]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/perf_event.c
Merge branch 'sched-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-hirsute-kernel.git] / kernel / perf_event.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/vmalloc.h>
24 #include <linux/hardirq.h>
25 #include <linux/rculist.h>
26 #include <linux/uaccess.h>
27 #include <linux/syscalls.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/perf_event.h>
31
32 #include <asm/irq_regs.h>
33
34 /*
35 * Each CPU has a list of per CPU events:
36 */
37 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
38
39 int perf_max_events __read_mostly = 1;
40 static int perf_reserved_percpu __read_mostly;
41 static int perf_overcommit __read_mostly = 1;
42
43 static atomic_t nr_events __read_mostly;
44 static atomic_t nr_mmap_events __read_mostly;
45 static atomic_t nr_comm_events __read_mostly;
46 static atomic_t nr_task_events __read_mostly;
47
48 /*
49 * perf event paranoia level:
50 * -1 - not paranoid at all
51 * 0 - disallow raw tracepoint access for unpriv
52 * 1 - disallow cpu events for unpriv
53 * 2 - disallow kernel profiling for unpriv
54 */
55 int sysctl_perf_event_paranoid __read_mostly = 1;
56
57 static inline bool perf_paranoid_tracepoint_raw(void)
58 {
59 return sysctl_perf_event_paranoid > -1;
60 }
61
62 static inline bool perf_paranoid_cpu(void)
63 {
64 return sysctl_perf_event_paranoid > 0;
65 }
66
67 static inline bool perf_paranoid_kernel(void)
68 {
69 return sysctl_perf_event_paranoid > 1;
70 }
71
72 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
73
74 /*
75 * max perf event sample rate
76 */
77 int sysctl_perf_event_sample_rate __read_mostly = 100000;
78
79 static atomic64_t perf_event_id;
80
81 /*
82 * Lock for (sysadmin-configurable) event reservations:
83 */
84 static DEFINE_SPINLOCK(perf_resource_lock);
85
86 /*
87 * Architecture provided APIs - weak aliases:
88 */
89 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
90 {
91 return NULL;
92 }
93
94 void __weak hw_perf_disable(void) { barrier(); }
95 void __weak hw_perf_enable(void) { barrier(); }
96
97 void __weak hw_perf_event_setup(int cpu) { barrier(); }
98 void __weak hw_perf_event_setup_online(int cpu) { barrier(); }
99
100 int __weak
101 hw_perf_group_sched_in(struct perf_event *group_leader,
102 struct perf_cpu_context *cpuctx,
103 struct perf_event_context *ctx, int cpu)
104 {
105 return 0;
106 }
107
108 void __weak perf_event_print_debug(void) { }
109
110 static DEFINE_PER_CPU(int, perf_disable_count);
111
112 void __perf_disable(void)
113 {
114 __get_cpu_var(perf_disable_count)++;
115 }
116
117 bool __perf_enable(void)
118 {
119 return !--__get_cpu_var(perf_disable_count);
120 }
121
122 void perf_disable(void)
123 {
124 __perf_disable();
125 hw_perf_disable();
126 }
127
128 void perf_enable(void)
129 {
130 if (__perf_enable())
131 hw_perf_enable();
132 }
133
134 static void get_ctx(struct perf_event_context *ctx)
135 {
136 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
137 }
138
139 static void free_ctx(struct rcu_head *head)
140 {
141 struct perf_event_context *ctx;
142
143 ctx = container_of(head, struct perf_event_context, rcu_head);
144 kfree(ctx);
145 }
146
147 static void put_ctx(struct perf_event_context *ctx)
148 {
149 if (atomic_dec_and_test(&ctx->refcount)) {
150 if (ctx->parent_ctx)
151 put_ctx(ctx->parent_ctx);
152 if (ctx->task)
153 put_task_struct(ctx->task);
154 call_rcu(&ctx->rcu_head, free_ctx);
155 }
156 }
157
158 static void unclone_ctx(struct perf_event_context *ctx)
159 {
160 if (ctx->parent_ctx) {
161 put_ctx(ctx->parent_ctx);
162 ctx->parent_ctx = NULL;
163 }
164 }
165
166 /*
167 * If we inherit events we want to return the parent event id
168 * to userspace.
169 */
170 static u64 primary_event_id(struct perf_event *event)
171 {
172 u64 id = event->id;
173
174 if (event->parent)
175 id = event->parent->id;
176
177 return id;
178 }
179
180 /*
181 * Get the perf_event_context for a task and lock it.
182 * This has to cope with with the fact that until it is locked,
183 * the context could get moved to another task.
184 */
185 static struct perf_event_context *
186 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
187 {
188 struct perf_event_context *ctx;
189
190 rcu_read_lock();
191 retry:
192 ctx = rcu_dereference(task->perf_event_ctxp);
193 if (ctx) {
194 /*
195 * If this context is a clone of another, it might
196 * get swapped for another underneath us by
197 * perf_event_task_sched_out, though the
198 * rcu_read_lock() protects us from any context
199 * getting freed. Lock the context and check if it
200 * got swapped before we could get the lock, and retry
201 * if so. If we locked the right context, then it
202 * can't get swapped on us any more.
203 */
204 spin_lock_irqsave(&ctx->lock, *flags);
205 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
206 spin_unlock_irqrestore(&ctx->lock, *flags);
207 goto retry;
208 }
209
210 if (!atomic_inc_not_zero(&ctx->refcount)) {
211 spin_unlock_irqrestore(&ctx->lock, *flags);
212 ctx = NULL;
213 }
214 }
215 rcu_read_unlock();
216 return ctx;
217 }
218
219 /*
220 * Get the context for a task and increment its pin_count so it
221 * can't get swapped to another task. This also increments its
222 * reference count so that the context can't get freed.
223 */
224 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
225 {
226 struct perf_event_context *ctx;
227 unsigned long flags;
228
229 ctx = perf_lock_task_context(task, &flags);
230 if (ctx) {
231 ++ctx->pin_count;
232 spin_unlock_irqrestore(&ctx->lock, flags);
233 }
234 return ctx;
235 }
236
237 static void perf_unpin_context(struct perf_event_context *ctx)
238 {
239 unsigned long flags;
240
241 spin_lock_irqsave(&ctx->lock, flags);
242 --ctx->pin_count;
243 spin_unlock_irqrestore(&ctx->lock, flags);
244 put_ctx(ctx);
245 }
246
247 /*
248 * Add a event from the lists for its context.
249 * Must be called with ctx->mutex and ctx->lock held.
250 */
251 static void
252 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
253 {
254 struct perf_event *group_leader = event->group_leader;
255
256 /*
257 * Depending on whether it is a standalone or sibling event,
258 * add it straight to the context's event list, or to the group
259 * leader's sibling list:
260 */
261 if (group_leader == event)
262 list_add_tail(&event->group_entry, &ctx->group_list);
263 else {
264 list_add_tail(&event->group_entry, &group_leader->sibling_list);
265 group_leader->nr_siblings++;
266 }
267
268 list_add_rcu(&event->event_entry, &ctx->event_list);
269 ctx->nr_events++;
270 if (event->attr.inherit_stat)
271 ctx->nr_stat++;
272 }
273
274 /*
275 * Remove a event from the lists for its context.
276 * Must be called with ctx->mutex and ctx->lock held.
277 */
278 static void
279 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
280 {
281 struct perf_event *sibling, *tmp;
282
283 if (list_empty(&event->group_entry))
284 return;
285 ctx->nr_events--;
286 if (event->attr.inherit_stat)
287 ctx->nr_stat--;
288
289 list_del_init(&event->group_entry);
290 list_del_rcu(&event->event_entry);
291
292 if (event->group_leader != event)
293 event->group_leader->nr_siblings--;
294
295 /*
296 * If this was a group event with sibling events then
297 * upgrade the siblings to singleton events by adding them
298 * to the context list directly:
299 */
300 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
301
302 list_move_tail(&sibling->group_entry, &ctx->group_list);
303 sibling->group_leader = sibling;
304 }
305 }
306
307 static void
308 event_sched_out(struct perf_event *event,
309 struct perf_cpu_context *cpuctx,
310 struct perf_event_context *ctx)
311 {
312 if (event->state != PERF_EVENT_STATE_ACTIVE)
313 return;
314
315 event->state = PERF_EVENT_STATE_INACTIVE;
316 if (event->pending_disable) {
317 event->pending_disable = 0;
318 event->state = PERF_EVENT_STATE_OFF;
319 }
320 event->tstamp_stopped = ctx->time;
321 event->pmu->disable(event);
322 event->oncpu = -1;
323
324 if (!is_software_event(event))
325 cpuctx->active_oncpu--;
326 ctx->nr_active--;
327 if (event->attr.exclusive || !cpuctx->active_oncpu)
328 cpuctx->exclusive = 0;
329 }
330
331 static void
332 group_sched_out(struct perf_event *group_event,
333 struct perf_cpu_context *cpuctx,
334 struct perf_event_context *ctx)
335 {
336 struct perf_event *event;
337
338 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
339 return;
340
341 event_sched_out(group_event, cpuctx, ctx);
342
343 /*
344 * Schedule out siblings (if any):
345 */
346 list_for_each_entry(event, &group_event->sibling_list, group_entry)
347 event_sched_out(event, cpuctx, ctx);
348
349 if (group_event->attr.exclusive)
350 cpuctx->exclusive = 0;
351 }
352
353 /*
354 * Cross CPU call to remove a performance event
355 *
356 * We disable the event on the hardware level first. After that we
357 * remove it from the context list.
358 */
359 static void __perf_event_remove_from_context(void *info)
360 {
361 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
362 struct perf_event *event = info;
363 struct perf_event_context *ctx = event->ctx;
364
365 /*
366 * If this is a task context, we need to check whether it is
367 * the current task context of this cpu. If not it has been
368 * scheduled out before the smp call arrived.
369 */
370 if (ctx->task && cpuctx->task_ctx != ctx)
371 return;
372
373 spin_lock(&ctx->lock);
374 /*
375 * Protect the list operation against NMI by disabling the
376 * events on a global level.
377 */
378 perf_disable();
379
380 event_sched_out(event, cpuctx, ctx);
381
382 list_del_event(event, ctx);
383
384 if (!ctx->task) {
385 /*
386 * Allow more per task events with respect to the
387 * reservation:
388 */
389 cpuctx->max_pertask =
390 min(perf_max_events - ctx->nr_events,
391 perf_max_events - perf_reserved_percpu);
392 }
393
394 perf_enable();
395 spin_unlock(&ctx->lock);
396 }
397
398
399 /*
400 * Remove the event from a task's (or a CPU's) list of events.
401 *
402 * Must be called with ctx->mutex held.
403 *
404 * CPU events are removed with a smp call. For task events we only
405 * call when the task is on a CPU.
406 *
407 * If event->ctx is a cloned context, callers must make sure that
408 * every task struct that event->ctx->task could possibly point to
409 * remains valid. This is OK when called from perf_release since
410 * that only calls us on the top-level context, which can't be a clone.
411 * When called from perf_event_exit_task, it's OK because the
412 * context has been detached from its task.
413 */
414 static void perf_event_remove_from_context(struct perf_event *event)
415 {
416 struct perf_event_context *ctx = event->ctx;
417 struct task_struct *task = ctx->task;
418
419 if (!task) {
420 /*
421 * Per cpu events are removed via an smp call and
422 * the removal is always sucessful.
423 */
424 smp_call_function_single(event->cpu,
425 __perf_event_remove_from_context,
426 event, 1);
427 return;
428 }
429
430 retry:
431 task_oncpu_function_call(task, __perf_event_remove_from_context,
432 event);
433
434 spin_lock_irq(&ctx->lock);
435 /*
436 * If the context is active we need to retry the smp call.
437 */
438 if (ctx->nr_active && !list_empty(&event->group_entry)) {
439 spin_unlock_irq(&ctx->lock);
440 goto retry;
441 }
442
443 /*
444 * The lock prevents that this context is scheduled in so we
445 * can remove the event safely, if the call above did not
446 * succeed.
447 */
448 if (!list_empty(&event->group_entry)) {
449 list_del_event(event, ctx);
450 }
451 spin_unlock_irq(&ctx->lock);
452 }
453
454 static inline u64 perf_clock(void)
455 {
456 return cpu_clock(smp_processor_id());
457 }
458
459 /*
460 * Update the record of the current time in a context.
461 */
462 static void update_context_time(struct perf_event_context *ctx)
463 {
464 u64 now = perf_clock();
465
466 ctx->time += now - ctx->timestamp;
467 ctx->timestamp = now;
468 }
469
470 /*
471 * Update the total_time_enabled and total_time_running fields for a event.
472 */
473 static void update_event_times(struct perf_event *event)
474 {
475 struct perf_event_context *ctx = event->ctx;
476 u64 run_end;
477
478 if (event->state < PERF_EVENT_STATE_INACTIVE ||
479 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
480 return;
481
482 event->total_time_enabled = ctx->time - event->tstamp_enabled;
483
484 if (event->state == PERF_EVENT_STATE_INACTIVE)
485 run_end = event->tstamp_stopped;
486 else
487 run_end = ctx->time;
488
489 event->total_time_running = run_end - event->tstamp_running;
490 }
491
492 /*
493 * Update total_time_enabled and total_time_running for all events in a group.
494 */
495 static void update_group_times(struct perf_event *leader)
496 {
497 struct perf_event *event;
498
499 update_event_times(leader);
500 list_for_each_entry(event, &leader->sibling_list, group_entry)
501 update_event_times(event);
502 }
503
504 /*
505 * Cross CPU call to disable a performance event
506 */
507 static void __perf_event_disable(void *info)
508 {
509 struct perf_event *event = info;
510 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
511 struct perf_event_context *ctx = event->ctx;
512
513 /*
514 * If this is a per-task event, need to check whether this
515 * event's task is the current task on this cpu.
516 */
517 if (ctx->task && cpuctx->task_ctx != ctx)
518 return;
519
520 spin_lock(&ctx->lock);
521
522 /*
523 * If the event is on, turn it off.
524 * If it is in error state, leave it in error state.
525 */
526 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
527 update_context_time(ctx);
528 update_group_times(event);
529 if (event == event->group_leader)
530 group_sched_out(event, cpuctx, ctx);
531 else
532 event_sched_out(event, cpuctx, ctx);
533 event->state = PERF_EVENT_STATE_OFF;
534 }
535
536 spin_unlock(&ctx->lock);
537 }
538
539 /*
540 * Disable a event.
541 *
542 * If event->ctx is a cloned context, callers must make sure that
543 * every task struct that event->ctx->task could possibly point to
544 * remains valid. This condition is satisifed when called through
545 * perf_event_for_each_child or perf_event_for_each because they
546 * hold the top-level event's child_mutex, so any descendant that
547 * goes to exit will block in sync_child_event.
548 * When called from perf_pending_event it's OK because event->ctx
549 * is the current context on this CPU and preemption is disabled,
550 * hence we can't get into perf_event_task_sched_out for this context.
551 */
552 static void perf_event_disable(struct perf_event *event)
553 {
554 struct perf_event_context *ctx = event->ctx;
555 struct task_struct *task = ctx->task;
556
557 if (!task) {
558 /*
559 * Disable the event on the cpu that it's on
560 */
561 smp_call_function_single(event->cpu, __perf_event_disable,
562 event, 1);
563 return;
564 }
565
566 retry:
567 task_oncpu_function_call(task, __perf_event_disable, event);
568
569 spin_lock_irq(&ctx->lock);
570 /*
571 * If the event is still active, we need to retry the cross-call.
572 */
573 if (event->state == PERF_EVENT_STATE_ACTIVE) {
574 spin_unlock_irq(&ctx->lock);
575 goto retry;
576 }
577
578 /*
579 * Since we have the lock this context can't be scheduled
580 * in, so we can change the state safely.
581 */
582 if (event->state == PERF_EVENT_STATE_INACTIVE) {
583 update_group_times(event);
584 event->state = PERF_EVENT_STATE_OFF;
585 }
586
587 spin_unlock_irq(&ctx->lock);
588 }
589
590 static int
591 event_sched_in(struct perf_event *event,
592 struct perf_cpu_context *cpuctx,
593 struct perf_event_context *ctx,
594 int cpu)
595 {
596 if (event->state <= PERF_EVENT_STATE_OFF)
597 return 0;
598
599 event->state = PERF_EVENT_STATE_ACTIVE;
600 event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
601 /*
602 * The new state must be visible before we turn it on in the hardware:
603 */
604 smp_wmb();
605
606 if (event->pmu->enable(event)) {
607 event->state = PERF_EVENT_STATE_INACTIVE;
608 event->oncpu = -1;
609 return -EAGAIN;
610 }
611
612 event->tstamp_running += ctx->time - event->tstamp_stopped;
613
614 if (!is_software_event(event))
615 cpuctx->active_oncpu++;
616 ctx->nr_active++;
617
618 if (event->attr.exclusive)
619 cpuctx->exclusive = 1;
620
621 return 0;
622 }
623
624 static int
625 group_sched_in(struct perf_event *group_event,
626 struct perf_cpu_context *cpuctx,
627 struct perf_event_context *ctx,
628 int cpu)
629 {
630 struct perf_event *event, *partial_group;
631 int ret;
632
633 if (group_event->state == PERF_EVENT_STATE_OFF)
634 return 0;
635
636 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
637 if (ret)
638 return ret < 0 ? ret : 0;
639
640 if (event_sched_in(group_event, cpuctx, ctx, cpu))
641 return -EAGAIN;
642
643 /*
644 * Schedule in siblings as one group (if any):
645 */
646 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
647 if (event_sched_in(event, cpuctx, ctx, cpu)) {
648 partial_group = event;
649 goto group_error;
650 }
651 }
652
653 return 0;
654
655 group_error:
656 /*
657 * Groups can be scheduled in as one unit only, so undo any
658 * partial group before returning:
659 */
660 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
661 if (event == partial_group)
662 break;
663 event_sched_out(event, cpuctx, ctx);
664 }
665 event_sched_out(group_event, cpuctx, ctx);
666
667 return -EAGAIN;
668 }
669
670 /*
671 * Return 1 for a group consisting entirely of software events,
672 * 0 if the group contains any hardware events.
673 */
674 static int is_software_only_group(struct perf_event *leader)
675 {
676 struct perf_event *event;
677
678 if (!is_software_event(leader))
679 return 0;
680
681 list_for_each_entry(event, &leader->sibling_list, group_entry)
682 if (!is_software_event(event))
683 return 0;
684
685 return 1;
686 }
687
688 /*
689 * Work out whether we can put this event group on the CPU now.
