]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/perf_event.c
8e55b440e28a62b91b119a43b1fae266512299bb
[mirror_ubuntu-hirsute-kernel.git] / kernel / perf_event.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/vmalloc.h>
24 #include <linux/hardirq.h>
25 #include <linux/rculist.h>
26 #include <linux/uaccess.h>
27 #include <linux/syscalls.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/perf_event.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/hw_breakpoint.h>
33
34 #include <asm/irq_regs.h>
35
36 /*
37 * Each CPU has a list of per CPU events:
38 */
39 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
40
41 int perf_max_events __read_mostly = 1;
42 static int perf_reserved_percpu __read_mostly;
43 static int perf_overcommit __read_mostly = 1;
44
45 static atomic_t nr_events __read_mostly;
46 static atomic_t nr_mmap_events __read_mostly;
47 static atomic_t nr_comm_events __read_mostly;
48 static atomic_t nr_task_events __read_mostly;
49
50 /*
51 * perf event paranoia level:
52 * -1 - not paranoid at all
53 * 0 - disallow raw tracepoint access for unpriv
54 * 1 - disallow cpu events for unpriv
55 * 2 - disallow kernel profiling for unpriv
56 */
57 int sysctl_perf_event_paranoid __read_mostly = 1;
58
59 static inline bool perf_paranoid_tracepoint_raw(void)
60 {
61 return sysctl_perf_event_paranoid > -1;
62 }
63
64 static inline bool perf_paranoid_cpu(void)
65 {
66 return sysctl_perf_event_paranoid > 0;
67 }
68
69 static inline bool perf_paranoid_kernel(void)
70 {
71 return sysctl_perf_event_paranoid > 1;
72 }
73
74 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
75
76 /*
77 * max perf event sample rate
78 */
79 int sysctl_perf_event_sample_rate __read_mostly = 100000;
80
81 static atomic64_t perf_event_id;
82
83 /*
84 * Lock for (sysadmin-configurable) event reservations:
85 */
86 static DEFINE_SPINLOCK(perf_resource_lock);
87
88 /*
89 * Architecture provided APIs - weak aliases:
90 */
91 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
92 {
93 return NULL;
94 }
95
96 void __weak hw_perf_disable(void) { barrier(); }
97 void __weak hw_perf_enable(void) { barrier(); }
98
99 void __weak hw_perf_event_setup(int cpu) { barrier(); }
100 void __weak hw_perf_event_setup_online(int cpu) { barrier(); }
101
102 int __weak
103 hw_perf_group_sched_in(struct perf_event *group_leader,
104 struct perf_cpu_context *cpuctx,
105 struct perf_event_context *ctx, int cpu)
106 {
107 return 0;
108 }
109
110 void __weak perf_event_print_debug(void) { }
111
112 static DEFINE_PER_CPU(int, perf_disable_count);
113
114 void __perf_disable(void)
115 {
116 __get_cpu_var(perf_disable_count)++;
117 }
118
119 bool __perf_enable(void)
120 {
121 return !--__get_cpu_var(perf_disable_count);
122 }
123
124 void perf_disable(void)
125 {
126 __perf_disable();
127 hw_perf_disable();
128 }
129
130 void perf_enable(void)
131 {
132 if (__perf_enable())
133 hw_perf_enable();
134 }
135
136 static void get_ctx(struct perf_event_context *ctx)
137 {
138 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
139 }
140
141 static void free_ctx(struct rcu_head *head)
142 {
143 struct perf_event_context *ctx;
144
145 ctx = container_of(head, struct perf_event_context, rcu_head);
146 kfree(ctx);
147 }
148
149 static void put_ctx(struct perf_event_context *ctx)
150 {
151 if (atomic_dec_and_test(&ctx->refcount)) {
152 if (ctx->parent_ctx)
153 put_ctx(ctx->parent_ctx);
154 if (ctx->task)
155 put_task_struct(ctx->task);
156 call_rcu(&ctx->rcu_head, free_ctx);
157 }
158 }
159
160 static void unclone_ctx(struct perf_event_context *ctx)
161 {
162 if (ctx->parent_ctx) {
163 put_ctx(ctx->parent_ctx);
164 ctx->parent_ctx = NULL;
165 }
166 }
167
168 /*
169 * If we inherit events we want to return the parent event id
170 * to userspace.
171 */
172 static u64 primary_event_id(struct perf_event *event)
173 {
174 u64 id = event->id;
175
176 if (event->parent)
177 id = event->parent->id;
178
179 return id;
180 }
181
182 /*
183 * Get the perf_event_context for a task and lock it.
184 * This has to cope with with the fact that until it is locked,
185 * the context could get moved to another task.
186 */
187 static struct perf_event_context *
188 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
189 {
190 struct perf_event_context *ctx;
191
192 rcu_read_lock();
193 retry:
194 ctx = rcu_dereference(task->perf_event_ctxp);
195 if (ctx) {
196 /*
197 * If this context is a clone of another, it might
198 * get swapped for another underneath us by
199 * perf_event_task_sched_out, though the
200 * rcu_read_lock() protects us from any context
201 * getting freed. Lock the context and check if it
202 * got swapped before we could get the lock, and retry
203 * if so. If we locked the right context, then it
204 * can't get swapped on us any more.
205 */
206 spin_lock_irqsave(&ctx->lock, *flags);
207 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
208 spin_unlock_irqrestore(&ctx->lock, *flags);
209 goto retry;
210 }
211
212 if (!atomic_inc_not_zero(&ctx->refcount)) {
213 spin_unlock_irqrestore(&ctx->lock, *flags);
214 ctx = NULL;
215 }
216 }
217 rcu_read_unlock();
218 return ctx;
219 }
220
221 /*
222 * Get the context for a task and increment its pin_count so it
223 * can't get swapped to another task. This also increments its
224 * reference count so that the context can't get freed.
225 */
226 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
227 {
228 struct perf_event_context *ctx;
229 unsigned long flags;
230
231 ctx = perf_lock_task_context(task, &flags);
232 if (ctx) {
233 ++ctx->pin_count;
234 spin_unlock_irqrestore(&ctx->lock, flags);
235 }
236 return ctx;
237 }
238
239 static void perf_unpin_context(struct perf_event_context *ctx)
240 {
241 unsigned long flags;
242
243 spin_lock_irqsave(&ctx->lock, flags);
244 --ctx->pin_count;
245 spin_unlock_irqrestore(&ctx->lock, flags);
246 put_ctx(ctx);
247 }
248
249 /*
250 * Add a event from the lists for its context.
251 * Must be called with ctx->mutex and ctx->lock held.
252 */
253 static void
254 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
255 {
256 struct perf_event *group_leader = event->group_leader;
257
258 /*
259 * Depending on whether it is a standalone or sibling event,
260 * add it straight to the context's event list, or to the group
261 * leader's sibling list:
262 */
263 if (group_leader == event)
264 list_add_tail(&event->group_entry, &ctx->group_list);
265 else {
266 list_add_tail(&event->group_entry, &group_leader->sibling_list);
267 group_leader->nr_siblings++;
268 }
269
270 list_add_rcu(&event->event_entry, &ctx->event_list);
271 ctx->nr_events++;
272 if (event->attr.inherit_stat)
273 ctx->nr_stat++;
274 }
275
276 /*
277 * Remove a event from the lists for its context.
278 * Must be called with ctx->mutex and ctx->lock held.
279 */
280 static void
281 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
282 {
283 struct perf_event *sibling, *tmp;
284
285 if (list_empty(&event->group_entry))
286 return;
287 ctx->nr_events--;
288 if (event->attr.inherit_stat)
289 ctx->nr_stat--;
290
291 list_del_init(&event->group_entry);
292 list_del_rcu(&event->event_entry);
293
294 if (event->group_leader != event)
295 event->group_leader->nr_siblings--;
296
297 /*
298 * If this was a group event with sibling events then
299 * upgrade the siblings to singleton events by adding them
300 * to the context list directly:
301 */
302 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
303
304 list_move_tail(&sibling->group_entry, &ctx->group_list);
305 sibling->group_leader = sibling;
306 }
307 }
308
309 static void
310 event_sched_out(struct perf_event *event,
311 struct perf_cpu_context *cpuctx,
312 struct perf_event_context *ctx)
313 {
314 if (event->state != PERF_EVENT_STATE_ACTIVE)
315 return;
316
317 event->state = PERF_EVENT_STATE_INACTIVE;
318 if (event->pending_disable) {
319 event->pending_disable = 0;
320 event->state = PERF_EVENT_STATE_OFF;
321 }
322 event->tstamp_stopped = ctx->time;
323 event->pmu->disable(event);
324 event->oncpu = -1;
325
326 if (!is_software_event(event))
327 cpuctx->active_oncpu--;
328 ctx->nr_active--;
329 if (event->attr.exclusive || !cpuctx->active_oncpu)
330 cpuctx->exclusive = 0;
331 }
332
333 static void
334 group_sched_out(struct perf_event *group_event,
335 struct perf_cpu_context *cpuctx,
336 struct perf_event_context *ctx)
337 {
338 struct perf_event *event;
339
340 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
341 return;
342
343 event_sched_out(group_event, cpuctx, ctx);
344
345 /*
346 * Schedule out siblings (if any):
347 */
348 list_for_each_entry(event, &group_event->sibling_list, group_entry)
349 event_sched_out(event, cpuctx, ctx);
350
351 if (group_event->attr.exclusive)
352 cpuctx->exclusive = 0;
353 }
354
355 /*
356 * Cross CPU call to remove a performance event
357 *
358 * We disable the event on the hardware level first. After that we
359 * remove it from the context list.
360 */
361 static void __perf_event_remove_from_context(void *info)
362 {
363 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
364 struct perf_event *event = info;
365 struct perf_event_context *ctx = event->ctx;
366
367 /*
368 * If this is a task context, we need to check whether it is
369 * the current task context of this cpu. If not it has been
370 * scheduled out before the smp call arrived.
371 */
372 if (ctx->task && cpuctx->task_ctx != ctx)
373 return;
374
375 spin_lock(&ctx->lock);
376 /*
377 * Protect the list operation against NMI by disabling the
378 * events on a global level.
379 */
380 perf_disable();
381
382 event_sched_out(event, cpuctx, ctx);
383
384 list_del_event(event, ctx);
385
386 if (!ctx->task) {
387 /*
388 * Allow more per task events with respect to the
389 * reservation:
390 */
391 cpuctx->max_pertask =
392 min(perf_max_events - ctx->nr_events,
393 perf_max_events - perf_reserved_percpu);
394 }
395
396 perf_enable();
397 spin_unlock(&ctx->lock);
398 }
399
400
401 /*
402 * Remove the event from a task's (or a CPU's) list of events.
403 *
404 * Must be called with ctx->mutex held.
405 *
406 * CPU events are removed with a smp call. For task events we only
407 * call when the task is on a CPU.
408 *
409 * If event->ctx is a cloned context, callers must make sure that
410 * every task struct that event->ctx->task could possibly point to
411 * remains valid. This is OK when called from perf_release since
412 * that only calls us on the top-level context, which can't be a clone.
413 * When called from perf_event_exit_task, it's OK because the
414 * context has been detached from its task.
415 */
416 static void perf_event_remove_from_context(struct perf_event *event)
417 {
418 struct perf_event_context *ctx = event->ctx;
419 struct task_struct *task = ctx->task;
420
421 if (!task) {
422 /*
423 * Per cpu events are removed via an smp call and
424 * the removal is always sucessful.
425 */
426 smp_call_function_single(event->cpu,
427 __perf_event_remove_from_context,
428 event, 1);
429 return;
430 }
431
432 retry:
433 task_oncpu_function_call(task, __perf_event_remove_from_context,
434 event);
435
436 spin_lock_irq(&ctx->lock);
437 /*
438 * If the context is active we need to retry the smp call.
439 */
440 if (ctx->nr_active && !list_empty(&event->group_entry)) {
441 spin_unlock_irq(&ctx->lock);
442 goto retry;
443 }
444
445 /*
446 * The lock prevents that this context is scheduled in so we
447 * can remove the event safely, if the call above did not
448 * succeed.
449 */
450 if (!list_empty(&event->group_entry)) {
451 list_del_event(event, ctx);
452 }
453 spin_unlock_irq(&ctx->lock);
454 }
455
456 static inline u64 perf_clock(void)
457 {
458 return cpu_clock(smp_processor_id());
459 }
460
461 /*
462 * Update the record of the current time in a context.
463 */
464 static void update_context_time(struct perf_event_context *ctx)
465 {
466 u64 now = perf_clock();
467
468 ctx->time += now - ctx->timestamp;
469 ctx->timestamp = now;
470 }
471
472 /*
473 * Update the total_time_enabled and total_time_running fields for a event.
474 */
475 static void update_event_times(struct perf_event *event)
476 {
477 struct perf_event_context *ctx = event->ctx;
478 u64 run_end;
479
480 if (event->state < PERF_EVENT_STATE_INACTIVE ||
481 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
482 return;
483
484 event->total_time_enabled = ctx->time - event->tstamp_enabled;
485
486 if (event->state == PERF_EVENT_STATE_INACTIVE)
487 run_end = event->tstamp_stopped;
488 else
489 run_end = ctx->time;
490
491 event->total_time_running = run_end - event->tstamp_running;
492 }
493
494 /*
495 * Update total_time_enabled and total_time_running for all events in a group.
496 */
497 static void update_group_times(struct perf_event *leader)
498 {
499 struct perf_event *event;
500
501 update_event_times(leader);
502 list_for_each_entry(event, &leader->sibling_list, group_entry)
503 update_event_times(event);
504 }
505
506 /*
507 * Cross CPU call to disable a performance event
508 */
509 static void __perf_event_disable(void *info)
510 {
511 struct perf_event *event = info;
512 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
513 struct perf_event_context *ctx = event->ctx;
514
515 /*
516 * If this is a per-task event, need to check whether this
517 * event's task is the current task on this cpu.
518 */
519 if (ctx->task && cpuctx->task_ctx != ctx)
520 return;
521
522 spin_lock(&ctx->lock);
523
524 /*
525 * If the event is on, turn it off.
526 * If it is in error state, leave it in error state.
527 */
528 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
529 update_context_time(ctx);
530 update_group_times(event);
531 if (event == event->group_leader)
532 group_sched_out(event, cpuctx, ctx);
533 else
534 event_sched_out(event, cpuctx, ctx);
535 event->state = PERF_EVENT_STATE_OFF;
536 }
537
538 spin_unlock(&ctx->lock);
539 }
540
541 /*
542 * Disable a event.
543 *
544 * If event->ctx is a cloned context, callers must make sure that
545 * every task struct that event->ctx->task could possibly point to
546 * remains valid. This condition is satisifed when called through
547 * perf_event_for_each_child or perf_event_for_each because they
548 * hold the top-level event's child_mutex, so any descendant that
549 * goes to exit will block in sync_child_event.
550 * When called from perf_pending_event it's OK because event->ctx
551 * is the current context on this CPU and preemption is disabled,
552 * hence we can't get into perf_event_task_sched_out for this context.
553 */
554 static void perf_event_disable(struct perf_event *event)
555 {
556 struct perf_event_context *ctx = event->ctx;
557 struct task_struct *task = ctx->task;
558
559 if (!task) {
560 /*
561 * Disable the event on the cpu that it's on
562 */
563 smp_call_function_single(event->cpu, __perf_event_disable,
564 event, 1);
565 return;
566 }
567
568 retry:
569 task_oncpu_function_call(task, __perf_event_disable, event);
570
571 spin_lock_irq(&ctx->lock);
572 /*
573 * If the event is still active, we need to retry the cross-call.
574 */
575 if (event->state == PERF_EVENT_STATE_ACTIVE) {
576 spin_unlock_irq(&ctx->lock);
577 goto retry;
578 }
579
580 /*
581 * Since we have the lock this context can't be scheduled
582 * in, so we can change the state safely.
583 */
584 if (event->state == PERF_EVENT_STATE_INACTIVE) {
585 update_group_times(event);
586 event->state = PERF_EVENT_STATE_OFF;
587 }
588
589 spin_unlock_irq(&ctx->lock);
590 }
591
592 static int
593 event_sched_in(struct perf_event *event,
594 struct perf_cpu_context *cpuctx,
595 struct perf_event_context *ctx,
596 int cpu)
597 {
598 if (event->state <= PERF_EVENT_STATE_OFF)
599 return 0;
600
601 event->state = PERF_EVENT_STATE_ACTIVE;
602 event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
603 /*
604 * The new state must be visible before we turn it on in the hardware:
605 */
606 smp_wmb();
607
608 if (event->pmu->enable(event)) {
609 event->state = PERF_EVENT_STATE_INACTIVE;
610 event->oncpu = -1;
611 return -EAGAIN;
612 }
613
614 event->tstamp_running += ctx->time - event->tstamp_stopped;
615
616 if (!is_software_event(event))
617 cpuctx->active_oncpu++;
618 ctx->nr_active++;
619
620 if (event->attr.exclusive)
621 cpuctx->exclusive = 1;
622
623 return 0;
624 }
625
626 static int
627 group_sched_in(struct perf_event *group_event,
628 struct perf_cpu_context *cpuctx,
629 struct perf_event_context *ctx,
630 int cpu)
631 {
632 struct perf_event *event, *partial_group;
633 int ret;
634
635 if (group_event->state == PERF_EVENT_STATE_OFF)
636 return 0;
637
638 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
639 if (ret)
640 return ret < 0 ? ret : 0;
641
642 if (event_sched_in(group_event, cpuctx, ctx, cpu))
643 return -EAGAIN;
644
645 /*
646 * Schedule in siblings as one group (if any):
647 */
648 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
649 if (event_sched_in(event, cpuctx, ctx, cpu)) {
650 partial_group = event;
651 goto group_error;
652 }
653 }
654
655 return 0;
656
657 group_error:
658 /*
659 * Groups can be scheduled in as one unit only, so undo any
660 * partial group before returning:
661 */
662 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
663 if (event == partial_group)
664 break;
665 event_sched_out(event, cpuctx, ctx);
666 }
667 event_sched_out(group_event, cpuctx, ctx);
668
669 return -EAGAIN;
670 }
671
672 /*
673 * Return 1 for a group consisting entirely of software events,
674 * 0 if the group contains any hardware events.
675 */
676 static int is_software_only_group(struct perf_event *leader)
677 {
678 struct perf_event *event;
679
680 if (!is_software_event(leader))
681 return 0;
682
683 list_for_each_entry(event, &leader->sibling_list, group_entry)
684 if (!is_software_event(event))
685 return 0;
686
687 return 1;
688 }
689
690 /*
691 * Work out whether we can put this event group on the CPU now.
692 */
693 static int group_can_go_on(struct perf_event *event,
694 struct perf_cpu_context *cpuctx,
695 int can_add_hw)
696 {
697 /*
698 * Groups consisting entirely of software events can always go on.
699 */
700 if (is_software_only_group(event))
701 return 1;
702 /*
703 * If an exclusive group is already on, no other hardware
704 * events can go on.
705 */
706 if (cpuctx->exclusive)
707 return 0;
708 /*
709 * If this group is exclusive and there are already
710 * events on the CPU, it can't go on.
