group leaders, with an
3106 * empty sibling list:
3107 */
3108 if (!group_leader)
3109 group_leader = counter;
3110
3111 mutex_init(&counter->child_mutex);
3112 INIT_LIST_HEAD(&counter->child_list);
3113
3114 INIT_LIST_HEAD(&counter->list_entry);
3115 INIT_LIST_HEAD(&counter->event_entry);
3116 INIT_LIST_HEAD(&counter->sibling_list);
3117 init_waitqueue_head(&counter->waitq);
3118
3119 mutex_init(&counter->mmap_mutex);
3120
3121 counter->cpu = cpu;
3122 counter->hw_event = *hw_event;
3123 counter->group_leader = group_leader;
3124 counter->pmu = NULL;
3125 counter->ctx = ctx;
3126 get_ctx(ctx);
3127
3128 counter->state = PERF_COUNTER_STATE_INACTIVE;
3129 if (hw_event->disabled)
3130 counter->state = PERF_COUNTER_STATE_OFF;
3131
3132 pmu = NULL;
3133
3134 hwc = &counter->hw;
3135 if (hw_event->freq && hw_event->irq_freq)
3136 hwc->irq_period = div64_u64(TICK_NSEC, hw_event->irq_freq);
3137 else
3138 hwc->irq_period = hw_event->irq_period;
3139
3140 /*
3141 * we currently do not support PERF_RECORD_GROUP on inherited counters
3142 */
3143 if (hw_event->inherit && (hw_event->record_type & PERF_RECORD_GROUP))
3144 goto done;
3145
3146 if (perf_event_raw(hw_event)) {
3147 pmu = hw_perf_counter_init(counter);
3148 goto done;
3149 }
3150
3151 switch (perf_event_type(hw_event)) {
3152 case PERF_TYPE_HARDWARE:
3153 pmu = hw_perf_counter_init(counter);
3154 break;
3155
3156 case PERF_TYPE_SOFTWARE:
3157 pmu = sw_perf_counter_init(counter);
3158 break;
3159
3160 case PERF_TYPE_TRACEPOINT:
3161 pmu = tp_perf_counter_init(counter);
3162 break;
3163 }
3164 done:
3165 err = 0;
3166 if (!pmu)
3167 err = -EINVAL;
3168 else if (IS_ERR(pmu))
3169 err = PTR_ERR(pmu);
3170
3171 if (err) {
3172 kfree(counter);
3173 return ERR_PTR(err);
3174 }
3175
3176 counter->pmu = pmu;
3177
3178 atomic_inc(&nr_counters);
3179 if (counter->hw_event.mmap)
3180 atomic_inc(&nr_mmap_tracking);
3181 if (counter->hw_event.munmap)
3182 atomic_inc(&nr_munmap_tracking);
3183 if (counter->hw_event.comm)
3184 atomic_inc(&nr_comm_tracking);
3185
3186 return counter;
3187 }
3188
3189 /**
3190 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
3191 *
3192 * @hw_event_uptr: event type attributes for monitoring/sampling
3193 * @pid: target pid
3194 * @cpu: target cpu
3195 * @group_fd: group leader counter fd
3196 */
3197 SYSCALL_DEFINE5(perf_counter_open,
3198 const struct perf_counter_hw_event __user *, hw_event_uptr,
3199 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
3200 {
3201 struct perf_counter *counter, *group_leader;
3202 struct perf_counter_hw_event hw_event;
3203 struct perf_counter_context *ctx;
3204 struct file *counter_file = NULL;
3205 struct file *group_file = NULL;
3206 int fput_needed = 0;
3207 int fput_needed2 = 0;
3208 int ret;
3209
3210 /* for future expandability... */
3211 if (flags)
3212 return -EINVAL;
3213
3214 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
3215 return -EFAULT;
3216
3217 /*
3218 * Get the target context (task or percpu):
