]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/perf_event.c
86f394e15d53f54d8ea04ea7ed249d7bcc0f9ebc
[mirror_ubuntu-jammy-kernel.git] / kernel / perf_event.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34
35 #include <asm/irq_regs.h>
36
37 static atomic_t nr_events __read_mostly;
38 static atomic_t nr_mmap_events __read_mostly;
39 static atomic_t nr_comm_events __read_mostly;
40 static atomic_t nr_task_events __read_mostly;
41
42 static LIST_HEAD(pmus);
43 static DEFINE_MUTEX(pmus_lock);
44 static struct srcu_struct pmus_srcu;
45
46 /*
47 * perf event paranoia level:
48 * -1 - not paranoid at all
49 * 0 - disallow raw tracepoint access for unpriv
50 * 1 - disallow cpu events for unpriv
51 * 2 - disallow kernel profiling for unpriv
52 */
53 int sysctl_perf_event_paranoid __read_mostly = 1;
54
55 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
56
57 /*
58 * max perf event sample rate
59 */
60 int sysctl_perf_event_sample_rate __read_mostly = 100000;
61
62 static atomic64_t perf_event_id;
63
64 void __weak perf_event_print_debug(void) { }
65
66 void perf_pmu_disable(struct pmu *pmu)
67 {
68 int *count = this_cpu_ptr(pmu->pmu_disable_count);
69 if (!(*count)++)
70 pmu->pmu_disable(pmu);
71 }
72
73 void perf_pmu_enable(struct pmu *pmu)
74 {
75 int *count = this_cpu_ptr(pmu->pmu_disable_count);
76 if (!--(*count))
77 pmu->pmu_enable(pmu);
78 }
79
80 static void perf_pmu_rotate_start(struct pmu *pmu)
81 {
82 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
83
84 if (hrtimer_active(&cpuctx->timer))
85 return;
86
87 __hrtimer_start_range_ns(&cpuctx->timer,
88 ns_to_ktime(cpuctx->timer_interval), 0,
89 HRTIMER_MODE_REL_PINNED, 0);
90 }
91
92 static void perf_pmu_rotate_stop(struct pmu *pmu)
93 {
94 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95
96 hrtimer_cancel(&cpuctx->timer);
97 }
98
99 static void get_ctx(struct perf_event_context *ctx)
100 {
101 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
102 }
103
104 static void free_ctx(struct rcu_head *head)
105 {
106 struct perf_event_context *ctx;
107
108 ctx = container_of(head, struct perf_event_context, rcu_head);
109 kfree(ctx);
110 }
111
112 static void put_ctx(struct perf_event_context *ctx)
113 {
114 if (atomic_dec_and_test(&ctx->refcount)) {
115 if (ctx->parent_ctx)
116 put_ctx(ctx->parent_ctx);
117 if (ctx->task)
118 put_task_struct(ctx->task);
119 call_rcu(&ctx->rcu_head, free_ctx);
120 }
121 }
122
123 static void unclone_ctx(struct perf_event_context *ctx)
124 {
125 if (ctx->parent_ctx) {
126 put_ctx(ctx->parent_ctx);
127 ctx->parent_ctx = NULL;
128 }
129 }
130
131 /*
132 * If we inherit events we want to return the parent event id
133 * to userspace.
134 */
135 static u64 primary_event_id(struct perf_event *event)
136 {
137 u64 id = event->id;
138
139 if (event->parent)
140 id = event->parent->id;
141
142 return id;
143 }
144
145 /*
146 * Get the perf_event_context for a task and lock it.
147 * This has to cope with with the fact that until it is locked,
148 * the context could get moved to another task.
149 */
150 static struct perf_event_context *
151 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
152 {
153 struct perf_event_context *ctx;
154
155 rcu_read_lock();
156 retry:
157 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
158 if (ctx) {
159 /*
160 * If this context is a clone of another, it might
161 * get swapped for another underneath us by
162 * perf_event_task_sched_out, though the
163 * rcu_read_lock() protects us from any context
164 * getting freed. Lock the context and check if it
165 * got swapped before we could get the lock, and retry
166 * if so. If we locked the right context, then it
167 * can't get swapped on us any more.
168 */
169 raw_spin_lock_irqsave(&ctx->lock, *flags);
170 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
171 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
172 goto retry;
173 }
174
175 if (!atomic_inc_not_zero(&ctx->refcount)) {
176 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
177 ctx = NULL;
178 }
179 }
180 rcu_read_unlock();
181 return ctx;
182 }
183
184 /*
185 * Get the context for a task and increment its pin_count so it
186 * can't get swapped to another task. This also increments its
187 * reference count so that the context can't get freed.
188 */
189 static struct perf_event_context *
190 perf_pin_task_context(struct task_struct *task, int ctxn)
191 {
192 struct perf_event_context *ctx;
193 unsigned long flags;
194
195 ctx = perf_lock_task_context(task, ctxn, &flags);
196 if (ctx) {
197 ++ctx->pin_count;
198 raw_spin_unlock_irqrestore(&ctx->lock, flags);
199 }
200 return ctx;
201 }
202
203 static void perf_unpin_context(struct perf_event_context *ctx)
204 {
205 unsigned long flags;
206
207 raw_spin_lock_irqsave(&ctx->lock, flags);
208 --ctx->pin_count;
209 raw_spin_unlock_irqrestore(&ctx->lock, flags);
210 put_ctx(ctx);
211 }
212
213 static inline u64 perf_clock(void)
214 {
215 return local_clock();
216 }
217
218 /*
219 * Update the record of the current time in a context.
220 */
221 static void update_context_time(struct perf_event_context *ctx)
222 {
223 u64 now = perf_clock();
224
225 ctx->time += now - ctx->timestamp;
226 ctx->timestamp = now;
227 }
228
229 /*
230 * Update the total_time_enabled and total_time_running fields for a event.
231 */
232 static void update_event_times(struct perf_event *event)
233 {
234 struct perf_event_context *ctx = event->ctx;
235 u64 run_end;
236
237 if (event->state < PERF_EVENT_STATE_INACTIVE ||
238 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
239 return;
240
241 if (ctx->is_active)
242 run_end = ctx->time;
243 else
244 run_end = event->tstamp_stopped;
245
246 event->total_time_enabled = run_end - event->tstamp_enabled;
247
248 if (event->state == PERF_EVENT_STATE_INACTIVE)
249 run_end = event->tstamp_stopped;
250 else
251 run_end = ctx->time;
252
253 event->total_time_running = run_end - event->tstamp_running;
254 }
255
256 /*
257 * Update total_time_enabled and total_time_running for all events in a group.
258 */
259 static void update_group_times(struct perf_event *leader)
260 {
261 struct perf_event *event;
262
263 update_event_times(leader);
264 list_for_each_entry(event, &leader->sibling_list, group_entry)
265 update_event_times(event);
266 }
267
268 static struct list_head *
269 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
270 {
271 if (event->attr.pinned)
272 return &ctx->pinned_groups;
273 else
274 return &ctx->flexible_groups;
275 }
276
277 /*
278 * Add a event from the lists for its context.
279 * Must be called with ctx->mutex and ctx->lock held.
280 */
281 static void
282 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
283 {
284 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
285 event->attach_state |= PERF_ATTACH_CONTEXT;
286
287 /*
288 * If we're a stand alone event or group leader, we go to the context
289 * list, group events are kept attached to the group so that
290 * perf_group_detach can, at all times, locate all siblings.
291 */
292 if (event->group_leader == event) {
293 struct list_head *list;
294
295 if (is_software_event(event))
296 event->group_flags |= PERF_GROUP_SOFTWARE;
297
298 list = ctx_group_list(event, ctx);
299 list_add_tail(&event->group_entry, list);
300 }
301
302 list_add_rcu(&event->event_entry, &ctx->event_list);
303 if (!ctx->nr_events)
304 perf_pmu_rotate_start(ctx->pmu);
305 ctx->nr_events++;
306 if (event->attr.inherit_stat)
307 ctx->nr_stat++;
308 }
309
310 static void perf_group_attach(struct perf_event *event)
311 {
312 struct perf_event *group_leader = event->group_leader;
313
314 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
315 event->attach_state |= PERF_ATTACH_GROUP;
316
317 if (group_leader == event)
318 return;
319
320 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
321 !is_software_event(event))
322 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
323
324 list_add_tail(&event->group_entry, &group_leader->sibling_list);
325 group_leader->nr_siblings++;
326 }
327
328 /*
329 * Remove a event from the lists for its context.
330 * Must be called with ctx->mutex and ctx->lock held.
331 */
332 static void
333 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
334 {
335 /*
336 * We can have double detach due to exit/hot-unplug + close.
337 */
338 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
339 return;
340
341 event->attach_state &= ~PERF_ATTACH_CONTEXT;
342
343 ctx->nr_events--;
344 if (event->attr.inherit_stat)
345 ctx->nr_stat--;
346
347 list_del_rcu(&event->event_entry);
348
349 if (event->group_leader == event)
350 list_del_init(&event->group_entry);
351
352 update_group_times(event);
353
354 /*
355 * If event was in error state, then keep it
356 * that way, otherwise bogus counts will be
357 * returned on read(). The only way to get out
358 * of error state is by explicit re-enabling
359 * of the event
360 */
361 if (event->state > PERF_EVENT_STATE_OFF)
362 event->state = PERF_EVENT_STATE_OFF;
363 }
364
365 static void perf_group_detach(struct perf_event *event)
366 {
367 struct perf_event *sibling, *tmp;
368 struct list_head *list = NULL;
369
370 /*
371 * We can have double detach due to exit/hot-unplug + close.
372 */
373 if (!(event->attach_state & PERF_ATTACH_GROUP))
374 return;
375
376 event->attach_state &= ~PERF_ATTACH_GROUP;
377
378 /*
379 * If this is a sibling, remove it from its group.
380 */
381 if (event->group_leader != event) {
382 list_del_init(&event->group_entry);
383 event->group_leader->nr_siblings--;
384 return;
385 }
386
387 if (!list_empty(&event->group_entry))
388 list = &event->group_entry;
389
390 /*
391 * If this was a group event with sibling events then
392 * upgrade the siblings to singleton events by adding them
393 * to whatever list we are on.
394 */
395 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
396 if (list)
397 list_move_tail(&sibling->group_entry, list);
398 sibling->group_leader = sibling;
399
400 /* Inherit group flags from the previous leader */
401 sibling->group_flags = event->group_flags;
402 }
403 }
404
405 static inline int
406 event_filter_match(struct perf_event *event)
407 {
408 return event->cpu == -1 || event->cpu == smp_processor_id();
409 }
410
411 static void
412 event_sched_out(struct perf_event *event,
413 struct perf_cpu_context *cpuctx,
414 struct perf_event_context *ctx)
415 {
416 u64 delta;
417 /*
418 * An event which could not be activated because of
419 * filter mismatch still needs to have its timings
420 * maintained, otherwise bogus information is return
421 * via read() for time_enabled, time_running:
422 */
423 if (event->state == PERF_EVENT_STATE_INACTIVE
424 && !event_filter_match(event)) {
425 delta = ctx->time - event->tstamp_stopped;
426 event->tstamp_running += delta;
427 event->tstamp_stopped = ctx->time;
428 }
429
430 if (event->state != PERF_EVENT_STATE_ACTIVE)
431 return;
432
433 event->state = PERF_EVENT_STATE_INACTIVE;
434 if (event->pending_disable) {
435 event->pending_disable = 0;
436 event->state = PERF_EVENT_STATE_OFF;
437 }
438 event->tstamp_stopped = ctx->time;
439 event->pmu->del(event, 0);
440 event->oncpu = -1;
441
442 if (!is_software_event(event))
443 cpuctx->active_oncpu--;
444 ctx->nr_active--;
445 if (event->attr.exclusive || !cpuctx->active_oncpu)
446 cpuctx->exclusive = 0;
447 }
448
449 static void
450 group_sched_out(struct perf_event *group_event,
451 struct perf_cpu_context *cpuctx,
452 struct perf_event_context *ctx)
453 {
454 struct perf_event *event;
455 int state = group_event->state;
456
457 event_sched_out(group_event, cpuctx, ctx);
458
459 /*
460 * Schedule out siblings (if any):
461 */
462 list_for_each_entry(event, &group_event->sibling_list, group_entry)
463 event_sched_out(event, cpuctx, ctx);
464
465 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
466 cpuctx->exclusive = 0;
467 }
468
469 static inline struct perf_cpu_context *
470 __get_cpu_context(struct perf_event_context *ctx)
471 {
472 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
473 }
474
475 /*
476 * Cross CPU call to remove a performance event
477 *
478 * We disable the event on the hardware level first. After that we
479 * remove it from the context list.
480 */
481 static void __perf_event_remove_from_context(void *info)
482 {
483 struct perf_event *event = info;
484 struct perf_event_context *ctx = event->ctx;
485 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
486
487 /*
488 * If this is a task context, we need to check whether it is
489 * the current task context of this cpu. If not it has been
490 * scheduled out before the smp call arrived.
491 */
492 if (ctx->task && cpuctx->task_ctx != ctx)
493 return;
494
495 raw_spin_lock(&ctx->lock);
496
497 event_sched_out(event, cpuctx, ctx);
498
499 list_del_event(event, ctx);
500
501 raw_spin_unlock(&ctx->lock);
502 }
503
504
505 /*
506 * Remove the event from a task's (or a CPU's) list of events.
507 *
508 * Must be called with ctx->mutex held.
509 *
510 * CPU events are removed with a smp call. For task events we only
511 * call when the task is on a CPU.
512 *
513 * If event->ctx is a cloned context, callers must make sure that
514 * every task struct that event->ctx->task could possibly point to
515 * remains valid. This is OK when called from perf_release since
516 * that only calls us on the top-level context, which can't be a clone.
517 * When called from perf_event_exit_task, it's OK because the
518 * context has been detached from its task.
519 */
520 static void perf_event_remove_from_context(struct perf_event *event)
521 {
522 struct perf_event_context *ctx = event->ctx;
523 struct task_struct *task = ctx->task;
524
525 if (!task) {
526 /*
527 * Per cpu events are removed via an smp call and
528 * the removal is always successful.
529 */
530 smp_call_function_single(event->cpu,
531 __perf_event_remove_from_context,
532 event, 1);
533 return;
534 }
535
536 retry:
537 task_oncpu_function_call(task, __perf_event_remove_from_context,
538 event);
539
540 raw_spin_lock_irq(&ctx->lock);
541 /*
542 * If the context is active we need to retry the smp call.
543 */
544 if (ctx->nr_active && !list_empty(&event->group_entry)) {
545 raw_spin_unlock_irq(&ctx->lock);
546 goto retry;
547 }
548
549 /*
550 * The lock prevents that this context is scheduled in so we
551 * can remove the event safely, if the call above did not
552 * succeed.
553 */
554 if (!list_empty(&event->group_entry))
555 list_del_event(event, ctx);
556 raw_spin_unlock_irq(&ctx->lock);
557 }
558
559 /*
560 * Cross CPU call to disable a performance event
561 */
562 static void __perf_event_disable(void *info)
563 {
564 struct perf_event *event = info;
565 struct perf_event_context *ctx = event->ctx;
566 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
567
568 /*
569 * If this is a per-task event, need to check whether this
570 * event's task is the current task on this cpu.
571 */
572 if (ctx->task && cpuctx->task_ctx != ctx)
573 return;
574
575 raw_spin_lock(&ctx->lock);
576
577 /*
578 * If the event is on, turn it off.
579 * If it is in error state, leave it in error state.
580 */
581 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
582 update_context_time(ctx);
583 update_group_times(event);
584 if (event == event->group_leader)
585 group_sched_out(event, cpuctx, ctx);
586 else
587 event_sched_out(event, cpuctx, ctx);
588 event->state = PERF_EVENT_STATE_OFF;
589 }
590
591 raw_spin_unlock(&ctx->lock);
592 }
593
594 /*
595 * Disable a event.
596 *
597 * If event->ctx is a cloned context, callers must make sure that
598 * every task struct that event->ctx->task could possibly point to
599 * remains valid. This condition is satisifed when called through
600 * perf_event_for_each_child or perf_event_for_each because they
601 * hold the top-level event's child_mutex, so any descendant that
602 * goes to exit will block in sync_child_event.
603 * When called from perf_pending_event it's OK because event->ctx
604 * is the current context on this CPU and preemption is disabled,
605 * hence we can't get into perf_event_task_sched_out for this context.
606 */
607 void perf_event_disable(struct perf_event *event)
608 {
609 struct perf_event_context *ctx = event->ctx;
610 struct task_struct *task = ctx->task;
611
612 if (!task) {
613 /*
614 * Disable the event on the cpu that it's on
615 */
616 smp_call_function_single(event->cpu, __perf_event_disable,
617 event, 1);
618 return;
619 }
620
621 retry:
622 task_oncpu_function_call(task, __perf_event_disable, event);
623
624 raw_spin_lock_irq(&ctx->lock);
625 /*
626 * If the event is still active, we need to retry the cross-call.
627 */
628 if (event->state == PERF_EVENT_STATE_ACTIVE) {
629 raw_spin_unlock_irq(&ctx->lock);
630 goto retry;
631 }
632
633 /*
634 * Since we have the lock this context can't be scheduled
635 * in, so we can change the state safely.
636 */
637 if (event->state == PERF_EVENT_STATE_INACTIVE) {
638 update_group_times(event);
639 event->state = PERF_EVENT_STATE_OFF;
640 }
641
642 raw_spin_unlock_irq(&ctx->lock);
643 }
644
645 static int
646 event_sched_in(struct perf_event *event,
647 struct perf_cpu_context *cpuctx,
648 struct perf_event_context *ctx)
649 {
650 if (event->state <= PERF_EVENT_STATE_OFF)
651 return 0;
652
653 event->state = PERF_EVENT_STATE_ACTIVE;
654 event->oncpu = smp_processor_id();
655 /*
656 * The new state must be visible before we turn it on in the hardware:
657 */
658 smp_wmb();
659
660 if (event->pmu->add(event, PERF_EF_START)) {
661 event->state = PERF_EVENT_STATE_INACTIVE;
662 event->oncpu = -1;
663 return -EAGAIN;
664 }
665
666 event->tstamp_running += ctx->time - event->tstamp_stopped;
667
668 if (!is_software_event(event))
669 cpuctx->active_oncpu++;
670 ctx->nr_active++;
671
672 if (event->attr.exclusive)
673 cpuctx->exclusive = 1;
674
675 return 0;
676 }
677
678 static int
679 group_sched_in(struct perf_event *group_event,
680 struct perf_cpu_context *cpuctx,
681 struct perf_event_context *ctx)
682 {
683 struct perf_event *event, *partial_group = NULL;
684 struct pmu *pmu = group_event->pmu;
685
686 if (group_event->state == PERF_EVENT_STATE_OFF)
687 return 0;
688
689 pmu->start_txn(pmu);
690
691 if (event_sched_in(group_event, cpuctx, ctx)) {
692 pmu->cancel_txn(pmu);
693 return -EAGAIN;
694 }
695
696 /*
697 * Schedule in siblings as one group (if any):
698 */
699 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
700 if (event_sched_in(event, cpuctx, ctx)) {
701 partial_group = event;
702 goto group_error;
703 }
704 }
705
706 if (!pmu->commit_txn(pmu))
707 return 0;
708
709 group_error:
710 /*
711 * Groups can be scheduled in as one unit only, so undo any
712 * partial group before returning:
713 */
714 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
715 if (event == partial_group)
716 break;
717 event_sched_out(event, cpuctx, ctx);
718 }
719 event_sched_out(group_event, cpuctx, ctx);
720
721 pmu->cancel_txn(pmu);
722
723 return -EAGAIN;
724 }
725
726 /*
727 * Work out whether we can put this event group on the CPU now.
728 */
729 static int group_can_go_on(struct perf_event *event,
730 struct perf_cpu_context *cpuctx,
731 int can_add_hw)
732 {
733 /*
734 * Groups consisting entirely of software events can always go on.
735 */
736 if (event->group_flags & PERF_GROUP_SOFTWARE)
737 return 1;
738 /*
739 * If an exclusive group is already on, no other hardware
740 * events can go on.
741 */
742 if (cpuctx->exclusive)
743 return 0;
744 /*
745 * If this group is exclusive and there are already
746 * events on the CPU, it can't go on.
747 */
748 if (event->attr.exclusive && cpuctx->active_oncpu)
749 return 0;
750 /*
751 * Otherwise, try to add it if all previous groups were able
752 * to go on.
753 */
754 return can_add_hw;
755 }
756
757 static void add_event_to_ctx(struct perf_event *event,
758 struct perf_event_context *ctx)
759 {
760 list_add_event(event, ctx);
761 perf_group_attach(event);
762 event->tstamp_enabled = ctx->time;
763 event->tstamp_running = ctx->time;
764 event->tstamp_stopped = ctx->time;
765 }
766
767 /*
768 * Cross CPU call to install and enable a performance event
769 *
770 * Must be called with ctx->mutex held
771 */
772 static void __perf_install_in_context(void *info)
773 {
774 struct perf_event *event = info;
775 struct perf_event_context *ctx = event->ctx;
776 struct perf_event *leader = event->group_leader;
777 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
778 int err;
779
780 /*
781 * If this is a task context, we need to check whether it is
782 * the current task context of this cpu. If not it has been
783 * scheduled out before the smp call arrived.
784 * Or possibly this is the right context but it isn't
785 * on this cpu because it had no events.
786 */
787 if (ctx->task && cpuctx->task_ctx != ctx) {
788 if (cpuctx->task_ctx || ctx->task != current)
789 return;
790 cpuctx->task_ctx = ctx;
791 }
792
793 raw_spin_lock(&ctx->lock);
794 ctx->is_active = 1;
795 update_context_time(ctx);
796
797 add_event_to_ctx(event, ctx);
798
799 if (event->cpu != -1 && event->cpu != smp_processor_id())
800 goto unlock;
801
802 /*
803 * Don't put the event on if it is disabled or if
804 * it is in a group and the group isn't on.
805 */
806 if (event->state != PERF_EVENT_STATE_INACTIVE ||
807 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
808 goto unlock;
809
810 /*
811 * An exclusive event can't go on if there are already active
812 * hardware events, and no hardware event can go on if there
813 * is already an exclusive event on.
