]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/perf_event.c
perf_events: Fix races in group composition
[mirror_ubuntu-bionic-kernel.git] / kernel / perf_event.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34 #include <linux/hw_breakpoint.h>
35
36 #include <asm/irq_regs.h>
37
38 /*
39 * Each CPU has a list of per CPU events:
40 */
41 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
42
43 int perf_max_events __read_mostly = 1;
44 static int perf_reserved_percpu __read_mostly;
45 static int perf_overcommit __read_mostly = 1;
46
47 static atomic_t nr_events __read_mostly;
48 static atomic_t nr_mmap_events __read_mostly;
49 static atomic_t nr_comm_events __read_mostly;
50 static atomic_t nr_task_events __read_mostly;
51
52 /*
53 * perf event paranoia level:
54 * -1 - not paranoid at all
55 * 0 - disallow raw tracepoint access for unpriv
56 * 1 - disallow cpu events for unpriv
57 * 2 - disallow kernel profiling for unpriv
58 */
59 int sysctl_perf_event_paranoid __read_mostly = 1;
60
61 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
62
63 /*
64 * max perf event sample rate
65 */
66 int sysctl_perf_event_sample_rate __read_mostly = 100000;
67
68 static atomic64_t perf_event_id;
69
70 /*
71 * Lock for (sysadmin-configurable) event reservations:
72 */
73 static DEFINE_SPINLOCK(perf_resource_lock);
74
75 /*
76 * Architecture provided APIs - weak aliases:
77 */
78 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
79 {
80 return NULL;
81 }
82
83 void __weak hw_perf_disable(void) { barrier(); }
84 void __weak hw_perf_enable(void) { barrier(); }
85
86 void __weak perf_event_print_debug(void) { }
87
88 static DEFINE_PER_CPU(int, perf_disable_count);
89
90 void perf_disable(void)
91 {
92 if (!__get_cpu_var(perf_disable_count)++)
93 hw_perf_disable();
94 }
95
96 void perf_enable(void)
97 {
98 if (!--__get_cpu_var(perf_disable_count))
99 hw_perf_enable();
100 }
101
102 static void get_ctx(struct perf_event_context *ctx)
103 {
104 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
105 }
106
107 static void free_ctx(struct rcu_head *head)
108 {
109 struct perf_event_context *ctx;
110
111 ctx = container_of(head, struct perf_event_context, rcu_head);
112 kfree(ctx);
113 }
114
115 static void put_ctx(struct perf_event_context *ctx)
116 {
117 if (atomic_dec_and_test(&ctx->refcount)) {
118 if (ctx->parent_ctx)
119 put_ctx(ctx->parent_ctx);
120 if (ctx->task)
121 put_task_struct(ctx->task);
122 call_rcu(&ctx->rcu_head, free_ctx);
123 }
124 }
125
126 static void unclone_ctx(struct perf_event_context *ctx)
127 {
128 if (ctx->parent_ctx) {
129 put_ctx(ctx->parent_ctx);
130 ctx->parent_ctx = NULL;
131 }
132 }
133
134 /*
135 * If we inherit events we want to return the parent event id
136 * to userspace.
137 */
138 static u64 primary_event_id(struct perf_event *event)
139 {
140 u64 id = event->id;
141
142 if (event->parent)
143 id = event->parent->id;
144
145 return id;
146 }
147
148 /*
149 * Get the perf_event_context for a task and lock it.
150 * This has to cope with with the fact that until it is locked,
151 * the context could get moved to another task.
152 */
153 static struct perf_event_context *
154 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
155 {
156 struct perf_event_context *ctx;
157
158 rcu_read_lock();
159 retry:
160 ctx = rcu_dereference(task->perf_event_ctxp);
161 if (ctx) {
162 /*
163 * If this context is a clone of another, it might
164 * get swapped for another underneath us by
165 * perf_event_task_sched_out, though the
166 * rcu_read_lock() protects us from any context
167 * getting freed. Lock the context and check if it
168 * got swapped before we could get the lock, and retry
169 * if so. If we locked the right context, then it
170 * can't get swapped on us any more.