690 */
691 static int group_can_go_on(struct perf_event *event,
692 struct perf_cpu_context *cpuctx,
693 int can_add_hw)
694 {
695 /*
696 * Groups consisting entirely of software events can always go on.
697 */
698 if (is_software_only_group(event))
699 return 1;
700 /*
701 * If an exclusive group is already on, no other hardware
702 * events can go on.
703 */
704 if (cpuctx->exclusive)
705 return 0;
706 /*
707 * If this group is exclusive and there are already
708 * events on the CPU, it can't go on.
709 */
710 if (event->attr.exclusive && cpuctx->active_oncpu)
711 return 0;
712 /*
713 * Otherwise, try to add it if all previous groups were able
714 * to go on.
715 */
716 return can_add_hw;
717 }
718
719 static void add_event_to_ctx(struct perf_event *event,
720 struct perf_event_context *ctx)
721 {
722 list_add_event(event, ctx);
723 event->tstamp_enabled = ctx->time;
724 event->tstamp_running = ctx->time;
725 event->tstamp_stopped = ctx->time;
726 }
727
728 /*
729 * Cross CPU call to install and enable a performance event
730 *
731 * Must be called with ctx->mutex held
732 */
733 static void __perf_install_in_context(void *info)
734 {
735 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
736 struct perf_event *event = info;
737 struct perf_event_context *ctx = event->ctx;
738 struct perf_event *leader = event->group_leader;
739 int cpu = smp_processor_id();
740 int err;
741
742 /*
743 * If this is a task context, we need to check whether it is
744 * the current task context of this cpu. If not it has been
745 * scheduled out before the smp call arrived.
746 * Or possibly this is the right context but it isn't
747 * on this cpu because it had no events.
748 */
749 if (ctx->task && cpuctx->task_ctx != ctx) {
750 if (cpuctx->task_ctx || ctx->task != current)
751 return;
752 cpuctx->task_ctx = ctx;
753 }
754
755 spin_lock(&ctx->lock);
756 ctx->is_active = 1;
757 update_context_time(ctx);
758
759 /*
760 * Protect the list operation against NMI by disabling the
761 * events on a global level. NOP for non NMI based events.
762 */
763 perf_disable();
764
765 add_event_to_ctx(event, ctx);
766
767 /*
768 * Don't put the event on if it is disabled or if
769 * it is in a group and the group isn't on.
770 */
771 if (event->state != PERF_EVENT_STATE_INACTIVE ||
772 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
773 goto unlock;
774
775 /*
776 * An exclusive event can't go on if there are already active
777 * hardware events, and no hardware event can go on if there
778 * is already an exclusive event on.
779 */
780 if (!group_can_go_on(event, cpuctx, 1))
781 err = -EEXIST;
782 else
783 err = event_sched_in(event, cpuctx, ctx, cpu);
784
785 if (err) {
786 /*
787 * This event couldn't go on. If it is in a group
788 * then we have to pull the whole group off.
789 * If the event group is pinned then put it in error state.
790 */
791 if (leader != event)
792 group_sched_out(leader, cpuctx, ctx);
793 if (leader->attr.pinned) {
794 update_group_times(leader);
795 leader->state = PERF_EVENT_STATE_ERROR;
796 }
797 }
798
799 if (!err && !ctx->task && cpuctx->max_pertask)
800 cpuctx->max_pertask--;
801
802 unlock:
803 perf_enable();
804
805 spin_unlock(&ctx->lock);
806 }
807
808 /*
809 * Attach a performance event to a context
810 *
811 * First we add the event to the list with the hardware enable bit
812 * in event->hw_config cleared.
813 *
814 * If the event is attached to a task which is on a CPU we use a smp
815 * call to enable it in the task context. The task might have been
816 * scheduled away, but we check this in the smp call again.
817 *
818 * Must be called with ctx->mutex held.
819 */
820 static void
821 perf_install_in_context(struct perf_event_context *ctx,
822 struct perf_event *event,
823 int cpu)
824 {
825 struct task_struct *task = ctx->task;
826
827 if (!task) {
828 /*
829 * Per cpu events are installed via an smp call and
830 * the install is always sucessful.
831 */
832 smp_call_function_single(cpu, __perf_install_in_context,
833 event, 1);
834 return;
835 }
836
837 retry:
838 task_oncpu_function_call(task, __perf_install_in_context,
839 event);
840
841 spin_lock_irq(&ctx->lock);
842 /*
843 * we need to retry the smp call.
844 */
845 if (ctx->is_active && list_empty(&event->group_entry)) {
846 spin_unlock_irq(&ctx->lock);
847 goto retry;
848 }
849
850 /*
851 * The lock prevents that this context is scheduled in so we
852 * can add the event safely, if it the call above did not
853 * succeed.
854 */
855 if (list_empty(&event->group_entry))
856 add_event_to_ctx(event, ctx);
857 spin_unlock_irq(&ctx->lock);
858 }
859
860 /*
861 * Put a event into inactive state and update time fields.
862 * Enabling the leader of a group effectively enables all
863 * the group members that aren't explicitly disabled, so we
864 * have to update their ->tstamp_enabled also.
865 * Note: this works for group members as well as group leaders
866 * since the non-leader members' sibling_lists will be empty.
867 */
868 static void __perf_event_mark_enabled(struct perf_event *event,
869 struct perf_event_context *ctx)
870 {
871 struct perf_event *sub;
872
873 event->state = PERF_EVENT_STATE_INACTIVE;
874 event->tstamp_enabled = ctx->time - event->total_time_enabled;
875 list_for_each_entry(sub, &event->sibling_list, group_entry)
876 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
877 sub->tstamp_enabled =
878 ctx->time - sub->total_time_enabled;
879 }
880
881 /*
882 * Cross CPU call to enable a performance event
883 */
884 static void __perf_event_enable(void *info)
885 {
886 struct perf_event *event = info;
887 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
888 struct perf_event_context *ctx = event->ctx;
889 struct perf_event *leader = event->group_leader;
890 int err;
891
892 /*
893 * If this is a per-task event, need to check whether this
894 * event's task is the current task on this cpu.
895 */
896 if (ctx->task && cpuctx->task_ctx != ctx) {
897 if (cpuctx->task_ctx || ctx->task != current)
898 return;
899 cpuctx->task_ctx = ctx;
900 }
901
902 spin_lock(&ctx->lock);
903 ctx->is_active = 1;
904 update_context_time(ctx);
905
906 if (event->state >= PERF_EVENT_STATE_INACTIVE)
907 goto unlock;
908 __perf_event_mark_enabled(event, ctx);
909
910 /*
911 * If the event is in a group and isn't the group leader,
912 * then don't put it on unless the group is on.
913 */
914 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
915 goto unlock;
916
917 if (!group_can_go_on(event, cpuctx, 1)) {
918 err = -EEXIST;
919 } else {
920 perf_disable();
921 if (event == leader)
922 err = group_sched_in(event, cpuctx, ctx,
923 smp_processor_id());
924 else
925 err = event_sched_in(event, cpuctx, ctx,
926 smp_processor_id());
927 perf_enable();
928 }
929
930 if (err) {
931 /*
932 * If this event can't go on and it's part of a
933 * group, then the whole group has to come off.
934 */
935 if (leader != event)
936 group_sched_out(leader, cpuctx, ctx);
937 if (leader->attr.pinned) {
938 update_group_times(leader);
939 leader->state = PERF_EVENT_STATE_ERROR;
940 }
941 }
942
943 unlock:
944 spin_unlock(&ctx->lock);
945 }
946
947 /*
948 * Enable a event.
949 *
950 * If event->ctx is a cloned context, callers must make sure that
951 * every task struct that event->ctx->task could possibly point to
952 * remains valid. This condition is satisfied when called through
953 * perf_event_for_each_child or perf_event_for_each as described
954 * for perf_event_disable.
955 */
956 static void perf_event_enable(struct perf_event *event)
957 {
958 struct perf_event_context *ctx = event->ctx;
959 struct task_struct *task = ctx->task;
960
961 if (!task) {
962 /*
963 * Enable the event on the cpu that it's on
964 */
965 smp_call_function_single(event->cpu, __perf_event_enable,
966 event, 1);
967 return;
968 }
969
970 spin_lock_irq(&ctx->lock);
971 if (event->state >= PERF_EVENT_STATE_INACTIVE)
972 goto out;
973
974 /*
975 * If the event is in error state, clear that first.
976 * That way, if we see the event in error state below, we
977 * know that it has gone back into error state, as distinct
978 * from the task having been scheduled away before the
979 * cross-call arrived.
980 */
981 if (event->state == PERF_EVENT_STATE_ERROR)
982 event->state = PERF_EVENT_STATE_OFF;
983
984 retry:
985 spin_unlock_irq(&ctx->lock);
986 task_oncpu_function_call(task, __perf_event_enable, event);
987
988 spin_lock_irq(&ctx->lock);
989
990 /*
991 * If the context is active and the event is still off,
992 * we need to retry the cross-call.
993 */
994 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
995 goto retry;
996
997 /*
998 * Since we have the lock this context can't be scheduled
999 * in, so we can change the state safely.
1000 */
1001 if (event->state == PERF_EVENT_STATE_OFF)
1002 __perf_event_mark_enabled(event, ctx);
1003
1004 out:
1005 spin_unlock_irq(&ctx->lock);
1006 }
1007
1008 static int perf_event_refresh(struct perf_event *event, int refresh)
1009 {
1010 /*
1011 * not supported on inherited events
1012 */
1013 if (event->attr.inherit)
1014 return -EINVAL;
1015
1016 atomic_add(refresh, &event->event_limit);
1017 perf_event_enable(event);
1018
1019 return 0;
1020 }
1021
1022 void __perf_event_sched_out(struct perf_event_context *ctx,
1023 struct perf_cpu_context *cpuctx)
1024 {
1025 struct perf_event *event;
1026
1027 spin_lock(&ctx->lock);
1028 ctx->is_active = 0;
1029 if (likely(!ctx->nr_events))
1030 goto out;
1031 update_context_time(ctx);
1032
1033 perf_disable();
1034 if (ctx->nr_active)
1035 list_for_each_entry(event, &ctx->group_list, group_entry)
1036 group_sched_out(event, cpuctx, ctx);
1037
1038 perf_enable();
1039 out:
1040 spin_unlock(&ctx->lock);
1041 }
1042
1043 /*
1044 * Test whether two contexts are equivalent, i.e. whether they
1045 * have both been cloned from the same version of the same context
1046 * and they both have the same number of enabled events.
1047 * If the number of enabled events is the same, then the set
1048 * of enabled events should be the same, because these are both
1049 * inherited contexts, therefore we can't access individual events
1050 * in them directly with an fd; we can only enable/disable all
1051 * events via prctl, or enable/disable all events in a family
1052 * via ioctl, which will have the same effect on both contexts.
1053 */
1054 static int context_equiv(struct perf_event_context *ctx1,
1055 struct perf_event_context *ctx2)
1056 {
1057 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1058 && ctx1->parent_gen == ctx2->parent_gen
1059 && !ctx1->pin_count && !ctx2->pin_count;
1060 }
1061
1062 static void __perf_event_read(void *event);
1063
1064 static void __perf_event_sync_stat(struct perf_event *event,
1065 struct perf_event *next_event)
1066 {
1067 u64 value;
1068
1069 if (!event->attr.inherit_stat)
1070 return;
1071
1072 /*
1073 * Update the event value, we cannot use perf_event_read()
1074 * because we're in the middle of a context switch and have IRQs
1075 * disabled, which upsets smp_call_function_single(), however
1076 * we know the event must be on the current CPU, therefore we
1077 * don't need to use it.
1078 */
1079 switch (event->state) {
1080 case PERF_EVENT_STATE_ACTIVE:
1081 __perf_event_read(event);
1082 break;
1083
1084 case PERF_EVENT_STATE_INACTIVE:
1085 update_event_times(event);
1086 break;
1087
1088 default:
1089 break;
1090 }
1091
1092 /*
1093 * In order to keep per-task stats reliable we need to flip the event
1094 * values when we flip the contexts.
1095 */
1096 value = atomic64_read(&next_event->count);
1097 value = atomic64_xchg(&event->count, value);
1098 atomic64_set(&next_event->count, value);
1099
1100 swap(event->total_time_enabled, next_event->total_time_enabled);
1101 swap(event->total_time_running, next_event->total_time_running);
1102
1103 /*
1104 * Since we swizzled the values, update the user visible data too.
1105 */
1106 perf_event_update_userpage(event);
1107 perf_event_update_userpage(next_event);
1108 }
1109
1110 #define list_next_entry(pos, member) \
1111 list_entry(pos->member.next, typeof(*pos), member)
1112
1113 static void perf_event_sync_stat(struct perf_event_context *ctx,
1114 struct perf_event_context *next_ctx)
1115 {
1116 struct perf_event *event, *next_event;
1117
1118 if (!ctx->nr_stat)
1119 return;
1120
1121 event = list_first_entry(&ctx->event_list,
1122 struct perf_event, event_entry);
1123
1124 next_event = list_first_entry(&next_ctx->event_list,
1125 struct perf_event, event_entry);
1126
1127 while (&event->event_entry != &ctx->event_list &&
1128 &next_event->event_entry != &next_ctx->event_list) {
1129
1130 __perf_event_sync_stat(event, next_event);
1131
1132 event = list_next_entry(event, event_entry);
1133 next_event = list_next_entry(next_event, event_entry);
1134 }
1135 }
1136
1137 /*
1138 * Called from scheduler to remove the events of the current task,
1139 * with interrupts disabled.
1140 *
1141 * We stop each event and update the event value in event->count.
1142 *
1143 * This does not protect us against NMI, but disable()
1144 * sets the disabled bit in the control field of event _before_
1145 * accessing the event control register. If a NMI hits, then it will
1146 * not restart the event.
1147 */
1148 void perf_event_task_sched_out(struct task_struct *task,
1149 struct task_struct *next, int cpu)
1150 {
1151 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1152 struct perf_event_context *ctx = task->perf_event_ctxp;
1153 struct perf_event_context *next_ctx;
1154 struct perf_event_context *parent;
1155 struct pt_regs *regs;
1156 int do_switch = 1;
1157
1158 regs = task_pt_regs(task);
1159 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1160
1161 if (likely(!ctx || !cpuctx->task_ctx))
1162 return;
1163
1164 update_context_time(ctx);
1165
1166 rcu_read_lock();
1167 parent = rcu_dereference(ctx->parent_ctx);
1168 next_ctx = next->perf_event_ctxp;
1169 if (parent && next_ctx &&
1170 rcu_dereference(next_ctx->parent_ctx) == parent) {
1171 /*
1172 * Looks like the two contexts are clones, so we might be
1173 * able to optimize the context switch. We lock both
1174 * contexts and check that they are clones under the
1175 * lock (including re-checking that neither has been
1176 * uncloned in the meantime). It doesn't matter which
1177 * order we take the locks because no other cpu could
1178 * be trying to lock both of these tasks.
1179 */
1180 spin_lock(&ctx->lock);
1181 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1182 if (context_equiv(ctx, next_ctx)) {
1183 /*
1184 * XXX do we need a memory barrier of sorts
1185 * wrt to rcu_dereference() of perf_event_ctxp
1186 */
1187 task->perf_event_ctxp = next_ctx;
1188 next->perf_event_ctxp = ctx;
1189 ctx->task = next;
1190 next_ctx->task = task;
1191 do_switch = 0;
1192
1193 perf_event_sync_stat(ctx, next_ctx);
1194 }
1195 spin_unlock(&next_ctx->lock);
1196 spin_unlock(&ctx->lock);
1197 }
1198 rcu_read_unlock();
1199
1200 if (do_switch) {
1201 __perf_event_sched_out(ctx, cpuctx);
1202 cpuctx->task_ctx = NULL;
1203 }
1204 }
1205
1206 /*
1207 * Called with IRQs disabled
1208 */
1209 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1210 {
1211 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1212
1213 if (!cpuctx->task_ctx)
1214 return;
1215
1216 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1217 return;
1218
1219 __perf_event_sched_out(ctx, cpuctx);
1220 cpuctx->task_ctx = NULL;
1221 }
1222
1223 /*
1224 * Called with IRQs disabled
1225 */
1226 static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1227 {
1228 __perf_event_sched_out(&cpuctx->ctx, cpuctx);
1229 }
1230
1231 static void
1232 __perf_event_sched_in(struct perf_event_context *ctx,
1233 struct perf_cpu_context *cpuctx, int cpu)
1234 {
1235 struct perf_event *event;
1236 int can_add_hw = 1;
1237
1238 spin_lock(&ctx->lock);
1239 ctx->is_active = 1;
1240 if (likely(!ctx->nr_events))
1241 goto out;
1242
1243 ctx->timestamp = perf_clock();
1244
1245 perf_disable();
1246
1247 /*
1248 * First go through the list and put on any pinned groups
1249 * in order to give them the best chance of going on.
1250 */
1251 list_for_each_entry(event, &ctx->group_list, group_entry) {
1252 if (event->state <= PERF_EVENT_STATE_OFF ||
1253 !event->attr.pinned)
1254 continue;
1255 if (event->cpu != -1 && event->cpu != cpu)
1256 continue;
1257
1258 if (group_can_go_on(event, cpuctx, 1))
1259 group_sched_in(event, cpuctx, ctx, cpu);
1260
1261 /*
1262 * If this pinned group hasn't been scheduled,
1263 * put it in error state.
1264 */
1265 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1266 update_group_times(event);
1267 event->state = PERF_EVENT_STATE_ERROR;
1268 }
1269 }
1270
1271 list_for_each_entry(event, &ctx->group_list, group_entry) {
1272 /*
1273 * Ignore events in OFF or ERROR state, and
1274 * ignore pinned events since we did them already.
1275 */
1276 if (event->state <= PERF_EVENT_STATE_OFF ||
1277 event->attr.pinned)
1278 continue;
1279
1280 /*
1281 * Listen to the 'cpu' scheduling filter constraint
1282 * of events:
1283 */
1284 if (event->cpu != -1 && event->cpu != cpu)
1285 continue;
1286
1287 if (group_can_go_on(event, cpuctx, can_add_hw))
1288 if (group_sched_in(event, cpuctx, ctx, cpu))
1289 can_add_hw = 0;
1290 }
1291 perf_enable();
1292 out:
1293 spin_unlock(&ctx->lock);
1294 }
1295
1296 /*
1297 * Called from scheduler to add the events of the current task
1298 * with interrupts disabled.
