]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/perf_counter.c
perfcounters: restructure x86 counter math
[mirror_ubuntu-hirsute-kernel.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
6 *
7 * For licencing details see kernel-base/COPYING
8 */
9
10 #include <linux/fs.h>
11 #include <linux/cpu.h>
12 #include <linux/smp.h>
13 #include <linux/file.h>
14 #include <linux/poll.h>
15 #include <linux/sysfs.h>
16 #include <linux/ptrace.h>
17 #include <linux/percpu.h>
18 #include <linux/uaccess.h>
19 #include <linux/syscalls.h>
20 #include <linux/anon_inodes.h>
21 #include <linux/perf_counter.h>
22
23 /*
24 * Each CPU has a list of per CPU counters:
25 */
26 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
27
28 int perf_max_counters __read_mostly;
29 static int perf_reserved_percpu __read_mostly;
30 static int perf_overcommit __read_mostly = 1;
31
32 /*
33 * Mutex for (sysadmin-configurable) counter reservations:
34 */
35 static DEFINE_MUTEX(perf_resource_mutex);
36
37 /*
38 * Architecture provided APIs - weak aliases:
39 */
40 extern __weak const struct hw_perf_counter_ops *
41 hw_perf_counter_init(struct perf_counter *counter)
42 {
43 return ERR_PTR(-EINVAL);
44 }
45
46 u64 __weak hw_perf_save_disable(void) { return 0; }
47 void __weak hw_perf_restore(u64 ctrl) { }
48 void __weak hw_perf_counter_setup(void) { }
49
50 static void
51 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
52 {
53 struct perf_counter *group_leader = counter->group_leader;
54
55 /*
56 * Depending on whether it is a standalone or sibling counter,
57 * add it straight to the context's counter list, or to the group
58 * leader's sibling list:
59 */
60 if (counter->group_leader == counter)
61 list_add_tail(&counter->list_entry, &ctx->counter_list);
62 else
63 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
64 }
65
66 static void
67 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
68 {
69 struct perf_counter *sibling, *tmp;
70
71 list_del_init(&counter->list_entry);
72
73 /*
74 * If this was a group counter with sibling counters then
75 * upgrade the siblings to singleton counters by adding them
76 * to the context list directly:
77 */
78 list_for_each_entry_safe(sibling, tmp,
79 &counter->sibling_list, list_entry) {
80
81 list_del_init(&sibling->list_entry);
82 list_add_tail(&sibling->list_entry, &ctx->counter_list);
83 WARN_ON_ONCE(!sibling->group_leader);
84 WARN_ON_ONCE(sibling->group_leader == sibling);
85 sibling->group_leader = sibling;
86 }
87 }
88
89 /*
90 * Cross CPU call to remove a performance counter
91 *
92 * We disable the counter on the hardware level first. After that we
93 * remove it from the context list.
94 */
95 static void __perf_counter_remove_from_context(void *info)
96 {
97 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
98 struct perf_counter *counter = info;
99 struct perf_counter_context *ctx = counter->ctx;
100 u64 perf_flags;
101
102 /*
103 * If this is a task context, we need to check whether it is
104 * the current task context of this cpu. If not it has been
105 * scheduled out before the smp call arrived.
106 */
107 if (ctx->task && cpuctx->task_ctx != ctx)
108 return;
109
110 spin_lock(&ctx->lock);
111
112 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
113 counter->hw_ops->hw_perf_counter_disable(counter);
114 counter->state = PERF_COUNTER_STATE_INACTIVE;
115 ctx->nr_active--;
116 cpuctx->active_oncpu--;
117 counter->task = NULL;
118 }
119 ctx->nr_counters--;
120
121 /*
122 * Protect the list operation against NMI by disabling the
123 * counters on a global level. NOP for non NMI based counters.
124 */
125 perf_flags = hw_perf_save_disable();
126 list_del_counter(counter, ctx);
127 hw_perf_restore(perf_flags);
128
129 if (!ctx->task) {
130 /*
131 * Allow more per task counters with respect to the
132 * reservation:
133 */
134 cpuctx->max_pertask =
135 min(perf_max_counters - ctx->nr_counters,
136 perf_max_counters - perf_reserved_percpu);
137 }
138
139 spin_unlock(&ctx->lock);
140 }
141
142
143 /*
144 * Remove the counter from a task's (or a CPU's) list of counters.
145 *
146 * Must be called with counter->mutex held.
