]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/perf_event.c
perf: Per PMU disable
[mirror_ubuntu-hirsute-kernel.git] / kernel / perf_event.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34
35 #include <asm/irq_regs.h>
36
37 /*
38 * Each CPU has a list of per CPU events:
39 */
40 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
41
42 int perf_max_events __read_mostly = 1;
43 static int perf_reserved_percpu __read_mostly;
44 static int perf_overcommit __read_mostly = 1;
45
46 static atomic_t nr_events __read_mostly;
47 static atomic_t nr_mmap_events __read_mostly;
48 static atomic_t nr_comm_events __read_mostly;
49 static atomic_t nr_task_events __read_mostly;
50
51 /*
52 * perf event paranoia level:
53 * -1 - not paranoid at all
54 * 0 - disallow raw tracepoint access for unpriv
55 * 1 - disallow cpu events for unpriv
56 * 2 - disallow kernel profiling for unpriv
57 */
58 int sysctl_perf_event_paranoid __read_mostly = 1;
59
60 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
61
62 /*
63 * max perf event sample rate
64 */
65 int sysctl_perf_event_sample_rate __read_mostly = 100000;
66
67 static atomic64_t perf_event_id;
68
69 /*
70 * Lock for (sysadmin-configurable) event reservations:
71 */
72 static DEFINE_SPINLOCK(perf_resource_lock);
73
74 void __weak perf_event_print_debug(void) { }
75
76 void perf_pmu_disable(struct pmu *pmu)
77 {
78 int *count = this_cpu_ptr(pmu->pmu_disable_count);
79 if (!(*count)++)
80 pmu->pmu_disable(pmu);
81 }
82
83 void perf_pmu_enable(struct pmu *pmu)
84 {
85 int *count = this_cpu_ptr(pmu->pmu_disable_count);
86 if (!--(*count))
87 pmu->pmu_enable(pmu);
88 }
89
90 static void get_ctx(struct perf_event_context *ctx)
91 {
92 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
93 }
94
95 static void free_ctx(struct rcu_head *head)
96 {
97 struct perf_event_context *ctx;
98
99 ctx = container_of(head, struct perf_event_context, rcu_head);
100 kfree(ctx);
101 }
102
103 static void put_ctx(struct perf_event_context *ctx)
104 {
105 if (atomic_dec_and_test(&ctx->refcount)) {
106 if (ctx->parent_ctx)
107 put_ctx(ctx->parent_ctx);
108 if (ctx->task)
109 put_task_struct(ctx->task);
110 call_rcu(&ctx->rcu_head, free_ctx);
111 }
112 }
113
114 static void unclone_ctx(struct perf_event_context *ctx)
115 {
116 if (ctx->parent_ctx) {
117 put_ctx(ctx->parent_ctx);
118 ctx->parent_ctx = NULL;
119 }
120 }
121
122 /*
123 * If we inherit events we want to return the parent event id
124 * to userspace.
125 */
126 static u64 primary_event_id(struct perf_event *event)
127 {
128 u64 id = event->id;
129
130 if (event->parent)
131 id = event->parent->id;
132
133 return id;
134 }
135
136 /*
137 * Get the perf_event_context for a task and lock it.
138 * This has to cope with with the fact that until it is locked,
139 * the context could get moved to another task.
140 */
141 static struct perf_event_context *
142 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
143 {
144 struct perf_event_context *ctx;
145
146 rcu_read_lock();
147 retry:
148 ctx = rcu_dereference(task->perf_event_ctxp);
149 if (ctx) {
150 /*
151 * If this context is a clone of another, it might
152 * get swapped for another underneath us by
153 * perf_event_task_sched_out, though the
154 * rcu_read_lock() protects us from any context
155 * getting freed. Lock the context and check if it
156 * got swapped before we could get the lock, and retry
157 * if so. If we locked the right context, then it
158 * can't get swapped on us any more.
159 */
160 raw_spin_lock_irqsave(&ctx->lock, *flags);
161 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
162 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
163 goto retry;
164 }
165
166 if (!atomic_inc_not_zero(&ctx->refcount)) {
167 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
168 ctx = NULL;
169 }
170 }
171 rcu_read_unlock();
172 return ctx;
173 }
174
175 /*
176 * Get the context for a task and increment its pin_count so it
177 * can't get swapped to another task. This also increments its
178 * reference count so that the context can't get freed.
179 */
180 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
181 {
182 struct perf_event_context *ctx;
183 unsigned long flags;
184
185 ctx = perf_lock_task_context(task, &flags);
186 if (ctx) {
187 ++ctx->pin_count;
188 raw_spin_unlock_irqrestore(&ctx->lock, flags);
189 }
190 return ctx;
191 }
192
193 static void perf_unpin_context(struct perf_event_context *ctx)
194 {
195 unsigned long flags;
196
197 raw_spin_lock_irqsave(&ctx->lock, flags);
198 --ctx->pin_count;
199 raw_spin_unlock_irqrestore(&ctx->lock, flags);
200 put_ctx(ctx);
201 }
202
203 static inline u64 perf_clock(void)
204 {
205 return local_clock();
206 }
207
208 /*
209 * Update the record of the current time in a context.
210 */
211 static void update_context_time(struct perf_event_context *ctx)
212 {
213 u64 now = perf_clock();
214
215 ctx->time += now - ctx->timestamp;
216 ctx->timestamp = now;
217 }
218
219 /*
220 * Update the total_time_enabled and total_time_running fields for a event.
221 */
222 static void update_event_times(struct perf_event *event)
223 {
224 struct perf_event_context *ctx = event->ctx;
225 u64 run_end;
226
227 if (event->state < PERF_EVENT_STATE_INACTIVE ||
228 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
229 return;
230
231 if (ctx->is_active)
232 run_end = ctx->time;
233 else
234 run_end = event->tstamp_stopped;
235
236 event->total_time_enabled = run_end - event->tstamp_enabled;
237
238 if (event->state == PERF_EVENT_STATE_INACTIVE)
239 run_end = event->tstamp_stopped;
240 else
241 run_end = ctx->time;
242
243 event->total_time_running = run_end - event->tstamp_running;
244 }
245
246 /*
247 * Update total_time_enabled and total_time_running for all events in a group.
248 */
249 static void update_group_times(struct perf_event *leader)
250 {
251 struct perf_event *event;
252
253 update_event_times(leader);
254 list_for_each_entry(event, &leader->sibling_list, group_entry)
255 update_event_times(event);
256 }
257
258 static struct list_head *
259 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
260 {
261 if (event->attr.pinned)
262 return &ctx->pinned_groups;
263 else
264 return &ctx->flexible_groups;
265 }
266
267 /*
268 * Add a event from the lists for its context.
269 * Must be called with ctx->mutex and ctx->lock held.
270 */
271 static void
272 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
273 {
274 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
275 event->attach_state |= PERF_ATTACH_CONTEXT;
276
277 /*
278 * If we're a stand alone event or group leader, we go to the context
279 * list, group events are kept attached to the group so that
280 * perf_group_detach can, at all times, locate all siblings.
281 */
282 if (event->group_leader == event) {
283 struct list_head *list;
284
285 if (is_software_event(event))
286 event->group_flags |= PERF_GROUP_SOFTWARE;
287
288 list = ctx_group_list(event, ctx);
289 list_add_tail(&event->group_entry, list);
290 }
291
292 list_add_rcu(&event->event_entry, &ctx->event_list);
293 ctx->nr_events++;
294 if (event->attr.inherit_stat)
295 ctx->nr_stat++;
296 }
297
298 static void perf_group_attach(struct perf_event *event)
299 {
300 struct perf_event *group_leader = event->group_leader;
301
302 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
303 event->attach_state |= PERF_ATTACH_GROUP;
304
305 if (group_leader == event)
306 return;
307
308 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
309 !is_software_event(event))
310 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
311
312 list_add_tail(&event->group_entry, &group_leader->sibling_list);
313 group_leader->nr_siblings++;
314 }
315
316 /*
317 * Remove a event from the lists for its context.
318 * Must be called with ctx->mutex and ctx->lock held.
319 */
320 static void
321 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
322 {
323 /*
324 * We can have double detach due to exit/hot-unplug + close.
325 */
326 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
327 return;
328
329 event->attach_state &= ~PERF_ATTACH_CONTEXT;
330
331 ctx->nr_events--;
332 if (event->attr.inherit_stat)
333 ctx->nr_stat--;
334
335 list_del_rcu(&event->event_entry);
336
337 if (event->group_leader == event)
338 list_del_init(&event->group_entry);
339
340 update_group_times(event);
341
342 /*
343 * If event was in error state, then keep it
344 * that way, otherwise bogus counts will be
345 * returned on read(). The only way to get out
346 * of error state is by explicit re-enabling
347 * of the event
348 */
349 if (event->state > PERF_EVENT_STATE_OFF)
350 event->state = PERF_EVENT_STATE_OFF;
351 }
352
353 static void perf_group_detach(struct perf_event *event)
354 {
355 struct perf_event *sibling, *tmp;
356 struct list_head *list = NULL;
357
358 /*
359 * We can have double detach due to exit/hot-unplug + close.
360 */
361 if (!(event->attach_state & PERF_ATTACH_GROUP))
362 return;
363
364 event->attach_state &= ~PERF_ATTACH_GROUP;
365
366 /*
367 * If this is a sibling, remove it from its group.
368 */
369 if (event->group_leader != event) {
370 list_del_init(&event->group_entry);
371 event->group_leader->nr_siblings--;
372 return;
373 }
374
375 if (!list_empty(&event->group_entry))
376 list = &event->group_entry;
377
378 /*
379 * If this was a group event with sibling events then
380 * upgrade the siblings to singleton events by adding them
381 * to whatever list we are on.
382 */
383 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
384 if (list)
385 list_move_tail(&sibling->group_entry, list);
386 sibling->group_leader = sibling;
387
388 /* Inherit group flags from the previous leader */
389 sibling->group_flags = event->group_flags;
390 }
391 }
392
393 static inline int
394 event_filter_match(struct perf_event *event)
395 {
396 return event->cpu == -1 || event->cpu == smp_processor_id();
397 }
398
399 static void
400 event_sched_out(struct perf_event *event,
401 struct perf_cpu_context *cpuctx,
402 struct perf_event_context *ctx)
403 {
404 u64 delta;
405 /*
406 * An event which could not be activated because of
407 * filter mismatch still needs to have its timings
408 * maintained, otherwise bogus information is return
409 * via read() for time_enabled, time_running:
410 */
411 if (event->state == PERF_EVENT_STATE_INACTIVE
412 && !event_filter_match(event)) {
413 delta = ctx->time - event->tstamp_stopped;
414 event->tstamp_running += delta;
415 event->tstamp_stopped = ctx->time;
416 }
417
418 if (event->state != PERF_EVENT_STATE_ACTIVE)
419 return;
420
421 event->state = PERF_EVENT_STATE_INACTIVE;
422 if (event->pending_disable) {
423 event->pending_disable = 0;
424 event->state = PERF_EVENT_STATE_OFF;
425 }
426 event->tstamp_stopped = ctx->time;
427 event->pmu->disable(event);
428 event->oncpu = -1;
429
430 if (!is_software_event(event))
431 cpuctx->active_oncpu--;
432 ctx->nr_active--;
433 if (event->attr.exclusive || !cpuctx->active_oncpu)
434 cpuctx->exclusive = 0;
435 }
436
437 static void
438 group_sched_out(struct perf_event *group_event,
439 struct perf_cpu_context *cpuctx,
440 struct perf_event_context *ctx)
441 {
442 struct perf_event *event;
443 int state = group_event->state;
444
445 event_sched_out(group_event, cpuctx, ctx);
446
447 /*
448 * Schedule out siblings (if any):
449 */
450 list_for_each_entry(event, &group_event->sibling_list, group_entry)
451 event_sched_out(event, cpuctx, ctx);
452
453 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
454 cpuctx->exclusive = 0;
455 }
456
457 /*
458 * Cross CPU call to remove a performance event
459 *
460 * We disable the event on the hardware level first. After that we
461 * remove it from the context list.
462 */
463 static void __perf_event_remove_from_context(void *info)
464 {
465 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
466 struct perf_event *event = info;
467 struct perf_event_context *ctx = event->ctx;
468
469 /*
470 * If this is a task context, we need to check whether it is
471 * the current task context of this cpu. If not it has been
472 * scheduled out before the smp call arrived.
473 */
474 if (ctx->task && cpuctx->task_ctx != ctx)
475 return;
476
477 raw_spin_lock(&ctx->lock);
478
479 event_sched_out(event, cpuctx, ctx);
480
481 list_del_event(event, ctx);
482
483 if (!ctx->task) {
484 /*
485 * Allow more per task events with respect to the
486 * reservation:
487 */
488 cpuctx->max_pertask =
489 min(perf_max_events - ctx->nr_events,
490 perf_max_events - perf_reserved_percpu);
491 }
492
493 raw_spin_unlock(&ctx->lock);
494 }
495
496
497 /*
498 * Remove the event from a task's (or a CPU's) list of events.
499 *
500 * Must be called with ctx->mutex held.
501 *
502 * CPU events are removed with a smp call. For task events we only
503 * call when the task is on a CPU.
504 *
505 * If event->ctx is a cloned context, callers must make sure that
506 * every task struct that event->ctx->task could possibly point to
507 * remains valid. This is OK when called from perf_release since
508 * that only calls us on the top-level context, which can't be a clone.
509 * When called from perf_event_exit_task, it's OK because the
510 * context has been detached from its task.
511 */
512 static void perf_event_remove_from_context(struct perf_event *event)
513 {
514 struct perf_event_context *ctx = event->ctx;
515 struct task_struct *task = ctx->task;
516
517 if (!task) {
518 /*
519 * Per cpu events are removed via an smp call and
520 * the removal is always successful.
521 */
522 smp_call_function_single(event->cpu,
523 __perf_event_remove_from_context,
524 event, 1);
525 return;
526 }
527
528 retry:
529 task_oncpu_function_call(task, __perf_event_remove_from_context,
530 event);
531
532 raw_spin_lock_irq(&ctx->lock);
533 /*
534 * If the context is active we need to retry the smp call.
535 */
536 if (ctx->nr_active && !list_empty(&event->group_entry)) {
537 raw_spin_unlock_irq(&ctx->lock);
538 goto retry;
539 }
540
541 /*
542 * The lock prevents that this context is scheduled in so we
543 * can remove the event safely, if the call above did not
544 * succeed.
545 */
546 if (!list_empty(&event->group_entry))
547 list_del_event(event, ctx);
548 raw_spin_unlock_irq(&ctx->lock);
549 }
550
551 /*
552 * Cross CPU call to disable a performance event
553 */
554 static void __perf_event_disable(void *info)
555 {
556 struct perf_event *event = info;
557 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
558 struct perf_event_context *ctx = event->ctx;
559
560 /*
561 * If this is a per-task event, need to check whether this
562 * event's task is the current task on this cpu.
563 */
564 if (ctx->task && cpuctx->task_ctx != ctx)
565 return;
566
567 raw_spin_lock(&ctx->lock);
568
569 /*
570 * If the event is on, turn it off.
571 * If it is in error state, leave it in error state.
572 */
573 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
574 update_context_time(ctx);
575 update_group_times(event);
576 if (event == event->group_leader)
577 group_sched_out(event, cpuctx, ctx);
578 else
579 event_sched_out(event, cpuctx, ctx);
580 event->state = PERF_EVENT_STATE_OFF;
581 }
582
583 raw_spin_unlock(&ctx->lock);
584 }
585
586 /*
587 * Disable a event.
588 *
589 * If event->ctx is a cloned context, callers must make sure that
590 * every task struct that event->ctx->task could possibly point to
591 * remains valid. This condition is satisifed when called through
592 * perf_event_for_each_child or perf_event_for_each because they
593 * hold the top-level event's child_mutex, so any descendant that
594 * goes to exit will block in sync_child_event.
595 * When called from perf_pending_event it's OK because event->ctx
596 * is the current context on this CPU and preemption is disabled,
597 * hence we can't get into perf_event_task_sched_out for this context.
598 */
599 void perf_event_disable(struct perf_event *event)
600 {
601 struct perf_event_context *ctx = event->ctx;
602 struct task_struct *task = ctx->task;
603
604 if (!task) {
605 /*
606 * Disable the event on the cpu that it's on
607 */
608 smp_call_function_single(event->cpu, __perf_event_disable,
609 event, 1);
610 return;
611 }
612
613 retry:
614 task_oncpu_function_call(task, __perf_event_disable, event);
615
616 raw_spin_lock_irq(&ctx->lock);
617 /*
618 * If the event is still active, we need to retry the cross-call.
619 */
620 if (event->state == PERF_EVENT_STATE_ACTIVE) {
621 raw_spin_unlock_irq(&ctx->lock);
622 goto retry;
623 }
624
625 /*
626 * Since we have the lock this context can't be scheduled
627 * in, so we can change the state safely.
628 */
629 if (event->state == PERF_EVENT_STATE_INACTIVE) {
630 update_group_times(event);
631 event->state = PERF_EVENT_STATE_OFF;
632 }
633
634 raw_spin_unlock_irq(&ctx->lock);
635 }
636
637 static int
638 event_sched_in(struct perf_event *event,
639 struct perf_cpu_context *cpuctx,
640 struct perf_event_context *ctx)
641 {
642 if (event->state <= PERF_EVENT_STATE_OFF)
643 return 0;
644
645 event->state = PERF_EVENT_STATE_ACTIVE;
646 event->oncpu = smp_processor_id();
647 /*
648 * The new state must be visible before we turn it on in the hardware:
649 */
650 smp_wmb();
651
652 if (event->pmu->enable(event)) {
653 event->state = PERF_EVENT_STATE_INACTIVE;
654 event->oncpu = -1;
655 return -EAGAIN;
656 }
657
658 event->tstamp_running += ctx->time - event->tstamp_stopped;
659
660 if (!is_software_event(event))
661 cpuctx->active_oncpu++;
662 ctx->nr_active++;
663
664 if (event->attr.exclusive)
665 cpuctx->exclusive = 1;
666
667 return 0;
668 }
669
670 static int
671 group_sched_in(struct perf_event *group_event,
672 struct perf_cpu_context *cpuctx,
673 struct perf_event_context *ctx)
674 {
675 struct perf_event *event, *partial_group = NULL;
676 struct pmu *pmu = group_event->pmu;
677 bool txn = false;
678
679 if (group_event->state == PERF_EVENT_STATE_OFF)
680 return 0;
681
682 /* Check if group transaction availabe */
683 if (pmu->start_txn)
684 txn = true;
685
686 if (txn)
687 pmu->start_txn(pmu);
688
689 if (event_sched_in(group_event, cpuctx, ctx)) {
690 if (txn)
691 pmu->cancel_txn(pmu);
692 return -EAGAIN;
693 }
694
695 /*
696 * Schedule in siblings as one group (if any):
697 */
698 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
699 if (event_sched_in(event, cpuctx, ctx)) {
700 partial_group = event;
701 goto group_error;
702 }
703 }
704
705 if (!txn || !pmu->commit_txn(pmu))
706 return 0;
707
708 group_error:
709 /*
710 * Groups can be scheduled in as one unit only, so undo any
711 * partial group before returning:
712 */
713 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
714 if (event == partial_group)
715 break;
716 event_sched_out(event, cpuctx, ctx);
717 }
718 event_sched_out(group_event, cpuctx, ctx);
719
720 if (txn)
721 pmu->cancel_txn(pmu);
722
723 return -EAGAIN;
724 }
725
726 /*
727 * Work out whether we can put this event group on the CPU now.
728 */
729 static int group_can_go_on(struct perf_event *event,
730 struct perf_cpu_context *cpuctx,
731 int can_add_hw)
732 {
733 /*
734 * Groups consisting entirely of software events can always go on.
735 */
736 if (event->group_flags & PERF_GROUP_SOFTWARE)
737 return 1;
738 /*
739 * If an exclusive group is already on, no other hardware
740 * events can go on.
741 */
742 if (cpuctx->exclusive)
743 return 0;
744 /*
745 * If this group is exclusive and there are already
746 * events on the CPU, it can't go on.
747 */
748 if (event->attr.exclusive && cpuctx->active_oncpu)
749 return 0;
750 /*
751 * Otherwise, try to add it if all previous groups were able
752 * to go on.
753 */
754 return can_add_hw;
755 }
756
757 static void add_event_to_ctx(struct perf_event *event,
758 struct perf_event_context *ctx)
759 {
760 list_add_event(event, ctx);
761 perf_group_attach(event);
762 event->tstamp_enabled = ctx->time;
763 event->tstamp_running = ctx->time;
764 event->tstamp_stopped = ctx->time;
765 }
766
767 /*
768 * Cross CPU call to install and enable a performance event
769 *
770 * Must be called with ctx->mutex held
771 */
772 static void __perf_install_in_context(void *info)
773 {
774 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
775 struct perf_event *event = info;
776 struct perf_event_context *ctx = event->ctx;
777 struct perf_event *leader = event->group_leader;
778 int err;
779
780 /*
781 * If this is a task context, we need to check whether it is
782 * the current task context of this cpu. If not it has been
783 * scheduled out before the smp call arrived.
784 * Or possibly this is the right context but it isn't
785 * on this cpu because it had no events.
786 */
787 if (ctx->task && cpuctx->task_ctx != ctx) {
788 if (cpuctx->task_ctx || ctx->task != current)
789 return;
790 cpuctx->task_ctx = ctx;
791 }
792
793 raw_spin_lock(&ctx->lock);
794 ctx->is_active = 1;
795 update_context_time(ctx);
796
797 add_event_to_ctx(event, ctx);
798
799 if (event->cpu != -1 && event->cpu != smp_processor_id())
800 goto unlock;
801
802 /*
803 * Don't put the event on if it is disabled or if
804 * it is in a group and the group isn't on.