3219 */
3220 ctx = find_get_context(pid, cpu);
3221 if (IS_ERR(ctx))
3222 return PTR_ERR(ctx);
3223
3224 /*
3225 * Look up the group leader (we will attach this counter to it):
3226 */
3227 group_leader = NULL;
3228 if (group_fd != -1) {
3229 ret = -EINVAL;
3230 group_file = fget_light(group_fd, &fput_needed);
3231 if (!group_file)
3232 goto err_put_context;
3233 if (group_file->f_op != &perf_fops)
3234 goto err_put_context;
3235
3236 group_leader = group_file->private_data;
3237 /*
3238 * Do not allow a recursive hierarchy (this new sibling
3239 * becoming part of another group-sibling):
3240 */
3241 if (group_leader->group_leader != group_leader)
3242 goto err_put_context;
3243 /*
3244 * Do not allow to attach to a group in a different
3245 * task or CPU context:
3246 */
3247 if (group_leader->ctx != ctx)
3248 goto err_put_context;
3249 /*
3250 * Only a group leader can be exclusive or pinned
3251 */
3252 if (hw_event.exclusive || hw_event.pinned)
3253 goto err_put_context;
3254 }
3255
3256 counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
3257 GFP_KERNEL);
3258 ret = PTR_ERR(counter);
3259 if (IS_ERR(counter))
3260 goto err_put_context;
3261
3262 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
3263 if (ret < 0)
3264 goto err_free_put_context;
3265
3266 counter_file = fget_light(ret, &fput_needed2);
3267 if (!counter_file)
3268 goto err_free_put_context;
3269
3270 counter->filp = counter_file;
3271 mutex_lock(&ctx->mutex);
3272 perf_install_in_context(ctx, counter, cpu);
3273 mutex_unlock(&ctx->mutex);
3274
3275 fput_light(counter_file, fput_needed2);
3276
3277 out_fput:
3278 fput_light(group_file, fput_needed);
3279
3280 return ret;
3281
3282 err_free_put_context:
3283 kfree(counter);
3284
3285 err_put_context:
3286 put_context(ctx);
3287
3288 goto out_fput;
3289 }
3290
3291 /*
3292 * inherit a counter from parent task to child task:
3293 */
3294 static struct perf_counter *
3295 inherit_counter(struct perf_counter *parent_counter,
3296 struct task_struct *parent,
3297 struct perf_counter_context *parent_ctx,
3298 struct task_struct *child,
3299 struct perf_counter *group_leader,
3300 struct perf_counter_context *child_ctx)
3301 {
3302 struct perf_counter *child_counter;
3303
3304 /*
3305 * Instead of creating recursive hierarchies of counters,
3306 * we link inherited counters back to the original parent,
3307 * which has a filp for sure, which we use as the reference
3308 * count:
3309 */
3310 if (parent_counter->parent)
3311 parent_counter = parent_counter->parent;
3312
3313 child_counter = perf_counter_alloc(&parent_counter->hw_event,
3314 parent_counter->cpu, child_ctx,
3315 group_leader, GFP_KERNEL);
3316 if (IS_ERR(child_counter))
3317 return child_counter;
3318
3319 /*
3320 * Make the child state follow the state of the parent counter,
3321 * not its hw_event.disabled bit. We hold the parent's mutex,
3322 * so we won't race with perf_counter_{en,dis}able_family.