147 *
148 * CPU counters are removed with a smp call. For task counters we only
149 * call when the task is on a CPU.
150 */
151 static void perf_counter_remove_from_context(struct perf_counter *counter)
152 {
153 struct perf_counter_context *ctx = counter->ctx;
154 struct task_struct *task = ctx->task;
155
156 if (!task) {
157 /*
158 * Per cpu counters are removed via an smp call and
159 * the removal is always sucessful.
160 */
161 smp_call_function_single(counter->cpu,
162 __perf_counter_remove_from_context,
163 counter, 1);
164 return;
165 }
166
167 retry:
168 task_oncpu_function_call(task, __perf_counter_remove_from_context,
169 counter);
170
171 spin_lock_irq(&ctx->lock);
172 /*
173 * If the context is active we need to retry the smp call.
174 */
175 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
176 spin_unlock_irq(&ctx->lock);
177 goto retry;
178 }
179
180 /*
181 * The lock prevents that this context is scheduled in so we
182 * can remove the counter safely, if the call above did not
183 * succeed.
184 */
185 if (!list_empty(&counter->list_entry)) {
186 ctx->nr_counters--;
187 list_del_counter(counter, ctx);
188 counter->task = NULL;
189 }
190 spin_unlock_irq(&ctx->lock);
191 }
192
193 /*
194 * Cross CPU call to install and enable a preformance counter
195 */
196 static void __perf_install_in_context(void *info)
197 {
198 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
199 struct perf_counter *counter = info;
200 struct perf_counter_context *ctx = counter->ctx;
201 int cpu = smp_processor_id();
202 u64 perf_flags;
203
204 /*
205 * If this is a task context, we need to check whether it is
206 * the current task context of this cpu. If not it has been
207 * scheduled out before the smp call arrived.
208 */
209 if (ctx->task && cpuctx->task_ctx != ctx)
210 return;
211
212 spin_lock(&ctx->lock);
213
214 /*
215 * Protect the list operation against NMI by disabling the
216 * counters on a global level. NOP for non NMI based counters.
217 */
218 perf_flags = hw_perf_save_disable();
219 list_add_counter(counter, ctx);
220 hw_perf_restore(perf_flags);
221
222 ctx->nr_counters++;
223
224 if (cpuctx->active_oncpu < perf_max_counters) {
225 counter->state = PERF_COUNTER_STATE_ACTIVE;
226 counter->oncpu = cpu;
227 ctx->nr_active++;
228 cpuctx->active_oncpu++;
229 counter->hw_ops->hw_perf_counter_enable(counter);
230 }
231
232 if (!ctx->task && cpuctx->max_pertask)
233 cpuctx->max_pertask--;
234
235 spin_unlock(&ctx->lock);
236 }
237
238 /*
239 * Attach a performance counter to a context
240 *
241 * First we add the counter to the list with the hardware enable bit
242 * in counter->hw_config cleared.
243 *
244 * If the counter is attached to a task which is on a CPU we use a smp
245 * call to enable it in the task context. The task might have been
246 * scheduled away, but we check this in the smp call again.
247 */
248 static void
249 perf_install_in_context(struct perf_counter_context *ctx,
250 struct perf_counter *counter,
251 int cpu)
252 {
253 struct task_struct *task = ctx->task;
254
255 counter->ctx = ctx;
256 if (!task) {
257 /*
258 * Per cpu counters are installed via an smp call and
259 * the install is always sucessful.
260 */
261 smp_call_function_single(cpu, __perf_install_in_context,
262 counter, 1);
263 return;
264 }
265
266 counter->task = task;
267 retry:
268 task_oncpu_function_call(task, __perf_install_in_context,
269 counter);
270
271 spin_lock_irq(&ctx->lock);
272 /*
273 * we need to retry the smp call.
274 */
275 if (ctx->nr_active && list_empty(&counter->list_entry)) {
276 spin_unlock_irq(&ctx->lock);
277 goto retry;
278 }
279
280 /*
281 * The lock prevents that this context is scheduled in so we
282 * can add the counter safely, if it the call above did not
283 * succeed.