805 */
806 if (event->state != PERF_EVENT_STATE_INACTIVE ||
807 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
808 goto unlock;
809
810 /*
811 * An exclusive event can't go on if there are already active
812 * hardware events, and no hardware event can go on if there
813 * is already an exclusive event on.
814 */
815 if (!group_can_go_on(event, cpuctx, 1))
816 err = -EEXIST;
817 else
818 err = event_sched_in(event, cpuctx, ctx);
819
820 if (err) {
821 /*
822 * This event couldn't go on. If it is in a group
823 * then we have to pull the whole group off.
824 * If the event group is pinned then put it in error state.
825 */
826 if (leader != event)
827 group_sched_out(leader, cpuctx, ctx);
828 if (leader->attr.pinned) {
829 update_group_times(leader);
830 leader->state = PERF_EVENT_STATE_ERROR;
831 }
832 }
833
834 if (!err && !ctx->task && cpuctx->max_pertask)
835 cpuctx->max_pertask--;
836
837 unlock:
838 raw_spin_unlock(&ctx->lock);
839 }
840
841 /*
842 * Attach a performance event to a context
843 *
844 * First we add the event to the list with the hardware enable bit
845 * in event->hw_config cleared.
846 *
847 * If the event is attached to a task which is on a CPU we use a smp
848 * call to enable it in the task context. The task might have been
849 * scheduled away, but we check this in the smp call again.
850 *
851 * Must be called with ctx->mutex held.
852 */
853 static void
854 perf_install_in_context(struct perf_event_context *ctx,
855 struct perf_event *event,
856 int cpu)
857 {
858 struct task_struct *task = ctx->task;
859
860 if (!task) {
861 /*
862 * Per cpu events are installed via an smp call and
863 * the install is always successful.
864 */
865 smp_call_function_single(cpu, __perf_install_in_context,
866 event, 1);
867 return;
868 }
869
870 retry:
871 task_oncpu_function_call(task, __perf_install_in_context,
872 event);
873
874 raw_spin_lock_irq(&ctx->lock);
875 /*
876 * we need to retry the smp call.
877 */
878 if (ctx->is_active && list_empty(&event->group_entry)) {
879 raw_spin_unlock_irq(&ctx->lock);
880 goto retry;
881 }
882
883 /*
884 * The lock prevents that this context is scheduled in so we
885 * can add the event safely, if it the call above did not
886 * succeed.
887 */
888 if (list_empty(&event->group_entry))
889 add_event_to_ctx(event, ctx);
890 raw_spin_unlock_irq(&ctx->lock);
891 }
892
893 /*
894 * Put a event into inactive state and update time fields.
895 * Enabling the leader of a group effectively enables all
896 * the group members that aren't explicitly disabled, so we
897 * have to update their ->tstamp_enabled also.
898 * Note: this works for group members as well as group leaders
899 * since the non-leader members' sibling_lists will be empty.
900 */
901 static void __perf_event_mark_enabled(struct perf_event *event,
902 struct perf_event_context *ctx)
903 {
904 struct perf_event *sub;
905
906 event->state = PERF_EVENT_STATE_INACTIVE;
907 event->tstamp_enabled = ctx->time - event->total_time_enabled;
908 list_for_each_entry(sub, &event->sibling_list, group_entry) {
909 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
910 sub->tstamp_enabled =
911 ctx->time - sub->total_time_enabled;
912 }
913 }
914 }
915
916 /*
917 * Cross CPU call to enable a performance event
918 */
919 static void __perf_event_enable(void *info)
920 {
921 struct perf_event *event = info;
922 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
923 struct perf_event_context *ctx = event->ctx;
924 struct perf_event *leader = event->group_leader;
925 int err;
926
927 /*
928 * If this is a per-task event, need to check whether this
929 * event's task is the current task on this cpu.
930 */
931 if (ctx->task && cpuctx->task_ctx != ctx) {
932 if (cpuctx->task_ctx || ctx->task != current)
933 return;
934 cpuctx->task_ctx = ctx;
935 }
936
937 raw_spin_lock(&ctx->lock);
938 ctx->is_active = 1;
939 update_context_time(ctx);
940
941 if (event->state >= PERF_EVENT_STATE_INACTIVE)
942 goto unlock;
943 __perf_event_mark_enabled(event, ctx);
944
945 if (event->cpu != -1 && event->cpu != smp_processor_id())
946 goto unlock;
947
948 /*
949 * If the event is in a group and isn't the group leader,
950 * then don't put it on unless the group is on.
951 */
952 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
953 goto unlock;
954
955 if (!group_can_go_on(event, cpuctx, 1)) {
956 err = -EEXIST;
957 } else {
958 if (event == leader)
959 err = group_sched_in(event, cpuctx, ctx);
960 else
961 err = event_sched_in(event, cpuctx, ctx);
962 }
963
964 if (err) {
965 /*
966 * If this event can't go on and it's part of a
967 * group, then the whole group has to come off.
968 */
969 if (leader != event)
970 group_sched_out(leader, cpuctx, ctx);
971 if (leader->attr.pinned) {
972 update_group_times(leader);
973 leader->state = PERF_EVENT_STATE_ERROR;
974 }
975 }
976
977 unlock:
978 raw_spin_unlock(&ctx->lock);
979 }
980
981 /*
982 * Enable a event.
983 *
984 * If event->ctx is a cloned context, callers must make sure that
985 * every task struct that event->ctx->task could possibly point to
986 * remains valid. This condition is satisfied when called through
987 * perf_event_for_each_child or perf_event_for_each as described
988 * for perf_event_disable.
989 */
990 void perf_event_enable(struct perf_event *event)
991 {
992 struct perf_event_context *ctx = event->ctx;
993 struct task_struct *task = ctx->task;
994
995 if (!task) {
996 /*
997 * Enable the event on the cpu that it's on
998 */
999 smp_call_function_single(event->cpu, __perf_event_enable,
1000 event, 1);
1001 return;
1002 }
1003
1004 raw_spin_lock_irq(&ctx->lock);
1005 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1006 goto out;
1007
1008 /*
1009 * If the event is in error state, clear that first.
1010 * That way, if we see the event in error state below, we
1011 * know that it has gone back into error state, as distinct
1012 * from the task having been scheduled away before the
1013 * cross-call arrived.
1014 */
1015 if (event->state == PERF_EVENT_STATE_ERROR)
1016 event->state = PERF_EVENT_STATE_OFF;
1017
1018 retry:
1019 raw_spin_unlock_irq(&ctx->lock);
1020 task_oncpu_function_call(task, __perf_event_enable, event);
1021
1022 raw_spin_lock_irq(&ctx->lock);
1023
1024 /*
1025 * If the context is active and the event is still off,
1026 * we need to retry the cross-call.
1027 */
1028 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1029 goto retry;
1030
1031 /*
1032 * Since we have the lock this context can't be scheduled
1033 * in, so we can change the state safely.
1034 */
1035 if (event->state == PERF_EVENT_STATE_OFF)
1036 __perf_event_mark_enabled(event, ctx);
1037
1038 out:
1039 raw_spin_unlock_irq(&ctx->lock);
1040 }
1041
1042 static int perf_event_refresh(struct perf_event *event, int refresh)
1043 {
1044 /*
1045 * not supported on inherited events
1046 */
1047 if (event->attr.inherit)
1048 return -EINVAL;
1049
1050 atomic_add(refresh, &event->event_limit);
1051 perf_event_enable(event);
1052
1053 return 0;
1054 }
1055
1056 enum event_type_t {
1057 EVENT_FLEXIBLE = 0x1,
1058 EVENT_PINNED = 0x2,
1059 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1060 };
1061
1062 static void ctx_sched_out(struct perf_event_context *ctx,
1063 struct perf_cpu_context *cpuctx,
1064 enum event_type_t event_type)
1065 {
1066 struct perf_event *event;
1067
1068 raw_spin_lock(&ctx->lock);
1069 ctx->is_active = 0;
1070 if (likely(!ctx->nr_events))
1071 goto out;
1072 update_context_time(ctx);
1073
1074 if (!ctx->nr_active)
1075 goto out;
1076
1077 if (event_type & EVENT_PINNED) {
1078 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1079 group_sched_out(event, cpuctx, ctx);
1080 }
1081
1082 if (event_type & EVENT_FLEXIBLE) {
1083 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1084 group_sched_out(event, cpuctx, ctx);
1085 }
1086 out:
1087 raw_spin_unlock(&ctx->lock);
1088 }
1089
1090 /*
1091 * Test whether two contexts are equivalent, i.e. whether they
1092 * have both been cloned from the same version of the same context
1093 * and they both have the same number of enabled events.
1094 * If the number of enabled events is the same, then the set
1095 * of enabled events should be the same, because these are both
1096 * inherited contexts, therefore we can't access individual events
1097 * in them directly with an fd; we can only enable/disable all
1098 * events via prctl, or enable/disable all events in a family
1099 * via ioctl, which will have the same effect on both contexts.
1100 */
1101 static int context_equiv(struct perf_event_context *ctx1,
1102 struct perf_event_context *ctx2)
1103 {
1104 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1105 && ctx1->parent_gen == ctx2->parent_gen
1106 && !ctx1->pin_count && !ctx2->pin_count;
1107 }
1108
1109 static void __perf_event_sync_stat(struct perf_event *event,
1110 struct perf_event *next_event)
1111 {
1112 u64 value;
1113
1114 if (!event->attr.inherit_stat)
1115 return;
1116
1117 /*
1118 * Update the event value, we cannot use perf_event_read()
1119 * because we're in the middle of a context switch and have IRQs
1120 * disabled, which upsets smp_call_function_single(), however
1121 * we know the event must be on the current CPU, therefore we
1122 * don't need to use it.
1123 */
1124 switch (event->state) {
1125 case PERF_EVENT_STATE_ACTIVE:
1126 event->pmu->read(event);
1127 /* fall-through */
1128
1129 case PERF_EVENT_STATE_INACTIVE:
1130 update_event_times(event);
1131 break;
1132
1133 default:
1134 break;
1135 }
1136
1137 /*
1138 * In order to keep per-task stats reliable we need to flip the event
1139 * values when we flip the contexts.
1140 */
1141 value = local64_read(&next_event->count);
1142 value = local64_xchg(&event->count, value);
1143 local64_set(&next_event->count, value);
1144
1145 swap(event->total_time_enabled, next_event->total_time_enabled);
1146 swap(event->total_time_running, next_event->total_time_running);
1147
1148 /*
1149 * Since we swizzled the values, update the user visible data too.
1150 */
1151 perf_event_update_userpage(event);
1152 perf_event_update_userpage(next_event);
1153 }
1154
1155 #define list_next_entry(pos, member) \
1156 list_entry(pos->member.next, typeof(*pos), member)
1157
1158 static void perf_event_sync_stat(struct perf_event_context *ctx,
1159 struct perf_event_context *next_ctx)
1160 {
1161 struct perf_event *event, *next_event;
1162
1163 if (!ctx->nr_stat)
1164 return;
1165
1166 update_context_time(ctx);
1167
1168 event = list_first_entry(&ctx->event_list,
1169 struct perf_event, event_entry);
1170
1171 next_event = list_first_entry(&next_ctx->event_list,
1172 struct perf_event, event_entry);
1173
1174 while (&event->event_entry != &ctx->event_list &&
1175 &next_event->event_entry != &next_ctx->event_list) {
1176
1177 __perf_event_sync_stat(event, next_event);
1178
1179 event = list_next_entry(event, event_entry);
1180 next_event = list_next_entry(next_event, event_entry);
1181 }
1182 }
1183
1184 /*
1185 * Called from scheduler to remove the events of the current task,
1186 * with interrupts disabled.
1187 *
1188 * We stop each event and update the event value in event->count.
1189 *
1190 * This does not protect us against NMI, but disable()
1191 * sets the disabled bit in the control field of event _before_
1192 * accessing the event control register. If a NMI hits, then it will
1193 * not restart the event.
1194 */
1195 void perf_event_task_sched_out(struct task_struct *task,
1196 struct task_struct *next)
1197 {
1198 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1199 struct perf_event_context *ctx = task->perf_event_ctxp;
1200 struct perf_event_context *next_ctx;
1201 struct perf_event_context *parent;
1202 int do_switch = 1;
1203
1204 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1205
1206 if (likely(!ctx || !cpuctx->task_ctx))
1207 return;
1208
1209 rcu_read_lock();
1210 parent = rcu_dereference(ctx->parent_ctx);
1211 next_ctx = next->perf_event_ctxp;
1212 if (parent && next_ctx &&
1213 rcu_dereference(next_ctx->parent_ctx) == parent) {
1214 /*
1215 * Looks like the two contexts are clones, so we might be
1216 * able to optimize the context switch. We lock both
1217 * contexts and check that they are clones under the
1218 * lock (including re-checking that neither has been
1219 * uncloned in the meantime). It doesn't matter which
1220 * order we take the locks because no other cpu could
1221 * be trying to lock both of these tasks.
1222 */
1223 raw_spin_lock(&ctx->lock);
1224 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1225 if (context_equiv(ctx, next_ctx)) {
1226 /*
1227 * XXX do we need a memory barrier of sorts
1228 * wrt to rcu_dereference() of perf_event_ctxp
1229 */
1230 task->perf_event_ctxp = next_ctx;
1231 next->perf_event_ctxp = ctx;
1232 ctx->task = next;
1233 next_ctx->task = task;
1234 do_switch = 0;
1235
1236 perf_event_sync_stat(ctx, next_ctx);
1237 }
1238 raw_spin_unlock(&next_ctx->lock);
1239 raw_spin_unlock(&ctx->lock);
1240 }
1241 rcu_read_unlock();
1242
1243 if (do_switch) {
1244 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1245 cpuctx->task_ctx = NULL;
1246 }
1247 }
1248
1249 static void task_ctx_sched_out(struct perf_event_context *ctx,
1250 enum event_type_t event_type)
1251 {
1252 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1253
1254 if (!cpuctx->task_ctx)
1255 return;
1256
1257 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1258 return;
1259
1260 ctx_sched_out(ctx, cpuctx, event_type);
1261 cpuctx->task_ctx = NULL;
1262 }
1263
1264 /*
1265 * Called with IRQs disabled
1266 */
1267 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1268 {
1269 task_ctx_sched_out(ctx, EVENT_ALL);
1270 }
1271
1272 /*
1273 * Called with IRQs disabled
1274 */
1275 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1276 enum event_type_t event_type)
1277 {
1278 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1279 }
1280
1281 static void
1282 ctx_pinned_sched_in(struct perf_event_context *ctx,
1283 struct perf_cpu_context *cpuctx)
1284 {
1285 struct perf_event *event;
1286
1287 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1288 if (event->state <= PERF_EVENT_STATE_OFF)
1289 continue;
1290 if (event->cpu != -1 && event->cpu != smp_processor_id())
1291 continue;
1292
1293 if (group_can_go_on(event, cpuctx, 1))
1294 group_sched_in(event, cpuctx, ctx);
1295
1296 /*
1297 * If this pinned group hasn't been scheduled,
1298 * put it in error state.
1299 */
1300 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1301 update_group_times(event);
1302 event->state = PERF_EVENT_STATE_ERROR;
1303 }
1304 }
1305 }
1306
1307 static void
1308 ctx_flexible_sched_in(struct perf_event_context *ctx,
1309 struct perf_cpu_context *cpuctx)
1310 {
1311 struct perf_event *event;
1312 int can_add_hw = 1;
1313
1314 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1315 /* Ignore events in OFF or ERROR state */
1316 if (event->state <= PERF_EVENT_STATE_OFF)
1317 continue;
1318 /*
1319 * Listen to the 'cpu' scheduling filter constraint
1320 * of events:
1321 */
1322 if (event->cpu != -1 && event->cpu != smp_processor_id())
1323 continue;
1324
1325 if (group_can_go_on(event, cpuctx, can_add_hw)) {
1326 if (group_sched_in(event, cpuctx, ctx))
1327 can_add_hw = 0;
1328 }
1329 }
1330 }
1331
1332 static void
1333 ctx_sched_in(struct perf_event_context *ctx,
1334 struct perf_cpu_context *cpuctx,
1335 enum event_type_t event_type)
1336 {
1337 raw_spin_lock(&ctx->lock);
1338 ctx->is_active = 1;
1339 if (likely(!ctx->nr_events))
1340 goto out;
1341
1342 ctx->timestamp = perf_clock();
1343
1344 /*
1345 * First go through the list and put on any pinned groups
1346 * in order to give them the best chance of going on.
1347 */
1348 if (event_type & EVENT_PINNED)
1349 ctx_pinned_sched_in(ctx, cpuctx);
1350
1351 /* Then walk through the lower prio flexible groups */
1352 if (event_type & EVENT_FLEXIBLE)
1353 ctx_flexible_sched_in(ctx, cpuctx);
1354
1355 out:
1356 raw_spin_unlock(&ctx->lock);
1357 }
1358
1359 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1360 enum event_type_t event_type)
1361 {
1362 struct perf_event_context *ctx = &cpuctx->ctx;
1363
1364 ctx_sched_in(ctx, cpuctx, event_type);
1365 }
1366
1367 static void task_ctx_sched_in(struct task_struct *task,
1368 enum event_type_t event_type)
1369 {
1370 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1371 struct perf_event_context *ctx = task->perf_event_ctxp;
1372
1373 if (likely(!ctx))
1374 return;
1375 if (cpuctx->task_ctx == ctx)
1376 return;
1377 ctx_sched_in(ctx, cpuctx, event_type);
1378 cpuctx->task_ctx = ctx;
1379 }
1380 /*
1381 * Called from scheduler to add the events of the current task
1382 * with interrupts disabled.
1383 *
1384 * We restore the event value and then enable it.
1385 *
1386 * This does not protect us against NMI, but enable()
1387 * sets the enabled bit in the control field of event _before_
1388 * accessing the event control register. If a NMI hits, then it will
1389 * keep the event running.
1390 */
1391 void perf_event_task_sched_in(struct task_struct *task)
1392 {
1393 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1394 struct perf_event_context *ctx = task->perf_event_ctxp;
1395
1396 if (likely(!ctx))
1397 return;
1398
1399 if (cpuctx->task_ctx == ctx)
1400 return;
1401
1402 /*
1403 * We want to keep the following priority order:
1404 * cpu pinned (that don't need to move), task pinned,
1405 * cpu flexible, task flexible.
1406 */
1407 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1408
1409 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1410 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1411 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1412
1413 cpuctx->task_ctx = ctx;
1414 }
1415
1416 #define MAX_INTERRUPTS (~0ULL)
1417
1418 static void perf_log_throttle(struct perf_event *event, int enable);
1419
1420 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1421 {
1422 u64 frequency = event->attr.sample_freq;
1423 u64 sec = NSEC_PER_SEC;
1424 u64 divisor, dividend;
1425
1426 int count_fls, nsec_fls, frequency_fls, sec_fls;
1427
1428 count_fls = fls64(count);
1429 nsec_fls = fls64(nsec);
1430 frequency_fls = fls64(frequency);
1431 sec_fls = 30;
1432
1433 /*
1434 * We got @count in @nsec, with a target of sample_freq HZ
1435 * the target period becomes:
1436 *
1437 * @count * 10^9
1438 * period = -------------------
1439 * @nsec * sample_freq
1440 *
1441 */
1442
1443 /*
1444 * Reduce accuracy by one bit such that @a and @b converge
1445 * to a similar magnitude.
1446 */
1447 #define REDUCE_FLS(a, b) \
1448 do { \
1449 if (a##_fls > b##_fls) { \
1450 a >>= 1; \
1451 a##_fls--; \
1452 } else { \
1453 b >>= 1; \
1454 b##_fls--; \
1455 } \
1456 } while (0)
1457
1458 /*
1459 * Reduce accuracy until either term fits in a u64, then proceed with
1460 * the other, so that finally we can do a u64/u64 division.