814 */
815 if (!group_can_go_on(event, cpuctx, 1))
816 err = -EEXIST;
817 else
818 err = event_sched_in(event, cpuctx, ctx);
819
820 if (err) {
821 /*
822 * This event couldn't go on. If it is in a group
823 * then we have to pull the whole group off.
824 * If the event group is pinned then put it in error state.
825 */
826 if (leader != event)
827 group_sched_out(leader, cpuctx, ctx);
828 if (leader->attr.pinned) {
829 update_group_times(leader);
830 leader->state = PERF_EVENT_STATE_ERROR;
831 }
832 }
833
834 unlock:
835 raw_spin_unlock(&ctx->lock);
836 }
837
838 /*
839 * Attach a performance event to a context
840 *
841 * First we add the event to the list with the hardware enable bit
842 * in event->hw_config cleared.
843 *
844 * If the event is attached to a task which is on a CPU we use a smp
845 * call to enable it in the task context. The task might have been
846 * scheduled away, but we check this in the smp call again.
847 *
848 * Must be called with ctx->mutex held.
849 */
850 static void
851 perf_install_in_context(struct perf_event_context *ctx,
852 struct perf_event *event,
853 int cpu)
854 {
855 struct task_struct *task = ctx->task;
856
857 event->ctx = ctx;
858
859 if (!task) {
860 /*
861 * Per cpu events are installed via an smp call and
862 * the install is always successful.
863 */
864 smp_call_function_single(cpu, __perf_install_in_context,
865 event, 1);
866 return;
867 }
868
869 retry:
870 task_oncpu_function_call(task, __perf_install_in_context,
871 event);
872
873 raw_spin_lock_irq(&ctx->lock);
874 /*
875 * we need to retry the smp call.
876 */
877 if (ctx->is_active && list_empty(&event->group_entry)) {
878 raw_spin_unlock_irq(&ctx->lock);
879 goto retry;
880 }
881
882 /*
883 * The lock prevents that this context is scheduled in so we
884 * can add the event safely, if it the call above did not
885 * succeed.
886 */
887 if (list_empty(&event->group_entry))
888 add_event_to_ctx(event, ctx);
889 raw_spin_unlock_irq(&ctx->lock);
890 }
891
892 /*
893 * Put a event into inactive state and update time fields.
894 * Enabling the leader of a group effectively enables all
895 * the group members that aren't explicitly disabled, so we
896 * have to update their ->tstamp_enabled also.
897 * Note: this works for group members as well as group leaders
898 * since the non-leader members' sibling_lists will be empty.
899 */
900 static void __perf_event_mark_enabled(struct perf_event *event,
901 struct perf_event_context *ctx)
902 {
903 struct perf_event *sub;
904
905 event->state = PERF_EVENT_STATE_INACTIVE;
906 event->tstamp_enabled = ctx->time - event->total_time_enabled;
907 list_for_each_entry(sub, &event->sibling_list, group_entry) {
908 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
909 sub->tstamp_enabled =
910 ctx->time - sub->total_time_enabled;
911 }
912 }
913 }
914
915 /*
916 * Cross CPU call to enable a performance event
917 */
918 static void __perf_event_enable(void *info)
919 {
920 struct perf_event *event = info;
921 struct perf_event_context *ctx = event->ctx;
922 struct perf_event *leader = event->group_leader;
923 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
924 int err;
925
926 /*
927 * If this is a per-task event, need to check whether this
928 * event's task is the current task on this cpu.
929 */
930 if (ctx->task && cpuctx->task_ctx != ctx) {
931 if (cpuctx->task_ctx || ctx->task != current)
932 return;
933 cpuctx->task_ctx = ctx;
934 }
935
936 raw_spin_lock(&ctx->lock);
937 ctx->is_active = 1;
938 update_context_time(ctx);
939
940 if (event->state >= PERF_EVENT_STATE_INACTIVE)
941 goto unlock;
942 __perf_event_mark_enabled(event, ctx);
943
944 if (event->cpu != -1 && event->cpu != smp_processor_id())
945 goto unlock;
946
947 /*
948 * If the event is in a group and isn't the group leader,
949 * then don't put it on unless the group is on.
950 */
951 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
952 goto unlock;
953
954 if (!group_can_go_on(event, cpuctx, 1)) {
955 err = -EEXIST;
956 } else {
957 if (event == leader)
958 err = group_sched_in(event, cpuctx, ctx);
959 else
960 err = event_sched_in(event, cpuctx, ctx);
961 }
962
963 if (err) {
964 /*
965 * If this event can't go on and it's part of a
966 * group, then the whole group has to come off.
967 */
968 if (leader != event)
969 group_sched_out(leader, cpuctx, ctx);
970 if (leader->attr.pinned) {
971 update_group_times(leader);
972 leader->state = PERF_EVENT_STATE_ERROR;
973 }
974 }
975
976 unlock:
977 raw_spin_unlock(&ctx->lock);
978 }
979
980 /*
981 * Enable a event.
982 *
983 * If event->ctx is a cloned context, callers must make sure that
984 * every task struct that event->ctx->task could possibly point to
985 * remains valid. This condition is satisfied when called through
986 * perf_event_for_each_child or perf_event_for_each as described
987 * for perf_event_disable.
988 */
989 void perf_event_enable(struct perf_event *event)
990 {
991 struct perf_event_context *ctx = event->ctx;
992 struct task_struct *task = ctx->task;
993
994 if (!task) {
995 /*
996 * Enable the event on the cpu that it's on
997 */
998 smp_call_function_single(event->cpu, __perf_event_enable,
999 event, 1);
1000 return;
1001 }
1002
1003 raw_spin_lock_irq(&ctx->lock);
1004 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1005 goto out;
1006
1007 /*
1008 * If the event is in error state, clear that first.
1009 * That way, if we see the event in error state below, we
1010 * know that it has gone back into error state, as distinct
1011 * from the task having been scheduled away before the
1012 * cross-call arrived.
1013 */
1014 if (event->state == PERF_EVENT_STATE_ERROR)
1015 event->state = PERF_EVENT_STATE_OFF;
1016
1017 retry:
1018 raw_spin_unlock_irq(&ctx->lock);
1019 task_oncpu_function_call(task, __perf_event_enable, event);
1020
1021 raw_spin_lock_irq(&ctx->lock);
1022
1023 /*
1024 * If the context is active and the event is still off,
1025 * we need to retry the cross-call.
1026 */
1027 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1028 goto retry;
1029
1030 /*
1031 * Since we have the lock this context can't be scheduled
1032 * in, so we can change the state safely.
1033 */
1034 if (event->state == PERF_EVENT_STATE_OFF)
1035 __perf_event_mark_enabled(event, ctx);
1036
1037 out:
1038 raw_spin_unlock_irq(&ctx->lock);
1039 }
1040
1041 static int perf_event_refresh(struct perf_event *event, int refresh)
1042 {
1043 /*
1044 * not supported on inherited events
1045 */
1046 if (event->attr.inherit)
1047 return -EINVAL;
1048
1049 atomic_add(refresh, &event->event_limit);
1050 perf_event_enable(event);
1051
1052 return 0;
1053 }
1054
1055 enum event_type_t {
1056 EVENT_FLEXIBLE = 0x1,
1057 EVENT_PINNED = 0x2,
1058 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1059 };
1060
1061 static void ctx_sched_out(struct perf_event_context *ctx,
1062 struct perf_cpu_context *cpuctx,
1063 enum event_type_t event_type)
1064 {
1065 struct perf_event *event;
1066
1067 raw_spin_lock(&ctx->lock);
1068 perf_pmu_disable(ctx->pmu);
1069 ctx->is_active = 0;
1070 if (likely(!ctx->nr_events))
1071 goto out;
1072 update_context_time(ctx);
1073
1074 if (!ctx->nr_active)
1075 goto out;
1076
1077 if (event_type & EVENT_PINNED) {
1078 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1079 group_sched_out(event, cpuctx, ctx);
1080 }
1081
1082 if (event_type & EVENT_FLEXIBLE) {
1083 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1084 group_sched_out(event, cpuctx, ctx);
1085 }
1086 out:
1087 perf_pmu_enable(ctx->pmu);
1088 raw_spin_unlock(&ctx->lock);
1089 }
1090
1091 /*
1092 * Test whether two contexts are equivalent, i.e. whether they
1093 * have both been cloned from the same version of the same context
1094 * and they both have the same number of enabled events.
1095 * If the number of enabled events is the same, then the set
1096 * of enabled events should be the same, because these are both
1097 * inherited contexts, therefore we can't access individual events
1098 * in them directly with an fd; we can only enable/disable all
1099 * events via prctl, or enable/disable all events in a family
1100 * via ioctl, which will have the same effect on both contexts.
1101 */
1102 static int context_equiv(struct perf_event_context *ctx1,
1103 struct perf_event_context *ctx2)
1104 {
1105 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1106 && ctx1->parent_gen == ctx2->parent_gen
1107 && !ctx1->pin_count && !ctx2->pin_count;
1108 }
1109
1110 static void __perf_event_sync_stat(struct perf_event *event,
1111 struct perf_event *next_event)
1112 {
1113 u64 value;
1114
1115 if (!event->attr.inherit_stat)
1116 return;
1117
1118 /*
1119 * Update the event value, we cannot use perf_event_read()
1120 * because we're in the middle of a context switch and have IRQs
1121 * disabled, which upsets smp_call_function_single(), however
1122 * we know the event must be on the current CPU, therefore we
1123 * don't need to use it.
1124 */
1125 switch (event->state) {
1126 case PERF_EVENT_STATE_ACTIVE:
1127 event->pmu->read(event);
1128 /* fall-through */
1129
1130 case PERF_EVENT_STATE_INACTIVE:
1131 update_event_times(event);
1132 break;
1133
1134 default:
1135 break;
1136 }
1137
1138 /*
1139 * In order to keep per-task stats reliable we need to flip the event
1140 * values when we flip the contexts.
1141 */
1142 value = local64_read(&next_event->count);
1143 value = local64_xchg(&event->count, value);
1144 local64_set(&next_event->count, value);
1145
1146 swap(event->total_time_enabled, next_event->total_time_enabled);
1147 swap(event->total_time_running, next_event->total_time_running);
1148
1149 /*
1150 * Since we swizzled the values, update the user visible data too.
1151 */
1152 perf_event_update_userpage(event);
1153 perf_event_update_userpage(next_event);
1154 }
1155
1156 #define list_next_entry(pos, member) \
1157 list_entry(pos->member.next, typeof(*pos), member)
1158
1159 static void perf_event_sync_stat(struct perf_event_context *ctx,
1160 struct perf_event_context *next_ctx)
1161 {
1162 struct perf_event *event, *next_event;
1163
1164 if (!ctx->nr_stat)
1165 return;
1166
1167 update_context_time(ctx);
1168
1169 event = list_first_entry(&ctx->event_list,
1170 struct perf_event, event_entry);
1171
1172 next_event = list_first_entry(&next_ctx->event_list,
1173 struct perf_event, event_entry);
1174
1175 while (&event->event_entry != &ctx->event_list &&
1176 &next_event->event_entry != &next_ctx->event_list) {
1177
1178 __perf_event_sync_stat(event, next_event);
1179
1180 event = list_next_entry(event, event_entry);
1181 next_event = list_next_entry(next_event, event_entry);
1182 }
1183 }
1184
1185 void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1186 struct task_struct *next)
1187 {
1188 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1189 struct perf_event_context *next_ctx;
1190 struct perf_event_context *parent;
1191 struct perf_cpu_context *cpuctx;
1192 int do_switch = 1;
1193
1194 if (likely(!ctx))
1195 return;
1196
1197 cpuctx = __get_cpu_context(ctx);
1198 if (!cpuctx->task_ctx)
1199 return;
1200
1201 rcu_read_lock();
1202 parent = rcu_dereference(ctx->parent_ctx);
1203 next_ctx = next->perf_event_ctxp[ctxn];
1204 if (parent && next_ctx &&
1205 rcu_dereference(next_ctx->parent_ctx) == parent) {
1206 /*
1207 * Looks like the two contexts are clones, so we might be
1208 * able to optimize the context switch. We lock both
1209 * contexts and check that they are clones under the
1210 * lock (including re-checking that neither has been
1211 * uncloned in the meantime). It doesn't matter which
1212 * order we take the locks because no other cpu could
1213 * be trying to lock both of these tasks.
1214 */
1215 raw_spin_lock(&ctx->lock);
1216 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1217 if (context_equiv(ctx, next_ctx)) {
1218 /*
1219 * XXX do we need a memory barrier of sorts
1220 * wrt to rcu_dereference() of perf_event_ctxp
1221 */
1222 task->perf_event_ctxp[ctxn] = next_ctx;
1223 next->perf_event_ctxp[ctxn] = ctx;
1224 ctx->task = next;
1225 next_ctx->task = task;
1226 do_switch = 0;
1227
1228 perf_event_sync_stat(ctx, next_ctx);
1229 }
1230 raw_spin_unlock(&next_ctx->lock);
1231 raw_spin_unlock(&ctx->lock);
1232 }
1233 rcu_read_unlock();
1234
1235 if (do_switch) {
1236 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1237 cpuctx->task_ctx = NULL;
1238 }
1239 }
1240
1241 #define for_each_task_context_nr(ctxn) \
1242 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1243
1244 /*
1245 * Called from scheduler to remove the events of the current task,
1246 * with interrupts disabled.
1247 *
1248 * We stop each event and update the event value in event->count.
1249 *
1250 * This does not protect us against NMI, but disable()
1251 * sets the disabled bit in the control field of event _before_
1252 * accessing the event control register. If a NMI hits, then it will
1253 * not restart the event.
1254 */
1255 void perf_event_task_sched_out(struct task_struct *task,
1256 struct task_struct *next)
1257 {
1258 int ctxn;
1259
1260 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1261
1262 for_each_task_context_nr(ctxn)
1263 perf_event_context_sched_out(task, ctxn, next);
1264 }
1265
1266 static void task_ctx_sched_out(struct perf_event_context *ctx,
1267 enum event_type_t event_type)
1268 {
1269 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1270
1271 if (!cpuctx->task_ctx)
1272 return;
1273
1274 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1275 return;
1276
1277 ctx_sched_out(ctx, cpuctx, event_type);
1278 cpuctx->task_ctx = NULL;
1279 }
1280
1281 /*
1282 * Called with IRQs disabled
1283 */
1284 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1285 {
1286 task_ctx_sched_out(ctx, EVENT_ALL);
1287 }
1288
1289 /*
1290 * Called with IRQs disabled
1291 */
1292 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1293 enum event_type_t event_type)
1294 {
1295 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1296 }
1297
1298 static void
1299 ctx_pinned_sched_in(struct perf_event_context *ctx,
1300 struct perf_cpu_context *cpuctx)
1301 {
1302 struct perf_event *event;
1303
1304 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1305 if (event->state <= PERF_EVENT_STATE_OFF)
1306 continue;
1307 if (event->cpu != -1 && event->cpu != smp_processor_id())
1308 continue;
1309
1310 if (group_can_go_on(event, cpuctx, 1))
1311 group_sched_in(event, cpuctx, ctx);
1312
1313 /*
1314 * If this pinned group hasn't been scheduled,
1315 * put it in error state.
1316 */
1317 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1318 update_group_times(event);
1319 event->state = PERF_EVENT_STATE_ERROR;
1320 }
1321 }
1322 }
1323
1324 static void
1325 ctx_flexible_sched_in(struct perf_event_context *ctx,
1326 struct perf_cpu_context *cpuctx)
1327 {
1328 struct perf_event *event;
1329 int can_add_hw = 1;
1330
1331 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1332 /* Ignore events in OFF or ERROR state */
1333 if (event->state <= PERF_EVENT_STATE_OFF)
1334 continue;
1335 /*
1336 * Listen to the 'cpu' scheduling filter constraint
1337 * of events:
1338 */
1339 if (event->cpu != -1 && event->cpu != smp_processor_id())
1340 continue;
1341
1342 if (group_can_go_on(event, cpuctx, can_add_hw)) {
1343 if (group_sched_in(event, cpuctx, ctx))
1344 can_add_hw = 0;
1345 }
1346 }
1347 }
1348
1349 static void
1350 ctx_sched_in(struct perf_event_context *ctx,
1351 struct perf_cpu_context *cpuctx,
1352 enum event_type_t event_type)
1353 {
1354 raw_spin_lock(&ctx->lock);
1355 ctx->is_active = 1;
1356 if (likely(!ctx->nr_events))
1357 goto out;
1358
1359 ctx->timestamp = perf_clock();
1360
1361 /*
1362 * First go through the list and put on any pinned groups
1363 * in order to give them the best chance of going on.
1364 */
1365 if (event_type & EVENT_PINNED)
1366 ctx_pinned_sched_in(ctx, cpuctx);
1367
1368 /* Then walk through the lower prio flexible groups */
1369 if (event_type & EVENT_FLEXIBLE)
1370 ctx_flexible_sched_in(ctx, cpuctx);
1371
1372 out:
1373 raw_spin_unlock(&ctx->lock);
1374 }
1375
1376 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1377 enum event_type_t event_type)
1378 {
1379 struct perf_event_context *ctx = &cpuctx->ctx;
1380
1381 ctx_sched_in(ctx, cpuctx, event_type);
1382 }
1383
1384 static void task_ctx_sched_in(struct perf_event_context *ctx,
1385 enum event_type_t event_type)
1386 {
1387 struct perf_cpu_context *cpuctx;
1388
1389 cpuctx = __get_cpu_context(ctx);
1390 if (cpuctx->task_ctx == ctx)
1391 return;
1392
1393 ctx_sched_in(ctx, cpuctx, event_type);
1394 cpuctx->task_ctx = ctx;
1395 }
1396
1397 void perf_event_context_sched_in(struct perf_event_context *ctx)
1398 {
1399 struct perf_cpu_context *cpuctx;
1400
1401 cpuctx = __get_cpu_context(ctx);
1402 if (cpuctx->task_ctx == ctx)
1403 return;
1404
1405 perf_pmu_disable(ctx->pmu);
1406 /*
1407 * We want to keep the following priority order:
1408 * cpu pinned (that don't need to move), task pinned,
1409 * cpu flexible, task flexible.
1410 */
1411 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1412
1413 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1414 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1415 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1416
1417 cpuctx->task_ctx = ctx;
1418
1419 /*
1420 * Since these rotations are per-cpu, we need to ensure the
1421 * cpu-context we got scheduled on is actually rotating.
1422 */
1423 perf_pmu_rotate_start(ctx->pmu);
1424 perf_pmu_enable(ctx->pmu);
1425 }
1426
1427 /*
1428 * Called from scheduler to add the events of the current task
1429 * with interrupts disabled.
1430 *
1431 * We restore the event value and then enable it.
1432 *
1433 * This does not protect us against NMI, but enable()
1434 * sets the enabled bit in the control field of event _before_
1435 * accessing the event control register. If a NMI hits, then it will
1436 * keep the event running.
1437 */
1438 void perf_event_task_sched_in(struct task_struct *task)
1439 {
1440 struct perf_event_context *ctx;
1441 int ctxn;
1442
1443 for_each_task_context_nr(ctxn) {
1444 ctx = task->perf_event_ctxp[ctxn];
1445 if (likely(!ctx))
1446 continue;
1447
1448 perf_event_context_sched_in(ctx);
1449 }
1450 }
1451
1452 #define MAX_INTERRUPTS (~0ULL)
1453
1454 static void perf_log_throttle(struct perf_event *event, int enable);
1455
1456 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1457 {
1458 u64 frequency = event->attr.sample_freq;
1459 u64 sec = NSEC_PER_SEC;
1460 u64 divisor, dividend;
1461
1462 int count_fls, nsec_fls, frequency_fls, sec_fls;
1463
1464 count_fls = fls64(count);
1465 nsec_fls = fls64(nsec);
1466 frequency_fls = fls64(frequency);
1467 sec_fls = 30;
1468
1469 /*
1470 * We got @count in @nsec, with a target of sample_freq HZ
1471 * the target period becomes:
1472 *
1473 * @count * 10^9
1474 * period = -------------------
1475 * @nsec * sample_freq
1476 *
1477 */
1478
1479 /*
1480 * Reduce accuracy by one bit such that @a and @b converge
1481 * to a similar magnitude.
1482 */
1483 #define REDUCE_FLS(a, b) \
1484 do { \
1485 if (a##_fls > b##_fls) { \
1486 a >>= 1; \
1487 a##_fls--; \
1488 } else { \
1489 b >>= 1; \
1490 b##_fls--; \
1491 } \
1492 } while (0)
1493
1494 /*
1495 * Reduce accuracy until either term fits in a u64, then proceed with
1496 * the other, so that finally we can do a u64/u64 division.
1497 */
1498 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1499 REDUCE_FLS(nsec, frequency);
1500 REDUCE_FLS(sec, count);
1501 }
1502
1503 if (count_fls + sec_fls > 64) {
1504 divisor = nsec * frequency;
1505
1506 while (count_fls + sec_fls > 64) {
1507 REDUCE_FLS(count, sec);
1508 divisor >>= 1;
1509 }
1510
1511 dividend = count * sec;
1512 } else {
1513 dividend = count * sec;
1514
1515 while (nsec_fls + frequency_fls > 64) {
1516 REDUCE_FLS(nsec, frequency);
1517 dividend >>= 1;
1518 }
1519
1520 divisor = nsec * frequency;
1521 }
1522
1523 if (!divisor)
1524 return dividend;
1525
1526 return div64_u64(dividend, divisor);
1527 }
1528
1529 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1530 {
1531 struct hw_perf_event *hwc = &event->hw;
1532 s64 period, sample_period;
1533 s64 delta;
1534
1535 period = perf_calculate_period(event, nsec, count);
1536
1537 delta = (s64)(period - hwc->sample_period);
1538 delta = (delta + 7) / 8; /* low pass filter */
1539
1540 sample_period = hwc->sample_period + delta;
1541
1542 if (!sample_period)
1543 sample_period = 1;
1544
1545 hwc->sample_period = sample_period;
1546
1547 if (local64_read(&hwc->period_left) > 8*sample_period) {
1548 event->pmu->stop(event, PERF_EF_UPDATE);
1549 local64_set(&hwc->period_left, 0);
1550 event->pmu->start(event, PERF_EF_RELOAD);
1551 }
1552 }
1553
1554 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1555 {
1556 struct perf_event *event;
1557 struct hw_perf_event *hwc;
1558 u64 interrupts, now;
1559 s64 delta;
1560
1561 raw_spin_lock(&ctx->lock);
1562 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1563 if (event->state != PERF_EVENT_STATE_ACTIVE)
1564 continue;
1565
1566 if (event->cpu != -1 && event->cpu != smp_processor_id())
1567 continue;
1568
1569 hwc = &event->hw;
1570
1571 interrupts = hwc->interrupts;
1572 hwc->interrupts = 0;
1573
1574 /*
1575 * unthrottle events on the tick
1576 */
1577 if (interrupts == MAX_INTERRUPTS) {
1578 perf_log_throttle(event, 1);
1579 event->pmu->start(event, 0);
1580 }
1581
1582 if (!event->attr.freq || !event->attr.sample_freq)
1583 continue;
1584
1585 event->pmu->read(event);
1586 now = local64_read(&event->count);
1587 delta = now - hwc->freq_count_stamp;
1588 hwc->freq_count_stamp = now;
1589
1590 if (delta > 0)
1591 perf_adjust_period(event, period, delta);
1592 }
1593 raw_spin_unlock(&ctx->lock);
1594 }
1595
1596 /*
1597 * Round-robin a context's events:
1598 */
1599 static void rotate_ctx(struct perf_event_context *ctx)
1600 {
1601 raw_spin_lock(&ctx->lock);
1602
1603 /* Rotate the first entry last of non-pinned groups */
1604 list_rotate_left(&ctx->flexible_groups);
1605
1606 raw_spin_unlock(&ctx->lock);
1607 }
1608
1609 /*
1610 * Cannot race with ->pmu_rotate_start() because this is ran from hardirq
1611 * context, and ->pmu_rotate_start() is called with irqs disabled (both are
1612 * cpu affine, so there are no SMP races).