284 */
285 if (list_empty(&counter->list_entry)) {
286 list_add_counter(counter, ctx);
287 ctx->nr_counters++;
288 }
289 spin_unlock_irq(&ctx->lock);
290 }
291
292 static void
293 counter_sched_out(struct perf_counter *counter,
294 struct perf_cpu_context *cpuctx,
295 struct perf_counter_context *ctx)
296 {
297 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
298 return;
299
300 counter->hw_ops->hw_perf_counter_disable(counter);
301 counter->state = PERF_COUNTER_STATE_INACTIVE;
302 counter->oncpu = -1;
303
304 cpuctx->active_oncpu--;
305 ctx->nr_active--;
306 }
307
308 static void
309 group_sched_out(struct perf_counter *group_counter,
310 struct perf_cpu_context *cpuctx,
311 struct perf_counter_context *ctx)
312 {
313 struct perf_counter *counter;
314
315 counter_sched_out(group_counter, cpuctx, ctx);
316
317 /*
318 * Schedule out siblings (if any):
319 */
320 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
321 counter_sched_out(counter, cpuctx, ctx);
322 }
323
324 /*
325 * Called from scheduler to remove the counters of the current task,
326 * with interrupts disabled.
327 *
328 * We stop each counter and update the counter value in counter->count.
329 *
330 * This does not protect us against NMI, but hw_perf_counter_disable()
331 * sets the disabled bit in the control field of counter _before_
332 * accessing the counter control register. If a NMI hits, then it will
333 * not restart the counter.
334 */
335 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
336 {
337 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
338 struct perf_counter_context *ctx = &task->perf_counter_ctx;
339 struct perf_counter *counter;
340
341 if (likely(!cpuctx->task_ctx))
342 return;
343
344 spin_lock(&ctx->lock);
345 if (ctx->nr_active) {
346 list_for_each_entry(counter, &ctx->counter_list, list_entry)
347 group_sched_out(counter, cpuctx, ctx);
348 }
349 spin_unlock(&ctx->lock);
350 cpuctx->task_ctx = NULL;
351 }
352
353 static void
354 counter_sched_in(struct perf_counter *counter,
355 struct perf_cpu_context *cpuctx,
356 struct perf_counter_context *ctx,
357 int cpu)
358 {
359 if (counter->state == PERF_COUNTER_STATE_OFF)
360 return;
361
362 counter->hw_ops->hw_perf_counter_enable(counter);
363 counter->state = PERF_COUNTER_STATE_ACTIVE;
364 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
365
366 cpuctx->active_oncpu++;
367 ctx->nr_active++;
368 }
369
370 static void
371 group_sched_in(struct perf_counter *group_counter,
372 struct perf_cpu_context *cpuctx,
373 struct perf_counter_context *ctx,
374 int cpu)
375 {
376 struct perf_counter *counter;
377
378 counter_sched_in(group_counter, cpuctx, ctx, cpu);
379
380 /*
381 * Schedule in siblings as one group (if any):
382 */
383 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
384 counter_sched_in(counter, cpuctx, ctx, cpu);
385 }
386
387 /*
388 * Called from scheduler to add the counters of the current task
389 * with interrupts disabled.
390 *
391 * We restore the counter value and then enable it.
392 *
393 * This does not protect us against NMI, but hw_perf_counter_enable()
394 * sets the enabled bit in the control field of counter _before_
395 * accessing the counter control register. If a NMI hits, then it will
396 * keep the counter running.
397 */
398 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
399 {
400 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
401 struct perf_counter_context *ctx = &task->perf_counter_ctx;
402 struct perf_counter *counter;
403
404 if (likely(!ctx->nr_counters))
405 return;
406
407 spin_lock(&ctx->lock);
408 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
409 if (ctx->nr_active == cpuctx->max_pertask)
410 break;
411
412 /*
413 * Listen to the 'cpu' scheduling filter constraint
414 * of counters:
415 */
416 if (counter->cpu != -1 && counter->cpu != cpu)
417 continue;
418
419 group_sched_in(counter, cpuctx, ctx, cpu);
420 }
421 spin_unlock(&ctx->lock);
422
423 cpuctx->task_ctx = ctx;
424 }
425