1461 */
1462 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1463 REDUCE_FLS(nsec, frequency);
1464 REDUCE_FLS(sec, count);
1465 }
1466
1467 if (count_fls + sec_fls > 64) {
1468 divisor = nsec * frequency;
1469
1470 while (count_fls + sec_fls > 64) {
1471 REDUCE_FLS(count, sec);
1472 divisor >>= 1;
1473 }
1474
1475 dividend = count * sec;
1476 } else {
1477 dividend = count * sec;
1478
1479 while (nsec_fls + frequency_fls > 64) {
1480 REDUCE_FLS(nsec, frequency);
1481 dividend >>= 1;
1482 }
1483
1484 divisor = nsec * frequency;
1485 }
1486
1487 if (!divisor)
1488 return dividend;
1489
1490 return div64_u64(dividend, divisor);
1491 }
1492
1493 static void perf_event_stop(struct perf_event *event)
1494 {
1495 if (!event->pmu->stop)
1496 return event->pmu->disable(event);
1497
1498 return event->pmu->stop(event);
1499 }
1500
1501 static int perf_event_start(struct perf_event *event)
1502 {
1503 if (!event->pmu->start)
1504 return event->pmu->enable(event);
1505
1506 return event->pmu->start(event);
1507 }
1508
1509 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1510 {
1511 struct hw_perf_event *hwc = &event->hw;
1512 s64 period, sample_period;
1513 s64 delta;
1514
1515 period = perf_calculate_period(event, nsec, count);
1516
1517 delta = (s64)(period - hwc->sample_period);
1518 delta = (delta + 7) / 8; /* low pass filter */
1519
1520 sample_period = hwc->sample_period + delta;
1521
1522 if (!sample_period)
1523 sample_period = 1;
1524
1525 hwc->sample_period = sample_period;
1526
1527 if (local64_read(&hwc->period_left) > 8*sample_period) {
1528 perf_event_stop(event);
1529 local64_set(&hwc->period_left, 0);
1530 perf_event_start(event);
1531 }
1532 }
1533
1534 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1535 {
1536 struct perf_event *event;
1537 struct hw_perf_event *hwc;
1538 u64 interrupts, now;
1539 s64 delta;
1540
1541 raw_spin_lock(&ctx->lock);
1542 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1543 if (event->state != PERF_EVENT_STATE_ACTIVE)
1544 continue;
1545
1546 if (event->cpu != -1 && event->cpu != smp_processor_id())
1547 continue;
1548
1549 hwc = &event->hw;
1550
1551 interrupts = hwc->interrupts;
1552 hwc->interrupts = 0;
1553
1554 /*
1555 * unthrottle events on the tick
1556 */
1557 if (interrupts == MAX_INTERRUPTS) {
1558 perf_log_throttle(event, 1);
1559 event->pmu->unthrottle(event);
1560 }
1561
1562 if (!event->attr.freq || !event->attr.sample_freq)
1563 continue;
1564
1565 event->pmu->read(event);
1566 now = local64_read(&event->count);
1567 delta = now - hwc->freq_count_stamp;
1568 hwc->freq_count_stamp = now;
1569
1570 if (delta > 0)
1571 perf_adjust_period(event, TICK_NSEC, delta);
1572 }
1573 raw_spin_unlock(&ctx->lock);
1574 }
1575
1576 /*
1577 * Round-robin a context's events:
1578 */
1579 static void rotate_ctx(struct perf_event_context *ctx)
1580 {
1581 raw_spin_lock(&ctx->lock);
1582
1583 /* Rotate the first entry last of non-pinned groups */
1584 list_rotate_left(&ctx->flexible_groups);
1585
1586 raw_spin_unlock(&ctx->lock);
1587 }
1588
1589 void perf_event_task_tick(struct task_struct *curr)
1590 {
1591 struct perf_cpu_context *cpuctx;
1592 struct perf_event_context *ctx;
1593 int rotate = 0;
1594
1595 if (!atomic_read(&nr_events))
1596 return;
1597
1598 cpuctx = &__get_cpu_var(perf_cpu_context);
1599 if (cpuctx->ctx.nr_events &&
1600 cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1601 rotate = 1;
1602
1603 ctx = curr->perf_event_ctxp;
1604 if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1605 rotate = 1;
1606
1607 perf_ctx_adjust_freq(&cpuctx->ctx);
1608 if (ctx)
1609 perf_ctx_adjust_freq(ctx);
1610
1611 if (!rotate)
1612 return;
1613
1614 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1615 if (ctx)
1616 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1617
1618 rotate_ctx(&cpuctx->ctx);
1619 if (ctx)
1620 rotate_ctx(ctx);
1621
1622 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1623 if (ctx)
1624 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1625 }
1626
1627 static int event_enable_on_exec(struct perf_event *event,
1628 struct perf_event_context *ctx)
1629 {
1630 if (!event->attr.enable_on_exec)
1631 return 0;
1632
1633 event->attr.enable_on_exec = 0;
1634 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1635 return 0;
1636
1637 __perf_event_mark_enabled(event, ctx);
1638
1639 return 1;
1640 }
1641
1642 /*
1643 * Enable all of a task's events that have been marked enable-on-exec.
1644 * This expects task == current.
1645 */
1646 static void perf_event_enable_on_exec(struct task_struct *task)
1647 {
1648 struct perf_event_context *ctx;
1649 struct perf_event *event;
1650 unsigned long flags;
1651 int enabled = 0;
1652 int ret;
1653
1654 local_irq_save(flags);
1655 ctx = task->perf_event_ctxp;
1656 if (!ctx || !ctx->nr_events)
1657 goto out;
1658
1659 __perf_event_task_sched_out(ctx);
1660
1661 raw_spin_lock(&ctx->lock);
1662
1663 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1664 ret = event_enable_on_exec(event, ctx);
1665 if (ret)
1666 enabled = 1;
1667 }
1668
1669 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1670 ret = event_enable_on_exec(event, ctx);
1671 if (ret)
1672 enabled = 1;
1673 }
1674
1675 /*
1676 * Unclone this context if we enabled any event.
1677 */
1678 if (enabled)
1679 unclone_ctx(ctx);
1680
1681 raw_spin_unlock(&ctx->lock);
1682
1683 perf_event_task_sched_in(task);
1684 out:
1685 local_irq_restore(flags);
1686 }
1687
1688 /*
1689 * Cross CPU call to read the hardware event
1690 */
1691 static void __perf_event_read(void *info)
1692 {
1693 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1694 struct perf_event *event = info;
1695 struct perf_event_context *ctx = event->ctx;
1696
1697 /*
1698 * If this is a task context, we need to check whether it is
1699 * the current task context of this cpu. If not it has been
1700 * scheduled out before the smp call arrived. In that case
1701 * event->count would have been updated to a recent sample
1702 * when the event was scheduled out.
1703 */
1704 if (ctx->task && cpuctx->task_ctx != ctx)
1705 return;
1706
1707 raw_spin_lock(&ctx->lock);
1708 update_context_time(ctx);
1709 update_event_times(event);
1710 raw_spin_unlock(&ctx->lock);
1711
1712 event->pmu->read(event);
1713 }
1714
1715 static inline u64 perf_event_count(struct perf_event *event)
1716 {
1717 return local64_read(&event->count) + atomic64_read(&event->child_count);
1718 }
1719
1720 static u64 perf_event_read(struct perf_event *event)
1721 {
1722 /*
1723 * If event is enabled and currently active on a CPU, update the
1724 * value in the event structure:
1725 */
1726 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1727 smp_call_function_single(event->oncpu,
1728 __perf_event_read, event, 1);
1729 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1730 struct perf_event_context *ctx = event->ctx;
1731 unsigned long flags;
1732
1733 raw_spin_lock_irqsave(&ctx->lock, flags);
1734 update_context_time(ctx);
1735 update_event_times(event);
1736 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1737 }
1738
1739 return perf_event_count(event);
1740 }
1741
1742 /*
1743 * Callchain support
1744 */
1745
1746 struct callchain_cpus_entries {
1747 struct rcu_head rcu_head;
1748 struct perf_callchain_entry *cpu_entries[0];
1749 };
1750
1751 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1752 static atomic_t nr_callchain_events;
1753 static DEFINE_MUTEX(callchain_mutex);
1754 struct callchain_cpus_entries *callchain_cpus_entries;
1755
1756
1757 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1758 struct pt_regs *regs)
1759 {
1760 }
1761
1762 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
1763 struct pt_regs *regs)
1764 {
1765 }
1766
1767 static void release_callchain_buffers_rcu(struct rcu_head *head)
1768 {
1769 struct callchain_cpus_entries *entries;
1770 int cpu;
1771
1772 entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1773
1774 for_each_possible_cpu(cpu)
1775 kfree(entries->cpu_entries[cpu]);
1776
1777 kfree(entries);
1778 }
1779
1780 static void release_callchain_buffers(void)
1781 {
1782 struct callchain_cpus_entries *entries;
1783
1784 entries = callchain_cpus_entries;
1785 rcu_assign_pointer(callchain_cpus_entries, NULL);
1786 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
1787 }
1788
1789 static int alloc_callchain_buffers(void)
1790 {
1791 int cpu;
1792 int size;
1793 struct callchain_cpus_entries *entries;
1794
1795 /*
1796 * We can't use the percpu allocation API for data that can be
1797 * accessed from NMI. Use a temporary manual per cpu allocation
1798 * until that gets sorted out.
1799 */
1800 size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
1801 num_possible_cpus();
1802
1803 entries = kzalloc(size, GFP_KERNEL);
1804 if (!entries)
1805 return -ENOMEM;
1806
1807 size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1808
1809 for_each_possible_cpu(cpu) {
1810 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
1811 cpu_to_node(cpu));
1812 if (!entries->cpu_entries[cpu])
1813 goto fail;
1814 }
1815
1816 rcu_assign_pointer(callchain_cpus_entries, entries);
1817
1818 return 0;
1819
1820 fail:
1821 for_each_possible_cpu(cpu)
1822 kfree(entries->cpu_entries[cpu]);
1823 kfree(entries);
1824
1825 return -ENOMEM;
1826 }
1827
1828 static int get_callchain_buffers(void)
1829 {
1830 int err = 0;
1831 int count;
1832
1833 mutex_lock(&callchain_mutex);
1834
1835 count = atomic_inc_return(&nr_callchain_events);
1836 if (WARN_ON_ONCE(count < 1)) {
1837 err = -EINVAL;
1838 goto exit;
1839 }
1840
1841 if (count > 1) {
1842 /* If the allocation failed, give up */
1843 if (!callchain_cpus_entries)
1844 err = -ENOMEM;
1845 goto exit;
1846 }
1847
1848 err = alloc_callchain_buffers();
1849 if (err)
1850 release_callchain_buffers();
1851 exit:
1852 mutex_unlock(&callchain_mutex);
1853
1854 return err;
1855 }
1856
1857 static void put_callchain_buffers(void)
1858 {
1859 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
1860 release_callchain_buffers();
1861 mutex_unlock(&callchain_mutex);
1862 }
1863 }
1864
1865 static int get_recursion_context(int *recursion)
1866 {
1867 int rctx;
1868
1869 if (in_nmi())
1870 rctx = 3;
1871 else if (in_irq())
1872 rctx = 2;
1873 else if (in_softirq())
1874 rctx = 1;
1875 else
1876 rctx = 0;
1877
1878 if (recursion[rctx])
1879 return -1;
1880
1881 recursion[rctx]++;
1882 barrier();
1883
1884 return rctx;
1885 }
1886
1887 static inline void put_recursion_context(int *recursion, int rctx)
1888 {
1889 barrier();
1890 recursion[rctx]--;
1891 }
1892
1893 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
1894 {
1895 int cpu;
1896 struct callchain_cpus_entries *entries;
1897
1898 *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
1899 if (*rctx == -1)
1900 return NULL;
1901
1902 entries = rcu_dereference(callchain_cpus_entries);
1903 if (!entries)
1904 return NULL;
1905
1906 cpu = smp_processor_id();
1907
1908 return &entries->cpu_entries[cpu][*rctx];
1909 }
1910
1911 static void
1912 put_callchain_entry(int rctx)
1913 {
1914 put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
1915 }
1916
1917 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1918 {
1919 int rctx;
1920 struct perf_callchain_entry *entry;
1921
1922
1923 entry = get_callchain_entry(&rctx);
1924 if (rctx == -1)
1925 return NULL;
1926
1927 if (!entry)
1928 goto exit_put;
1929
1930 entry->nr = 0;
1931
1932 if (!user_mode(regs)) {
1933 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
1934 perf_callchain_kernel(entry, regs);
1935 if (current->mm)
1936 regs = task_pt_regs(current);
1937 else
1938 regs = NULL;
1939 }
1940
1941 if (regs) {
1942 perf_callchain_store(entry, PERF_CONTEXT_USER);
1943 perf_callchain_user(entry, regs);
1944 }
1945
1946 exit_put:
1947 put_callchain_entry(rctx);
1948
1949 return entry;
1950 }
1951
1952 /*
1953 * Initialize the perf_event context in a task_struct:
1954 */
1955 static void
1956 __perf_event_init_context(struct perf_event_context *ctx,
1957 struct task_struct *task)
1958 {
1959 raw_spin_lock_init(&ctx->lock);
1960 mutex_init(&ctx->mutex);
1961 INIT_LIST_HEAD(&ctx->pinned_groups);
1962 INIT_LIST_HEAD(&ctx->flexible_groups);
1963 INIT_LIST_HEAD(&ctx->event_list);
1964 atomic_set(&ctx->refcount, 1);
1965 ctx->task = task;
1966 }
1967
1968 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1969 {
1970 struct perf_event_context *ctx;
1971 struct perf_cpu_context *cpuctx;
1972 struct task_struct *task;
1973 unsigned long flags;
1974 int err;
1975
1976 if (pid == -1 && cpu != -1) {
1977 /* Must be root to operate on a CPU event: */
1978 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1979 return ERR_PTR(-EACCES);
1980
1981 if (cpu < 0 || cpu >= nr_cpumask_bits)
1982 return ERR_PTR(-EINVAL);
1983
1984 /*
1985 * We could be clever and allow to attach a event to an
1986 * offline CPU and activate it when the CPU comes up, but
1987 * that's for later.
1988 */
1989 if (!cpu_online(cpu))
1990 return ERR_PTR(-ENODEV);
1991
1992 cpuctx = &per_cpu(perf_cpu_context, cpu);
1993 ctx = &cpuctx->ctx;
1994 get_ctx(ctx);
1995
1996 return ctx;
1997 }
1998
1999 rcu_read_lock();
2000 if (!pid)
2001 task = current;
2002 else
2003 task = find_task_by_vpid(pid);
2004 if (task)
2005 get_task_struct(task);
2006 rcu_read_unlock();
2007
2008 if (!task)
2009 return ERR_PTR(-ESRCH);
2010
2011 /*
2012 * Can't attach events to a dying task.
2013 */
2014 err = -ESRCH;
2015 if (task->flags & PF_EXITING)
2016 goto errout;
2017
2018 /* Reuse ptrace permission checks for now. */
2019 err = -EACCES;
2020 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2021 goto errout;
2022
2023 retry:
2024 ctx = perf_lock_task_context(task, &flags);
2025 if (ctx) {
2026 unclone_ctx(ctx);
2027 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2028 }
2029
2030 if (!ctx) {
2031 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2032 err = -ENOMEM;
2033 if (!ctx)
2034 goto errout;
2035 __perf_event_init_context(ctx, task);
2036 get_ctx(ctx);
2037 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
2038 /*
2039 * We raced with some other task; use
2040 * the context they set.
2041 */
2042 kfree(ctx);
2043 goto retry;
2044 }
2045 get_task_struct(task);
2046 }
2047
2048 put_task_struct(task);
2049 return ctx;
2050
2051 errout:
2052 put_task_struct(task);
2053 return ERR_PTR(err);
2054 }
2055
2056 static void perf_event_free_filter(struct perf_event *event);
2057
2058 static void free_event_rcu(struct rcu_head *head)
2059 {
2060 struct perf_event *event;
2061
2062 event = container_of(head, struct perf_event, rcu_head);
2063 if (event->ns)
2064 put_pid_ns(event->ns);
2065 perf_event_free_filter(event);
2066 kfree(event);
2067 }
2068
2069 static void perf_pending_sync(struct perf_event *event);
2070 static void perf_buffer_put(struct perf_buffer *buffer);
2071
2072 static void free_event(struct perf_event *event)
2073 {
2074 perf_pending_sync(event);
2075
2076 if (!event->parent) {
2077 atomic_dec(&nr_events);
2078 if (event->attr.mmap || event->attr.mmap_data)
2079 atomic_dec(&nr_mmap_events);
2080 if (event->attr.comm)
2081 atomic_dec(&nr_comm_events);
2082 if (event->attr.task)
2083 atomic_dec(&nr_task_events);
2084 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2085 put_callchain_buffers();
2086 }
2087
2088 if (event->buffer) {
2089 perf_buffer_put(event->buffer);
2090 event->buffer = NULL;
2091 }
2092
2093 if (event->destroy)
2094 event->destroy(event);
2095
2096 put_ctx(event->ctx);
2097 call_rcu(&event->rcu_head, free_event_rcu);
2098 }
2099
2100 int perf_event_release_kernel(struct perf_event *event)
2101 {
2102 struct perf_event_context *ctx = event->ctx;
2103
2104 /*
2105 * Remove from the PMU, can't get re-enabled since we got
2106 * here because the last ref went.
2107 */
2108 perf_event_disable(event);
2109
2110 WARN_ON_ONCE(ctx->parent_ctx);
2111 /*
2112 * There are two ways this annotation is useful:
2113 *
2114 * 1) there is a lock recursion from perf_event_exit_task
2115 * see the comment there.
2116 *
2117 * 2) there is a lock-inversion with mmap_sem through
2118 * perf_event_read_group(), which takes faults while
2119 * holding ctx->mutex, however this is called after
2120 * the last filedesc died, so there is no possibility
2121 * to trigger the AB-BA case.
2122 */
2123 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2124 raw_spin_lock_irq(&ctx->lock);
2125 perf_group_detach(event);
2126 list_del_event(event, ctx);
2127 raw_spin_unlock_irq(&ctx->lock);
2128 mutex_unlock(&ctx->mutex);
2129
2130 mutex_lock(&event->owner->perf_event_mutex);
2131 list_del_init(&event->owner_entry);
2132 mutex_unlock(&event->owner->perf_event_mutex);
2133 put_task_struct(event->owner);
2134
2135 free_event(event);
2136
2137 return 0;
2138 }
2139 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2140
2141 /*
2142 * Called when the last reference to the file is gone.
2143 */
2144 static int perf_release(struct inode *inode, struct file *file)
2145 {
2146 struct perf_event *event = file->private_data;
2147
2148 file->private_data = NULL;
2149
2150 return perf_event_release_kernel(event);
2151 }
2152
2153 static int perf_event_read_size(struct perf_event *event)
2154 {
2155 int entry = sizeof(u64); /* value */
2156 int size = 0;
2157 int nr = 1;
2158
2159 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2160 size += sizeof(u64);
2161
2162 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2163 size += sizeof(u64);
2164
2165 if (event->attr.read_format & PERF_FORMAT_ID)
2166 entry += sizeof(u64);
2167
2168 if (event->attr.read_format & PERF_FORMAT_GROUP) {
2169 nr += event->group_leader->nr_siblings;
2170 size += sizeof(u64);
2171 }
2172
2173 size += entry * nr;
2174
2175 return size;
2176 }
2177
2178 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2179 {
2180 struct perf_event *child;
2181 u64 total = 0;
2182
2183 *enabled = 0;
2184 *running = 0;
2185
2186 mutex_lock(&event->child_mutex);
2187 total += perf_event_read(event);
2188 *enabled += event->total_time_enabled +
2189 atomic64_read(&event->child_total_time_enabled);
2190 *running += event->total_time_running +
2191 atomic64_read(&event->child_total_time_running);
2192
2193 list_for_each_entry(child, &event->child_list, child_list) {
2194 total += perf_event_read(child);
2195 *enabled += child->total_time_enabled;
2196 *running += child->total_time_running;
2197 }
2198 mutex_unlock(&event->child_mutex);
2199
2200 return total;
2201 }
2202 EXPORT_SYMBOL_GPL(perf_event_read_value);
2203
2204 static int perf_event_read_group(struct perf_event *event,
2205 u64 read_format, char __user *buf)
2206 {
2207 struct perf_event *leader = event->group_leader, *sub;
2208 int n = 0, size = 0, ret = -EFAULT;
2209 struct perf_event_context *ctx = leader->ctx;
2210 u64 values[5];
2211 u64 count, enabled, running;
2212
2213 mutex_lock(&ctx->mutex);
2214 count = perf_event_read_value(leader, &enabled, &running);
2215
2216 values[n++] = 1 + leader->nr_siblings;
2217 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2218 values[n++] = enabled;
2219 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2220 values[n++] = running;
2221 values[n++] = count;
2222 if (read_format & PERF_FORMAT_ID)
2223 values[n++] = primary_event_id(leader);
2224
2225 size = n * sizeof(u64);
2226
2227 if (copy_to_user(buf, values, size))
2228 goto unlock;
2229
2230 ret = size;
2231
2232 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2233 n = 0;
2234
2235 values[n++] = perf_event_read_value(sub, &enabled, &running);
2236 if (read_format & PERF_FORMAT_ID)
2237 values[n++] = primary_event_id(sub);
2238
2239 size = n * sizeof(u64);
2240
2241 if (copy_to_user(buf + ret, values, size)) {
2242 ret = -EFAULT;
2243 goto unlock;
2244 }
2245
2246 ret += size;
2247 }
2248 unlock:
2249 mutex_unlock(&ctx->mutex);
2250
2251 return ret;
2252 }
2253
2254 static int perf_event_read_one(struct perf_event *event,
2255 u64 read_format, char __user *buf)
2256 {
2257 u64 enabled, running;
2258 u64 values[4];
2259 int n = 0;
2260
2261 values[n++] = perf_event_read_value(event, &enabled, &running);
2262 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2263 values[n++] = enabled;
2264 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2265 values[n++] = running;
2266 if (read_format & PERF_FORMAT_ID)
2267 values[n++] = primary_event_id(event);
2268
2269 if (copy_to_user(buf, values, n * sizeof(u64)))
2270 return -EFAULT;
2271
2272 return n * sizeof(u64);
2273 }
2274
2275 /*
2276 * Read the performance event - simple non blocking version for now
2277 */
2278 static ssize_t
2279 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2280 {
2281 u64 read_format = event->attr.read_format;
2282 int ret;
2283
2284 /*
2285 * Return end-of-file for a read on a event that is in
2286 * error state (i.e. because it was pinned but it couldn't be
2287 * scheduled on to the CPU at some point).