1613 */
1614 static enum hrtimer_restart perf_event_context_tick(struct hrtimer *timer)
1615 {
1616 enum hrtimer_restart restart = HRTIMER_NORESTART;
1617 struct perf_cpu_context *cpuctx;
1618 struct perf_event_context *ctx = NULL;
1619 int rotate = 0;
1620
1621 cpuctx = container_of(timer, struct perf_cpu_context, timer);
1622
1623 if (cpuctx->ctx.nr_events) {
1624 restart = HRTIMER_RESTART;
1625 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1626 rotate = 1;
1627 }
1628
1629 ctx = cpuctx->task_ctx;
1630 if (ctx && ctx->nr_events) {
1631 restart = HRTIMER_RESTART;
1632 if (ctx->nr_events != ctx->nr_active)
1633 rotate = 1;
1634 }
1635
1636 perf_pmu_disable(cpuctx->ctx.pmu);
1637 perf_ctx_adjust_freq(&cpuctx->ctx, cpuctx->timer_interval);
1638 if (ctx)
1639 perf_ctx_adjust_freq(ctx, cpuctx->timer_interval);
1640
1641 if (!rotate)
1642 goto done;
1643
1644 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1645 if (ctx)
1646 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1647
1648 rotate_ctx(&cpuctx->ctx);
1649 if (ctx)
1650 rotate_ctx(ctx);
1651
1652 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1653 if (ctx)
1654 task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1655
1656 done:
1657 perf_pmu_enable(cpuctx->ctx.pmu);
1658 hrtimer_forward_now(timer, ns_to_ktime(cpuctx->timer_interval));
1659
1660 return restart;
1661 }
1662
1663 static int event_enable_on_exec(struct perf_event *event,
1664 struct perf_event_context *ctx)
1665 {
1666 if (!event->attr.enable_on_exec)
1667 return 0;
1668
1669 event->attr.enable_on_exec = 0;
1670 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1671 return 0;
1672
1673 __perf_event_mark_enabled(event, ctx);
1674
1675 return 1;
1676 }
1677
1678 /*
1679 * Enable all of a task's events that have been marked enable-on-exec.
1680 * This expects task == current.
1681 */
1682 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1683 {
1684 struct perf_event *event;
1685 unsigned long flags;
1686 int enabled = 0;
1687 int ret;
1688
1689 local_irq_save(flags);
1690 if (!ctx || !ctx->nr_events)
1691 goto out;
1692
1693 task_ctx_sched_out(ctx, EVENT_ALL);
1694
1695 raw_spin_lock(&ctx->lock);
1696
1697 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1698 ret = event_enable_on_exec(event, ctx);
1699 if (ret)
1700 enabled = 1;
1701 }
1702
1703 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1704 ret = event_enable_on_exec(event, ctx);
1705 if (ret)
1706 enabled = 1;
1707 }
1708
1709 /*
1710 * Unclone this context if we enabled any event.
1711 */
1712 if (enabled)
1713 unclone_ctx(ctx);
1714
1715 raw_spin_unlock(&ctx->lock);
1716
1717 perf_event_context_sched_in(ctx);
1718 out:
1719 local_irq_restore(flags);
1720 }
1721
1722 /*
1723 * Cross CPU call to read the hardware event
1724 */
1725 static void __perf_event_read(void *info)
1726 {
1727 struct perf_event *event = info;
1728 struct perf_event_context *ctx = event->ctx;
1729 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1730
1731 /*
1732 * If this is a task context, we need to check whether it is
1733 * the current task context of this cpu. If not it has been
1734 * scheduled out before the smp call arrived. In that case
1735 * event->count would have been updated to a recent sample
1736 * when the event was scheduled out.
1737 */
1738 if (ctx->task && cpuctx->task_ctx != ctx)
1739 return;
1740
1741 raw_spin_lock(&ctx->lock);
1742 update_context_time(ctx);
1743 update_event_times(event);
1744 raw_spin_unlock(&ctx->lock);
1745
1746 event->pmu->read(event);
1747 }
1748
1749 static inline u64 perf_event_count(struct perf_event *event)
1750 {
1751 return local64_read(&event->count) + atomic64_read(&event->child_count);
1752 }
1753
1754 static u64 perf_event_read(struct perf_event *event)
1755 {
1756 /*
1757 * If event is enabled and currently active on a CPU, update the
1758 * value in the event structure:
1759 */
1760 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1761 smp_call_function_single(event->oncpu,
1762 __perf_event_read, event, 1);
1763 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1764 struct perf_event_context *ctx = event->ctx;
1765 unsigned long flags;
1766
1767 raw_spin_lock_irqsave(&ctx->lock, flags);
1768 update_context_time(ctx);
1769 update_event_times(event);
1770 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1771 }
1772
1773 return perf_event_count(event);
1774 }
1775
1776 /*
1777 * Callchain support
1778 */
1779
1780 struct callchain_cpus_entries {
1781 struct rcu_head rcu_head;
1782 struct perf_callchain_entry *cpu_entries[0];
1783 };
1784
1785 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1786 static atomic_t nr_callchain_events;
1787 static DEFINE_MUTEX(callchain_mutex);
1788 struct callchain_cpus_entries *callchain_cpus_entries;
1789
1790
1791 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1792 struct pt_regs *regs)
1793 {
1794 }
1795
1796 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
1797 struct pt_regs *regs)
1798 {
1799 }
1800
1801 static void release_callchain_buffers_rcu(struct rcu_head *head)
1802 {
1803 struct callchain_cpus_entries *entries;
1804 int cpu;
1805
1806 entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1807
1808 for_each_possible_cpu(cpu)
1809 kfree(entries->cpu_entries[cpu]);
1810
1811 kfree(entries);
1812 }
1813
1814 static void release_callchain_buffers(void)
1815 {
1816 struct callchain_cpus_entries *entries;
1817
1818 entries = callchain_cpus_entries;
1819 rcu_assign_pointer(callchain_cpus_entries, NULL);
1820 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
1821 }
1822
1823 static int alloc_callchain_buffers(void)
1824 {
1825 int cpu;
1826 int size;
1827 struct callchain_cpus_entries *entries;
1828
1829 /*
1830 * We can't use the percpu allocation API for data that can be
1831 * accessed from NMI. Use a temporary manual per cpu allocation
1832 * until that gets sorted out.
1833 */
1834 size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
1835 num_possible_cpus();
1836
1837 entries = kzalloc(size, GFP_KERNEL);
1838 if (!entries)
1839 return -ENOMEM;
1840
1841 size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1842
1843 for_each_possible_cpu(cpu) {
1844 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
1845 cpu_to_node(cpu));
1846 if (!entries->cpu_entries[cpu])
1847 goto fail;
1848 }
1849
1850 rcu_assign_pointer(callchain_cpus_entries, entries);
1851
1852 return 0;
1853
1854 fail:
1855 for_each_possible_cpu(cpu)
1856 kfree(entries->cpu_entries[cpu]);
1857 kfree(entries);
1858
1859 return -ENOMEM;
1860 }
1861
1862 static int get_callchain_buffers(void)
1863 {
1864 int err = 0;
1865 int count;
1866
1867 mutex_lock(&callchain_mutex);
1868
1869 count = atomic_inc_return(&nr_callchain_events);
1870 if (WARN_ON_ONCE(count < 1)) {
1871 err = -EINVAL;
1872 goto exit;
1873 }
1874
1875 if (count > 1) {
1876 /* If the allocation failed, give up */
1877 if (!callchain_cpus_entries)
1878 err = -ENOMEM;
1879 goto exit;
1880 }
1881
1882 err = alloc_callchain_buffers();
1883 if (err)
1884 release_callchain_buffers();
1885 exit:
1886 mutex_unlock(&callchain_mutex);
1887
1888 return err;
1889 }
1890
1891 static void put_callchain_buffers(void)
1892 {
1893 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
1894 release_callchain_buffers();
1895 mutex_unlock(&callchain_mutex);
1896 }
1897 }
1898
1899 static int get_recursion_context(int *recursion)
1900 {
1901 int rctx;
1902
1903 if (in_nmi())
1904 rctx = 3;
1905 else if (in_irq())
1906 rctx = 2;
1907 else if (in_softirq())
1908 rctx = 1;
1909 else
1910 rctx = 0;
1911
1912 if (recursion[rctx])
1913 return -1;
1914
1915 recursion[rctx]++;
1916 barrier();
1917
1918 return rctx;
1919 }
1920
1921 static inline void put_recursion_context(int *recursion, int rctx)
1922 {
1923 barrier();
1924 recursion[rctx]--;
1925 }
1926
1927 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
1928 {
1929 int cpu;
1930 struct callchain_cpus_entries *entries;
1931
1932 *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
1933 if (*rctx == -1)
1934 return NULL;
1935
1936 entries = rcu_dereference(callchain_cpus_entries);
1937 if (!entries)
1938 return NULL;
1939
1940 cpu = smp_processor_id();
1941
1942 return &entries->cpu_entries[cpu][*rctx];
1943 }
1944
1945 static void
1946 put_callchain_entry(int rctx)
1947 {
1948 put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
1949 }
1950
1951 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1952 {
1953 int rctx;
1954 struct perf_callchain_entry *entry;
1955
1956
1957 entry = get_callchain_entry(&rctx);
1958 if (rctx == -1)
1959 return NULL;
1960
1961 if (!entry)
1962 goto exit_put;
1963
1964 entry->nr = 0;
1965
1966 if (!user_mode(regs)) {
1967 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
1968 perf_callchain_kernel(entry, regs);
1969 if (current->mm)
1970 regs = task_pt_regs(current);
1971 else
1972 regs = NULL;
1973 }
1974
1975 if (regs) {
1976 perf_callchain_store(entry, PERF_CONTEXT_USER);
1977 perf_callchain_user(entry, regs);
1978 }
1979
1980 exit_put:
1981 put_callchain_entry(rctx);
1982
1983 return entry;
1984 }
1985
1986 /*
1987 * Initialize the perf_event context in a task_struct:
1988 */
1989 static void __perf_event_init_context(struct perf_event_context *ctx)
1990 {
1991 raw_spin_lock_init(&ctx->lock);
1992 mutex_init(&ctx->mutex);
1993 INIT_LIST_HEAD(&ctx->pinned_groups);
1994 INIT_LIST_HEAD(&ctx->flexible_groups);
1995 INIT_LIST_HEAD(&ctx->event_list);
1996 atomic_set(&ctx->refcount, 1);
1997 }
1998
1999 static struct perf_event_context *
2000 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2001 {
2002 struct perf_event_context *ctx;
2003
2004 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2005 if (!ctx)
2006 return NULL;
2007
2008 __perf_event_init_context(ctx);
2009 if (task) {
2010 ctx->task = task;
2011 get_task_struct(task);
2012 }
2013 ctx->pmu = pmu;
2014
2015 return ctx;
2016 }
2017
2018 static struct task_struct *
2019 find_lively_task_by_vpid(pid_t vpid)
2020 {
2021 struct task_struct *task;
2022 int err;
2023
2024 rcu_read_lock();
2025 if (!vpid)
2026 task = current;
2027 else
2028 task = find_task_by_vpid(vpid);
2029 if (task)
2030 get_task_struct(task);
2031 rcu_read_unlock();
2032
2033 if (!task)
2034 return ERR_PTR(-ESRCH);
2035
2036 /*
2037 * Can't attach events to a dying task.
2038 */
2039 err = -ESRCH;
2040 if (task->flags & PF_EXITING)
2041 goto errout;
2042
2043 /* Reuse ptrace permission checks for now. */
2044 err = -EACCES;
2045 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2046 goto errout;
2047
2048 return task;
2049 errout:
2050 put_task_struct(task);
2051 return ERR_PTR(err);
2052
2053 }
2054
2055 static struct perf_event_context *
2056 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2057 {
2058 struct perf_event_context *ctx;
2059 struct perf_cpu_context *cpuctx;
2060 unsigned long flags;
2061 int ctxn, err;
2062
2063 if (!task && cpu != -1) {
2064 /* Must be root to operate on a CPU event: */
2065 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2066 return ERR_PTR(-EACCES);
2067
2068 if (cpu < 0 || cpu >= nr_cpumask_bits)
2069 return ERR_PTR(-EINVAL);
2070
2071 /*
2072 * We could be clever and allow to attach a event to an
2073 * offline CPU and activate it when the CPU comes up, but
2074 * that's for later.
2075 */
2076 if (!cpu_online(cpu))
2077 return ERR_PTR(-ENODEV);
2078
2079 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2080 ctx = &cpuctx->ctx;
2081 get_ctx(ctx);
2082
2083 return ctx;
2084 }
2085
2086 err = -EINVAL;
2087 ctxn = pmu->task_ctx_nr;
2088 if (ctxn < 0)
2089 goto errout;
2090
2091 retry:
2092 ctx = perf_lock_task_context(task, ctxn, &flags);
2093 if (ctx) {
2094 unclone_ctx(ctx);
2095 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2096 }
2097
2098 if (!ctx) {
2099 ctx = alloc_perf_context(pmu, task);
2100 err = -ENOMEM;
2101 if (!ctx)
2102 goto errout;
2103
2104 get_ctx(ctx);
2105
2106 if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
2107 /*
2108 * We raced with some other task; use
2109 * the context they set.
2110 */
2111 put_task_struct(task);
2112 kfree(ctx);
2113 goto retry;
2114 }
2115 }
2116
2117 put_task_struct(task);
2118 return ctx;
2119
2120 errout:
2121 put_task_struct(task);
2122 return ERR_PTR(err);
2123 }
2124
2125 static void perf_event_free_filter(struct perf_event *event);
2126
2127 static void free_event_rcu(struct rcu_head *head)
2128 {
2129 struct perf_event *event;
2130
2131 event = container_of(head, struct perf_event, rcu_head);
2132 if (event->ns)
2133 put_pid_ns(event->ns);
2134 perf_event_free_filter(event);
2135 kfree(event);
2136 }
2137
2138 static void perf_pending_sync(struct perf_event *event);
2139 static void perf_buffer_put(struct perf_buffer *buffer);
2140
2141 static void free_event(struct perf_event *event)
2142 {
2143 perf_pending_sync(event);
2144
2145 if (!event->parent) {
2146 atomic_dec(&nr_events);
2147 if (event->attr.mmap || event->attr.mmap_data)
2148 atomic_dec(&nr_mmap_events);
2149 if (event->attr.comm)
2150 atomic_dec(&nr_comm_events);
2151 if (event->attr.task)
2152 atomic_dec(&nr_task_events);
2153 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2154 put_callchain_buffers();
2155 }
2156
2157 if (event->buffer) {
2158 perf_buffer_put(event->buffer);
2159 event->buffer = NULL;
2160 }
2161
2162 if (event->destroy)
2163 event->destroy(event);
2164
2165 if (event->ctx)
2166 put_ctx(event->ctx);
2167
2168 call_rcu(&event->rcu_head, free_event_rcu);
2169 }
2170
2171 int perf_event_release_kernel(struct perf_event *event)
2172 {
2173 struct perf_event_context *ctx = event->ctx;
2174
2175 /*
2176 * Remove from the PMU, can't get re-enabled since we got
2177 * here because the last ref went.
2178 */
2179 perf_event_disable(event);
2180
2181 WARN_ON_ONCE(ctx->parent_ctx);
2182 /*
2183 * There are two ways this annotation is useful:
2184 *
2185 * 1) there is a lock recursion from perf_event_exit_task
2186 * see the comment there.
2187 *
2188 * 2) there is a lock-inversion with mmap_sem through
2189 * perf_event_read_group(), which takes faults while
2190 * holding ctx->mutex, however this is called after
2191 * the last filedesc died, so there is no possibility
2192 * to trigger the AB-BA case.
2193 */
2194 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2195 raw_spin_lock_irq(&ctx->lock);
2196 perf_group_detach(event);
2197 list_del_event(event, ctx);
2198 raw_spin_unlock_irq(&ctx->lock);
2199 mutex_unlock(&ctx->mutex);
2200
2201 mutex_lock(&event->owner->perf_event_mutex);
2202 list_del_init(&event->owner_entry);
2203 mutex_unlock(&event->owner->perf_event_mutex);
2204 put_task_struct(event->owner);
2205
2206 free_event(event);
2207
2208 return 0;
2209 }
2210 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2211
2212 /*
2213 * Called when the last reference to the file is gone.
2214 */
2215 static int perf_release(struct inode *inode, struct file *file)
2216 {
2217 struct perf_event *event = file->private_data;
2218
2219 file->private_data = NULL;
2220
2221 return perf_event_release_kernel(event);
2222 }
2223
2224 static int perf_event_read_size(struct perf_event *event)
2225 {
2226 int entry = sizeof(u64); /* value */
2227 int size = 0;
2228 int nr = 1;
2229
2230 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2231 size += sizeof(u64);
2232
2233 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2234 size += sizeof(u64);
2235
2236 if (event->attr.read_format & PERF_FORMAT_ID)
2237 entry += sizeof(u64);
2238
2239 if (event->attr.read_format & PERF_FORMAT_GROUP) {
2240 nr += event->group_leader->nr_siblings;
2241 size += sizeof(u64);
2242 }
2243
2244 size += entry * nr;
2245
2246 return size;
2247 }
2248
2249 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2250 {
2251 struct perf_event *child;
2252 u64 total = 0;
2253
2254 *enabled = 0;
2255 *running = 0;
2256
2257 mutex_lock(&event->child_mutex);
2258 total += perf_event_read(event);
2259 *enabled += event->total_time_enabled +
2260 atomic64_read(&event->child_total_time_enabled);
2261 *running += event->total_time_running +
2262 atomic64_read(&event->child_total_time_running);
2263
2264 list_for_each_entry(child, &event->child_list, child_list) {
2265 total += perf_event_read(child);
2266 *enabled += child->total_time_enabled;
2267 *running += child->total_time_running;
2268 }
2269 mutex_unlock(&event->child_mutex);
2270
2271 return total;
2272 }
2273 EXPORT_SYMBOL_GPL(perf_event_read_value);
2274
2275 static int perf_event_read_group(struct perf_event *event,
2276 u64 read_format, char __user *buf)
2277 {
2278 struct perf_event *leader = event->group_leader, *sub;
2279 int n = 0, size = 0, ret = -EFAULT;
2280 struct perf_event_context *ctx = leader->ctx;
2281 u64 values[5];
2282 u64 count, enabled, running;
2283
2284 mutex_lock(&ctx->mutex);
2285 count = perf_event_read_value(leader, &enabled, &running);
2286
2287 values[n++] = 1 + leader->nr_siblings;
2288 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2289 values[n++] = enabled;
2290 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2291 values[n++] = running;
2292 values[n++] = count;
2293 if (read_format & PERF_FORMAT_ID)
2294 values[n++] = primary_event_id(leader);
2295
2296 size = n * sizeof(u64);
2297
2298 if (copy_to_user(buf, values, size))
2299 goto unlock;
2300
2301 ret = size;
2302
2303 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2304 n = 0;
2305
2306 values[n++] = perf_event_read_value(sub, &enabled, &running);
2307 if (read_format & PERF_FORMAT_ID)
2308 values[n++] = primary_event_id(sub);
2309
2310 size = n * sizeof(u64);
2311
2312 if (copy_to_user(buf + ret, values, size)) {
2313 ret = -EFAULT;
2314 goto unlock;
2315 }
2316
2317 ret += size;
2318 }
2319 unlock:
2320 mutex_unlock(&ctx->mutex);
2321
2322 return ret;
2323 }
2324
2325 static int perf_event_read_one(struct perf_event *event,
2326 u64 read_format, char __user *buf)
2327 {
2328 u64 enabled, running;
2329 u64 values[4];
2330 int n = 0;
2331
2332 values[n++] = perf_event_read_value(event, &enabled, &running);
2333 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2334 values[n++] = enabled;
2335 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2336 values[n++] = running;
2337 if (read_format & PERF_FORMAT_ID)
2338 values[n++] = primary_event_id(event);
2339
2340 if (copy_to_user(buf, values, n * sizeof(u64)))
2341 return -EFAULT;
2342
2343 return n * sizeof(u64);
2344 }
2345
2346 /*
2347 * Read the performance event - simple non blocking version for now
2348 */
2349 static ssize_t
2350 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2351 {
2352 u64 read_format = event->attr.read_format;
2353 int ret;
2354
2355 /*
2356 * Return end-of-file for a read on a event that is in
2357 * error state (i.e. because it was pinned but it couldn't be
2358 * scheduled on to the CPU at some point).