1299 *
1300 * We restore the event value and then enable it.
1301 *
1302 * This does not protect us against NMI, but enable()
1303 * sets the enabled bit in the control field of event _before_
1304 * accessing the event control register. If a NMI hits, then it will
1305 * keep the event running.
1306 */
1307 void perf_event_task_sched_in(struct task_struct *task, int cpu)
1308 {
1309 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1310 struct perf_event_context *ctx = task->perf_event_ctxp;
1311
1312 if (likely(!ctx))
1313 return;
1314 if (cpuctx->task_ctx == ctx)
1315 return;
1316 __perf_event_sched_in(ctx, cpuctx, cpu);
1317 cpuctx->task_ctx = ctx;
1318 }
1319
1320 static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1321 {
1322 struct perf_event_context *ctx = &cpuctx->ctx;
1323
1324 __perf_event_sched_in(ctx, cpuctx, cpu);
1325 }
1326
1327 #define MAX_INTERRUPTS (~0ULL)
1328
1329 static void perf_log_throttle(struct perf_event *event, int enable);
1330
1331 static void perf_adjust_period(struct perf_event *event, u64 events)
1332 {
1333 struct hw_perf_event *hwc = &event->hw;
1334 u64 period, sample_period;
1335 s64 delta;
1336
1337 events *= hwc->sample_period;
1338 period = div64_u64(events, event->attr.sample_freq);
1339
1340 delta = (s64)(period - hwc->sample_period);
1341 delta = (delta + 7) / 8; /* low pass filter */
1342
1343 sample_period = hwc->sample_period + delta;
1344
1345 if (!sample_period)
1346 sample_period = 1;
1347
1348 hwc->sample_period = sample_period;
1349 }
1350
1351 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1352 {
1353 struct perf_event *event;
1354 struct hw_perf_event *hwc;
1355 u64 interrupts, freq;
1356
1357 spin_lock(&ctx->lock);
1358 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1359 if (event->state != PERF_EVENT_STATE_ACTIVE)
1360 continue;
1361
1362 hwc = &event->hw;
1363
1364 interrupts = hwc->interrupts;
1365 hwc->interrupts = 0;
1366
1367 /*
1368 * unthrottle events on the tick
1369 */
1370 if (interrupts == MAX_INTERRUPTS) {
1371 perf_log_throttle(event, 1);
1372 event->pmu->unthrottle(event);
1373 interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1374 }
1375
1376 if (!event->attr.freq || !event->attr.sample_freq)
1377 continue;
1378
1379 /*
1380 * if the specified freq < HZ then we need to skip ticks
1381 */
1382 if (event->attr.sample_freq < HZ) {
1383 freq = event->attr.sample_freq;
1384
1385 hwc->freq_count += freq;
1386 hwc->freq_interrupts += interrupts;
1387
1388 if (hwc->freq_count < HZ)
1389 continue;
1390
1391 interrupts = hwc->freq_interrupts;
1392 hwc->freq_interrupts = 0;
1393 hwc->freq_count -= HZ;
1394 } else
1395 freq = HZ;
1396
1397 perf_adjust_period(event, freq * interrupts);
1398
1399 /*
1400 * In order to avoid being stalled by an (accidental) huge
1401 * sample period, force reset the sample period if we didn't
1402 * get any events in this freq period.
1403 */
1404 if (!interrupts) {
1405 perf_disable();
1406 event->pmu->disable(event);
1407 atomic64_set(&hwc->period_left, 0);
1408 event->pmu->enable(event);
1409 perf_enable();
1410 }
1411 }
1412 spin_unlock(&ctx->lock);
1413 }
1414
1415 /*
1416 * Round-robin a context's events:
1417 */
1418 static void rotate_ctx(struct perf_event_context *ctx)
1419 {
1420 struct perf_event *event;
1421
1422 if (!ctx->nr_events)
1423 return;
1424
1425 spin_lock(&ctx->lock);
1426 /*
1427 * Rotate the first entry last (works just fine for group events too):
1428 */
1429 perf_disable();
1430 list_for_each_entry(event, &ctx->group_list, group_entry) {
1431 list_move_tail(&event->group_entry, &ctx->group_list);
1432 break;
1433 }
1434 perf_enable();
1435
1436 spin_unlock(&ctx->lock);
1437 }
1438
1439 void perf_event_task_tick(struct task_struct *curr, int cpu)
1440 {
1441 struct perf_cpu_context *cpuctx;
1442 struct perf_event_context *ctx;
1443
1444 if (!atomic_read(&nr_events))
1445 return;
1446
1447 cpuctx = &per_cpu(perf_cpu_context, cpu);
1448 ctx = curr->perf_event_ctxp;
1449
1450 perf_ctx_adjust_freq(&cpuctx->ctx);
1451 if (ctx)
1452 perf_ctx_adjust_freq(ctx);
1453
1454 perf_event_cpu_sched_out(cpuctx);
1455 if (ctx)
1456 __perf_event_task_sched_out(ctx);
1457
1458 rotate_ctx(&cpuctx->ctx);
1459 if (ctx)
1460 rotate_ctx(ctx);
1461
1462 perf_event_cpu_sched_in(cpuctx, cpu);
1463 if (ctx)
1464 perf_event_task_sched_in(curr, cpu);
1465 }
1466
1467 /*
1468 * Enable all of a task's events that have been marked enable-on-exec.
1469 * This expects task == current.
1470 */
1471 static void perf_event_enable_on_exec(struct task_struct *task)
1472 {
1473 struct perf_event_context *ctx;
1474 struct perf_event *event;
1475 unsigned long flags;
1476 int enabled = 0;
1477
1478 local_irq_save(flags);
1479 ctx = task->perf_event_ctxp;
1480 if (!ctx || !ctx->nr_events)
1481 goto out;
1482
1483 __perf_event_task_sched_out(ctx);
1484
1485 spin_lock(&ctx->lock);
1486
1487 list_for_each_entry(event, &ctx->group_list, group_entry) {
1488 if (!event->attr.enable_on_exec)
1489 continue;
1490 event->attr.enable_on_exec = 0;
1491 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1492 continue;
1493 __perf_event_mark_enabled(event, ctx);
1494 enabled = 1;
1495 }
1496
1497 /*
1498 * Unclone this context if we enabled any event.
1499 */
1500 if (enabled)
1501 unclone_ctx(ctx);
1502
1503 spin_unlock(&ctx->lock);
1504
1505 perf_event_task_sched_in(task, smp_processor_id());
1506 out:
1507 local_irq_restore(flags);
1508 }
1509
1510 /*
1511 * Cross CPU call to read the hardware event
1512 */
1513 static void __perf_event_read(void *info)
1514 {
1515 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1516 struct perf_event *event = info;
1517 struct perf_event_context *ctx = event->ctx;
1518 unsigned long flags;
1519
1520 /*
1521 * If this is a task context, we need to check whether it is
1522 * the current task context of this cpu. If not it has been
1523 * scheduled out before the smp call arrived. In that case
1524 * event->count would have been updated to a recent sample
1525 * when the event was scheduled out.
1526 */
1527 if (ctx->task && cpuctx->task_ctx != ctx)
1528 return;
1529
1530 local_irq_save(flags);
1531 if (ctx->is_active)
1532 update_context_time(ctx);
1533 event->pmu->read(event);
1534 update_event_times(event);
1535 local_irq_restore(flags);
1536 }
1537
1538 static u64 perf_event_read(struct perf_event *event)
1539 {
1540 /*
1541 * If event is enabled and currently active on a CPU, update the
1542 * value in the event structure:
1543 */
1544 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1545 smp_call_function_single(event->oncpu,
1546 __perf_event_read, event, 1);
1547 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1548 update_event_times(event);
1549 }
1550
1551 return atomic64_read(&event->count);
1552 }
1553
1554 /*
1555 * Initialize the perf_event context in a task_struct:
1556 */
1557 static void
1558 __perf_event_init_context(struct perf_event_context *ctx,
1559 struct task_struct *task)
1560 {
1561 memset(ctx, 0, sizeof(*ctx));
1562 spin_lock_init(&ctx->lock);
1563 mutex_init(&ctx->mutex);
1564 INIT_LIST_HEAD(&ctx->group_list);
1565 INIT_LIST_HEAD(&ctx->event_list);
1566 atomic_set(&ctx->refcount, 1);
1567 ctx->task = task;
1568 }
1569
1570 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1571 {
1572 struct perf_event_context *ctx;
1573 struct perf_cpu_context *cpuctx;
1574 struct task_struct *task;
1575 unsigned long flags;
1576 int err;
1577
1578 /*
1579 * If cpu is not a wildcard then this is a percpu event:
1580 */
1581 if (cpu != -1) {
1582 /* Must be root to operate on a CPU event: */
1583 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1584 return ERR_PTR(-EACCES);
1585
1586 if (cpu < 0 || cpu > num_possible_cpus())
1587 return ERR_PTR(-EINVAL);
1588
1589 /*
1590 * We could be clever and allow to attach a event to an
1591 * offline CPU and activate it when the CPU comes up, but
1592 * that's for later.
1593 */
1594 if (!cpu_isset(cpu, cpu_online_map))
1595 return ERR_PTR(-ENODEV);
1596
1597 cpuctx = &per_cpu(perf_cpu_context, cpu);
1598 ctx = &cpuctx->ctx;
1599 get_ctx(ctx);
1600
1601 return ctx;
1602 }
1603
1604 rcu_read_lock();
1605 if (!pid)
1606 task = current;
1607 else
1608 task = find_task_by_vpid(pid);
1609 if (task)
1610 get_task_struct(task);
1611 rcu_read_unlock();
1612
1613 if (!task)
1614 return ERR_PTR(-ESRCH);
1615
1616 /*
1617 * Can't attach events to a dying task.
1618 */
1619 err = -ESRCH;
1620 if (task->flags & PF_EXITING)
1621 goto errout;
1622
1623 /* Reuse ptrace permission checks for now. */
1624 err = -EACCES;
1625 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1626 goto errout;
1627
1628 retry:
1629 ctx = perf_lock_task_context(task, &flags);
1630 if (ctx) {
1631 unclone_ctx(ctx);
1632 spin_unlock_irqrestore(&ctx->lock, flags);
1633 }
1634
1635 if (!ctx) {
1636 ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1637 err = -ENOMEM;
1638 if (!ctx)
1639 goto errout;
1640 __perf_event_init_context(ctx, task);
1641 get_ctx(ctx);
1642 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1643 /*
1644 * We raced with some other task; use
1645 * the context they set.
1646 */
1647 kfree(ctx);
1648 goto retry;
1649 }
1650 get_task_struct(task);
1651 }
1652
1653 put_task_struct(task);
1654 return ctx;
1655
1656 errout:
1657 put_task_struct(task);
1658 return ERR_PTR(err);
1659 }
1660
1661 static void free_event_rcu(struct rcu_head *head)
1662 {
1663 struct perf_event *event;
1664
1665 event = container_of(head, struct perf_event, rcu_head);
1666 if (event->ns)
1667 put_pid_ns(event->ns);
1668 kfree(event);
1669 }
1670
1671 static void perf_pending_sync(struct perf_event *event);
1672
1673 static void free_event(struct perf_event *event)
1674 {
1675 perf_pending_sync(event);
1676
1677 if (!event->parent) {
1678 atomic_dec(&nr_events);
1679 if (event->attr.mmap)
1680 atomic_dec(&nr_mmap_events);
1681 if (event->attr.comm)
1682 atomic_dec(&nr_comm_events);
1683 if (event->attr.task)
1684 atomic_dec(&nr_task_events);
1685 }
1686
1687 if (event->output) {
1688 fput(event->output->filp);
1689 event->output = NULL;
1690 }
1691
1692 if (event->destroy)
1693 event->destroy(event);
1694
1695 put_ctx(event->ctx);
1696 call_rcu(&event->rcu_head, free_event_rcu);
1697 }
1698
1699 /*
1700 * Called when the last reference to the file is gone.
1701 */
1702 static int perf_release(struct inode *inode, struct file *file)
1703 {
1704 struct perf_event *event = file->private_data;
1705 struct perf_event_context *ctx = event->ctx;
1706
1707 file->private_data = NULL;
1708
1709 WARN_ON_ONCE(ctx->parent_ctx);
1710 mutex_lock(&ctx->mutex);
1711 perf_event_remove_from_context(event);
1712 mutex_unlock(&ctx->mutex);
1713
1714 mutex_lock(&event->owner->perf_event_mutex);
1715 list_del_init(&event->owner_entry);
1716 mutex_unlock(&event->owner->perf_event_mutex);
1717 put_task_struct(event->owner);
1718
1719 free_event(event);
1720
1721 return 0;
1722 }
1723
1724 static int perf_event_read_size(struct perf_event *event)
1725 {
1726 int entry = sizeof(u64); /* value */
1727 int size = 0;
1728 int nr = 1;
1729
1730 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1731 size += sizeof(u64);
1732
1733 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1734 size += sizeof(u64);
1735
1736 if (event->attr.read_format & PERF_FORMAT_ID)
1737 entry += sizeof(u64);
1738
1739 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1740 nr += event->group_leader->nr_siblings;
1741 size += sizeof(u64);
1742 }
1743
1744 size += entry * nr;
1745
1746 return size;
1747 }
1748
1749 static u64 perf_event_read_value(struct perf_event *event)
1750 {
1751 struct perf_event *child;
1752 u64 total = 0;
1753
1754 total += perf_event_read(event);
1755 list_for_each_entry(child, &event->child_list, child_list)
1756 total += perf_event_read(child);
1757
1758 return total;
1759 }
1760
1761 static int perf_event_read_entry(struct perf_event *event,
1762 u64 read_format, char __user *buf)
1763 {
1764 int n = 0, count = 0;
1765 u64 values[2];
1766
1767 values[n++] = perf_event_read_value(event);
1768 if (read_format & PERF_FORMAT_ID)
1769 values[n++] = primary_event_id(event);
1770
1771 count = n * sizeof(u64);
1772
1773 if (copy_to_user(buf, values, count))
1774 return -EFAULT;
1775
1776 return count;
1777 }
1778
1779 static int perf_event_read_group(struct perf_event *event,
1780 u64 read_format, char __user *buf)
1781 {
1782 struct perf_event *leader = event->group_leader, *sub;
1783 int n = 0, size = 0, err = -EFAULT;
1784 u64 values[3];
1785
1786 values[n++] = 1 + leader->nr_siblings;
1787 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1788 values[n++] = leader->total_time_enabled +
1789 atomic64_read(&leader->child_total_time_enabled);
1790 }
1791 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1792 values[n++] = leader->total_time_running +
1793 atomic64_read(&leader->child_total_time_running);
1794 }
1795
1796 size = n * sizeof(u64);
1797
1798 if (copy_to_user(buf, values, size))
1799 return -EFAULT;
1800
1801 err = perf_event_read_entry(leader, read_format, buf + size);
1802 if (err < 0)
1803 return err;
1804
1805 size += err;
1806
1807 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1808 err = perf_event_read_entry(sub, read_format,
1809 buf + size);
1810 if (err < 0)
1811 return err;
1812
1813 size += err;
1814 }
1815
1816 return size;
1817 }
1818
1819 static int perf_event_read_one(struct perf_event *event,
1820 u64 read_format, char __user *buf)
1821 {
1822 u64 values[4];
1823 int n = 0;
1824
1825 values[n++] = perf_event_read_value(event);
1826 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1827 values[n++] = event->total_time_enabled +
1828 atomic64_read(&event->child_total_time_enabled);
1829 }
1830 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1831 values[n++] = event->total_time_running +
1832 atomic64_read(&event->child_total_time_running);
1833 }
1834 if (read_format & PERF_FORMAT_ID)
1835 values[n++] = primary_event_id(event);
1836
1837 if (copy_to_user(buf, values, n * sizeof(u64)))
1838 return -EFAULT;
1839
1840 return n * sizeof(u64);
1841 }
1842
1843 /*
1844 * Read the performance event - simple non blocking version for now
1845 */
1846 static ssize_t
1847 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
1848 {
1849 u64 read_format = event->attr.read_format;
1850 int ret;
1851
1852 /*
1853 * Return end-of-file for a read on a event that is in
1854 * error state (i.e. because it was pinned but it couldn't be
1855 * scheduled on to the CPU at some point).
1856 */
1857 if (event->state == PERF_EVENT_STATE_ERROR)
1858 return 0;
1859
1860 if (count < perf_event_read_size(event))
1861 return -ENOSPC;
1862
1863 WARN_ON_ONCE(event->ctx->parent_ctx);
1864 mutex_lock(&event->child_mutex);
1865 if (read_format & PERF_FORMAT_GROUP)
1866 ret = perf_event_read_group(event, read_format, buf);
1867 else
1868 ret = perf_event_read_one(event, read_format, buf);
1869 mutex_unlock(&event->child_mutex);
1870
1871 return ret;
1872 }
1873
1874 static ssize_t
1875 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1876 {
1877 struct perf_event *event = file->private_data;
1878
1879 return perf_read_hw(event, buf, count);
1880 }
1881
1882 static unsigned int perf_poll(struct file *file, poll_table *wait)
1883 {
1884 struct perf_event *event = file->private_data;
1885 struct perf_mmap_data *data;
1886 unsigned int events = POLL_HUP;
1887
1888 rcu_read_lock();
1889 data = rcu_dereference(event->data);
1890 if (data)
1891 events = atomic_xchg(&data->poll, 0);
1892 rcu_read_unlock();
1893
1894 poll_wait(file, &event->waitq, wait);
1895
1896 return events;
1897 }
1898
1899 static void perf_event_reset(struct perf_event *event)
1900 {
1901 (void)perf_event_read(event);
1902 atomic64_set(&event->count, 0);
1903 perf_event_update_userpage(event);
1904 }
1905
1906 /*
1907 * Holding the top-level event's child_mutex means that any
1908 * descendant process that has inherited this event will block
1909 * in sync_child_event if it goes to exit, thus satisfying the
1910 * task existence requirements of perf_event_enable/disable.