171 */
172 raw_spin_lock_irqsave(&ctx->lock, *flags);
173 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
174 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
175 goto retry;
176 }
177
178 if (!atomic_inc_not_zero(&ctx->refcount)) {
179 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
180 ctx = NULL;
181 }
182 }
183 rcu_read_unlock();
184 return ctx;
185 }
186
187 /*
188 * Get the context for a task and increment its pin_count so it
189 * can't get swapped to another task. This also increments its
190 * reference count so that the context can't get freed.
191 */
192 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
193 {
194 struct perf_event_context *ctx;
195 unsigned long flags;
196
197 ctx = perf_lock_task_context(task, &flags);
198 if (ctx) {
199 ++ctx->pin_count;
200 raw_spin_unlock_irqrestore(&ctx->lock, flags);
201 }
202 return ctx;
203 }
204
205 static void perf_unpin_context(struct perf_event_context *ctx)
206 {
207 unsigned long flags;
208
209 raw_spin_lock_irqsave(&ctx->lock, flags);
210 --ctx->pin_count;
211 raw_spin_unlock_irqrestore(&ctx->lock, flags);
212 put_ctx(ctx);
213 }
214
215 static inline u64 perf_clock(void)
216 {
217 return cpu_clock(raw_smp_processor_id());
218 }
219
220 /*
221 * Update the record of the current time in a context.
222 */
223 static void update_context_time(struct perf_event_context *ctx)
224 {
225 u64 now = perf_clock();
226
227 ctx->time += now - ctx->timestamp;
228 ctx->timestamp = now;
229 }
230
231 /*
232 * Update the total_time_enabled and total_time_running fields for a event.
233 */
234 static void update_event_times(struct perf_event *event)
235 {
236 struct perf_event_context *ctx = event->ctx;
237 u64 run_end;
238
239 if (event->state < PERF_EVENT_STATE_INACTIVE ||
240 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
241 return;
242
243 if (ctx->is_active)
244 run_end = ctx->time;
245 else
246 run_end = event->tstamp_stopped;
247
248 event->total_time_enabled = run_end - event->tstamp_enabled;
249
250 if (event->state == PERF_EVENT_STATE_INACTIVE)
251 run_end = event->tstamp_stopped;
252 else
253 run_end = ctx->time;
254
255 event->total_time_running = run_end - event->tstamp_running;
256 }
257
258 /*
259 * Update total_time_enabled and total_time_running for all events in a group.
260 */
261 static void update_group_times(struct perf_event *leader)
262 {
263 struct perf_event *event;
264
265 update_event_times(leader);
266 list_for_each_entry(event, &leader->sibling_list, group_entry)
267 update_event_times(event);
268 }
269
270 static struct list_head *
271 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
272 {
273 if (event->attr.pinned)
274 return &ctx->pinned_groups;
275 else
276 return &ctx->flexible_groups;
277 }
278
279 /*
280 * Add a event from the lists for its context.
281 * Must be called with ctx->mutex and ctx->lock held.
282 */
283 static void
284 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
285 {
286 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
287 event->attach_state |= PERF_ATTACH_CONTEXT;
288
289 /*
290 * If we're a stand alone event or group leader, we go to the context
291 * list, group events are kept attached to the group so that
292 * perf_group_detach can, at all times, locate all siblings.
293 */
294 if (event->group_leader == event) {
295 struct list_head *list;
296
297 if (is_software_event(event))
298 event->group_flags |= PERF_GROUP_SOFTWARE;
299
300 list = ctx_group_list(event, ctx);
301 list_add_tail(&event->group_entry, list);
302 }
303
304 list_add_rcu(&event->event_entry, &ctx->event_list);
305 ctx->nr_events++;
306 if (event->attr.inherit_stat)
307 ctx->nr_stat++;
308 }
309
310 static void perf_group_attach(struct perf_event *event)
311 {
312 struct perf_event *group_leader = event->group_leader;
313
314 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
315 event->attach_state |= PERF_ATTACH_GROUP;
316
317 if (group_leader == event)
318 return;
319
320 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
321 !is_software_event(event))
322 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
323
324 list_add_tail(&event->group_entry, &group_leader->sibling_list);
325 group_leader->nr_siblings++;
326 }
327
328 /*
329 * Remove a event from the lists for its context.