2288 */
2289 if (event->state == PERF_EVENT_STATE_ERROR)
2290 return 0;
2291
2292 if (count < perf_event_read_size(event))
2293 return -ENOSPC;
2294
2295 WARN_ON_ONCE(event->ctx->parent_ctx);
2296 if (read_format & PERF_FORMAT_GROUP)
2297 ret = perf_event_read_group(event, read_format, buf);
2298 else
2299 ret = perf_event_read_one(event, read_format, buf);
2300
2301 return ret;
2302 }
2303
2304 static ssize_t
2305 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2306 {
2307 struct perf_event *event = file->private_data;
2308
2309 return perf_read_hw(event, buf, count);
2310 }
2311
2312 static unsigned int perf_poll(struct file *file, poll_table *wait)
2313 {
2314 struct perf_event *event = file->private_data;
2315 struct perf_buffer *buffer;
2316 unsigned int events = POLL_HUP;
2317
2318 rcu_read_lock();
2319 buffer = rcu_dereference(event->buffer);
2320 if (buffer)
2321 events = atomic_xchg(&buffer->poll, 0);
2322 rcu_read_unlock();
2323
2324 poll_wait(file, &event->waitq, wait);
2325
2326 return events;
2327 }
2328
2329 static void perf_event_reset(struct perf_event *event)
2330 {
2331 (void)perf_event_read(event);
2332 local64_set(&event->count, 0);
2333 perf_event_update_userpage(event);
2334 }
2335
2336 /*
2337 * Holding the top-level event's child_mutex means that any
2338 * descendant process that has inherited this event will block
2339 * in sync_child_event if it goes to exit, thus satisfying the
2340 * task existence requirements of perf_event_enable/disable.
2341 */
2342 static void perf_event_for_each_child(struct perf_event *event,
2343 void (*func)(struct perf_event *))
2344 {
2345 struct perf_event *child;
2346
2347 WARN_ON_ONCE(event->ctx->parent_ctx);
2348 mutex_lock(&event->child_mutex);
2349 func(event);
2350 list_for_each_entry(child, &event->child_list, child_list)
2351 func(child);
2352 mutex_unlock(&event->child_mutex);
2353 }
2354
2355 static void perf_event_for_each(struct perf_event *event,
2356 void (*func)(struct perf_event *))
2357 {
2358 struct perf_event_context *ctx = event->ctx;
2359 struct perf_event *sibling;
2360
2361 WARN_ON_ONCE(ctx->parent_ctx);
2362 mutex_lock(&ctx->mutex);
2363 event = event->group_leader;
2364
2365 perf_event_for_each_child(event, func);
2366 func(event);
2367 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2368 perf_event_for_each_child(event, func);
2369 mutex_unlock(&ctx->mutex);
2370 }
2371
2372 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2373 {
2374 struct perf_event_context *ctx = event->ctx;
2375 unsigned long size;
2376 int ret = 0;
2377 u64 value;
2378
2379 if (!event->attr.sample_period)
2380 return -EINVAL;
2381
2382 size = copy_from_user(&value, arg, sizeof(value));
2383 if (size != sizeof(value))
2384 return -EFAULT;
2385
2386 if (!value)
2387 return -EINVAL;
2388
2389 raw_spin_lock_irq(&ctx->lock);
2390 if (event->attr.freq) {
2391 if (value > sysctl_perf_event_sample_rate) {
2392 ret = -EINVAL;
2393 goto unlock;
2394 }
2395
2396 event->attr.sample_freq = value;
2397 } else {
2398 event->attr.sample_period = value;
2399 event->hw.sample_period = value;
2400 }
2401 unlock:
2402 raw_spin_unlock_irq(&ctx->lock);
2403
2404 return ret;
2405 }
2406
2407 static const struct file_operations perf_fops;
2408
2409 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2410 {
2411 struct file *file;
2412
2413 file = fget_light(fd, fput_needed);
2414 if (!file)
2415 return ERR_PTR(-EBADF);
2416
2417 if (file->f_op != &perf_fops) {
2418 fput_light(file, *fput_needed);
2419 *fput_needed = 0;
2420 return ERR_PTR(-EBADF);
2421 }
2422
2423 return file->private_data;
2424 }
2425
2426 static int perf_event_set_output(struct perf_event *event,
2427 struct perf_event *output_event);
2428 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2429
2430 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2431 {
2432 struct perf_event *event = file->private_data;
2433 void (*func)(struct perf_event *);
2434 u32 flags = arg;
2435
2436 switch (cmd) {
2437 case PERF_EVENT_IOC_ENABLE:
2438 func = perf_event_enable;
2439 break;
2440 case PERF_EVENT_IOC_DISABLE:
2441 func = perf_event_disable;
2442 break;
2443 case PERF_EVENT_IOC_RESET:
2444 func = perf_event_reset;
2445 break;
2446
2447 case PERF_EVENT_IOC_REFRESH:
2448 return perf_event_refresh(event, arg);
2449
2450 case PERF_EVENT_IOC_PERIOD:
2451 return perf_event_period(event, (u64 __user *)arg);
2452
2453 case PERF_EVENT_IOC_SET_OUTPUT:
2454 {
2455 struct perf_event *output_event = NULL;
2456 int fput_needed = 0;
2457 int ret;
2458
2459 if (arg != -1) {
2460 output_event = perf_fget_light(arg, &fput_needed);
2461 if (IS_ERR(output_event))
2462 return PTR_ERR(output_event);
2463 }
2464
2465 ret = perf_event_set_output(event, output_event);
2466 if (output_event)
2467 fput_light(output_event->filp, fput_needed);
2468
2469 return ret;
2470 }
2471
2472 case PERF_EVENT_IOC_SET_FILTER:
2473 return perf_event_set_filter(event, (void __user *)arg);
2474
2475 default:
2476 return -ENOTTY;
2477 }
2478
2479 if (flags & PERF_IOC_FLAG_GROUP)
2480 perf_event_for_each(event, func);
2481 else
2482 perf_event_for_each_child(event, func);
2483
2484 return 0;
2485 }
2486
2487 int perf_event_task_enable(void)
2488 {
2489 struct perf_event *event;
2490
2491 mutex_lock(&current->perf_event_mutex);
2492 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2493 perf_event_for_each_child(event, perf_event_enable);
2494 mutex_unlock(&current->perf_event_mutex);
2495
2496 return 0;
2497 }
2498
2499 int perf_event_task_disable(void)
2500 {
2501 struct perf_event *event;
2502
2503 mutex_lock(&current->perf_event_mutex);
2504 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2505 perf_event_for_each_child(event, perf_event_disable);
2506 mutex_unlock(&current->perf_event_mutex);
2507
2508 return 0;
2509 }
2510
2511 #ifndef PERF_EVENT_INDEX_OFFSET
2512 # define PERF_EVENT_INDEX_OFFSET 0
2513 #endif
2514
2515 static int perf_event_index(struct perf_event *event)
2516 {
2517 if (event->state != PERF_EVENT_STATE_ACTIVE)
2518 return 0;
2519
2520 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2521 }
2522
2523 /*
2524 * Callers need to ensure there can be no nesting of this function, otherwise
2525 * the seqlock logic goes bad. We can not serialize this because the arch
2526 * code calls this from NMI context.
2527 */
2528 void perf_event_update_userpage(struct perf_event *event)
2529 {
2530 struct perf_event_mmap_page *userpg;
2531 struct perf_buffer *buffer;
2532
2533 rcu_read_lock();
2534 buffer = rcu_dereference(event->buffer);
2535 if (!buffer)
2536 goto unlock;
2537
2538 userpg = buffer->user_page;
2539
2540 /*
2541 * Disable preemption so as to not let the corresponding user-space
2542 * spin too long if we get preempted.
2543 */
2544 preempt_disable();
2545 ++userpg->lock;
2546 barrier();
2547 userpg->index = perf_event_index(event);
2548 userpg->offset = perf_event_count(event);
2549 if (event->state == PERF_EVENT_STATE_ACTIVE)
2550 userpg->offset -= local64_read(&event->hw.prev_count);
2551
2552 userpg->time_enabled = event->total_time_enabled +
2553 atomic64_read(&event->child_total_time_enabled);
2554
2555 userpg->time_running = event->total_time_running +
2556 atomic64_read(&event->child_total_time_running);
2557
2558 barrier();
2559 ++userpg->lock;
2560 preempt_enable();
2561 unlock:
2562 rcu_read_unlock();
2563 }
2564
2565 static unsigned long perf_data_size(struct perf_buffer *buffer);
2566
2567 static void
2568 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2569 {
2570 long max_size = perf_data_size(buffer);
2571
2572 if (watermark)
2573 buffer->watermark = min(max_size, watermark);
2574
2575 if (!buffer->watermark)
2576 buffer->watermark = max_size / 2;
2577
2578 if (flags & PERF_BUFFER_WRITABLE)
2579 buffer->writable = 1;
2580
2581 atomic_set(&buffer->refcount, 1);
2582 }
2583
2584 #ifndef CONFIG_PERF_USE_VMALLOC
2585
2586 /*
2587 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2588 */
2589
2590 static struct page *
2591 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2592 {
2593 if (pgoff > buffer->nr_pages)
2594 return NULL;
2595
2596 if (pgoff == 0)
2597 return virt_to_page(buffer->user_page);
2598
2599 return virt_to_page(buffer->data_pages[pgoff - 1]);
2600 }
2601
2602 static void *perf_mmap_alloc_page(int cpu)
2603 {
2604 struct page *page;
2605 int node;
2606
2607 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2608 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2609 if (!page)
2610 return NULL;
2611
2612 return page_address(page);
2613 }
2614
2615 static struct perf_buffer *
2616 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2617 {
2618 struct perf_buffer *buffer;
2619 unsigned long size;
2620 int i;
2621
2622 size = sizeof(struct perf_buffer);
2623 size += nr_pages * sizeof(void *);
2624
2625 buffer = kzalloc(size, GFP_KERNEL);
2626 if (!buffer)
2627 goto fail;
2628
2629 buffer->user_page = perf_mmap_alloc_page(cpu);
2630 if (!buffer->user_page)
2631 goto fail_user_page;
2632
2633 for (i = 0; i < nr_pages; i++) {
2634 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2635 if (!buffer->data_pages[i])
2636 goto fail_data_pages;
2637 }
2638
2639 buffer->nr_pages = nr_pages;
2640
2641 perf_buffer_init(buffer, watermark, flags);
2642
2643 return buffer;
2644
2645 fail_data_pages:
2646 for (i--; i >= 0; i--)
2647 free_page((unsigned long)buffer->data_pages[i]);
2648
2649 free_page((unsigned long)buffer->user_page);
2650
2651 fail_user_page:
2652 kfree(buffer);
2653
2654 fail:
2655 return NULL;
2656 }
2657
2658 static void perf_mmap_free_page(unsigned long addr)
2659 {
2660 struct page *page = virt_to_page((void *)addr);
2661
2662 page->mapping = NULL;
2663 __free_page(page);
2664 }
2665
2666 static void perf_buffer_free(struct perf_buffer *buffer)
2667 {
2668 int i;
2669
2670 perf_mmap_free_page((unsigned long)buffer->user_page);
2671 for (i = 0; i < buffer->nr_pages; i++)
2672 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2673 kfree(buffer);
2674 }
2675
2676 static inline int page_order(struct perf_buffer *buffer)
2677 {
2678 return 0;
2679 }
2680
2681 #else
2682
2683 /*
2684 * Back perf_mmap() with vmalloc memory.
2685 *
2686 * Required for architectures that have d-cache aliasing issues.
2687 */
2688
2689 static inline int page_order(struct perf_buffer *buffer)
2690 {
2691 return buffer->page_order;
2692 }
2693
2694 static struct page *
2695 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2696 {
2697 if (pgoff > (1UL << page_order(buffer)))
2698 return NULL;
2699
2700 return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2701 }
2702
2703 static void perf_mmap_unmark_page(void *addr)
2704 {
2705 struct page *page = vmalloc_to_page(addr);
2706
2707 page->mapping = NULL;
2708 }
2709
2710 static void perf_buffer_free_work(struct work_struct *work)
2711 {
2712 struct perf_buffer *buffer;
2713 void *base;
2714 int i, nr;
2715
2716 buffer = container_of(work, struct perf_buffer, work);
2717 nr = 1 << page_order(buffer);
2718
2719 base = buffer->user_page;
2720 for (i = 0; i < nr + 1; i++)
2721 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2722
2723 vfree(base);
2724 kfree(buffer);
2725 }
2726
2727 static void perf_buffer_free(struct perf_buffer *buffer)
2728 {
2729 schedule_work(&buffer->work);
2730 }
2731
2732 static struct perf_buffer *
2733 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2734 {
2735 struct perf_buffer *buffer;
2736 unsigned long size;
2737 void *all_buf;
2738
2739 size = sizeof(struct perf_buffer);
2740 size += sizeof(void *);
2741
2742 buffer = kzalloc(size, GFP_KERNEL);
2743 if (!buffer)
2744 goto fail;
2745
2746 INIT_WORK(&buffer->work, perf_buffer_free_work);
2747
2748 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2749 if (!all_buf)
2750 goto fail_all_buf;
2751
2752 buffer->user_page = all_buf;
2753 buffer->data_pages[0] = all_buf + PAGE_SIZE;
2754 buffer->page_order = ilog2(nr_pages);
2755 buffer->nr_pages = 1;
2756
2757 perf_buffer_init(buffer, watermark, flags);
2758
2759 return buffer;
2760
2761 fail_all_buf:
2762 kfree(buffer);
2763
2764 fail:
2765 return NULL;
2766 }
2767
2768 #endif
2769
2770 static unsigned long perf_data_size(struct perf_buffer *buffer)
2771 {
2772 return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2773 }
2774
2775 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2776 {
2777 struct perf_event *event = vma->vm_file->private_data;
2778 struct perf_buffer *buffer;
2779 int ret = VM_FAULT_SIGBUS;
2780
2781 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2782 if (vmf->pgoff == 0)
2783 ret = 0;
2784 return ret;
2785 }
2786
2787 rcu_read_lock();
2788 buffer = rcu_dereference(event->buffer);
2789 if (!buffer)
2790 goto unlock;
2791
2792 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2793 goto unlock;
2794
2795 vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2796 if (!vmf->page)
2797 goto unlock;
2798
2799 get_page(vmf->page);
2800 vmf->page->mapping = vma->vm_file->f_mapping;
2801 vmf->page->index = vmf->pgoff;
2802
2803 ret = 0;
2804 unlock:
2805 rcu_read_unlock();
2806
2807 return ret;
2808 }
2809
2810 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2811 {
2812 struct perf_buffer *buffer;
2813
2814 buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
2815 perf_buffer_free(buffer);
2816 }
2817
2818 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2819 {
2820 struct perf_buffer *buffer;
2821
2822 rcu_read_lock();
2823 buffer = rcu_dereference(event->buffer);
2824 if (buffer) {
2825 if (!atomic_inc_not_zero(&buffer->refcount))
2826 buffer = NULL;
2827 }
2828 rcu_read_unlock();
2829
2830 return buffer;
2831 }
2832
2833 static void perf_buffer_put(struct perf_buffer *buffer)
2834 {
2835 if (!atomic_dec_and_test(&buffer->refcount))
2836 return;
2837
2838 call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2839 }
2840
2841 static void perf_mmap_open(struct vm_area_struct *vma)
2842 {
2843 struct perf_event *event = vma->vm_file->private_data;
2844
2845 atomic_inc(&event->mmap_count);
2846 }
2847
2848 static void perf_mmap_close(struct vm_area_struct *vma)
2849 {
2850 struct perf_event *event = vma->vm_file->private_data;
2851
2852 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2853 unsigned long size = perf_data_size(event->buffer);
2854 struct user_struct *user = event->mmap_user;
2855 struct perf_buffer *buffer = event->buffer;
2856
2857 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2858 vma->vm_mm->locked_vm -= event->mmap_locked;
2859 rcu_assign_pointer(event->buffer, NULL);
2860 mutex_unlock(&event->mmap_mutex);
2861
2862 perf_buffer_put(buffer);
2863 free_uid(user);
2864 }
2865 }
2866
2867 static const struct vm_operations_struct perf_mmap_vmops = {
2868 .open = perf_mmap_open,
2869 .close = perf_mmap_close,
2870 .fault = perf_mmap_fault,
2871 .page_mkwrite = perf_mmap_fault,
2872 };
2873
2874 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2875 {
2876 struct perf_event *event = file->private_data;
2877 unsigned long user_locked, user_lock_limit;
2878 struct user_struct *user = current_user();
2879 unsigned long locked, lock_limit;
2880 struct perf_buffer *buffer;
2881 unsigned long vma_size;
2882 unsigned long nr_pages;
2883 long user_extra, extra;
2884 int ret = 0, flags = 0;
2885
2886 /*
2887 * Don't allow mmap() of inherited per-task counters. This would
2888 * create a performance issue due to all children writing to the
2889 * same buffer.
2890 */
2891 if (event->cpu == -1 && event->attr.inherit)
2892 return -EINVAL;
2893
2894 if (!(vma->vm_flags & VM_SHARED))
2895 return -EINVAL;
2896
2897 vma_size = vma->vm_end - vma->vm_start;
2898 nr_pages = (vma_size / PAGE_SIZE) - 1;
2899
2900 /*
2901 * If we have buffer pages ensure they're a power-of-two number, so we
2902 * can do bitmasks instead of modulo.
2903 */
2904 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2905 return -EINVAL;
2906
2907 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2908 return -EINVAL;
2909
2910 if (vma->vm_pgoff != 0)
2911 return -EINVAL;
2912
2913 WARN_ON_ONCE(event->ctx->parent_ctx);
2914 mutex_lock(&event->mmap_mutex);
2915 if (event->buffer) {
2916 if (event->buffer->nr_pages == nr_pages)
2917 atomic_inc(&event->buffer->refcount);
2918 else
2919 ret = -EINVAL;
2920 goto unlock;
2921 }
2922
2923 user_extra = nr_pages + 1;
2924 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2925
2926 /*
2927 * Increase the limit linearly with more CPUs:
2928 */
2929 user_lock_limit *= num_online_cpus();
2930
2931 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2932
2933 extra = 0;
2934 if (user_locked > user_lock_limit)
2935 extra = user_locked - user_lock_limit;
2936
2937 lock_limit = rlimit(RLIMIT_MEMLOCK);
2938 lock_limit >>= PAGE_SHIFT;
2939 locked = vma->vm_mm->locked_vm + extra;
2940
2941 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2942 !capable(CAP_IPC_LOCK)) {
2943 ret = -EPERM;
2944 goto unlock;
2945 }
2946
2947 WARN_ON(event->buffer);
2948
2949 if (vma->vm_flags & VM_WRITE)
2950 flags |= PERF_BUFFER_WRITABLE;
2951
2952 buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
2953 event->cpu, flags);
2954 if (!buffer) {
2955 ret = -ENOMEM;
2956 goto unlock;
2957 }
2958 rcu_assign_pointer(event->buffer, buffer);
2959
2960 atomic_long_add(user_extra, &user->locked_vm);
2961 event->mmap_locked = extra;
2962 event->mmap_user = get_current_user();
2963 vma->vm_mm->locked_vm += event->mmap_locked;
2964
2965 unlock:
2966 if (!ret)
2967 atomic_inc(&event->mmap_count);
2968 mutex_unlock(&event->mmap_mutex);
2969
2970 vma->vm_flags |= VM_RESERVED;
2971 vma->vm_ops = &perf_mmap_vmops;
2972
2973 return ret;
2974 }
2975
2976 static int perf_fasync(int fd, struct file *filp, int on)
2977 {
2978 struct inode *inode = filp->f_path.dentry->d_inode;
2979 struct perf_event *event = filp->private_data;
2980 int retval;
2981
2982 mutex_lock(&inode->i_mutex);
2983 retval = fasync_helper(fd, filp, on, &event->fasync);
2984 mutex_unlock(&inode->i_mutex);
2985
2986 if (retval < 0)
2987 return retval;
2988
2989 return 0;
2990 }
2991
2992 static const struct file_operations perf_fops = {
2993 .llseek = no_llseek,
2994 .release = perf_release,
2995 .read = perf_read,
2996 .poll = perf_poll,
2997 .unlocked_ioctl = perf_ioctl,
2998 .compat_ioctl = perf_ioctl,
2999 .mmap = perf_mmap,
3000 .fasync = perf_fasync,
3001 };
3002
3003 /*
3004 * Perf event wakeup
3005 *
3006 * If there's data, ensure we set the poll() state and publish everything
3007 * to user-space before waking everybody up.
3008 */
3009
3010 void perf_event_wakeup(struct perf_event *event)
3011 {
3012 wake_up_all(&event->waitq);
3013
3014 if (event->pending_kill) {
3015 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3016 event->pending_kill = 0;
3017 }
3018 }
3019
3020 /*
3021 * Pending wakeups
3022 *
3023 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
3024 *
3025 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
3026 * single linked list and use cmpxchg() to add entries lockless.
3027 */
3028
3029 static void perf_pending_event(struct perf_pending_entry *entry)
3030 {
3031 struct perf_event *event = container_of(entry,
3032 struct perf_event, pending);
3033
3034 if (event->pending_disable) {
3035 event->pending_disable = 0;
3036 __perf_event_disable(event);
3037 }
3038
3039 if (event->pending_wakeup) {
3040 event->pending_wakeup = 0;
3041 perf_event_wakeup(event);
3042 }
3043 }
3044
3045 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
3046
3047 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
3048 PENDING_TAIL,
3049 };
3050
3051 static void perf_pending_queue(struct perf_pending_entry *entry,
3052 void (*func)(struct perf_pending_entry *))
3053 {
3054 struct perf_pending_entry **head;
3055
3056 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
3057 return;
3058
3059 entry->func = func;
3060
3061 head = &get_cpu_var(perf_pending_head);
3062
3063 do {
3064 entry->next = *head;
3065 } while (cmpxchg(head, entry->next, entry) != entry->next);
3066
3067 set_perf_event_pending();
3068
3069 put_cpu_var(perf_pending_head);
3070 }
3071
3072 static int __perf_pending_run(void)
3073 {
3074 struct perf_pending_entry *list;
3075 int nr = 0;
3076
3077 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
3078 while (list != PENDING_TAIL) {
3079 void (*func)(struct perf_pending_entry *);
3080 struct perf_pending_entry *entry = list;
3081
3082 list = list->next;
3083
3084 func = entry->func;
3085 entry->next = NULL;
3086 /*
3087 * Ensure we observe the unqueue before we issue the wakeup,
3088 * so that we won't be waiting forever.