3323 */
3324 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3325 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3326 else
3327 child_counter->state = PERF_COUNTER_STATE_OFF;
3328
3329 /*
3330 * Link it up in the child's context:
3331 */
3332 add_counter_to_ctx(child_counter, child_ctx);
3333
3334 child_counter->parent = parent_counter;
3335 /*
3336 * inherit into child's child as well:
3337 */
3338 child_counter->hw_event.inherit = 1;
3339
3340 /*
3341 * Get a reference to the parent filp - we will fput it
3342 * when the child counter exits. This is safe to do because
3343 * we are in the parent and we know that the filp still
3344 * exists and has a nonzero count:
3345 */
3346 atomic_long_inc(&parent_counter->filp->f_count);
3347
3348 /*
3349 * Link this into the parent counter's child list
3350 */
3351 mutex_lock(&parent_counter->child_mutex);
3352 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3353 mutex_unlock(&parent_counter->child_mutex);
3354
3355 return child_counter;
3356 }
3357
3358 static int inherit_group(struct perf_counter *parent_counter,
3359 struct task_struct *parent,
3360 struct perf_counter_context *parent_ctx,
3361 struct task_struct *child,
3362 struct perf_counter_context *child_ctx)
3363 {
3364 struct perf_counter *leader;
3365 struct perf_counter *sub;
3366 struct perf_counter *child_ctr;
3367
3368 leader = inherit_counter(parent_counter, parent, parent_ctx,
3369 child, NULL, child_ctx);
3370 if (IS_ERR(leader))
3371 return PTR_ERR(leader);
3372 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3373 child_ctr = inherit_counter(sub, parent, parent_ctx,
3374 child, leader, child_ctx);
3375 if (IS_ERR(child_ctr))
3376 return PTR_ERR(child_ctr);
3377 }
3378 return 0;
3379 }
3380
3381 static void sync_child_counter(struct perf_counter *child_counter,
3382 struct perf_counter *parent_counter)
3383 {
3384 u64 child_val;
3385
3386 child_val = atomic64_read(&child_counter->count);
3387
3388 /*
3389 * Add back the child's count to the parent's count:
3390 */
3391 atomic64_add(child_val, &parent_counter->count);
3392 atomic64_add(child_counter->total_time_enabled,
3393 &parent_counter->child_total_time_enabled);
3394 atomic64_add(child_counter->total_time_running,
3395 &parent_counter->child_total_time_running);
3396
3397 /*
3398 * Remove this counter from the parent's list
3399 */
3400 mutex_lock(&parent_counter->child_mutex);
3401 list_del_init(&child_counter->child_list);
3402 mutex_unlock(&parent_counter->child_mutex);
3403
3404 /*
3405 * Release the parent counter, if this was the last
3406 * reference to it.
3407 */
3408 fput(parent_counter->filp);
3409 }
3410
3411 static void
3412 __perf_counter_exit_task(struct task_struct *child,
3413 struct perf_counter *child_counter,
3414 struct perf_counter_context *child_ctx)
3415 {
3416 struct perf_counter *parent_counter;
3417
3418 update_counter_times(child_counter);
3419 perf_counter_remove_from_context(child_counter);
3420
3421 parent_counter = child_counter->parent;
3422 /*
3423 * It can happen that parent exits first, and has counters
3424 * that are still around due to the child reference. These
3425 * counters need to be zapped - but otherwise linger.
3426 */
3427 if (parent_counter) {
3428 sync_child_counter(child_counter, parent_counter);
3429 free_counter(child_counter);
3430 }
3431 }
3432
3433 /*
3434 * When a child task exits, feed back counter values to parent counters.
3435 *
3436 * Note: we may be running in child context, but the PID is not hashed
3437 * anymore so new counters will not be added.
3438 * (XXX not sure that is true when we get called from flush_old_exec.
3439 * -- paulus)
3440 */
3441 void perf_counter_exit_task(struct task_struct *child)
3442 {
3443 struct perf_counter *child_counter, *tmp;
3444 struct perf_counter_context *child_ctx;
3445 unsigned long flags;
3446
3447 WARN_ON_ONCE(child != current);
3448
3449 child_ctx = child->perf_counter_ctxp;
3450
3451 if (likely(!child_ctx))
3452 return;
3453
3454 local_irq_save(flags);
3455 __perf_counter_task_sched_out(child_ctx);
3456 child->perf_counter_ctxp = NULL;
3457 local_irq_restore(flags);
3458
3459 mutex_lock(&child_ctx->mutex);
3460
3461 again:
3462 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3463 list_entry)
3464 __perf_counter_exit_task(child, child_counter, child_ctx);
3465
3466 /*
3467 * If the last counter was a group counter, it will have appended all
3468 * its siblings to the list, but we obtained 'tmp' before that which
3469 * will still point to the list head terminating the iteration.