1911 */
1912 static void perf_event_for_each_child(struct perf_event *event,
1913 void (*func)(struct perf_event *))
1914 {
1915 struct perf_event *child;
1916
1917 WARN_ON_ONCE(event->ctx->parent_ctx);
1918 mutex_lock(&event->child_mutex);
1919 func(event);
1920 list_for_each_entry(child, &event->child_list, child_list)
1921 func(child);
1922 mutex_unlock(&event->child_mutex);
1923 }
1924
1925 static void perf_event_for_each(struct perf_event *event,
1926 void (*func)(struct perf_event *))
1927 {
1928 struct perf_event_context *ctx = event->ctx;
1929 struct perf_event *sibling;
1930
1931 WARN_ON_ONCE(ctx->parent_ctx);
1932 mutex_lock(&ctx->mutex);
1933 event = event->group_leader;
1934
1935 perf_event_for_each_child(event, func);
1936 func(event);
1937 list_for_each_entry(sibling, &event->sibling_list, group_entry)
1938 perf_event_for_each_child(event, func);
1939 mutex_unlock(&ctx->mutex);
1940 }
1941
1942 static int perf_event_period(struct perf_event *event, u64 __user *arg)
1943 {
1944 struct perf_event_context *ctx = event->ctx;
1945 unsigned long size;
1946 int ret = 0;
1947 u64 value;
1948
1949 if (!event->attr.sample_period)
1950 return -EINVAL;
1951
1952 size = copy_from_user(&value, arg, sizeof(value));
1953 if (size != sizeof(value))
1954 return -EFAULT;
1955
1956 if (!value)
1957 return -EINVAL;
1958
1959 spin_lock_irq(&ctx->lock);
1960 if (event->attr.freq) {
1961 if (value > sysctl_perf_event_sample_rate) {
1962 ret = -EINVAL;
1963 goto unlock;
1964 }
1965
1966 event->attr.sample_freq = value;
1967 } else {
1968 event->attr.sample_period = value;
1969 event->hw.sample_period = value;
1970 }
1971 unlock:
1972 spin_unlock_irq(&ctx->lock);
1973
1974 return ret;
1975 }
1976
1977 int perf_event_set_output(struct perf_event *event, int output_fd);
1978
1979 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1980 {
1981 struct perf_event *event = file->private_data;
1982 void (*func)(struct perf_event *);
1983 u32 flags = arg;
1984
1985 switch (cmd) {
1986 case PERF_EVENT_IOC_ENABLE:
1987 func = perf_event_enable;
1988 break;
1989 case PERF_EVENT_IOC_DISABLE:
1990 func = perf_event_disable;
1991 break;
1992 case PERF_EVENT_IOC_RESET:
1993 func = perf_event_reset;
1994 break;
1995
1996 case PERF_EVENT_IOC_REFRESH:
1997 return perf_event_refresh(event, arg);
1998
1999 case PERF_EVENT_IOC_PERIOD:
2000 return perf_event_period(event, (u64 __user *)arg);
2001
2002 case PERF_EVENT_IOC_SET_OUTPUT:
2003 return perf_event_set_output(event, arg);
2004
2005 default:
2006 return -ENOTTY;
2007 }
2008
2009 if (flags & PERF_IOC_FLAG_GROUP)
2010 perf_event_for_each(event, func);
2011 else
2012 perf_event_for_each_child(event, func);
2013
2014 return 0;
2015 }
2016
2017 int perf_event_task_enable(void)
2018 {
2019 struct perf_event *event;
2020
2021 mutex_lock(&current->perf_event_mutex);
2022 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2023 perf_event_for_each_child(event, perf_event_enable);
2024 mutex_unlock(&current->perf_event_mutex);
2025
2026 return 0;
2027 }
2028
2029 int perf_event_task_disable(void)
2030 {
2031 struct perf_event *event;
2032
2033 mutex_lock(&current->perf_event_mutex);
2034 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2035 perf_event_for_each_child(event, perf_event_disable);
2036 mutex_unlock(&current->perf_event_mutex);
2037
2038 return 0;
2039 }
2040
2041 #ifndef PERF_EVENT_INDEX_OFFSET
2042 # define PERF_EVENT_INDEX_OFFSET 0
2043 #endif
2044
2045 static int perf_event_index(struct perf_event *event)
2046 {
2047 if (event->state != PERF_EVENT_STATE_ACTIVE)
2048 return 0;
2049
2050 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2051 }
2052
2053 /*
2054 * Callers need to ensure there can be no nesting of this function, otherwise
2055 * the seqlock logic goes bad. We can not serialize this because the arch
2056 * code calls this from NMI context.
2057 */
2058 void perf_event_update_userpage(struct perf_event *event)
2059 {
2060 struct perf_event_mmap_page *userpg;
2061 struct perf_mmap_data *data;
2062
2063 rcu_read_lock();
2064 data = rcu_dereference(event->data);
2065 if (!data)
2066 goto unlock;
2067
2068 userpg = data->user_page;
2069
2070 /*
2071 * Disable preemption so as to not let the corresponding user-space
2072 * spin too long if we get preempted.
2073 */
2074 preempt_disable();
2075 ++userpg->lock;
2076 barrier();
2077 userpg->index = perf_event_index(event);
2078 userpg->offset = atomic64_read(&event->count);
2079 if (event->state == PERF_EVENT_STATE_ACTIVE)
2080 userpg->offset -= atomic64_read(&event->hw.prev_count);
2081
2082 userpg->time_enabled = event->total_time_enabled +
2083 atomic64_read(&event->child_total_time_enabled);
2084
2085 userpg->time_running = event->total_time_running +
2086 atomic64_read(&event->child_total_time_running);
2087
2088 barrier();
2089 ++userpg->lock;
2090 preempt_enable();
2091 unlock:
2092 rcu_read_unlock();
2093 }
2094
2095 static unsigned long perf_data_size(struct perf_mmap_data *data)
2096 {
2097 return data->nr_pages << (PAGE_SHIFT + data->data_order);
2098 }
2099
2100 #ifndef CONFIG_PERF_USE_VMALLOC
2101
2102 /*
2103 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2104 */
2105
2106 static struct page *
2107 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2108 {
2109 if (pgoff > data->nr_pages)
2110 return NULL;
2111
2112 if (pgoff == 0)
2113 return virt_to_page(data->user_page);
2114
2115 return virt_to_page(data->data_pages[pgoff - 1]);
2116 }
2117
2118 static struct perf_mmap_data *
2119 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2120 {
2121 struct perf_mmap_data *data;
2122 unsigned long size;
2123 int i;
2124
2125 WARN_ON(atomic_read(&event->mmap_count));
2126
2127 size = sizeof(struct perf_mmap_data);
2128 size += nr_pages * sizeof(void *);
2129
2130 data = kzalloc(size, GFP_KERNEL);
2131 if (!data)
2132 goto fail;
2133
2134 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2135 if (!data->user_page)
2136 goto fail_user_page;
2137
2138 for (i = 0; i < nr_pages; i++) {
2139 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2140 if (!data->data_pages[i])
2141 goto fail_data_pages;
2142 }
2143
2144 data->data_order = 0;
2145 data->nr_pages = nr_pages;
2146
2147 return data;
2148
2149 fail_data_pages:
2150 for (i--; i >= 0; i--)
2151 free_page((unsigned long)data->data_pages[i]);
2152
2153 free_page((unsigned long)data->user_page);
2154
2155 fail_user_page:
2156 kfree(data);
2157
2158 fail:
2159 return NULL;
2160 }
2161
2162 static void perf_mmap_free_page(unsigned long addr)
2163 {
2164 struct page *page = virt_to_page((void *)addr);
2165
2166 page->mapping = NULL;
2167 __free_page(page);
2168 }
2169
2170 static void perf_mmap_data_free(struct perf_mmap_data *data)
2171 {
2172 int i;
2173
2174 perf_mmap_free_page((unsigned long)data->user_page);
2175 for (i = 0; i < data->nr_pages; i++)
2176 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2177 }
2178
2179 #else
2180
2181 /*
2182 * Back perf_mmap() with vmalloc memory.
2183 *
2184 * Required for architectures that have d-cache aliasing issues.
2185 */
2186
2187 static struct page *
2188 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2189 {
2190 if (pgoff > (1UL << data->data_order))
2191 return NULL;
2192
2193 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2194 }
2195
2196 static void perf_mmap_unmark_page(void *addr)
2197 {
2198 struct page *page = vmalloc_to_page(addr);
2199
2200 page->mapping = NULL;
2201 }
2202
2203 static void perf_mmap_data_free_work(struct work_struct *work)
2204 {
2205 struct perf_mmap_data *data;
2206 void *base;
2207 int i, nr;
2208
2209 data = container_of(work, struct perf_mmap_data, work);
2210 nr = 1 << data->data_order;
2211
2212 base = data->user_page;
2213 for (i = 0; i < nr + 1; i++)
2214 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2215
2216 vfree(base);
2217 }
2218
2219 static void perf_mmap_data_free(struct perf_mmap_data *data)
2220 {
2221 schedule_work(&data->work);
2222 }
2223
2224 static struct perf_mmap_data *
2225 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2226 {
2227 struct perf_mmap_data *data;
2228 unsigned long size;
2229 void *all_buf;
2230
2231 WARN_ON(atomic_read(&event->mmap_count));
2232
2233 size = sizeof(struct perf_mmap_data);
2234 size += sizeof(void *);
2235
2236 data = kzalloc(size, GFP_KERNEL);
2237 if (!data)
2238 goto fail;
2239
2240 INIT_WORK(&data->work, perf_mmap_data_free_work);
2241
2242 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2243 if (!all_buf)
2244 goto fail_all_buf;
2245
2246 data->user_page = all_buf;
2247 data->data_pages[0] = all_buf + PAGE_SIZE;
2248 data->data_order = ilog2(nr_pages);
2249 data->nr_pages = 1;
2250
2251 return data;
2252
2253 fail_all_buf:
2254 kfree(data);
2255
2256 fail:
2257 return NULL;
2258 }
2259
2260 #endif
2261
2262 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2263 {
2264 struct perf_event *event = vma->vm_file->private_data;
2265 struct perf_mmap_data *data;
2266 int ret = VM_FAULT_SIGBUS;
2267
2268 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2269 if (vmf->pgoff == 0)
2270 ret = 0;
2271 return ret;
2272 }
2273
2274 rcu_read_lock();
2275 data = rcu_dereference(event->data);
2276 if (!data)
2277 goto unlock;
2278
2279 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2280 goto unlock;
2281
2282 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2283 if (!vmf->page)
2284 goto unlock;
2285
2286 get_page(vmf->page);
2287 vmf->page->mapping = vma->vm_file->f_mapping;
2288 vmf->page->index = vmf->pgoff;
2289
2290 ret = 0;
2291 unlock:
2292 rcu_read_unlock();
2293
2294 return ret;
2295 }
2296
2297 static void
2298 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2299 {
2300 long max_size = perf_data_size(data);
2301
2302 atomic_set(&data->lock, -1);
2303
2304 if (event->attr.watermark) {
2305 data->watermark = min_t(long, max_size,
2306 event->attr.wakeup_watermark);
2307 }
2308
2309 if (!data->watermark)
2310 data->watermark = max_t(long, PAGE_SIZE, max_size / 2);
2311
2312
2313 rcu_assign_pointer(event->data, data);
2314 }
2315
2316 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2317 {
2318 struct perf_mmap_data *data;
2319
2320 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2321 perf_mmap_data_free(data);
2322 kfree(data);
2323 }
2324
2325 static void perf_mmap_data_release(struct perf_event *event)
2326 {
2327 struct perf_mmap_data *data = event->data;
2328
2329 WARN_ON(atomic_read(&event->mmap_count));
2330
2331 rcu_assign_pointer(event->data, NULL);
2332 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2333 }
2334
2335 static void perf_mmap_open(struct vm_area_struct *vma)
2336 {
2337 struct perf_event *event = vma->vm_file->private_data;
2338
2339 atomic_inc(&event->mmap_count);
2340 }
2341
2342 static void perf_mmap_close(struct vm_area_struct *vma)
2343 {
2344 struct perf_event *event = vma->vm_file->private_data;
2345
2346 WARN_ON_ONCE(event->ctx->parent_ctx);
2347 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2348 unsigned long size = perf_data_size(event->data);
2349 struct user_struct *user = current_user();
2350
2351 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2352 vma->vm_mm->locked_vm -= event->data->nr_locked;
2353 perf_mmap_data_release(event);
2354 mutex_unlock(&event->mmap_mutex);
2355 }
2356 }
2357
2358 static const struct vm_operations_struct perf_mmap_vmops = {
2359 .open = perf_mmap_open,
2360 .close = perf_mmap_close,
2361 .fault = perf_mmap_fault,
2362 .page_mkwrite = perf_mmap_fault,
2363 };
2364
2365 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2366 {
2367 struct perf_event *event = file->private_data;
2368 unsigned long user_locked, user_lock_limit;
2369 struct user_struct *user = current_user();
2370 unsigned long locked, lock_limit;
2371 struct perf_mmap_data *data;
2372 unsigned long vma_size;
2373 unsigned long nr_pages;
2374 long user_extra, extra;
2375 int ret = 0;
2376
2377 if (!(vma->vm_flags & VM_SHARED))
2378 return -EINVAL;
2379
2380 vma_size = vma->vm_end - vma->vm_start;
2381 nr_pages = (vma_size / PAGE_SIZE) - 1;
2382
2383 /*
2384 * If we have data pages ensure they're a power-of-two number, so we
2385 * can do bitmasks instead of modulo.
2386 */
2387 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2388 return -EINVAL;
2389
2390 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2391 return -EINVAL;
2392
2393 if (vma->vm_pgoff != 0)
2394 return -EINVAL;
2395
2396 WARN_ON_ONCE(event->ctx->parent_ctx);
2397 mutex_lock(&event->mmap_mutex);
2398 if (event->output) {
2399 ret = -EINVAL;
2400 goto unlock;
2401 }
2402
2403 if (atomic_inc_not_zero(&event->mmap_count)) {
2404 if (nr_pages != event->data->nr_pages)
2405 ret = -EINVAL;
2406 goto unlock;
2407 }
2408
2409 user_extra = nr_pages + 1;
2410 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2411
2412 /*
2413 * Increase the limit linearly with more CPUs:
2414 */
2415 user_lock_limit *= num_online_cpus();
2416
2417 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2418
2419 extra = 0;
2420 if (user_locked > user_lock_limit)
2421 extra = user_locked - user_lock_limit;
2422
2423 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2424 lock_limit >>= PAGE_SHIFT;
2425 locked = vma->vm_mm->locked_vm + extra;
2426
2427 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2428 !capable(CAP_IPC_LOCK)) {
2429 ret = -EPERM;
2430 goto unlock;
2431 }
2432
2433 WARN_ON(event->data);
2434
2435 data = perf_mmap_data_alloc(event, nr_pages);
2436 ret = -ENOMEM;
2437 if (!data)
2438 goto unlock;
2439
2440 ret = 0;
2441 perf_mmap_data_init(event, data);
2442
2443 atomic_set(&event->mmap_count, 1);
2444 atomic_long_add(user_extra, &user->locked_vm);
2445 vma->vm_mm->locked_vm += extra;
2446 event->data->nr_locked = extra;
2447 if (vma->vm_flags & VM_WRITE)
2448 event->data->writable = 1;
2449
2450 unlock:
2451 mutex_unlock(&event->mmap_mutex);
2452
2453 vma->vm_flags |= VM_RESERVED;
2454 vma->vm_ops = &perf_mmap_vmops;
2455
2456 return ret;
2457 }
2458
2459 static int perf_fasync(int fd, struct file *filp, int on)
2460 {
2461 struct inode *inode = filp->f_path.dentry->d_inode;
2462 struct perf_event *event = filp->private_data;
2463 int retval;
2464
2465 mutex_lock(&inode->i_mutex);
2466 retval = fasync_helper(fd, filp, on, &event->fasync);
2467 mutex_unlock(&inode->i_mutex);
2468
2469 if (retval < 0)
2470 return retval;
2471
2472 return 0;
2473 }
2474
2475 static const struct file_operations perf_fops = {
2476 .release = perf_release,
2477 .read = perf_read,
2478 .poll = perf_poll,
2479 .unlocked_ioctl = perf_ioctl,
2480 .compat_ioctl = perf_ioctl,
2481 .mmap = perf_mmap,
2482 .fasync = perf_fasync,
2483 };
2484
2485 /*
2486 * Perf event wakeup
2487 *
2488 * If there's data, ensure we set the poll() state and publish everything
2489 * to user-space before waking everybody up.
2490 */
2491
2492 void perf_event_wakeup(struct perf_event *event)
2493 {
2494 wake_up_all(&event->waitq);
2495
2496 if (event->pending_kill) {
2497 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2498 event->pending_kill = 0;
2499 }
2500 }
2501
2502 /*
2503 * Pending wakeups
2504 *
2505 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2506 *
2507 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2508 * single linked list and use cmpxchg() to add entries lockless.
2509 */
2510
2511 static void perf_pending_event(struct perf_pending_entry *entry)
2512 {
2513 struct perf_event *event = container_of(entry,
2514 struct perf_event, pending);
2515
2516 if (event->pending_disable) {
2517 event->pending_disable = 0;
2518 __perf_event_disable(event);
2519 }
2520
2521 if (event->pending_wakeup) {
2522 event->pending_wakeup = 0;
2523 perf_event_wakeup(event);
2524 }
2525 }
2526
2527 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2528
2529 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2530 PENDING_TAIL,
2531 };
2532
2533 static void perf_pending_queue(struct perf_pending_entry *entry,
2534 void (*func)(struct perf_pending_entry *))
2535 {
2536 struct perf_pending_entry **head;
2537
2538 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2539 return;
2540
2541 entry->func = func;
2542
2543 head = &get_cpu_var(perf_pending_head);
2544
2545 do {
2546 entry->next = *head;
2547 } while (cmpxchg(head, entry->next, entry) != entry->next);
2548
2549 set_perf_event_pending();
2550
2551 put_cpu_var(perf_pending_head);
2552 }
2553
2554 static int __perf_pending_run(void)
2555 {
2556 struct perf_pending_entry *list;
2557 int nr = 0;
2558
2559 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2560 while (list != PENDING_TAIL) {
2561 void (*func)(struct perf_pending_entry *);
2562 struct perf_pending_entry *entry = list;
2563
2564 list = list->next;
2565
2566 func = entry->func;
2567 entry->next = NULL;
2568 /*
2569 * Ensure we observe the unqueue before we issue the wakeup,
2570 * so that we won't be waiting forever.