2359 */
2360 if (event->state == PERF_EVENT_STATE_ERROR)
2361 return 0;
2362
2363 if (count < perf_event_read_size(event))
2364 return -ENOSPC;
2365
2366 WARN_ON_ONCE(event->ctx->parent_ctx);
2367 if (read_format & PERF_FORMAT_GROUP)
2368 ret = perf_event_read_group(event, read_format, buf);
2369 else
2370 ret = perf_event_read_one(event, read_format, buf);
2371
2372 return ret;
2373 }
2374
2375 static ssize_t
2376 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2377 {
2378 struct perf_event *event = file->private_data;
2379
2380 return perf_read_hw(event, buf, count);
2381 }
2382
2383 static unsigned int perf_poll(struct file *file, poll_table *wait)
2384 {
2385 struct perf_event *event = file->private_data;
2386 struct perf_buffer *buffer;
2387 unsigned int events = POLL_HUP;
2388
2389 rcu_read_lock();
2390 buffer = rcu_dereference(event->buffer);
2391 if (buffer)
2392 events = atomic_xchg(&buffer->poll, 0);
2393 rcu_read_unlock();
2394
2395 poll_wait(file, &event->waitq, wait);
2396
2397 return events;
2398 }
2399
2400 static void perf_event_reset(struct perf_event *event)
2401 {
2402 (void)perf_event_read(event);
2403 local64_set(&event->count, 0);
2404 perf_event_update_userpage(event);
2405 }
2406
2407 /*
2408 * Holding the top-level event's child_mutex means that any
2409 * descendant process that has inherited this event will block
2410 * in sync_child_event if it goes to exit, thus satisfying the
2411 * task existence requirements of perf_event_enable/disable.
2412 */
2413 static void perf_event_for_each_child(struct perf_event *event,
2414 void (*func)(struct perf_event *))
2415 {
2416 struct perf_event *child;
2417
2418 WARN_ON_ONCE(event->ctx->parent_ctx);
2419 mutex_lock(&event->child_mutex);
2420 func(event);
2421 list_for_each_entry(child, &event->child_list, child_list)
2422 func(child);
2423 mutex_unlock(&event->child_mutex);
2424 }
2425
2426 static void perf_event_for_each(struct perf_event *event,
2427 void (*func)(struct perf_event *))
2428 {
2429 struct perf_event_context *ctx = event->ctx;
2430 struct perf_event *sibling;
2431
2432 WARN_ON_ONCE(ctx->parent_ctx);
2433 mutex_lock(&ctx->mutex);
2434 event = event->group_leader;
2435
2436 perf_event_for_each_child(event, func);
2437 func(event);
2438 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2439 perf_event_for_each_child(event, func);
2440 mutex_unlock(&ctx->mutex);
2441 }
2442
2443 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2444 {
2445 struct perf_event_context *ctx = event->ctx;
2446 unsigned long size;
2447 int ret = 0;
2448 u64 value;
2449
2450 if (!event->attr.sample_period)
2451 return -EINVAL;
2452
2453 size = copy_from_user(&value, arg, sizeof(value));
2454 if (size != sizeof(value))
2455 return -EFAULT;
2456
2457 if (!value)
2458 return -EINVAL;
2459
2460 raw_spin_lock_irq(&ctx->lock);
2461 if (event->attr.freq) {
2462 if (value > sysctl_perf_event_sample_rate) {
2463 ret = -EINVAL;
2464 goto unlock;
2465 }
2466
2467 event->attr.sample_freq = value;
2468 } else {
2469 event->attr.sample_period = value;
2470 event->hw.sample_period = value;
2471 }
2472 unlock:
2473 raw_spin_unlock_irq(&ctx->lock);
2474
2475 return ret;
2476 }
2477
2478 static const struct file_operations perf_fops;
2479
2480 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2481 {
2482 struct file *file;
2483
2484 file = fget_light(fd, fput_needed);
2485 if (!file)
2486 return ERR_PTR(-EBADF);
2487
2488 if (file->f_op != &perf_fops) {
2489 fput_light(file, *fput_needed);
2490 *fput_needed = 0;
2491 return ERR_PTR(-EBADF);
2492 }
2493
2494 return file->private_data;
2495 }
2496
2497 static int perf_event_set_output(struct perf_event *event,
2498 struct perf_event *output_event);
2499 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2500
2501 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2502 {
2503 struct perf_event *event = file->private_data;
2504 void (*func)(struct perf_event *);
2505 u32 flags = arg;
2506
2507 switch (cmd) {
2508 case PERF_EVENT_IOC_ENABLE:
2509 func = perf_event_enable;
2510 break;
2511 case PERF_EVENT_IOC_DISABLE:
2512 func = perf_event_disable;
2513 break;
2514 case PERF_EVENT_IOC_RESET:
2515 func = perf_event_reset;
2516 break;
2517
2518 case PERF_EVENT_IOC_REFRESH:
2519 return perf_event_refresh(event, arg);
2520
2521 case PERF_EVENT_IOC_PERIOD:
2522 return perf_event_period(event, (u64 __user *)arg);
2523
2524 case PERF_EVENT_IOC_SET_OUTPUT:
2525 {
2526 struct perf_event *output_event = NULL;
2527 int fput_needed = 0;
2528 int ret;
2529
2530 if (arg != -1) {
2531 output_event = perf_fget_light(arg, &fput_needed);
2532 if (IS_ERR(output_event))
2533 return PTR_ERR(output_event);
2534 }
2535
2536 ret = perf_event_set_output(event, output_event);
2537 if (output_event)
2538 fput_light(output_event->filp, fput_needed);
2539
2540 return ret;
2541 }
2542
2543 case PERF_EVENT_IOC_SET_FILTER:
2544 return perf_event_set_filter(event, (void __user *)arg);
2545
2546 default:
2547 return -ENOTTY;
2548 }
2549
2550 if (flags & PERF_IOC_FLAG_GROUP)
2551 perf_event_for_each(event, func);
2552 else
2553 perf_event_for_each_child(event, func);
2554
2555 return 0;
2556 }
2557
2558 int perf_event_task_enable(void)
2559 {
2560 struct perf_event *event;
2561
2562 mutex_lock(&current->perf_event_mutex);
2563 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2564 perf_event_for_each_child(event, perf_event_enable);
2565 mutex_unlock(&current->perf_event_mutex);
2566
2567 return 0;
2568 }
2569
2570 int perf_event_task_disable(void)
2571 {
2572 struct perf_event *event;
2573
2574 mutex_lock(&current->perf_event_mutex);
2575 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2576 perf_event_for_each_child(event, perf_event_disable);
2577 mutex_unlock(&current->perf_event_mutex);
2578
2579 return 0;
2580 }
2581
2582 #ifndef PERF_EVENT_INDEX_OFFSET
2583 # define PERF_EVENT_INDEX_OFFSET 0
2584 #endif
2585
2586 static int perf_event_index(struct perf_event *event)
2587 {
2588 if (event->hw.state & PERF_HES_STOPPED)
2589 return 0;
2590
2591 if (event->state != PERF_EVENT_STATE_ACTIVE)
2592 return 0;
2593
2594 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2595 }
2596
2597 /*
2598 * Callers need to ensure there can be no nesting of this function, otherwise
2599 * the seqlock logic goes bad. We can not serialize this because the arch
2600 * code calls this from NMI context.
2601 */
2602 void perf_event_update_userpage(struct perf_event *event)
2603 {
2604 struct perf_event_mmap_page *userpg;
2605 struct perf_buffer *buffer;
2606
2607 rcu_read_lock();
2608 buffer = rcu_dereference(event->buffer);
2609 if (!buffer)
2610 goto unlock;
2611
2612 userpg = buffer->user_page;
2613
2614 /*
2615 * Disable preemption so as to not let the corresponding user-space
2616 * spin too long if we get preempted.
2617 */
2618 preempt_disable();
2619 ++userpg->lock;
2620 barrier();
2621 userpg->index = perf_event_index(event);
2622 userpg->offset = perf_event_count(event);
2623 if (event->state == PERF_EVENT_STATE_ACTIVE)
2624 userpg->offset -= local64_read(&event->hw.prev_count);
2625
2626 userpg->time_enabled = event->total_time_enabled +
2627 atomic64_read(&event->child_total_time_enabled);
2628
2629 userpg->time_running = event->total_time_running +
2630 atomic64_read(&event->child_total_time_running);
2631
2632 barrier();
2633 ++userpg->lock;
2634 preempt_enable();
2635 unlock:
2636 rcu_read_unlock();
2637 }
2638
2639 static unsigned long perf_data_size(struct perf_buffer *buffer);
2640
2641 static void
2642 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2643 {
2644 long max_size = perf_data_size(buffer);
2645
2646 if (watermark)
2647 buffer->watermark = min(max_size, watermark);
2648
2649 if (!buffer->watermark)
2650 buffer->watermark = max_size / 2;
2651
2652 if (flags & PERF_BUFFER_WRITABLE)
2653 buffer->writable = 1;
2654
2655 atomic_set(&buffer->refcount, 1);
2656 }
2657
2658 #ifndef CONFIG_PERF_USE_VMALLOC
2659
2660 /*
2661 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2662 */
2663
2664 static struct page *
2665 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2666 {
2667 if (pgoff > buffer->nr_pages)
2668 return NULL;
2669
2670 if (pgoff == 0)
2671 return virt_to_page(buffer->user_page);
2672
2673 return virt_to_page(buffer->data_pages[pgoff - 1]);
2674 }
2675
2676 static void *perf_mmap_alloc_page(int cpu)
2677 {
2678 struct page *page;
2679 int node;
2680
2681 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2682 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2683 if (!page)
2684 return NULL;
2685
2686 return page_address(page);
2687 }
2688
2689 static struct perf_buffer *
2690 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2691 {
2692 struct perf_buffer *buffer;
2693 unsigned long size;
2694 int i;
2695
2696 size = sizeof(struct perf_buffer);
2697 size += nr_pages * sizeof(void *);
2698
2699 buffer = kzalloc(size, GFP_KERNEL);
2700 if (!buffer)
2701 goto fail;
2702
2703 buffer->user_page = perf_mmap_alloc_page(cpu);
2704 if (!buffer->user_page)
2705 goto fail_user_page;
2706
2707 for (i = 0; i < nr_pages; i++) {
2708 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2709 if (!buffer->data_pages[i])
2710 goto fail_data_pages;
2711 }
2712
2713 buffer->nr_pages = nr_pages;
2714
2715 perf_buffer_init(buffer, watermark, flags);
2716
2717 return buffer;
2718
2719 fail_data_pages:
2720 for (i--; i >= 0; i--)
2721 free_page((unsigned long)buffer->data_pages[i]);
2722
2723 free_page((unsigned long)buffer->user_page);
2724
2725 fail_user_page:
2726 kfree(buffer);
2727
2728 fail:
2729 return NULL;
2730 }
2731
2732 static void perf_mmap_free_page(unsigned long addr)
2733 {
2734 struct page *page = virt_to_page((void *)addr);
2735
2736 page->mapping = NULL;
2737 __free_page(page);
2738 }
2739
2740 static void perf_buffer_free(struct perf_buffer *buffer)
2741 {
2742 int i;
2743
2744 perf_mmap_free_page((unsigned long)buffer->user_page);
2745 for (i = 0; i < buffer->nr_pages; i++)
2746 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2747 kfree(buffer);
2748 }
2749
2750 static inline int page_order(struct perf_buffer *buffer)
2751 {
2752 return 0;
2753 }
2754
2755 #else
2756
2757 /*
2758 * Back perf_mmap() with vmalloc memory.
2759 *
2760 * Required for architectures that have d-cache aliasing issues.
2761 */
2762
2763 static inline int page_order(struct perf_buffer *buffer)
2764 {
2765 return buffer->page_order;
2766 }
2767
2768 static struct page *
2769 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2770 {
2771 if (pgoff > (1UL << page_order(buffer)))
2772 return NULL;
2773
2774 return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2775 }
2776
2777 static void perf_mmap_unmark_page(void *addr)
2778 {
2779 struct page *page = vmalloc_to_page(addr);
2780
2781 page->mapping = NULL;
2782 }
2783
2784 static void perf_buffer_free_work(struct work_struct *work)
2785 {
2786 struct perf_buffer *buffer;
2787 void *base;
2788 int i, nr;
2789
2790 buffer = container_of(work, struct perf_buffer, work);
2791 nr = 1 << page_order(buffer);
2792
2793 base = buffer->user_page;
2794 for (i = 0; i < nr + 1; i++)
2795 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2796
2797 vfree(base);
2798 kfree(buffer);
2799 }
2800
2801 static void perf_buffer_free(struct perf_buffer *buffer)
2802 {
2803 schedule_work(&buffer->work);
2804 }
2805
2806 static struct perf_buffer *
2807 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2808 {
2809 struct perf_buffer *buffer;
2810 unsigned long size;
2811 void *all_buf;
2812
2813 size = sizeof(struct perf_buffer);
2814 size += sizeof(void *);
2815
2816 buffer = kzalloc(size, GFP_KERNEL);
2817 if (!buffer)
2818 goto fail;
2819
2820 INIT_WORK(&buffer->work, perf_buffer_free_work);
2821
2822 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2823 if (!all_buf)
2824 goto fail_all_buf;
2825
2826 buffer->user_page = all_buf;
2827 buffer->data_pages[0] = all_buf + PAGE_SIZE;
2828 buffer->page_order = ilog2(nr_pages);
2829 buffer->nr_pages = 1;
2830
2831 perf_buffer_init(buffer, watermark, flags);
2832
2833 return buffer;
2834
2835 fail_all_buf:
2836 kfree(buffer);
2837
2838 fail:
2839 return NULL;
2840 }
2841
2842 #endif
2843
2844 static unsigned long perf_data_size(struct perf_buffer *buffer)
2845 {
2846 return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2847 }
2848
2849 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2850 {
2851 struct perf_event *event = vma->vm_file->private_data;
2852 struct perf_buffer *buffer;
2853 int ret = VM_FAULT_SIGBUS;
2854
2855 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2856 if (vmf->pgoff == 0)
2857 ret = 0;
2858 return ret;
2859 }
2860
2861 rcu_read_lock();
2862 buffer = rcu_dereference(event->buffer);
2863 if (!buffer)
2864 goto unlock;
2865
2866 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2867 goto unlock;
2868
2869 vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2870 if (!vmf->page)
2871 goto unlock;
2872
2873 get_page(vmf->page);
2874 vmf->page->mapping = vma->vm_file->f_mapping;
2875 vmf->page->index = vmf->pgoff;
2876
2877 ret = 0;
2878 unlock:
2879 rcu_read_unlock();
2880
2881 return ret;
2882 }
2883
2884 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2885 {
2886 struct perf_buffer *buffer;
2887
2888 buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
2889 perf_buffer_free(buffer);
2890 }
2891
2892 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2893 {
2894 struct perf_buffer *buffer;
2895
2896 rcu_read_lock();
2897 buffer = rcu_dereference(event->buffer);
2898 if (buffer) {
2899 if (!atomic_inc_not_zero(&buffer->refcount))
2900 buffer = NULL;
2901 }
2902 rcu_read_unlock();
2903
2904 return buffer;
2905 }
2906
2907 static void perf_buffer_put(struct perf_buffer *buffer)
2908 {
2909 if (!atomic_dec_and_test(&buffer->refcount))
2910 return;
2911
2912 call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2913 }
2914
2915 static void perf_mmap_open(struct vm_area_struct *vma)
2916 {
2917 struct perf_event *event = vma->vm_file->private_data;
2918
2919 atomic_inc(&event->mmap_count);
2920 }
2921
2922 static void perf_mmap_close(struct vm_area_struct *vma)
2923 {
2924 struct perf_event *event = vma->vm_file->private_data;
2925
2926 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2927 unsigned long size = perf_data_size(event->buffer);
2928 struct user_struct *user = event->mmap_user;
2929 struct perf_buffer *buffer = event->buffer;
2930
2931 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2932 vma->vm_mm->locked_vm -= event->mmap_locked;
2933 rcu_assign_pointer(event->buffer, NULL);
2934 mutex_unlock(&event->mmap_mutex);
2935
2936 perf_buffer_put(buffer);
2937 free_uid(user);
2938 }
2939 }
2940
2941 static const struct vm_operations_struct perf_mmap_vmops = {
2942 .open = perf_mmap_open,
2943 .close = perf_mmap_close,
2944 .fault = perf_mmap_fault,
2945 .page_mkwrite = perf_mmap_fault,
2946 };
2947
2948 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2949 {
2950 struct perf_event *event = file->private_data;
2951 unsigned long user_locked, user_lock_limit;
2952 struct user_struct *user = current_user();
2953 unsigned long locked, lock_limit;
2954 struct perf_buffer *buffer;
2955 unsigned long vma_size;
2956 unsigned long nr_pages;
2957 long user_extra, extra;
2958 int ret = 0, flags = 0;
2959
2960 /*
2961 * Don't allow mmap() of inherited per-task counters. This would
2962 * create a performance issue due to all children writing to the
2963 * same buffer.
2964 */
2965 if (event->cpu == -1 && event->attr.inherit)
2966 return -EINVAL;
2967
2968 if (!(vma->vm_flags & VM_SHARED))
2969 return -EINVAL;
2970
2971 vma_size = vma->vm_end - vma->vm_start;
2972 nr_pages = (vma_size / PAGE_SIZE) - 1;
2973
2974 /*
2975 * If we have buffer pages ensure they're a power-of-two number, so we
2976 * can do bitmasks instead of modulo.
2977 */
2978 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2979 return -EINVAL;
2980
2981 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2982 return -EINVAL;
2983
2984 if (vma->vm_pgoff != 0)
2985 return -EINVAL;
2986
2987 WARN_ON_ONCE(event->ctx->parent_ctx);
2988 mutex_lock(&event->mmap_mutex);
2989 if (event->buffer) {
2990 if (event->buffer->nr_pages == nr_pages)
2991 atomic_inc(&event->buffer->refcount);
2992 else
2993 ret = -EINVAL;
2994 goto unlock;
2995 }
2996
2997 user_extra = nr_pages + 1;
2998 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2999
3000 /*
3001 * Increase the limit linearly with more CPUs:
3002 */
3003 user_lock_limit *= num_online_cpus();
3004
3005 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3006
3007 extra = 0;
3008 if (user_locked > user_lock_limit)
3009 extra = user_locked - user_lock_limit;
3010
3011 lock_limit = rlimit(RLIMIT_MEMLOCK);
3012 lock_limit >>= PAGE_SHIFT;
3013 locked = vma->vm_mm->locked_vm + extra;
3014
3015 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3016 !capable(CAP_IPC_LOCK)) {
3017 ret = -EPERM;
3018 goto unlock;
3019 }
3020
3021 WARN_ON(event->buffer);
3022
3023 if (vma->vm_flags & VM_WRITE)
3024 flags |= PERF_BUFFER_WRITABLE;
3025
3026 buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
3027 event->cpu, flags);
3028 if (!buffer) {
3029 ret = -ENOMEM;
3030 goto unlock;
3031 }
3032 rcu_assign_pointer(event->buffer, buffer);
3033
3034 atomic_long_add(user_extra, &user->locked_vm);
3035 event->mmap_locked = extra;
3036 event->mmap_user = get_current_user();
3037 vma->vm_mm->locked_vm += event->mmap_locked;
3038
3039 unlock:
3040 if (!ret)
3041 atomic_inc(&event->mmap_count);
3042 mutex_unlock(&event->mmap_mutex);
3043
3044 vma->vm_flags |= VM_RESERVED;
3045 vma->vm_ops = &perf_mmap_vmops;
3046
3047 return ret;
3048 }
3049
3050 static int perf_fasync(int fd, struct file *filp, int on)
3051 {
3052 struct inode *inode = filp->f_path.dentry->d_inode;
3053 struct perf_event *event = filp->private_data;
3054 int retval;
3055
3056 mutex_lock(&inode->i_mutex);
3057 retval = fasync_helper(fd, filp, on, &event->fasync);
3058 mutex_unlock(&inode->i_mutex);
3059
3060 if (retval < 0)
3061 return retval;
3062
3063 return 0;
3064 }
3065
3066 static const struct file_operations perf_fops = {
3067 .llseek = no_llseek,
3068 .release = perf_release,
3069 .read = perf_read,
3070 .poll = perf_poll,
3071 .unlocked_ioctl = perf_ioctl,
3072 .compat_ioctl = perf_ioctl,
3073 .mmap = perf_mmap,
3074 .fasync = perf_fasync,
3075 };
3076
3077 /*
3078 * Perf event wakeup
3079 *
3080 * If there's data, ensure we set the poll() state and publish everything
3081 * to user-space before waking everybody up.
3082 */
3083
3084 void perf_event_wakeup(struct perf_event *event)
3085 {
3086 wake_up_all(&event->waitq);
3087
3088 if (event->pending_kill) {
3089 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3090 event->pending_kill = 0;
3091 }
3092 }
3093
3094 /*
3095 * Pending wakeups
3096 *
3097 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
3098 *
3099 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
3100 * single linked list and use cmpxchg() to add entries lockless.
3101 */
3102
3103 static void perf_pending_event(struct perf_pending_entry *entry)
3104 {
3105 struct perf_event *event = container_of(entry,
3106 struct perf_event, pending);
3107
3108 if (event->pending_disable) {
3109 event->pending_disable = 0;
3110 __perf_event_disable(event);
3111 }
3112
3113 if (event->pending_wakeup) {
3114 event->pending_wakeup = 0;
3115 perf_event_wakeup(event);
3116 }
3117 }
3118
3119 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
3120
3121 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
3122 PENDING_TAIL,
3123 };
3124
3125 static void perf_pending_queue(struct perf_pending_entry *entry,
3126 void (*func)(struct perf_pending_entry *))
3127 {
3128 struct perf_pending_entry **head;
3129
3130 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
3131 return;
3132
3133 entry->func = func;
3134
3135 head = &get_cpu_var(perf_pending_head);
3136
3137 do {
3138 entry->next = *head;
3139 } while (cmpxchg(head, entry->next, entry) != entry->next);
3140
3141 set_perf_event_pending();
3142
3143 put_cpu_var(perf_pending_head);
3144 }
3145
3146 static int __perf_pending_run(void)
3147 {
3148 struct perf_pending_entry *list;
3149 int nr = 0;
3150
3151 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
3152 while (list != PENDING_TAIL) {
3153 void (*func)(struct perf_pending_entry *);
3154 struct perf_pending_entry *entry = list;
3155
3156 list = list->next;
3157
3158 func = entry->func;
3159 entry->next = NULL;
3160 /*
3161 * Ensure we observe the unqueue before we issue the wakeup,
3162 * so that we won't be waiting forever.