3470 */
3471 if (!list_empty(&child_ctx->counter_list))
3472 goto again;
3473
3474 mutex_unlock(&child_ctx->mutex);
3475
3476 put_ctx(child_ctx);
3477 }
3478
3479 /*
3480 * Initialize the perf_counter context in task_struct
3481 */
3482 void perf_counter_init_task(struct task_struct *child)
3483 {
3484 struct perf_counter_context *child_ctx, *parent_ctx;
3485 struct perf_counter *counter;
3486 struct task_struct *parent = current;
3487 int inherited_all = 1;
3488
3489 child->perf_counter_ctxp = NULL;
3490
3491 /*
3492 * This is executed from the parent task context, so inherit
3493 * counters that have been marked for cloning.
3494 * First allocate and initialize a context for the child.
3495 */
3496
3497 child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
3498 if (!child_ctx)
3499 return;
3500
3501 parent_ctx = parent->perf_counter_ctxp;
3502 if (likely(!parent_ctx || !parent_ctx->nr_counters))
3503 return;
3504
3505 __perf_counter_init_context(child_ctx, child);
3506 child->perf_counter_ctxp = child_ctx;
3507
3508 /*
3509 * Lock the parent list. No need to lock the child - not PID
3510 * hashed yet and not running, so nobody can access it.
3511 */
3512 mutex_lock(&parent_ctx->mutex);
3513
3514 /*
3515 * We dont have to disable NMIs - we are only looking at
3516 * the list, not manipulating it:
3517 */
3518 list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
3519 if (counter != counter->group_leader)
3520 continue;
3521
3522 if (!counter->hw_event.inherit) {
3523 inherited_all = 0;
3524 continue;
3525 }
3526
3527 if (inherit_group(counter, parent,
3528 parent_ctx, child, child_ctx)) {
3529 inherited_all = 0;
3530 break;
3531 }
3532 }
3533
3534 if (inherited_all) {
3535 /*
3536 * Mark the child context as a clone of the parent
3537 * context, or of whatever the parent is a clone of.
3538 */
3539 if (parent_ctx->parent_ctx) {
3540 child_ctx->parent_ctx = parent_ctx->parent_ctx;
3541 child_ctx->parent_gen = parent_ctx->parent_gen;
3542 } else {
3543 child_ctx->parent_ctx = parent_ctx;
3544 child_ctx->parent_gen = parent_ctx->generation;
3545 }
3546 get_ctx(child_ctx->parent_ctx);
3547 }
3548
3549 mutex_unlock(&parent_ctx->mutex);
3550 }
3551
3552 static void __cpuinit perf_counter_init_cpu(int cpu)
3553 {
3554 struct perf_cpu_context *cpuctx;
3555
3556 cpuctx = &per_cpu(perf_cpu_context, cpu);
3557 __perf_counter_init_context(&cpuctx->ctx, NULL);
3558
3559 spin_lock(&perf_resource_lock);
3560 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3561 spin_unlock(&perf_resource_lock);
3562
3563 hw_perf_counter_setup(cpu);
3564 }
3565
3566 #ifdef CONFIG_HOTPLUG_CPU
3567 static void __perf_counter_exit_cpu(void *info)
3568 {
3569 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3570 struct perf_counter_context *ctx = &cpuctx->ctx;
3571 struct perf_counter *counter, *tmp;
3572
3573 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3574 __perf_counter_remove_from_context(counter);
3575 }
3576 static void perf_counter_exit_cpu(int cpu)
3577 {
3578 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3579 struct perf_counter_context *ctx = &cpuctx->ctx;
3580