711 */
712 if (event->attr.exclusive && cpuctx->active_oncpu)
713 return 0;
714 /*
715 * Otherwise, try to add it if all previous groups were able
716 * to go on.
717 */
718 return can_add_hw;
719 }
720
721 static void add_event_to_ctx(struct perf_event *event,
722 struct perf_event_context *ctx)
723 {
724 list_add_event(event, ctx);
725 event->tstamp_enabled = ctx->time;
726 event->tstamp_running = ctx->time;
727 event->tstamp_stopped = ctx->time;
728 }
729
730 /*
731 * Cross CPU call to install and enable a performance event
732 *
733 * Must be called with ctx->mutex held
734 */
735 static void __perf_install_in_context(void *info)
736 {
737 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
738 struct perf_event *event = info;
739 struct perf_event_context *ctx = event->ctx;
740 struct perf_event *leader = event->group_leader;
741 int cpu = smp_processor_id();
742 int err;
743
744 /*
745 * If this is a task context, we need to check whether it is
746 * the current task context of this cpu. If not it has been
747 * scheduled out before the smp call arrived.
748 * Or possibly this is the right context but it isn't
749 * on this cpu because it had no events.
750 */
751 if (ctx->task && cpuctx->task_ctx != ctx) {
752 if (cpuctx->task_ctx || ctx->task != current)
753 return;
754 cpuctx->task_ctx = ctx;
755 }
756
757 spin_lock(&ctx->lock);
758 ctx->is_active = 1;
759 update_context_time(ctx);
760
761 /*
762 * Protect the list operation against NMI by disabling the
763 * events on a global level. NOP for non NMI based events.
764 */
765 perf_disable();
766
767 add_event_to_ctx(event, ctx);
768
769 /*
770 * Don't put the event on if it is disabled or if
771 * it is in a group and the group isn't on.
772 */
773 if (event->state != PERF_EVENT_STATE_INACTIVE ||
774 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
775 goto unlock;
776
777 /*
778 * An exclusive event can't go on if there are already active
779 * hardware events, and no hardware event can go on if there
780 * is already an exclusive event on.
781 */
782 if (!group_can_go_on(event, cpuctx, 1))
783 err = -EEXIST;
784 else
785 err = event_sched_in(event, cpuctx, ctx, cpu);
786
787 if (err) {
788 /*
789 * This event couldn't go on. If it is in a group
790 * then we have to pull the whole group off.
791 * If the event group is pinned then put it in error state.
792 */
793 if (leader != event)
794 group_sched_out(leader, cpuctx, ctx);
795 if (leader->attr.pinned) {
796 update_group_times(leader);
797 leader->state = PERF_EVENT_STATE_ERROR;
798 }
799 }
800
801 if (!err && !ctx->task && cpuctx->max_pertask)
802 cpuctx->max_pertask--;
803
804 unlock:
805 perf_enable();
806
807 spin_unlock(&ctx->lock);
808 }
809
810 /*
811 * Attach a performance event to a context
812 *
813 * First we add the event to the list with the hardware enable bit
814 * in event->hw_config cleared.
815 *
816 * If the event is attached to a task which is on a CPU we use a smp
817 * call to enable it in the task context. The task might have been
818 * scheduled away, but we check this in the smp call again.
819 *
820 * Must be called with ctx->mutex held.
821 */
822 static void
823 perf_install_in_context(struct perf_event_context *ctx,
824 struct perf_event *event,
825 int cpu)
826 {
827 struct task_struct *task = ctx->task;
828
829 if (!task) {
830 /*
831 * Per cpu events are installed via an smp call and
832 * the install is always sucessful.
833 */
834 smp_call_function_single(cpu, __perf_install_in_context,
835 event, 1);
836 return;
837 }
838
839 retry:
840 task_oncpu_function_call(task, __perf_install_in_context,
841 event);
842
843 spin_lock_irq(&ctx->lock);
844 /*
845 * we need to retry the smp call.
846 */
847 if (ctx->is_active && list_empty(&event->group_entry)) {
848 spin_unlock_irq(&ctx->lock);
849 goto retry;
850 }
851
852 /*
853 * The lock prevents that this context is scheduled in so we
854 * can add the event safely, if it the call above did not
855 * succeed.
856 */
857 if (list_empty(&event->group_entry))
858 add_event_to_ctx(event, ctx);
859 spin_unlock_irq(&ctx->lock);
860 }
861
862 /*
863 * Put a event into inactive state and update time fields.
864 * Enabling the leader of a group effectively enables all
865 * the group members that aren't explicitly disabled, so we
866 * have to update their ->tstamp_enabled also.
867 * Note: this works for group members as well as group leaders
868 * since the non-leader members' sibling_lists will be empty.
869 */
870 static void __perf_event_mark_enabled(struct perf_event *event,
871 struct perf_event_context *ctx)
872 {
873 struct perf_event *sub;
874
875 event->state = PERF_EVENT_STATE_INACTIVE;
876 event->tstamp_enabled = ctx->time - event->total_time_enabled;
877 list_for_each_entry(sub, &event->sibling_list, group_entry)
878 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
879 sub->tstamp_enabled =
880 ctx->time - sub->total_time_enabled;
881 }
882
883 /*
884 * Cross CPU call to enable a performance event
885 */
886 static void __perf_event_enable(void *info)
887 {
888 struct perf_event *event = info;
889 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
890 struct perf_event_context *ctx = event->ctx;
891 struct perf_event *leader = event->group_leader;
892 int err;
893
894 /*
895 * If this is a per-task event, need to check whether this
896 * event's task is the current task on this cpu.
897 */
898 if (ctx->task && cpuctx->task_ctx != ctx) {
899 if (cpuctx->task_ctx || ctx->task != current)
900 return;
901 cpuctx->task_ctx = ctx;
902 }
903
904 spin_lock(&ctx->lock);
905 ctx->is_active = 1;
906 update_context_time(ctx);
907
908 if (event->state >= PERF_EVENT_STATE_INACTIVE)
909 goto unlock;
910 __perf_event_mark_enabled(event, ctx);
911
912 /*
913 * If the event is in a group and isn't the group leader,
914 * then don't put it on unless the group is on.
915 */
916 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
917 goto unlock;
918
919 if (!group_can_go_on(event, cpuctx, 1)) {
920 err = -EEXIST;
921 } else {
922 perf_disable();
923 if (event == leader)
924 err = group_sched_in(event, cpuctx, ctx,
925 smp_processor_id());
926 else
927 err = event_sched_in(event, cpuctx, ctx,
928 smp_processor_id());
929 perf_enable();
930 }
931
932 if (err) {
933 /*
934 * If this event can't go on and it's part of a
935 * group, then the whole group has to come off.
936 */
937 if (leader != event)
938 group_sched_out(leader, cpuctx, ctx);
939 if (leader->attr.pinned) {
940 update_group_times(leader);
941 leader->state = PERF_EVENT_STATE_ERROR;
942 }
943 }
944
945 unlock:
946 spin_unlock(&ctx->lock);
947 }
948
949 /*
950 * Enable a event.
951 *
952 * If event->ctx is a cloned context, callers must make sure that
953 * every task struct that event->ctx->task could possibly point to
954 * remains valid. This condition is satisfied when called through
955 * perf_event_for_each_child or perf_event_for_each as described
956 * for perf_event_disable.
957 */
958 static void perf_event_enable(struct perf_event *event)
959 {
960 struct perf_event_context *ctx = event->ctx;
961 struct task_struct *task = ctx->task;
962
963 if (!task) {
964 /*
965 * Enable the event on the cpu that it's on
966 */
967 smp_call_function_single(event->cpu, __perf_event_enable,
968 event, 1);
969 return;
970 }
971
972 spin_lock_irq(&ctx->lock);
973 if (event->state >= PERF_EVENT_STATE_INACTIVE)
974 goto out;
975
976 /*
977 * If the event is in error state, clear that first.
978 * That way, if we see the event in error state below, we
979 * know that it has gone back into error state, as distinct
980 * from the task having been scheduled away before the
981 * cross-call arrived.
982 */
983 if (event->state == PERF_EVENT_STATE_ERROR)
984 event->state = PERF_EVENT_STATE_OFF;
985
986 retry:
987 spin_unlock_irq(&ctx->lock);
988 task_oncpu_function_call(task, __perf_event_enable, event);
989
990 spin_lock_irq(&ctx->lock);
991
992 /*
993 * If the context is active and the event is still off,
994 * we need to retry the cross-call.
995 */
996 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
997 goto retry;
998
999 /*
1000 * Since we have the lock this context can't be scheduled
1001 * in, so we can change the state safely.
1002 */
1003 if (event->state == PERF_EVENT_STATE_OFF)
1004 __perf_event_mark_enabled(event, ctx);
1005
1006 out:
1007 spin_unlock_irq(&ctx->lock);
1008 }
1009
1010 static int perf_event_refresh(struct perf_event *event, int refresh)
1011 {
1012 /*
1013 * not supported on inherited events
1014 */
1015 if (event->attr.inherit)
1016 return -EINVAL;
1017
1018 atomic_add(refresh, &event->event_limit);
1019 perf_event_enable(event);
1020
1021 return 0;
1022 }
1023
1024 void __perf_event_sched_out(struct perf_event_context *ctx,
1025 struct perf_cpu_context *cpuctx)
1026 {
1027 struct perf_event *event;
1028
1029 spin_lock(&ctx->lock);
1030 ctx->is_active = 0;
1031 if (likely(!ctx->nr_events))
1032 goto out;
1033 update_context_time(ctx);
1034
1035 perf_disable();
1036 if (ctx->nr_active)
1037 list_for_each_entry(event, &ctx->group_list, group_entry)
1038 group_sched_out(event, cpuctx, ctx);
1039
1040 perf_enable();
1041 out:
1042 spin_unlock(&ctx->lock);
1043 }
1044
1045 /*
1046 * Test whether two contexts are equivalent, i.e. whether they
1047 * have both been cloned from the same version of the same context
1048 * and they both have the same number of enabled events.
1049 * If the number of enabled events is the same, then the set
1050 * of enabled events should be the same, because these are both
1051 * inherited contexts, therefore we can't access individual events
1052 * in them directly with an fd; we can only enable/disable all
1053 * events via prctl, or enable/disable all events in a family
1054 * via ioctl, which will have the same effect on both contexts.
1055 */
1056 static int context_equiv(struct perf_event_context *ctx1,
1057 struct perf_event_context *ctx2)
1058 {
1059 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1060 && ctx1->parent_gen == ctx2->parent_gen
1061 && !ctx1->pin_count && !ctx2->pin_count;
1062 }
1063
1064 static void __perf_event_read(void *event);
1065
1066 static void __perf_event_sync_stat(struct perf_event *event,
1067 struct perf_event *next_event)
1068 {
1069 u64 value;
1070
1071 if (!event->attr.inherit_stat)
1072 return;
1073
1074 /*
1075 * Update the event value, we cannot use perf_event_read()
1076 * because we're in the middle of a context switch and have IRQs
1077 * disabled, which upsets smp_call_function_single(), however
1078 * we know the event must be on the current CPU, therefore we
1079 * don't need to use it.
1080 */
1081 switch (event->state) {
1082 case PERF_EVENT_STATE_ACTIVE:
1083 __perf_event_read(event);
1084 break;
1085
1086 case PERF_EVENT_STATE_INACTIVE:
1087 update_event_times(event);
1088 break;
1089
1090 default:
1091 break;
1092 }
1093
1094 /*
1095 * In order to keep per-task stats reliable we need to flip the event
1096 * values when we flip the contexts.
1097 */
1098 value = atomic64_read(&next_event->count);
1099 value = atomic64_xchg(&event->count, value);
1100 atomic64_set(&next_event->count, value);
1101
1102 swap(event->total_time_enabled, next_event->total_time_enabled);
1103 swap(event->total_time_running, next_event->total_time_running);
1104
1105 /*
1106 * Since we swizzled the values, update the user visible data too.
1107 */
1108 perf_event_update_userpage(event);
1109 perf_event_update_userpage(next_event);
1110 }
1111
1112 #define list_next_entry(pos, member) \
1113 list_entry(pos->member.next, typeof(*pos), member)
1114
1115 static void perf_event_sync_stat(struct perf_event_context *ctx,
1116 struct perf_event_context *next_ctx)
1117 {
1118 struct perf_event *event, *next_event;
1119
1120 if (!ctx->nr_stat)
1121 return;
1122
1123 event = list_first_entry(&ctx->event_list,
1124 struct perf_event, event_entry);
1125
1126 next_event = list_first_entry(&next_ctx->event_list,
1127 struct perf_event, event_entry);
1128
1129 while (&event->event_entry != &ctx->event_list &&
1130 &next_event->event_entry != &next_ctx->event_list) {
1131
1132 __perf_event_sync_stat(event, next_event);
1133
1134 event = list_next_entry(event, event_entry);
1135 next_event = list_next_entry(next_event, event_entry);
1136 }
1137 }
1138
1139 /*
1140 * Called from scheduler to remove the events of the current task,
1141 * with interrupts disabled.
1142 *
1143 * We stop each event and update the event value in event->count.
1144 *
1145 * This does not protect us against NMI, but disable()
1146 * sets the disabled bit in the control field of event _before_
1147 * accessing the event control register. If a NMI hits, then it will
1148 * not restart the event.
1149 */
1150 void perf_event_task_sched_out(struct task_struct *task,
1151 struct task_struct *next, int cpu)
1152 {
1153 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1154 struct perf_event_context *ctx = task->perf_event_ctxp;
1155 struct perf_event_context *next_ctx;
1156 struct perf_event_context *parent;
1157 struct pt_regs *regs;
1158 int do_switch = 1;
1159
1160 regs = task_pt_regs(task);
1161 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1162
1163 if (likely(!ctx || !cpuctx->task_ctx))
1164 return;
1165
1166 update_context_time(ctx);
1167
1168 rcu_read_lock();
1169 parent = rcu_dereference(ctx->parent_ctx);
1170 next_ctx = next->perf_event_ctxp;
1171 if (parent && next_ctx &&
1172 rcu_dereference(next_ctx->parent_ctx) == parent) {
1173 /*
1174 * Looks like the two contexts are clones, so we might be
1175 * able to optimize the context switch. We lock both
1176 * contexts and check that they are clones under the
1177 * lock (including re-checking that neither has been
1178 * uncloned in the meantime). It doesn't matter which
1179 * order we take the locks because no other cpu could
1180 * be trying to lock both of these tasks.
1181 */
1182 spin_lock(&ctx->lock);
1183 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1184 if (context_equiv(ctx, next_ctx)) {
1185 /*
1186 * XXX do we need a memory barrier of sorts
1187 * wrt to rcu_dereference() of perf_event_ctxp
1188 */
1189 task->perf_event_ctxp = next_ctx;
1190 next->perf_event_ctxp = ctx;
1191 ctx->task = next;
1192 next_ctx->task = task;
1193 do_switch = 0;
1194
1195 perf_event_sync_stat(ctx, next_ctx);
1196 }
1197 spin_unlock(&next_ctx->lock);
1198 spin_unlock(&ctx->lock);
1199 }
1200 rcu_read_unlock();
1201
1202 if (do_switch) {
1203 __perf_event_sched_out(ctx, cpuctx);
1204 cpuctx->task_ctx = NULL;
1205 }
1206 }
1207
1208 /*
1209 * Called with IRQs disabled
1210 */
1211 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1212 {
1213 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1214
1215 if (!cpuctx->task_ctx)
1216 return;
1217
1218 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1219 return;
1220
1221 __perf_event_sched_out(ctx, cpuctx);
1222 cpuctx->task_ctx = NULL;
1223 }
1224
1225 /*
1226 * Called with IRQs disabled
1227 */
1228 static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1229 {
1230 __perf_event_sched_out(&cpuctx->ctx, cpuctx);
1231 }
1232
1233 static void
1234 __perf_event_sched_in(struct perf_event_context *ctx,
1235 struct perf_cpu_context *cpuctx, int cpu)
1236 {
1237 struct perf_event *event;
1238 int can_add_hw = 1;
1239
1240 spin_lock(&ctx->lock);
1241 ctx->is_active = 1;
1242 if (likely(!ctx->nr_events))
1243 goto out;
1244
1245 ctx->timestamp = perf_clock();
1246
1247 perf_disable();
1248
1249 /*
1250 * First go through the list and put on any pinned groups
1251 * in order to give them the best chance of going on.
1252 */
1253 list_for_each_entry(event, &ctx->group_list, group_entry) {
1254 if (event->state <= PERF_EVENT_STATE_OFF ||
1255 !event->attr.pinned)
1256 continue;
1257 if (event->cpu != -1 && event->cpu != cpu)
1258 continue;
1259
1260 if (group_can_go_on(event, cpuctx, 1))
1261 group_sched_in(event, cpuctx, ctx, cpu);
1262
1263 /*
1264 * If this pinned group hasn't been scheduled,
1265 * put it in error state.
1266 */
1267 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1268 update_group_times(event);
1269 event->state = PERF_EVENT_STATE_ERROR;
1270 }
1271 }
1272
1273 list_for_each_entry(event, &ctx->group_list, group_entry) {
1274 /*
1275 * Ignore events in OFF or ERROR state, and
1276 * ignore pinned events since we did them already.
1277 */
1278 if (event->state <= PERF_EVENT_STATE_OFF ||
1279 event->attr.pinned)
1280 continue;
1281
1282 /*
1283 * Listen to the 'cpu' scheduling filter constraint
1284 * of events:
1285 */
1286 if (event->cpu != -1 && event->cpu != cpu)
1287 continue;
1288
1289 if (group_can_go_on(event, cpuctx, can_add_hw))
1290 if (group_sched_in(event, cpuctx, ctx, cpu))
1291 can_add_hw = 0;
1292 }
1293 perf_enable();
1294 out:
1295 spin_unlock(&ctx->lock);
1296 }
1297
1298 /*
1299 * Called from scheduler to add the events of the current task
1300 * with interrupts disabled.
1301 *
1302 * We restore the event value and then enable it.
1303 *
1304 * This does not protect us against NMI, but enable()
1305 * sets the enabled bit in the control field of event _before_
1306 * accessing the event control register. If a NMI hits, then it will
1307 * keep the event running.