3089 * -- see perf_not_pending().
3090 */
3091 smp_wmb();
3092
3093 func(entry);
3094 nr++;
3095 }
3096
3097 return nr;
3098 }
3099
3100 static inline int perf_not_pending(struct perf_event *event)
3101 {
3102 /*
3103 * If we flush on whatever cpu we run, there is a chance we don't
3104 * need to wait.
3105 */
3106 get_cpu();
3107 __perf_pending_run();
3108 put_cpu();
3109
3110 /*
3111 * Ensure we see the proper queue state before going to sleep
3112 * so that we do not miss the wakeup. -- see perf_pending_handle()
3113 */
3114 smp_rmb();
3115 return event->pending.next == NULL;
3116 }
3117
3118 static void perf_pending_sync(struct perf_event *event)
3119 {
3120 wait_event(event->waitq, perf_not_pending(event));
3121 }
3122
3123 void perf_event_do_pending(void)
3124 {
3125 __perf_pending_run();
3126 }
3127
3128 /*
3129 * We assume there is only KVM supporting the callbacks.
3130 * Later on, we might change it to a list if there is
3131 * another virtualization implementation supporting the callbacks.
3132 */
3133 struct perf_guest_info_callbacks *perf_guest_cbs;
3134
3135 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3136 {
3137 perf_guest_cbs = cbs;
3138 return 0;
3139 }
3140 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3141
3142 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3143 {
3144 perf_guest_cbs = NULL;
3145 return 0;
3146 }
3147 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3148
3149 /*
3150 * Output
3151 */
3152 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3153 unsigned long offset, unsigned long head)
3154 {
3155 unsigned long mask;
3156
3157 if (!buffer->writable)
3158 return true;
3159
3160 mask = perf_data_size(buffer) - 1;
3161
3162 offset = (offset - tail) & mask;
3163 head = (head - tail) & mask;
3164
3165 if ((int)(head - offset) < 0)
3166 return false;
3167
3168 return true;
3169 }
3170
3171 static void perf_output_wakeup(struct perf_output_handle *handle)
3172 {
3173 atomic_set(&handle->buffer->poll, POLL_IN);
3174
3175 if (handle->nmi) {
3176 handle->event->pending_wakeup = 1;
3177 perf_pending_queue(&handle->event->pending,
3178 perf_pending_event);
3179 } else
3180 perf_event_wakeup(handle->event);
3181 }
3182
3183 /*
3184 * We need to ensure a later event_id doesn't publish a head when a former
3185 * event isn't done writing. However since we need to deal with NMIs we
3186 * cannot fully serialize things.
3187 *
3188 * We only publish the head (and generate a wakeup) when the outer-most
3189 * event completes.
3190 */
3191 static void perf_output_get_handle(struct perf_output_handle *handle)
3192 {
3193 struct perf_buffer *buffer = handle->buffer;
3194
3195 preempt_disable();
3196 local_inc(&buffer->nest);
3197 handle->wakeup = local_read(&buffer->wakeup);
3198 }
3199
3200 static void perf_output_put_handle(struct perf_output_handle *handle)
3201 {
3202 struct perf_buffer *buffer = handle->buffer;
3203 unsigned long head;
3204
3205 again:
3206 head = local_read(&buffer->head);
3207
3208 /*
3209 * IRQ/NMI can happen here, which means we can miss a head update.
3210 */
3211
3212 if (!local_dec_and_test(&buffer->nest))
3213 goto out;
3214
3215 /*
3216 * Publish the known good head. Rely on the full barrier implied
3217 * by atomic_dec_and_test() order the buffer->head read and this
3218 * write.
3219 */
3220 buffer->user_page->data_head = head;
3221
3222 /*
3223 * Now check if we missed an update, rely on the (compiler)
3224 * barrier in atomic_dec_and_test() to re-read buffer->head.
3225 */
3226 if (unlikely(head != local_read(&buffer->head))) {
3227 local_inc(&buffer->nest);
3228 goto again;
3229 }
3230
3231 if (handle->wakeup != local_read(&buffer->wakeup))
3232 perf_output_wakeup(handle);
3233
3234 out:
3235 preempt_enable();
3236 }
3237
3238 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3239 const void *buf, unsigned int len)
3240 {
3241 do {
3242 unsigned long size = min_t(unsigned long, handle->size, len);
3243
3244 memcpy(handle->addr, buf, size);
3245
3246 len -= size;
3247 handle->addr += size;
3248 buf += size;
3249 handle->size -= size;
3250 if (!handle->size) {
3251 struct perf_buffer *buffer = handle->buffer;
3252
3253 handle->page++;
3254 handle->page &= buffer->nr_pages - 1;
3255 handle->addr = buffer->data_pages[handle->page];
3256 handle->size = PAGE_SIZE << page_order(buffer);
3257 }
3258 } while (len);
3259 }
3260
3261 int perf_output_begin(struct perf_output_handle *handle,
3262 struct perf_event *event, unsigned int size,
3263 int nmi, int sample)
3264 {
3265 struct perf_buffer *buffer;
3266 unsigned long tail, offset, head;
3267 int have_lost;
3268 struct {
3269 struct perf_event_header header;
3270 u64 id;
3271 u64 lost;
3272 } lost_event;
3273
3274 rcu_read_lock();
3275 /*
3276 * For inherited events we send all the output towards the parent.
3277 */
3278 if (event->parent)
3279 event = event->parent;
3280
3281 buffer = rcu_dereference(event->buffer);
3282 if (!buffer)
3283 goto out;
3284
3285 handle->buffer = buffer;
3286 handle->event = event;
3287 handle->nmi = nmi;
3288 handle->sample = sample;
3289
3290 if (!buffer->nr_pages)
3291 goto out;
3292
3293 have_lost = local_read(&buffer->lost);
3294 if (have_lost)
3295 size += sizeof(lost_event);
3296
3297 perf_output_get_handle(handle);
3298
3299 do {
3300 /*
3301 * Userspace could choose to issue a mb() before updating the
3302 * tail pointer. So that all reads will be completed before the
3303 * write is issued.
3304 */
3305 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3306 smp_rmb();
3307 offset = head = local_read(&buffer->head);
3308 head += size;
3309 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3310 goto fail;
3311 } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3312
3313 if (head - local_read(&buffer->wakeup) > buffer->watermark)
3314 local_add(buffer->watermark, &buffer->wakeup);
3315
3316 handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3317 handle->page &= buffer->nr_pages - 1;
3318 handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3319 handle->addr = buffer->data_pages[handle->page];
3320 handle->addr += handle->size;
3321 handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3322
3323 if (have_lost) {
3324 lost_event.header.type = PERF_RECORD_LOST;
3325 lost_event.header.misc = 0;
3326 lost_event.header.size = sizeof(lost_event);
3327 lost_event.id = event->id;
3328 lost_event.lost = local_xchg(&buffer->lost, 0);
3329
3330 perf_output_put(handle, lost_event);
3331 }
3332
3333 return 0;
3334
3335 fail:
3336 local_inc(&buffer->lost);
3337 perf_output_put_handle(handle);
3338 out:
3339 rcu_read_unlock();
3340
3341 return -ENOSPC;
3342 }
3343
3344 void perf_output_end(struct perf_output_handle *handle)
3345 {
3346 struct perf_event *event = handle->event;
3347 struct perf_buffer *buffer = handle->buffer;
3348
3349 int wakeup_events = event->attr.wakeup_events;
3350
3351 if (handle->sample && wakeup_events) {
3352 int events = local_inc_return(&buffer->events);
3353 if (events >= wakeup_events) {
3354 local_sub(wakeup_events, &buffer->events);
3355 local_inc(&buffer->wakeup);
3356 }
3357 }
3358
3359 perf_output_put_handle(handle);
3360 rcu_read_unlock();
3361 }
3362
3363 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3364 {
3365 /*
3366 * only top level events have the pid namespace they were created in
3367 */
3368 if (event->parent)
3369 event = event->parent;
3370
3371 return task_tgid_nr_ns(p, event->ns);
3372 }
3373
3374 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3375 {
3376 /*
3377 * only top level events have the pid namespace they were created in
3378 */
3379 if (event->parent)
3380 event = event->parent;
3381
3382 return task_pid_nr_ns(p, event->ns);
3383 }
3384
3385 static void perf_output_read_one(struct perf_output_handle *handle,
3386 struct perf_event *event)
3387 {
3388 u64 read_format = event->attr.read_format;
3389 u64 values[4];
3390 int n = 0;
3391
3392 values[n++] = perf_event_count(event);
3393 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3394 values[n++] = event->total_time_enabled +
3395 atomic64_read(&event->child_total_time_enabled);
3396 }
3397 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3398 values[n++] = event->total_time_running +
3399 atomic64_read(&event->child_total_time_running);
3400 }
3401 if (read_format & PERF_FORMAT_ID)
3402 values[n++] = primary_event_id(event);
3403
3404 perf_output_copy(handle, values, n * sizeof(u64));
3405 }
3406
3407 /*
3408 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3409 */
3410 static void perf_output_read_group(struct perf_output_handle *handle,
3411 struct perf_event *event)
3412 {
3413 struct perf_event *leader = event->group_leader, *sub;
3414 u64 read_format = event->attr.read_format;
3415 u64 values[5];
3416 int n = 0;
3417
3418 values[n++] = 1 + leader->nr_siblings;
3419
3420 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3421 values[n++] = leader->total_time_enabled;
3422
3423 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3424 values[n++] = leader->total_time_running;
3425
3426 if (leader != event)
3427 leader->pmu->read(leader);
3428
3429 values[n++] = perf_event_count(leader);
3430 if (read_format & PERF_FORMAT_ID)
3431 values[n++] = primary_event_id(leader);
3432
3433 perf_output_copy(handle, values, n * sizeof(u64));
3434
3435 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3436 n = 0;
3437
3438 if (sub != event)
3439 sub->pmu->read(sub);
3440
3441 values[n++] = perf_event_count(sub);
3442 if (read_format & PERF_FORMAT_ID)
3443 values[n++] = primary_event_id(sub);
3444
3445 perf_output_copy(handle, values, n * sizeof(u64));
3446 }
3447 }
3448
3449 static void perf_output_read(struct perf_output_handle *handle,
3450 struct perf_event *event)
3451 {
3452 if (event->attr.read_format & PERF_FORMAT_GROUP)
3453 perf_output_read_group(handle, event);
3454 else
3455 perf_output_read_one(handle, event);
3456 }
3457
3458 void perf_output_sample(struct perf_output_handle *handle,
3459 struct perf_event_header *header,
3460 struct perf_sample_data *data,
3461 struct perf_event *event)
3462 {
3463 u64 sample_type = data->type;
3464
3465 perf_output_put(handle, *header);
3466
3467 if (sample_type & PERF_SAMPLE_IP)
3468 perf_output_put(handle, data->ip);
3469
3470 if (sample_type & PERF_SAMPLE_TID)
3471 perf_output_put(handle, data->tid_entry);
3472
3473 if (sample_type & PERF_SAMPLE_TIME)
3474 perf_output_put(handle, data->time);
3475
3476 if (sample_type & PERF_SAMPLE_ADDR)
3477 perf_output_put(handle, data->addr);
3478
3479 if (sample_type & PERF_SAMPLE_ID)
3480 perf_output_put(handle, data->id);
3481
3482 if (sample_type & PERF_SAMPLE_STREAM_ID)
3483 perf_output_put(handle, data->stream_id);
3484
3485 if (sample_type & PERF_SAMPLE_CPU)
3486 perf_output_put(handle, data->cpu_entry);
3487
3488 if (sample_type & PERF_SAMPLE_PERIOD)
3489 perf_output_put(handle, data->period);
3490
3491 if (sample_type & PERF_SAMPLE_READ)
3492 perf_output_read(handle, event);
3493
3494 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3495 if (data->callchain) {
3496 int size = 1;
3497
3498 if (data->callchain)
3499 size += data->callchain->nr;
3500
3501 size *= sizeof(u64);
3502
3503 perf_output_copy(handle, data->callchain, size);
3504 } else {
3505 u64 nr = 0;
3506 perf_output_put(handle, nr);
3507 }
3508 }
3509
3510 if (sample_type & PERF_SAMPLE_RAW) {
3511 if (data->raw) {
3512 perf_output_put(handle, data->raw->size);
3513 perf_output_copy(handle, data->raw->data,
3514 data->raw->size);
3515 } else {
3516 struct {
3517 u32 size;
3518 u32 data;
3519 } raw = {
3520 .size = sizeof(u32),
3521 .data = 0,
3522 };
3523 perf_output_put(handle, raw);
3524 }
3525 }
3526 }
3527
3528 void perf_prepare_sample(struct perf_event_header *header,
3529 struct perf_sample_data *data,
3530 struct perf_event *event,
3531 struct pt_regs *regs)
3532 {
3533 u64 sample_type = event->attr.sample_type;
3534
3535 data->type = sample_type;
3536
3537 header->type = PERF_RECORD_SAMPLE;
3538 header->size = sizeof(*header);
3539
3540 header->misc = 0;
3541 header->misc |= perf_misc_flags(regs);
3542
3543 if (sample_type & PERF_SAMPLE_IP) {
3544 data->ip = perf_instruction_pointer(regs);
3545
3546 header->size += sizeof(data->ip);
3547 }
3548
3549 if (sample_type & PERF_SAMPLE_TID) {
3550 /* namespace issues */
3551 data->tid_entry.pid = perf_event_pid(event, current);
3552 data->tid_entry.tid = perf_event_tid(event, current);
3553
3554 header->size += sizeof(data->tid_entry);
3555 }
3556
3557 if (sample_type & PERF_SAMPLE_TIME) {
3558 data->time = perf_clock();
3559
3560 header->size += sizeof(data->time);
3561 }
3562
3563 if (sample_type & PERF_SAMPLE_ADDR)
3564 header->size += sizeof(data->addr);
3565
3566 if (sample_type & PERF_SAMPLE_ID) {
3567 data->id = primary_event_id(event);
3568
3569 header->size += sizeof(data->id);
3570 }
3571
3572 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3573 data->stream_id = event->id;
3574
3575 header->size += sizeof(data->stream_id);
3576 }
3577
3578 if (sample_type & PERF_SAMPLE_CPU) {
3579 data->cpu_entry.cpu = raw_smp_processor_id();
3580 data->cpu_entry.reserved = 0;
3581
3582 header->size += sizeof(data->cpu_entry);
3583 }
3584
3585 if (sample_type & PERF_SAMPLE_PERIOD)
3586 header->size += sizeof(data->period);
3587
3588 if (sample_type & PERF_SAMPLE_READ)
3589 header->size += perf_event_read_size(event);
3590
3591 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3592 int size = 1;
3593
3594 data->callchain = perf_callchain(regs);
3595
3596 if (data->callchain)
3597 size += data->callchain->nr;
3598
3599 header->size += size * sizeof(u64);
3600 }
3601
3602 if (sample_type & PERF_SAMPLE_RAW) {
3603 int size = sizeof(u32);
3604
3605 if (data->raw)
3606 size += data->raw->size;
3607 else
3608 size += sizeof(u32);
3609
3610 WARN_ON_ONCE(size & (sizeof(u64)-1));
3611 header->size += size;
3612 }
3613 }
3614
3615 static void perf_event_output(struct perf_event *event, int nmi,
3616 struct perf_sample_data *data,
3617 struct pt_regs *regs)
3618 {
3619 struct perf_output_handle handle;
3620 struct perf_event_header header;
3621
3622 /* protect the callchain buffers */
3623 rcu_read_lock();
3624
3625 perf_prepare_sample(&header, data, event, regs);
3626
3627 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3628 goto exit;
3629
3630 perf_output_sample(&handle, &header, data, event);
3631
3632 perf_output_end(&handle);
3633
3634 exit:
3635 rcu_read_unlock();
3636 }
3637
3638 /*
3639 * read event_id
3640 */
3641
3642 struct perf_read_event {
3643 struct perf_event_header header;
3644
3645 u32 pid;
3646 u32 tid;
3647 };
3648
3649 static void
3650 perf_event_read_event(struct perf_event *event,
3651 struct task_struct *task)
3652 {
3653 struct perf_output_handle handle;
3654 struct perf_read_event read_event = {
3655 .header = {
3656 .type = PERF_RECORD_READ,
3657 .misc = 0,
3658 .size = sizeof(read_event) + perf_event_read_size(event),
3659 },
3660 .pid = perf_event_pid(event, task),
3661 .tid = perf_event_tid(event, task),
3662 };
3663 int ret;
3664
3665 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3666 if (ret)
3667 return;
3668
3669 perf_output_put(&handle, read_event);
3670 perf_output_read(&handle, event);
3671
3672 perf_output_end(&handle);
3673 }
3674
3675 /*
3676 * task tracking -- fork/exit
3677 *
3678 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3679 */
3680
3681 struct perf_task_event {
3682 struct task_struct *task;
3683 struct perf_event_context *task_ctx;
3684
3685 struct {
3686 struct perf_event_header header;
3687
3688 u32 pid;
3689 u32 ppid;
3690 u32 tid;
3691 u32 ptid;
3692 u64 time;
3693 } event_id;
3694 };
3695
3696 static void perf_event_task_output(struct perf_event *event,
3697 struct perf_task_event *task_event)
3698 {
3699 struct perf_output_handle handle;
3700 struct task_struct *task = task_event->task;
3701 int size, ret;
3702
3703 size = task_event->event_id.header.size;
3704 ret = perf_output_begin(&handle, event, size, 0, 0);
3705
3706 if (ret)
3707 return;
3708
3709 task_event->event_id.pid = perf_event_pid(event, task);
3710 task_event->event_id.ppid = perf_event_pid(event, current);
3711
3712 task_event->event_id.tid = perf_event_tid(event, task);
3713 task_event->event_id.ptid = perf_event_tid(event, current);
3714
3715 perf_output_put(&handle, task_event->event_id);
3716
3717 perf_output_end(&handle);
3718 }
3719
3720 static int perf_event_task_match(struct perf_event *event)
3721 {
3722 if (event->state < PERF_EVENT_STATE_INACTIVE)
3723 return 0;
3724
3725 if (event->cpu != -1 && event->cpu != smp_processor_id())
3726 return 0;
3727
3728 if (event->attr.comm || event->attr.mmap ||
3729 event->attr.mmap_data || event->attr.task)
3730 return 1;
3731
3732 return 0;
3733 }
3734
3735 static void perf_event_task_ctx(struct perf_event_context *ctx,
3736 struct perf_task_event *task_event)
3737 {
3738 struct perf_event *event;
3739
3740 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3741 if (perf_event_task_match(event))
3742 perf_event_task_output(event, task_event);
3743 }
3744 }
3745
3746 static void perf_event_task_event(struct perf_task_event *task_event)
3747 {
3748 struct perf_cpu_context *cpuctx;
3749 struct perf_event_context *ctx = task_event->task_ctx;
3750
3751 rcu_read_lock();
3752 cpuctx = &get_cpu_var(perf_cpu_context);
3753 perf_event_task_ctx(&cpuctx->ctx, task_event);
3754 if (!ctx)
3755 ctx = rcu_dereference(current->perf_event_ctxp);
3756 if (ctx)
3757 perf_event_task_ctx(ctx, task_event);
3758 put_cpu_var(perf_cpu_context);
3759 rcu_read_unlock();
3760 }
3761
3762 static void perf_event_task(struct task_struct *task,
3763 struct perf_event_context *task_ctx,
3764 int new)
3765 {
3766 struct perf_task_event task_event;
3767
3768 if (!atomic_read(&nr_comm_events) &&
3769 !atomic_read(&nr_mmap_events) &&
3770 !atomic_read(&nr_task_events))
3771 return;
3772
3773 task_event = (struct perf_task_event){
3774 .task = task,
3775 .task_ctx = task_ctx,
3776 .event_id = {
3777 .header = {
3778 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3779 .misc = 0,
3780 .size = sizeof(task_event.event_id),
3781 },
3782 /* .pid */
3783 /* .ppid */
3784 /* .tid */
3785 /* .ptid */
3786 .time = perf_clock(),
3787 },
3788 };
3789
3790 perf_event_task_event(&task_event);
3791 }
3792
3793 void perf_event_fork(struct task_struct *task)
3794 {
3795 perf_event_task(task, NULL, 1);
3796 }
3797
3798 /*
3799 * comm tracking
3800 */
3801
3802 struct perf_comm_event {
3803 struct task_struct *task;
3804 char *comm;
3805 int comm_size;
3806
3807 struct {
3808 struct perf_event_header header;
3809
3810 u32 pid;
3811 u32 tid;
3812 } event_id;
3813 };
3814
3815 static void perf_event_comm_output(struct perf_event *event,
3816 struct perf_comm_event *comm_event)
3817 {
3818 struct perf_output_handle handle;
3819 int size = comm_event->event_id.header.size;
3820 int ret = perf_output_begin(&handle, event, size, 0, 0);
3821
3822 if (ret)
3823 return;
3824
3825 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3826 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3827
3828 perf_output_put(&handle, comm_event->event_id);
3829 perf_output_copy(&handle, comm_event->comm,
3830 comm_event->comm_size);
3831 perf_output_end(&handle);
3832 }
3833
3834 static int perf_event_comm_match(struct perf_event *event)
3835 {
3836 if (event->state < PERF_EVENT_STATE_INACTIVE)
3837 return 0;
3838
3839 if (event->cpu != -1 && event->cpu != smp_processor_id())
3840 return 0;
3841
3842 if (event->attr.comm)
3843 return 1;
3844
3845 return 0;
3846 }
3847
3848 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3849 struct perf_comm_event *comm_event)
3850 {
3851 struct perf_event *event;
3852
3853 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3854 if (perf_event_comm_match(event))
3855 perf_event_comm_output(event, comm_event);
3856 }
3857 }
3858
3859 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3860 {
3861 struct perf_cpu_context *cpuctx;
3862 struct perf_event_context *ctx;
3863 unsigned int size;
3864 char comm[TASK_COMM_LEN];
3865
3866 memset(comm, 0, sizeof(comm));
3867 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3868 size = ALIGN(strlen(comm)+1, sizeof(u64));
3869
3870 comm_event->comm = comm;
3871 comm_event->comm_size = size;
3872
3873 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3874
3875 rcu_read_lock();
3876 cpuctx = &get_cpu_var(perf_cpu_context);
3877 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3878 ctx = rcu_dereference(current->perf_event_ctxp);
3879 if (ctx)
3880 perf_event_comm_ctx(ctx, comm_event);
3881 put_cpu_var(perf_cpu_context);
3882 rcu_read_unlock();
3883 }
3884
3885 void perf_event_comm(struct task_struct *task)
3886 {
3887 struct perf_comm_event comm_event;
3888
3889 if (task->perf_event_ctxp)
3890 perf_event_enable_on_exec(task);
3891
3892 if (!atomic_read(&nr_comm_events))
3893 return;
3894
3895 comm_event = (struct perf_comm_event){
3896 .task = task,
3897 /* .comm */
3898 /* .comm_size */
3899 .event_id = {
3900 .header = {
3901 .type = PERF_RECORD_COMM,
3902 .misc = 0,
3903 /* .size */
3904 },
3905 /* .pid */
3906 /* .tid */
3907 },
3908 };
3909
3910 perf_event_comm_event(&comm_event);
3911 }
3912
3913 /*
3914 * mmap tracking
3915 */
3916
3917 struct perf_mmap_event {
3918 struct vm_area_struct *vma;
3919
3920 const char *file_name;
3921 int file_size;
3922
3923 struct {
3924 struct perf_event_header header;
3925
3926 u32 pid;
3927 u32 tid;
3928 u64 start;
3929 u64 len;
3930 u64 pgoff;
3931 } event_id;
3932 };
3933
3934 static void perf_event_mmap_output(struct perf_event *event,
3935 struct perf_mmap_event *mmap_event)
3936 {
3937 struct perf_output_handle handle;
3938 int size = mmap_event->event_id.header.size;
3939 int ret = perf_output_begin(&handle, event, size, 0, 0);
3940
3941 if (ret)
3942 return;
3943
3944 mmap_event->event_id.pid = perf_event_pid(event, current);
3945 mmap_event->event_id.tid = perf_event_tid(event, current);
3946
3947 perf_output_put(&handle, mmap_event->event_id);
3948 perf_output_copy(&handle, mmap_event->file_name,
3949 mmap_event->file_size);
3950 perf_output_end(&handle);
3951 }
3952
3953 static int perf_event_mmap_match(struct perf_event *event,
3954 struct perf_mmap_event *mmap_event,
3955 int executable)
3956 {
3957 if (event->state < PERF_EVENT_STATE_INACTIVE)
3958 return 0;
3959
3960 if (event->cpu != -1 && event->cpu != smp_processor_id())
3961 return 0;
3962
3963 if ((!executable && event->attr.mmap_data) ||
3964 (executable && event->attr.mmap))
3965 return 1;
3966
3967 return 0;
3968 }
3969
3970 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3971 struct perf_mmap_event *mmap_event,
3972 int executable)
3973 {
3974 struct perf_event *event;
3975
3976 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3977 if (perf_event_mmap_match(event, mmap_event, executable))
3978 perf_event_mmap_output(event, mmap_event);
3979 }
3980 }
3981
3982 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3983 {
3984 struct perf_cpu_context *cpuctx;
3985 struct perf_event_context *ctx;
3986 struct vm_area_struct *vma = mmap_event->vma;
3987 struct file *file = vma->vm_file;
3988 unsigned int size;
3989 char tmp[16];
3990 char *buf = NULL;
3991 const char *name;
3992
3993 memset(tmp, 0, sizeof(tmp));
3994
3995 if (file) {
3996 /*
3997 * d_path works from the end of the buffer backwards, so we
3998 * need to add enough zero bytes after the string to handle
3999 * the 64bit alignment we do later.