330 * Must be called with ctx->mutex and ctx->lock held.
331 */
332 static void
333 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
334 {
335 /*
336 * We can have double detach due to exit/hot-unplug + close.
337 */
338 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
339 return;
340
341 event->attach_state &= ~PERF_ATTACH_CONTEXT;
342
343 ctx->nr_events--;
344 if (event->attr.inherit_stat)
345 ctx->nr_stat--;
346
347 list_del_rcu(&event->event_entry);
348
349 if (event->group_leader == event)
350 list_del_init(&event->group_entry);
351
352 update_group_times(event);
353
354 /*
355 * If event was in error state, then keep it
356 * that way, otherwise bogus counts will be
357 * returned on read(). The only way to get out
358 * of error state is by explicit re-enabling
359 * of the event
360 */
361 if (event->state > PERF_EVENT_STATE_OFF)
362 event->state = PERF_EVENT_STATE_OFF;
363 }
364
365 static void perf_group_detach(struct perf_event *event)
366 {
367 struct perf_event *sibling, *tmp;
368 struct list_head *list = NULL;
369
370 /*
371 * We can have double detach due to exit/hot-unplug + close.
372 */
373 if (!(event->attach_state & PERF_ATTACH_GROUP))
374 return;
375
376 event->attach_state &= ~PERF_ATTACH_GROUP;
377
378 /*
379 * If this is a sibling, remove it from its group.
380 */
381 if (event->group_leader != event) {
382 list_del_init(&event->group_entry);
383 event->group_leader->nr_siblings--;
384 return;
385 }
386
387 if (!list_empty(&event->group_entry))
388 list = &event->group_entry;
389
390 /*
391 * If this was a group event with sibling events then
392 * upgrade the siblings to singleton events by adding them
393 * to whatever list we are on.
394 */
395 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
396 if (list)
397 list_move_tail(&sibling->group_entry, list);
398 sibling->group_leader = sibling;
399
400 /* Inherit group flags from the previous leader */
401 sibling->group_flags = event->group_flags;
402 }
403 }
404
405 static void
406 event_sched_out(struct perf_event *event,
407 struct perf_cpu_context *cpuctx,
408 struct perf_event_context *ctx)
409 {
410 if (event->state != PERF_EVENT_STATE_ACTIVE)
411 return;
412
413 event->state = PERF_EVENT_STATE_INACTIVE;
414 if (event->pending_disable) {
415 event->pending_disable = 0;
416 event->state = PERF_EVENT_STATE_OFF;
417 }
418 event->tstamp_stopped = ctx->time;
419 event->pmu->disable(event);
420 event->oncpu = -1;
421
422 if (!is_software_event(event))
423 cpuctx->active_oncpu--;
424 ctx->nr_active--;
425 if (event->attr.exclusive || !cpuctx->active_oncpu)
426 cpuctx->exclusive = 0;
427 }
428
429 static void
430 group_sched_out(struct perf_event *group_event,
431 struct perf_cpu_context *cpuctx,
432 struct perf_event_context *ctx)
433 {
434 struct perf_event *event;
435
436 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
437 return;
438
439 event_sched_out(group_event, cpuctx, ctx);
440
441 /*
442 * Schedule out siblings (if any):
443 */
444 list_for_each_entry(event, &group_event->sibling_list, group_entry)
445 event_sched_out(event, cpuctx, ctx);
446
447 if (group_event->attr.exclusive)
448 cpuctx->exclusive = 0;
449 }
450
451 /*
452 * Cross CPU call to remove a performance event
453 *
454 * We disable the event on the hardware level first. After that we
455 * remove it from the context list.
456 */
457 static void __perf_event_remove_from_context(void *info)
458 {
459 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
460 struct perf_event *event = info;
461 struct perf_event_context *ctx = event->ctx;
462
463 /*
464 * If this is a task context, we need to check whether it is
465 * the current task context of this cpu. If not it has been
466 * scheduled out before the smp call arrived.