1308 */
1309 void perf_event_task_sched_in(struct task_struct *task, int cpu)
1310 {
1311 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1312 struct perf_event_context *ctx = task->perf_event_ctxp;
1313
1314 if (likely(!ctx))
1315 return;
1316 if (cpuctx->task_ctx == ctx)
1317 return;
1318 __perf_event_sched_in(ctx, cpuctx, cpu);
1319 cpuctx->task_ctx = ctx;
1320 }
1321
1322 static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1323 {
1324 struct perf_event_context *ctx = &cpuctx->ctx;
1325
1326 __perf_event_sched_in(ctx, cpuctx, cpu);
1327 }
1328
1329 #define MAX_INTERRUPTS (~0ULL)
1330
1331 static void perf_log_throttle(struct perf_event *event, int enable);
1332
1333 static void perf_adjust_period(struct perf_event *event, u64 events)
1334 {
1335 struct hw_perf_event *hwc = &event->hw;
1336 u64 period, sample_period;
1337 s64 delta;
1338
1339 events *= hwc->sample_period;
1340 period = div64_u64(events, event->attr.sample_freq);
1341
1342 delta = (s64)(period - hwc->sample_period);
1343 delta = (delta + 7) / 8; /* low pass filter */
1344
1345 sample_period = hwc->sample_period + delta;
1346
1347 if (!sample_period)
1348 sample_period = 1;
1349
1350 hwc->sample_period = sample_period;
1351 }
1352
1353 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1354 {
1355 struct perf_event *event;
1356 struct hw_perf_event *hwc;
1357 u64 interrupts, freq;
1358
1359 spin_lock(&ctx->lock);
1360 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1361 if (event->state != PERF_EVENT_STATE_ACTIVE)
1362 continue;
1363
1364 hwc = &event->hw;
1365
1366 interrupts = hwc->interrupts;
1367 hwc->interrupts = 0;
1368
1369 /*
1370 * unthrottle events on the tick
1371 */
1372 if (interrupts == MAX_INTERRUPTS) {
1373 perf_log_throttle(event, 1);
1374 event->pmu->unthrottle(event);
1375 interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1376 }
1377
1378 if (!event->attr.freq || !event->attr.sample_freq)
1379 continue;
1380
1381 /*
1382 * if the specified freq < HZ then we need to skip ticks
1383 */
1384 if (event->attr.sample_freq < HZ) {
1385 freq = event->attr.sample_freq;
1386
1387 hwc->freq_count += freq;
1388 hwc->freq_interrupts += interrupts;
1389
1390 if (hwc->freq_count < HZ)
1391 continue;
1392
1393 interrupts = hwc->freq_interrupts;
1394 hwc->freq_interrupts = 0;
1395 hwc->freq_count -= HZ;
1396 } else
1397 freq = HZ;
1398
1399 perf_adjust_period(event, freq * interrupts);
1400
1401 /*
1402 * In order to avoid being stalled by an (accidental) huge
1403 * sample period, force reset the sample period if we didn't
1404 * get any events in this freq period.
1405 */
1406 if (!interrupts) {
1407 perf_disable();
1408 event->pmu->disable(event);
1409 atomic64_set(&hwc->period_left, 0);
1410 event->pmu->enable(event);
1411 perf_enable();
1412 }
1413 }
1414 spin_unlock(&ctx->lock);
1415 }
1416
1417 /*
1418 * Round-robin a context's events:
1419 */
1420 static void rotate_ctx(struct perf_event_context *ctx)
1421 {
1422 struct perf_event *event;
1423
1424 if (!ctx->nr_events)
1425 return;
1426
1427 spin_lock(&ctx->lock);
1428 /*
1429 * Rotate the first entry last (works just fine for group events too):
1430 */
1431 perf_disable();
1432 list_for_each_entry(event, &ctx->group_list, group_entry) {
1433 list_move_tail(&event->group_entry, &ctx->group_list);
1434 break;
1435 }
1436 perf_enable();
1437
1438 spin_unlock(&ctx->lock);
1439 }
1440
1441 void perf_event_task_tick(struct task_struct *curr, int cpu)
1442 {
1443 struct perf_cpu_context *cpuctx;
1444 struct perf_event_context *ctx;
1445
1446 if (!atomic_read(&nr_events))
1447 return;
1448
1449 cpuctx = &per_cpu(perf_cpu_context, cpu);
1450 ctx = curr->perf_event_ctxp;
1451
1452 perf_ctx_adjust_freq(&cpuctx->ctx);
1453 if (ctx)
1454 perf_ctx_adjust_freq(ctx);
1455
1456 perf_event_cpu_sched_out(cpuctx);
1457 if (ctx)
1458 __perf_event_task_sched_out(ctx);
1459
1460 rotate_ctx(&cpuctx->ctx);
1461 if (ctx)
1462 rotate_ctx(ctx);
1463
1464 perf_event_cpu_sched_in(cpuctx, cpu);
1465 if (ctx)
1466 perf_event_task_sched_in(curr, cpu);
1467 }
1468
1469 /*
1470 * Enable all of a task's events that have been marked enable-on-exec.
1471 * This expects task == current.
1472 */
1473 static void perf_event_enable_on_exec(struct task_struct *task)
1474 {
1475 struct perf_event_context *ctx;
1476 struct perf_event *event;
1477 unsigned long flags;
1478 int enabled = 0;
1479
1480 local_irq_save(flags);
1481 ctx = task->perf_event_ctxp;
1482 if (!ctx || !ctx->nr_events)
1483 goto out;
1484
1485 __perf_event_task_sched_out(ctx);
1486
1487 spin_lock(&ctx->lock);
1488
1489 list_for_each_entry(event, &ctx->group_list, group_entry) {
1490 if (!event->attr.enable_on_exec)
1491 continue;
1492 event->attr.enable_on_exec = 0;
1493 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1494 continue;
1495 __perf_event_mark_enabled(event, ctx);
1496 enabled = 1;
1497 }
1498
1499 /*
1500 * Unclone this context if we enabled any event.
1501 */
1502 if (enabled)
1503 unclone_ctx(ctx);
1504
1505 spin_unlock(&ctx->lock);
1506
1507 perf_event_task_sched_in(task, smp_processor_id());
1508 out:
1509 local_irq_restore(flags);
1510 }
1511
1512 /*
1513 * Cross CPU call to read the hardware event
1514 */
1515 static void __perf_event_read(void *info)
1516 {
1517 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1518 struct perf_event *event = info;
1519 struct perf_event_context *ctx = event->ctx;
1520 unsigned long flags;
1521
1522 /*
1523 * If this is a task context, we need to check whether it is
1524 * the current task context of this cpu. If not it has been
1525 * scheduled out before the smp call arrived. In that case
1526 * event->count would have been updated to a recent sample
1527 * when the event was scheduled out.
1528 */
1529 if (ctx->task && cpuctx->task_ctx != ctx)
1530 return;
1531
1532 local_irq_save(flags);
1533 if (ctx->is_active)
1534 update_context_time(ctx);
1535 event->pmu->read(event);
1536 update_event_times(event);
1537 local_irq_restore(flags);
1538 }
1539
1540 static u64 perf_event_read(struct perf_event *event)
1541 {
1542 /*
1543 * If event is enabled and currently active on a CPU, update the
1544 * value in the event structure:
1545 */
1546 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1547 smp_call_function_single(event->oncpu,
1548 __perf_event_read, event, 1);
1549 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1550 update_event_times(event);
1551 }
1552
1553 return atomic64_read(&event->count);
1554 }
1555
1556 /*
1557 * Initialize the perf_event context in a task_struct:
1558 */
1559 static void
1560 __perf_event_init_context(struct perf_event_context *ctx,
1561 struct task_struct *task)
1562 {
1563 memset(ctx, 0, sizeof(*ctx));
1564 spin_lock_init(&ctx->lock);
1565 mutex_init(&ctx->mutex);
1566 INIT_LIST_HEAD(&ctx->group_list);
1567 INIT_LIST_HEAD(&ctx->event_list);
1568 atomic_set(&ctx->refcount, 1);
1569 ctx->task = task;
1570 }
1571
1572 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1573 {
1574 struct perf_event_context *ctx;
1575 struct perf_cpu_context *cpuctx;
1576 struct task_struct *task;
1577 unsigned long flags;
1578 int err;
1579
1580 /*
1581 * If cpu is not a wildcard then this is a percpu event:
1582 */
1583 if (cpu != -1) {
1584 /* Must be root to operate on a CPU event: */
1585 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1586 return ERR_PTR(-EACCES);
1587
1588 if (cpu < 0 || cpu > num_possible_cpus())
1589 return ERR_PTR(-EINVAL);
1590
1591 /*
1592 * We could be clever and allow to attach a event to an
1593 * offline CPU and activate it when the CPU comes up, but
1594 * that's for later.
1595 */
1596 if (!cpu_isset(cpu, cpu_online_map))
1597 return ERR_PTR(-ENODEV);
1598
1599 cpuctx = &per_cpu(perf_cpu_context, cpu);
1600 ctx = &cpuctx->ctx;
1601 get_ctx(ctx);
1602
1603 return ctx;
1604 }
1605
1606 rcu_read_lock();
1607 if (!pid)
1608 task = current;
1609 else
1610 task = find_task_by_vpid(pid);
1611 if (task)
1612 get_task_struct(task);
1613 rcu_read_unlock();
1614
1615 if (!task)
1616 return ERR_PTR(-ESRCH);
1617
1618 /*
1619 * Can't attach events to a dying task.
1620 */
1621 err = -ESRCH;
1622 if (task->flags & PF_EXITING)
1623 goto errout;
1624
1625 /* Reuse ptrace permission checks for now. */
1626 err = -EACCES;
1627 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1628 goto errout;
1629
1630 retry:
1631 ctx = perf_lock_task_context(task, &flags);
1632 if (ctx) {
1633 unclone_ctx(ctx);
1634 spin_unlock_irqrestore(&ctx->lock, flags);
1635 }
1636
1637 if (!ctx) {
1638 ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1639 err = -ENOMEM;
1640 if (!ctx)
1641 goto errout;
1642 __perf_event_init_context(ctx, task);
1643 get_ctx(ctx);
1644 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1645 /*
1646 * We raced with some other task; use
1647 * the context they set.
1648 */
1649 kfree(ctx);
1650 goto retry;
1651 }
1652 get_task_struct(task);
1653 }
1654
1655 put_task_struct(task);
1656 return ctx;
1657
1658 errout:
1659 put_task_struct(task);
1660 return ERR_PTR(err);
1661 }
1662
1663 static void perf_event_free_filter(struct perf_event *event);
1664
1665 static void free_event_rcu(struct rcu_head *head)
1666 {
1667 struct perf_event *event;
1668
1669 event = container_of(head, struct perf_event, rcu_head);
1670 if (event->ns)
1671 put_pid_ns(event->ns);
1672 perf_event_free_filter(event);
1673 kfree(event);
1674 }
1675
1676 static void perf_pending_sync(struct perf_event *event);
1677
1678 static void free_event(struct perf_event *event)
1679 {
1680 perf_pending_sync(event);
1681
1682 if (!event->parent) {
1683 atomic_dec(&nr_events);
1684 if (event->attr.mmap)
1685 atomic_dec(&nr_mmap_events);
1686 if (event->attr.comm)
1687 atomic_dec(&nr_comm_events);
1688 if (event->attr.task)
1689 atomic_dec(&nr_task_events);
1690 }
1691
1692 if (event->output) {
1693 fput(event->output->filp);
1694 event->output = NULL;
1695 }
1696
1697 if (event->destroy)
1698 event->destroy(event);
1699
1700 put_ctx(event->ctx);
1701 call_rcu(&event->rcu_head, free_event_rcu);
1702 }
1703
1704 /*
1705 * Called when the last reference to the file is gone.
1706 */
1707 static int perf_release(struct inode *inode, struct file *file)
1708 {
1709 struct perf_event *event = file->private_data;
1710 struct perf_event_context *ctx = event->ctx;
1711
1712 file->private_data = NULL;
1713
1714 WARN_ON_ONCE(ctx->parent_ctx);
1715 mutex_lock(&ctx->mutex);
1716 perf_event_remove_from_context(event);
1717 mutex_unlock(&ctx->mutex);
1718
1719 mutex_lock(&event->owner->perf_event_mutex);
1720 list_del_init(&event->owner_entry);
1721 mutex_unlock(&event->owner->perf_event_mutex);
1722 put_task_struct(event->owner);
1723
1724 free_event(event);
1725
1726 return 0;
1727 }
1728
1729 int perf_event_release_kernel(struct perf_event *event)
1730 {
1731 struct perf_event_context *ctx = event->ctx;
1732
1733 WARN_ON_ONCE(ctx->parent_ctx);
1734 mutex_lock(&ctx->mutex);
1735 perf_event_remove_from_context(event);
1736 mutex_unlock(&ctx->mutex);
1737
1738 mutex_lock(&event->owner->perf_event_mutex);
1739 list_del_init(&event->owner_entry);
1740 mutex_unlock(&event->owner->perf_event_mutex);
1741 put_task_struct(event->owner);
1742
1743 free_event(event);
1744
1745 return 0;
1746 }
1747 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1748
1749 static int perf_event_read_size(struct perf_event *event)
1750 {
1751 int entry = sizeof(u64); /* value */
1752 int size = 0;
1753 int nr = 1;
1754
1755 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1756 size += sizeof(u64);
1757
1758 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1759 size += sizeof(u64);
1760
1761 if (event->attr.read_format & PERF_FORMAT_ID)
1762 entry += sizeof(u64);
1763
1764 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1765 nr += event->group_leader->nr_siblings;
1766 size += sizeof(u64);
1767 }
1768
1769 size += entry * nr;
1770
1771 return size;
1772 }
1773
1774 u64 perf_event_read_value(struct perf_event *event)
1775 {
1776 struct perf_event *child;
1777 u64 total = 0;
1778
1779 total += perf_event_read(event);
1780 list_for_each_entry(child, &event->child_list, child_list)
1781 total += perf_event_read(child);
1782
1783 return total;
1784 }
1785 EXPORT_SYMBOL_GPL(perf_event_read_value);
1786
1787 static int perf_event_read_entry(struct perf_event *event,
1788 u64 read_format, char __user *buf)
1789 {
1790 int n = 0, count = 0;
1791 u64 values[2];
1792
1793 values[n++] = perf_event_read_value(event);
1794 if (read_format & PERF_FORMAT_ID)
1795 values[n++] = primary_event_id(event);
1796
1797 count = n * sizeof(u64);
1798
1799 if (copy_to_user(buf, values, count))
1800 return -EFAULT;
1801
1802 return count;
1803 }
1804
1805 static int perf_event_read_group(struct perf_event *event,
1806 u64 read_format, char __user *buf)
1807 {
1808 struct perf_event *leader = event->group_leader, *sub;
1809 int n = 0, size = 0, err = -EFAULT;
1810 u64 values[3];
1811
1812 values[n++] = 1 + leader->nr_siblings;
1813 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1814 values[n++] = leader->total_time_enabled +
1815 atomic64_read(&leader->child_total_time_enabled);
1816 }
1817 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1818 values[n++] = leader->total_time_running +
1819 atomic64_read(&leader->child_total_time_running);
1820 }
1821
1822 size = n * sizeof(u64);
1823
1824 if (copy_to_user(buf, values, size))
1825 return -EFAULT;
1826
1827 err = perf_event_read_entry(leader, read_format, buf + size);
1828 if (err < 0)
1829 return err;
1830
1831 size += err;
1832
1833 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1834 err = perf_event_read_entry(sub, read_format,
1835 buf + size);
1836 if (err < 0)
1837 return err;
1838
1839 size += err;
1840 }
1841
1842 return size;
1843 }
1844
1845 static int perf_event_read_one(struct perf_event *event,
1846 u64 read_format, char __user *buf)
1847 {
1848 u64 values[4];
1849 int n = 0;
1850
1851 values[n++] = perf_event_read_value(event);
1852 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1853 values[n++] = event->total_time_enabled +
1854 atomic64_read(&event->child_total_time_enabled);
1855 }
1856 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1857 values[n++] = event->total_time_running +
1858 atomic64_read(&event->child_total_time_running);
1859 }
1860 if (read_format & PERF_FORMAT_ID)
1861 values[n++] = primary_event_id(event);
1862
1863 if (copy_to_user(buf, values, n * sizeof(u64)))
1864 return -EFAULT;
1865
1866 return n * sizeof(u64);
1867 }
1868
1869 /*
1870 * Read the performance event - simple non blocking version for now
1871 */
1872 static ssize_t
1873 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
1874 {
1875 u64 read_format = event->attr.read_format;
1876 int ret;
1877
1878 /*
1879 * Return end-of-file for a read on a event that is in
1880 * error state (i.e. because it was pinned but it couldn't be
1881 * scheduled on to the CPU at some point).
1882 */
1883 if (event->state == PERF_EVENT_STATE_ERROR)
1884 return 0;
1885
1886 if (count < perf_event_read_size(event))
1887 return -ENOSPC;
1888
1889 WARN_ON_ONCE(event->ctx->parent_ctx);
1890 mutex_lock(&event->child_mutex);
1891 if (read_format & PERF_FORMAT_GROUP)
1892 ret = perf_event_read_group(event, read_format, buf);
1893 else
1894 ret = perf_event_read_one(event, read_format, buf);
1895 mutex_unlock(&event->child_mutex);
1896
1897 return ret;
1898 }
1899
1900 static ssize_t
1901 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1902 {
1903 struct perf_event *event = file->private_data;
1904
1905 return perf_read_hw(event, buf, count);
1906 }
1907
1908 static unsigned int perf_poll(struct file *file, poll_table *wait)
1909 {
1910 struct perf_event *event = file->private_data;
1911 struct perf_mmap_data *data;
1912 unsigned int events = POLL_HUP;
1913
1914 rcu_read_lock();
1915 data = rcu_dereference(event->data);
1916 if (data)
1917 events = atomic_xchg(&data->poll, 0);
1918 rcu_read_unlock();
1919
1920 poll_wait(file, &event->waitq, wait);
1921
1922 return events;
1923 }
1924
1925 static void perf_event_reset(struct perf_event *event)
1926 {
1927 (void)perf_event_read(event);
1928 atomic64_set(&event->count, 0);
1929 perf_event_update_userpage(event);
1930 }
1931
1932 /*
1933 * Holding the top-level event's child_mutex means that any
1934 * descendant process that has inherited this event will block
1935 * in sync_child_event if it goes to exit, thus satisfying the
1936 * task existence requirements of perf_event_enable/disable.