4000 */
4001 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4002 if (!buf) {
4003 name = strncpy(tmp, "//enomem", sizeof(tmp));
4004 goto got_name;
4005 }
4006 name = d_path(&file->f_path, buf, PATH_MAX);
4007 if (IS_ERR(name)) {
4008 name = strncpy(tmp, "//toolong", sizeof(tmp));
4009 goto got_name;
4010 }
4011 } else {
4012 if (arch_vma_name(mmap_event->vma)) {
4013 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4014 sizeof(tmp));
4015 goto got_name;
4016 }
4017
4018 if (!vma->vm_mm) {
4019 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4020 goto got_name;
4021 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4022 vma->vm_end >= vma->vm_mm->brk) {
4023 name = strncpy(tmp, "[heap]", sizeof(tmp));
4024 goto got_name;
4025 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4026 vma->vm_end >= vma->vm_mm->start_stack) {
4027 name = strncpy(tmp, "[stack]", sizeof(tmp));
4028 goto got_name;
4029 }
4030
4031 name = strncpy(tmp, "//anon", sizeof(tmp));
4032 goto got_name;
4033 }
4034
4035 got_name:
4036 size = ALIGN(strlen(name)+1, sizeof(u64));
4037
4038 mmap_event->file_name = name;
4039 mmap_event->file_size = size;
4040
4041 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4042
4043 rcu_read_lock();
4044 cpuctx = &get_cpu_var(perf_cpu_context);
4045 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event, vma->vm_flags & VM_EXEC);
4046 ctx = rcu_dereference(current->perf_event_ctxp);
4047 if (ctx)
4048 perf_event_mmap_ctx(ctx, mmap_event, vma->vm_flags & VM_EXEC);
4049 put_cpu_var(perf_cpu_context);
4050 rcu_read_unlock();
4051
4052 kfree(buf);
4053 }
4054
4055 void perf_event_mmap(struct vm_area_struct *vma)
4056 {
4057 struct perf_mmap_event mmap_event;
4058
4059 if (!atomic_read(&nr_mmap_events))
4060 return;
4061
4062 mmap_event = (struct perf_mmap_event){
4063 .vma = vma,
4064 /* .file_name */
4065 /* .file_size */
4066 .event_id = {
4067 .header = {
4068 .type = PERF_RECORD_MMAP,
4069 .misc = PERF_RECORD_MISC_USER,
4070 /* .size */
4071 },
4072 /* .pid */
4073 /* .tid */
4074 .start = vma->vm_start,
4075 .len = vma->vm_end - vma->vm_start,
4076 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4077 },
4078 };
4079
4080 perf_event_mmap_event(&mmap_event);
4081 }
4082
4083 /*
4084 * IRQ throttle logging
4085 */
4086
4087 static void perf_log_throttle(struct perf_event *event, int enable)
4088 {
4089 struct perf_output_handle handle;
4090 int ret;
4091
4092 struct {
4093 struct perf_event_header header;
4094 u64 time;
4095 u64 id;
4096 u64 stream_id;
4097 } throttle_event = {
4098 .header = {
4099 .type = PERF_RECORD_THROTTLE,
4100 .misc = 0,
4101 .size = sizeof(throttle_event),
4102 },
4103 .time = perf_clock(),
4104 .id = primary_event_id(event),
4105 .stream_id = event->id,
4106 };
4107
4108 if (enable)
4109 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4110
4111 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4112 if (ret)
4113 return;
4114
4115 perf_output_put(&handle, throttle_event);
4116 perf_output_end(&handle);
4117 }
4118
4119 /*
4120 * Generic event overflow handling, sampling.
4121 */
4122
4123 static int __perf_event_overflow(struct perf_event *event, int nmi,
4124 int throttle, struct perf_sample_data *data,
4125 struct pt_regs *regs)
4126 {
4127 int events = atomic_read(&event->event_limit);
4128 struct hw_perf_event *hwc = &event->hw;
4129 int ret = 0;
4130
4131 throttle = (throttle && event->pmu->unthrottle != NULL);
4132
4133 if (!throttle) {
4134 hwc->interrupts++;
4135 } else {
4136 if (hwc->interrupts != MAX_INTERRUPTS) {
4137 hwc->interrupts++;
4138 if (HZ * hwc->interrupts >
4139 (u64)sysctl_perf_event_sample_rate) {
4140 hwc->interrupts = MAX_INTERRUPTS;
4141 perf_log_throttle(event, 0);
4142 ret = 1;
4143 }
4144 } else {
4145 /*
4146 * Keep re-disabling events even though on the previous
4147 * pass we disabled it - just in case we raced with a
4148 * sched-in and the event got enabled again:
4149 */
4150 ret = 1;
4151 }
4152 }
4153
4154 if (event->attr.freq) {
4155 u64 now = perf_clock();
4156 s64 delta = now - hwc->freq_time_stamp;
4157
4158 hwc->freq_time_stamp = now;
4159
4160 if (delta > 0 && delta < 2*TICK_NSEC)
4161 perf_adjust_period(event, delta, hwc->last_period);
4162 }
4163
4164 /*
4165 * XXX event_limit might not quite work as expected on inherited
4166 * events
4167 */
4168
4169 event->pending_kill = POLL_IN;
4170 if (events && atomic_dec_and_test(&event->event_limit)) {
4171 ret = 1;
4172 event->pending_kill = POLL_HUP;
4173 if (nmi) {
4174 event->pending_disable = 1;
4175 perf_pending_queue(&event->pending,
4176 perf_pending_event);
4177 } else
4178 perf_event_disable(event);
4179 }
4180
4181 if (event->overflow_handler)
4182 event->overflow_handler(event, nmi, data, regs);
4183 else
4184 perf_event_output(event, nmi, data, regs);
4185
4186 return ret;
4187 }
4188
4189 int perf_event_overflow(struct perf_event *event, int nmi,
4190 struct perf_sample_data *data,
4191 struct pt_regs *regs)
4192 {
4193 return __perf_event_overflow(event, nmi, 1, data, regs);
4194 }
4195
4196 /*
4197 * Generic software event infrastructure
4198 */
4199
4200 /*
4201 * We directly increment event->count and keep a second value in
4202 * event->hw.period_left to count intervals. This period event
4203 * is kept in the range [-sample_period, 0] so that we can use the
4204 * sign as trigger.
4205 */
4206
4207 static u64 perf_swevent_set_period(struct perf_event *event)
4208 {
4209 struct hw_perf_event *hwc = &event->hw;
4210 u64 period = hwc->last_period;
4211 u64 nr, offset;
4212 s64 old, val;
4213
4214 hwc->last_period = hwc->sample_period;
4215
4216 again:
4217 old = val = local64_read(&hwc->period_left);
4218 if (val < 0)
4219 return 0;
4220
4221 nr = div64_u64(period + val, period);
4222 offset = nr * period;
4223 val -= offset;
4224 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4225 goto again;
4226
4227 return nr;
4228 }
4229
4230 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4231 int nmi, struct perf_sample_data *data,
4232 struct pt_regs *regs)
4233 {
4234 struct hw_perf_event *hwc = &event->hw;
4235 int throttle = 0;
4236
4237 data->period = event->hw.last_period;
4238 if (!overflow)
4239 overflow = perf_swevent_set_period(event);
4240
4241 if (hwc->interrupts == MAX_INTERRUPTS)
4242 return;
4243
4244 for (; overflow; overflow--) {
4245 if (__perf_event_overflow(event, nmi, throttle,
4246 data, regs)) {
4247 /*
4248 * We inhibit the overflow from happening when
4249 * hwc->interrupts == MAX_INTERRUPTS.
4250 */
4251 break;
4252 }
4253 throttle = 1;
4254 }
4255 }
4256
4257 static void perf_swevent_add(struct perf_event *event, u64 nr,
4258 int nmi, struct perf_sample_data *data,
4259 struct pt_regs *regs)
4260 {
4261 struct hw_perf_event *hwc = &event->hw;
4262
4263 local64_add(nr, &event->count);
4264
4265 if (!regs)
4266 return;
4267
4268 if (!hwc->sample_period)
4269 return;
4270
4271 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4272 return perf_swevent_overflow(event, 1, nmi, data, regs);
4273
4274 if (local64_add_negative(nr, &hwc->period_left))
4275 return;
4276
4277 perf_swevent_overflow(event, 0, nmi, data, regs);
4278 }
4279
4280 static int perf_exclude_event(struct perf_event *event,
4281 struct pt_regs *regs)
4282 {
4283 if (regs) {
4284 if (event->attr.exclude_user && user_mode(regs))
4285 return 1;
4286
4287 if (event->attr.exclude_kernel && !user_mode(regs))
4288 return 1;
4289 }
4290
4291 return 0;
4292 }
4293
4294 static int perf_swevent_match(struct perf_event *event,
4295 enum perf_type_id type,
4296 u32 event_id,
4297 struct perf_sample_data *data,
4298 struct pt_regs *regs)
4299 {
4300 if (event->attr.type != type)
4301 return 0;
4302
4303 if (event->attr.config != event_id)
4304 return 0;
4305
4306 if (perf_exclude_event(event, regs))
4307 return 0;
4308
4309 return 1;
4310 }
4311
4312 static inline u64 swevent_hash(u64 type, u32 event_id)
4313 {
4314 u64 val = event_id | (type << 32);
4315
4316 return hash_64(val, SWEVENT_HLIST_BITS);
4317 }
4318
4319 static inline struct hlist_head *
4320 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4321 {
4322 u64 hash = swevent_hash(type, event_id);
4323
4324 return &hlist->heads[hash];
4325 }
4326
4327 /* For the read side: events when they trigger */
4328 static inline struct hlist_head *
4329 find_swevent_head_rcu(struct perf_cpu_context *ctx, u64 type, u32 event_id)
4330 {
4331 struct swevent_hlist *hlist;
4332
4333 hlist = rcu_dereference(ctx->swevent_hlist);
4334 if (!hlist)
4335 return NULL;
4336
4337 return __find_swevent_head(hlist, type, event_id);
4338 }
4339
4340 /* For the event head insertion and removal in the hlist */
4341 static inline struct hlist_head *
4342 find_swevent_head(struct perf_cpu_context *ctx, struct perf_event *event)
4343 {
4344 struct swevent_hlist *hlist;
4345 u32 event_id = event->attr.config;
4346 u64 type = event->attr.type;
4347
4348 /*
4349 * Event scheduling is always serialized against hlist allocation
4350 * and release. Which makes the protected version suitable here.
4351 * The context lock guarantees that.
4352 */
4353 hlist = rcu_dereference_protected(ctx->swevent_hlist,
4354 lockdep_is_held(&event->ctx->lock));
4355 if (!hlist)
4356 return NULL;
4357
4358 return __find_swevent_head(hlist, type, event_id);
4359 }
4360
4361 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4362 u64 nr, int nmi,
4363 struct perf_sample_data *data,
4364 struct pt_regs *regs)
4365 {
4366 struct perf_cpu_context *cpuctx;
4367 struct perf_event *event;
4368 struct hlist_node *node;
4369 struct hlist_head *head;
4370
4371 cpuctx = &__get_cpu_var(perf_cpu_context);
4372
4373 rcu_read_lock();
4374
4375 head = find_swevent_head_rcu(cpuctx, type, event_id);
4376
4377 if (!head)
4378 goto end;
4379
4380 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4381 if (perf_swevent_match(event, type, event_id, data, regs))
4382 perf_swevent_add(event, nr, nmi, data, regs);
4383 }
4384 end:
4385 rcu_read_unlock();
4386 }
4387
4388 int perf_swevent_get_recursion_context(void)
4389 {
4390 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4391
4392 return get_recursion_context(cpuctx->recursion);
4393 }
4394 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4395
4396 void inline perf_swevent_put_recursion_context(int rctx)
4397 {
4398 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4399
4400 put_recursion_context(cpuctx->recursion, rctx);
4401 }
4402
4403 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4404 struct pt_regs *regs, u64 addr)
4405 {
4406 struct perf_sample_data data;
4407 int rctx;
4408
4409 preempt_disable_notrace();
4410 rctx = perf_swevent_get_recursion_context();
4411 if (rctx < 0)
4412 return;
4413
4414 perf_sample_data_init(&data, addr);
4415
4416 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4417
4418 perf_swevent_put_recursion_context(rctx);
4419 preempt_enable_notrace();
4420 }
4421
4422 static void perf_swevent_read(struct perf_event *event)
4423 {
4424 }
4425
4426 static int perf_swevent_enable(struct perf_event *event)
4427 {
4428 struct hw_perf_event *hwc = &event->hw;
4429 struct perf_cpu_context *cpuctx;
4430 struct hlist_head *head;
4431
4432 cpuctx = &__get_cpu_var(perf_cpu_context);
4433
4434 if (hwc->sample_period) {
4435 hwc->last_period = hwc->sample_period;
4436 perf_swevent_set_period(event);
4437 }
4438
4439 head = find_swevent_head(cpuctx, event);
4440 if (WARN_ON_ONCE(!head))
4441 return -EINVAL;
4442
4443 hlist_add_head_rcu(&event->hlist_entry, head);
4444
4445 return 0;
4446 }
4447
4448 static void perf_swevent_disable(struct perf_event *event)
4449 {
4450 hlist_del_rcu(&event->hlist_entry);
4451 }
4452
4453 static void perf_swevent_void(struct perf_event *event)
4454 {
4455 }
4456
4457 static int perf_swevent_int(struct perf_event *event)
4458 {
4459 return 0;
4460 }
4461
4462 /* Deref the hlist from the update side */
4463 static inline struct swevent_hlist *
4464 swevent_hlist_deref(struct perf_cpu_context *cpuctx)
4465 {
4466 return rcu_dereference_protected(cpuctx->swevent_hlist,
4467 lockdep_is_held(&cpuctx->hlist_mutex));
4468 }
4469
4470 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4471 {
4472 struct swevent_hlist *hlist;
4473
4474 hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4475 kfree(hlist);
4476 }
4477
4478 static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
4479 {
4480 struct swevent_hlist *hlist = swevent_hlist_deref(cpuctx);
4481
4482 if (!hlist)
4483 return;
4484
4485 rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
4486 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4487 }
4488
4489 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4490 {
4491 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4492
4493 mutex_lock(&cpuctx->hlist_mutex);
4494
4495 if (!--cpuctx->hlist_refcount)
4496 swevent_hlist_release(cpuctx);
4497
4498 mutex_unlock(&cpuctx->hlist_mutex);
4499 }
4500
4501 static void swevent_hlist_put(struct perf_event *event)
4502 {
4503 int cpu;
4504
4505 if (event->cpu != -1) {
4506 swevent_hlist_put_cpu(event, event->cpu);
4507 return;
4508 }
4509
4510 for_each_possible_cpu(cpu)
4511 swevent_hlist_put_cpu(event, cpu);
4512 }
4513
4514 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4515 {
4516 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4517 int err = 0;
4518
4519 mutex_lock(&cpuctx->hlist_mutex);
4520
4521 if (!swevent_hlist_deref(cpuctx) && cpu_online(cpu)) {
4522 struct swevent_hlist *hlist;
4523
4524 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4525 if (!hlist) {
4526 err = -ENOMEM;
4527 goto exit;
4528 }
4529 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
4530 }
4531 cpuctx->hlist_refcount++;
4532 exit:
4533 mutex_unlock(&cpuctx->hlist_mutex);
4534
4535 return err;
4536 }
4537
4538 static int swevent_hlist_get(struct perf_event *event)
4539 {
4540 int err;
4541 int cpu, failed_cpu;
4542
4543 if (event->cpu != -1)
4544 return swevent_hlist_get_cpu(event, event->cpu);
4545
4546 get_online_cpus();
4547 for_each_possible_cpu(cpu) {
4548 err = swevent_hlist_get_cpu(event, cpu);
4549 if (err) {
4550 failed_cpu = cpu;
4551 goto fail;
4552 }
4553 }
4554 put_online_cpus();
4555
4556 return 0;
4557 fail:
4558 for_each_possible_cpu(cpu) {
4559 if (cpu == failed_cpu)
4560 break;
4561 swevent_hlist_put_cpu(event, cpu);
4562 }
4563
4564 put_online_cpus();
4565 return err;
4566 }
4567
4568 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4569
4570 static void sw_perf_event_destroy(struct perf_event *event)
4571 {
4572 u64 event_id = event->attr.config;
4573
4574 WARN_ON(event->parent);
4575
4576 atomic_dec(&perf_swevent_enabled[event_id]);
4577 swevent_hlist_put(event);
4578 }
4579
4580 static int perf_swevent_init(struct perf_event *event)
4581 {
4582 int event_id = event->attr.config;
4583
4584 if (event->attr.type != PERF_TYPE_SOFTWARE)
4585 return -ENOENT;
4586
4587 switch (event_id) {
4588 case PERF_COUNT_SW_CPU_CLOCK:
4589 case PERF_COUNT_SW_TASK_CLOCK:
4590 return -ENOENT;
4591
4592 default:
4593 break;
4594 }
4595
4596 if (event_id > PERF_COUNT_SW_MAX)
4597 return -ENOENT;
4598
4599 if (!event->parent) {
4600 int err;
4601
4602 err = swevent_hlist_get(event);
4603 if (err)
4604 return err;
4605
4606 atomic_inc(&perf_swevent_enabled[event_id]);
4607 event->destroy = sw_perf_event_destroy;
4608 }
4609
4610 return 0;
4611 }
4612
4613 static struct pmu perf_swevent = {
4614 .event_init = perf_swevent_init,
4615 .enable = perf_swevent_enable,
4616 .disable = perf_swevent_disable,
4617 .start = perf_swevent_int,
4618 .stop = perf_swevent_void,
4619 .read = perf_swevent_read,
4620 .unthrottle = perf_swevent_void, /* hwc->interrupts already reset */
4621 };
4622
4623 #ifdef CONFIG_EVENT_TRACING
4624
4625 static int perf_tp_filter_match(struct perf_event *event,
4626 struct perf_sample_data *data)
4627 {
4628 void *record = data->raw->data;
4629
4630 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4631 return 1;
4632 return 0;
4633 }
4634
4635 static int perf_tp_event_match(struct perf_event *event,
4636 struct perf_sample_data *data,
4637 struct pt_regs *regs)
4638 {
4639 /*
4640 * All tracepoints are from kernel-space.