467 */
468 if (ctx->task && cpuctx->task_ctx != ctx)
469 return;
470
471 raw_spin_lock(&ctx->lock);
472 /*
473 * Protect the list operation against NMI by disabling the
474 * events on a global level.
475 */
476 perf_disable();
477
478 event_sched_out(event, cpuctx, ctx);
479
480 list_del_event(event, ctx);
481
482 if (!ctx->task) {
483 /*
484 * Allow more per task events with respect to the
485 * reservation:
486 */
487 cpuctx->max_pertask =
488 min(perf_max_events - ctx->nr_events,
489 perf_max_events - perf_reserved_percpu);
490 }
491
492 perf_enable();
493 raw_spin_unlock(&ctx->lock);
494 }
495
496
497 /*
498 * Remove the event from a task's (or a CPU's) list of events.
499 *
500 * Must be called with ctx->mutex held.
501 *
502 * CPU events are removed with a smp call. For task events we only
503 * call when the task is on a CPU.
504 *
505 * If event->ctx is a cloned context, callers must make sure that
506 * every task struct that event->ctx->task could possibly point to
507 * remains valid. This is OK when called from perf_release since
508 * that only calls us on the top-level context, which can't be a clone.
509 * When called from perf_event_exit_task, it's OK because the
510 * context has been detached from its task.
511 */
512 static void perf_event_remove_from_context(struct perf_event *event)
513 {
514 struct perf_event_context *ctx = event->ctx;
515 struct task_struct *task = ctx->task;
516
517 if (!task) {
518 /*
519 * Per cpu events are removed via an smp call and
520 * the removal is always successful.
521 */
522 smp_call_function_single(event->cpu,
523 __perf_event_remove_from_context,
524 event, 1);
525 return;
526 }
527
528 retry:
529 task_oncpu_function_call(task, __perf_event_remove_from_context,
530 event);
531
532 raw_spin_lock_irq(&ctx->lock);
533 /*
534 * If the context is active we need to retry the smp call.
535 */
536 if (ctx->nr_active && !list_empty(&event->group_entry)) {
537 raw_spin_unlock_irq(&ctx->lock);
538 goto retry;
539 }
540
541 /*
542 * The lock prevents that this context is scheduled in so we
543 * can remove the event safely, if the call above did not
544 * succeed.
545 */
546 if (!list_empty(&event->group_entry))
547 list_del_event(event, ctx);
548 raw_spin_unlock_irq(&ctx->lock);
549 }
550
551 /*
552 * Cross CPU call to disable a performance event
553 */
554 static void __perf_event_disable(void *info)
555 {
556 struct perf_event *event = info;
557 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
558 struct perf_event_context *ctx = event->ctx;
559
560 /*
561 * If this is a per-task event, need to check whether this
562 * event's task is the current task on this cpu.
563 */
564 if (ctx->task && cpuctx->task_ctx != ctx)
565 return;
566
567 raw_spin_lock(&ctx->lock);
568
569 /*
570 * If the event is on, turn it off.
571 * If it is in error state, leave it in error state.
572 */
573 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
574 update_context_time(ctx);
575 update_group_times(event);
576 if (event == event->group_leader)
577 group_sched_out(event, cpuctx, ctx);
578 else
579 event_sched_out(event, cpuctx, ctx);
580 event->state = PERF_EVENT_STATE_OFF;
581 }
582
583 raw_spin_unlock(&ctx->lock);
584 }
585
586 /*
587 * Disable a event.
588 *
589 * If event->ctx is a cloned context, callers must make sure that
590 * every task struct that event->ctx->task could possibly point to
591 * remains valid. This condition is satisifed when called through
592 * perf_event_for_each_child or perf_event_for_each because they
593 * hold the top-level event's child_mutex, so any descendant that
594 * goes to exit will block in sync_child_event.
595 * When called from perf_pending_event it's OK because event->ctx
596 * is the current context on this CPU and preemption is disabled,
597 * hence we can't get into perf_event_task_sched_out for this context.