3581 mutex_lock(&ctx->mutex);
3582 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3583 mutex_unlock(&ctx->mutex);
3584 }
3585 #else
3586 static inline void perf_counter_exit_cpu(int cpu) { }
3587 #endif
3588
3589 static int __cpuinit
3590 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3591 {
3592 unsigned int cpu = (long)hcpu;
3593
3594 switch (action) {
3595
3596 case CPU_UP_PREPARE:
3597 case CPU_UP_PREPARE_FROZEN:
3598 perf_counter_init_cpu(cpu);
3599 break;
3600
3601 case CPU_DOWN_PREPARE:
3602 case CPU_DOWN_PREPARE_FROZEN:
3603 perf_counter_exit_cpu(cpu);
3604 break;
3605
3606 default:
3607 break;
3608 }
3609
3610 return NOTIFY_OK;
3611 }
3612
3613 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3614 .notifier_call = perf_cpu_notify,
3615 };
3616
3617 void __init perf_counter_init(void)
3618 {
3619 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3620 (void *)(long)smp_processor_id());
3621 register_cpu_notifier(&perf_cpu_nb);
3622 }
3623
3624 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3625 {
3626 return sprintf(buf, "%d\n", perf_reserved_percpu);
3627 }
3628
3629 static ssize_t
3630 perf_set_reserve_percpu(struct sysdev_class *class,
3631 const char *buf,
3632 size_t count)
3633 {
3634 struct perf_cpu_context *cpuctx;
3635 unsigned long val;
3636 int err, cpu, mpt;
3637
3638 err = strict_strtoul(buf, 10, &val);
3639 if (err)
3640 return err;
3641 if (val > perf_max_counters)
3642 return -EINVAL;
3643
3644 spin_lock(&perf_resource_lock);
3645 perf_reserved_percpu = val;
3646 for_each_online_cpu(cpu) {
3647 cpuctx = &per_cpu(perf_cpu_context, cpu);
3648 spin_lock_irq(&cpuctx->ctx.lock);
3649 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3650 perf_max_counters - perf_reserved_percpu);
3651 cpuctx->max_pertask = mpt;
3652 spin_unlock_irq(&cpuctx->ctx.lock);
3653 }
3654 spin_unlock(&perf_resource_lock);
3655
3656 return count;
3657 }
3658
3659 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3660 {
3661 return sprintf(buf, "%d\n", perf_overcommit);
3662 }
3663
3664 static ssize_t
3665 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3666 {
3667 unsigned long val;
3668 int err;
3669
3670 err = strict_strtoul(buf, 10, &val);
3671 if (err)
3672 return err;
3673 if (val > 1)
3674 return -EINVAL;
3675
3676 spin_lock(&perf_resource_lock);
3677 perf_overcommit = val;
3678 spin_unlock(&perf_resource_lock);
3679
3680 return count;
3681 }
3682
3683 static SYSDEV_CLASS_ATTR(
3684 reserve_percpu,
3685 0644,
3686 perf_show_reserve_percpu,
3687 perf_set_reserve_percpu
3688 );
3689
3690 static SYSDEV_CLASS_ATTR(
3691 overcommit,
3692 0644,
3693 perf_show_overcommit,
3694 perf_set_overcommit
3695 );
3696
3697 static struct attribute *perfclass_attrs[] = {
3698 &attr_reserve_percpu.attr,
3699 &attr_overcommit.attr,
3700 NULL
3701 };
3702
3703 static struct attribute_group perfclass_attr_group = {
3704 .attrs = perfclass_attrs,
3705 .name = "perf_counters",
3706 };
3707
3708 static int __init perf_counter_sysfs_init(void)
3709 {
3710 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3711 &perfclass_attr_group);
3712 }
3713 device_initcall(perf_counter_sysfs_init);