426 int perf_counter_task_disable(void)
427 {
428 struct task_struct *curr = current;
429 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
430 struct perf_counter *counter;
431 u64 perf_flags;
432 int cpu;
433
434 if (likely(!ctx->nr_counters))
435 return 0;
436
437 local_irq_disable();
438 cpu = smp_processor_id();
439
440 perf_counter_task_sched_out(curr, cpu);
441
442 spin_lock(&ctx->lock);
443
444 /*
445 * Disable all the counters:
446 */
447 perf_flags = hw_perf_save_disable();
448
449 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
450 WARN_ON_ONCE(counter->state == PERF_COUNTER_STATE_ACTIVE);
451 counter->state = PERF_COUNTER_STATE_OFF;
452 }
453 hw_perf_restore(perf_flags);
454
455 spin_unlock(&ctx->lock);
456
457 local_irq_enable();
458
459 return 0;
460 }
461
462 int perf_counter_task_enable(void)
463 {
464 struct task_struct *curr = current;
465 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
466 struct perf_counter *counter;
467 u64 perf_flags;
468 int cpu;
469
470 if (likely(!ctx->nr_counters))
471 return 0;
472
473 local_irq_disable();
474 cpu = smp_processor_id();
475
476 spin_lock(&ctx->lock);
477
478 /*
479 * Disable all the counters:
480 */
481 perf_flags = hw_perf_save_disable();
482
483 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
484 if (counter->state != PERF_COUNTER_STATE_OFF)
485 continue;
486 counter->state = PERF_COUNTER_STATE_INACTIVE;
487 }
488 hw_perf_restore(perf_flags);
489
490 spin_unlock(&ctx->lock);
491
492 perf_counter_task_sched_in(curr, cpu);
493
494 local_irq_enable();
495
496 return 0;
497 }
498
499 void perf_counter_task_tick(struct task_struct *curr, int cpu)
500 {
501 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
502 struct perf_counter *counter;
503 u64 perf_flags;
504
505 if (likely(!ctx->nr_counters))
506 return;
507
508 perf_counter_task_sched_out(curr, cpu);
509
510 spin_lock(&ctx->lock);
511
512 /*
513 * Rotate the first entry last (works just fine for group counters too):
514 */
515 perf_flags = hw_perf_save_disable();
516 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
517 list_del(&counter->list_entry);
518 list_add_tail(&counter->list_entry, &ctx->counter_list);
519 break;
520 }
521 hw_perf_restore(perf_flags);
522
523 spin_unlock(&ctx->lock);
524
525 perf_counter_task_sched_in(curr, cpu);
526 }
527
528 /*
529 * Initialize the perf_counter context in a task_struct:
530 */
531 static void
532 __perf_counter_init_context(struct perf_counter_context *ctx,
533 struct task_struct *task)
534 {
535 spin_lock_init(&ctx->lock);
536 INIT_LIST_HEAD(&ctx->counter_list);
537 ctx->nr_counters = 0;
538 ctx->task = task;
539 }
540 /*
541 * Initialize the perf_counter context in task_struct
542 */
543 void perf_counter_init_task(struct task_struct *task)
544 {
545 __perf_counter_init_context(&task->perf_counter_ctx, task);
546 }
547
548 /*
549 * Cross CPU call to read the hardware counter
550 */
551 static void __hw_perf_counter_read(void *info)
552 {
553 struct perf_counter *counter = info;
554
555 counter->hw_ops->hw_perf_counter_read(counter);
556 }
557
558 static u64 perf_counter_read(struct perf_counter *counter)
559 {
560 /*
561 * If counter is enabled and currently active on a CPU, update the
562 * value in the counter structure:
563 */
564 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
565 smp_call_function_single(counter->oncpu,
566 __hw_perf_counter_read, counter, 1);
567 }
568
569 return atomic64_read(&counter->count);
570 }
571
572 /*
573 * Cross CPU call to switch performance data pointers
574 */
575 static void __perf_switch_irq_data(void *info)
576 {
577 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
578 struct perf_counter *counter = info;
579 struct perf_counter_context *ctx = counter->ctx;
580 struct perf_data *oldirqdata = counter->irqdata;
581
582 /*
583 * If this is a task context, we need to check whether it is
584 * the current task context of this cpu. If not it has been
585 * scheduled out before the smp call arrived.