598 */
599 void perf_event_disable(struct perf_event *event)
600 {
601 struct perf_event_context *ctx = event->ctx;
602 struct task_struct *task = ctx->task;
603
604 if (!task) {
605 /*
606 * Disable the event on the cpu that it's on
607 */
608 smp_call_function_single(event->cpu, __perf_event_disable,
609 event, 1);
610 return;
611 }
612
613 retry:
614 task_oncpu_function_call(task, __perf_event_disable, event);
615
616 raw_spin_lock_irq(&ctx->lock);
617 /*
618 * If the event is still active, we need to retry the cross-call.
619 */
620 if (event->state == PERF_EVENT_STATE_ACTIVE) {
621 raw_spin_unlock_irq(&ctx->lock);
622 goto retry;
623 }
624
625 /*
626 * Since we have the lock this context can't be scheduled
627 * in, so we can change the state safely.
628 */
629 if (event->state == PERF_EVENT_STATE_INACTIVE) {
630 update_group_times(event);
631 event->state = PERF_EVENT_STATE_OFF;
632 }
633
634 raw_spin_unlock_irq(&ctx->lock);
635 }
636
637 static int
638 event_sched_in(struct perf_event *event,
639 struct perf_cpu_context *cpuctx,
640 struct perf_event_context *ctx)
641 {
642 if (event->state <= PERF_EVENT_STATE_OFF)
643 return 0;
644
645 event->state = PERF_EVENT_STATE_ACTIVE;
646 event->oncpu = smp_processor_id();
647 /*
648 * The new state must be visible before we turn it on in the hardware:
649 */
650 smp_wmb();
651
652 if (event->pmu->enable(event)) {
653 event->state = PERF_EVENT_STATE_INACTIVE;
654 event->oncpu = -1;
655 return -EAGAIN;
656 }
657
658 event->tstamp_running += ctx->time - event->tstamp_stopped;
659
660 if (!is_software_event(event))
661 cpuctx->active_oncpu++;
662 ctx->nr_active++;
663
664 if (event->attr.exclusive)
665 cpuctx->exclusive = 1;
666
667 return 0;
668 }
669
670 static int
671 group_sched_in(struct perf_event *group_event,
672 struct perf_cpu_context *cpuctx,
673 struct perf_event_context *ctx)
674 {
675 struct perf_event *event, *partial_group = NULL;
676 const struct pmu *pmu = group_event->pmu;
677 bool txn = false;
678 int ret;
679
680 if (group_event->state == PERF_EVENT_STATE_OFF)
681 return 0;
682
683 /* Check if group transaction availabe */
684 if (pmu->start_txn)
685 txn = true;
686
687 if (txn)
688 pmu->start_txn(pmu);
689
690 if (event_sched_in(group_event, cpuctx, ctx))
691 return -EAGAIN;
692
693 /*
694 * Schedule in siblings as one group (if any):
695 */
696 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
697 if (event_sched_in(event, cpuctx, ctx)) {
698 partial_group = event;
699 goto group_error;
700 }
701 }
702
703 if (!txn)
704 return 0;
705
706 ret = pmu->commit_txn(pmu);
707 if (!ret) {
708 pmu->cancel_txn(pmu);
709 return 0;
710 }
711
712 group_error:
713 if (txn)
714 pmu->cancel_txn(pmu);
715
716 /*
717 * Groups can be scheduled in as one unit only, so undo any
718 * partial group before returning:
719 */
720 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
721 if (event == partial_group)
722 break;
723 event_sched_out(event, cpuctx, ctx);
724 }
725 event_sched_out(group_event, cpuctx, ctx);
726
727 return -EAGAIN;
728 }
729
730 /*
731 * Work out whether we can put this event group on the CPU now.
732 */
733 static int group_can_go_on(struct perf_event *event,
734 struct perf_cpu_context *cpuctx,
735 int can_add_hw)
736 {
737 /*
738 * Groups consisting entirely of software events can always go on.