3163 * -- see perf_not_pending().
3164 */
3165 smp_wmb();
3166
3167 func(entry);
3168 nr++;
3169 }
3170
3171 return nr;
3172 }
3173
3174 static inline int perf_not_pending(struct perf_event *event)
3175 {
3176 /*
3177 * If we flush on whatever cpu we run, there is a chance we don't
3178 * need to wait.
3179 */
3180 get_cpu();
3181 __perf_pending_run();
3182 put_cpu();
3183
3184 /*
3185 * Ensure we see the proper queue state before going to sleep
3186 * so that we do not miss the wakeup. -- see perf_pending_handle()
3187 */
3188 smp_rmb();
3189 return event->pending.next == NULL;
3190 }
3191
3192 static void perf_pending_sync(struct perf_event *event)
3193 {
3194 wait_event(event->waitq, perf_not_pending(event));
3195 }
3196
3197 void perf_event_do_pending(void)
3198 {
3199 __perf_pending_run();
3200 }
3201
3202 /*
3203 * We assume there is only KVM supporting the callbacks.
3204 * Later on, we might change it to a list if there is
3205 * another virtualization implementation supporting the callbacks.
3206 */
3207 struct perf_guest_info_callbacks *perf_guest_cbs;
3208
3209 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3210 {
3211 perf_guest_cbs = cbs;
3212 return 0;
3213 }
3214 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3215
3216 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3217 {
3218 perf_guest_cbs = NULL;
3219 return 0;
3220 }
3221 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3222
3223 /*
3224 * Output
3225 */
3226 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3227 unsigned long offset, unsigned long head)
3228 {
3229 unsigned long mask;
3230
3231 if (!buffer->writable)
3232 return true;
3233
3234 mask = perf_data_size(buffer) - 1;
3235
3236 offset = (offset - tail) & mask;
3237 head = (head - tail) & mask;
3238
3239 if ((int)(head - offset) < 0)
3240 return false;
3241
3242 return true;
3243 }
3244
3245 static void perf_output_wakeup(struct perf_output_handle *handle)
3246 {
3247 atomic_set(&handle->buffer->poll, POLL_IN);
3248
3249 if (handle->nmi) {
3250 handle->event->pending_wakeup = 1;
3251 perf_pending_queue(&handle->event->pending,
3252 perf_pending_event);
3253 } else
3254 perf_event_wakeup(handle->event);
3255 }
3256
3257 /*
3258 * We need to ensure a later event_id doesn't publish a head when a former
3259 * event isn't done writing. However since we need to deal with NMIs we
3260 * cannot fully serialize things.
3261 *
3262 * We only publish the head (and generate a wakeup) when the outer-most
3263 * event completes.
3264 */
3265 static void perf_output_get_handle(struct perf_output_handle *handle)
3266 {
3267 struct perf_buffer *buffer = handle->buffer;
3268
3269 preempt_disable();
3270 local_inc(&buffer->nest);
3271 handle->wakeup = local_read(&buffer->wakeup);
3272 }
3273
3274 static void perf_output_put_handle(struct perf_output_handle *handle)
3275 {
3276 struct perf_buffer *buffer = handle->buffer;
3277 unsigned long head;
3278
3279 again:
3280 head = local_read(&buffer->head);
3281
3282 /*
3283 * IRQ/NMI can happen here, which means we can miss a head update.
3284 */
3285
3286 if (!local_dec_and_test(&buffer->nest))
3287 goto out;
3288
3289 /*
3290 * Publish the known good head. Rely on the full barrier implied
3291 * by atomic_dec_and_test() order the buffer->head read and this
3292 * write.
3293 */
3294 buffer->user_page->data_head = head;
3295
3296 /*
3297 * Now check if we missed an update, rely on the (compiler)
3298 * barrier in atomic_dec_and_test() to re-read buffer->head.
3299 */
3300 if (unlikely(head != local_read(&buffer->head))) {
3301 local_inc(&buffer->nest);
3302 goto again;
3303 }
3304
3305 if (handle->wakeup != local_read(&buffer->wakeup))
3306 perf_output_wakeup(handle);
3307
3308 out:
3309 preempt_enable();
3310 }
3311
3312 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3313 const void *buf, unsigned int len)
3314 {
3315 do {
3316 unsigned long size = min_t(unsigned long, handle->size, len);
3317
3318 memcpy(handle->addr, buf, size);
3319
3320 len -= size;
3321 handle->addr += size;
3322 buf += size;
3323 handle->size -= size;
3324 if (!handle->size) {
3325 struct perf_buffer *buffer = handle->buffer;
3326
3327 handle->page++;
3328 handle->page &= buffer->nr_pages - 1;
3329 handle->addr = buffer->data_pages[handle->page];
3330 handle->size = PAGE_SIZE << page_order(buffer);
3331 }
3332 } while (len);
3333 }
3334
3335 int perf_output_begin(struct perf_output_handle *handle,
3336 struct perf_event *event, unsigned int size,
3337 int nmi, int sample)
3338 {
3339 struct perf_buffer *buffer;
3340 unsigned long tail, offset, head;
3341 int have_lost;
3342 struct {
3343 struct perf_event_header header;
3344 u64 id;
3345 u64 lost;
3346 } lost_event;
3347
3348 rcu_read_lock();
3349 /*
3350 * For inherited events we send all the output towards the parent.
3351 */
3352 if (event->parent)
3353 event = event->parent;
3354
3355 buffer = rcu_dereference(event->buffer);
3356 if (!buffer)
3357 goto out;
3358
3359 handle->buffer = buffer;
3360 handle->event = event;
3361 handle->nmi = nmi;
3362 handle->sample = sample;
3363
3364 if (!buffer->nr_pages)
3365 goto out;
3366
3367 have_lost = local_read(&buffer->lost);
3368 if (have_lost)
3369 size += sizeof(lost_event);
3370
3371 perf_output_get_handle(handle);
3372
3373 do {
3374 /*
3375 * Userspace could choose to issue a mb() before updating the
3376 * tail pointer. So that all reads will be completed before the
3377 * write is issued.
3378 */
3379 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3380 smp_rmb();
3381 offset = head = local_read(&buffer->head);
3382 head += size;
3383 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3384 goto fail;
3385 } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3386
3387 if (head - local_read(&buffer->wakeup) > buffer->watermark)
3388 local_add(buffer->watermark, &buffer->wakeup);
3389
3390 handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3391 handle->page &= buffer->nr_pages - 1;
3392 handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3393 handle->addr = buffer->data_pages[handle->page];
3394 handle->addr += handle->size;
3395 handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3396
3397 if (have_lost) {
3398 lost_event.header.type = PERF_RECORD_LOST;
3399 lost_event.header.misc = 0;
3400 lost_event.header.size = sizeof(lost_event);
3401 lost_event.id = event->id;
3402 lost_event.lost = local_xchg(&buffer->lost, 0);
3403
3404 perf_output_put(handle, lost_event);
3405 }
3406
3407 return 0;
3408
3409 fail:
3410 local_inc(&buffer->lost);
3411 perf_output_put_handle(handle);
3412 out:
3413 rcu_read_unlock();
3414
3415 return -ENOSPC;
3416 }
3417
3418 void perf_output_end(struct perf_output_handle *handle)
3419 {
3420 struct perf_event *event = handle->event;
3421 struct perf_buffer *buffer = handle->buffer;
3422
3423 int wakeup_events = event->attr.wakeup_events;
3424
3425 if (handle->sample && wakeup_events) {
3426 int events = local_inc_return(&buffer->events);
3427 if (events >= wakeup_events) {
3428 local_sub(wakeup_events, &buffer->events);
3429 local_inc(&buffer->wakeup);
3430 }
3431 }
3432
3433 perf_output_put_handle(handle);
3434 rcu_read_unlock();
3435 }
3436
3437 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3438 {
3439 /*
3440 * only top level events have the pid namespace they were created in
3441 */
3442 if (event->parent)
3443 event = event->parent;
3444
3445 return task_tgid_nr_ns(p, event->ns);
3446 }
3447
3448 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3449 {
3450 /*
3451 * only top level events have the pid namespace they were created in
3452 */
3453 if (event->parent)
3454 event = event->parent;
3455
3456 return task_pid_nr_ns(p, event->ns);
3457 }
3458
3459 static void perf_output_read_one(struct perf_output_handle *handle,
3460 struct perf_event *event)
3461 {
3462 u64 read_format = event->attr.read_format;
3463 u64 values[4];
3464 int n = 0;
3465
3466 values[n++] = perf_event_count(event);
3467 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3468 values[n++] = event->total_time_enabled +
3469 atomic64_read(&event->child_total_time_enabled);
3470 }
3471 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3472 values[n++] = event->total_time_running +
3473 atomic64_read(&event->child_total_time_running);
3474 }
3475 if (read_format & PERF_FORMAT_ID)
3476 values[n++] = primary_event_id(event);
3477
3478 perf_output_copy(handle, values, n * sizeof(u64));
3479 }
3480
3481 /*
3482 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3483 */
3484 static void perf_output_read_group(struct perf_output_handle *handle,
3485 struct perf_event *event)
3486 {
3487 struct perf_event *leader = event->group_leader, *sub;
3488 u64 read_format = event->attr.read_format;
3489 u64 values[5];
3490 int n = 0;
3491
3492 values[n++] = 1 + leader->nr_siblings;
3493
3494 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3495 values[n++] = leader->total_time_enabled;
3496
3497 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3498 values[n++] = leader->total_time_running;
3499
3500 if (leader != event)
3501 leader->pmu->read(leader);
3502
3503 values[n++] = perf_event_count(leader);
3504 if (read_format & PERF_FORMAT_ID)
3505 values[n++] = primary_event_id(leader);
3506
3507 perf_output_copy(handle, values, n * sizeof(u64));
3508
3509 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3510 n = 0;
3511
3512 if (sub != event)
3513 sub->pmu->read(sub);
3514
3515 values[n++] = perf_event_count(sub);
3516 if (read_format & PERF_FORMAT_ID)
3517 values[n++] = primary_event_id(sub);
3518
3519 perf_output_copy(handle, values, n * sizeof(u64));
3520 }
3521 }
3522
3523 static void perf_output_read(struct perf_output_handle *handle,
3524 struct perf_event *event)
3525 {
3526 if (event->attr.read_format & PERF_FORMAT_GROUP)
3527 perf_output_read_group(handle, event);
3528 else
3529 perf_output_read_one(handle, event);
3530 }
3531
3532 void perf_output_sample(struct perf_output_handle *handle,
3533 struct perf_event_header *header,
3534 struct perf_sample_data *data,
3535 struct perf_event *event)
3536 {
3537 u64 sample_type = data->type;
3538
3539 perf_output_put(handle, *header);
3540
3541 if (sample_type & PERF_SAMPLE_IP)
3542 perf_output_put(handle, data->ip);
3543
3544 if (sample_type & PERF_SAMPLE_TID)
3545 perf_output_put(handle, data->tid_entry);
3546
3547 if (sample_type & PERF_SAMPLE_TIME)
3548 perf_output_put(handle, data->time);
3549
3550 if (sample_type & PERF_SAMPLE_ADDR)
3551 perf_output_put(handle, data->addr);
3552
3553 if (sample_type & PERF_SAMPLE_ID)
3554 perf_output_put(handle, data->id);
3555
3556 if (sample_type & PERF_SAMPLE_STREAM_ID)
3557 perf_output_put(handle, data->stream_id);
3558
3559 if (sample_type & PERF_SAMPLE_CPU)
3560 perf_output_put(handle, data->cpu_entry);
3561
3562 if (sample_type & PERF_SAMPLE_PERIOD)
3563 perf_output_put(handle, data->period);
3564
3565 if (sample_type & PERF_SAMPLE_READ)
3566 perf_output_read(handle, event);
3567
3568 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3569 if (data->callchain) {
3570 int size = 1;
3571
3572 if (data->callchain)
3573 size += data->callchain->nr;
3574
3575 size *= sizeof(u64);
3576
3577 perf_output_copy(handle, data->callchain, size);
3578 } else {
3579 u64 nr = 0;
3580 perf_output_put(handle, nr);
3581 }
3582 }
3583
3584 if (sample_type & PERF_SAMPLE_RAW) {
3585 if (data->raw) {
3586 perf_output_put(handle, data->raw->size);
3587 perf_output_copy(handle, data->raw->data,
3588 data->raw->size);
3589 } else {
3590 struct {
3591 u32 size;
3592 u32 data;
3593 } raw = {
3594 .size = sizeof(u32),
3595 .data = 0,
3596 };
3597 perf_output_put(handle, raw);
3598 }
3599 }
3600 }
3601
3602 void perf_prepare_sample(struct perf_event_header *header,
3603 struct perf_sample_data *data,
3604 struct perf_event *event,
3605 struct pt_regs *regs)
3606 {
3607 u64 sample_type = event->attr.sample_type;
3608
3609 data->type = sample_type;
3610
3611 header->type = PERF_RECORD_SAMPLE;
3612 header->size = sizeof(*header);
3613
3614 header->misc = 0;
3615 header->misc |= perf_misc_flags(regs);
3616
3617 if (sample_type & PERF_SAMPLE_IP) {
3618 data->ip = perf_instruction_pointer(regs);
3619
3620 header->size += sizeof(data->ip);
3621 }
3622
3623 if (sample_type & PERF_SAMPLE_TID) {
3624 /* namespace issues */
3625 data->tid_entry.pid = perf_event_pid(event, current);
3626 data->tid_entry.tid = perf_event_tid(event, current);
3627
3628 header->size += sizeof(data->tid_entry);
3629 }
3630
3631 if (sample_type & PERF_SAMPLE_TIME) {
3632 data->time = perf_clock();
3633
3634 header->size += sizeof(data->time);
3635 }
3636
3637 if (sample_type & PERF_SAMPLE_ADDR)
3638 header->size += sizeof(data->addr);
3639
3640 if (sample_type & PERF_SAMPLE_ID) {
3641 data->id = primary_event_id(event);
3642
3643 header->size += sizeof(data->id);
3644 }
3645
3646 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3647 data->stream_id = event->id;
3648
3649 header->size += sizeof(data->stream_id);
3650 }
3651
3652 if (sample_type & PERF_SAMPLE_CPU) {
3653 data->cpu_entry.cpu = raw_smp_processor_id();
3654 data->cpu_entry.reserved = 0;
3655
3656 header->size += sizeof(data->cpu_entry);
3657 }
3658
3659 if (sample_type & PERF_SAMPLE_PERIOD)
3660 header->size += sizeof(data->period);
3661
3662 if (sample_type & PERF_SAMPLE_READ)
3663 header->size += perf_event_read_size(event);
3664
3665 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3666 int size = 1;
3667
3668 data->callchain = perf_callchain(regs);
3669
3670 if (data->callchain)
3671 size += data->callchain->nr;
3672
3673 header->size += size * sizeof(u64);
3674 }
3675
3676 if (sample_type & PERF_SAMPLE_RAW) {
3677 int size = sizeof(u32);
3678
3679 if (data->raw)
3680 size += data->raw->size;
3681 else
3682 size += sizeof(u32);
3683
3684 WARN_ON_ONCE(size & (sizeof(u64)-1));
3685 header->size += size;
3686 }
3687 }
3688
3689 static void perf_event_output(struct perf_event *event, int nmi,
3690 struct perf_sample_data *data,
3691 struct pt_regs *regs)
3692 {
3693 struct perf_output_handle handle;
3694 struct perf_event_header header;
3695
3696 /* protect the callchain buffers */
3697 rcu_read_lock();
3698
3699 perf_prepare_sample(&header, data, event, regs);
3700
3701 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3702 goto exit;
3703
3704 perf_output_sample(&handle, &header, data, event);
3705
3706 perf_output_end(&handle);
3707
3708 exit:
3709 rcu_read_unlock();
3710 }
3711
3712 /*
3713 * read event_id
3714 */
3715
3716 struct perf_read_event {
3717 struct perf_event_header header;
3718
3719 u32 pid;
3720 u32 tid;
3721 };
3722
3723 static void
3724 perf_event_read_event(struct perf_event *event,
3725 struct task_struct *task)
3726 {
3727 struct perf_output_handle handle;
3728 struct perf_read_event read_event = {
3729 .header = {
3730 .type = PERF_RECORD_READ,
3731 .misc = 0,
3732 .size = sizeof(read_event) + perf_event_read_size(event),
3733 },
3734 .pid = perf_event_pid(event, task),
3735 .tid = perf_event_tid(event, task),
3736 };
3737 int ret;
3738
3739 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3740 if (ret)
3741 return;
3742
3743 perf_output_put(&handle, read_event);
3744 perf_output_read(&handle, event);
3745
3746 perf_output_end(&handle);
3747 }
3748
3749 /*
3750 * task tracking -- fork/exit
3751 *
3752 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3753 */
3754
3755 struct perf_task_event {
3756 struct task_struct *task;
3757 struct perf_event_context *task_ctx;
3758
3759 struct {
3760 struct perf_event_header header;
3761
3762 u32 pid;
3763 u32 ppid;
3764 u32 tid;
3765 u32 ptid;
3766 u64 time;
3767 } event_id;
3768 };
3769
3770 static void perf_event_task_output(struct perf_event *event,
3771 struct perf_task_event *task_event)
3772 {
3773 struct perf_output_handle handle;
3774 struct task_struct *task = task_event->task;
3775 int size, ret;
3776
3777 size = task_event->event_id.header.size;
3778 ret = perf_output_begin(&handle, event, size, 0, 0);
3779
3780 if (ret)
3781 return;
3782
3783 task_event->event_id.pid = perf_event_pid(event, task);
3784 task_event->event_id.ppid = perf_event_pid(event, current);
3785
3786 task_event->event_id.tid = perf_event_tid(event, task);
3787 task_event->event_id.ptid = perf_event_tid(event, current);
3788
3789 perf_output_put(&handle, task_event->event_id);
3790
3791 perf_output_end(&handle);
3792 }
3793
3794 static int perf_event_task_match(struct perf_event *event)
3795 {
3796 if (event->state < PERF_EVENT_STATE_INACTIVE)
3797 return 0;
3798
3799 if (event->cpu != -1 && event->cpu != smp_processor_id())
3800 return 0;
3801
3802 if (event->attr.comm || event->attr.mmap ||
3803 event->attr.mmap_data || event->attr.task)
3804 return 1;
3805
3806 return 0;
3807 }
3808
3809 static void perf_event_task_ctx(struct perf_event_context *ctx,
3810 struct perf_task_event *task_event)
3811 {
3812 struct perf_event *event;
3813
3814 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3815 if (perf_event_task_match(event))
3816 perf_event_task_output(event, task_event);
3817 }
3818 }
3819
3820 static void perf_event_task_event(struct perf_task_event *task_event)
3821 {
3822 struct perf_cpu_context *cpuctx;
3823 struct perf_event_context *ctx;
3824 struct pmu *pmu;
3825 int ctxn;
3826
3827 rcu_read_lock();
3828 list_for_each_entry_rcu(pmu, &pmus, entry) {
3829 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3830 perf_event_task_ctx(&cpuctx->ctx, task_event);
3831
3832 ctx = task_event->task_ctx;
3833 if (!ctx) {
3834 ctxn = pmu->task_ctx_nr;
3835 if (ctxn < 0)
3836 continue;
3837 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3838 }
3839 if (ctx)
3840 perf_event_task_ctx(ctx, task_event);
3841 }
3842 rcu_read_unlock();
3843 }
3844
3845 static void perf_event_task(struct task_struct *task,
3846 struct perf_event_context *task_ctx,
3847 int new)
3848 {
3849 struct perf_task_event task_event;
3850
3851 if (!atomic_read(&nr_comm_events) &&
3852 !atomic_read(&nr_mmap_events) &&
3853 !atomic_read(&nr_task_events))
3854 return;
3855
3856 task_event = (struct perf_task_event){
3857 .task = task,
3858 .task_ctx = task_ctx,
3859 .event_id = {
3860 .header = {
3861 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3862 .misc = 0,
3863 .size = sizeof(task_event.event_id),
3864 },
3865 /* .pid */
3866 /* .ppid */
3867 /* .tid */
3868 /* .ptid */
3869 .time = perf_clock(),
3870 },
3871 };
3872
3873 perf_event_task_event(&task_event);
3874 }
3875
3876 void perf_event_fork(struct task_struct *task)
3877 {
3878 perf_event_task(task, NULL, 1);
3879 }
3880
3881 /*
3882 * comm tracking
3883 */
3884
3885 struct perf_comm_event {
3886 struct task_struct *task;
3887 char *comm;
3888 int comm_size;
3889
3890 struct {
3891 struct perf_event_header header;
3892
3893 u32 pid;
3894 u32 tid;
3895 } event_id;
3896 };
3897
3898 static void perf_event_comm_output(struct perf_event *event,
3899 struct perf_comm_event *comm_event)
3900 {
3901 struct perf_output_handle handle;
3902 int size = comm_event->event_id.header.size;
3903 int ret = perf_output_begin(&handle, event, size, 0, 0);
3904
3905 if (ret)
3906 return;
3907
3908 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3909 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3910
3911 perf_output_put(&handle, comm_event->event_id);
3912 perf_output_copy(&handle, comm_event->comm,
3913 comm_event->comm_size);
3914 perf_output_end(&handle);
3915 }
3916
3917 static int perf_event_comm_match(struct perf_event *event)
3918 {
3919 if (event->state < PERF_EVENT_STATE_INACTIVE)
3920 return 0;
3921
3922 if (event->cpu != -1 && event->cpu != smp_processor_id())
3923 return 0;
3924
3925 if (event->attr.comm)
3926 return 1;
3927
3928 return 0;
3929 }
3930
3931 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3932 struct perf_comm_event *comm_event)
3933 {
3934 struct perf_event *event;
3935
3936 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3937 if (perf_event_comm_match(event))
3938 perf_event_comm_output(event, comm_event);
3939 }
3940 }
3941
3942 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3943 {
3944 struct perf_cpu_context *cpuctx;
3945 struct perf_event_context *ctx;
3946 char comm[TASK_COMM_LEN];
3947 unsigned int size;
3948 struct pmu *pmu;
3949 int ctxn;
3950
3951 memset(comm, 0, sizeof(comm));
3952 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3953 size = ALIGN(strlen(comm)+1, sizeof(u64));
3954
3955 comm_event->comm = comm;
3956 comm_event->comm_size = size;
3957
3958 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3959
3960 rcu_read_lock();
3961 list_for_each_entry_rcu(pmu, &pmus, entry) {
3962 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3963 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3964
3965 ctxn = pmu->task_ctx_nr;
3966 if (ctxn < 0)
3967 continue;
3968
3969 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3970 if (ctx)
3971 perf_event_comm_ctx(ctx, comm_event);
3972 }
3973 rcu_read_unlock();
3974 }
3975
3976 void perf_event_comm(struct task_struct *task)
3977 {
3978 struct perf_comm_event comm_event;
3979 struct perf_event_context *ctx;
3980 int ctxn;
3981
3982 for_each_task_context_nr(ctxn) {
3983 ctx = task->perf_event_ctxp[ctxn];
3984 if (!ctx)
3985 continue;
3986
3987 perf_event_enable_on_exec(ctx);
3988 }
3989
3990 if (!atomic_read(&nr_comm_events))
3991 return;
3992
3993 comm_event = (struct perf_comm_event){
3994 .task = task,
3995 /* .comm */
3996 /* .comm_size */
3997 .event_id = {
3998 .header = {
3999 .type = PERF_RECORD_COMM,
4000 .misc = 0,
4001 /* .size */
4002 },
4003 /* .pid */
4004 /* .tid */
4005 },
4006 };
4007
4008 perf_event_comm_event(&comm_event);
4009 }
4010
4011 /*
4012 * mmap tracking
4013 */
4014
4015 struct perf_mmap_event {
4016 struct vm_area_struct *vma;
4017
4018 const char *file_name;
4019 int file_size;
4020
4021 struct {
4022 struct perf_event_header header;
4023
4024 u32 pid;
4025 u32 tid;
4026 u64 start;
4027 u64 len;
4028 u64 pgoff;
4029 } event_id;
4030 };
4031
4032 static void perf_event_mmap_output(struct perf_event *event,
4033 struct perf_mmap_event *mmap_event)
4034 {
4035 struct perf_output_handle handle;
4036 int size = mmap_event->event_id.header.size;
4037 int ret = perf_output_begin(&handle, event, size, 0, 0);
4038
4039 if (ret)
4040 return;
4041
4042 mmap_event->event_id.pid = perf_event_pid(event, current);
4043 mmap_event->event_id.tid = perf_event_tid(event, current);
4044
4045 perf_output_put(&handle, mmap_event->event_id);
4046 perf_output_copy(&handle, mmap_event->file_name,
4047 mmap_event->file_size);
4048 perf_output_end(&handle);
4049 }
4050
4051 static int perf_event_mmap_match(struct perf_event *event,
4052 struct perf_mmap_event *mmap_event,
4053 int executable)
4054 {
4055 if (event->state < PERF_EVENT_STATE_INACTIVE)
4056 return 0;
4057
4058 if (event->cpu != -1 && event->cpu != smp_processor_id())
4059 return 0;
4060
4061 if ((!executable && event->attr.mmap_data) ||
4062 (executable && event->attr.mmap))
4063 return 1;
4064
4065 return 0;
4066 }
4067
4068 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4069 struct perf_mmap_event *mmap_event,
4070 int executable)
4071 {
4072 struct perf_event *event;
4073
4074 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4075 if (perf_event_mmap_match(event, mmap_event, executable))
4076 perf_event_mmap_output(event, mmap_event);
4077 }
4078 }
4079
4080 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4081 {
4082 struct perf_cpu_context *cpuctx;
4083 struct perf_event_context *ctx;
4084 struct vm_area_struct *vma = mmap_event->vma;
4085 struct file *file = vma->vm_file;
4086 unsigned int size;
4087 char tmp[16];
4088 char *buf = NULL;
4089 const char *name;
4090 struct pmu *pmu;
4091 int ctxn;
4092
4093 memset(tmp, 0, sizeof(tmp));
4094
4095 if (file) {
4096 /*
4097 * d_path works from the end of the buffer backwards, so we
4098 * need to add enough zero bytes after the string to handle
4099 * the 64bit alignment we do later.