1937 */
1938 static void perf_event_for_each_child(struct perf_event *event,
1939 void (*func)(struct perf_event *))
1940 {
1941 struct perf_event *child;
1942
1943 WARN_ON_ONCE(event->ctx->parent_ctx);
1944 mutex_lock(&event->child_mutex);
1945 func(event);
1946 list_for_each_entry(child, &event->child_list, child_list)
1947 func(child);
1948 mutex_unlock(&event->child_mutex);
1949 }
1950
1951 static void perf_event_for_each(struct perf_event *event,
1952 void (*func)(struct perf_event *))
1953 {
1954 struct perf_event_context *ctx = event->ctx;
1955 struct perf_event *sibling;
1956
1957 WARN_ON_ONCE(ctx->parent_ctx);
1958 mutex_lock(&ctx->mutex);
1959 event = event->group_leader;
1960
1961 perf_event_for_each_child(event, func);
1962 func(event);
1963 list_for_each_entry(sibling, &event->sibling_list, group_entry)
1964 perf_event_for_each_child(event, func);
1965 mutex_unlock(&ctx->mutex);
1966 }
1967
1968 static int perf_event_period(struct perf_event *event, u64 __user *arg)
1969 {
1970 struct perf_event_context *ctx = event->ctx;
1971 unsigned long size;
1972 int ret = 0;
1973 u64 value;
1974
1975 if (!event->attr.sample_period)
1976 return -EINVAL;
1977
1978 size = copy_from_user(&value, arg, sizeof(value));
1979 if (size != sizeof(value))
1980 return -EFAULT;
1981
1982 if (!value)
1983 return -EINVAL;
1984
1985 spin_lock_irq(&ctx->lock);
1986 if (event->attr.freq) {
1987 if (value > sysctl_perf_event_sample_rate) {
1988 ret = -EINVAL;
1989 goto unlock;
1990 }
1991
1992 event->attr.sample_freq = value;
1993 } else {
1994 event->attr.sample_period = value;
1995 event->hw.sample_period = value;
1996 }
1997 unlock:
1998 spin_unlock_irq(&ctx->lock);
1999
2000 return ret;
2001 }
2002
2003 static int perf_event_set_output(struct perf_event *event, int output_fd);
2004 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2005
2006 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2007 {
2008 struct perf_event *event = file->private_data;
2009 void (*func)(struct perf_event *);
2010 u32 flags = arg;
2011
2012 switch (cmd) {
2013 case PERF_EVENT_IOC_ENABLE:
2014 func = perf_event_enable;
2015 break;
2016 case PERF_EVENT_IOC_DISABLE:
2017 func = perf_event_disable;
2018 break;
2019 case PERF_EVENT_IOC_RESET:
2020 func = perf_event_reset;
2021 break;
2022
2023 case PERF_EVENT_IOC_REFRESH:
2024 return perf_event_refresh(event, arg);
2025
2026 case PERF_EVENT_IOC_PERIOD:
2027 return perf_event_period(event, (u64 __user *)arg);
2028
2029 case PERF_EVENT_IOC_SET_OUTPUT:
2030 return perf_event_set_output(event, arg);
2031
2032 case PERF_EVENT_IOC_SET_FILTER:
2033 return perf_event_set_filter(event, (void __user *)arg);
2034
2035 default:
2036 return -ENOTTY;
2037 }
2038
2039 if (flags & PERF_IOC_FLAG_GROUP)
2040 perf_event_for_each(event, func);
2041 else
2042 perf_event_for_each_child(event, func);
2043
2044 return 0;
2045 }
2046
2047 int perf_event_task_enable(void)
2048 {
2049 struct perf_event *event;
2050
2051 mutex_lock(&current->perf_event_mutex);
2052 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2053 perf_event_for_each_child(event, perf_event_enable);
2054 mutex_unlock(&current->perf_event_mutex);
2055
2056 return 0;
2057 }
2058
2059 int perf_event_task_disable(void)
2060 {
2061 struct perf_event *event;
2062
2063 mutex_lock(&current->perf_event_mutex);
2064 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2065 perf_event_for_each_child(event, perf_event_disable);
2066 mutex_unlock(&current->perf_event_mutex);
2067
2068 return 0;
2069 }
2070
2071 #ifndef PERF_EVENT_INDEX_OFFSET
2072 # define PERF_EVENT_INDEX_OFFSET 0
2073 #endif
2074
2075 static int perf_event_index(struct perf_event *event)
2076 {
2077 if (event->state != PERF_EVENT_STATE_ACTIVE)
2078 return 0;
2079
2080 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2081 }
2082
2083 /*
2084 * Callers need to ensure there can be no nesting of this function, otherwise
2085 * the seqlock logic goes bad. We can not serialize this because the arch
2086 * code calls this from NMI context.
2087 */
2088 void perf_event_update_userpage(struct perf_event *event)
2089 {
2090 struct perf_event_mmap_page *userpg;
2091 struct perf_mmap_data *data;
2092
2093 rcu_read_lock();
2094 data = rcu_dereference(event->data);
2095 if (!data)
2096 goto unlock;
2097
2098 userpg = data->user_page;
2099
2100 /*
2101 * Disable preemption so as to not let the corresponding user-space
2102 * spin too long if we get preempted.
2103 */
2104 preempt_disable();
2105 ++userpg->lock;
2106 barrier();
2107 userpg->index = perf_event_index(event);
2108 userpg->offset = atomic64_read(&event->count);
2109 if (event->state == PERF_EVENT_STATE_ACTIVE)
2110 userpg->offset -= atomic64_read(&event->hw.prev_count);
2111
2112 userpg->time_enabled = event->total_time_enabled +
2113 atomic64_read(&event->child_total_time_enabled);
2114
2115 userpg->time_running = event->total_time_running +
2116 atomic64_read(&event->child_total_time_running);
2117
2118 barrier();
2119 ++userpg->lock;
2120 preempt_enable();
2121 unlock:
2122 rcu_read_unlock();
2123 }
2124
2125 static unsigned long perf_data_size(struct perf_mmap_data *data)
2126 {
2127 return data->nr_pages << (PAGE_SHIFT + data->data_order);
2128 }
2129
2130 #ifndef CONFIG_PERF_USE_VMALLOC
2131
2132 /*
2133 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2134 */
2135
2136 static struct page *
2137 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2138 {
2139 if (pgoff > data->nr_pages)
2140 return NULL;
2141
2142 if (pgoff == 0)
2143 return virt_to_page(data->user_page);
2144
2145 return virt_to_page(data->data_pages[pgoff - 1]);
2146 }
2147
2148 static struct perf_mmap_data *
2149 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2150 {
2151 struct perf_mmap_data *data;
2152 unsigned long size;
2153 int i;
2154
2155 WARN_ON(atomic_read(&event->mmap_count));
2156
2157 size = sizeof(struct perf_mmap_data);
2158 size += nr_pages * sizeof(void *);
2159
2160 data = kzalloc(size, GFP_KERNEL);
2161 if (!data)
2162 goto fail;
2163
2164 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2165 if (!data->user_page)
2166 goto fail_user_page;
2167
2168 for (i = 0; i < nr_pages; i++) {
2169 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2170 if (!data->data_pages[i])
2171 goto fail_data_pages;
2172 }
2173
2174 data->data_order = 0;
2175 data->nr_pages = nr_pages;
2176
2177 return data;
2178
2179 fail_data_pages:
2180 for (i--; i >= 0; i--)
2181 free_page((unsigned long)data->data_pages[i]);
2182
2183 free_page((unsigned long)data->user_page);
2184
2185 fail_user_page:
2186 kfree(data);
2187
2188 fail:
2189 return NULL;
2190 }
2191
2192 static void perf_mmap_free_page(unsigned long addr)
2193 {
2194 struct page *page = virt_to_page((void *)addr);
2195
2196 page->mapping = NULL;
2197 __free_page(page);
2198 }
2199
2200 static void perf_mmap_data_free(struct perf_mmap_data *data)
2201 {
2202 int i;
2203
2204 perf_mmap_free_page((unsigned long)data->user_page);
2205 for (i = 0; i < data->nr_pages; i++)
2206 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2207 }
2208
2209 #else
2210
2211 /*
2212 * Back perf_mmap() with vmalloc memory.
2213 *
2214 * Required for architectures that have d-cache aliasing issues.
2215 */
2216
2217 static struct page *
2218 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2219 {
2220 if (pgoff > (1UL << data->data_order))
2221 return NULL;
2222
2223 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2224 }
2225
2226 static void perf_mmap_unmark_page(void *addr)
2227 {
2228 struct page *page = vmalloc_to_page(addr);
2229
2230 page->mapping = NULL;
2231 }
2232
2233 static void perf_mmap_data_free_work(struct work_struct *work)
2234 {
2235 struct perf_mmap_data *data;
2236 void *base;
2237 int i, nr;
2238
2239 data = container_of(work, struct perf_mmap_data, work);
2240 nr = 1 << data->data_order;
2241
2242 base = data->user_page;
2243 for (i = 0; i < nr + 1; i++)
2244 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2245
2246 vfree(base);
2247 }
2248
2249 static void perf_mmap_data_free(struct perf_mmap_data *data)
2250 {
2251 schedule_work(&data->work);
2252 }
2253
2254 static struct perf_mmap_data *
2255 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2256 {
2257 struct perf_mmap_data *data;
2258 unsigned long size;
2259 void *all_buf;
2260
2261 WARN_ON(atomic_read(&event->mmap_count));
2262
2263 size = sizeof(struct perf_mmap_data);
2264 size += sizeof(void *);
2265
2266 data = kzalloc(size, GFP_KERNEL);
2267 if (!data)
2268 goto fail;
2269
2270 INIT_WORK(&data->work, perf_mmap_data_free_work);
2271
2272 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2273 if (!all_buf)
2274 goto fail_all_buf;
2275
2276 data->user_page = all_buf;
2277 data->data_pages[0] = all_buf + PAGE_SIZE;
2278 data->data_order = ilog2(nr_pages);
2279 data->nr_pages = 1;
2280
2281 return data;
2282
2283 fail_all_buf:
2284 kfree(data);
2285
2286 fail:
2287 return NULL;
2288 }
2289
2290 #endif
2291
2292 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2293 {
2294 struct perf_event *event = vma->vm_file->private_data;
2295 struct perf_mmap_data *data;
2296 int ret = VM_FAULT_SIGBUS;
2297
2298 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2299 if (vmf->pgoff == 0)
2300 ret = 0;
2301 return ret;
2302 }
2303
2304 rcu_read_lock();
2305 data = rcu_dereference(event->data);
2306 if (!data)
2307 goto unlock;
2308
2309 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2310 goto unlock;
2311
2312 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2313 if (!vmf->page)
2314 goto unlock;
2315
2316 get_page(vmf->page);
2317 vmf->page->mapping = vma->vm_file->f_mapping;
2318 vmf->page->index = vmf->pgoff;
2319
2320 ret = 0;
2321 unlock:
2322 rcu_read_unlock();
2323
2324 return ret;
2325 }
2326
2327 static void
2328 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2329 {
2330 long max_size = perf_data_size(data);
2331
2332 atomic_set(&data->lock, -1);
2333
2334 if (event->attr.watermark) {
2335 data->watermark = min_t(long, max_size,
2336 event->attr.wakeup_watermark);
2337 }
2338
2339 if (!data->watermark)
2340 data->watermark = max_t(long, PAGE_SIZE, max_size / 2);
2341
2342
2343 rcu_assign_pointer(event->data, data);
2344 }
2345
2346 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2347 {
2348 struct perf_mmap_data *data;
2349
2350 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2351 perf_mmap_data_free(data);
2352 kfree(data);
2353 }
2354
2355 static void perf_mmap_data_release(struct perf_event *event)
2356 {
2357 struct perf_mmap_data *data = event->data;
2358
2359 WARN_ON(atomic_read(&event->mmap_count));
2360
2361 rcu_assign_pointer(event->data, NULL);
2362 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2363 }
2364
2365 static void perf_mmap_open(struct vm_area_struct *vma)
2366 {
2367 struct perf_event *event = vma->vm_file->private_data;
2368
2369 atomic_inc(&event->mmap_count);
2370 }
2371
2372 static void perf_mmap_close(struct vm_area_struct *vma)
2373 {
2374 struct perf_event *event = vma->vm_file->private_data;
2375
2376 WARN_ON_ONCE(event->ctx->parent_ctx);
2377 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2378 unsigned long size = perf_data_size(event->data);
2379 struct user_struct *user = current_user();
2380
2381 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2382 vma->vm_mm->locked_vm -= event->data->nr_locked;
2383 perf_mmap_data_release(event);
2384 mutex_unlock(&event->mmap_mutex);
2385 }
2386 }
2387
2388 static const struct vm_operations_struct perf_mmap_vmops = {
2389 .open = perf_mmap_open,
2390 .close = perf_mmap_close,
2391 .fault = perf_mmap_fault,
2392 .page_mkwrite = perf_mmap_fault,
2393 };
2394
2395 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2396 {
2397 struct perf_event *event = file->private_data;
2398 unsigned long user_locked, user_lock_limit;
2399 struct user_struct *user = current_user();
2400 unsigned long locked, lock_limit;
2401 struct perf_mmap_data *data;
2402 unsigned long vma_size;
2403 unsigned long nr_pages;
2404 long user_extra, extra;
2405 int ret = 0;
2406
2407 if (!(vma->vm_flags & VM_SHARED))
2408 return -EINVAL;
2409
2410 vma_size = vma->vm_end - vma->vm_start;
2411 nr_pages = (vma_size / PAGE_SIZE) - 1;
2412
2413 /*
2414 * If we have data pages ensure they're a power-of-two number, so we
2415 * can do bitmasks instead of modulo.
2416 */
2417 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2418 return -EINVAL;
2419
2420 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2421 return -EINVAL;
2422
2423 if (vma->vm_pgoff != 0)
2424 return -EINVAL;
2425
2426 WARN_ON_ONCE(event->ctx->parent_ctx);
2427 mutex_lock(&event->mmap_mutex);
2428 if (event->output) {
2429 ret = -EINVAL;
2430 goto unlock;
2431 }
2432
2433 if (atomic_inc_not_zero(&event->mmap_count)) {
2434 if (nr_pages != event->data->nr_pages)
2435 ret = -EINVAL;
2436 goto unlock;
2437 }
2438
2439 user_extra = nr_pages + 1;
2440 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2441
2442 /*
2443 * Increase the limit linearly with more CPUs:
2444 */
2445 user_lock_limit *= num_online_cpus();
2446
2447 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2448
2449 extra = 0;
2450 if (user_locked > user_lock_limit)
2451 extra = user_locked - user_lock_limit;
2452
2453 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2454 lock_limit >>= PAGE_SHIFT;
2455 locked = vma->vm_mm->locked_vm + extra;
2456
2457 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2458 !capable(CAP_IPC_LOCK)) {
2459 ret = -EPERM;
2460 goto unlock;
2461 }
2462
2463 WARN_ON(event->data);
2464
2465 data = perf_mmap_data_alloc(event, nr_pages);
2466 ret = -ENOMEM;
2467 if (!data)
2468 goto unlock;
2469
2470 ret = 0;
2471 perf_mmap_data_init(event, data);
2472
2473 atomic_set(&event->mmap_count, 1);
2474 atomic_long_add(user_extra, &user->locked_vm);
2475 vma->vm_mm->locked_vm += extra;
2476 event->data->nr_locked = extra;
2477 if (vma->vm_flags & VM_WRITE)
2478 event->data->writable = 1;
2479
2480 unlock:
2481 mutex_unlock(&event->mmap_mutex);
2482
2483 vma->vm_flags |= VM_RESERVED;
2484 vma->vm_ops = &perf_mmap_vmops;
2485
2486 return ret;
2487 }
2488
2489 static int perf_fasync(int fd, struct file *filp, int on)
2490 {
2491 struct inode *inode = filp->f_path.dentry->d_inode;
2492 struct perf_event *event = filp->private_data;
2493 int retval;
2494
2495 mutex_lock(&inode->i_mutex);
2496 retval = fasync_helper(fd, filp, on, &event->fasync);
2497 mutex_unlock(&inode->i_mutex);
2498
2499 if (retval < 0)
2500 return retval;
2501
2502 return 0;
2503 }
2504
2505 static const struct file_operations perf_fops = {
2506 .release = perf_release,
2507 .read = perf_read,
2508 .poll = perf_poll,
2509 .unlocked_ioctl = perf_ioctl,
2510 .compat_ioctl = perf_ioctl,
2511 .mmap = perf_mmap,
2512 .fasync = perf_fasync,
2513 };
2514
2515 /*
2516 * Perf event wakeup
2517 *
2518 * If there's data, ensure we set the poll() state and publish everything
2519 * to user-space before waking everybody up.
2520 */
2521
2522 void perf_event_wakeup(struct perf_event *event)
2523 {
2524 wake_up_all(&event->waitq);
2525
2526 if (event->pending_kill) {
2527 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2528 event->pending_kill = 0;
2529 }
2530 }
2531
2532 /*
2533 * Pending wakeups
2534 *
2535 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2536 *
2537 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2538 * single linked list and use cmpxchg() to add entries lockless.
2539 */
2540
2541 static void perf_pending_event(struct perf_pending_entry *entry)
2542 {
2543 struct perf_event *event = container_of(entry,
2544 struct perf_event, pending);
2545
2546 if (event->pending_disable) {
2547 event->pending_disable = 0;
2548 __perf_event_disable(event);
2549 }
2550
2551 if (event->pending_wakeup) {
2552 event->pending_wakeup = 0;
2553 perf_event_wakeup(event);
2554 }
2555 }
2556
2557 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2558
2559 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2560 PENDING_TAIL,
2561 };
2562
2563 static void perf_pending_queue(struct perf_pending_entry *entry,
2564 void (*func)(struct perf_pending_entry *))
2565 {
2566 struct perf_pending_entry **head;
2567
2568 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2569 return;
2570
2571 entry->func = func;
2572
2573 head = &get_cpu_var(perf_pending_head);
2574
2575 do {
2576 entry->next = *head;
2577 } while (cmpxchg(head, entry->next, entry) != entry->next);
2578
2579 set_perf_event_pending();
2580
2581 put_cpu_var(perf_pending_head);
2582 }
2583
2584 static int __perf_pending_run(void)
2585 {
2586 struct perf_pending_entry *list;
2587 int nr = 0;
2588
2589 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2590 while (list != PENDING_TAIL) {
2591 void (*func)(struct perf_pending_entry *);
2592 struct perf_pending_entry *entry = list;
2593
2594 list = list->next;
2595
2596 func = entry->func;
2597 entry->next = NULL;
2598 /*
2599 * Ensure we observe the unqueue before we issue the wakeup,
2600 * so that we won't be waiting forever.
2601 * -- see perf_not_pending().
2602 */
2603 smp_wmb();
2604
2605 func(entry);
2606 nr++;
2607 }
2608
2609 return nr;
2610 }
2611
2612 static inline int perf_not_pending(struct perf_event *event)
2613 {
2614 /*
2615 * If we flush on whatever cpu we run, there is a chance we don't
2616 * need to wait.
2617 */
2618 get_cpu();
2619 __perf_pending_run();
2620 put_cpu();
2621
2622 /*
2623 * Ensure we see the proper queue state before going to sleep
2624 * so that we do not miss the wakeup. -- see perf_pending_handle()
2625 */
2626 smp_rmb();
2627 return event->pending.next == NULL;
2628 }
2629
2630 static void perf_pending_sync(struct perf_event *event)
2631 {
2632 wait_event(event->waitq, perf_not_pending(event));
2633 }
2634
2635 void perf_event_do_pending(void)
2636 {
2637 __perf_pending_run();
2638 }
2639
2640 /*
2641 * Callchain support -- arch specific
2642 */
2643
2644 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2645 {
2646 return NULL;
2647 }
2648
2649 /*
2650 * Output
2651 */
2652 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2653 unsigned long offset, unsigned long head)
2654 {
2655 unsigned long mask;
2656
2657 if (!data->writable)
2658 return true;
2659
2660 mask = perf_data_size(data) - 1;
2661
2662 offset = (offset - tail) & mask;
2663 head = (head - tail) & mask;
2664
2665 if ((int)(head - offset) < 0)
2666 return false;
2667
2668 return true;
2669 }
2670
2671 static void perf_output_wakeup(struct perf_output_handle *handle)
2672 {
2673 atomic_set(&handle->data->poll, POLL_IN);
2674
2675 if (handle->nmi) {
2676 handle->event->pending_wakeup = 1;
2677 perf_pending_queue(&handle->event->pending,
2678 perf_pending_event);
2679 } else
2680 perf_event_wakeup(handle->event);
2681 }
2682
2683 /*
2684 * Curious locking construct.