586 */
587 if (ctx->task) {
588 if (cpuctx->task_ctx != ctx)
589 return;
590 spin_lock(&ctx->lock);
591 }
592
593 /* Change the pointer NMI safe */
594 atomic_long_set((atomic_long_t *)&counter->irqdata,
595 (unsigned long) counter->usrdata);
596 counter->usrdata = oldirqdata;
597
598 if (ctx->task)
599 spin_unlock(&ctx->lock);
600 }
601
602 static struct perf_data *perf_switch_irq_data(struct perf_counter *counter)
603 {
604 struct perf_counter_context *ctx = counter->ctx;
605 struct perf_data *oldirqdata = counter->irqdata;
606 struct task_struct *task = ctx->task;
607
608 if (!task) {
609 smp_call_function_single(counter->cpu,
610 __perf_switch_irq_data,
611 counter, 1);
612 return counter->usrdata;
613 }
614
615 retry:
616 spin_lock_irq(&ctx->lock);
617 if (counter->state != PERF_COUNTER_STATE_ACTIVE) {
618 counter->irqdata = counter->usrdata;
619 counter->usrdata = oldirqdata;
620 spin_unlock_irq(&ctx->lock);
621 return oldirqdata;
622 }
623 spin_unlock_irq(&ctx->lock);
624 task_oncpu_function_call(task, __perf_switch_irq_data, counter);
625 /* Might have failed, because task was scheduled out */
626 if (counter->irqdata == oldirqdata)
627 goto retry;
628
629 return counter->usrdata;
630 }
631
632 static void put_context(struct perf_counter_context *ctx)
633 {
634 if (ctx->task)
635 put_task_struct(ctx->task);
636 }
637
638 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
639 {
640 struct perf_cpu_context *cpuctx;
641 struct perf_counter_context *ctx;
642 struct task_struct *task;
643
644 /*
645 * If cpu is not a wildcard then this is a percpu counter:
646 */
647 if (cpu != -1) {
648 /* Must be root to operate on a CPU counter: */
649 if (!capable(CAP_SYS_ADMIN))
650 return ERR_PTR(-EACCES);
651
652 if (cpu < 0 || cpu > num_possible_cpus())
653 return ERR_PTR(-EINVAL);
654
655 /*
656 * We could be clever and allow to attach a counter to an
657 * offline CPU and activate it when the CPU comes up, but
658 * that's for later.
659 */
660 if (!cpu_isset(cpu, cpu_online_map))
661 return ERR_PTR(-ENODEV);
662
663 cpuctx = &per_cpu(perf_cpu_context, cpu);
664 ctx = &cpuctx->ctx;
665
666 WARN_ON_ONCE(ctx->task);
667 return ctx;
668 }
669
670 rcu_read_lock();
671 if (!pid)
672 task = current;
673 else
674 task = find_task_by_vpid(pid);
675 if (task)
676 get_task_struct(task);
677 rcu_read_unlock();
678
679 if (!task)
680 return ERR_PTR(-ESRCH);
681
682 ctx = &task->perf_counter_ctx;
683 ctx->task = task;
684
685 /* Reuse ptrace permission checks for now. */
686 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
687 put_context(ctx);
688 return ERR_PTR(-EACCES);
689 }
690
691 return ctx;
692 }
693
694 /*
695 * Called when the last reference to the file is gone.
696 */
697 static int perf_release(struct inode *inode, struct file *file)
698 {
699 struct perf_counter *counter = file->private_data;
700 struct perf_counter_context *ctx = counter->ctx;
701
702 file->private_data = NULL;
703
704 mutex_lock(&counter->mutex);
705
706 perf_counter_remove_from_context(counter);
707 put_context(ctx);
708
709 mutex_unlock(&counter->mutex);
710
711 kfree(counter);
712
713 return 0;
714 }
715
716 /*
717 * Read the performance counter - simple non blocking version for now
718 */
719 static ssize_t
720 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
721 {
722 u64 cntval;
723
724 if (count != sizeof(cntval))
725 return -EINVAL;
726
727 mutex_lock(&counter->mutex);
728 cntval = perf_counter_read(counter);
729 mutex_unlock(&counter->mutex);
730
731 return put_user(cntval, (u64 __user *) buf) ? -EFAULT : sizeof(cntval);
732 }
733
734 static ssize_t
735 perf_copy_usrdata(struct perf_data *usrdata, char __user *buf, size_t count)
736 {
737 if (!usrdata->len)
738 return 0;
739
740 count = min(count, (size_t)usrdata->len);
741 if (copy_to_user(buf, usrdata->data + usrdata->rd_idx, count))
742 return -EFAULT;
743
744 /* Adjust the counters */
745 usrdata->len -= count;