4100 */
4101 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4102 if (!buf) {
4103 name = strncpy(tmp, "//enomem", sizeof(tmp));
4104 goto got_name;
4105 }
4106 name = d_path(&file->f_path, buf, PATH_MAX);
4107 if (IS_ERR(name)) {
4108 name = strncpy(tmp, "//toolong", sizeof(tmp));
4109 goto got_name;
4110 }
4111 } else {
4112 if (arch_vma_name(mmap_event->vma)) {
4113 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4114 sizeof(tmp));
4115 goto got_name;
4116 }
4117
4118 if (!vma->vm_mm) {
4119 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4120 goto got_name;
4121 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4122 vma->vm_end >= vma->vm_mm->brk) {
4123 name = strncpy(tmp, "[heap]", sizeof(tmp));
4124 goto got_name;
4125 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4126 vma->vm_end >= vma->vm_mm->start_stack) {
4127 name = strncpy(tmp, "[stack]", sizeof(tmp));
4128 goto got_name;
4129 }
4130
4131 name = strncpy(tmp, "//anon", sizeof(tmp));
4132 goto got_name;
4133 }
4134
4135 got_name:
4136 size = ALIGN(strlen(name)+1, sizeof(u64));
4137
4138 mmap_event->file_name = name;
4139 mmap_event->file_size = size;
4140
4141 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4142
4143 rcu_read_lock();
4144 list_for_each_entry_rcu(pmu, &pmus, entry) {
4145 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
4146 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4147 vma->vm_flags & VM_EXEC);
4148
4149 ctxn = pmu->task_ctx_nr;
4150 if (ctxn < 0)
4151 continue;
4152
4153 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4154 if (ctx) {
4155 perf_event_mmap_ctx(ctx, mmap_event,
4156 vma->vm_flags & VM_EXEC);
4157 }
4158 }
4159 rcu_read_unlock();
4160
4161 kfree(buf);
4162 }
4163
4164 void perf_event_mmap(struct vm_area_struct *vma)
4165 {
4166 struct perf_mmap_event mmap_event;
4167
4168 if (!atomic_read(&nr_mmap_events))
4169 return;
4170
4171 mmap_event = (struct perf_mmap_event){
4172 .vma = vma,
4173 /* .file_name */
4174 /* .file_size */
4175 .event_id = {
4176 .header = {
4177 .type = PERF_RECORD_MMAP,
4178 .misc = PERF_RECORD_MISC_USER,
4179 /* .size */
4180 },
4181 /* .pid */
4182 /* .tid */
4183 .start = vma->vm_start,
4184 .len = vma->vm_end - vma->vm_start,
4185 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4186 },
4187 };
4188
4189 perf_event_mmap_event(&mmap_event);
4190 }
4191
4192 /*
4193 * IRQ throttle logging
4194 */
4195
4196 static void perf_log_throttle(struct perf_event *event, int enable)
4197 {
4198 struct perf_output_handle handle;
4199 int ret;
4200
4201 struct {
4202 struct perf_event_header header;
4203 u64 time;
4204 u64 id;
4205 u64 stream_id;
4206 } throttle_event = {
4207 .header = {
4208 .type = PERF_RECORD_THROTTLE,
4209 .misc = 0,
4210 .size = sizeof(throttle_event),
4211 },
4212 .time = perf_clock(),
4213 .id = primary_event_id(event),
4214 .stream_id = event->id,
4215 };
4216
4217 if (enable)
4218 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4219
4220 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4221 if (ret)
4222 return;
4223
4224 perf_output_put(&handle, throttle_event);
4225 perf_output_end(&handle);
4226 }
4227
4228 /*
4229 * Generic event overflow handling, sampling.
4230 */
4231
4232 static int __perf_event_overflow(struct perf_event *event, int nmi,
4233 int throttle, struct perf_sample_data *data,
4234 struct pt_regs *regs)
4235 {
4236 int events = atomic_read(&event->event_limit);
4237 struct hw_perf_event *hwc = &event->hw;
4238 int ret = 0;
4239
4240 if (!throttle) {
4241 hwc->interrupts++;
4242 } else {
4243 if (hwc->interrupts != MAX_INTERRUPTS) {
4244 hwc->interrupts++;
4245 if (HZ * hwc->interrupts >
4246 (u64)sysctl_perf_event_sample_rate) {
4247 hwc->interrupts = MAX_INTERRUPTS;
4248 perf_log_throttle(event, 0);
4249 ret = 1;
4250 }
4251 } else {
4252 /*
4253 * Keep re-disabling events even though on the previous
4254 * pass we disabled it - just in case we raced with a
4255 * sched-in and the event got enabled again:
4256 */
4257 ret = 1;
4258 }
4259 }
4260
4261 if (event->attr.freq) {
4262 u64 now = perf_clock();
4263 s64 delta = now - hwc->freq_time_stamp;
4264
4265 hwc->freq_time_stamp = now;
4266
4267 if (delta > 0 && delta < 2*TICK_NSEC)
4268 perf_adjust_period(event, delta, hwc->last_period);
4269 }
4270
4271 /*
4272 * XXX event_limit might not quite work as expected on inherited
4273 * events
4274 */
4275
4276 event->pending_kill = POLL_IN;
4277 if (events && atomic_dec_and_test(&event->event_limit)) {
4278 ret = 1;
4279 event->pending_kill = POLL_HUP;
4280 if (nmi) {
4281 event->pending_disable = 1;
4282 perf_pending_queue(&event->pending,
4283 perf_pending_event);
4284 } else
4285 perf_event_disable(event);
4286 }
4287
4288 if (event->overflow_handler)
4289 event->overflow_handler(event, nmi, data, regs);
4290 else
4291 perf_event_output(event, nmi, data, regs);
4292
4293 return ret;
4294 }
4295
4296 int perf_event_overflow(struct perf_event *event, int nmi,
4297 struct perf_sample_data *data,
4298 struct pt_regs *regs)
4299 {
4300 return __perf_event_overflow(event, nmi, 1, data, regs);
4301 }
4302
4303 /*
4304 * Generic software event infrastructure
4305 */
4306
4307 struct swevent_htable {
4308 struct swevent_hlist *swevent_hlist;
4309 struct mutex hlist_mutex;
4310 int hlist_refcount;
4311
4312 /* Recursion avoidance in each contexts */
4313 int recursion[PERF_NR_CONTEXTS];
4314 };
4315
4316 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4317
4318 /*
4319 * We directly increment event->count and keep a second value in
4320 * event->hw.period_left to count intervals. This period event
4321 * is kept in the range [-sample_period, 0] so that we can use the
4322 * sign as trigger.
4323 */
4324
4325 static u64 perf_swevent_set_period(struct perf_event *event)
4326 {
4327 struct hw_perf_event *hwc = &event->hw;
4328 u64 period = hwc->last_period;
4329 u64 nr, offset;
4330 s64 old, val;
4331
4332 hwc->last_period = hwc->sample_period;
4333
4334 again:
4335 old = val = local64_read(&hwc->period_left);
4336 if (val < 0)
4337 return 0;
4338
4339 nr = div64_u64(period + val, period);
4340 offset = nr * period;
4341 val -= offset;
4342 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4343 goto again;
4344
4345 return nr;
4346 }
4347
4348 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4349 int nmi, struct perf_sample_data *data,
4350 struct pt_regs *regs)
4351 {
4352 struct hw_perf_event *hwc = &event->hw;
4353 int throttle = 0;
4354
4355 data->period = event->hw.last_period;
4356 if (!overflow)
4357 overflow = perf_swevent_set_period(event);
4358
4359 if (hwc->interrupts == MAX_INTERRUPTS)
4360 return;
4361
4362 for (; overflow; overflow--) {
4363 if (__perf_event_overflow(event, nmi, throttle,
4364 data, regs)) {
4365 /*
4366 * We inhibit the overflow from happening when
4367 * hwc->interrupts == MAX_INTERRUPTS.
4368 */
4369 break;
4370 }
4371 throttle = 1;
4372 }
4373 }
4374
4375 static void perf_swevent_event(struct perf_event *event, u64 nr,
4376 int nmi, struct perf_sample_data *data,
4377 struct pt_regs *regs)
4378 {
4379 struct hw_perf_event *hwc = &event->hw;
4380
4381 local64_add(nr, &event->count);
4382
4383 if (!regs)
4384 return;
4385
4386 if (!hwc->sample_period)
4387 return;
4388
4389 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4390 return perf_swevent_overflow(event, 1, nmi, data, regs);
4391
4392 if (local64_add_negative(nr, &hwc->period_left))
4393 return;
4394
4395 perf_swevent_overflow(event, 0, nmi, data, regs);
4396 }
4397
4398 static int perf_exclude_event(struct perf_event *event,
4399 struct pt_regs *regs)
4400 {
4401 if (event->hw.state & PERF_HES_STOPPED)
4402 return 0;
4403
4404 if (regs) {
4405 if (event->attr.exclude_user && user_mode(regs))
4406 return 1;
4407
4408 if (event->attr.exclude_kernel && !user_mode(regs))
4409 return 1;
4410 }
4411
4412 return 0;
4413 }
4414
4415 static int perf_swevent_match(struct perf_event *event,
4416 enum perf_type_id type,
4417 u32 event_id,
4418 struct perf_sample_data *data,
4419 struct pt_regs *regs)
4420 {
4421 if (event->attr.type != type)
4422 return 0;
4423
4424 if (event->attr.config != event_id)
4425 return 0;
4426
4427 if (perf_exclude_event(event, regs))
4428 return 0;
4429
4430 return 1;
4431 }
4432
4433 static inline u64 swevent_hash(u64 type, u32 event_id)
4434 {
4435 u64 val = event_id | (type << 32);
4436
4437 return hash_64(val, SWEVENT_HLIST_BITS);
4438 }
4439
4440 static inline struct hlist_head *
4441 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4442 {
4443 u64 hash = swevent_hash(type, event_id);
4444
4445 return &hlist->heads[hash];
4446 }
4447
4448 /* For the read side: events when they trigger */
4449 static inline struct hlist_head *
4450 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4451 {
4452 struct swevent_hlist *hlist;
4453
4454 hlist = rcu_dereference(swhash->swevent_hlist);
4455 if (!hlist)
4456 return NULL;
4457
4458 return __find_swevent_head(hlist, type, event_id);
4459 }
4460
4461 /* For the event head insertion and removal in the hlist */
4462 static inline struct hlist_head *
4463 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4464 {
4465 struct swevent_hlist *hlist;
4466 u32 event_id = event->attr.config;
4467 u64 type = event->attr.type;
4468
4469 /*
4470 * Event scheduling is always serialized against hlist allocation
4471 * and release. Which makes the protected version suitable here.
4472 * The context lock guarantees that.
4473 */
4474 hlist = rcu_dereference_protected(swhash->swevent_hlist,
4475 lockdep_is_held(&event->ctx->lock));
4476 if (!hlist)
4477 return NULL;
4478
4479 return __find_swevent_head(hlist, type, event_id);
4480 }
4481
4482 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4483 u64 nr, int nmi,
4484 struct perf_sample_data *data,
4485 struct pt_regs *regs)
4486 {
4487 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4488 struct perf_event *event;
4489 struct hlist_node *node;
4490 struct hlist_head *head;
4491
4492 rcu_read_lock();
4493 head = find_swevent_head_rcu(swhash, type, event_id);
4494 if (!head)
4495 goto end;
4496
4497 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4498 if (perf_swevent_match(event, type, event_id, data, regs))
4499 perf_swevent_event(event, nr, nmi, data, regs);
4500 }
4501 end:
4502 rcu_read_unlock();
4503 }
4504
4505 int perf_swevent_get_recursion_context(void)
4506 {
4507 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4508
4509 return get_recursion_context(swhash->recursion);
4510 }
4511 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4512
4513 void inline perf_swevent_put_recursion_context(int rctx)
4514 {
4515 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4516
4517 put_recursion_context(swhash->recursion, rctx);
4518 }
4519
4520 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4521 struct pt_regs *regs, u64 addr)
4522 {
4523 struct perf_sample_data data;
4524 int rctx;
4525
4526 preempt_disable_notrace();
4527 rctx = perf_swevent_get_recursion_context();
4528 if (rctx < 0)
4529 return;
4530
4531 perf_sample_data_init(&data, addr);
4532
4533 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4534
4535 perf_swevent_put_recursion_context(rctx);
4536 preempt_enable_notrace();
4537 }
4538
4539 static void perf_swevent_read(struct perf_event *event)
4540 {
4541 }
4542
4543 static int perf_swevent_add(struct perf_event *event, int flags)
4544 {
4545 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4546 struct hw_perf_event *hwc = &event->hw;
4547 struct hlist_head *head;
4548
4549 if (hwc->sample_period) {
4550 hwc->last_period = hwc->sample_period;
4551 perf_swevent_set_period(event);
4552 }
4553
4554 hwc->state = !(flags & PERF_EF_START);
4555
4556 head = find_swevent_head(swhash, event);
4557 if (WARN_ON_ONCE(!head))
4558 return -EINVAL;
4559
4560 hlist_add_head_rcu(&event->hlist_entry, head);
4561
4562 return 0;
4563 }
4564
4565 static void perf_swevent_del(struct perf_event *event, int flags)
4566 {
4567 hlist_del_rcu(&event->hlist_entry);
4568 }
4569
4570 static void perf_swevent_start(struct perf_event *event, int flags)
4571 {
4572 event->hw.state = 0;
4573 }
4574
4575 static void perf_swevent_stop(struct perf_event *event, int flags)
4576 {
4577 event->hw.state = PERF_HES_STOPPED;
4578 }
4579
4580 /* Deref the hlist from the update side */
4581 static inline struct swevent_hlist *
4582 swevent_hlist_deref(struct swevent_htable *swhash)
4583 {
4584 return rcu_dereference_protected(swhash->swevent_hlist,
4585 lockdep_is_held(&swhash->hlist_mutex));
4586 }
4587
4588 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4589 {
4590 struct swevent_hlist *hlist;
4591
4592 hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4593 kfree(hlist);
4594 }
4595
4596 static void swevent_hlist_release(struct swevent_htable *swhash)
4597 {
4598 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4599
4600 if (!hlist)
4601 return;
4602
4603 rcu_assign_pointer(swhash->swevent_hlist, NULL);
4604 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4605 }
4606
4607 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4608 {
4609 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4610
4611 mutex_lock(&swhash->hlist_mutex);
4612
4613 if (!--swhash->hlist_refcount)
4614 swevent_hlist_release(swhash);
4615
4616 mutex_unlock(&swhash->hlist_mutex);
4617 }
4618
4619 static void swevent_hlist_put(struct perf_event *event)
4620 {
4621 int cpu;
4622
4623 if (event->cpu != -1) {
4624 swevent_hlist_put_cpu(event, event->cpu);
4625 return;
4626 }
4627
4628 for_each_possible_cpu(cpu)
4629 swevent_hlist_put_cpu(event, cpu);
4630 }
4631
4632 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4633 {
4634 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4635 int err = 0;
4636
4637 mutex_lock(&swhash->hlist_mutex);
4638
4639 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4640 struct swevent_hlist *hlist;
4641
4642 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4643 if (!hlist) {
4644 err = -ENOMEM;
4645 goto exit;
4646 }
4647 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4648 }
4649 swhash->hlist_refcount++;
4650 exit:
4651 mutex_unlock(&swhash->hlist_mutex);
4652
4653 return err;
4654 }
4655
4656 static int swevent_hlist_get(struct perf_event *event)
4657 {
4658 int err;
4659 int cpu, failed_cpu;
4660
4661 if (event->cpu != -1)
4662 return swevent_hlist_get_cpu(event, event->cpu);
4663
4664 get_online_cpus();
4665 for_each_possible_cpu(cpu) {
4666 err = swevent_hlist_get_cpu(event, cpu);
4667 if (err) {
4668 failed_cpu = cpu;
4669 goto fail;
4670 }
4671 }
4672 put_online_cpus();
4673
4674 return 0;
4675 fail:
4676 for_each_possible_cpu(cpu) {
4677 if (cpu == failed_cpu)
4678 break;
4679 swevent_hlist_put_cpu(event, cpu);
4680 }
4681
4682 put_online_cpus();
4683 return err;
4684 }
4685
4686 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4687
4688 static void sw_perf_event_destroy(struct perf_event *event)
4689 {
4690 u64 event_id = event->attr.config;
4691
4692 WARN_ON(event->parent);
4693
4694 atomic_dec(&perf_swevent_enabled[event_id]);
4695 swevent_hlist_put(event);
4696 }
4697
4698 static int perf_swevent_init(struct perf_event *event)
4699 {
4700 int event_id = event->attr.config;
4701
4702 if (event->attr.type != PERF_TYPE_SOFTWARE)
4703 return -ENOENT;
4704
4705 switch (event_id) {
4706 case PERF_COUNT_SW_CPU_CLOCK:
4707 case PERF_COUNT_SW_TASK_CLOCK:
4708 return -ENOENT;
4709
4710 default:
4711 break;
4712 }
4713
4714 if (event_id > PERF_COUNT_SW_MAX)
4715 return -ENOENT;
4716
4717 if (!event->parent) {
4718 int err;
4719
4720 err = swevent_hlist_get(event);
4721 if (err)
4722 return err;
4723
4724 atomic_inc(&perf_swevent_enabled[event_id]);
4725 event->destroy = sw_perf_event_destroy;
4726 }
4727
4728 return 0;
4729 }
4730
4731 static struct pmu perf_swevent = {
4732 .task_ctx_nr = perf_sw_context,
4733
4734 .event_init = perf_swevent_init,
4735 .add = perf_swevent_add,
4736 .del = perf_swevent_del,
4737 .start = perf_swevent_start,
4738 .stop = perf_swevent_stop,
4739 .read = perf_swevent_read,
4740 };
4741
4742 #ifdef CONFIG_EVENT_TRACING
4743
4744 static int perf_tp_filter_match(struct perf_event *event,
4745 struct perf_sample_data *data)
4746 {
4747 void *record = data->raw->data;
4748
4749 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4750 return 1;
4751 return 0;
4752 }
4753
4754 static int perf_tp_event_match(struct perf_event *event,
4755 struct perf_sample_data *data,
4756 struct pt_regs *regs)
4757 {
4758 /*
4759 * All tracepoints are from kernel-space.