2685 *
2686 * We need to ensure a later event_id doesn't publish a head when a former
2687 * event_id isn't done writing. However since we need to deal with NMIs we
2688 * cannot fully serialize things.
2689 *
2690 * What we do is serialize between CPUs so we only have to deal with NMI
2691 * nesting on a single CPU.
2692 *
2693 * We only publish the head (and generate a wakeup) when the outer-most
2694 * event_id completes.
2695 */
2696 static void perf_output_lock(struct perf_output_handle *handle)
2697 {
2698 struct perf_mmap_data *data = handle->data;
2699 int cur, cpu = get_cpu();
2700
2701 handle->locked = 0;
2702
2703 for (;;) {
2704 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2705 if (cur == -1) {
2706 handle->locked = 1;
2707 break;
2708 }
2709 if (cur == cpu)
2710 break;
2711
2712 cpu_relax();
2713 }
2714 }
2715
2716 static void perf_output_unlock(struct perf_output_handle *handle)
2717 {
2718 struct perf_mmap_data *data = handle->data;
2719 unsigned long head;
2720 int cpu;
2721
2722 data->done_head = data->head;
2723
2724 if (!handle->locked)
2725 goto out;
2726
2727 again:
2728 /*
2729 * The xchg implies a full barrier that ensures all writes are done
2730 * before we publish the new head, matched by a rmb() in userspace when
2731 * reading this position.
2732 */
2733 while ((head = atomic_long_xchg(&data->done_head, 0)))
2734 data->user_page->data_head = head;
2735
2736 /*
2737 * NMI can happen here, which means we can miss a done_head update.
2738 */
2739
2740 cpu = atomic_xchg(&data->lock, -1);
2741 WARN_ON_ONCE(cpu != smp_processor_id());
2742
2743 /*
2744 * Therefore we have to validate we did not indeed do so.
2745 */
2746 if (unlikely(atomic_long_read(&data->done_head))) {
2747 /*
2748 * Since we had it locked, we can lock it again.
2749 */
2750 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2751 cpu_relax();
2752
2753 goto again;
2754 }
2755
2756 if (atomic_xchg(&data->wakeup, 0))
2757 perf_output_wakeup(handle);
2758 out:
2759 put_cpu();
2760 }
2761
2762 void perf_output_copy(struct perf_output_handle *handle,
2763 const void *buf, unsigned int len)
2764 {
2765 unsigned int pages_mask;
2766 unsigned long offset;
2767 unsigned int size;
2768 void **pages;
2769
2770 offset = handle->offset;
2771 pages_mask = handle->data->nr_pages - 1;
2772 pages = handle->data->data_pages;
2773
2774 do {
2775 unsigned long page_offset;
2776 unsigned long page_size;
2777 int nr;
2778
2779 nr = (offset >> PAGE_SHIFT) & pages_mask;
2780 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2781 page_offset = offset & (page_size - 1);
2782 size = min_t(unsigned int, page_size - page_offset, len);
2783
2784 memcpy(pages[nr] + page_offset, buf, size);
2785
2786 len -= size;
2787 buf += size;
2788 offset += size;
2789 } while (len);
2790
2791 handle->offset = offset;
2792
2793 /*
2794 * Check we didn't copy past our reservation window, taking the
2795 * possible unsigned int wrap into account.
2796 */
2797 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2798 }
2799
2800 int perf_output_begin(struct perf_output_handle *handle,
2801 struct perf_event *event, unsigned int size,
2802 int nmi, int sample)
2803 {
2804 struct perf_event *output_event;
2805 struct perf_mmap_data *data;
2806 unsigned long tail, offset, head;
2807 int have_lost;
2808 struct {
2809 struct perf_event_header header;
2810 u64 id;
2811 u64 lost;
2812 } lost_event;
2813
2814 rcu_read_lock();
2815 /*
2816 * For inherited events we send all the output towards the parent.
2817 */
2818 if (event->parent)
2819 event = event->parent;
2820
2821 output_event = rcu_dereference(event->output);
2822 if (output_event)
2823 event = output_event;
2824
2825 data = rcu_dereference(event->data);
2826 if (!data)
2827 goto out;
2828
2829 handle->data = data;
2830 handle->event = event;
2831 handle->nmi = nmi;
2832 handle->sample = sample;
2833
2834 if (!data->nr_pages)
2835 goto fail;
2836
2837 have_lost = atomic_read(&data->lost);
2838 if (have_lost)
2839 size += sizeof(lost_event);
2840
2841 perf_output_lock(handle);
2842
2843 do {
2844 /*
2845 * Userspace could choose to issue a mb() before updating the
2846 * tail pointer. So that all reads will be completed before the
2847 * write is issued.
2848 */
2849 tail = ACCESS_ONCE(data->user_page->data_tail);
2850 smp_rmb();
2851 offset = head = atomic_long_read(&data->head);
2852 head += size;
2853 if (unlikely(!perf_output_space(data, tail, offset, head)))
2854 goto fail;
2855 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2856
2857 handle->offset = offset;
2858 handle->head = head;
2859
2860 if (head - tail > data->watermark)
2861 atomic_set(&data->wakeup, 1);
2862
2863 if (have_lost) {
2864 lost_event.header.type = PERF_RECORD_LOST;
2865 lost_event.header.misc = 0;
2866 lost_event.header.size = sizeof(lost_event);
2867 lost_event.id = event->id;
2868 lost_event.lost = atomic_xchg(&data->lost, 0);
2869
2870 perf_output_put(handle, lost_event);
2871 }
2872
2873 return 0;
2874
2875 fail:
2876 atomic_inc(&data->lost);
2877 perf_output_unlock(handle);
2878 out:
2879 rcu_read_unlock();
2880
2881 return -ENOSPC;
2882 }
2883
2884 void perf_output_end(struct perf_output_handle *handle)
2885 {
2886 struct perf_event *event = handle->event;
2887 struct perf_mmap_data *data = handle->data;
2888
2889 int wakeup_events = event->attr.wakeup_events;
2890
2891 if (handle->sample && wakeup_events) {
2892 int events = atomic_inc_return(&data->events);
2893 if (events >= wakeup_events) {
2894 atomic_sub(wakeup_events, &data->events);
2895 atomic_set(&data->wakeup, 1);
2896 }
2897 }
2898
2899 perf_output_unlock(handle);
2900 rcu_read_unlock();
2901 }
2902
2903 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2904 {
2905 /*
2906 * only top level events have the pid namespace they were created in
2907 */
2908 if (event->parent)
2909 event = event->parent;
2910
2911 return task_tgid_nr_ns(p, event->ns);
2912 }
2913
2914 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2915 {
2916 /*
2917 * only top level events have the pid namespace they were created in
2918 */
2919 if (event->parent)
2920 event = event->parent;
2921
2922 return task_pid_nr_ns(p, event->ns);
2923 }
2924
2925 static void perf_output_read_one(struct perf_output_handle *handle,
2926 struct perf_event *event)
2927 {
2928 u64 read_format = event->attr.read_format;
2929 u64 values[4];
2930 int n = 0;
2931
2932 values[n++] = atomic64_read(&event->count);
2933 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2934 values[n++] = event->total_time_enabled +
2935 atomic64_read(&event->child_total_time_enabled);
2936 }
2937 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2938 values[n++] = event->total_time_running +
2939 atomic64_read(&event->child_total_time_running);
2940 }
2941 if (read_format & PERF_FORMAT_ID)
2942 values[n++] = primary_event_id(event);
2943
2944 perf_output_copy(handle, values, n * sizeof(u64));
2945 }
2946
2947 /*
2948 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2949 */
2950 static void perf_output_read_group(struct perf_output_handle *handle,
2951 struct perf_event *event)
2952 {
2953 struct perf_event *leader = event->group_leader, *sub;
2954 u64 read_format = event->attr.read_format;
2955 u64 values[5];
2956 int n = 0;
2957
2958 values[n++] = 1 + leader->nr_siblings;
2959
2960 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2961 values[n++] = leader->total_time_enabled;
2962
2963 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2964 values[n++] = leader->total_time_running;
2965
2966 if (leader != event)
2967 leader->pmu->read(leader);
2968
2969 values[n++] = atomic64_read(&leader->count);
2970 if (read_format & PERF_FORMAT_ID)
2971 values[n++] = primary_event_id(leader);
2972
2973 perf_output_copy(handle, values, n * sizeof(u64));
2974
2975 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2976 n = 0;
2977
2978 if (sub != event)
2979 sub->pmu->read(sub);
2980
2981 values[n++] = atomic64_read(&sub->count);
2982 if (read_format & PERF_FORMAT_ID)
2983 values[n++] = primary_event_id(sub);
2984
2985 perf_output_copy(handle, values, n * sizeof(u64));
2986 }
2987 }
2988
2989 static void perf_output_read(struct perf_output_handle *handle,
2990 struct perf_event *event)
2991 {
2992 if (event->attr.read_format & PERF_FORMAT_GROUP)
2993 perf_output_read_group(handle, event);
2994 else
2995 perf_output_read_one(handle, event);
2996 }
2997
2998 void perf_output_sample(struct perf_output_handle *handle,
2999 struct perf_event_header *header,
3000 struct perf_sample_data *data,
3001 struct perf_event *event)
3002 {
3003 u64 sample_type = data->type;
3004
3005 perf_output_put(handle, *header);
3006
3007 if (sample_type & PERF_SAMPLE_IP)
3008 perf_output_put(handle, data->ip);
3009
3010 if (sample_type & PERF_SAMPLE_TID)
3011 perf_output_put(handle, data->tid_entry);
3012
3013 if (sample_type & PERF_SAMPLE_TIME)
3014 perf_output_put(handle, data->time);
3015
3016 if (sample_type & PERF_SAMPLE_ADDR)
3017 perf_output_put(handle, data->addr);
3018
3019 if (sample_type & PERF_SAMPLE_ID)
3020 perf_output_put(handle, data->id);
3021
3022 if (sample_type & PERF_SAMPLE_STREAM_ID)
3023 perf_output_put(handle, data->stream_id);
3024
3025 if (sample_type & PERF_SAMPLE_CPU)
3026 perf_output_put(handle, data->cpu_entry);
3027
3028 if (sample_type & PERF_SAMPLE_PERIOD)
3029 perf_output_put(handle, data->period);
3030
3031 if (sample_type & PERF_SAMPLE_READ)
3032 perf_output_read(handle, event);
3033
3034 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3035 if (data->callchain) {
3036 int size = 1;
3037
3038 if (data->callchain)
3039 size += data->callchain->nr;
3040
3041 size *= sizeof(u64);
3042
3043 perf_output_copy(handle, data->callchain, size);
3044 } else {
3045 u64 nr = 0;
3046 perf_output_put(handle, nr);
3047 }
3048 }
3049
3050 if (sample_type & PERF_SAMPLE_RAW) {
3051 if (data->raw) {
3052 perf_output_put(handle, data->raw->size);
3053 perf_output_copy(handle, data->raw->data,
3054 data->raw->size);
3055 } else {
3056 struct {
3057 u32 size;
3058 u32 data;
3059 } raw = {
3060 .size = sizeof(u32),
3061 .data = 0,
3062 };
3063 perf_output_put(handle, raw);
3064 }
3065 }
3066 }
3067
3068 void perf_prepare_sample(struct perf_event_header *header,
3069 struct perf_sample_data *data,
3070 struct perf_event *event,
3071 struct pt_regs *regs)
3072 {
3073 u64 sample_type = event->attr.sample_type;
3074
3075 data->type = sample_type;
3076
3077 header->type = PERF_RECORD_SAMPLE;
3078 header->size = sizeof(*header);
3079
3080 header->misc = 0;
3081 header->misc |= perf_misc_flags(regs);
3082
3083 if (sample_type & PERF_SAMPLE_IP) {
3084 data->ip = perf_instruction_pointer(regs);
3085
3086 header->size += sizeof(data->ip);
3087 }
3088
3089 if (sample_type & PERF_SAMPLE_TID) {
3090 /* namespace issues */
3091 data->tid_entry.pid = perf_event_pid(event, current);
3092 data->tid_entry.tid = perf_event_tid(event, current);
3093
3094 header->size += sizeof(data->tid_entry);
3095 }
3096
3097 if (sample_type & PERF_SAMPLE_TIME) {
3098 data->time = perf_clock();
3099
3100 header->size += sizeof(data->time);
3101 }
3102
3103 if (sample_type & PERF_SAMPLE_ADDR)
3104 header->size += sizeof(data->addr);
3105
3106 if (sample_type & PERF_SAMPLE_ID) {
3107 data->id = primary_event_id(event);
3108
3109 header->size += sizeof(data->id);
3110 }
3111
3112 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3113 data->stream_id = event->id;
3114
3115 header->size += sizeof(data->stream_id);
3116 }
3117
3118 if (sample_type & PERF_SAMPLE_CPU) {
3119 data->cpu_entry.cpu = raw_smp_processor_id();
3120 data->cpu_entry.reserved = 0;
3121
3122 header->size += sizeof(data->cpu_entry);
3123 }
3124
3125 if (sample_type & PERF_SAMPLE_PERIOD)
3126 header->size += sizeof(data->period);
3127
3128 if (sample_type & PERF_SAMPLE_READ)
3129 header->size += perf_event_read_size(event);
3130
3131 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3132 int size = 1;
3133
3134 data->callchain = perf_callchain(regs);
3135
3136 if (data->callchain)
3137 size += data->callchain->nr;
3138
3139 header->size += size * sizeof(u64);
3140 }
3141
3142 if (sample_type & PERF_SAMPLE_RAW) {
3143 int size = sizeof(u32);
3144
3145 if (data->raw)
3146 size += data->raw->size;
3147 else
3148 size += sizeof(u32);
3149
3150 WARN_ON_ONCE(size & (sizeof(u64)-1));
3151 header->size += size;
3152 }
3153 }
3154
3155 static void perf_event_output(struct perf_event *event, int nmi,
3156 struct perf_sample_data *data,
3157 struct pt_regs *regs)
3158 {
3159 struct perf_output_handle handle;
3160 struct perf_event_header header;
3161
3162 perf_prepare_sample(&header, data, event, regs);
3163
3164 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3165 return;
3166
3167 perf_output_sample(&handle, &header, data, event);
3168
3169 perf_output_end(&handle);
3170 }
3171
3172 /*
3173 * read event_id
3174 */
3175
3176 struct perf_read_event {
3177 struct perf_event_header header;
3178
3179 u32 pid;
3180 u32 tid;
3181 };
3182
3183 static void
3184 perf_event_read_event(struct perf_event *event,
3185 struct task_struct *task)
3186 {
3187 struct perf_output_handle handle;
3188 struct perf_read_event read_event = {
3189 .header = {
3190 .type = PERF_RECORD_READ,
3191 .misc = 0,
3192 .size = sizeof(read_event) + perf_event_read_size(event),
3193 },
3194 .pid = perf_event_pid(event, task),
3195 .tid = perf_event_tid(event, task),
3196 };
3197 int ret;
3198
3199 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3200 if (ret)
3201 return;
3202
3203 perf_output_put(&handle, read_event);
3204 perf_output_read(&handle, event);
3205
3206 perf_output_end(&handle);
3207 }
3208
3209 /*
3210 * task tracking -- fork/exit
3211 *
3212 * enabled by: attr.comm | attr.mmap | attr.task
3213 */
3214
3215 struct perf_task_event {
3216 struct task_struct *task;
3217 struct perf_event_context *task_ctx;
3218
3219 struct {
3220 struct perf_event_header header;
3221
3222 u32 pid;
3223 u32 ppid;
3224 u32 tid;
3225 u32 ptid;
3226 u64 time;
3227 } event_id;
3228 };
3229
3230 static void perf_event_task_output(struct perf_event *event,
3231 struct perf_task_event *task_event)
3232 {
3233 struct perf_output_handle handle;
3234 int size;
3235 struct task_struct *task = task_event->task;
3236 int ret;
3237
3238 size = task_event->event_id.header.size;
3239 ret = perf_output_begin(&handle, event, size, 0, 0);
3240
3241 if (ret)
3242 return;
3243
3244 task_event->event_id.pid = perf_event_pid(event, task);
3245 task_event->event_id.ppid = perf_event_pid(event, current);
3246
3247 task_event->event_id.tid = perf_event_tid(event, task);
3248 task_event->event_id.ptid = perf_event_tid(event, current);
3249
3250 task_event->event_id.time = perf_clock();
3251
3252 perf_output_put(&handle, task_event->event_id);
3253
3254 perf_output_end(&handle);
3255 }
3256
3257 static int perf_event_task_match(struct perf_event *event)
3258 {
3259 if (event->attr.comm || event->attr.mmap || event->attr.task)
3260 return 1;
3261
3262 return 0;
3263 }
3264
3265 static void perf_event_task_ctx(struct perf_event_context *ctx,
3266 struct perf_task_event *task_event)
3267 {
3268 struct perf_event *event;
3269
3270 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3271 return;
3272
3273 rcu_read_lock();
3274 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3275 if (perf_event_task_match(event))
3276 perf_event_task_output(event, task_event);
3277 }
3278 rcu_read_unlock();
3279 }
3280
3281 static void perf_event_task_event(struct perf_task_event *task_event)
3282 {
3283 struct perf_cpu_context *cpuctx;
3284 struct perf_event_context *ctx = task_event->task_ctx;
3285
3286 cpuctx = &get_cpu_var(perf_cpu_context);
3287 perf_event_task_ctx(&cpuctx->ctx, task_event);
3288 put_cpu_var(perf_cpu_context);
3289
3290 rcu_read_lock();
3291 if (!ctx)
3292 ctx = rcu_dereference(task_event->task->perf_event_ctxp);
3293 if (ctx)
3294 perf_event_task_ctx(ctx, task_event);
3295 rcu_read_unlock();
3296 }
3297
3298 static void perf_event_task(struct task_struct *task,
3299 struct perf_event_context *task_ctx,
3300 int new)
3301 {
3302 struct perf_task_event task_event;
3303
3304 if (!atomic_read(&nr_comm_events) &&
3305 !atomic_read(&nr_mmap_events) &&
3306 !atomic_read(&nr_task_events))
3307 return;
3308
3309 task_event = (struct perf_task_event){
3310 .task = task,
3311 .task_ctx = task_ctx,
3312 .event_id = {
3313 .header = {
3314 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3315 .misc = 0,
3316 .size = sizeof(task_event.event_id),
3317 },
3318 /* .pid */
3319 /* .ppid */
3320 /* .tid */
3321 /* .ptid */
3322 },
3323 };
3324
3325 perf_event_task_event(&task_event);
3326 }
3327
3328 void perf_event_fork(struct task_struct *task)
3329 {
3330 perf_event_task(task, NULL, 1);
3331 }
3332
3333 /*
3334 * comm tracking
3335 */
3336
3337 struct perf_comm_event {
3338 struct task_struct *task;
3339 char *comm;
3340 int comm_size;
3341
3342 struct {
3343 struct perf_event_header header;
3344
3345 u32 pid;
3346 u32 tid;
3347 } event_id;
3348 };
3349
3350 static void perf_event_comm_output(struct perf_event *event,
3351 struct perf_comm_event *comm_event)
3352 {
3353 struct perf_output_handle handle;
3354 int size = comm_event->event_id.header.size;
3355 int ret = perf_output_begin(&handle, event, size, 0, 0);
3356
3357 if (ret)
3358 return;
3359
3360 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3361 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3362
3363 perf_output_put(&handle, comm_event->event_id);
3364 perf_output_copy(&handle, comm_event->comm,
3365 comm_event->comm_size);
3366 perf_output_end(&handle);
3367 }
3368
3369 static int perf_event_comm_match(struct perf_event *event)
3370 {
3371 if (event->attr.comm)
3372 return 1;
3373
3374 return 0;
3375 }
3376
3377 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3378 struct perf_comm_event *comm_event)
3379 {
3380 struct perf_event *event;
3381
3382 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3383 return;
3384
3385 rcu_read_lock();
3386 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3387 if (perf_event_comm_match(event))
3388 perf_event_comm_output(event, comm_event);
3389 }
3390 rcu_read_unlock();
3391 }
3392
3393 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3394 {
3395 struct perf_cpu_context *cpuctx;
3396 struct perf_event_context *ctx;
3397 unsigned int size;
3398 char comm[TASK_COMM_LEN];
3399
3400 memset(comm, 0, sizeof(comm));
3401 strncpy(comm, comm_event->task->comm, sizeof(comm));
3402 size = ALIGN(strlen(comm)+1, sizeof(u64));
3403
3404 comm_event->comm = comm;
3405 comm_event->comm_size = size;
3406
3407 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3408
3409 cpuctx = &get_cpu_var(perf_cpu_context);
3410 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3411 put_cpu_var(perf_cpu_context);
3412
3413 rcu_read_lock();
3414 /*
3415 * doesn't really matter which of the child contexts the
3416 * events ends up in.