2571 * -- see perf_not_pending().
2572 */
2573 smp_wmb();
2574
2575 func(entry);
2576 nr++;
2577 }
2578
2579 return nr;
2580 }
2581
2582 static inline int perf_not_pending(struct perf_event *event)
2583 {
2584 /*
2585 * If we flush on whatever cpu we run, there is a chance we don't
2586 * need to wait.
2587 */
2588 get_cpu();
2589 __perf_pending_run();
2590 put_cpu();
2591
2592 /*
2593 * Ensure we see the proper queue state before going to sleep
2594 * so that we do not miss the wakeup. -- see perf_pending_handle()
2595 */
2596 smp_rmb();
2597 return event->pending.next == NULL;
2598 }
2599
2600 static void perf_pending_sync(struct perf_event *event)
2601 {
2602 wait_event(event->waitq, perf_not_pending(event));
2603 }
2604
2605 void perf_event_do_pending(void)
2606 {
2607 __perf_pending_run();
2608 }
2609
2610 /*
2611 * Callchain support -- arch specific
2612 */
2613
2614 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2615 {
2616 return NULL;
2617 }
2618
2619 /*
2620 * Output
2621 */
2622 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2623 unsigned long offset, unsigned long head)
2624 {
2625 unsigned long mask;
2626
2627 if (!data->writable)
2628 return true;
2629
2630 mask = perf_data_size(data) - 1;
2631
2632 offset = (offset - tail) & mask;
2633 head = (head - tail) & mask;
2634
2635 if ((int)(head - offset) < 0)
2636 return false;
2637
2638 return true;
2639 }
2640
2641 static void perf_output_wakeup(struct perf_output_handle *handle)
2642 {
2643 atomic_set(&handle->data->poll, POLL_IN);
2644
2645 if (handle->nmi) {
2646 handle->event->pending_wakeup = 1;
2647 perf_pending_queue(&handle->event->pending,
2648 perf_pending_event);
2649 } else
2650 perf_event_wakeup(handle->event);
2651 }
2652
2653 /*
2654 * Curious locking construct.
2655 *
2656 * We need to ensure a later event_id doesn't publish a head when a former
2657 * event_id isn't done writing. However since we need to deal with NMIs we
2658 * cannot fully serialize things.
2659 *
2660 * What we do is serialize between CPUs so we only have to deal with NMI
2661 * nesting on a single CPU.
2662 *
2663 * We only publish the head (and generate a wakeup) when the outer-most
2664 * event_id completes.
2665 */
2666 static void perf_output_lock(struct perf_output_handle *handle)
2667 {
2668 struct perf_mmap_data *data = handle->data;
2669 int cpu;
2670
2671 handle->locked = 0;
2672
2673 local_irq_save(handle->flags);
2674 cpu = smp_processor_id();
2675
2676 if (in_nmi() && atomic_read(&data->lock) == cpu)
2677 return;
2678
2679 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2680 cpu_relax();
2681
2682 handle->locked = 1;
2683 }
2684
2685 static void perf_output_unlock(struct perf_output_handle *handle)
2686 {
2687 struct perf_mmap_data *data = handle->data;
2688 unsigned long head;
2689 int cpu;
2690
2691 data->done_head = data->head;
2692
2693 if (!handle->locked)
2694 goto out;
2695
2696 again:
2697 /*
2698 * The xchg implies a full barrier that ensures all writes are done
2699 * before we publish the new head, matched by a rmb() in userspace when
2700 * reading this position.
2701 */
2702 while ((head = atomic_long_xchg(&data->done_head, 0)))
2703 data->user_page->data_head = head;
2704
2705 /*
2706 * NMI can happen here, which means we can miss a done_head update.
2707 */
2708
2709 cpu = atomic_xchg(&data->lock, -1);
2710 WARN_ON_ONCE(cpu != smp_processor_id());
2711
2712 /*
2713 * Therefore we have to validate we did not indeed do so.
2714 */
2715 if (unlikely(atomic_long_read(&data->done_head))) {
2716 /*
2717 * Since we had it locked, we can lock it again.
2718 */
2719 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2720 cpu_relax();
2721
2722 goto again;
2723 }
2724
2725 if (atomic_xchg(&data->wakeup, 0))
2726 perf_output_wakeup(handle);
2727 out:
2728 local_irq_restore(handle->flags);
2729 }
2730
2731 void perf_output_copy(struct perf_output_handle *handle,
2732 const void *buf, unsigned int len)
2733 {
2734 unsigned int pages_mask;
2735 unsigned long offset;
2736 unsigned int size;
2737 void **pages;
2738
2739 offset = handle->offset;
2740 pages_mask = handle->data->nr_pages - 1;
2741 pages = handle->data->data_pages;
2742
2743 do {
2744 unsigned long page_offset;
2745 unsigned long page_size;
2746 int nr;
2747
2748 nr = (offset >> PAGE_SHIFT) & pages_mask;
2749 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2750 page_offset = offset & (page_size - 1);
2751 size = min_t(unsigned int, page_size - page_offset, len);
2752
2753 memcpy(pages[nr] + page_offset, buf, size);
2754
2755 len -= size;
2756 buf += size;
2757 offset += size;
2758 } while (len);
2759
2760 handle->offset = offset;
2761
2762 /*
2763 * Check we didn't copy past our reservation window, taking the
2764 * possible unsigned int wrap into account.
2765 */
2766 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2767 }
2768
2769 int perf_output_begin(struct perf_output_handle *handle,
2770 struct perf_event *event, unsigned int size,
2771 int nmi, int sample)
2772 {
2773 struct perf_event *output_event;
2774 struct perf_mmap_data *data;
2775 unsigned long tail, offset, head;
2776 int have_lost;
2777 struct {
2778 struct perf_event_header header;
2779 u64 id;
2780 u64 lost;
2781 } lost_event;
2782
2783 rcu_read_lock();
2784 /*
2785 * For inherited events we send all the output towards the parent.
2786 */
2787 if (event->parent)
2788 event = event->parent;
2789
2790 output_event = rcu_dereference(event->output);
2791 if (output_event)
2792 event = output_event;
2793
2794 data = rcu_dereference(event->data);
2795 if (!data)
2796 goto out;
2797
2798 handle->data = data;
2799 handle->event = event;
2800 handle->nmi = nmi;
2801 handle->sample = sample;
2802
2803 if (!data->nr_pages)
2804 goto fail;
2805
2806 have_lost = atomic_read(&data->lost);
2807 if (have_lost)
2808 size += sizeof(lost_event);
2809
2810 perf_output_lock(handle);
2811
2812 do {
2813 /*
2814 * Userspace could choose to issue a mb() before updating the
2815 * tail pointer. So that all reads will be completed before the
2816 * write is issued.
2817 */
2818 tail = ACCESS_ONCE(data->user_page->data_tail);
2819 smp_rmb();
2820 offset = head = atomic_long_read(&data->head);
2821 head += size;
2822 if (unlikely(!perf_output_space(data, tail, offset, head)))
2823 goto fail;
2824 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2825
2826 handle->offset = offset;
2827 handle->head = head;
2828
2829 if (head - tail > data->watermark)
2830 atomic_set(&data->wakeup, 1);
2831
2832 if (have_lost) {
2833 lost_event.header.type = PERF_RECORD_LOST;
2834 lost_event.header.misc = 0;
2835 lost_event.header.size = sizeof(lost_event);
2836 lost_event.id = event->id;
2837 lost_event.lost = atomic_xchg(&data->lost, 0);
2838
2839 perf_output_put(handle, lost_event);
2840 }
2841
2842 return 0;
2843
2844 fail:
2845 atomic_inc(&data->lost);
2846 perf_output_unlock(handle);
2847 out:
2848 rcu_read_unlock();
2849
2850 return -ENOSPC;
2851 }
2852
2853 void perf_output_end(struct perf_output_handle *handle)
2854 {
2855 struct perf_event *event = handle->event;
2856 struct perf_mmap_data *data = handle->data;
2857
2858 int wakeup_events = event->attr.wakeup_events;
2859
2860 if (handle->sample && wakeup_events) {
2861 int events = atomic_inc_return(&data->events);
2862 if (events >= wakeup_events) {
2863 atomic_sub(wakeup_events, &data->events);
2864 atomic_set(&data->wakeup, 1);
2865 }
2866 }
2867
2868 perf_output_unlock(handle);
2869 rcu_read_unlock();
2870 }
2871
2872 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2873 {
2874 /*
2875 * only top level events have the pid namespace they were created in
2876 */
2877 if (event->parent)
2878 event = event->parent;
2879
2880 return task_tgid_nr_ns(p, event->ns);
2881 }
2882
2883 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2884 {
2885 /*
2886 * only top level events have the pid namespace they were created in
2887 */
2888 if (event->parent)
2889 event = event->parent;
2890
2891 return task_pid_nr_ns(p, event->ns);
2892 }
2893
2894 static void perf_output_read_one(struct perf_output_handle *handle,
2895 struct perf_event *event)
2896 {
2897 u64 read_format = event->attr.read_format;
2898 u64 values[4];
2899 int n = 0;
2900
2901 values[n++] = atomic64_read(&event->count);
2902 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2903 values[n++] = event->total_time_enabled +
2904 atomic64_read(&event->child_total_time_enabled);
2905 }
2906 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2907 values[n++] = event->total_time_running +
2908 atomic64_read(&event->child_total_time_running);
2909 }
2910 if (read_format & PERF_FORMAT_ID)
2911 values[n++] = primary_event_id(event);
2912
2913 perf_output_copy(handle, values, n * sizeof(u64));
2914 }
2915
2916 /*
2917 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2918 */
2919 static void perf_output_read_group(struct perf_output_handle *handle,
2920 struct perf_event *event)
2921 {
2922 struct perf_event *leader = event->group_leader, *sub;
2923 u64 read_format = event->attr.read_format;
2924 u64 values[5];
2925 int n = 0;
2926
2927 values[n++] = 1 + leader->nr_siblings;
2928
2929 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2930 values[n++] = leader->total_time_enabled;
2931
2932 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2933 values[n++] = leader->total_time_running;
2934
2935 if (leader != event)
2936 leader->pmu->read(leader);
2937
2938 values[n++] = atomic64_read(&leader->count);
2939 if (read_format & PERF_FORMAT_ID)
2940 values[n++] = primary_event_id(leader);
2941
2942 perf_output_copy(handle, values, n * sizeof(u64));
2943
2944 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2945 n = 0;
2946
2947 if (sub != event)
2948 sub->pmu->read(sub);
2949
2950 values[n++] = atomic64_read(&sub->count);
2951 if (read_format & PERF_FORMAT_ID)
2952 values[n++] = primary_event_id(sub);
2953
2954 perf_output_copy(handle, values, n * sizeof(u64));
2955 }
2956 }
2957
2958 static void perf_output_read(struct perf_output_handle *handle,
2959 struct perf_event *event)
2960 {
2961 if (event->attr.read_format & PERF_FORMAT_GROUP)
2962 perf_output_read_group(handle, event);
2963 else
2964 perf_output_read_one(handle, event);
2965 }
2966
2967 void perf_output_sample(struct perf_output_handle *handle,
2968 struct perf_event_header *header,
2969 struct perf_sample_data *data,
2970 struct perf_event *event)
2971 {
2972 u64 sample_type = data->type;
2973
2974 perf_output_put(handle, *header);
2975
2976 if (sample_type & PERF_SAMPLE_IP)
2977 perf_output_put(handle, data->ip);
2978
2979 if (sample_type & PERF_SAMPLE_TID)
2980 perf_output_put(handle, data->tid_entry);
2981
2982 if (sample_type & PERF_SAMPLE_TIME)
2983 perf_output_put(handle, data->time);
2984
2985 if (sample_type & PERF_SAMPLE_ADDR)
2986 perf_output_put(handle, data->addr);
2987
2988 if (sample_type & PERF_SAMPLE_ID)
2989 perf_output_put(handle, data->id);
2990
2991 if (sample_type & PERF_SAMPLE_STREAM_ID)
2992 perf_output_put(handle, data->stream_id);
2993
2994 if (sample_type & PERF_SAMPLE_CPU)
2995 perf_output_put(handle, data->cpu_entry);
2996
2997 if (sample_type & PERF_SAMPLE_PERIOD)
2998 perf_output_put(handle, data->period);
2999
3000 if (sample_type & PERF_SAMPLE_READ)
3001 perf_output_read(handle, event);
3002
3003 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3004 if (data->callchain) {
3005 int size = 1;
3006
3007 if (data->callchain)
3008 size += data->callchain->nr;
3009
3010 size *= sizeof(u64);
3011
3012 perf_output_copy(handle, data->callchain, size);
3013 } else {
3014 u64 nr = 0;
3015 perf_output_put(handle, nr);
3016 }
3017 }
3018
3019 if (sample_type & PERF_SAMPLE_RAW) {
3020 if (data->raw) {
3021 perf_output_put(handle, data->raw->size);
3022 perf_output_copy(handle, data->raw->data,
3023 data->raw->size);
3024 } else {
3025 struct {
3026 u32 size;
3027 u32 data;
3028 } raw = {
3029 .size = sizeof(u32),
3030 .data = 0,
3031 };
3032 perf_output_put(handle, raw);
3033 }
3034 }
3035 }
3036
3037 void perf_prepare_sample(struct perf_event_header *header,
3038 struct perf_sample_data *data,
3039 struct perf_event *event,
3040 struct pt_regs *regs)
3041 {
3042 u64 sample_type = event->attr.sample_type;
3043
3044 data->type = sample_type;
3045
3046 header->type = PERF_RECORD_SAMPLE;
3047 header->size = sizeof(*header);
3048
3049 header->misc = 0;
3050 header->misc |= perf_misc_flags(regs);
3051
3052 if (sample_type & PERF_SAMPLE_IP) {
3053 data->ip = perf_instruction_pointer(regs);
3054
3055 header->size += sizeof(data->ip);
3056 }
3057
3058 if (sample_type & PERF_SAMPLE_TID) {
3059 /* namespace issues */
3060 data->tid_entry.pid = perf_event_pid(event, current);
3061 data->tid_entry.tid = perf_event_tid(event, current);
3062
3063 header->size += sizeof(data->tid_entry);
3064 }
3065
3066 if (sample_type & PERF_SAMPLE_TIME) {
3067 data->time = perf_clock();
3068
3069 header->size += sizeof(data->time);
3070 }
3071
3072 if (sample_type & PERF_SAMPLE_ADDR)
3073 header->size += sizeof(data->addr);
3074
3075 if (sample_type & PERF_SAMPLE_ID) {
3076 data->id = primary_event_id(event);
3077
3078 header->size += sizeof(data->id);
3079 }
3080
3081 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3082 data->stream_id = event->id;
3083
3084 header->size += sizeof(data->stream_id);
3085 }
3086
3087 if (sample_type & PERF_SAMPLE_CPU) {
3088 data->cpu_entry.cpu = raw_smp_processor_id();
3089 data->cpu_entry.reserved = 0;
3090
3091 header->size += sizeof(data->cpu_entry);
3092 }
3093
3094 if (sample_type & PERF_SAMPLE_PERIOD)
3095 header->size += sizeof(data->period);
3096
3097 if (sample_type & PERF_SAMPLE_READ)
3098 header->size += perf_event_read_size(event);
3099
3100 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3101 int size = 1;
3102
3103 data->callchain = perf_callchain(regs);
3104
3105 if (data->callchain)
3106 size += data->callchain->nr;
3107
3108 header->size += size * sizeof(u64);
3109 }
3110
3111 if (sample_type & PERF_SAMPLE_RAW) {
3112 int size = sizeof(u32);
3113
3114 if (data->raw)
3115 size += data->raw->size;
3116 else
3117 size += sizeof(u32);
3118
3119 WARN_ON_ONCE(size & (sizeof(u64)-1));
3120 header->size += size;
3121 }
3122 }
3123
3124 static void perf_event_output(struct perf_event *event, int nmi,
3125 struct perf_sample_data *data,
3126 struct pt_regs *regs)
3127 {
3128 struct perf_output_handle handle;
3129 struct perf_event_header header;
3130
3131 perf_prepare_sample(&header, data, event, regs);
3132
3133 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3134 return;
3135
3136 perf_output_sample(&handle, &header, data, event);
3137
3138 perf_output_end(&handle);
3139 }
3140
3141 /*
3142 * read event_id
3143 */
3144
3145 struct perf_read_event {
3146 struct perf_event_header header;
3147
3148 u32 pid;
3149 u32 tid;
3150 };
3151
3152 static void
3153 perf_event_read_event(struct perf_event *event,
3154 struct task_struct *task)
3155 {
3156 struct perf_output_handle handle;
3157 struct perf_read_event read_event = {
3158 .header = {
3159 .type = PERF_RECORD_READ,
3160 .misc = 0,
3161 .size = sizeof(read_event) + perf_event_read_size(event),
3162 },
3163 .pid = perf_event_pid(event, task),
3164 .tid = perf_event_tid(event, task),
3165 };
3166 int ret;
3167
3168 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3169 if (ret)
3170 return;
3171
3172 perf_output_put(&handle, read_event);
3173 perf_output_read(&handle, event);
3174
3175 perf_output_end(&handle);
3176 }
3177
3178 /*
3179 * task tracking -- fork/exit
3180 *
3181 * enabled by: attr.comm | attr.mmap | attr.task
3182 */
3183
3184 struct perf_task_event {
3185 struct task_struct *task;
3186 struct perf_event_context *task_ctx;
3187
3188 struct {
3189 struct perf_event_header header;
3190
3191 u32 pid;
3192 u32 ppid;
3193 u32 tid;
3194 u32 ptid;
3195 u64 time;
3196 } event_id;
3197 };
3198
3199 static void perf_event_task_output(struct perf_event *event,
3200 struct perf_task_event *task_event)
3201 {
3202 struct perf_output_handle handle;
3203 int size;
3204 struct task_struct *task = task_event->task;
3205 int ret;
3206
3207 size = task_event->event_id.header.size;
3208 ret = perf_output_begin(&handle, event, size, 0, 0);
3209
3210 if (ret)
3211 return;
3212
3213 task_event->event_id.pid = perf_event_pid(event, task);
3214 task_event->event_id.ppid = perf_event_pid(event, current);
3215
3216 task_event->event_id.tid = perf_event_tid(event, task);
3217 task_event->event_id.ptid = perf_event_tid(event, current);
3218
3219 task_event->event_id.time = perf_clock();
3220
3221 perf_output_put(&handle, task_event->event_id);
3222
3223 perf_output_end(&handle);
3224 }
3225
3226 static int perf_event_task_match(struct perf_event *event)
3227 {
3228 if (event->attr.comm || event->attr.mmap || event->attr.task)
3229 return 1;
3230
3231 return 0;
3232 }
3233
3234 static void perf_event_task_ctx(struct perf_event_context *ctx,
3235 struct perf_task_event *task_event)
3236 {
3237 struct perf_event *event;
3238
3239 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3240 return;
3241
3242 rcu_read_lock();
3243 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3244 if (perf_event_task_match(event))
3245 perf_event_task_output(event, task_event);
3246 }
3247 rcu_read_unlock();
3248 }
3249
3250 static void perf_event_task_event(struct perf_task_event *task_event)
3251 {
3252 struct perf_cpu_context *cpuctx;
3253 struct perf_event_context *ctx = task_event->task_ctx;
3254
3255 cpuctx = &get_cpu_var(perf_cpu_context);
3256 perf_event_task_ctx(&cpuctx->ctx, task_event);
3257 put_cpu_var(perf_cpu_context);
3258
3259 rcu_read_lock();
3260 if (!ctx)
3261 ctx = rcu_dereference(task_event->task->perf_event_ctxp);
3262 if (ctx)
3263 perf_event_task_ctx(ctx, task_event);
3264 rcu_read_unlock();
3265 }
3266
3267 static void perf_event_task(struct task_struct *task,
3268 struct perf_event_context *task_ctx,
3269 int new)
3270 {
3271 struct perf_task_event task_event;
3272
3273 if (!atomic_read(&nr_comm_events) &&
3274 !atomic_read(&nr_mmap_events) &&
3275 !atomic_read(&nr_task_events))
3276 return;
3277
3278 task_event = (struct perf_task_event){
3279 .task = task,
3280 .task_ctx = task_ctx,
3281 .event_id = {
3282 .header = {
3283 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3284 .misc = 0,
3285 .size = sizeof(task_event.event_id),
3286 },
3287 /* .pid */
3288 /* .ppid */
3289 /* .tid */
3290 /* .ptid */
3291 },
3292 };
3293
3294 perf_event_task_event(&task_event);
3295 }
3296
3297 void perf_event_fork(struct task_struct *task)
3298 {
3299 perf_event_task(task, NULL, 1);
3300 }
3301
3302 /*
3303 * comm tracking
3304 */
3305
3306 struct perf_comm_event {
3307 struct task_struct *task;
3308 char *comm;
3309 int comm_size;
3310
3311 struct {
3312 struct perf_event_header header;
3313
3314 u32 pid;
3315 u32 tid;
3316 } event_id;
3317 };
3318
3319 static void perf_event_comm_output(struct perf_event *event,
3320 struct perf_comm_event *comm_event)
3321 {
3322 struct perf_output_handle handle;
3323 int size = comm_event->event_id.header.size;
3324 int ret = perf_output_begin(&handle, event, size, 0, 0);
3325
3326 if (ret)
3327 return;
3328
3329 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3330 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3331
3332 perf_output_put(&handle, comm_event->event_id);
3333 perf_output_copy(&handle, comm_event->comm,
3334 comm_event->comm_size);
3335 perf_output_end(&handle);
3336 }
3337
3338 static int perf_event_comm_match(struct perf_event *event)
3339 {
3340 if (event->attr.comm)
3341 return 1;
3342
3343 return 0;
3344 }
3345
3346 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3347 struct perf_comm_event *comm_event)
3348 {
3349 struct perf_event *event;
3350
3351 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3352 return;
3353
3354 rcu_read_lock();
3355 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3356 if (perf_event_comm_match(event))
3357 perf_event_comm_output(event, comm_event);
3358 }
3359 rcu_read_unlock();
3360 }
3361
3362 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3363 {
3364 struct perf_cpu_context *cpuctx;
3365 struct perf_event_context *ctx;
3366 unsigned int size;
3367 char comm[TASK_COMM_LEN];
3368
3369 memset(comm, 0, sizeof(comm));
3370 strncpy(comm, comm_event->task->comm, sizeof(comm));
3371 size = ALIGN(strlen(comm)+1, sizeof(u64));
3372
3373 comm_event->comm = comm;
3374 comm_event->comm_size = size;
3375
3376 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3377
3378 cpuctx = &get_cpu_var(perf_cpu_context);
3379 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3380 put_cpu_var(perf_cpu_context);
3381
3382 rcu_read_lock();
3383 /*
3384 * doesn't really matter which of the child contexts the
3385 * events ends up in.