4760 */
4761 if (event->attr.exclude_kernel)
4762 return 0;
4763
4764 if (!perf_tp_filter_match(event, data))
4765 return 0;
4766
4767 return 1;
4768 }
4769
4770 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4771 struct pt_regs *regs, struct hlist_head *head, int rctx)
4772 {
4773 struct perf_sample_data data;
4774 struct perf_event *event;
4775 struct hlist_node *node;
4776
4777 struct perf_raw_record raw = {
4778 .size = entry_size,
4779 .data = record,
4780 };
4781
4782 perf_sample_data_init(&data, addr);
4783 data.raw = &raw;
4784
4785 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4786 if (perf_tp_event_match(event, &data, regs))
4787 perf_swevent_event(event, count, 1, &data, regs);
4788 }
4789
4790 perf_swevent_put_recursion_context(rctx);
4791 }
4792 EXPORT_SYMBOL_GPL(perf_tp_event);
4793
4794 static void tp_perf_event_destroy(struct perf_event *event)
4795 {
4796 perf_trace_destroy(event);
4797 }
4798
4799 static int perf_tp_event_init(struct perf_event *event)
4800 {
4801 int err;
4802
4803 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4804 return -ENOENT;
4805
4806 /*
4807 * Raw tracepoint data is a severe data leak, only allow root to
4808 * have these.
4809 */
4810 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4811 perf_paranoid_tracepoint_raw() &&
4812 !capable(CAP_SYS_ADMIN))
4813 return -EPERM;
4814
4815 err = perf_trace_init(event);
4816 if (err)
4817 return err;
4818
4819 event->destroy = tp_perf_event_destroy;
4820
4821 return 0;
4822 }
4823
4824 static struct pmu perf_tracepoint = {
4825 .task_ctx_nr = perf_sw_context,
4826
4827 .event_init = perf_tp_event_init,
4828 .add = perf_trace_add,
4829 .del = perf_trace_del,
4830 .start = perf_swevent_start,
4831 .stop = perf_swevent_stop,
4832 .read = perf_swevent_read,
4833 };
4834
4835 static inline void perf_tp_register(void)
4836 {
4837 perf_pmu_register(&perf_tracepoint);
4838 }
4839
4840 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4841 {
4842 char *filter_str;
4843 int ret;
4844
4845 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4846 return -EINVAL;
4847
4848 filter_str = strndup_user(arg, PAGE_SIZE);
4849 if (IS_ERR(filter_str))
4850 return PTR_ERR(filter_str);
4851
4852 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4853
4854 kfree(filter_str);
4855 return ret;
4856 }
4857
4858 static void perf_event_free_filter(struct perf_event *event)
4859 {
4860 ftrace_profile_free_filter(event);
4861 }
4862
4863 #else
4864
4865 static inline void perf_tp_register(void)
4866 {
4867 }
4868
4869 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4870 {
4871 return -ENOENT;
4872 }
4873
4874 static void perf_event_free_filter(struct perf_event *event)
4875 {
4876 }
4877
4878 #endif /* CONFIG_EVENT_TRACING */
4879
4880 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4881 void perf_bp_event(struct perf_event *bp, void *data)
4882 {
4883 struct perf_sample_data sample;
4884 struct pt_regs *regs = data;
4885
4886 perf_sample_data_init(&sample, bp->attr.bp_addr);
4887
4888 if (!bp->hw.state && !perf_exclude_event(bp, regs))
4889 perf_swevent_event(bp, 1, 1, &sample, regs);
4890 }
4891 #endif
4892
4893 /*
4894 * hrtimer based swevent callback
4895 */
4896
4897 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4898 {
4899 enum hrtimer_restart ret = HRTIMER_RESTART;
4900 struct perf_sample_data data;
4901 struct pt_regs *regs;
4902 struct perf_event *event;
4903 u64 period;
4904
4905 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4906 event->pmu->read(event);
4907
4908 perf_sample_data_init(&data, 0);
4909 data.period = event->hw.last_period;
4910 regs = get_irq_regs();
4911
4912 if (regs && !perf_exclude_event(event, regs)) {
4913 if (!(event->attr.exclude_idle && current->pid == 0))
4914 if (perf_event_overflow(event, 0, &data, regs))
4915 ret = HRTIMER_NORESTART;
4916 }
4917
4918 period = max_t(u64, 10000, event->hw.sample_period);
4919 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4920
4921 return ret;
4922 }
4923
4924 static void perf_swevent_start_hrtimer(struct perf_event *event)
4925 {
4926 struct hw_perf_event *hwc = &event->hw;
4927
4928 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4929 hwc->hrtimer.function = perf_swevent_hrtimer;
4930 if (hwc->sample_period) {
4931 s64 period = local64_read(&hwc->period_left);
4932
4933 if (period) {
4934 if (period < 0)
4935 period = 10000;
4936
4937 local64_set(&hwc->period_left, 0);
4938 } else {
4939 period = max_t(u64, 10000, hwc->sample_period);
4940 }
4941 __hrtimer_start_range_ns(&hwc->hrtimer,
4942 ns_to_ktime(period), 0,
4943 HRTIMER_MODE_REL_PINNED, 0);
4944 }
4945 }
4946
4947 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4948 {
4949 struct hw_perf_event *hwc = &event->hw;
4950
4951 if (hwc->sample_period) {
4952 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4953 local64_set(&hwc->period_left, ktime_to_ns(remaining));
4954
4955 hrtimer_cancel(&hwc->hrtimer);
4956 }
4957 }
4958
4959 /*
4960 * Software event: cpu wall time clock
4961 */
4962
4963 static void cpu_clock_event_update(struct perf_event *event)
4964 {
4965 s64 prev;
4966 u64 now;
4967
4968 now = local_clock();
4969 prev = local64_xchg(&event->hw.prev_count, now);
4970 local64_add(now - prev, &event->count);
4971 }
4972
4973 static void cpu_clock_event_start(struct perf_event *event, int flags)
4974 {
4975 local64_set(&event->hw.prev_count, local_clock());
4976 perf_swevent_start_hrtimer(event);
4977 }
4978
4979 static void cpu_clock_event_stop(struct perf_event *event, int flags)
4980 {
4981 perf_swevent_cancel_hrtimer(event);
4982 cpu_clock_event_update(event);
4983 }
4984
4985 static int cpu_clock_event_add(struct perf_event *event, int flags)
4986 {
4987 if (flags & PERF_EF_START)
4988 cpu_clock_event_start(event, flags);
4989
4990 return 0;
4991 }
4992
4993 static void cpu_clock_event_del(struct perf_event *event, int flags)
4994 {
4995 cpu_clock_event_stop(event, flags);
4996 }
4997
4998 static void cpu_clock_event_read(struct perf_event *event)
4999 {
5000 cpu_clock_event_update(event);
5001 }
5002
5003 static int cpu_clock_event_init(struct perf_event *event)
5004 {
5005 if (event->attr.type != PERF_TYPE_SOFTWARE)
5006 return -ENOENT;
5007
5008 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5009 return -ENOENT;
5010
5011 return 0;
5012 }
5013
5014 static struct pmu perf_cpu_clock = {
5015 .task_ctx_nr = perf_sw_context,
5016
5017 .event_init = cpu_clock_event_init,
5018 .add = cpu_clock_event_add,
5019 .del = cpu_clock_event_del,
5020 .start = cpu_clock_event_start,
5021 .stop = cpu_clock_event_stop,
5022 .read = cpu_clock_event_read,
5023 };
5024
5025 /*
5026 * Software event: task time clock
5027 */
5028
5029 static void task_clock_event_update(struct perf_event *event, u64 now)
5030 {
5031 u64 prev;
5032 s64 delta;
5033
5034 prev = local64_xchg(&event->hw.prev_count, now);
5035 delta = now - prev;
5036 local64_add(delta, &event->count);
5037 }
5038
5039 static void task_clock_event_start(struct perf_event *event, int flags)
5040 {
5041 local64_set(&event->hw.prev_count, event->ctx->time);
5042 perf_swevent_start_hrtimer(event);
5043 }
5044
5045 static void task_clock_event_stop(struct perf_event *event, int flags)
5046 {
5047 perf_swevent_cancel_hrtimer(event);
5048 task_clock_event_update(event, event->ctx->time);
5049 }
5050
5051 static int task_clock_event_add(struct perf_event *event, int flags)
5052 {
5053 if (flags & PERF_EF_START)
5054 task_clock_event_start(event, flags);
5055
5056 return 0;
5057 }
5058
5059 static void task_clock_event_del(struct perf_event *event, int flags)
5060 {
5061 task_clock_event_stop(event, PERF_EF_UPDATE);
5062 }
5063
5064 static void task_clock_event_read(struct perf_event *event)
5065 {
5066 u64 time;
5067
5068 if (!in_nmi()) {
5069 update_context_time(event->ctx);
5070 time = event->ctx->time;
5071 } else {
5072 u64 now = perf_clock();
5073 u64 delta = now - event->ctx->timestamp;
5074 time = event->ctx->time + delta;
5075 }
5076
5077 task_clock_event_update(event, time);
5078 }
5079
5080 static int task_clock_event_init(struct perf_event *event)
5081 {
5082 if (event->attr.type != PERF_TYPE_SOFTWARE)
5083 return -ENOENT;
5084
5085 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5086 return -ENOENT;
5087
5088 return 0;
5089 }
5090
5091 static struct pmu perf_task_clock = {
5092 .task_ctx_nr = perf_sw_context,
5093
5094 .event_init = task_clock_event_init,
5095 .add = task_clock_event_add,
5096 .del = task_clock_event_del,
5097 .start = task_clock_event_start,
5098 .stop = task_clock_event_stop,
5099 .read = task_clock_event_read,
5100 };
5101
5102 static void perf_pmu_nop_void(struct pmu *pmu)
5103 {
5104 }
5105
5106 static int perf_pmu_nop_int(struct pmu *pmu)
5107 {
5108 return 0;
5109 }
5110
5111 static void perf_pmu_start_txn(struct pmu *pmu)
5112 {
5113 perf_pmu_disable(pmu);
5114 }
5115
5116 static int perf_pmu_commit_txn(struct pmu *pmu)
5117 {
5118 perf_pmu_enable(pmu);
5119 return 0;
5120 }
5121
5122 static void perf_pmu_cancel_txn(struct pmu *pmu)
5123 {
5124 perf_pmu_enable(pmu);
5125 }
5126
5127 /*
5128 * Ensures all contexts with the same task_ctx_nr have the same
5129 * pmu_cpu_context too.
5130 */
5131 static void *find_pmu_context(int ctxn)
5132 {
5133 struct pmu *pmu;
5134
5135 if (ctxn < 0)
5136 return NULL;
5137
5138 list_for_each_entry(pmu, &pmus, entry) {
5139 if (pmu->task_ctx_nr == ctxn)
5140 return pmu->pmu_cpu_context;
5141 }
5142
5143 return NULL;
5144 }
5145
5146 static void free_pmu_context(void * __percpu cpu_context)
5147 {
5148 struct pmu *pmu;
5149
5150 mutex_lock(&pmus_lock);
5151 /*
5152 * Like a real lame refcount.
5153 */
5154 list_for_each_entry(pmu, &pmus, entry) {
5155 if (pmu->pmu_cpu_context == cpu_context)
5156 goto out;
5157 }
5158
5159 free_percpu(cpu_context);
5160 out:
5161 mutex_unlock(&pmus_lock);
5162 }
5163
5164 int perf_pmu_register(struct pmu *pmu)
5165 {
5166 int cpu, ret;
5167
5168 mutex_lock(&pmus_lock);
5169 ret = -ENOMEM;
5170 pmu->pmu_disable_count = alloc_percpu(int);
5171 if (!pmu->pmu_disable_count)
5172 goto unlock;
5173
5174 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5175 if (pmu->pmu_cpu_context)
5176 goto got_cpu_context;
5177
5178 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5179 if (!pmu->pmu_cpu_context)
5180 goto free_pdc;
5181
5182 for_each_possible_cpu(cpu) {
5183 struct perf_cpu_context *cpuctx;
5184
5185 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5186 __perf_event_init_context(&cpuctx->ctx);
5187 cpuctx->ctx.pmu = pmu;
5188 cpuctx->timer_interval = TICK_NSEC;
5189 hrtimer_init(&cpuctx->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5190 cpuctx->timer.function = perf_event_context_tick;
5191 }
5192
5193 got_cpu_context:
5194 if (!pmu->start_txn) {
5195 if (pmu->pmu_enable) {
5196 /*
5197 * If we have pmu_enable/pmu_disable calls, install
5198 * transaction stubs that use that to try and batch
5199 * hardware accesses.
5200 */
5201 pmu->start_txn = perf_pmu_start_txn;
5202 pmu->commit_txn = perf_pmu_commit_txn;
5203 pmu->cancel_txn = perf_pmu_cancel_txn;
5204 } else {
5205 pmu->start_txn = perf_pmu_nop_void;
5206 pmu->commit_txn = perf_pmu_nop_int;
5207 pmu->cancel_txn = perf_pmu_nop_void;
5208 }
5209 }
5210
5211 if (!pmu->pmu_enable) {
5212 pmu->pmu_enable = perf_pmu_nop_void;
5213 pmu->pmu_disable = perf_pmu_nop_void;
5214 }
5215
5216 list_add_rcu(&pmu->entry, &pmus);
5217 ret = 0;
5218 unlock:
5219 mutex_unlock(&pmus_lock);
5220
5221 return ret;
5222
5223 free_pdc:
5224 free_percpu(pmu->pmu_disable_count);
5225 goto unlock;
5226 }
5227
5228 void perf_pmu_unregister(struct pmu *pmu)
5229 {
5230 mutex_lock(&pmus_lock);
5231 list_del_rcu(&pmu->entry);
5232 mutex_unlock(&pmus_lock);
5233
5234 /*
5235 * We dereference the pmu list under both SRCU and regular RCU, so
5236 * synchronize against both of those.
5237 */
5238 synchronize_srcu(&pmus_srcu);
5239 synchronize_rcu();
5240
5241 free_percpu(pmu->pmu_disable_count);
5242 free_pmu_context(pmu->pmu_cpu_context);
5243 }
5244
5245 struct pmu *perf_init_event(struct perf_event *event)
5246 {
5247 struct pmu *pmu = NULL;
5248 int idx;
5249
5250 idx = srcu_read_lock(&pmus_srcu);
5251 list_for_each_entry_rcu(pmu, &pmus, entry) {
5252 int ret = pmu->event_init(event);
5253 if (!ret)
5254 goto unlock;
5255
5256 if (ret != -ENOENT) {
5257 pmu = ERR_PTR(ret);
5258 goto unlock;
5259 }
5260 }
5261 pmu = ERR_PTR(-ENOENT);
5262 unlock:
5263 srcu_read_unlock(&pmus_srcu, idx);
5264
5265 return pmu;
5266 }
5267
5268 /*
5269 * Allocate and initialize a event structure
5270 */
5271 static struct perf_event *
5272 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5273 struct perf_event *group_leader,
5274 struct perf_event *parent_event,
5275 perf_overflow_handler_t overflow_handler)
5276 {
5277 struct pmu *pmu;
5278 struct perf_event *event;
5279 struct hw_perf_event *hwc;
5280 long err;
5281
5282 event = kzalloc(sizeof(*event), GFP_KERNEL);
5283 if (!event)
5284 return ERR_PTR(-ENOMEM);
5285
5286 /*
5287 * Single events are their own group leaders, with an
5288 * empty sibling list:
5289 */
5290 if (!group_leader)
5291 group_leader = event;
5292
5293 mutex_init(&event->child_mutex);
5294 INIT_LIST_HEAD(&event->child_list);
5295
5296 INIT_LIST_HEAD(&event->group_entry);
5297 INIT_LIST_HEAD(&event->event_entry);
5298 INIT_LIST_HEAD(&event->sibling_list);
5299 init_waitqueue_head(&event->waitq);
5300
5301 mutex_init(&event->mmap_mutex);
5302
5303 event->cpu = cpu;
5304 event->attr = *attr;
5305 event->group_leader = group_leader;
5306 event->pmu = NULL;
5307 event->oncpu = -1;
5308
5309 event->parent = parent_event;
5310
5311 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5312 event->id = atomic64_inc_return(&perf_event_id);
5313
5314 event->state = PERF_EVENT_STATE_INACTIVE;
5315
5316 if (!overflow_handler && parent_event)
5317 overflow_handler = parent_event->overflow_handler;
5318
5319 event->overflow_handler = overflow_handler;
5320
5321 if (attr->disabled)
5322 event->state = PERF_EVENT_STATE_OFF;
5323
5324 pmu = NULL;
5325
5326 hwc = &event->hw;
5327 hwc->sample_period = attr->sample_period;
5328 if (attr->freq && attr->sample_freq)
5329 hwc->sample_period = 1;
5330 hwc->last_period = hwc->sample_period;
5331
5332 local64_set(&hwc->period_left, hwc->sample_period);
5333
5334 /*
5335 * we currently do not support PERF_FORMAT_GROUP on inherited events
5336 */
5337 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5338 goto done;
5339
5340 pmu = perf_init_event(event);
5341
5342 done:
5343 err = 0;
5344 if (!pmu)
5345 err = -EINVAL;
5346 else if (IS_ERR(pmu))
5347 err = PTR_ERR(pmu);
5348
5349 if (err) {
5350 if (event->ns)
5351 put_pid_ns(event->ns);
5352 kfree(event);
5353 return ERR_PTR(err);
5354 }
5355
5356 event->pmu = pmu;
5357
5358 if (!event->parent) {
5359 atomic_inc(&nr_events);
5360 if (event->attr.mmap || event->attr.mmap_data)
5361 atomic_inc(&nr_mmap_events);
5362 if (event->attr.comm)
5363 atomic_inc(&nr_comm_events);
5364 if (event->attr.task)
5365 atomic_inc(&nr_task_events);
5366 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5367 err = get_callchain_buffers();
5368 if (err) {
5369 free_event(event);
5370 return ERR_PTR(err);
5371 }
5372 }
5373 }
5374
5375 return event;
5376 }
5377
5378 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5379 struct perf_event_attr *attr)
5380 {
5381 u32 size;
5382 int ret;
5383
5384 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5385 return -EFAULT;
5386
5387 /*
5388 * zero the full structure, so that a short copy will be nice.
5389 */
5390 memset(attr, 0, sizeof(*attr));
5391
5392 ret = get_user(size, &uattr->size);
5393 if (ret)
5394 return ret;
5395
5396 if (size > PAGE_SIZE) /* silly large */
5397 goto err_size;
5398
5399 if (!size) /* abi compat */
5400 size = PERF_ATTR_SIZE_VER0;
5401
5402 if (size < PERF_ATTR_SIZE_VER0)
5403 goto err_size;
5404
5405 /*
5406 * If we're handed a bigger struct than we know of,
5407 * ensure all the unknown bits are 0 - i.e. new
5408 * user-space does not rely on any kernel feature
5409 * extensions we dont know about yet.
5410 */
5411 if (size > sizeof(*attr)) {
5412 unsigned char __user *addr;
5413 unsigned char __user *end;
5414 unsigned char val;
5415
5416 addr = (void __user *)uattr + sizeof(*attr);
5417 end = (void __user *)uattr + size;
5418
5419 for (; addr < end; addr++) {
5420 ret = get_user(val, addr);
5421 if (ret)
5422 return ret;
5423 if (val)
5424 goto err_size;
5425 }
5426 size = sizeof(*attr);
5427 }
5428
5429 ret = copy_from_user(attr, uattr, size);
5430 if (ret)
5431 return -EFAULT;
5432
5433 /*
5434 * If the type exists, the corresponding creation will verify
5435 * the attr->config.
5436 */
5437 if (attr->type >= PERF_TYPE_MAX)
5438 return -EINVAL;
5439
5440 if (attr->__reserved_1)
5441 return -EINVAL;
5442
5443 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5444 return -EINVAL;
5445
5446 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5447 return -EINVAL;
5448
5449 out:
5450 return ret;
5451
5452 err_size:
5453 put_user(sizeof(*attr), &uattr->size);
5454 ret = -E2BIG;
5455 goto out;
5456 }
5457
5458 static int
5459 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5460 {
5461 struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5462 int ret = -EINVAL;
5463
5464 if (!output_event)
5465 goto set;
5466
5467 /* don't allow circular references */
5468 if (event == output_event)
5469 goto out;
5470
5471 /*
5472 * Don't allow cross-cpu buffers
5473 */
5474 if (output_event->cpu != event->cpu)
5475 goto out;
5476
5477 /*
5478 * If its not a per-cpu buffer, it must be the same task.
5479 */
5480 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5481 goto out;
5482
5483 set:
5484 mutex_lock(&event->mmap_mutex);
5485 /* Can't redirect output if we've got an active mmap() */
5486 if (atomic_read(&event->mmap_count))
5487 goto unlock;
5488
5489 if (output_event) {
5490 /* get the buffer we want to redirect to */
5491 buffer = perf_buffer_get(output_event);
5492 if (!buffer)
5493 goto unlock;
5494 }
5495
5496 old_buffer = event->buffer;
5497 rcu_assign_pointer(event->buffer, buffer);
5498 ret = 0;
5499 unlock:
5500 mutex_unlock(&event->mmap_mutex);
5501
5502 if (old_buffer)
5503 perf_buffer_put(old_buffer);
5504 out:
5505 return ret;
5506 }
5507
5508 /**
5509 * sys_perf_event_open - open a performance event, associate it to a task/cpu
5510 *
5511 * @attr_uptr: event_id type attributes for monitoring/sampling
5512 * @pid: target pid
5513 * @cpu: target cpu
5514 * @group_fd: group leader event fd
5515 */
5516 SYSCALL_DEFINE5(perf_event_open,
5517 struct perf_event_attr __user *, attr_uptr,
5518 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5519 {
5520 struct perf_event *event, *group_leader = NULL, *output_event = NULL;
5521 struct perf_event_attr attr;
5522 struct perf_event_context *ctx;
5523 struct file *event_file = NULL;
5524 struct file *group_file = NULL;
5525 struct task_struct *task = NULL;
5526 struct pmu *pmu;
5527 int event_fd;
5528 int fput_needed = 0;
5529 int err;
5530
5531 /* for future expandability... */
5532 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5533 return -EINVAL;
5534
5535 err = perf_copy_attr(attr_uptr, &attr);
5536 if (err)
5537 return err;
5538
5539 if (!attr.exclude_kernel) {
5540 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5541 return -EACCES;
5542 }
5543
5544 if (attr.freq) {
5545 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5546 return -EINVAL;
5547 }
5548
5549 event_fd = get_unused_fd_flags(O_RDWR);
5550 if (event_fd < 0)
5551 return event_fd;
5552
5553 event = perf_event_alloc(&attr, cpu, group_leader, NULL, NULL);
5554 if (IS_ERR(event)) {
5555 err = PTR_ERR(event);
5556 goto err_fd;
5557 }
5558
5559 if (group_fd != -1) {
5560 group_leader = perf_fget_light(group_fd, &fput_needed);
5561 if (IS_ERR(group_leader)) {
5562 err = PTR_ERR(group_leader);
5563 goto err_alloc;
5564 }
5565 group_file = group_leader->filp;
5566 if (flags & PERF_FLAG_FD_OUTPUT)
5567 output_event = group_leader;
5568 if (flags & PERF_FLAG_FD_NO_GROUP)
5569 group_leader = NULL;
5570 }
5571
5572 /*
5573 * Special case software events and allow them to be part of
5574 * any hardware group.