3417 */
3418 ctx = rcu_dereference(current->perf_event_ctxp);
3419 if (ctx)
3420 perf_event_comm_ctx(ctx, comm_event);
3421 rcu_read_unlock();
3422 }
3423
3424 void perf_event_comm(struct task_struct *task)
3425 {
3426 struct perf_comm_event comm_event;
3427
3428 if (task->perf_event_ctxp)
3429 perf_event_enable_on_exec(task);
3430
3431 if (!atomic_read(&nr_comm_events))
3432 return;
3433
3434 comm_event = (struct perf_comm_event){
3435 .task = task,
3436 /* .comm */
3437 /* .comm_size */
3438 .event_id = {
3439 .header = {
3440 .type = PERF_RECORD_COMM,
3441 .misc = 0,
3442 /* .size */
3443 },
3444 /* .pid */
3445 /* .tid */
3446 },
3447 };
3448
3449 perf_event_comm_event(&comm_event);
3450 }
3451
3452 /*
3453 * mmap tracking
3454 */
3455
3456 struct perf_mmap_event {
3457 struct vm_area_struct *vma;
3458
3459 const char *file_name;
3460 int file_size;
3461
3462 struct {
3463 struct perf_event_header header;
3464
3465 u32 pid;
3466 u32 tid;
3467 u64 start;
3468 u64 len;
3469 u64 pgoff;
3470 } event_id;
3471 };
3472
3473 static void perf_event_mmap_output(struct perf_event *event,
3474 struct perf_mmap_event *mmap_event)
3475 {
3476 struct perf_output_handle handle;
3477 int size = mmap_event->event_id.header.size;
3478 int ret = perf_output_begin(&handle, event, size, 0, 0);
3479
3480 if (ret)
3481 return;
3482
3483 mmap_event->event_id.pid = perf_event_pid(event, current);
3484 mmap_event->event_id.tid = perf_event_tid(event, current);
3485
3486 perf_output_put(&handle, mmap_event->event_id);
3487 perf_output_copy(&handle, mmap_event->file_name,
3488 mmap_event->file_size);
3489 perf_output_end(&handle);
3490 }
3491
3492 static int perf_event_mmap_match(struct perf_event *event,
3493 struct perf_mmap_event *mmap_event)
3494 {
3495 if (event->attr.mmap)
3496 return 1;
3497
3498 return 0;
3499 }
3500
3501 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3502 struct perf_mmap_event *mmap_event)
3503 {
3504 struct perf_event *event;
3505
3506 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3507 return;
3508
3509 rcu_read_lock();
3510 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3511 if (perf_event_mmap_match(event, mmap_event))
3512 perf_event_mmap_output(event, mmap_event);
3513 }
3514 rcu_read_unlock();
3515 }
3516
3517 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3518 {
3519 struct perf_cpu_context *cpuctx;
3520 struct perf_event_context *ctx;
3521 struct vm_area_struct *vma = mmap_event->vma;
3522 struct file *file = vma->vm_file;
3523 unsigned int size;
3524 char tmp[16];
3525 char *buf = NULL;
3526 const char *name;
3527
3528 memset(tmp, 0, sizeof(tmp));
3529
3530 if (file) {
3531 /*
3532 * d_path works from the end of the buffer backwards, so we
3533 * need to add enough zero bytes after the string to handle
3534 * the 64bit alignment we do later.
3535 */
3536 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3537 if (!buf) {
3538 name = strncpy(tmp, "//enomem", sizeof(tmp));
3539 goto got_name;
3540 }
3541 name = d_path(&file->f_path, buf, PATH_MAX);
3542 if (IS_ERR(name)) {
3543 name = strncpy(tmp, "//toolong", sizeof(tmp));
3544 goto got_name;
3545 }
3546 } else {
3547 if (arch_vma_name(mmap_event->vma)) {
3548 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3549 sizeof(tmp));
3550 goto got_name;
3551 }
3552
3553 if (!vma->vm_mm) {
3554 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3555 goto got_name;
3556 }
3557
3558 name = strncpy(tmp, "//anon", sizeof(tmp));
3559 goto got_name;
3560 }
3561
3562 got_name:
3563 size = ALIGN(strlen(name)+1, sizeof(u64));
3564
3565 mmap_event->file_name = name;
3566 mmap_event->file_size = size;
3567
3568 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3569
3570 cpuctx = &get_cpu_var(perf_cpu_context);
3571 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3572 put_cpu_var(perf_cpu_context);
3573
3574 rcu_read_lock();
3575 /*
3576 * doesn't really matter which of the child contexts the
3577 * events ends up in.
3578 */
3579 ctx = rcu_dereference(current->perf_event_ctxp);
3580 if (ctx)
3581 perf_event_mmap_ctx(ctx, mmap_event);
3582 rcu_read_unlock();
3583
3584 kfree(buf);
3585 }
3586
3587 void __perf_event_mmap(struct vm_area_struct *vma)
3588 {
3589 struct perf_mmap_event mmap_event;
3590
3591 if (!atomic_read(&nr_mmap_events))
3592 return;
3593
3594 mmap_event = (struct perf_mmap_event){
3595 .vma = vma,
3596 /* .file_name */
3597 /* .file_size */
3598 .event_id = {
3599 .header = {
3600 .type = PERF_RECORD_MMAP,
3601 .misc = 0,
3602 /* .size */
3603 },
3604 /* .pid */
3605 /* .tid */
3606 .start = vma->vm_start,
3607 .len = vma->vm_end - vma->vm_start,
3608 .pgoff = vma->vm_pgoff,
3609 },
3610 };
3611
3612 perf_event_mmap_event(&mmap_event);
3613 }
3614
3615 /*
3616 * IRQ throttle logging
3617 */
3618
3619 static void perf_log_throttle(struct perf_event *event, int enable)
3620 {
3621 struct perf_output_handle handle;
3622 int ret;
3623
3624 struct {
3625 struct perf_event_header header;
3626 u64 time;
3627 u64 id;
3628 u64 stream_id;
3629 } throttle_event = {
3630 .header = {
3631 .type = PERF_RECORD_THROTTLE,
3632 .misc = 0,
3633 .size = sizeof(throttle_event),
3634 },
3635 .time = perf_clock(),
3636 .id = primary_event_id(event),
3637 .stream_id = event->id,
3638 };
3639
3640 if (enable)
3641 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3642
3643 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3644 if (ret)
3645 return;
3646
3647 perf_output_put(&handle, throttle_event);
3648 perf_output_end(&handle);
3649 }
3650
3651 /*
3652 * Generic event overflow handling, sampling.
3653 */
3654
3655 static int __perf_event_overflow(struct perf_event *event, int nmi,
3656 int throttle, struct perf_sample_data *data,
3657 struct pt_regs *regs)
3658 {
3659 int events = atomic_read(&event->event_limit);
3660 struct hw_perf_event *hwc = &event->hw;
3661 int ret = 0;
3662
3663 throttle = (throttle && event->pmu->unthrottle != NULL);
3664
3665 if (!throttle) {
3666 hwc->interrupts++;
3667 } else {
3668 if (hwc->interrupts != MAX_INTERRUPTS) {
3669 hwc->interrupts++;
3670 if (HZ * hwc->interrupts >
3671 (u64)sysctl_perf_event_sample_rate) {
3672 hwc->interrupts = MAX_INTERRUPTS;
3673 perf_log_throttle(event, 0);
3674 ret = 1;
3675 }
3676 } else {
3677 /*
3678 * Keep re-disabling events even though on the previous
3679 * pass we disabled it - just in case we raced with a
3680 * sched-in and the event got enabled again:
3681 */
3682 ret = 1;
3683 }
3684 }
3685
3686 if (event->attr.freq) {
3687 u64 now = perf_clock();
3688 s64 delta = now - hwc->freq_stamp;
3689
3690 hwc->freq_stamp = now;
3691
3692 if (delta > 0 && delta < TICK_NSEC)
3693 perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3694 }
3695
3696 /*
3697 * XXX event_limit might not quite work as expected on inherited
3698 * events
3699 */
3700
3701 event->pending_kill = POLL_IN;
3702 if (events && atomic_dec_and_test(&event->event_limit)) {
3703 ret = 1;
3704 event->pending_kill = POLL_HUP;
3705 if (nmi) {
3706 event->pending_disable = 1;
3707 perf_pending_queue(&event->pending,
3708 perf_pending_event);
3709 } else
3710 perf_event_disable(event);
3711 }
3712
3713 if (event->overflow_handler)
3714 event->overflow_handler(event, nmi, data, regs);
3715 else
3716 perf_event_output(event, nmi, data, regs);
3717
3718 return ret;
3719 }
3720
3721 int perf_event_overflow(struct perf_event *event, int nmi,
3722 struct perf_sample_data *data,
3723 struct pt_regs *regs)
3724 {
3725 return __perf_event_overflow(event, nmi, 1, data, regs);
3726 }
3727
3728 /*
3729 * Generic software event infrastructure
3730 */
3731
3732 /*
3733 * We directly increment event->count and keep a second value in
3734 * event->hw.period_left to count intervals. This period event
3735 * is kept in the range [-sample_period, 0] so that we can use the
3736 * sign as trigger.
3737 */
3738
3739 static u64 perf_swevent_set_period(struct perf_event *event)
3740 {
3741 struct hw_perf_event *hwc = &event->hw;
3742 u64 period = hwc->last_period;
3743 u64 nr, offset;
3744 s64 old, val;
3745
3746 hwc->last_period = hwc->sample_period;
3747
3748 again:
3749 old = val = atomic64_read(&hwc->period_left);
3750 if (val < 0)
3751 return 0;
3752
3753 nr = div64_u64(period + val, period);
3754 offset = nr * period;
3755 val -= offset;
3756 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3757 goto again;
3758
3759 return nr;
3760 }
3761
3762 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3763 int nmi, struct perf_sample_data *data,
3764 struct pt_regs *regs)
3765 {
3766 struct hw_perf_event *hwc = &event->hw;
3767 int throttle = 0;
3768
3769 data->period = event->hw.last_period;
3770 if (!overflow)
3771 overflow = perf_swevent_set_period(event);
3772
3773 if (hwc->interrupts == MAX_INTERRUPTS)
3774 return;
3775
3776 for (; overflow; overflow--) {
3777 if (__perf_event_overflow(event, nmi, throttle,
3778 data, regs)) {
3779 /*
3780 * We inhibit the overflow from happening when
3781 * hwc->interrupts == MAX_INTERRUPTS.
3782 */
3783 break;
3784 }
3785 throttle = 1;
3786 }
3787 }
3788
3789 static void perf_swevent_unthrottle(struct perf_event *event)
3790 {
3791 /*
3792 * Nothing to do, we already reset hwc->interrupts.
3793 */
3794 }
3795
3796 static void perf_swevent_add(struct perf_event *event, u64 nr,
3797 int nmi, struct perf_sample_data *data,
3798 struct pt_regs *regs)
3799 {
3800 struct hw_perf_event *hwc = &event->hw;
3801
3802 atomic64_add(nr, &event->count);
3803
3804 if (!regs)
3805 return;
3806
3807 if (!hwc->sample_period)
3808 return;
3809
3810 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3811 return perf_swevent_overflow(event, 1, nmi, data, regs);
3812
3813 if (atomic64_add_negative(nr, &hwc->period_left))
3814 return;
3815
3816 perf_swevent_overflow(event, 0, nmi, data, regs);
3817 }
3818
3819 static int perf_swevent_is_counting(struct perf_event *event)
3820 {
3821 /*
3822 * The event is active, we're good!
3823 */
3824 if (event->state == PERF_EVENT_STATE_ACTIVE)
3825 return 1;
3826
3827 /*
3828 * The event is off/error, not counting.
3829 */
3830 if (event->state != PERF_EVENT_STATE_INACTIVE)
3831 return 0;
3832
3833 /*
3834 * The event is inactive, if the context is active
3835 * we're part of a group that didn't make it on the 'pmu',
3836 * not counting.
3837 */
3838 if (event->ctx->is_active)
3839 return 0;
3840
3841 /*
3842 * We're inactive and the context is too, this means the
3843 * task is scheduled out, we're counting events that happen
3844 * to us, like migration events.
3845 */
3846 return 1;
3847 }
3848
3849 static int perf_tp_event_match(struct perf_event *event,
3850 struct perf_sample_data *data);
3851
3852 static int perf_swevent_match(struct perf_event *event,
3853 enum perf_type_id type,
3854 u32 event_id,
3855 struct perf_sample_data *data,
3856 struct pt_regs *regs)
3857 {
3858 if (!perf_swevent_is_counting(event))
3859 return 0;
3860
3861 if (event->attr.type != type)
3862 return 0;
3863 if (event->attr.config != event_id)
3864 return 0;
3865
3866 if (regs) {
3867 if (event->attr.exclude_user && user_mode(regs))
3868 return 0;
3869
3870 if (event->attr.exclude_kernel && !user_mode(regs))
3871 return 0;
3872 }
3873
3874 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
3875 !perf_tp_event_match(event, data))
3876 return 0;
3877
3878 return 1;
3879 }
3880
3881 static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3882 enum perf_type_id type,
3883 u32 event_id, u64 nr, int nmi,
3884 struct perf_sample_data *data,
3885 struct pt_regs *regs)
3886 {
3887 struct perf_event *event;
3888
3889 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3890 return;
3891
3892 rcu_read_lock();
3893 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3894 if (perf_swevent_match(event, type, event_id, data, regs))
3895 perf_swevent_add(event, nr, nmi, data, regs);
3896 }
3897 rcu_read_unlock();
3898 }
3899
3900 static int *perf_swevent_recursion_context(struct perf_cpu_context *cpuctx)
3901 {
3902 if (in_nmi())
3903 return &cpuctx->recursion[3];
3904
3905 if (in_irq())
3906 return &cpuctx->recursion[2];
3907
3908 if (in_softirq())
3909 return &cpuctx->recursion[1];
3910
3911 return &cpuctx->recursion[0];
3912 }
3913
3914 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
3915 u64 nr, int nmi,
3916 struct perf_sample_data *data,
3917 struct pt_regs *regs)
3918 {
3919 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3920 int *recursion = perf_swevent_recursion_context(cpuctx);
3921 struct perf_event_context *ctx;
3922
3923 if (*recursion)
3924 goto out;
3925
3926 (*recursion)++;
3927 barrier();
3928
3929 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
3930 nr, nmi, data, regs);
3931 rcu_read_lock();
3932 /*
3933 * doesn't really matter which of the child contexts the
3934 * events ends up in.
3935 */
3936 ctx = rcu_dereference(current->perf_event_ctxp);
3937 if (ctx)
3938 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
3939 rcu_read_unlock();
3940
3941 barrier();
3942 (*recursion)--;
3943
3944 out:
3945 put_cpu_var(perf_cpu_context);
3946 }
3947
3948 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
3949 struct pt_regs *regs, u64 addr)
3950 {
3951 struct perf_sample_data data = {
3952 .addr = addr,
3953 };
3954
3955 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi,
3956 &data, regs);
3957 }
3958
3959 static void perf_swevent_read(struct perf_event *event)
3960 {
3961 }
3962
3963 static int perf_swevent_enable(struct perf_event *event)
3964 {
3965 struct hw_perf_event *hwc = &event->hw;
3966
3967 if (hwc->sample_period) {
3968 hwc->last_period = hwc->sample_period;
3969 perf_swevent_set_period(event);
3970 }
3971 return 0;
3972 }
3973
3974 static void perf_swevent_disable(struct perf_event *event)
3975 {
3976 }
3977
3978 static const struct pmu perf_ops_generic = {
3979 .enable = perf_swevent_enable,
3980 .disable = perf_swevent_disable,
3981 .read = perf_swevent_read,
3982 .unthrottle = perf_swevent_unthrottle,
3983 };
3984
3985 /*
3986 * hrtimer based swevent callback
3987 */
3988
3989 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
3990 {
3991 enum hrtimer_restart ret = HRTIMER_RESTART;
3992 struct perf_sample_data data;
3993 struct pt_regs *regs;
3994 struct perf_event *event;
3995 u64 period;
3996
3997 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
3998 event->pmu->read(event);
3999
4000 data.addr = 0;
4001 regs = get_irq_regs();
4002 /*
4003 * In case we exclude kernel IPs or are somehow not in interrupt
4004 * context, provide the next best thing, the user IP.