3386 */
3387 ctx = rcu_dereference(current->perf_event_ctxp);
3388 if (ctx)
3389 perf_event_comm_ctx(ctx, comm_event);
3390 rcu_read_unlock();
3391 }
3392
3393 void perf_event_comm(struct task_struct *task)
3394 {
3395 struct perf_comm_event comm_event;
3396
3397 if (task->perf_event_ctxp)
3398 perf_event_enable_on_exec(task);
3399
3400 if (!atomic_read(&nr_comm_events))
3401 return;
3402
3403 comm_event = (struct perf_comm_event){
3404 .task = task,
3405 /* .comm */
3406 /* .comm_size */
3407 .event_id = {
3408 .header = {
3409 .type = PERF_RECORD_COMM,
3410 .misc = 0,
3411 /* .size */
3412 },
3413 /* .pid */
3414 /* .tid */
3415 },
3416 };
3417
3418 perf_event_comm_event(&comm_event);
3419 }
3420
3421 /*
3422 * mmap tracking
3423 */
3424
3425 struct perf_mmap_event {
3426 struct vm_area_struct *vma;
3427
3428 const char *file_name;
3429 int file_size;
3430
3431 struct {
3432 struct perf_event_header header;
3433
3434 u32 pid;
3435 u32 tid;
3436 u64 start;
3437 u64 len;
3438 u64 pgoff;
3439 } event_id;
3440 };
3441
3442 static void perf_event_mmap_output(struct perf_event *event,
3443 struct perf_mmap_event *mmap_event)
3444 {
3445 struct perf_output_handle handle;
3446 int size = mmap_event->event_id.header.size;
3447 int ret = perf_output_begin(&handle, event, size, 0, 0);
3448
3449 if (ret)
3450 return;
3451
3452 mmap_event->event_id.pid = perf_event_pid(event, current);
3453 mmap_event->event_id.tid = perf_event_tid(event, current);
3454
3455 perf_output_put(&handle, mmap_event->event_id);
3456 perf_output_copy(&handle, mmap_event->file_name,
3457 mmap_event->file_size);
3458 perf_output_end(&handle);
3459 }
3460
3461 static int perf_event_mmap_match(struct perf_event *event,
3462 struct perf_mmap_event *mmap_event)
3463 {
3464 if (event->attr.mmap)
3465 return 1;
3466
3467 return 0;
3468 }
3469
3470 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3471 struct perf_mmap_event *mmap_event)
3472 {
3473 struct perf_event *event;
3474
3475 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3476 return;
3477
3478 rcu_read_lock();
3479 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3480 if (perf_event_mmap_match(event, mmap_event))
3481 perf_event_mmap_output(event, mmap_event);
3482 }
3483 rcu_read_unlock();
3484 }
3485
3486 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3487 {
3488 struct perf_cpu_context *cpuctx;
3489 struct perf_event_context *ctx;
3490 struct vm_area_struct *vma = mmap_event->vma;
3491 struct file *file = vma->vm_file;
3492 unsigned int size;
3493 char tmp[16];
3494 char *buf = NULL;
3495 const char *name;
3496
3497 memset(tmp, 0, sizeof(tmp));
3498
3499 if (file) {
3500 /*
3501 * d_path works from the end of the buffer backwards, so we
3502 * need to add enough zero bytes after the string to handle
3503 * the 64bit alignment we do later.
3504 */
3505 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3506 if (!buf) {
3507 name = strncpy(tmp, "//enomem", sizeof(tmp));
3508 goto got_name;
3509 }
3510 name = d_path(&file->f_path, buf, PATH_MAX);
3511 if (IS_ERR(name)) {
3512 name = strncpy(tmp, "//toolong", sizeof(tmp));
3513 goto got_name;
3514 }
3515 } else {
3516 if (arch_vma_name(mmap_event->vma)) {
3517 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3518 sizeof(tmp));
3519 goto got_name;
3520 }
3521
3522 if (!vma->vm_mm) {
3523 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3524 goto got_name;
3525 }
3526
3527 name = strncpy(tmp, "//anon", sizeof(tmp));
3528 goto got_name;
3529 }
3530
3531 got_name:
3532 size = ALIGN(strlen(name)+1, sizeof(u64));
3533
3534 mmap_event->file_name = name;
3535 mmap_event->file_size = size;
3536
3537 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3538
3539 cpuctx = &get_cpu_var(perf_cpu_context);
3540 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3541 put_cpu_var(perf_cpu_context);
3542
3543 rcu_read_lock();
3544 /*
3545 * doesn't really matter which of the child contexts the
3546 * events ends up in.
3547 */
3548 ctx = rcu_dereference(current->perf_event_ctxp);
3549 if (ctx)
3550 perf_event_mmap_ctx(ctx, mmap_event);
3551 rcu_read_unlock();
3552
3553 kfree(buf);
3554 }
3555
3556 void __perf_event_mmap(struct vm_area_struct *vma)
3557 {
3558 struct perf_mmap_event mmap_event;
3559
3560 if (!atomic_read(&nr_mmap_events))
3561 return;
3562
3563 mmap_event = (struct perf_mmap_event){
3564 .vma = vma,
3565 /* .file_name */
3566 /* .file_size */
3567 .event_id = {
3568 .header = {
3569 .type = PERF_RECORD_MMAP,
3570 .misc = 0,
3571 /* .size */
3572 },
3573 /* .pid */
3574 /* .tid */
3575 .start = vma->vm_start,
3576 .len = vma->vm_end - vma->vm_start,
3577 .pgoff = vma->vm_pgoff,
3578 },
3579 };
3580
3581 perf_event_mmap_event(&mmap_event);
3582 }
3583
3584 /*
3585 * IRQ throttle logging
3586 */
3587
3588 static void perf_log_throttle(struct perf_event *event, int enable)
3589 {
3590 struct perf_output_handle handle;
3591 int ret;
3592
3593 struct {
3594 struct perf_event_header header;
3595 u64 time;
3596 u64 id;
3597 u64 stream_id;
3598 } throttle_event = {
3599 .header = {
3600 .type = PERF_RECORD_THROTTLE,
3601 .misc = 0,
3602 .size = sizeof(throttle_event),
3603 },
3604 .time = perf_clock(),
3605 .id = primary_event_id(event),
3606 .stream_id = event->id,
3607 };
3608
3609 if (enable)
3610 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3611
3612 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3613 if (ret)
3614 return;
3615
3616 perf_output_put(&handle, throttle_event);
3617 perf_output_end(&handle);
3618 }
3619
3620 /*
3621 * Generic event overflow handling, sampling.
3622 */
3623
3624 static int __perf_event_overflow(struct perf_event *event, int nmi,
3625 int throttle, struct perf_sample_data *data,
3626 struct pt_regs *regs)
3627 {
3628 int events = atomic_read(&event->event_limit);
3629 struct hw_perf_event *hwc = &event->hw;
3630 int ret = 0;
3631
3632 throttle = (throttle && event->pmu->unthrottle != NULL);
3633
3634 if (!throttle) {
3635 hwc->interrupts++;
3636 } else {
3637 if (hwc->interrupts != MAX_INTERRUPTS) {
3638 hwc->interrupts++;
3639 if (HZ * hwc->interrupts >
3640 (u64)sysctl_perf_event_sample_rate) {
3641 hwc->interrupts = MAX_INTERRUPTS;
3642 perf_log_throttle(event, 0);
3643 ret = 1;
3644 }
3645 } else {
3646 /*
3647 * Keep re-disabling events even though on the previous
3648 * pass we disabled it - just in case we raced with a
3649 * sched-in and the event got enabled again:
3650 */
3651 ret = 1;
3652 }
3653 }
3654
3655 if (event->attr.freq) {
3656 u64 now = perf_clock();
3657 s64 delta = now - hwc->freq_stamp;
3658
3659 hwc->freq_stamp = now;
3660
3661 if (delta > 0 && delta < TICK_NSEC)
3662 perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3663 }
3664
3665 /*
3666 * XXX event_limit might not quite work as expected on inherited
3667 * events
3668 */
3669
3670 event->pending_kill = POLL_IN;
3671 if (events && atomic_dec_and_test(&event->event_limit)) {
3672 ret = 1;
3673 event->pending_kill = POLL_HUP;
3674 if (nmi) {
3675 event->pending_disable = 1;
3676 perf_pending_queue(&event->pending,
3677 perf_pending_event);
3678 } else
3679 perf_event_disable(event);
3680 }
3681
3682 perf_event_output(event, nmi, data, regs);
3683 return ret;
3684 }
3685
3686 int perf_event_overflow(struct perf_event *event, int nmi,
3687 struct perf_sample_data *data,
3688 struct pt_regs *regs)
3689 {
3690 return __perf_event_overflow(event, nmi, 1, data, regs);
3691 }
3692
3693 /*
3694 * Generic software event infrastructure
3695 */
3696
3697 /*
3698 * We directly increment event->count and keep a second value in
3699 * event->hw.period_left to count intervals. This period event
3700 * is kept in the range [-sample_period, 0] so that we can use the
3701 * sign as trigger.
3702 */
3703
3704 static u64 perf_swevent_set_period(struct perf_event *event)
3705 {
3706 struct hw_perf_event *hwc = &event->hw;
3707 u64 period = hwc->last_period;
3708 u64 nr, offset;
3709 s64 old, val;
3710
3711 hwc->last_period = hwc->sample_period;
3712
3713 again:
3714 old = val = atomic64_read(&hwc->period_left);
3715 if (val < 0)
3716 return 0;
3717
3718 nr = div64_u64(period + val, period);
3719 offset = nr * period;
3720 val -= offset;
3721 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3722 goto again;
3723
3724 return nr;
3725 }
3726
3727 static void perf_swevent_overflow(struct perf_event *event,
3728 int nmi, struct perf_sample_data *data,
3729 struct pt_regs *regs)
3730 {
3731 struct hw_perf_event *hwc = &event->hw;
3732 int throttle = 0;
3733 u64 overflow;
3734
3735 data->period = event->hw.last_period;
3736 overflow = perf_swevent_set_period(event);
3737
3738 if (hwc->interrupts == MAX_INTERRUPTS)
3739 return;
3740
3741 for (; overflow; overflow--) {
3742 if (__perf_event_overflow(event, nmi, throttle,
3743 data, regs)) {
3744 /*
3745 * We inhibit the overflow from happening when
3746 * hwc->interrupts == MAX_INTERRUPTS.
3747 */
3748 break;
3749 }
3750 throttle = 1;
3751 }
3752 }
3753
3754 static void perf_swevent_unthrottle(struct perf_event *event)
3755 {
3756 /*
3757 * Nothing to do, we already reset hwc->interrupts.
3758 */
3759 }
3760
3761 static void perf_swevent_add(struct perf_event *event, u64 nr,
3762 int nmi, struct perf_sample_data *data,
3763 struct pt_regs *regs)
3764 {
3765 struct hw_perf_event *hwc = &event->hw;
3766
3767 atomic64_add(nr, &event->count);
3768
3769 if (!hwc->sample_period)
3770 return;
3771
3772 if (!regs)
3773 return;
3774
3775 if (!atomic64_add_negative(nr, &hwc->period_left))
3776 perf_swevent_overflow(event, nmi, data, regs);
3777 }
3778
3779 static int perf_swevent_is_counting(struct perf_event *event)
3780 {
3781 /*
3782 * The event is active, we're good!
3783 */
3784 if (event->state == PERF_EVENT_STATE_ACTIVE)
3785 return 1;
3786
3787 /*
3788 * The event is off/error, not counting.
3789 */
3790 if (event->state != PERF_EVENT_STATE_INACTIVE)
3791 return 0;
3792
3793 /*
3794 * The event is inactive, if the context is active
3795 * we're part of a group that didn't make it on the 'pmu',
3796 * not counting.
3797 */
3798 if (event->ctx->is_active)
3799 return 0;
3800
3801 /*
3802 * We're inactive and the context is too, this means the
3803 * task is scheduled out, we're counting events that happen
3804 * to us, like migration events.
3805 */
3806 return 1;
3807 }
3808
3809 static int perf_swevent_match(struct perf_event *event,
3810 enum perf_type_id type,
3811 u32 event_id, struct pt_regs *regs)
3812 {
3813 if (!perf_swevent_is_counting(event))
3814 return 0;
3815
3816 if (event->attr.type != type)
3817 return 0;
3818 if (event->attr.config != event_id)
3819 return 0;
3820
3821 if (regs) {
3822 if (event->attr.exclude_user && user_mode(regs))
3823 return 0;
3824
3825 if (event->attr.exclude_kernel && !user_mode(regs))
3826 return 0;
3827 }
3828
3829 return 1;
3830 }
3831
3832 static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3833 enum perf_type_id type,
3834 u32 event_id, u64 nr, int nmi,
3835 struct perf_sample_data *data,
3836 struct pt_regs *regs)
3837 {
3838 struct perf_event *event;
3839
3840 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3841 return;
3842
3843 rcu_read_lock();
3844 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3845 if (perf_swevent_match(event, type, event_id, regs))
3846 perf_swevent_add(event, nr, nmi, data, regs);
3847 }
3848 rcu_read_unlock();
3849 }
3850
3851 static int *perf_swevent_recursion_context(struct perf_cpu_context *cpuctx)
3852 {
3853 if (in_nmi())
3854 return &cpuctx->recursion[3];
3855
3856 if (in_irq())
3857 return &cpuctx->recursion[2];
3858
3859 if (in_softirq())
3860 return &cpuctx->recursion[1];
3861
3862 return &cpuctx->recursion[0];
3863 }
3864
3865 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
3866 u64 nr, int nmi,
3867 struct perf_sample_data *data,
3868 struct pt_regs *regs)
3869 {
3870 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3871 int *recursion = perf_swevent_recursion_context(cpuctx);
3872 struct perf_event_context *ctx;
3873
3874 if (*recursion)
3875 goto out;
3876
3877 (*recursion)++;
3878 barrier();
3879
3880 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
3881 nr, nmi, data, regs);
3882 rcu_read_lock();
3883 /*
3884 * doesn't really matter which of the child contexts the
3885 * events ends up in.