746 if (!usrdata->len)
747 usrdata->rd_idx = 0;
748 else
749 usrdata->rd_idx += count;
750
751 return count;
752 }
753
754 static ssize_t
755 perf_read_irq_data(struct perf_counter *counter,
756 char __user *buf,
757 size_t count,
758 int nonblocking)
759 {
760 struct perf_data *irqdata, *usrdata;
761 DECLARE_WAITQUEUE(wait, current);
762 ssize_t res;
763
764 irqdata = counter->irqdata;
765 usrdata = counter->usrdata;
766
767 if (usrdata->len + irqdata->len >= count)
768 goto read_pending;
769
770 if (nonblocking)
771 return -EAGAIN;
772
773 spin_lock_irq(&counter->waitq.lock);
774 __add_wait_queue(&counter->waitq, &wait);
775 for (;;) {
776 set_current_state(TASK_INTERRUPTIBLE);
777 if (usrdata->len + irqdata->len >= count)
778 break;
779
780 if (signal_pending(current))
781 break;
782
783 spin_unlock_irq(&counter->waitq.lock);
784 schedule();
785 spin_lock_irq(&counter->waitq.lock);
786 }
787 __remove_wait_queue(&counter->waitq, &wait);
788 __set_current_state(TASK_RUNNING);
789 spin_unlock_irq(&counter->waitq.lock);
790
791 if (usrdata->len + irqdata->len < count)
792 return -ERESTARTSYS;
793 read_pending:
794 mutex_lock(&counter->mutex);
795
796 /* Drain pending data first: */
797 res = perf_copy_usrdata(usrdata, buf, count);
798 if (res < 0 || res == count)
799 goto out;
800
801 /* Switch irq buffer: */
802 usrdata = perf_switch_irq_data(counter);
803 if (perf_copy_usrdata(usrdata, buf + res, count - res) < 0) {
804 if (!res)
805 res = -EFAULT;
806 } else {
807 res = count;
808 }
809 out:
810 mutex_unlock(&counter->mutex);
811
812 return res;
813 }
814
815 static ssize_t
816 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
817 {
818 struct perf_counter *counter = file->private_data;
819
820 switch (counter->hw_event.record_type) {
821 case PERF_RECORD_SIMPLE:
822 return perf_read_hw(counter, buf, count);
823
824 case PERF_RECORD_IRQ:
825 case PERF_RECORD_GROUP:
826 return perf_read_irq_data(counter, buf, count,
827 file->f_flags & O_NONBLOCK);
828 }
829 return -EINVAL;
830 }
831
832 static unsigned int perf_poll(struct file *file, poll_table *wait)
833 {
834 struct perf_counter *counter = file->private_data;
835 unsigned int events = 0;
836 unsigned long flags;
837
838 poll_wait(file, &counter->waitq, wait);
839
840 spin_lock_irqsave(&counter->waitq.lock, flags);
841 if (counter->usrdata->len || counter->irqdata->len)
842 events |= POLLIN;
843 spin_unlock_irqrestore(&counter->waitq.lock, flags);
844
845 return events;
846 }
847
848 static const struct file_operations perf_fops = {
849 .release = perf_release,
850 .read = perf_read,
851 .poll = perf_poll,
852 };
853
854 static void cpu_clock_perf_counter_enable(struct perf_counter *counter)
855 {
856 }
857
858 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
859 {
860 }
861
862 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
863 {
864 int cpu = raw_smp_processor_id();
865
866 atomic64_set(&counter->count, cpu_clock(cpu));
867 }
868
869 static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
870 .hw_perf_counter_enable = cpu_clock_perf_counter_enable,
871 .hw_perf_counter_disable = cpu_clock_perf_counter_disable,
872 .hw_perf_counter_read = cpu_clock_perf_counter_read,
873 };
874
875 static void task_clock_perf_counter_enable(struct perf_counter *counter)
876 {
877 }
878
879 static void task_clock_perf_counter_disable(struct perf_counter *counter)
880 {
881 }
882
883 static void task_clock_perf_counter_read(struct perf_counter *counter)
884 {
885 atomic64_set(&counter->count, current->se.sum_exec_runtime);
886 }
887
888 static const struct hw_perf_counter_ops perf_ops_task_clock = {
889 .hw_perf_counter_enable = task_clock_perf_counter_enable,
890 .hw_perf_counter_disable = task_clock_perf_counter_disable,
891 .hw_perf_counter_read = task_clock_perf_counter_read,
892 };
893
894 static const struct hw_perf_counter_ops *
895 sw_perf_counter_init(struct perf_counter *counter)