4005 */
4006 if ((event->attr.exclude_kernel || !regs) &&
4007 !event->attr.exclude_user)
4008 regs = task_pt_regs(current);
4009
4010 if (regs) {
4011 if (!(event->attr.exclude_idle && current->pid == 0))
4012 if (perf_event_overflow(event, 0, &data, regs))
4013 ret = HRTIMER_NORESTART;
4014 }
4015
4016 period = max_t(u64, 10000, event->hw.sample_period);
4017 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4018
4019 return ret;
4020 }
4021
4022 static void perf_swevent_start_hrtimer(struct perf_event *event)
4023 {
4024 struct hw_perf_event *hwc = &event->hw;
4025
4026 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4027 hwc->hrtimer.function = perf_swevent_hrtimer;
4028 if (hwc->sample_period) {
4029 u64 period;
4030
4031 if (hwc->remaining) {
4032 if (hwc->remaining < 0)
4033 period = 10000;
4034 else
4035 period = hwc->remaining;
4036 hwc->remaining = 0;
4037 } else {
4038 period = max_t(u64, 10000, hwc->sample_period);
4039 }
4040 __hrtimer_start_range_ns(&hwc->hrtimer,
4041 ns_to_ktime(period), 0,
4042 HRTIMER_MODE_REL, 0);
4043 }
4044 }
4045
4046 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4047 {
4048 struct hw_perf_event *hwc = &event->hw;
4049
4050 if (hwc->sample_period) {
4051 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4052 hwc->remaining = ktime_to_ns(remaining);
4053
4054 hrtimer_cancel(&hwc->hrtimer);
4055 }
4056 }
4057
4058 /*
4059 * Software event: cpu wall time clock
4060 */
4061
4062 static void cpu_clock_perf_event_update(struct perf_event *event)
4063 {
4064 int cpu = raw_smp_processor_id();
4065 s64 prev;
4066 u64 now;
4067
4068 now = cpu_clock(cpu);
4069 prev = atomic64_read(&event->hw.prev_count);
4070 atomic64_set(&event->hw.prev_count, now);
4071 atomic64_add(now - prev, &event->count);
4072 }
4073
4074 static int cpu_clock_perf_event_enable(struct perf_event *event)
4075 {
4076 struct hw_perf_event *hwc = &event->hw;
4077 int cpu = raw_smp_processor_id();
4078
4079 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4080 perf_swevent_start_hrtimer(event);
4081
4082 return 0;
4083 }
4084
4085 static void cpu_clock_perf_event_disable(struct perf_event *event)
4086 {
4087 perf_swevent_cancel_hrtimer(event);
4088 cpu_clock_perf_event_update(event);
4089 }
4090
4091 static void cpu_clock_perf_event_read(struct perf_event *event)
4092 {
4093 cpu_clock_perf_event_update(event);
4094 }
4095
4096 static const struct pmu perf_ops_cpu_clock = {
4097 .enable = cpu_clock_perf_event_enable,
4098 .disable = cpu_clock_perf_event_disable,
4099 .read = cpu_clock_perf_event_read,
4100 };
4101
4102 /*
4103 * Software event: task time clock
4104 */
4105
4106 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4107 {
4108 u64 prev;
4109 s64 delta;
4110
4111 prev = atomic64_xchg(&event->hw.prev_count, now);
4112 delta = now - prev;
4113 atomic64_add(delta, &event->count);
4114 }
4115
4116 static int task_clock_perf_event_enable(struct perf_event *event)
4117 {
4118 struct hw_perf_event *hwc = &event->hw;
4119 u64 now;
4120
4121 now = event->ctx->time;
4122
4123 atomic64_set(&hwc->prev_count, now);
4124
4125 perf_swevent_start_hrtimer(event);
4126
4127 return 0;
4128 }
4129
4130 static void task_clock_perf_event_disable(struct perf_event *event)
4131 {
4132 perf_swevent_cancel_hrtimer(event);
4133 task_clock_perf_event_update(event, event->ctx->time);
4134
4135 }
4136
4137 static void task_clock_perf_event_read(struct perf_event *event)
4138 {
4139 u64 time;
4140
4141 if (!in_nmi()) {
4142 update_context_time(event->ctx);
4143 time = event->ctx->time;
4144 } else {
4145 u64 now = perf_clock();
4146 u64 delta = now - event->ctx->timestamp;
4147 time = event->ctx->time + delta;
4148 }
4149
4150 task_clock_perf_event_update(event, time);
4151 }
4152
4153 static const struct pmu perf_ops_task_clock = {
4154 .enable = task_clock_perf_event_enable,
4155 .disable = task_clock_perf_event_disable,
4156 .read = task_clock_perf_event_read,
4157 };
4158
4159 #ifdef CONFIG_EVENT_PROFILE
4160
4161 void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4162 int entry_size)
4163 {
4164 struct perf_raw_record raw = {
4165 .size = entry_size,
4166 .data = record,
4167 };
4168
4169 struct perf_sample_data data = {
4170 .addr = addr,
4171 .raw = &raw,
4172 };
4173
4174 struct pt_regs *regs = get_irq_regs();
4175
4176 if (!regs)
4177 regs = task_pt_regs(current);
4178
4179 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4180 &data, regs);
4181 }
4182 EXPORT_SYMBOL_GPL(perf_tp_event);
4183
4184 static int perf_tp_event_match(struct perf_event *event,
4185 struct perf_sample_data *data)
4186 {
4187 void *record = data->raw->data;
4188
4189 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4190 return 1;
4191 return 0;
4192 }
4193
4194 static void tp_perf_event_destroy(struct perf_event *event)
4195 {
4196 ftrace_profile_disable(event->attr.config);
4197 }
4198
4199 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4200 {
4201 /*
4202 * Raw tracepoint data is a severe data leak, only allow root to
4203 * have these.
4204 */
4205 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4206 perf_paranoid_tracepoint_raw() &&
4207 !capable(CAP_SYS_ADMIN))
4208 return ERR_PTR(-EPERM);
4209
4210 if (ftrace_profile_enable(event->attr.config))
4211 return NULL;
4212
4213 event->destroy = tp_perf_event_destroy;
4214
4215 return &perf_ops_generic;
4216 }
4217
4218 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4219 {
4220 char *filter_str;
4221 int ret;
4222
4223 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4224 return -EINVAL;
4225
4226 filter_str = strndup_user(arg, PAGE_SIZE);
4227 if (IS_ERR(filter_str))
4228 return PTR_ERR(filter_str);
4229
4230 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4231
4232 kfree(filter_str);
4233 return ret;
4234 }
4235
4236 static void perf_event_free_filter(struct perf_event *event)
4237 {
4238 ftrace_profile_free_filter(event);
4239 }
4240
4241 #else
4242
4243 static int perf_tp_event_match(struct perf_event *event,
4244 struct perf_sample_data *data)
4245 {
4246 return 1;
4247 }
4248
4249 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4250 {
4251 return NULL;
4252 }
4253
4254 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4255 {
4256 return -ENOENT;
4257 }
4258
4259 static void perf_event_free_filter(struct perf_event *event)
4260 {
4261 }
4262
4263 #endif /* CONFIG_EVENT_PROFILE */
4264
4265 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4266 static void bp_perf_event_destroy(struct perf_event *event)
4267 {
4268 release_bp_slot(event);
4269 }
4270
4271 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4272 {
4273 int err;
4274 /*
4275 * The breakpoint is already filled if we haven't created the counter
4276 * through perf syscall
4277 * FIXME: manage to get trigerred to NULL if it comes from syscalls
4278 */
4279 if (!bp->callback)
4280 err = register_perf_hw_breakpoint(bp);
4281 else
4282 err = __register_perf_hw_breakpoint(bp);
4283 if (err)
4284 return ERR_PTR(err);
4285
4286 bp->destroy = bp_perf_event_destroy;
4287
4288 return &perf_ops_bp;
4289 }
4290
4291 void perf_bp_event(struct perf_event *bp, void *regs)
4292 {
4293 /* TODO */
4294 }
4295 #else
4296 static void bp_perf_event_destroy(struct perf_event *event)
4297 {
4298 }
4299
4300 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4301 {
4302 return NULL;
4303 }
4304
4305 void perf_bp_event(struct perf_event *bp, void *regs)
4306 {
4307 }
4308 #endif
4309
4310 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4311
4312 static void sw_perf_event_destroy(struct perf_event *event)
4313 {
4314 u64 event_id = event->attr.config;
4315
4316 WARN_ON(event->parent);
4317
4318 atomic_dec(&perf_swevent_enabled[event_id]);
4319 }
4320
4321 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4322 {
4323 const struct pmu *pmu = NULL;
4324 u64 event_id = event->attr.config;
4325
4326 /*
4327 * Software events (currently) can't in general distinguish
4328 * between user, kernel and hypervisor events.
4329 * However, context switches and cpu migrations are considered
4330 * to be kernel events, and page faults are never hypervisor
4331 * events.
4332 */
4333 switch (event_id) {
4334 case PERF_COUNT_SW_CPU_CLOCK:
4335 pmu = &perf_ops_cpu_clock;
4336
4337 break;
4338 case PERF_COUNT_SW_TASK_CLOCK:
4339 /*
4340 * If the user instantiates this as a per-cpu event,
4341 * use the cpu_clock event instead.
4342 */
4343 if (event->ctx->task)
4344 pmu = &perf_ops_task_clock;
4345 else
4346 pmu = &perf_ops_cpu_clock;
4347
4348 break;
4349 case PERF_COUNT_SW_PAGE_FAULTS:
4350 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4351 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4352 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4353 case PERF_COUNT_SW_CPU_MIGRATIONS:
4354 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4355 case PERF_COUNT_SW_EMULATION_FAULTS:
4356 if (!event->parent) {
4357 atomic_inc(&perf_swevent_enabled[event_id]);
4358 event->destroy = sw_perf_event_destroy;
4359 }
4360 pmu = &perf_ops_generic;
4361 break;
4362 }
4363
4364 return pmu;
4365 }
4366
4367 /*
4368 * Allocate and initialize a event structure
4369 */
4370 static struct perf_event *
4371 perf_event_alloc(struct perf_event_attr *attr,
4372 int cpu,
4373 struct perf_event_context *ctx,
4374 struct perf_event *group_leader,
4375 struct perf_event *parent_event,
4376 perf_callback_t callback,
4377 gfp_t gfpflags)
4378 {
4379 const struct pmu *pmu;
4380 struct perf_event *event;
4381 struct hw_perf_event *hwc;
4382 long err;
4383
4384 event = kzalloc(sizeof(*event), gfpflags);
4385 if (!event)
4386 return ERR_PTR(-ENOMEM);
4387
4388 /*
4389 * Single events are their own group leaders, with an
4390 * empty sibling list:
4391 */
4392 if (!group_leader)
4393 group_leader = event;
4394
4395 mutex_init(&event->child_mutex);
4396 INIT_LIST_HEAD(&event->child_list);
4397
4398 INIT_LIST_HEAD(&event->group_entry);
4399 INIT_LIST_HEAD(&event->event_entry);
4400 INIT_LIST_HEAD(&event->sibling_list);
4401 init_waitqueue_head(&event->waitq);
4402
4403 mutex_init(&event->mmap_mutex);
4404
4405 event->cpu = cpu;
4406 event->attr = *attr;
4407 event->group_leader = group_leader;
4408 event->pmu = NULL;
4409 event->ctx = ctx;
4410 event->oncpu = -1;
4411
4412 event->parent = parent_event;
4413
4414 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4415 event->id = atomic64_inc_return(&perf_event_id);
4416
4417 event->state = PERF_EVENT_STATE_INACTIVE;
4418
4419 if (!callback && parent_event)
4420 callback = parent_event->callback;
4421
4422 event->callback = callback;
4423
4424 if (attr->disabled)
4425 event->state = PERF_EVENT_STATE_OFF;
4426
4427 pmu = NULL;
4428
4429 hwc = &event->hw;
4430 hwc->sample_period = attr->sample_period;
4431 if (attr->freq && attr->sample_freq)
4432 hwc->sample_period = 1;
4433 hwc->last_period = hwc->sample_period;
4434
4435 atomic64_set(&hwc->period_left, hwc->sample_period);
4436
4437 /*
4438 * we currently do not support PERF_FORMAT_GROUP on inherited events
4439 */
4440 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4441 goto done;
4442
4443 switch (attr->type) {
4444 case PERF_TYPE_RAW:
4445 case PERF_TYPE_HARDWARE:
4446 case PERF_TYPE_HW_CACHE:
4447 pmu = hw_perf_event_init(event);
4448 break;
4449
4450 case PERF_TYPE_SOFTWARE:
4451 pmu = sw_perf_event_init(event);
4452 break;
4453
4454 case PERF_TYPE_TRACEPOINT:
4455 pmu = tp_perf_event_init(event);
4456 break;
4457
4458 case PERF_TYPE_BREAKPOINT:
4459 pmu = bp_perf_event_init(event);
4460 break;
4461
4462
4463 default:
4464 break;
4465 }
4466 done:
4467 err = 0;
4468 if (!pmu)
4469 err = -EINVAL;
4470 else if (IS_ERR(pmu))
4471 err = PTR_ERR(pmu);
4472
4473 if (err) {
4474 if (event->ns)
4475 put_pid_ns(event->ns);
4476 kfree(event);
4477 return ERR_PTR(err);
4478 }
4479
4480 event->pmu = pmu;
4481
4482 if (!event->parent) {
4483 atomic_inc(&nr_events);
4484 if (event->attr.mmap)
4485 atomic_inc(&nr_mmap_events);
4486 if (event->attr.comm)
4487 atomic_inc(&nr_comm_events);
4488 if (event->attr.task)
4489 atomic_inc(&nr_task_events);
4490 }
4491
4492 return event;
4493 }
4494
4495 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4496 struct perf_event_attr *attr)
4497 {
4498 u32 size;
4499 int ret;
4500
4501 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4502 return -EFAULT;
4503
4504 /*
4505 * zero the full structure, so that a short copy will be nice.
4506 */
4507 memset(attr, 0, sizeof(*attr));
4508
4509 ret = get_user(size, &uattr->size);
4510 if (ret)
4511 return ret;
4512
4513 if (size > PAGE_SIZE) /* silly large */
4514 goto err_size;
4515
4516 if (!size) /* abi compat */
4517 size = PERF_ATTR_SIZE_VER0;
4518
4519 if (size < PERF_ATTR_SIZE_VER0)
4520 goto err_size;
4521
4522 /*
4523 * If we're handed a bigger struct than we know of,
4524 * ensure all the unknown bits are 0 - i.e. new
4525 * user-space does not rely on any kernel feature
4526 * extensions we dont know about yet.
4527 */
4528 if (size > sizeof(*attr)) {
4529 unsigned char __user *addr;
4530 unsigned char __user *end;
4531 unsigned char val;
4532
4533 addr = (void __user *)uattr + sizeof(*attr);
4534 end = (void __user *)uattr + size;
4535
4536 for (; addr < end; addr++) {
4537 ret = get_user(val, addr);
4538 if (ret)
4539 return ret;
4540 if (val)
4541 goto err_size;
4542 }
4543 size = sizeof(*attr);
4544 }
4545
4546 ret = copy_from_user(attr, uattr, size);
4547 if (ret)
4548 return -EFAULT;
4549
4550 /*
4551 * If the type exists, the corresponding creation will verify
4552 * the attr->config.
4553 */
4554 if (attr->type >= PERF_TYPE_MAX)
4555 return -EINVAL;
4556
4557 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
4558 return -EINVAL;
4559
4560 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4561 return -EINVAL;
4562
4563 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4564 return -EINVAL;
4565
4566 out:
4567 return ret;
4568
4569 err_size:
4570 put_user(sizeof(*attr), &uattr->size);
4571 ret = -E2BIG;
4572 goto out;
4573 }
4574
4575 static int perf_event_set_output(struct perf_event *event, int output_fd)
4576 {
4577 struct perf_event *output_event = NULL;
4578 struct file *output_file = NULL;
4579 struct perf_event *old_output;
4580 int fput_needed = 0;
4581 int ret = -EINVAL;
4582
4583 if (!output_fd)
4584 goto set;
4585
4586 output_file = fget_light(output_fd, &fput_needed);
4587 if (!output_file)
4588 return -EBADF;
4589
4590 if (output_file->f_op != &perf_fops)
4591 goto out;
4592
4593 output_event = output_file->private_data;
4594
4595 /* Don't chain output fds */
4596 if (output_event->output)
4597 goto out;
4598
4599 /* Don't set an output fd when we already have an output channel */
4600 if (event->data)
4601 goto out;
4602
4603 atomic_long_inc(&output_file->f_count);
4604
4605 set:
4606 mutex_lock(&event->mmap_mutex);
4607 old_output = event->output;
4608 rcu_assign_pointer(event->output, output_event);
4609 mutex_unlock(&event->mmap_mutex);
4610
4611 if (old_output) {
4612 /*
4613 * we need to make sure no existing perf_output_*()
4614 * is still referencing this event.