3886 */
3887 ctx = rcu_dereference(current->perf_event_ctxp);
3888 if (ctx)
3889 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
3890 rcu_read_unlock();
3891
3892 barrier();
3893 (*recursion)--;
3894
3895 out:
3896 put_cpu_var(perf_cpu_context);
3897 }
3898
3899 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
3900 struct pt_regs *regs, u64 addr)
3901 {
3902 struct perf_sample_data data = {
3903 .addr = addr,
3904 };
3905
3906 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi,
3907 &data, regs);
3908 }
3909
3910 static void perf_swevent_read(struct perf_event *event)
3911 {
3912 }
3913
3914 static int perf_swevent_enable(struct perf_event *event)
3915 {
3916 struct hw_perf_event *hwc = &event->hw;
3917
3918 if (hwc->sample_period) {
3919 hwc->last_period = hwc->sample_period;
3920 perf_swevent_set_period(event);
3921 }
3922 return 0;
3923 }
3924
3925 static void perf_swevent_disable(struct perf_event *event)
3926 {
3927 }
3928
3929 static const struct pmu perf_ops_generic = {
3930 .enable = perf_swevent_enable,
3931 .disable = perf_swevent_disable,
3932 .read = perf_swevent_read,
3933 .unthrottle = perf_swevent_unthrottle,
3934 };
3935
3936 /*
3937 * hrtimer based swevent callback
3938 */
3939
3940 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
3941 {
3942 enum hrtimer_restart ret = HRTIMER_RESTART;
3943 struct perf_sample_data data;
3944 struct pt_regs *regs;
3945 struct perf_event *event;
3946 u64 period;
3947
3948 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
3949 event->pmu->read(event);
3950
3951 data.addr = 0;
3952 regs = get_irq_regs();
3953 /*
3954 * In case we exclude kernel IPs or are somehow not in interrupt
3955 * context, provide the next best thing, the user IP.
3956 */
3957 if ((event->attr.exclude_kernel || !regs) &&
3958 !event->attr.exclude_user)
3959 regs = task_pt_regs(current);
3960
3961 if (regs) {
3962 if (!(event->attr.exclude_idle && current->pid == 0))
3963 if (perf_event_overflow(event, 0, &data, regs))
3964 ret = HRTIMER_NORESTART;
3965 }
3966
3967 period = max_t(u64, 10000, event->hw.sample_period);
3968 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3969
3970 return ret;
3971 }
3972
3973 static void perf_swevent_start_hrtimer(struct perf_event *event)
3974 {
3975 struct hw_perf_event *hwc = &event->hw;
3976
3977 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3978 hwc->hrtimer.function = perf_swevent_hrtimer;
3979 if (hwc->sample_period) {
3980 u64 period;
3981
3982 if (hwc->remaining) {
3983 if (hwc->remaining < 0)
3984 period = 10000;
3985 else
3986 period = hwc->remaining;
3987 hwc->remaining = 0;
3988 } else {
3989 period = max_t(u64, 10000, hwc->sample_period);
3990 }
3991 __hrtimer_start_range_ns(&hwc->hrtimer,
3992 ns_to_ktime(period), 0,
3993 HRTIMER_MODE_REL, 0);
3994 }
3995 }
3996
3997 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
3998 {
3999 struct hw_perf_event *hwc = &event->hw;
4000
4001 if (hwc->sample_period) {
4002 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4003 hwc->remaining = ktime_to_ns(remaining);
4004
4005 hrtimer_cancel(&hwc->hrtimer);
4006 }
4007 }
4008
4009 /*
4010 * Software event: cpu wall time clock
4011 */
4012
4013 static void cpu_clock_perf_event_update(struct perf_event *event)
4014 {
4015 int cpu = raw_smp_processor_id();
4016 s64 prev;
4017 u64 now;
4018
4019 now = cpu_clock(cpu);
4020 prev = atomic64_read(&event->hw.prev_count);
4021 atomic64_set(&event->hw.prev_count, now);
4022 atomic64_add(now - prev, &event->count);
4023 }
4024
4025 static int cpu_clock_perf_event_enable(struct perf_event *event)
4026 {
4027 struct hw_perf_event *hwc = &event->hw;
4028 int cpu = raw_smp_processor_id();
4029
4030 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4031 perf_swevent_start_hrtimer(event);
4032
4033 return 0;
4034 }
4035
4036 static void cpu_clock_perf_event_disable(struct perf_event *event)
4037 {
4038 perf_swevent_cancel_hrtimer(event);
4039 cpu_clock_perf_event_update(event);
4040 }
4041
4042 static void cpu_clock_perf_event_read(struct perf_event *event)
4043 {
4044 cpu_clock_perf_event_update(event);
4045 }
4046
4047 static const struct pmu perf_ops_cpu_clock = {
4048 .enable = cpu_clock_perf_event_enable,
4049 .disable = cpu_clock_perf_event_disable,
4050 .read = cpu_clock_perf_event_read,
4051 };
4052
4053 /*
4054 * Software event: task time clock
4055 */
4056
4057 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4058 {
4059 u64 prev;
4060 s64 delta;
4061
4062 prev = atomic64_xchg(&event->hw.prev_count, now);
4063 delta = now - prev;
4064 atomic64_add(delta, &event->count);
4065 }
4066
4067 static int task_clock_perf_event_enable(struct perf_event *event)
4068 {
4069 struct hw_perf_event *hwc = &event->hw;
4070 u64 now;
4071
4072 now = event->ctx->time;
4073
4074 atomic64_set(&hwc->prev_count, now);
4075
4076 perf_swevent_start_hrtimer(event);
4077
4078 return 0;
4079 }
4080
4081 static void task_clock_perf_event_disable(struct perf_event *event)
4082 {
4083 perf_swevent_cancel_hrtimer(event);
4084 task_clock_perf_event_update(event, event->ctx->time);
4085
4086 }
4087
4088 static void task_clock_perf_event_read(struct perf_event *event)
4089 {
4090 u64 time;
4091
4092 if (!in_nmi()) {
4093 update_context_time(event->ctx);
4094 time = event->ctx->time;
4095 } else {
4096 u64 now = perf_clock();
4097 u64 delta = now - event->ctx->timestamp;
4098 time = event->ctx->time + delta;
4099 }
4100
4101 task_clock_perf_event_update(event, time);
4102 }
4103
4104 static const struct pmu perf_ops_task_clock = {
4105 .enable = task_clock_perf_event_enable,
4106 .disable = task_clock_perf_event_disable,
4107 .read = task_clock_perf_event_read,
4108 };
4109
4110 #ifdef CONFIG_EVENT_PROFILE
4111 void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4112 int entry_size)
4113 {
4114 struct perf_raw_record raw = {
4115 .size = entry_size,
4116 .data = record,
4117 };
4118
4119 struct perf_sample_data data = {
4120 .addr = addr,
4121 .raw = &raw,
4122 };
4123
4124 struct pt_regs *regs = get_irq_regs();
4125
4126 if (!regs)
4127 regs = task_pt_regs(current);
4128
4129 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4130 &data, regs);
4131 }
4132 EXPORT_SYMBOL_GPL(perf_tp_event);
4133
4134 extern int ftrace_profile_enable(int);
4135 extern void ftrace_profile_disable(int);
4136
4137 static void tp_perf_event_destroy(struct perf_event *event)
4138 {
4139 ftrace_profile_disable(event->attr.config);
4140 }
4141
4142 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4143 {
4144 /*
4145 * Raw tracepoint data is a severe data leak, only allow root to
4146 * have these.
4147 */
4148 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4149 perf_paranoid_tracepoint_raw() &&
4150 !capable(CAP_SYS_ADMIN))
4151 return ERR_PTR(-EPERM);
4152
4153 if (ftrace_profile_enable(event->attr.config))
4154 return NULL;
4155
4156 event->destroy = tp_perf_event_destroy;
4157
4158 return &perf_ops_generic;
4159 }
4160 #else
4161 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4162 {
4163 return NULL;
4164 }
4165 #endif
4166
4167 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4168
4169 static void sw_perf_event_destroy(struct perf_event *event)
4170 {
4171 u64 event_id = event->attr.config;
4172
4173 WARN_ON(event->parent);
4174
4175 atomic_dec(&perf_swevent_enabled[event_id]);
4176 }
4177
4178 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4179 {
4180 const struct pmu *pmu = NULL;
4181 u64 event_id = event->attr.config;
4182
4183 /*
4184 * Software events (currently) can't in general distinguish
4185 * between user, kernel and hypervisor events.
4186 * However, context switches and cpu migrations are considered
4187 * to be kernel events, and page faults are never hypervisor
4188 * events.
4189 */
4190 switch (event_id) {
4191 case PERF_COUNT_SW_CPU_CLOCK:
4192 pmu = &perf_ops_cpu_clock;
4193
4194 break;
4195 case PERF_COUNT_SW_TASK_CLOCK:
4196 /*
4197 * If the user instantiates this as a per-cpu event,
4198 * use the cpu_clock event instead.
4199 */
4200 if (event->ctx->task)
4201 pmu = &perf_ops_task_clock;
4202 else
4203 pmu = &perf_ops_cpu_clock;
4204
4205 break;
4206 case PERF_COUNT_SW_PAGE_FAULTS:
4207 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4208 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4209 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4210 case PERF_COUNT_SW_CPU_MIGRATIONS:
4211 if (!event->parent) {
4212 atomic_inc(&perf_swevent_enabled[event_id]);
4213 event->destroy = sw_perf_event_destroy;
4214 }
4215 pmu = &perf_ops_generic;
4216 break;
4217 }
4218
4219 return pmu;
4220 }
4221
4222 /*
4223 * Allocate and initialize a event structure
4224 */
4225 static struct perf_event *
4226 perf_event_alloc(struct perf_event_attr *attr,
4227 int cpu,
4228 struct perf_event_context *ctx,
4229 struct perf_event *group_leader,
4230 struct perf_event *parent_event,
4231 gfp_t gfpflags)
4232 {
4233 const struct pmu *pmu;
4234 struct perf_event *event;
4235 struct hw_perf_event *hwc;
4236 long err;
4237
4238 event = kzalloc(sizeof(*event), gfpflags);
4239 if (!event)
4240 return ERR_PTR(-ENOMEM);
4241
4242 /*
4243 * Single events are their own group leaders, with an
4244 * empty sibling list:
4245 */
4246 if (!group_leader)
4247 group_leader = event;
4248
4249 mutex_init(&event->child_mutex);
4250 INIT_LIST_HEAD(&event->child_list);
4251
4252 INIT_LIST_HEAD(&event->group_entry);
4253 INIT_LIST_HEAD(&event->event_entry);
4254 INIT_LIST_HEAD(&event->sibling_list);
4255 init_waitqueue_head(&event->waitq);
4256
4257 mutex_init(&event->mmap_mutex);
4258
4259 event->cpu = cpu;
4260 event->attr = *attr;
4261 event->group_leader = group_leader;
4262 event->pmu = NULL;
4263 event->ctx = ctx;
4264 event->oncpu = -1;
4265
4266 event->parent = parent_event;
4267
4268 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4269 event->id = atomic64_inc_return(&perf_event_id);
4270
4271 event->state = PERF_EVENT_STATE_INACTIVE;
4272
4273 if (attr->disabled)
4274 event->state = PERF_EVENT_STATE_OFF;
4275
4276 pmu = NULL;
4277
4278 hwc = &event->hw;
4279 hwc->sample_period = attr->sample_period;
4280 if (attr->freq && attr->sample_freq)
4281 hwc->sample_period = 1;
4282 hwc->last_period = hwc->sample_period;
4283
4284 atomic64_set(&hwc->period_left, hwc->sample_period);
4285
4286 /*
4287 * we currently do not support PERF_FORMAT_GROUP on inherited events
4288 */
4289 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4290 goto done;
4291
4292 switch (attr->type) {
4293 case PERF_TYPE_RAW:
4294 case PERF_TYPE_HARDWARE:
4295 case PERF_TYPE_HW_CACHE:
4296 pmu = hw_perf_event_init(event);
4297 break;
4298
4299 case PERF_TYPE_SOFTWARE:
4300 pmu = sw_perf_event_init(event);
4301 break;
4302
4303 case PERF_TYPE_TRACEPOINT:
4304 pmu = tp_perf_event_init(event);
4305 break;
4306
4307 default:
4308 break;
4309 }
4310 done:
4311 err = 0;
4312 if (!pmu)
4313 err = -EINVAL;
4314 else if (IS_ERR(pmu))
4315 err = PTR_ERR(pmu);
4316
4317 if (err) {
4318 if (event->ns)
4319 put_pid_ns(event->ns);
4320 kfree(event);
4321 return ERR_PTR(err);
4322 }
4323
4324 event->pmu = pmu;
4325
4326 if (!event->parent) {
4327 atomic_inc(&nr_events);
4328 if (event->attr.mmap)
4329 atomic_inc(&nr_mmap_events);
4330 if (event->attr.comm)
4331 atomic_inc(&nr_comm_events);
4332 if (event->attr.task)
4333 atomic_inc(&nr_task_events);
4334 }
4335
4336 return event;
4337 }
4338
4339 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4340 struct perf_event_attr *attr)
4341 {
4342 u32 size;
4343 int ret;
4344
4345 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4346 return -EFAULT;
4347
4348 /*
4349 * zero the full structure, so that a short copy will be nice.
4350 */
4351 memset(attr, 0, sizeof(*attr));
4352
4353 ret = get_user(size, &uattr->size);
4354 if (ret)
4355 return ret;
4356
4357 if (size > PAGE_SIZE) /* silly large */
4358 goto err_size;
4359
4360 if (!size) /* abi compat */
4361 size = PERF_ATTR_SIZE_VER0;
4362
4363 if (size < PERF_ATTR_SIZE_VER0)
4364 goto err_size;
4365
4366 /*
4367 * If we're handed a bigger struct than we know of,
4368 * ensure all the unknown bits are 0 - i.e. new
4369 * user-space does not rely on any kernel feature
4370 * extensions we dont know about yet.
4371 */
4372 if (size > sizeof(*attr)) {
4373 unsigned char __user *addr;
4374 unsigned char __user *end;
4375 unsigned char val;
4376
4377 addr = (void __user *)uattr + sizeof(*attr);
4378 end = (void __user *)uattr + size;
4379
4380 for (; addr < end; addr++) {
4381 ret = get_user(val, addr);
4382 if (ret)
4383 return ret;
4384 if (val)
4385 goto err_size;
4386 }
4387 size = sizeof(*attr);
4388 }
4389
4390 ret = copy_from_user(attr, uattr, size);
4391 if (ret)
4392 return -EFAULT;
4393
4394 /*
4395 * If the type exists, the corresponding creation will verify
4396 * the attr->config.
4397 */
4398 if (attr->type >= PERF_TYPE_MAX)
4399 return -EINVAL;
4400
4401 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
4402 return -EINVAL;
4403
4404 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4405 return -EINVAL;
4406
4407 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4408 return -EINVAL;
4409
4410 out:
4411 return ret;
4412
4413 err_size:
4414 put_user(sizeof(*attr), &uattr->size);
4415 ret = -E2BIG;
4416 goto out;
4417 }
4418
4419 int perf_event_set_output(struct perf_event *event, int output_fd)
4420 {
4421 struct perf_event *output_event = NULL;
4422 struct file *output_file = NULL;
4423 struct perf_event *old_output;
4424 int fput_needed = 0;
4425 int ret = -EINVAL;
4426
4427 if (!output_fd)
4428 goto set;
4429
4430 output_file = fget_light(output_fd, &fput_needed);
4431 if (!output_file)
4432 return -EBADF;
4433
4434 if (output_file->f_op != &perf_fops)
4435 goto out;
4436
4437 output_event = output_file->private_data;
4438
4439 /* Don't chain output fds */
4440 if (output_event->output)
4441 goto out;
4442
4443 /* Don't set an output fd when we already have an output channel */
4444 if (event->data)
4445 goto out;
4446
4447 atomic_long_inc(&output_file->f_count);
4448
4449 set:
4450 mutex_lock(&event->mmap_mutex);
4451 old_output = event->output;
4452 rcu_assign_pointer(event->output, output_event);
4453 mutex_unlock(&event->mmap_mutex);
4454
4455 if (old_output) {
4456 /*
4457 * we need to make sure no existing perf_output_*()
4458 * is still referencing this event.