896 {
897 const struct hw_perf_counter_ops *hw_ops = NULL;
898
899 switch (counter->hw_event.type) {
900 case PERF_COUNT_CPU_CLOCK:
901 hw_ops = &perf_ops_cpu_clock;
902 break;
903 case PERF_COUNT_TASK_CLOCK:
904 hw_ops = &perf_ops_task_clock;
905 break;
906 default:
907 break;
908 }
909 return hw_ops;
910 }
911
912 /*
913 * Allocate and initialize a counter structure
914 */
915 static struct perf_counter *
916 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
917 int cpu,
918 struct perf_counter *group_leader)
919 {
920 const struct hw_perf_counter_ops *hw_ops;
921 struct perf_counter *counter;
922
923 counter = kzalloc(sizeof(*counter), GFP_KERNEL);
924 if (!counter)
925 return NULL;
926
927 /*
928 * Single counters are their own group leaders, with an
929 * empty sibling list:
930 */
931 if (!group_leader)
932 group_leader = counter;
933
934 mutex_init(&counter->mutex);
935 INIT_LIST_HEAD(&counter->list_entry);
936 INIT_LIST_HEAD(&counter->sibling_list);
937 init_waitqueue_head(&counter->waitq);
938
939 counter->irqdata = &counter->data[0];
940 counter->usrdata = &counter->data[1];
941 counter->cpu = cpu;
942 counter->hw_event = *hw_event;
943 counter->wakeup_pending = 0;
944 counter->group_leader = group_leader;
945 counter->hw_ops = NULL;
946
947 hw_ops = NULL;
948 if (!hw_event->raw && hw_event->type < 0)
949 hw_ops = sw_perf_counter_init(counter);
950 if (!hw_ops) {
951 hw_ops = hw_perf_counter_init(counter);
952 }
953
954 if (!hw_ops) {
955 kfree(counter);
956 return NULL;
957 }
958 counter->hw_ops = hw_ops;
959
960 return counter;
961 }
962
963 /**
964 * sys_perf_task_open - open a performance counter, associate it to a task/cpu
965 *
966 * @hw_event_uptr: event type attributes for monitoring/sampling
967 * @pid: target pid
968 * @cpu: target cpu
969 * @group_fd: group leader counter fd
970 */
971 asmlinkage int
972 sys_perf_counter_open(struct perf_counter_hw_event *hw_event_uptr __user,
973 pid_t pid, int cpu, int group_fd)
974 {
975 struct perf_counter *counter, *group_leader;
976 struct perf_counter_hw_event hw_event;
977 struct perf_counter_context *ctx;
978 struct file *group_file = NULL;
979 int fput_needed = 0;
980 int ret;
981
982 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
983 return -EFAULT;
984
985 /*
986 * Get the target context (task or percpu):
987 */
988 ctx = find_get_context(pid, cpu);
989 if (IS_ERR(ctx))
990 return PTR_ERR(ctx);
991
992 /*
993 * Look up the group leader (we will attach this counter to it):
994 */
995 group_leader = NULL;
996 if (group_fd != -1) {
997 ret = -EINVAL;
998 group_file = fget_light(group_fd, &fput_needed);
999 if (!group_file)
1000 goto err_put_context;
1001 if (group_file->f_op != &perf_fops)
1002 goto err_put_context;
1003
1004 group_leader = group_file->private_data;
1005 /*
1006 * Do not allow a recursive hierarchy (this new sibling
1007 * becoming part of another group-sibling):
1008 */
1009 if (group_leader->group_leader != group_leader)
1010 goto err_put_context;
1011 /*
1012 * Do not allow to attach to a group in a different
1013 * task or CPU context:
1014 */
1015 if (group_leader->ctx != ctx)
1016 goto err_put_context;
1017 }
1018
1019 ret = -EINVAL;
1020 counter = perf_counter_alloc(&hw_event, cpu, group_leader);
1021 if (!counter)
1022 goto err_put_context;
1023
1024 perf_install_in_context(ctx, counter, cpu);
1025
1026 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
1027 if (ret < 0)
1028 goto err_remove_free_put_context;
1029
1030 out_fput:
1031 fput_light(group_file, fput_needed);
1032
1033 return ret;
1034
1035 err_remove_free_put_context:
1036 mutex_lock(&counter->mutex);
1037 perf_counter_remove_from_context(counter);
1038 mutex_unlock(&counter->mutex);
1039 kfree(counter);
1040
1041 err_put_context:
1042 put_context(ctx);
1043
1044 goto out_fput;
1045 }
1046
1047 static void __cpuinit perf_counter_init_cpu(int cpu)
1048 {
1049 struct perf_cpu_context *cpuctx;