4641 */
4642 if (event->attr.exclude_kernel)
4643 return 0;
4644
4645 if (!perf_tp_filter_match(event, data))
4646 return 0;
4647
4648 return 1;
4649 }
4650
4651 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4652 struct pt_regs *regs, struct hlist_head *head, int rctx)
4653 {
4654 struct perf_sample_data data;
4655 struct perf_event *event;
4656 struct hlist_node *node;
4657
4658 struct perf_raw_record raw = {
4659 .size = entry_size,
4660 .data = record,
4661 };
4662
4663 perf_sample_data_init(&data, addr);
4664 data.raw = &raw;
4665
4666 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4667 if (perf_tp_event_match(event, &data, regs))
4668 perf_swevent_add(event, count, 1, &data, regs);
4669 }
4670
4671 perf_swevent_put_recursion_context(rctx);
4672 }
4673 EXPORT_SYMBOL_GPL(perf_tp_event);
4674
4675 static void tp_perf_event_destroy(struct perf_event *event)
4676 {
4677 perf_trace_destroy(event);
4678 }
4679
4680 static int perf_tp_event_init(struct perf_event *event)
4681 {
4682 int err;
4683
4684 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4685 return -ENOENT;
4686
4687 /*
4688 * Raw tracepoint data is a severe data leak, only allow root to
4689 * have these.
4690 */
4691 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4692 perf_paranoid_tracepoint_raw() &&
4693 !capable(CAP_SYS_ADMIN))
4694 return -EPERM;
4695
4696 err = perf_trace_init(event);
4697 if (err)
4698 return err;
4699
4700 event->destroy = tp_perf_event_destroy;
4701
4702 return 0;
4703 }
4704
4705 static struct pmu perf_tracepoint = {
4706 .event_init = perf_tp_event_init,
4707 .enable = perf_trace_enable,
4708 .disable = perf_trace_disable,
4709 .start = perf_swevent_int,
4710 .stop = perf_swevent_void,
4711 .read = perf_swevent_read,
4712 .unthrottle = perf_swevent_void,
4713 };
4714
4715 static inline void perf_tp_register(void)
4716 {
4717 perf_pmu_register(&perf_tracepoint);
4718 }
4719
4720 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4721 {
4722 char *filter_str;
4723 int ret;
4724
4725 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4726 return -EINVAL;
4727
4728 filter_str = strndup_user(arg, PAGE_SIZE);
4729 if (IS_ERR(filter_str))
4730 return PTR_ERR(filter_str);
4731
4732 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4733
4734 kfree(filter_str);
4735 return ret;
4736 }
4737
4738 static void perf_event_free_filter(struct perf_event *event)
4739 {
4740 ftrace_profile_free_filter(event);
4741 }
4742
4743 #else
4744
4745 static inline void perf_tp_register(void)
4746 {
4747 }
4748
4749 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4750 {
4751 return -ENOENT;
4752 }
4753
4754 static void perf_event_free_filter(struct perf_event *event)
4755 {
4756 }
4757
4758 #endif /* CONFIG_EVENT_TRACING */
4759
4760 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4761 void perf_bp_event(struct perf_event *bp, void *data)
4762 {
4763 struct perf_sample_data sample;
4764 struct pt_regs *regs = data;
4765
4766 perf_sample_data_init(&sample, bp->attr.bp_addr);
4767
4768 if (!perf_exclude_event(bp, regs))
4769 perf_swevent_add(bp, 1, 1, &sample, regs);
4770 }
4771 #endif
4772
4773 /*
4774 * hrtimer based swevent callback
4775 */
4776
4777 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4778 {
4779 enum hrtimer_restart ret = HRTIMER_RESTART;
4780 struct perf_sample_data data;
4781 struct pt_regs *regs;
4782 struct perf_event *event;
4783 u64 period;
4784
4785 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4786 event->pmu->read(event);
4787
4788 perf_sample_data_init(&data, 0);
4789 data.period = event->hw.last_period;
4790 regs = get_irq_regs();
4791
4792 if (regs && !perf_exclude_event(event, regs)) {
4793 if (!(event->attr.exclude_idle && current->pid == 0))
4794 if (perf_event_overflow(event, 0, &data, regs))
4795 ret = HRTIMER_NORESTART;
4796 }
4797
4798 period = max_t(u64, 10000, event->hw.sample_period);
4799 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4800
4801 return ret;
4802 }
4803
4804 static void perf_swevent_start_hrtimer(struct perf_event *event)
4805 {
4806 struct hw_perf_event *hwc = &event->hw;
4807
4808 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4809 hwc->hrtimer.function = perf_swevent_hrtimer;
4810 if (hwc->sample_period) {
4811 u64 period;
4812
4813 if (hwc->remaining) {
4814 if (hwc->remaining < 0)
4815 period = 10000;
4816 else
4817 period = hwc->remaining;
4818 hwc->remaining = 0;
4819 } else {
4820 period = max_t(u64, 10000, hwc->sample_period);
4821 }
4822 __hrtimer_start_range_ns(&hwc->hrtimer,
4823 ns_to_ktime(period), 0,
4824 HRTIMER_MODE_REL, 0);
4825 }
4826 }
4827
4828 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4829 {
4830 struct hw_perf_event *hwc = &event->hw;
4831
4832 if (hwc->sample_period) {
4833 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4834 hwc->remaining = ktime_to_ns(remaining);
4835
4836 hrtimer_cancel(&hwc->hrtimer);
4837 }
4838 }
4839
4840 /*
4841 * Software event: cpu wall time clock
4842 */
4843
4844 static void cpu_clock_event_update(struct perf_event *event)
4845 {
4846 int cpu = raw_smp_processor_id();
4847 s64 prev;
4848 u64 now;
4849
4850 now = cpu_clock(cpu);
4851 prev = local64_xchg(&event->hw.prev_count, now);
4852 local64_add(now - prev, &event->count);
4853 }
4854
4855 static int cpu_clock_event_enable(struct perf_event *event)
4856 {
4857 struct hw_perf_event *hwc = &event->hw;
4858 int cpu = raw_smp_processor_id();
4859
4860 local64_set(&hwc->prev_count, cpu_clock(cpu));
4861 perf_swevent_start_hrtimer(event);
4862
4863 return 0;
4864 }
4865
4866 static void cpu_clock_event_disable(struct perf_event *event)
4867 {
4868 perf_swevent_cancel_hrtimer(event);
4869 cpu_clock_event_update(event);
4870 }
4871
4872 static void cpu_clock_event_read(struct perf_event *event)
4873 {
4874 cpu_clock_event_update(event);
4875 }
4876
4877 static int cpu_clock_event_init(struct perf_event *event)
4878 {
4879 if (event->attr.type != PERF_TYPE_SOFTWARE)
4880 return -ENOENT;
4881
4882 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
4883 return -ENOENT;
4884
4885 return 0;
4886 }
4887
4888 static struct pmu perf_cpu_clock = {
4889 .event_init = cpu_clock_event_init,
4890 .enable = cpu_clock_event_enable,
4891 .disable = cpu_clock_event_disable,
4892 .read = cpu_clock_event_read,
4893 };
4894
4895 /*
4896 * Software event: task time clock
4897 */
4898
4899 static void task_clock_event_update(struct perf_event *event, u64 now)
4900 {
4901 u64 prev;
4902 s64 delta;
4903
4904 prev = local64_xchg(&event->hw.prev_count, now);
4905 delta = now - prev;
4906 local64_add(delta, &event->count);
4907 }
4908
4909 static int task_clock_event_enable(struct perf_event *event)
4910 {
4911 struct hw_perf_event *hwc = &event->hw;
4912 u64 now;
4913
4914 now = event->ctx->time;
4915
4916 local64_set(&hwc->prev_count, now);
4917
4918 perf_swevent_start_hrtimer(event);
4919
4920 return 0;
4921 }
4922
4923 static void task_clock_event_disable(struct perf_event *event)
4924 {
4925 perf_swevent_cancel_hrtimer(event);
4926 task_clock_event_update(event, event->ctx->time);
4927
4928 }
4929
4930 static void task_clock_event_read(struct perf_event *event)
4931 {
4932 u64 time;
4933
4934 if (!in_nmi()) {
4935 update_context_time(event->ctx);
4936 time = event->ctx->time;
4937 } else {
4938 u64 now = perf_clock();
4939 u64 delta = now - event->ctx->timestamp;
4940 time = event->ctx->time + delta;
4941 }
4942
4943 task_clock_event_update(event, time);
4944 }
4945
4946 static int task_clock_event_init(struct perf_event *event)
4947 {
4948 if (event->attr.type != PERF_TYPE_SOFTWARE)
4949 return -ENOENT;
4950
4951 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
4952 return -ENOENT;
4953
4954 return 0;
4955 }
4956
4957 static struct pmu perf_task_clock = {
4958 .event_init = task_clock_event_init,
4959 .enable = task_clock_event_enable,
4960 .disable = task_clock_event_disable,
4961 .read = task_clock_event_read,
4962 };
4963
4964 static LIST_HEAD(pmus);
4965 static DEFINE_MUTEX(pmus_lock);
4966 static struct srcu_struct pmus_srcu;
4967
4968 int perf_pmu_register(struct pmu *pmu)
4969 {
4970 int ret;
4971
4972 mutex_lock(&pmus_lock);
4973 ret = -ENOMEM;
4974 pmu->pmu_disable_count = alloc_percpu(int);
4975 if (!pmu->pmu_disable_count)
4976 goto unlock;
4977 list_add_rcu(&pmu->entry, &pmus);
4978 ret = 0;
4979 unlock:
4980 mutex_unlock(&pmus_lock);
4981
4982 return ret;
4983 }
4984
4985 void perf_pmu_unregister(struct pmu *pmu)
4986 {
4987 mutex_lock(&pmus_lock);
4988 list_del_rcu(&pmu->entry);
4989 mutex_unlock(&pmus_lock);
4990
4991 synchronize_srcu(&pmus_srcu);
4992
4993 free_percpu(pmu->pmu_disable_count);
4994 }
4995
4996 struct pmu *perf_init_event(struct perf_event *event)
4997 {
4998 struct pmu *pmu = NULL;
4999 int idx;
5000
5001 idx = srcu_read_lock(&pmus_srcu);
5002 list_for_each_entry_rcu(pmu, &pmus, entry) {
5003 int ret = pmu->event_init(event);
5004 if (!ret)
5005 break;
5006 if (ret != -ENOENT) {
5007 pmu = ERR_PTR(ret);
5008 break;
5009 }
5010 }
5011 srcu_read_unlock(&pmus_srcu, idx);
5012
5013 return pmu;
5014 }
5015
5016 /*
5017 * Allocate and initialize a event structure
5018 */
5019 static struct perf_event *
5020 perf_event_alloc(struct perf_event_attr *attr,
5021 int cpu,
5022 struct perf_event_context *ctx,
5023 struct perf_event *group_leader,
5024 struct perf_event *parent_event,
5025 perf_overflow_handler_t overflow_handler,
5026 gfp_t gfpflags)
5027 {
5028 struct pmu *pmu;
5029 struct perf_event *event;
5030 struct hw_perf_event *hwc;
5031 long err;
5032
5033 event = kzalloc(sizeof(*event), gfpflags);
5034 if (!event)
5035 return ERR_PTR(-ENOMEM);
5036
5037 /*
5038 * Single events are their own group leaders, with an
5039 * empty sibling list:
5040 */
5041 if (!group_leader)
5042 group_leader = event;
5043
5044 mutex_init(&event->child_mutex);
5045 INIT_LIST_HEAD(&event->child_list);
5046
5047 INIT_LIST_HEAD(&event->group_entry);
5048 INIT_LIST_HEAD(&event->event_entry);
5049 INIT_LIST_HEAD(&event->sibling_list);
5050 init_waitqueue_head(&event->waitq);
5051
5052 mutex_init(&event->mmap_mutex);
5053
5054 event->cpu = cpu;
5055 event->attr = *attr;
5056 event->group_leader = group_leader;
5057 event->pmu = NULL;
5058 event->ctx = ctx;
5059 event->oncpu = -1;
5060
5061 event->parent = parent_event;
5062
5063 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5064 event->id = atomic64_inc_return(&perf_event_id);
5065
5066 event->state = PERF_EVENT_STATE_INACTIVE;
5067
5068 if (!overflow_handler && parent_event)
5069 overflow_handler = parent_event->overflow_handler;
5070
5071 event->overflow_handler = overflow_handler;
5072
5073 if (attr->disabled)
5074 event->state = PERF_EVENT_STATE_OFF;
5075
5076 pmu = NULL;
5077
5078 hwc = &event->hw;
5079 hwc->sample_period = attr->sample_period;
5080 if (attr->freq && attr->sample_freq)
5081 hwc->sample_period = 1;
5082 hwc->last_period = hwc->sample_period;
5083
5084 local64_set(&hwc->period_left, hwc->sample_period);
5085
5086 /*
5087 * we currently do not support PERF_FORMAT_GROUP on inherited events
5088 */
5089 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5090 goto done;
5091
5092 pmu = perf_init_event(event);
5093
5094 done:
5095 err = 0;
5096 if (!pmu)
5097 err = -EINVAL;
5098 else if (IS_ERR(pmu))
5099 err = PTR_ERR(pmu);
5100
5101 if (err) {
5102 if (event->ns)
5103 put_pid_ns(event->ns);
5104 kfree(event);
5105 return ERR_PTR(err);
5106 }
5107
5108 event->pmu = pmu;
5109
5110 if (!event->parent) {
5111 atomic_inc(&nr_events);
5112 if (event->attr.mmap || event->attr.mmap_data)
5113 atomic_inc(&nr_mmap_events);
5114 if (event->attr.comm)
5115 atomic_inc(&nr_comm_events);
5116 if (event->attr.task)
5117 atomic_inc(&nr_task_events);
5118 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5119 err = get_callchain_buffers();
5120 if (err) {
5121 free_event(event);
5122 return ERR_PTR(err);
5123 }
5124 }
5125 }
5126
5127 return event;
5128 }
5129
5130 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5131 struct perf_event_attr *attr)
5132 {
5133 u32 size;
5134 int ret;
5135
5136 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5137 return -EFAULT;
5138
5139 /*
5140 * zero the full structure, so that a short copy will be nice.
5141 */
5142 memset(attr, 0, sizeof(*attr));
5143
5144 ret = get_user(size, &uattr->size);
5145 if (ret)
5146 return ret;
5147
5148 if (size > PAGE_SIZE) /* silly large */
5149 goto err_size;
5150
5151 if (!size) /* abi compat */
5152 size = PERF_ATTR_SIZE_VER0;
5153
5154 if (size < PERF_ATTR_SIZE_VER0)
5155 goto err_size;
5156
5157 /*
5158 * If we're handed a bigger struct than we know of,
5159 * ensure all the unknown bits are 0 - i.e. new
5160 * user-space does not rely on any kernel feature
5161 * extensions we dont know about yet.
5162 */
5163 if (size > sizeof(*attr)) {
5164 unsigned char __user *addr;
5165 unsigned char __user *end;
5166 unsigned char val;
5167
5168 addr = (void __user *)uattr + sizeof(*attr);
5169 end = (void __user *)uattr + size;
5170
5171 for (; addr < end; addr++) {
5172 ret = get_user(val, addr);
5173 if (ret)
5174 return ret;
5175 if (val)
5176 goto err_size;
5177 }
5178 size = sizeof(*attr);
5179 }
5180
5181 ret = copy_from_user(attr, uattr, size);
5182 if (ret)
5183 return -EFAULT;
5184
5185 /*
5186 * If the type exists, the corresponding creation will verify
5187 * the attr->config.
5188 */
5189 if (attr->type >= PERF_TYPE_MAX)
5190 return -EINVAL;
5191
5192 if (attr->__reserved_1)
5193 return -EINVAL;
5194
5195 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5196 return -EINVAL;
5197
5198 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5199 return -EINVAL;
5200
5201 out:
5202 return ret;
5203
5204 err_size:
5205 put_user(sizeof(*attr), &uattr->size);
5206 ret = -E2BIG;
5207 goto out;
5208 }
5209
5210 static int
5211 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5212 {
5213 struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5214 int ret = -EINVAL;
5215
5216 if (!output_event)
5217 goto set;
5218
5219 /* don't allow circular references */
5220 if (event == output_event)
5221 goto out;
5222
5223 /*
5224 * Don't allow cross-cpu buffers
5225 */
5226 if (output_event->cpu != event->cpu)
5227 goto out;
5228
5229 /*
5230 * If its not a per-cpu buffer, it must be the same task.
5231 */
5232 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5233 goto out;
5234
5235 set:
5236 mutex_lock(&event->mmap_mutex);
5237 /* Can't redirect output if we've got an active mmap() */
5238 if (atomic_read(&event->mmap_count))
5239 goto unlock;
5240
5241 if (output_event) {
5242 /* get the buffer we want to redirect to */
5243 buffer = perf_buffer_get(output_event);
5244 if (!buffer)
5245 goto unlock;
5246 }
5247
5248 old_buffer = event->buffer;
5249 rcu_assign_pointer(event->buffer, buffer);
5250 ret = 0;
5251 unlock:
5252 mutex_unlock(&event->mmap_mutex);
5253
5254 if (old_buffer)
5255 perf_buffer_put(old_buffer);
5256 out:
5257 return ret;
5258 }
5259
5260 /**
5261 * sys_perf_event_open - open a performance event, associate it to a task/cpu
5262 *
5263 * @attr_uptr: event_id type attributes for monitoring/sampling
5264 * @pid: target pid
5265 * @cpu: target cpu
5266 * @group_fd: group leader event fd
5267 */
5268 SYSCALL_DEFINE5(perf_event_open,
5269 struct perf_event_attr __user *, attr_uptr,
5270 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5271 {
5272 struct perf_event *event, *group_leader = NULL, *output_event = NULL;
5273 struct perf_event_attr attr;
5274 struct perf_event_context *ctx;
5275 struct file *event_file = NULL;
5276 struct file *group_file = NULL;
5277 int event_fd;
5278 int fput_needed = 0;
5279 int err;
5280
5281 /* for future expandability... */
5282 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5283 return -EINVAL;
5284
5285 err = perf_copy_attr(attr_uptr, &attr);
5286 if (err)
5287 return err;
5288
5289 if (!attr.exclude_kernel) {
5290 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5291 return -EACCES;
5292 }
5293
5294 if (attr.freq) {
5295 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5296 return -EINVAL;
5297 }
5298
5299 event_fd = get_unused_fd_flags(O_RDWR);
5300 if (event_fd < 0)
5301 return event_fd;
5302
5303 /*
5304 * Get the target context (task or percpu):
5305 */
5306 ctx = find_get_context(pid, cpu);
5307 if (IS_ERR(ctx)) {
5308 err = PTR_ERR(ctx);
5309 goto err_fd;
5310 }
5311
5312 if (group_fd != -1) {
5313 group_leader = perf_fget_light(group_fd, &fput_needed);
5314 if (IS_ERR(group_leader)) {
5315 err = PTR_ERR(group_leader);
5316 goto err_put_context;
5317 }
5318 group_file = group_leader->filp;
5319 if (flags & PERF_FLAG_FD_OUTPUT)
5320 output_event = group_leader;
5321 if (flags & PERF_FLAG_FD_NO_GROUP)
5322 group_leader = NULL;
5323 }
5324
5325 /*
5326 * Look up the group leader (we will attach this event to it):
5327 */
5328 if (group_leader) {
5329 err = -EINVAL;
5330
5331 /*
5332 * Do not allow a recursive hierarchy (this new sibling
5333 * becoming part of another group-sibling):
5334 */
5335 if (group_leader->group_leader != group_leader)
5336 goto err_put_context;
5337 /*
5338 * Do not allow to attach to a group in a different
5339 * task or CPU context:
5340 */
5341 if (group_leader->ctx != ctx)
5342 goto err_put_context;
5343 /*
5344 * Only a group leader can be exclusive or pinned
5345 */
5346 if (attr.exclusive || attr.pinned)
5347 goto err_put_context;
5348 }
5349
5350 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
5351 NULL, NULL, GFP_KERNEL);
5352 if (IS_ERR(event)) {
5353 err = PTR_ERR(event);
5354 goto err_put_context;
5355 }
5356
5357 if (output_event) {
5358 err = perf_event_set_output(event, output_event);
5359 if (err)
5360 goto err_free_put_context;
5361 }
5362
5363 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5364 if (IS_ERR(event_file)) {
5365 err = PTR_ERR(event_file);
5366 goto err_free_put_context;
5367 }
5368
5369 event->filp = event_file;
5370 WARN_ON_ONCE(ctx->parent_ctx);
5371 mutex_lock(&ctx->mutex);
5372 perf_install_in_context(ctx, event, cpu);
5373 ++ctx->generation;
5374 mutex_unlock(&ctx->mutex);
5375
5376 event->owner = current;
5377 get_task_struct(current);
5378 mutex_lock(&current->perf_event_mutex);
5379 list_add_tail(&event->owner_entry, &current->perf_event_list);
5380 mutex_unlock(&current->perf_event_mutex);
5381
5382 /*
5383 * Drop the reference on the group_event after placing the
5384 * new event on the sibling_list. This ensures destruction
5385 * of the group leader will find the pointer to itself in
5386 * perf_group_detach().