4615 */
4616 synchronize_rcu();
4617 fput(old_output->filp);
4618 }
4619
4620 ret = 0;
4621 out:
4622 fput_light(output_file, fput_needed);
4623 return ret;
4624 }
4625
4626 /**
4627 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4628 *
4629 * @attr_uptr: event_id type attributes for monitoring/sampling
4630 * @pid: target pid
4631 * @cpu: target cpu
4632 * @group_fd: group leader event fd
4633 */
4634 SYSCALL_DEFINE5(perf_event_open,
4635 struct perf_event_attr __user *, attr_uptr,
4636 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4637 {
4638 struct perf_event *event, *group_leader;
4639 struct perf_event_attr attr;
4640 struct perf_event_context *ctx;
4641 struct file *event_file = NULL;
4642 struct file *group_file = NULL;
4643 int fput_needed = 0;
4644 int fput_needed2 = 0;
4645 int err;
4646
4647 /* for future expandability... */
4648 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4649 return -EINVAL;
4650
4651 err = perf_copy_attr(attr_uptr, &attr);
4652 if (err)
4653 return err;
4654
4655 if (!attr.exclude_kernel) {
4656 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4657 return -EACCES;
4658 }
4659
4660 if (attr.freq) {
4661 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4662 return -EINVAL;
4663 }
4664
4665 /*
4666 * Get the target context (task or percpu):
4667 */
4668 ctx = find_get_context(pid, cpu);
4669 if (IS_ERR(ctx))
4670 return PTR_ERR(ctx);
4671
4672 /*
4673 * Look up the group leader (we will attach this event to it):
4674 */
4675 group_leader = NULL;
4676 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4677 err = -EINVAL;
4678 group_file = fget_light(group_fd, &fput_needed);
4679 if (!group_file)
4680 goto err_put_context;
4681 if (group_file->f_op != &perf_fops)
4682 goto err_put_context;
4683
4684 group_leader = group_file->private_data;
4685 /*
4686 * Do not allow a recursive hierarchy (this new sibling
4687 * becoming part of another group-sibling):
4688 */
4689 if (group_leader->group_leader != group_leader)
4690 goto err_put_context;
4691 /*
4692 * Do not allow to attach to a group in a different
4693 * task or CPU context:
4694 */
4695 if (group_leader->ctx != ctx)
4696 goto err_put_context;
4697 /*
4698 * Only a group leader can be exclusive or pinned
4699 */
4700 if (attr.exclusive || attr.pinned)
4701 goto err_put_context;
4702 }
4703
4704 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4705 NULL, NULL, GFP_KERNEL);
4706 err = PTR_ERR(event);
4707 if (IS_ERR(event))
4708 goto err_put_context;
4709
4710 err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0);
4711 if (err < 0)
4712 goto err_free_put_context;
4713
4714 event_file = fget_light(err, &fput_needed2);
4715 if (!event_file)
4716 goto err_free_put_context;
4717
4718 if (flags & PERF_FLAG_FD_OUTPUT) {
4719 err = perf_event_set_output(event, group_fd);
4720 if (err)
4721 goto err_fput_free_put_context;
4722 }
4723
4724 event->filp = event_file;
4725 WARN_ON_ONCE(ctx->parent_ctx);
4726 mutex_lock(&ctx->mutex);
4727 perf_install_in_context(ctx, event, cpu);
4728 ++ctx->generation;
4729 mutex_unlock(&ctx->mutex);
4730
4731 event->owner = current;
4732 get_task_struct(current);
4733 mutex_lock(&current->perf_event_mutex);
4734 list_add_tail(&event->owner_entry, &current->perf_event_list);
4735 mutex_unlock(&current->perf_event_mutex);
4736
4737 err_fput_free_put_context:
4738 fput_light(event_file, fput_needed2);
4739
4740 err_free_put_context:
4741 if (err < 0)
4742 kfree(event);
4743
4744 err_put_context:
4745 if (err < 0)
4746 put_ctx(ctx);
4747
4748 fput_light(group_file, fput_needed);
4749
4750 return err;
4751 }
4752
4753 /**
4754 * perf_event_create_kernel_counter
4755 *
4756 * @attr: attributes of the counter to create
4757 * @cpu: cpu in which the counter is bound
4758 * @pid: task to profile
4759 */
4760 struct perf_event *
4761 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4762 pid_t pid, perf_callback_t callback)
4763 {
4764 struct perf_event *event;
4765 struct perf_event_context *ctx;
4766 int err;
4767
4768 /*
4769 * Get the target context (task or percpu):
4770 */
4771
4772 ctx = find_get_context(pid, cpu);
4773 if (IS_ERR(ctx))
4774 return NULL;
4775
4776 event = perf_event_alloc(attr, cpu, ctx, NULL,
4777 NULL, callback, GFP_KERNEL);
4778 err = PTR_ERR(event);
4779 if (IS_ERR(event))
4780 goto err_put_context;
4781
4782 event->filp = NULL;
4783 WARN_ON_ONCE(ctx->parent_ctx);
4784 mutex_lock(&ctx->mutex);
4785 perf_install_in_context(ctx, event, cpu);
4786 ++ctx->generation;
4787 mutex_unlock(&ctx->mutex);
4788
4789 event->owner = current;
4790 get_task_struct(current);
4791 mutex_lock(&current->perf_event_mutex);
4792 list_add_tail(&event->owner_entry, &current->perf_event_list);
4793 mutex_unlock(&current->perf_event_mutex);
4794
4795 return event;
4796
4797 err_put_context:
4798 if (err < 0)
4799 put_ctx(ctx);
4800
4801 return NULL;
4802 }
4803 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4804
4805 /*
4806 * inherit a event from parent task to child task:
4807 */
4808 static struct perf_event *
4809 inherit_event(struct perf_event *parent_event,
4810 struct task_struct *parent,
4811 struct perf_event_context *parent_ctx,
4812 struct task_struct *child,
4813 struct perf_event *group_leader,
4814 struct perf_event_context *child_ctx)
4815 {
4816 struct perf_event *child_event;
4817
4818 /*
4819 * Instead of creating recursive hierarchies of events,
4820 * we link inherited events back to the original parent,
4821 * which has a filp for sure, which we use as the reference
4822 * count:
4823 */
4824 if (parent_event->parent)
4825 parent_event = parent_event->parent;
4826
4827 child_event = perf_event_alloc(&parent_event->attr,
4828 parent_event->cpu, child_ctx,
4829 group_leader, parent_event,
4830 NULL, GFP_KERNEL);
4831 if (IS_ERR(child_event))
4832 return child_event;
4833 get_ctx(child_ctx);
4834
4835 /*
4836 * Make the child state follow the state of the parent event,
4837 * not its attr.disabled bit. We hold the parent's mutex,
4838 * so we won't race with perf_event_{en, dis}able_family.
4839 */
4840 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
4841 child_event->state = PERF_EVENT_STATE_INACTIVE;
4842 else
4843 child_event->state = PERF_EVENT_STATE_OFF;
4844
4845 if (parent_event->attr.freq)
4846 child_event->hw.sample_period = parent_event->hw.sample_period;
4847
4848 child_event->overflow_handler = parent_event->overflow_handler;
4849
4850 /*
4851 * Link it up in the child's context:
4852 */
4853 add_event_to_ctx(child_event, child_ctx);
4854
4855 /*
4856 * Get a reference to the parent filp - we will fput it
4857 * when the child event exits. This is safe to do because
4858 * we are in the parent and we know that the filp still
4859 * exists and has a nonzero count:
4860 */
4861 atomic_long_inc(&parent_event->filp->f_count);
4862
4863 /*
4864 * Link this into the parent event's child list
4865 */
4866 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4867 mutex_lock(&parent_event->child_mutex);
4868 list_add_tail(&child_event->child_list, &parent_event->child_list);
4869 mutex_unlock(&parent_event->child_mutex);
4870
4871 return child_event;
4872 }
4873
4874 static int inherit_group(struct perf_event *parent_event,
4875 struct task_struct *parent,
4876 struct perf_event_context *parent_ctx,
4877 struct task_struct *child,
4878 struct perf_event_context *child_ctx)
4879 {
4880 struct perf_event *leader;
4881 struct perf_event *sub;
4882 struct perf_event *child_ctr;
4883
4884 leader = inherit_event(parent_event, parent, parent_ctx,
4885 child, NULL, child_ctx);
4886 if (IS_ERR(leader))
4887 return PTR_ERR(leader);
4888 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
4889 child_ctr = inherit_event(sub, parent, parent_ctx,
4890 child, leader, child_ctx);
4891 if (IS_ERR(child_ctr))
4892 return PTR_ERR(child_ctr);
4893 }
4894 return 0;
4895 }
4896
4897 static void sync_child_event(struct perf_event *child_event,
4898 struct task_struct *child)
4899 {
4900 struct perf_event *parent_event = child_event->parent;
4901 u64 child_val;
4902
4903 if (child_event->attr.inherit_stat)
4904 perf_event_read_event(child_event, child);
4905
4906 child_val = atomic64_read(&child_event->count);
4907
4908 /*
4909 * Add back the child's count to the parent's count:
4910 */
4911 atomic64_add(child_val, &parent_event->count);
4912 atomic64_add(child_event->total_time_enabled,
4913 &parent_event->child_total_time_enabled);
4914 atomic64_add(child_event->total_time_running,
4915 &parent_event->child_total_time_running);
4916
4917 /*
4918 * Remove this event from the parent's list
4919 */
4920 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4921 mutex_lock(&parent_event->child_mutex);
4922 list_del_init(&child_event->child_list);
4923 mutex_unlock(&parent_event->child_mutex);
4924
4925 /*
4926 * Release the parent event, if this was the last
4927 * reference to it.
4928 */
4929 fput(parent_event->filp);
4930 }
4931
4932 static void
4933 __perf_event_exit_task(struct perf_event *child_event,
4934 struct perf_event_context *child_ctx,
4935 struct task_struct *child)
4936 {
4937 struct perf_event *parent_event;
4938
4939 update_event_times(child_event);
4940 perf_event_remove_from_context(child_event);
4941
4942 parent_event = child_event->parent;
4943 /*
4944 * It can happen that parent exits first, and has events
4945 * that are still around due to the child reference. These
4946 * events need to be zapped - but otherwise linger.
4947 */
4948 if (parent_event) {
4949 sync_child_event(child_event, child);
4950 free_event(child_event);
4951 }
4952 }
4953
4954 /*
4955 * When a child task exits, feed back event values to parent events.
4956 */
4957 void perf_event_exit_task(struct task_struct *child)
4958 {
4959 struct perf_event *child_event, *tmp;
4960 struct perf_event_context *child_ctx;
4961 unsigned long flags;
4962
4963 if (likely(!child->perf_event_ctxp)) {
4964 perf_event_task(child, NULL, 0);
4965 return;
4966 }
4967
4968 local_irq_save(flags);
4969 /*
4970 * We can't reschedule here because interrupts are disabled,
4971 * and either child is current or it is a task that can't be
4972 * scheduled, so we are now safe from rescheduling changing
4973 * our context.
4974 */
4975 child_ctx = child->perf_event_ctxp;
4976 __perf_event_task_sched_out(child_ctx);
4977
4978 /*
4979 * Take the context lock here so that if find_get_context is
4980 * reading child->perf_event_ctxp, we wait until it has
4981 * incremented the context's refcount before we do put_ctx below.
4982 */
4983 spin_lock(&child_ctx->lock);
4984 child->perf_event_ctxp = NULL;
4985 /*
4986 * If this context is a clone; unclone it so it can't get
4987 * swapped to another process while we're removing all
4988 * the events from it.
4989 */
4990 unclone_ctx(child_ctx);
4991 spin_unlock_irqrestore(&child_ctx->lock, flags);
4992
4993 /*
4994 * Report the task dead after unscheduling the events so that we
4995 * won't get any samples after PERF_RECORD_EXIT. We can however still
4996 * get a few PERF_RECORD_READ events.
4997 */
4998 perf_event_task(child, child_ctx, 0);
4999
5000 /*
5001 * We can recurse on the same lock type through:
5002 *
5003 * __perf_event_exit_task()
5004 * sync_child_event()
5005 * fput(parent_event->filp)
5006 * perf_release()
5007 * mutex_lock(&ctx->mutex)
5008 *
5009 * But since its the parent context it won't be the same instance.
5010 */
5011 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5012
5013 again:
5014 list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
5015 group_entry)
5016 __perf_event_exit_task(child_event, child_ctx, child);
5017
5018 /*
5019 * If the last event was a group event, it will have appended all
5020 * its siblings to the list, but we obtained 'tmp' before that which
5021 * will still point to the list head terminating the iteration.
5022 */
5023 if (!list_empty(&child_ctx->group_list))
5024 goto again;
5025
5026 mutex_unlock(&child_ctx->mutex);
5027
5028 put_ctx(child_ctx);
5029 }
5030
5031 /*
5032 * free an unexposed, unused context as created by inheritance by
5033 * init_task below, used by fork() in case of fail.
5034 */
5035 void perf_event_free_task(struct task_struct *task)
5036 {
5037 struct perf_event_context *ctx = task->perf_event_ctxp;
5038 struct perf_event *event, *tmp;
5039
5040 if (!ctx)
5041 return;
5042
5043 mutex_lock(&ctx->mutex);
5044 again:
5045 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
5046 struct perf_event *parent = event->parent;
5047
5048 if (WARN_ON_ONCE(!parent))
5049 continue;
5050
5051 mutex_lock(&parent->child_mutex);
5052 list_del_init(&event->child_list);
5053 mutex_unlock(&parent->child_mutex);
5054
5055 fput(parent->filp);
5056
5057 list_del_event(event, ctx);
5058 free_event(event);
5059 }
5060
5061 if (!list_empty(&ctx->group_list))
5062 goto again;
5063
5064 mutex_unlock(&ctx->mutex);
5065
5066 put_ctx(ctx);
5067 }
5068
5069 /*
5070 * Initialize the perf_event context in task_struct
5071 */
5072 int perf_event_init_task(struct task_struct *child)
5073 {
5074 struct perf_event_context *child_ctx, *parent_ctx;
5075 struct perf_event_context *cloned_ctx;
5076 struct perf_event *event;
5077 struct task_struct *parent = current;
5078 int inherited_all = 1;
5079 int ret = 0;
5080
5081 child->perf_event_ctxp = NULL;
5082
5083 mutex_init(&child->perf_event_mutex);
5084 INIT_LIST_HEAD(&child->perf_event_list);
5085
5086 if (likely(!parent->perf_event_ctxp))
5087 return 0;
5088
5089 /*
5090 * This is executed from the parent task context, so inherit
5091 * events that have been marked for cloning.
5092 * First allocate and initialize a context for the child.
5093 */
5094
5095 child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
5096 if (!child_ctx)
5097 return -ENOMEM;
5098
5099 __perf_event_init_context(child_ctx, child);
5100 child->perf_event_ctxp = child_ctx;
5101 get_task_struct(child);
5102
5103 /*
5104 * If the parent's context is a clone, pin it so it won't get
5105 * swapped under us.
5106 */
5107 parent_ctx = perf_pin_task_context(parent);
5108
5109 /*
5110 * No need to check if parent_ctx != NULL here; since we saw
5111 * it non-NULL earlier, the only reason for it to become NULL
5112 * is if we exit, and since we're currently in the middle of
5113 * a fork we can't be exiting at the same time.
5114 */
5115
5116 /*
5117 * Lock the parent list. No need to lock the child - not PID
5118 * hashed yet and not running, so nobody can access it.
5119 */
5120 mutex_lock(&parent_ctx->mutex);
5121
5122 /*
5123 * We dont have to disable NMIs - we are only looking at
5124 * the list, not manipulating it:
5125 */
5126 list_for_each_entry(event, &parent_ctx->group_list, group_entry) {
5127
5128 if (!event->attr.inherit) {
5129 inherited_all = 0;
5130 continue;
5131 }
5132
5133 ret = inherit_group(event, parent, parent_ctx,
5134 child, child_ctx);
5135 if (ret) {
5136 inherited_all = 0;
5137 break;
5138 }
5139 }
5140
5141 if (inherited_all) {
5142 /*
5143 * Mark the child context as a clone of the parent
5144 * context, or of whatever the parent is a clone of.
5145 * Note that if the parent is a clone, it could get
5146 * uncloned at any point, but that doesn't matter
5147 * because the list of events and the generation
5148 * count can't have changed since we took the mutex.
5149 */
5150 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5151 if (cloned_ctx) {
5152 child_ctx->parent_ctx = cloned_ctx;
5153 child_ctx->parent_gen = parent_ctx->parent_gen;
5154 } else {
5155 child_ctx->parent_ctx = parent_ctx;
5156 child_ctx->parent_gen = parent_ctx->generation;
5157 }
5158 get_ctx(child_ctx->parent_ctx);
5159 }
5160
5161 mutex_unlock(&parent_ctx->mutex);
5162
5163 perf_unpin_context(parent_ctx);
5164
5165 return ret;
5166 }
5167
5168 static void __cpuinit perf_event_init_cpu(int cpu)
5169 {
5170 struct perf_cpu_context *cpuctx;
5171
5172 cpuctx = &per_cpu(perf_cpu_context, cpu);
5173 __perf_event_init_context(&cpuctx->ctx, NULL);
5174
5175 spin_lock(&perf_resource_lock);
5176 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5177 spin_unlock(&perf_resource_lock);
5178
5179 hw_perf_event_setup(cpu);
5180 }
5181
5182 #ifdef CONFIG_HOTPLUG_CPU
5183 static void __perf_event_exit_cpu(void *info)
5184 {
5185 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5186 struct perf_event_context *ctx = &cpuctx->ctx;
5187 struct perf_event *event, *tmp;
5188
5189 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
5190 __perf_event_remove_from_context(event);
5191 }
5192 static void perf_event_exit_cpu(int cpu)
5193 {
5194 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5195 struct perf_event_context *ctx = &cpuctx->ctx;
5196
5197 mutex_lock(&ctx->mutex);
5198 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5199 mutex_unlock(&ctx->mutex);
5200 }
5201 #else
5202 static inline void perf_event_exit_cpu(int cpu) { }
5203 #endif
5204
5205 static int __cpuinit
5206 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5207 {
5208 unsigned int cpu = (long)hcpu;
5209
5210 switch (action) {
5211
5212 case CPU_UP_PREPARE:
5213 case CPU_UP_PREPARE_FROZEN:
5214 perf_event_init_cpu(cpu);
5215 break;
5216
5217 case CPU_ONLINE:
5218 case CPU_ONLINE_FROZEN:
5219 hw_perf_event_setup_online(cpu);
5220 break;
5221
5222 case CPU_DOWN_PREPARE:
5223 case CPU_DOWN_PREPARE_FROZEN:
5224 perf_event_exit_cpu(cpu);
5225 break;
5226
5227 default:
5228 break;
5229 }
5230
5231 return NOTIFY_OK;
5232 }
5233
5234 /*
5235 * This has to have a higher priority than migration_notifier in sched.c.
5236 */
5237 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5238 .notifier_call = perf_cpu_notify,
5239 .priority = 20,
5240 };
5241
5242 void __init perf_event_init(void)
5243 {
5244 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5245 (void *)(long)smp_processor_id());
5246 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5247 (void *)(long)smp_processor_id());
5248 register_cpu_notifier(&perf_cpu_nb);
5249 }
5250
5251 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
5252 {
5253 return sprintf(buf, "%d\n", perf_reserved_percpu);
5254 }
5255
5256 static ssize_t
5257 perf_set_reserve_percpu(struct sysdev_class *class,
5258 const char *buf,
5259 size_t count)
5260 {
5261 struct perf_cpu_context *cpuctx;
5262 unsigned long val;
5263 int err, cpu, mpt;
5264
5265 err = strict_strtoul(buf, 10, &val);
5266 if (err)
5267 return err;
5268 if (val > perf_max_events)
5269 return -EINVAL;
5270
5271 spin_lock(&perf_resource_lock);
5272 perf_reserved_percpu = val;
5273 for_each_online_cpu(cpu) {
5274 cpuctx = &per_cpu(perf_cpu_context, cpu);
5275 spin_lock_irq(&cpuctx->ctx.lock);
5276 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5277 perf_max_events - perf_reserved_percpu);
5278 cpuctx->max_pertask = mpt;
5279 spin_unlock_irq(&cpuctx->ctx.lock);
5280 }
5281 spin_unlock(&perf_resource_lock);
5282
5283 return count;
5284 }
5285
5286 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
5287 {
5288 return sprintf(buf, "%d\n", perf_overcommit);
5289 }
5290
5291 static ssize_t
5292 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
5293 {
5294 unsigned long val;
5295 int err;
5296
5297 err = strict_strtoul(buf, 10, &val);
5298 if (err)
5299 return err;
5300 if (val > 1)
5301 return -EINVAL;
5302
5303 spin_lock(&perf_resource_lock);
5304 perf_overcommit = val;
5305 spin_unlock(&perf_resource_lock);
5306
5307 return count;
5308 }
5309
5310 static SYSDEV_CLASS_ATTR(
5311 reserve_percpu,
5312 0644,
5313 perf_show_reserve_percpu,
5314 perf_set_reserve_percpu
5315 );
5316
5317 static SYSDEV_CLASS_ATTR(
5318 overcommit,
5319 0644,
5320 perf_show_overcommit,
5321 perf_set_overcommit
5322 );
5323
5324 static struct attribute *perfclass_attrs[] = {
5325 &attr_reserve_percpu.attr,
5326 &attr_overcommit.attr,
5327 NULL
5328 };
5329
5330 static struct attribute_group perfclass_attr_group = {
5331 .attrs = perfclass_attrs,
5332 .name = "perf_events",
5333 };
5334
5335 static int __init perf_event_sysfs_init(void)
5336 {
5337 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5338 &perfclass_attr_group);
5339 }
5340 device_initcall(perf_event_sysfs_init);