1050
1051 cpuctx = &per_cpu(perf_cpu_context, cpu);
1052 __perf_counter_init_context(&cpuctx->ctx, NULL);
1053
1054 mutex_lock(&perf_resource_mutex);
1055 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
1056 mutex_unlock(&perf_resource_mutex);
1057
1058 hw_perf_counter_setup();
1059 }
1060
1061 #ifdef CONFIG_HOTPLUG_CPU
1062 static void __perf_counter_exit_cpu(void *info)
1063 {
1064 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1065 struct perf_counter_context *ctx = &cpuctx->ctx;
1066 struct perf_counter *counter, *tmp;
1067
1068 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
1069 __perf_counter_remove_from_context(counter);
1070
1071 }
1072 static void perf_counter_exit_cpu(int cpu)
1073 {
1074 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
1075 }
1076 #else
1077 static inline void perf_counter_exit_cpu(int cpu) { }
1078 #endif
1079
1080 static int __cpuinit
1081 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
1082 {
1083 unsigned int cpu = (long)hcpu;
1084
1085 switch (action) {
1086
1087 case CPU_UP_PREPARE:
1088 case CPU_UP_PREPARE_FROZEN:
1089 perf_counter_init_cpu(cpu);
1090 break;
1091
1092 case CPU_DOWN_PREPARE:
1093 case CPU_DOWN_PREPARE_FROZEN:
1094 perf_counter_exit_cpu(cpu);
1095 break;
1096
1097 default:
1098 break;
1099 }
1100
1101 return NOTIFY_OK;
1102 }
1103
1104 static struct notifier_block __cpuinitdata perf_cpu_nb = {
1105 .notifier_call = perf_cpu_notify,
1106 };
1107
1108 static int __init perf_counter_init(void)
1109 {
1110 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
1111 (void *)(long)smp_processor_id());
1112 register_cpu_notifier(&perf_cpu_nb);
1113
1114 return 0;
1115 }
1116 early_initcall(perf_counter_init);
1117
1118 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
1119 {
1120 return sprintf(buf, "%d\n", perf_reserved_percpu);
1121 }
1122
1123 static ssize_t
1124 perf_set_reserve_percpu(struct sysdev_class *class,
1125 const char *buf,
1126 size_t count)
1127 {
1128 struct perf_cpu_context *cpuctx;
1129 unsigned long val;
1130 int err, cpu, mpt;
1131
1132 err = strict_strtoul(buf, 10, &val);
1133 if (err)
1134 return err;
1135 if (val > perf_max_counters)
1136 return -EINVAL;
1137
1138 mutex_lock(&perf_resource_mutex);
1139 perf_reserved_percpu = val;
1140 for_each_online_cpu(cpu) {
1141 cpuctx = &per_cpu(perf_cpu_context, cpu);
1142 spin_lock_irq(&cpuctx->ctx.lock);
1143 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
1144 perf_max_counters - perf_reserved_percpu);
1145 cpuctx->max_pertask = mpt;
1146 spin_unlock_irq(&cpuctx->ctx.lock);
1147 }
1148 mutex_unlock(&perf_resource_mutex);
1149
1150 return count;
1151 }
1152
1153 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
1154 {
1155 return sprintf(buf, "%d\n", perf_overcommit);
1156 }
1157
1158 static ssize_t
1159 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
1160 {
1161 unsigned long val;
1162 int err;
1163
1164 err = strict_strtoul(buf, 10, &val);
1165 if (err)
1166 return err;
1167 if (val > 1)
1168 return -EINVAL;
1169
1170 mutex_lock(&perf_resource_mutex);
1171 perf_overcommit = val;
1172 mutex_unlock(&perf_resource_mutex);
1173
1174 return count;
1175 }
1176
1177 static SYSDEV_CLASS_ATTR(
1178 reserve_percpu,
1179 0644,
1180 perf_show_reserve_percpu,
1181 perf_set_reserve_percpu
1182 );
1183
1184 static SYSDEV_CLASS_ATTR(
1185 overcommit,
1186 0644,
1187 perf_show_overcommit,
1188 perf_set_overcommit
1189 );
1190
1191 static struct attribute *perfclass_attrs[] = {
1192 &attr_reserve_percpu.attr,
1193 &attr_overcommit.attr,
1194 NULL
1195 };
1196
1197 static struct attribute_group perfclass_attr_group = {
1198 .attrs = perfclass_attrs,
1199 .name = "perf_counters",
1200 };
1201
1202 static int __init perf_counter_sysfs_init(void)
1203 {
1204 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
1205 &perfclass_attr_group);
1206 }
1207 device_initcall(perf_counter_sysfs_init);
1208