4459 */
4460 synchronize_rcu();
4461 fput(old_output->filp);
4462 }
4463
4464 ret = 0;
4465 out:
4466 fput_light(output_file, fput_needed);
4467 return ret;
4468 }
4469
4470 /**
4471 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4472 *
4473 * @attr_uptr: event_id type attributes for monitoring/sampling
4474 * @pid: target pid
4475 * @cpu: target cpu
4476 * @group_fd: group leader event fd
4477 */
4478 SYSCALL_DEFINE5(perf_event_open,
4479 struct perf_event_attr __user *, attr_uptr,
4480 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4481 {
4482 struct perf_event *event, *group_leader;
4483 struct perf_event_attr attr;
4484 struct perf_event_context *ctx;
4485 struct file *event_file = NULL;
4486 struct file *group_file = NULL;
4487 int fput_needed = 0;
4488 int fput_needed2 = 0;
4489 int err;
4490
4491 /* for future expandability... */
4492 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4493 return -EINVAL;
4494
4495 err = perf_copy_attr(attr_uptr, &attr);
4496 if (err)
4497 return err;
4498
4499 if (!attr.exclude_kernel) {
4500 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4501 return -EACCES;
4502 }
4503
4504 if (attr.freq) {
4505 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4506 return -EINVAL;
4507 }
4508
4509 /*
4510 * Get the target context (task or percpu):
4511 */
4512 ctx = find_get_context(pid, cpu);
4513 if (IS_ERR(ctx))
4514 return PTR_ERR(ctx);
4515
4516 /*
4517 * Look up the group leader (we will attach this event to it):
4518 */
4519 group_leader = NULL;
4520 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4521 err = -EINVAL;
4522 group_file = fget_light(group_fd, &fput_needed);
4523 if (!group_file)
4524 goto err_put_context;
4525 if (group_file->f_op != &perf_fops)
4526 goto err_put_context;
4527
4528 group_leader = group_file->private_data;
4529 /*
4530 * Do not allow a recursive hierarchy (this new sibling
4531 * becoming part of another group-sibling):
4532 */
4533 if (group_leader->group_leader != group_leader)
4534 goto err_put_context;
4535 /*
4536 * Do not allow to attach to a group in a different
4537 * task or CPU context:
4538 */
4539 if (group_leader->ctx != ctx)
4540 goto err_put_context;
4541 /*
4542 * Only a group leader can be exclusive or pinned
4543 */
4544 if (attr.exclusive || attr.pinned)
4545 goto err_put_context;
4546 }
4547
4548 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4549 NULL, GFP_KERNEL);
4550 err = PTR_ERR(event);
4551 if (IS_ERR(event))
4552 goto err_put_context;
4553
4554 err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0);
4555 if (err < 0)
4556 goto err_free_put_context;
4557
4558 event_file = fget_light(err, &fput_needed2);
4559 if (!event_file)
4560 goto err_free_put_context;
4561
4562 if (flags & PERF_FLAG_FD_OUTPUT) {
4563 err = perf_event_set_output(event, group_fd);
4564 if (err)
4565 goto err_fput_free_put_context;
4566 }
4567
4568 event->filp = event_file;
4569 WARN_ON_ONCE(ctx->parent_ctx);
4570 mutex_lock(&ctx->mutex);
4571 perf_install_in_context(ctx, event, cpu);
4572 ++ctx->generation;
4573 mutex_unlock(&ctx->mutex);
4574
4575 event->owner = current;
4576 get_task_struct(current);
4577 mutex_lock(&current->perf_event_mutex);
4578 list_add_tail(&event->owner_entry, &current->perf_event_list);
4579 mutex_unlock(&current->perf_event_mutex);
4580
4581 err_fput_free_put_context:
4582 fput_light(event_file, fput_needed2);
4583
4584 err_free_put_context:
4585 if (err < 0)
4586 kfree(event);
4587
4588 err_put_context:
4589 if (err < 0)
4590 put_ctx(ctx);
4591
4592 fput_light(group_file, fput_needed);
4593
4594 return err;
4595 }
4596
4597 /*
4598 * inherit a event from parent task to child task:
4599 */
4600 static struct perf_event *
4601 inherit_event(struct perf_event *parent_event,
4602 struct task_struct *parent,
4603 struct perf_event_context *parent_ctx,
4604 struct task_struct *child,
4605 struct perf_event *group_leader,
4606 struct perf_event_context *child_ctx)
4607 {
4608 struct perf_event *child_event;
4609
4610 /*
4611 * Instead of creating recursive hierarchies of events,
4612 * we link inherited events back to the original parent,
4613 * which has a filp for sure, which we use as the reference
4614 * count:
4615 */
4616 if (parent_event->parent)
4617 parent_event = parent_event->parent;
4618
4619 child_event = perf_event_alloc(&parent_event->attr,
4620 parent_event->cpu, child_ctx,
4621 group_leader, parent_event,
4622 GFP_KERNEL);
4623 if (IS_ERR(child_event))
4624 return child_event;
4625 get_ctx(child_ctx);
4626
4627 /*
4628 * Make the child state follow the state of the parent event,
4629 * not its attr.disabled bit. We hold the parent's mutex,
4630 * so we won't race with perf_event_{en, dis}able_family.
4631 */
4632 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
4633 child_event->state = PERF_EVENT_STATE_INACTIVE;
4634 else
4635 child_event->state = PERF_EVENT_STATE_OFF;
4636
4637 if (parent_event->attr.freq)
4638 child_event->hw.sample_period = parent_event->hw.sample_period;
4639
4640 /*
4641 * Link it up in the child's context:
4642 */
4643 add_event_to_ctx(child_event, child_ctx);
4644
4645 /*
4646 * Get a reference to the parent filp - we will fput it
4647 * when the child event exits. This is safe to do because
4648 * we are in the parent and we know that the filp still
4649 * exists and has a nonzero count:
4650 */
4651 atomic_long_inc(&parent_event->filp->f_count);
4652
4653 /*
4654 * Link this into the parent event's child list
4655 */
4656 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4657 mutex_lock(&parent_event->child_mutex);
4658 list_add_tail(&child_event->child_list, &parent_event->child_list);
4659 mutex_unlock(&parent_event->child_mutex);
4660
4661 return child_event;
4662 }
4663
4664 static int inherit_group(struct perf_event *parent_event,
4665 struct task_struct *parent,
4666 struct perf_event_context *parent_ctx,
4667 struct task_struct *child,
4668 struct perf_event_context *child_ctx)
4669 {
4670 struct perf_event *leader;
4671 struct perf_event *sub;
4672 struct perf_event *child_ctr;
4673
4674 leader = inherit_event(parent_event, parent, parent_ctx,
4675 child, NULL, child_ctx);
4676 if (IS_ERR(leader))
4677 return PTR_ERR(leader);
4678 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
4679 child_ctr = inherit_event(sub, parent, parent_ctx,
4680 child, leader, child_ctx);
4681 if (IS_ERR(child_ctr))
4682 return PTR_ERR(child_ctr);
4683 }
4684 return 0;
4685 }
4686
4687 static void sync_child_event(struct perf_event *child_event,
4688 struct task_struct *child)
4689 {
4690 struct perf_event *parent_event = child_event->parent;
4691 u64 child_val;
4692
4693 if (child_event->attr.inherit_stat)
4694 perf_event_read_event(child_event, child);
4695
4696 child_val = atomic64_read(&child_event->count);
4697
4698 /*
4699 * Add back the child's count to the parent's count:
4700 */
4701 atomic64_add(child_val, &parent_event->count);
4702 atomic64_add(child_event->total_time_enabled,
4703 &parent_event->child_total_time_enabled);
4704 atomic64_add(child_event->total_time_running,
4705 &parent_event->child_total_time_running);
4706
4707 /*
4708 * Remove this event from the parent's list
4709 */
4710 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4711 mutex_lock(&parent_event->child_mutex);
4712 list_del_init(&child_event->child_list);
4713 mutex_unlock(&parent_event->child_mutex);
4714
4715 /*
4716 * Release the parent event, if this was the last
4717 * reference to it.
4718 */
4719 fput(parent_event->filp);
4720 }
4721
4722 static void
4723 __perf_event_exit_task(struct perf_event *child_event,
4724 struct perf_event_context *child_ctx,
4725 struct task_struct *child)
4726 {
4727 struct perf_event *parent_event;
4728
4729 update_event_times(child_event);
4730 perf_event_remove_from_context(child_event);
4731
4732 parent_event = child_event->parent;
4733 /*
4734 * It can happen that parent exits first, and has events
4735 * that are still around due to the child reference. These
4736 * events need to be zapped - but otherwise linger.
4737 */
4738 if (parent_event) {
4739 sync_child_event(child_event, child);
4740 free_event(child_event);
4741 }
4742 }
4743
4744 /*
4745 * When a child task exits, feed back event values to parent events.
4746 */
4747 void perf_event_exit_task(struct task_struct *child)
4748 {
4749 struct perf_event *child_event, *tmp;
4750 struct perf_event_context *child_ctx;
4751 unsigned long flags;
4752
4753 if (likely(!child->perf_event_ctxp)) {
4754 perf_event_task(child, NULL, 0);
4755 return;
4756 }
4757
4758 local_irq_save(flags);
4759 /*
4760 * We can't reschedule here because interrupts are disabled,
4761 * and either child is current or it is a task that can't be
4762 * scheduled, so we are now safe from rescheduling changing
4763 * our context.
4764 */
4765 child_ctx = child->perf_event_ctxp;
4766 __perf_event_task_sched_out(child_ctx);
4767
4768 /*
4769 * Take the context lock here so that if find_get_context is
4770 * reading child->perf_event_ctxp, we wait until it has
4771 * incremented the context's refcount before we do put_ctx below.
4772 */
4773 spin_lock(&child_ctx->lock);
4774 child->perf_event_ctxp = NULL;
4775 /*
4776 * If this context is a clone; unclone it so it can't get
4777 * swapped to another process while we're removing all
4778 * the events from it.
4779 */
4780 unclone_ctx(child_ctx);
4781 spin_unlock_irqrestore(&child_ctx->lock, flags);
4782
4783 /*
4784 * Report the task dead after unscheduling the events so that we
4785 * won't get any samples after PERF_RECORD_EXIT. We can however still
4786 * get a few PERF_RECORD_READ events.
4787 */
4788 perf_event_task(child, child_ctx, 0);
4789
4790 /*
4791 * We can recurse on the same lock type through:
4792 *
4793 * __perf_event_exit_task()
4794 * sync_child_event()
4795 * fput(parent_event->filp)
4796 * perf_release()
4797 * mutex_lock(&ctx->mutex)
4798 *
4799 * But since its the parent context it won't be the same instance.
4800 */
4801 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4802
4803 again:
4804 list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
4805 group_entry)
4806 __perf_event_exit_task(child_event, child_ctx, child);
4807
4808 /*
4809 * If the last event was a group event, it will have appended all
4810 * its siblings to the list, but we obtained 'tmp' before that which
4811 * will still point to the list head terminating the iteration.
4812 */
4813 if (!list_empty(&child_ctx->group_list))
4814 goto again;
4815
4816 mutex_unlock(&child_ctx->mutex);
4817
4818 put_ctx(child_ctx);
4819 }
4820
4821 /*
4822 * free an unexposed, unused context as created by inheritance by
4823 * init_task below, used by fork() in case of fail.
4824 */
4825 void perf_event_free_task(struct task_struct *task)
4826 {
4827 struct perf_event_context *ctx = task->perf_event_ctxp;
4828 struct perf_event *event, *tmp;
4829
4830 if (!ctx)
4831 return;
4832
4833 mutex_lock(&ctx->mutex);
4834 again:
4835 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
4836 struct perf_event *parent = event->parent;
4837
4838 if (WARN_ON_ONCE(!parent))
4839 continue;
4840
4841 mutex_lock(&parent->child_mutex);
4842 list_del_init(&event->child_list);
4843 mutex_unlock(&parent->child_mutex);
4844
4845 fput(parent->filp);
4846
4847 list_del_event(event, ctx);
4848 free_event(event);
4849 }
4850
4851 if (!list_empty(&ctx->group_list))
4852 goto again;
4853
4854 mutex_unlock(&ctx->mutex);
4855
4856 put_ctx(ctx);
4857 }
4858
4859 /*
4860 * Initialize the perf_event context in task_struct
4861 */
4862 int perf_event_init_task(struct task_struct *child)
4863 {
4864 struct perf_event_context *child_ctx, *parent_ctx;
4865 struct perf_event_context *cloned_ctx;
4866 struct perf_event *event;
4867 struct task_struct *parent = current;
4868 int inherited_all = 1;
4869 int ret = 0;
4870
4871 child->perf_event_ctxp = NULL;
4872
4873 mutex_init(&child->perf_event_mutex);
4874 INIT_LIST_HEAD(&child->perf_event_list);
4875
4876 if (likely(!parent->perf_event_ctxp))
4877 return 0;
4878
4879 /*
4880 * This is executed from the parent task context, so inherit
4881 * events that have been marked for cloning.
4882 * First allocate and initialize a context for the child.
4883 */
4884
4885 child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4886 if (!child_ctx)
4887 return -ENOMEM;
4888
4889 __perf_event_init_context(child_ctx, child);
4890 child->perf_event_ctxp = child_ctx;
4891 get_task_struct(child);
4892
4893 /*
4894 * If the parent's context is a clone, pin it so it won't get
4895 * swapped under us.
4896 */
4897 parent_ctx = perf_pin_task_context(parent);
4898
4899 /*
4900 * No need to check if parent_ctx != NULL here; since we saw
4901 * it non-NULL earlier, the only reason for it to become NULL
4902 * is if we exit, and since we're currently in the middle of
4903 * a fork we can't be exiting at the same time.
4904 */
4905
4906 /*
4907 * Lock the parent list. No need to lock the child - not PID
4908 * hashed yet and not running, so nobody can access it.
4909 */
4910 mutex_lock(&parent_ctx->mutex);
4911
4912 /*
4913 * We dont have to disable NMIs - we are only looking at
4914 * the list, not manipulating it:
4915 */
4916 list_for_each_entry(event, &parent_ctx->group_list, group_entry) {
4917
4918 if (!event->attr.inherit) {
4919 inherited_all = 0;
4920 continue;
4921 }
4922
4923 ret = inherit_group(event, parent, parent_ctx,
4924 child, child_ctx);
4925 if (ret) {
4926 inherited_all = 0;
4927 break;
4928 }
4929 }
4930
4931 if (inherited_all) {
4932 /*
4933 * Mark the child context as a clone of the parent
4934 * context, or of whatever the parent is a clone of.
4935 * Note that if the parent is a clone, it could get
4936 * uncloned at any point, but that doesn't matter
4937 * because the list of events and the generation
4938 * count can't have changed since we took the mutex.
4939 */
4940 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
4941 if (cloned_ctx) {
4942 child_ctx->parent_ctx = cloned_ctx;
4943 child_ctx->parent_gen = parent_ctx->parent_gen;
4944 } else {
4945 child_ctx->parent_ctx = parent_ctx;
4946 child_ctx->parent_gen = parent_ctx->generation;
4947 }
4948 get_ctx(child_ctx->parent_ctx);
4949 }
4950
4951 mutex_unlock(&parent_ctx->mutex);
4952
4953 perf_unpin_context(parent_ctx);
4954
4955 return ret;
4956 }
4957
4958 static void __cpuinit perf_event_init_cpu(int cpu)
4959 {
4960 struct perf_cpu_context *cpuctx;
4961
4962 cpuctx = &per_cpu(perf_cpu_context, cpu);
4963 __perf_event_init_context(&cpuctx->ctx, NULL);
4964
4965 spin_lock(&perf_resource_lock);
4966 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
4967 spin_unlock(&perf_resource_lock);
4968
4969 hw_perf_event_setup(cpu);
4970 }
4971
4972 #ifdef CONFIG_HOTPLUG_CPU
4973 static void __perf_event_exit_cpu(void *info)
4974 {
4975 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4976 struct perf_event_context *ctx = &cpuctx->ctx;
4977 struct perf_event *event, *tmp;
4978
4979 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
4980 __perf_event_remove_from_context(event);
4981 }
4982 static void perf_event_exit_cpu(int cpu)
4983 {
4984 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4985 struct perf_event_context *ctx = &cpuctx->ctx;
4986
4987 mutex_lock(&ctx->mutex);
4988 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
4989 mutex_unlock(&ctx->mutex);
4990 }
4991 #else
4992 static inline void perf_event_exit_cpu(int cpu) { }
4993 #endif
4994
4995 static int __cpuinit
4996 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
4997 {
4998 unsigned int cpu = (long)hcpu;
4999
5000 switch (action) {
5001
5002 case CPU_UP_PREPARE:
5003 case CPU_UP_PREPARE_FROZEN:
5004 perf_event_init_cpu(cpu);
5005 break;
5006
5007 case CPU_ONLINE:
5008 case CPU_ONLINE_FROZEN:
5009 hw_perf_event_setup_online(cpu);
5010 break;
5011
5012 case CPU_DOWN_PREPARE:
5013 case CPU_DOWN_PREPARE_FROZEN:
5014 perf_event_exit_cpu(cpu);
5015 break;
5016
5017 default:
5018 break;
5019 }
5020
5021 return NOTIFY_OK;
5022 }
5023
5024 /*
5025 * This has to have a higher priority than migration_notifier in sched.c.
5026 */
5027 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5028 .notifier_call = perf_cpu_notify,
5029 .priority = 20,
5030 };
5031
5032 void __init perf_event_init(void)
5033 {
5034 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5035 (void *)(long)smp_processor_id());
5036 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5037 (void *)(long)smp_processor_id());
5038 register_cpu_notifier(&perf_cpu_nb);
5039 }
5040
5041 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
5042 {
5043 return sprintf(buf, "%d\n", perf_reserved_percpu);
5044 }
5045
5046 static ssize_t
5047 perf_set_reserve_percpu(struct sysdev_class *class,
5048 const char *buf,
5049 size_t count)
5050 {
5051 struct perf_cpu_context *cpuctx;
5052 unsigned long val;
5053 int err, cpu, mpt;
5054
5055 err = strict_strtoul(buf, 10, &val);
5056 if (err)
5057 return err;
5058 if (val > perf_max_events)
5059 return -EINVAL;
5060
5061 spin_lock(&perf_resource_lock);
5062 perf_reserved_percpu = val;
5063 for_each_online_cpu(cpu) {
5064 cpuctx = &per_cpu(perf_cpu_context, cpu);
5065 spin_lock_irq(&cpuctx->ctx.lock);
5066 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5067 perf_max_events - perf_reserved_percpu);
5068 cpuctx->max_pertask = mpt;
5069 spin_unlock_irq(&cpuctx->ctx.lock);
5070 }
5071 spin_unlock(&perf_resource_lock);
5072
5073 return count;
5074 }
5075
5076 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
5077 {
5078 return sprintf(buf, "%d\n", perf_overcommit);
5079 }
5080
5081 static ssize_t
5082 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
5083 {
5084 unsigned long val;
5085 int err;
5086
5087 err = strict_strtoul(buf, 10, &val);
5088 if (err)
5089 return err;
5090 if (val > 1)
5091 return -EINVAL;
5092
5093 spin_lock(&perf_resource_lock);
5094 perf_overcommit = val;
5095 spin_unlock(&perf_resource_lock);
5096
5097 return count;
5098 }
5099
5100 static SYSDEV_CLASS_ATTR(
5101 reserve_percpu,
5102 0644,
5103 perf_show_reserve_percpu,
5104 perf_set_reserve_percpu
5105 );
5106
5107 static SYSDEV_CLASS_ATTR(
5108 overcommit,
5109 0644,
5110 perf_show_overcommit,
5111 perf_set_overcommit
5112 );
5113
5114 static struct attribute *perfclass_attrs[] = {
5115 &attr_reserve_percpu.attr,
5116 &attr_overcommit.attr,
5117 NULL
5118 };
5119
5120 static struct attribute_group perfclass_attr_group = {
5121 .attrs = perfclass_attrs,
5122 .name = "perf_events",
5123 };
5124
5125 static int __init perf_event_sysfs_init(void)
5126 {
5127 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5128 &perfclass_attr_group);
5129 }
5130 device_initcall(perf_event_sysfs_init);