5575 */
5576 pmu = event->pmu;
5577 if ((pmu->task_ctx_nr == perf_sw_context) && group_leader)
5578 pmu = group_leader->pmu;
5579
5580 if (pid != -1)
5581 task = find_lively_task_by_vpid(pid);
5582
5583 /*
5584 * Get the target context (task or percpu):
5585 */
5586 ctx = find_get_context(pmu, task, cpu);
5587 if (IS_ERR(ctx)) {
5588 err = PTR_ERR(ctx);
5589 goto err_group_fd;
5590 }
5591
5592 /*
5593 * Look up the group leader (we will attach this event to it):
5594 */
5595 if (group_leader) {
5596 err = -EINVAL;
5597
5598 /*
5599 * Do not allow a recursive hierarchy (this new sibling
5600 * becoming part of another group-sibling):
5601 */
5602 if (group_leader->group_leader != group_leader)
5603 goto err_context;
5604 /*
5605 * Do not allow to attach to a group in a different
5606 * task or CPU context:
5607 */
5608 if (group_leader->ctx != ctx)
5609 goto err_context;
5610 /*
5611 * Only a group leader can be exclusive or pinned
5612 */
5613 if (attr.exclusive || attr.pinned)
5614 goto err_context;
5615 }
5616
5617 if (output_event) {
5618 err = perf_event_set_output(event, output_event);
5619 if (err)
5620 goto err_context;
5621 }
5622
5623 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5624 if (IS_ERR(event_file)) {
5625 err = PTR_ERR(event_file);
5626 goto err_context;
5627 }
5628
5629 event->filp = event_file;
5630 WARN_ON_ONCE(ctx->parent_ctx);
5631 mutex_lock(&ctx->mutex);
5632 perf_install_in_context(ctx, event, cpu);
5633 ++ctx->generation;
5634 mutex_unlock(&ctx->mutex);
5635
5636 event->owner = current;
5637 get_task_struct(current);
5638 mutex_lock(&current->perf_event_mutex);
5639 list_add_tail(&event->owner_entry, &current->perf_event_list);
5640 mutex_unlock(&current->perf_event_mutex);
5641
5642 /*
5643 * Drop the reference on the group_event after placing the
5644 * new event on the sibling_list. This ensures destruction
5645 * of the group leader will find the pointer to itself in
5646 * perf_group_detach().
5647 */
5648 fput_light(group_file, fput_needed);
5649 fd_install(event_fd, event_file);
5650 return event_fd;
5651
5652 err_context:
5653 put_ctx(ctx);
5654 err_group_fd:
5655 fput_light(group_file, fput_needed);
5656 err_alloc:
5657 free_event(event);
5658 err_fd:
5659 put_unused_fd(event_fd);
5660 return err;
5661 }
5662
5663 /**
5664 * perf_event_create_kernel_counter
5665 *
5666 * @attr: attributes of the counter to create
5667 * @cpu: cpu in which the counter is bound
5668 * @task: task to profile (NULL for percpu)
5669 */
5670 struct perf_event *
5671 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5672 struct task_struct *task,
5673 perf_overflow_handler_t overflow_handler)
5674 {
5675 struct perf_event_context *ctx;
5676 struct perf_event *event;
5677 int err;
5678
5679 /*
5680 * Get the target context (task or percpu):
5681 */
5682
5683 event = perf_event_alloc(attr, cpu, NULL, NULL, overflow_handler);
5684 if (IS_ERR(event)) {
5685 err = PTR_ERR(event);
5686 goto err;
5687 }
5688
5689 ctx = find_get_context(event->pmu, task, cpu);
5690 if (IS_ERR(ctx)) {
5691 err = PTR_ERR(ctx);
5692 goto err_free;
5693 }
5694
5695 event->filp = NULL;
5696 WARN_ON_ONCE(ctx->parent_ctx);
5697 mutex_lock(&ctx->mutex);
5698 perf_install_in_context(ctx, event, cpu);
5699 ++ctx->generation;
5700 mutex_unlock(&ctx->mutex);
5701
5702 event->owner = current;
5703 get_task_struct(current);
5704 mutex_lock(&current->perf_event_mutex);
5705 list_add_tail(&event->owner_entry, &current->perf_event_list);
5706 mutex_unlock(&current->perf_event_mutex);
5707
5708 return event;
5709
5710 err_free:
5711 free_event(event);
5712 err:
5713 return ERR_PTR(err);
5714 }
5715 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5716
5717 static void sync_child_event(struct perf_event *child_event,
5718 struct task_struct *child)
5719 {
5720 struct perf_event *parent_event = child_event->parent;
5721 u64 child_val;
5722
5723 if (child_event->attr.inherit_stat)
5724 perf_event_read_event(child_event, child);
5725
5726 child_val = perf_event_count(child_event);
5727
5728 /*
5729 * Add back the child's count to the parent's count:
5730 */
5731 atomic64_add(child_val, &parent_event->child_count);
5732 atomic64_add(child_event->total_time_enabled,
5733 &parent_event->child_total_time_enabled);
5734 atomic64_add(child_event->total_time_running,
5735 &parent_event->child_total_time_running);
5736
5737 /*
5738 * Remove this event from the parent's list
5739 */
5740 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5741 mutex_lock(&parent_event->child_mutex);
5742 list_del_init(&child_event->child_list);
5743 mutex_unlock(&parent_event->child_mutex);
5744
5745 /*
5746 * Release the parent event, if this was the last
5747 * reference to it.
5748 */
5749 fput(parent_event->filp);
5750 }
5751
5752 static void
5753 __perf_event_exit_task(struct perf_event *child_event,
5754 struct perf_event_context *child_ctx,
5755 struct task_struct *child)
5756 {
5757 struct perf_event *parent_event;
5758
5759 perf_event_remove_from_context(child_event);
5760
5761 parent_event = child_event->parent;
5762 /*
5763 * It can happen that parent exits first, and has events
5764 * that are still around due to the child reference. These
5765 * events need to be zapped - but otherwise linger.
5766 */
5767 if (parent_event) {
5768 sync_child_event(child_event, child);
5769 free_event(child_event);
5770 }
5771 }
5772
5773 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
5774 {
5775 struct perf_event *child_event, *tmp;
5776 struct perf_event_context *child_ctx;
5777 unsigned long flags;
5778
5779 if (likely(!child->perf_event_ctxp[ctxn])) {
5780 perf_event_task(child, NULL, 0);
5781 return;
5782 }
5783
5784 local_irq_save(flags);
5785 /*
5786 * We can't reschedule here because interrupts are disabled,
5787 * and either child is current or it is a task that can't be
5788 * scheduled, so we are now safe from rescheduling changing
5789 * our context.
5790 */
5791 child_ctx = child->perf_event_ctxp[ctxn];
5792 __perf_event_task_sched_out(child_ctx);
5793
5794 /*
5795 * Take the context lock here so that if find_get_context is
5796 * reading child->perf_event_ctxp, we wait until it has
5797 * incremented the context's refcount before we do put_ctx below.
5798 */
5799 raw_spin_lock(&child_ctx->lock);
5800 child->perf_event_ctxp[ctxn] = NULL;
5801 /*
5802 * If this context is a clone; unclone it so it can't get
5803 * swapped to another process while we're removing all
5804 * the events from it.
5805 */
5806 unclone_ctx(child_ctx);
5807 update_context_time(child_ctx);
5808 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5809
5810 /*
5811 * Report the task dead after unscheduling the events so that we
5812 * won't get any samples after PERF_RECORD_EXIT. We can however still
5813 * get a few PERF_RECORD_READ events.
5814 */
5815 perf_event_task(child, child_ctx, 0);
5816
5817 /*
5818 * We can recurse on the same lock type through:
5819 *
5820 * __perf_event_exit_task()
5821 * sync_child_event()
5822 * fput(parent_event->filp)
5823 * perf_release()
5824 * mutex_lock(&ctx->mutex)
5825 *
5826 * But since its the parent context it won't be the same instance.
5827 */
5828 mutex_lock(&child_ctx->mutex);
5829
5830 again:
5831 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5832 group_entry)
5833 __perf_event_exit_task(child_event, child_ctx, child);
5834
5835 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5836 group_entry)
5837 __perf_event_exit_task(child_event, child_ctx, child);
5838
5839 /*
5840 * If the last event was a group event, it will have appended all
5841 * its siblings to the list, but we obtained 'tmp' before that which
5842 * will still point to the list head terminating the iteration.
5843 */
5844 if (!list_empty(&child_ctx->pinned_groups) ||
5845 !list_empty(&child_ctx->flexible_groups))
5846 goto again;
5847
5848 mutex_unlock(&child_ctx->mutex);
5849
5850 put_ctx(child_ctx);
5851 }
5852
5853 /*
5854 * When a child task exits, feed back event values to parent events.
5855 */
5856 void perf_event_exit_task(struct task_struct *child)
5857 {
5858 int ctxn;
5859
5860 for_each_task_context_nr(ctxn)
5861 perf_event_exit_task_context(child, ctxn);
5862 }
5863
5864 static void perf_free_event(struct perf_event *event,
5865 struct perf_event_context *ctx)
5866 {
5867 struct perf_event *parent = event->parent;
5868
5869 if (WARN_ON_ONCE(!parent))
5870 return;
5871
5872 mutex_lock(&parent->child_mutex);
5873 list_del_init(&event->child_list);
5874 mutex_unlock(&parent->child_mutex);
5875
5876 fput(parent->filp);
5877
5878 perf_group_detach(event);
5879 list_del_event(event, ctx);
5880 free_event(event);
5881 }
5882
5883 /*
5884 * free an unexposed, unused context as created by inheritance by
5885 * perf_event_init_task below, used by fork() in case of fail.
5886 */
5887 void perf_event_free_task(struct task_struct *task)
5888 {
5889 struct perf_event_context *ctx;
5890 struct perf_event *event, *tmp;
5891 int ctxn;
5892
5893 for_each_task_context_nr(ctxn) {
5894 ctx = task->perf_event_ctxp[ctxn];
5895 if (!ctx)
5896 continue;
5897
5898 mutex_lock(&ctx->mutex);
5899 again:
5900 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
5901 group_entry)
5902 perf_free_event(event, ctx);
5903
5904 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5905 group_entry)
5906 perf_free_event(event, ctx);
5907
5908 if (!list_empty(&ctx->pinned_groups) ||
5909 !list_empty(&ctx->flexible_groups))
5910 goto again;
5911
5912 mutex_unlock(&ctx->mutex);
5913
5914 put_ctx(ctx);
5915 }
5916 }
5917
5918 void perf_event_delayed_put(struct task_struct *task)
5919 {
5920 int ctxn;
5921
5922 for_each_task_context_nr(ctxn)
5923 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
5924 }
5925
5926 /*
5927 * inherit a event from parent task to child task:
5928 */
5929 static struct perf_event *
5930 inherit_event(struct perf_event *parent_event,
5931 struct task_struct *parent,
5932 struct perf_event_context *parent_ctx,
5933 struct task_struct *child,
5934 struct perf_event *group_leader,
5935 struct perf_event_context *child_ctx)
5936 {
5937 struct perf_event *child_event;
5938 unsigned long flags;
5939
5940 /*
5941 * Instead of creating recursive hierarchies of events,
5942 * we link inherited events back to the original parent,
5943 * which has a filp for sure, which we use as the reference
5944 * count:
5945 */
5946 if (parent_event->parent)
5947 parent_event = parent_event->parent;
5948
5949 child_event = perf_event_alloc(&parent_event->attr,
5950 parent_event->cpu,
5951 group_leader, parent_event,
5952 NULL);
5953 if (IS_ERR(child_event))
5954 return child_event;
5955 get_ctx(child_ctx);
5956
5957 /*
5958 * Make the child state follow the state of the parent event,
5959 * not its attr.disabled bit. We hold the parent's mutex,
5960 * so we won't race with perf_event_{en, dis}able_family.
5961 */
5962 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5963 child_event->state = PERF_EVENT_STATE_INACTIVE;
5964 else
5965 child_event->state = PERF_EVENT_STATE_OFF;
5966
5967 if (parent_event->attr.freq) {
5968 u64 sample_period = parent_event->hw.sample_period;
5969 struct hw_perf_event *hwc = &child_event->hw;
5970
5971 hwc->sample_period = sample_period;
5972 hwc->last_period = sample_period;
5973
5974 local64_set(&hwc->period_left, sample_period);
5975 }
5976
5977 child_event->ctx = child_ctx;
5978 child_event->overflow_handler = parent_event->overflow_handler;
5979
5980 /*
5981 * Link it up in the child's context:
5982 */
5983 raw_spin_lock_irqsave(&child_ctx->lock, flags);
5984 add_event_to_ctx(child_event, child_ctx);
5985 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5986
5987 /*
5988 * Get a reference to the parent filp - we will fput it
5989 * when the child event exits. This is safe to do because
5990 * we are in the parent and we know that the filp still
5991 * exists and has a nonzero count:
5992 */
5993 atomic_long_inc(&parent_event->filp->f_count);
5994
5995 /*
5996 * Link this into the parent event's child list
5997 */
5998 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5999 mutex_lock(&parent_event->child_mutex);
6000 list_add_tail(&child_event->child_list, &parent_event->child_list);
6001 mutex_unlock(&parent_event->child_mutex);
6002
6003 return child_event;
6004 }
6005
6006 static int inherit_group(struct perf_event *parent_event,
6007 struct task_struct *parent,
6008 struct perf_event_context *parent_ctx,
6009 struct task_struct *child,
6010 struct perf_event_context *child_ctx)
6011 {
6012 struct perf_event *leader;
6013 struct perf_event *sub;
6014 struct perf_event *child_ctr;
6015
6016 leader = inherit_event(parent_event, parent, parent_ctx,
6017 child, NULL, child_ctx);
6018 if (IS_ERR(leader))
6019 return PTR_ERR(leader);
6020 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6021 child_ctr = inherit_event(sub, parent, parent_ctx,
6022 child, leader, child_ctx);
6023 if (IS_ERR(child_ctr))
6024 return PTR_ERR(child_ctr);
6025 }
6026 return 0;
6027 }
6028
6029 static int
6030 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6031 struct perf_event_context *parent_ctx,
6032 struct task_struct *child, int ctxn,
6033 int *inherited_all)
6034 {
6035 int ret;
6036 struct perf_event_context *child_ctx;
6037
6038 if (!event->attr.inherit) {
6039 *inherited_all = 0;
6040 return 0;
6041 }
6042
6043 child_ctx = child->perf_event_ctxp[ctxn];
6044 if (!child_ctx) {
6045 /*
6046 * This is executed from the parent task context, so
6047 * inherit events that have been marked for cloning.
6048 * First allocate and initialize a context for the
6049 * child.
6050 */
6051
6052 child_ctx = alloc_perf_context(event->pmu, child);
6053 if (!child_ctx)
6054 return -ENOMEM;
6055
6056 child->perf_event_ctxp[ctxn] = child_ctx;
6057 }
6058
6059 ret = inherit_group(event, parent, parent_ctx,
6060 child, child_ctx);
6061
6062 if (ret)
6063 *inherited_all = 0;
6064
6065 return ret;
6066 }
6067
6068 /*
6069 * Initialize the perf_event context in task_struct
6070 */
6071 int perf_event_init_context(struct task_struct *child, int ctxn)
6072 {
6073 struct perf_event_context *child_ctx, *parent_ctx;
6074 struct perf_event_context *cloned_ctx;
6075 struct perf_event *event;
6076 struct task_struct *parent = current;
6077 int inherited_all = 1;
6078 int ret = 0;
6079
6080 child->perf_event_ctxp[ctxn] = NULL;
6081
6082 mutex_init(&child->perf_event_mutex);
6083 INIT_LIST_HEAD(&child->perf_event_list);
6084
6085 if (likely(!parent->perf_event_ctxp[ctxn]))
6086 return 0;
6087
6088 /*
6089 * If the parent's context is a clone, pin it so it won't get
6090 * swapped under us.
6091 */
6092 parent_ctx = perf_pin_task_context(parent, ctxn);
6093
6094 /*
6095 * No need to check if parent_ctx != NULL here; since we saw
6096 * it non-NULL earlier, the only reason for it to become NULL
6097 * is if we exit, and since we're currently in the middle of
6098 * a fork we can't be exiting at the same time.
6099 */
6100
6101 /*
6102 * Lock the parent list. No need to lock the child - not PID
6103 * hashed yet and not running, so nobody can access it.
6104 */
6105 mutex_lock(&parent_ctx->mutex);
6106
6107 /*
6108 * We dont have to disable NMIs - we are only looking at
6109 * the list, not manipulating it:
6110 */
6111 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6112 ret = inherit_task_group(event, parent, parent_ctx,
6113 child, ctxn, &inherited_all);
6114 if (ret)
6115 break;
6116 }
6117
6118 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6119 ret = inherit_task_group(event, parent, parent_ctx,
6120 child, ctxn, &inherited_all);
6121 if (ret)
6122 break;
6123 }
6124
6125 child_ctx = child->perf_event_ctxp[ctxn];
6126
6127 if (child_ctx && inherited_all) {
6128 /*
6129 * Mark the child context as a clone of the parent
6130 * context, or of whatever the parent is a clone of.
6131 * Note that if the parent is a clone, it could get
6132 * uncloned at any point, but that doesn't matter
6133 * because the list of events and the generation
6134 * count can't have changed since we took the mutex.
6135 */
6136 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
6137 if (cloned_ctx) {
6138 child_ctx->parent_ctx = cloned_ctx;
6139 child_ctx->parent_gen = parent_ctx->parent_gen;
6140 } else {
6141 child_ctx->parent_ctx = parent_ctx;
6142 child_ctx->parent_gen = parent_ctx->generation;
6143 }
6144 get_ctx(child_ctx->parent_ctx);
6145 }
6146
6147 mutex_unlock(&parent_ctx->mutex);
6148
6149 perf_unpin_context(parent_ctx);
6150
6151 return ret;
6152 }
6153
6154 /*
6155 * Initialize the perf_event context in task_struct
6156 */
6157 int perf_event_init_task(struct task_struct *child)
6158 {
6159 int ctxn, ret;
6160
6161 for_each_task_context_nr(ctxn) {
6162 ret = perf_event_init_context(child, ctxn);
6163 if (ret)
6164 return ret;
6165 }
6166
6167 return 0;
6168 }
6169
6170 static void __init perf_event_init_all_cpus(void)
6171 {
6172 struct swevent_htable *swhash;
6173 int cpu;
6174
6175 for_each_possible_cpu(cpu) {
6176 swhash = &per_cpu(swevent_htable, cpu);
6177 mutex_init(&swhash->hlist_mutex);
6178 }
6179 }
6180
6181 static void __cpuinit perf_event_init_cpu(int cpu)
6182 {
6183 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6184
6185 mutex_lock(&swhash->hlist_mutex);
6186 if (swhash->hlist_refcount > 0) {
6187 struct swevent_hlist *hlist;
6188
6189 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6190 WARN_ON(!hlist);
6191 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6192 }
6193 mutex_unlock(&swhash->hlist_mutex);
6194 }
6195
6196 #ifdef CONFIG_HOTPLUG_CPU
6197 static void __perf_event_exit_context(void *__info)
6198 {
6199 struct perf_event_context *ctx = __info;
6200 struct perf_event *event, *tmp;
6201
6202 perf_pmu_rotate_stop(ctx->pmu);
6203
6204 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6205 __perf_event_remove_from_context(event);
6206 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6207 __perf_event_remove_from_context(event);
6208 }
6209
6210 static void perf_event_exit_cpu_context(int cpu)
6211 {
6212 struct perf_event_context *ctx;
6213 struct pmu *pmu;
6214 int idx;
6215
6216 idx = srcu_read_lock(&pmus_srcu);
6217 list_for_each_entry_rcu(pmu, &pmus, entry) {
6218 ctx = &this_cpu_ptr(pmu->pmu_cpu_context)->ctx;
6219
6220 mutex_lock(&ctx->mutex);
6221 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6222 mutex_unlock(&ctx->mutex);
6223 }
6224 srcu_read_unlock(&pmus_srcu, idx);
6225
6226 }
6227
6228 static void perf_event_exit_cpu(int cpu)
6229 {
6230 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6231
6232 mutex_lock(&swhash->hlist_mutex);
6233 swevent_hlist_release(swhash);
6234 mutex_unlock(&swhash->hlist_mutex);
6235
6236 perf_event_exit_cpu_context(cpu);
6237 }
6238 #else
6239 static inline void perf_event_exit_cpu(int cpu) { }
6240 #endif
6241
6242 static int __cpuinit
6243 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6244 {
6245 unsigned int cpu = (long)hcpu;
6246
6247 switch (action & ~CPU_TASKS_FROZEN) {
6248
6249 case CPU_UP_PREPARE:
6250 case CPU_DOWN_FAILED:
6251 perf_event_init_cpu(cpu);
6252 break;
6253
6254 case CPU_UP_CANCELED:
6255 case CPU_DOWN_PREPARE:
6256 perf_event_exit_cpu(cpu);
6257 break;
6258
6259 default:
6260 break;
6261 }
6262
6263 return NOTIFY_OK;
6264 }
6265
6266 void __init perf_event_init(void)
6267 {
6268 perf_event_init_all_cpus();
6269 init_srcu_struct(&pmus_srcu);
6270 perf_pmu_register(&perf_swevent);
6271 perf_pmu_register(&perf_cpu_clock);
6272 perf_pmu_register(&perf_task_clock);
6273 perf_tp_register();
6274 perf_cpu_notifier(perf_cpu_notify);
6275 }