5387 */
5388 fput_light(group_file, fput_needed);
5389 fd_install(event_fd, event_file);
5390 return event_fd;
5391
5392 err_free_put_context:
5393 free_event(event);
5394 err_put_context:
5395 fput_light(group_file, fput_needed);
5396 put_ctx(ctx);
5397 err_fd:
5398 put_unused_fd(event_fd);
5399 return err;
5400 }
5401
5402 /**
5403 * perf_event_create_kernel_counter
5404 *
5405 * @attr: attributes of the counter to create
5406 * @cpu: cpu in which the counter is bound
5407 * @pid: task to profile
5408 */
5409 struct perf_event *
5410 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5411 pid_t pid,
5412 perf_overflow_handler_t overflow_handler)
5413 {
5414 struct perf_event *event;
5415 struct perf_event_context *ctx;
5416 int err;
5417
5418 /*
5419 * Get the target context (task or percpu):
5420 */
5421
5422 ctx = find_get_context(pid, cpu);
5423 if (IS_ERR(ctx)) {
5424 err = PTR_ERR(ctx);
5425 goto err_exit;
5426 }
5427
5428 event = perf_event_alloc(attr, cpu, ctx, NULL,
5429 NULL, overflow_handler, GFP_KERNEL);
5430 if (IS_ERR(event)) {
5431 err = PTR_ERR(event);
5432 goto err_put_context;
5433 }
5434
5435 event->filp = NULL;
5436 WARN_ON_ONCE(ctx->parent_ctx);
5437 mutex_lock(&ctx->mutex);
5438 perf_install_in_context(ctx, event, cpu);
5439 ++ctx->generation;
5440 mutex_unlock(&ctx->mutex);
5441
5442 event->owner = current;
5443 get_task_struct(current);
5444 mutex_lock(&current->perf_event_mutex);
5445 list_add_tail(&event->owner_entry, &current->perf_event_list);
5446 mutex_unlock(&current->perf_event_mutex);
5447
5448 return event;
5449
5450 err_put_context:
5451 put_ctx(ctx);
5452 err_exit:
5453 return ERR_PTR(err);
5454 }
5455 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5456
5457 /*
5458 * inherit a event from parent task to child task:
5459 */
5460 static struct perf_event *
5461 inherit_event(struct perf_event *parent_event,
5462 struct task_struct *parent,
5463 struct perf_event_context *parent_ctx,
5464 struct task_struct *child,
5465 struct perf_event *group_leader,
5466 struct perf_event_context *child_ctx)
5467 {
5468 struct perf_event *child_event;
5469
5470 /*
5471 * Instead of creating recursive hierarchies of events,
5472 * we link inherited events back to the original parent,
5473 * which has a filp for sure, which we use as the reference
5474 * count:
5475 */
5476 if (parent_event->parent)
5477 parent_event = parent_event->parent;
5478
5479 child_event = perf_event_alloc(&parent_event->attr,
5480 parent_event->cpu, child_ctx,
5481 group_leader, parent_event,
5482 NULL, GFP_KERNEL);
5483 if (IS_ERR(child_event))
5484 return child_event;
5485 get_ctx(child_ctx);
5486
5487 /*
5488 * Make the child state follow the state of the parent event,
5489 * not its attr.disabled bit. We hold the parent's mutex,
5490 * so we won't race with perf_event_{en, dis}able_family.
5491 */
5492 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5493 child_event->state = PERF_EVENT_STATE_INACTIVE;
5494 else
5495 child_event->state = PERF_EVENT_STATE_OFF;
5496
5497 if (parent_event->attr.freq) {
5498 u64 sample_period = parent_event->hw.sample_period;
5499 struct hw_perf_event *hwc = &child_event->hw;
5500
5501 hwc->sample_period = sample_period;
5502 hwc->last_period = sample_period;
5503
5504 local64_set(&hwc->period_left, sample_period);
5505 }
5506
5507 child_event->overflow_handler = parent_event->overflow_handler;
5508
5509 /*
5510 * Link it up in the child's context:
5511 */
5512 add_event_to_ctx(child_event, child_ctx);
5513
5514 /*
5515 * Get a reference to the parent filp - we will fput it
5516 * when the child event exits. This is safe to do because
5517 * we are in the parent and we know that the filp still
5518 * exists and has a nonzero count:
5519 */
5520 atomic_long_inc(&parent_event->filp->f_count);
5521
5522 /*
5523 * Link this into the parent event's child list
5524 */
5525 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5526 mutex_lock(&parent_event->child_mutex);
5527 list_add_tail(&child_event->child_list, &parent_event->child_list);
5528 mutex_unlock(&parent_event->child_mutex);
5529
5530 return child_event;
5531 }
5532
5533 static int inherit_group(struct perf_event *parent_event,
5534 struct task_struct *parent,
5535 struct perf_event_context *parent_ctx,
5536 struct task_struct *child,
5537 struct perf_event_context *child_ctx)
5538 {
5539 struct perf_event *leader;
5540 struct perf_event *sub;
5541 struct perf_event *child_ctr;
5542
5543 leader = inherit_event(parent_event, parent, parent_ctx,
5544 child, NULL, child_ctx);
5545 if (IS_ERR(leader))
5546 return PTR_ERR(leader);
5547 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5548 child_ctr = inherit_event(sub, parent, parent_ctx,
5549 child, leader, child_ctx);
5550 if (IS_ERR(child_ctr))
5551 return PTR_ERR(child_ctr);
5552 }
5553 return 0;
5554 }
5555
5556 static void sync_child_event(struct perf_event *child_event,
5557 struct task_struct *child)
5558 {
5559 struct perf_event *parent_event = child_event->parent;
5560 u64 child_val;
5561
5562 if (child_event->attr.inherit_stat)
5563 perf_event_read_event(child_event, child);
5564
5565 child_val = perf_event_count(child_event);
5566
5567 /*
5568 * Add back the child's count to the parent's count:
5569 */
5570 atomic64_add(child_val, &parent_event->child_count);
5571 atomic64_add(child_event->total_time_enabled,
5572 &parent_event->child_total_time_enabled);
5573 atomic64_add(child_event->total_time_running,
5574 &parent_event->child_total_time_running);
5575
5576 /*
5577 * Remove this event from the parent's list
5578 */
5579 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5580 mutex_lock(&parent_event->child_mutex);
5581 list_del_init(&child_event->child_list);
5582 mutex_unlock(&parent_event->child_mutex);
5583
5584 /*
5585 * Release the parent event, if this was the last
5586 * reference to it.
5587 */
5588 fput(parent_event->filp);
5589 }
5590
5591 static void
5592 __perf_event_exit_task(struct perf_event *child_event,
5593 struct perf_event_context *child_ctx,
5594 struct task_struct *child)
5595 {
5596 struct perf_event *parent_event;
5597
5598 perf_event_remove_from_context(child_event);
5599
5600 parent_event = child_event->parent;
5601 /*
5602 * It can happen that parent exits first, and has events
5603 * that are still around due to the child reference. These
5604 * events need to be zapped - but otherwise linger.
5605 */
5606 if (parent_event) {
5607 sync_child_event(child_event, child);
5608 free_event(child_event);
5609 }
5610 }
5611
5612 /*
5613 * When a child task exits, feed back event values to parent events.
5614 */
5615 void perf_event_exit_task(struct task_struct *child)
5616 {
5617 struct perf_event *child_event, *tmp;
5618 struct perf_event_context *child_ctx;
5619 unsigned long flags;
5620
5621 if (likely(!child->perf_event_ctxp)) {
5622 perf_event_task(child, NULL, 0);
5623 return;
5624 }
5625
5626 local_irq_save(flags);
5627 /*
5628 * We can't reschedule here because interrupts are disabled,
5629 * and either child is current or it is a task that can't be
5630 * scheduled, so we are now safe from rescheduling changing
5631 * our context.
5632 */
5633 child_ctx = child->perf_event_ctxp;
5634 __perf_event_task_sched_out(child_ctx);
5635
5636 /*
5637 * Take the context lock here so that if find_get_context is
5638 * reading child->perf_event_ctxp, we wait until it has
5639 * incremented the context's refcount before we do put_ctx below.
5640 */
5641 raw_spin_lock(&child_ctx->lock);
5642 child->perf_event_ctxp = NULL;
5643 /*
5644 * If this context is a clone; unclone it so it can't get
5645 * swapped to another process while we're removing all
5646 * the events from it.
5647 */
5648 unclone_ctx(child_ctx);
5649 update_context_time(child_ctx);
5650 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5651
5652 /*
5653 * Report the task dead after unscheduling the events so that we
5654 * won't get any samples after PERF_RECORD_EXIT. We can however still
5655 * get a few PERF_RECORD_READ events.
5656 */
5657 perf_event_task(child, child_ctx, 0);
5658
5659 /*
5660 * We can recurse on the same lock type through:
5661 *
5662 * __perf_event_exit_task()
5663 * sync_child_event()
5664 * fput(parent_event->filp)
5665 * perf_release()
5666 * mutex_lock(&ctx->mutex)
5667 *
5668 * But since its the parent context it won't be the same instance.
5669 */
5670 mutex_lock(&child_ctx->mutex);
5671
5672 again:
5673 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5674 group_entry)
5675 __perf_event_exit_task(child_event, child_ctx, child);
5676
5677 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5678 group_entry)
5679 __perf_event_exit_task(child_event, child_ctx, child);
5680
5681 /*
5682 * If the last event was a group event, it will have appended all
5683 * its siblings to the list, but we obtained 'tmp' before that which
5684 * will still point to the list head terminating the iteration.
5685 */
5686 if (!list_empty(&child_ctx->pinned_groups) ||
5687 !list_empty(&child_ctx->flexible_groups))
5688 goto again;
5689
5690 mutex_unlock(&child_ctx->mutex);
5691
5692 put_ctx(child_ctx);
5693 }
5694
5695 static void perf_free_event(struct perf_event *event,
5696 struct perf_event_context *ctx)
5697 {
5698 struct perf_event *parent = event->parent;
5699
5700 if (WARN_ON_ONCE(!parent))
5701 return;
5702
5703 mutex_lock(&parent->child_mutex);
5704 list_del_init(&event->child_list);
5705 mutex_unlock(&parent->child_mutex);
5706
5707 fput(parent->filp);
5708
5709 perf_group_detach(event);
5710 list_del_event(event, ctx);
5711 free_event(event);
5712 }
5713
5714 /*
5715 * free an unexposed, unused context as created by inheritance by
5716 * init_task below, used by fork() in case of fail.
5717 */
5718 void perf_event_free_task(struct task_struct *task)
5719 {
5720 struct perf_event_context *ctx = task->perf_event_ctxp;
5721 struct perf_event *event, *tmp;
5722
5723 if (!ctx)
5724 return;
5725
5726 mutex_lock(&ctx->mutex);
5727 again:
5728 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5729 perf_free_event(event, ctx);
5730
5731 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5732 group_entry)
5733 perf_free_event(event, ctx);
5734
5735 if (!list_empty(&ctx->pinned_groups) ||
5736 !list_empty(&ctx->flexible_groups))
5737 goto again;
5738
5739 mutex_unlock(&ctx->mutex);
5740
5741 put_ctx(ctx);
5742 }
5743
5744 static int
5745 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5746 struct perf_event_context *parent_ctx,
5747 struct task_struct *child,
5748 int *inherited_all)
5749 {
5750 int ret;
5751 struct perf_event_context *child_ctx = child->perf_event_ctxp;
5752
5753 if (!event->attr.inherit) {
5754 *inherited_all = 0;
5755 return 0;
5756 }
5757
5758 if (!child_ctx) {
5759 /*
5760 * This is executed from the parent task context, so
5761 * inherit events that have been marked for cloning.
5762 * First allocate and initialize a context for the
5763 * child.
5764 */
5765
5766 child_ctx = kzalloc(sizeof(struct perf_event_context),
5767 GFP_KERNEL);
5768 if (!child_ctx)
5769 return -ENOMEM;
5770
5771 __perf_event_init_context(child_ctx, child);
5772 child->perf_event_ctxp = child_ctx;
5773 get_task_struct(child);
5774 }
5775
5776 ret = inherit_group(event, parent, parent_ctx,
5777 child, child_ctx);
5778
5779 if (ret)
5780 *inherited_all = 0;
5781
5782 return ret;
5783 }
5784
5785
5786 /*
5787 * Initialize the perf_event context in task_struct
5788 */
5789 int perf_event_init_task(struct task_struct *child)
5790 {
5791 struct perf_event_context *child_ctx, *parent_ctx;
5792 struct perf_event_context *cloned_ctx;
5793 struct perf_event *event;
5794 struct task_struct *parent = current;
5795 int inherited_all = 1;
5796 int ret = 0;
5797
5798 child->perf_event_ctxp = NULL;
5799
5800 mutex_init(&child->perf_event_mutex);
5801 INIT_LIST_HEAD(&child->perf_event_list);
5802
5803 if (likely(!parent->perf_event_ctxp))
5804 return 0;
5805
5806 /*
5807 * If the parent's context is a clone, pin it so it won't get
5808 * swapped under us.
5809 */
5810 parent_ctx = perf_pin_task_context(parent);
5811
5812 /*
5813 * No need to check if parent_ctx != NULL here; since we saw
5814 * it non-NULL earlier, the only reason for it to become NULL
5815 * is if we exit, and since we're currently in the middle of
5816 * a fork we can't be exiting at the same time.
5817 */
5818
5819 /*
5820 * Lock the parent list. No need to lock the child - not PID
5821 * hashed yet and not running, so nobody can access it.
5822 */
5823 mutex_lock(&parent_ctx->mutex);
5824
5825 /*
5826 * We dont have to disable NMIs - we are only looking at
5827 * the list, not manipulating it:
5828 */
5829 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5830 ret = inherit_task_group(event, parent, parent_ctx, child,
5831 &inherited_all);
5832 if (ret)
5833 break;
5834 }
5835
5836 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5837 ret = inherit_task_group(event, parent, parent_ctx, child,
5838 &inherited_all);
5839 if (ret)
5840 break;
5841 }
5842
5843 child_ctx = child->perf_event_ctxp;
5844
5845 if (child_ctx && inherited_all) {
5846 /*
5847 * Mark the child context as a clone of the parent
5848 * context, or of whatever the parent is a clone of.
5849 * Note that if the parent is a clone, it could get
5850 * uncloned at any point, but that doesn't matter
5851 * because the list of events and the generation
5852 * count can't have changed since we took the mutex.
5853 */
5854 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5855 if (cloned_ctx) {
5856 child_ctx->parent_ctx = cloned_ctx;
5857 child_ctx->parent_gen = parent_ctx->parent_gen;
5858 } else {
5859 child_ctx->parent_ctx = parent_ctx;
5860 child_ctx->parent_gen = parent_ctx->generation;
5861 }
5862 get_ctx(child_ctx->parent_ctx);
5863 }
5864
5865 mutex_unlock(&parent_ctx->mutex);
5866
5867 perf_unpin_context(parent_ctx);
5868
5869 return ret;
5870 }
5871
5872 static void __init perf_event_init_all_cpus(void)
5873 {
5874 int cpu;
5875 struct perf_cpu_context *cpuctx;
5876
5877 for_each_possible_cpu(cpu) {
5878 cpuctx = &per_cpu(perf_cpu_context, cpu);
5879 mutex_init(&cpuctx->hlist_mutex);
5880 __perf_event_init_context(&cpuctx->ctx, NULL);
5881 }
5882 }
5883
5884 static void __cpuinit perf_event_init_cpu(int cpu)
5885 {
5886 struct perf_cpu_context *cpuctx;
5887
5888 cpuctx = &per_cpu(perf_cpu_context, cpu);
5889
5890 spin_lock(&perf_resource_lock);
5891 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5892 spin_unlock(&perf_resource_lock);
5893
5894 mutex_lock(&cpuctx->hlist_mutex);
5895 if (cpuctx->hlist_refcount > 0) {
5896 struct swevent_hlist *hlist;
5897
5898 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5899 WARN_ON_ONCE(!hlist);
5900 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
5901 }
5902 mutex_unlock(&cpuctx->hlist_mutex);
5903 }
5904
5905 #ifdef CONFIG_HOTPLUG_CPU
5906 static void __perf_event_exit_cpu(void *info)
5907 {
5908 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5909 struct perf_event_context *ctx = &cpuctx->ctx;
5910 struct perf_event *event, *tmp;
5911
5912 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5913 __perf_event_remove_from_context(event);
5914 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5915 __perf_event_remove_from_context(event);
5916 }
5917 static void perf_event_exit_cpu(int cpu)
5918 {
5919 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5920 struct perf_event_context *ctx = &cpuctx->ctx;
5921
5922 mutex_lock(&cpuctx->hlist_mutex);
5923 swevent_hlist_release(cpuctx);
5924 mutex_unlock(&cpuctx->hlist_mutex);
5925
5926 mutex_lock(&ctx->mutex);
5927 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5928 mutex_unlock(&ctx->mutex);
5929 }
5930 #else
5931 static inline void perf_event_exit_cpu(int cpu) { }
5932 #endif
5933
5934 static int __cpuinit
5935 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5936 {
5937 unsigned int cpu = (long)hcpu;
5938
5939 switch (action & ~CPU_TASKS_FROZEN) {
5940
5941 case CPU_UP_PREPARE:
5942 case CPU_DOWN_FAILED:
5943 perf_event_init_cpu(cpu);
5944 break;
5945
5946 case CPU_UP_CANCELED:
5947 case CPU_DOWN_PREPARE:
5948 perf_event_exit_cpu(cpu);
5949 break;
5950
5951 default:
5952 break;
5953 }
5954
5955 return NOTIFY_OK;
5956 }
5957
5958 void __init perf_event_init(void)
5959 {
5960 perf_event_init_all_cpus();
5961 init_srcu_struct(&pmus_srcu);
5962 perf_pmu_register(&perf_swevent);
5963 perf_pmu_register(&perf_cpu_clock);
5964 perf_pmu_register(&perf_task_clock);
5965 perf_tp_register();
5966 perf_cpu_notifier(perf_cpu_notify);
5967 }
5968
5969 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5970 struct sysdev_class_attribute *attr,
5971 char *buf)
5972 {
5973 return sprintf(buf, "%d\n", perf_reserved_percpu);
5974 }
5975
5976 static ssize_t
5977 perf_set_reserve_percpu(struct sysdev_class *class,
5978 struct sysdev_class_attribute *attr,
5979 const char *buf,
5980 size_t count)
5981 {
5982 struct perf_cpu_context *cpuctx;
5983 unsigned long val;
5984 int err, cpu, mpt;
5985
5986 err = strict_strtoul(buf, 10, &val);
5987 if (err)
5988 return err;
5989 if (val > perf_max_events)
5990 return -EINVAL;
5991
5992 spin_lock(&perf_resource_lock);
5993 perf_reserved_percpu = val;
5994 for_each_online_cpu(cpu) {
5995 cpuctx = &per_cpu(perf_cpu_context, cpu);
5996 raw_spin_lock_irq(&cpuctx->ctx.lock);
5997 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5998 perf_max_events - perf_reserved_percpu);
5999 cpuctx->max_pertask = mpt;
6000 raw_spin_unlock_irq(&cpuctx->ctx.lock);
6001 }
6002 spin_unlock(&perf_resource_lock);
6003
6004 return count;
6005 }
6006
6007 static ssize_t perf_show_overcommit(struct sysdev_class *class,
6008 struct sysdev_class_attribute *attr,
6009 char *buf)
6010 {
6011 return sprintf(buf, "%d\n", perf_overcommit);
6012 }
6013
6014 static ssize_t
6015 perf_set_overcommit(struct sysdev_class *class,
6016 struct sysdev_class_attribute *attr,
6017 const char *buf, size_t count)
6018 {
6019 unsigned long val;
6020 int err;
6021
6022 err = strict_strtoul(buf, 10, &val);
6023 if (err)
6024 return err;
6025 if (val > 1)
6026 return -EINVAL;
6027
6028 spin_lock(&perf_resource_lock);
6029 perf_overcommit = val;
6030 spin_unlock(&perf_resource_lock);
6031
6032 return count;
6033 }
6034
6035 static SYSDEV_CLASS_ATTR(
6036 reserve_percpu,
6037 0644,
6038 perf_show_reserve_percpu,
6039 perf_set_reserve_percpu
6040 );
6041
6042 static SYSDEV_CLASS_ATTR(
6043 overcommit,
6044 0644,
6045 perf_show_overcommit,
6046 perf_set_overcommit
6047 );
6048
6049 static struct attribute *perfclass_attrs[] = {
6050 &attr_reserve_percpu.attr,
6051 &attr_overcommit.attr,
6052 NULL
6053 };
6054
6055 static struct attribute_group perfclass_attr_group = {
6056 .attrs = perfclass_attrs,
6057 .name = "perf_events",
6058 };
6059
6060 static int __init perf_event_sysfs_init(void)
6061 {
6062 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
6063 &perfclass_attr_group);
6064 }
6065 device_initcall(perf_event_sysfs_init);