739 */
740 if (event->group_flags & PERF_GROUP_SOFTWARE)
741 return 1;
742 /*
743 * If an exclusive group is already on, no other hardware
744 * events can go on.
745 */
746 if (cpuctx->exclusive)
747 return 0;
748 /*
749 * If this group is exclusive and there are already
750 * events on the CPU, it can't go on.
751 */
752 if (event->attr.exclusive && cpuctx->active_oncpu)
753 return 0;
754 /*
755 * Otherwise, try to add it if all previous groups were able
756 * to go on.
757 */
758 return can_add_hw;
759 }
760
761 static void add_event_to_ctx(struct perf_event *event,
762 struct perf_event_context *ctx)
763 {
764 list_add_event(event, ctx);
765 perf_group_attach(event);
766 event->tstamp_enabled = ctx->time;
767 event->tstamp_running = ctx->time;
768 event->tstamp_stopped = ctx->time;
769 }
770
771 /*
772 * Cross CPU call to install and enable a performance event
773 *
774 * Must be called with ctx->mutex held
775 */
776 static void __perf_install_in_context(void *info)
777 {
778 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
779 struct perf_event *event = info;
780 struct perf_event_context *ctx = event->ctx;
781 struct perf_event *leader = event->group_leader;
782 int err;
783
784 /*
785 * If this is a task context, we need to check whether it is
786 * the current task context of this cpu. If not it has been
787 * scheduled out before the smp call arrived.
788 * Or possibly this is the right context but it isn't
789 * on this cpu because it had no events.
790 */
791 if (ctx->task && cpuctx->task_ctx != ctx) {
792 if (cpuctx->task_ctx || ctx->task != current)
793 return;
794 cpuctx->task_ctx = ctx;
795 }
796
797 raw_spin_lock(&ctx->lock);
798 ctx->is_active = 1;
799 update_context_time(ctx);
800
801 /*
802 * Protect the list operation against NMI by disabling the
803 * events on a global level. NOP for non NMI based events.
804 */
805 perf_disable();
806
807 add_event_to_ctx(event, ctx);
808
809 if (event->cpu != -1 && event->cpu != smp_processor_id())
810 goto unlock;
811
812 /*
813 * Don't put the event on if it is disabled or if
814 * it is in a group and the group isn't on.
815 */
816 if (event->state != PERF_EVENT_STATE_INACTIVE ||
817 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
818 goto unlock;
819
820 /*
821 * An exclusive event can't go on if there are already active
822 * hardware events, and no hardware event can go on if there
823 * is already an exclusive event on.
824 */
825 if (!group_can_go_on(event, cpuctx, 1))
826 err = -EEXIST;
827 else
828 err = event_sched_in(event, cpuctx, ctx);
829
830 if (err) {
831 /*
832 * This event couldn't go on. If it is in a group
833 * then we have to pull the whole group off.
834 * If the event group is pinned then put it in error state.
835 */
836 if (leader != event)
837 group_sched_out(leader, cpuctx, ctx);
838 if (leader->attr.pinned) {
839 update_group_times(leader);
840 leader->state = PERF_EVENT_STATE_ERROR;
841 }
842 }
843
844 if (!err && !ctx->task && cpuctx->max_pertask)
845 cpuctx->max_pertask--;
846
847 unlock:
848 perf_enable();
849
850 raw_spin_unlock(&ctx->lock);
851 }
852
853 /*
854 * Attach a performance event to a context
855 *
856 * First we add the event to the list with the hardware enable bit
857 * in event->hw_config cleared.
858 *
859 * If the event is attached to a task which is on a CPU we use a smp
860 * call to enable it in the task context. The task might have been
861 * scheduled away, but we check this in the smp call again.
862 *
863 * Must be called with ctx->mutex held.
864 */
865 static void
866 perf_install_in_context(struct perf_event_context *ctx,
867 struct perf_event *event,
868 int cpu)
869 {
870 struct task_struct *task = ctx->task;
871
872 if (!task) {
873 /*
874 * Per cpu events are installed via an smp call and
875 * the install is always successful.
876 */
877 smp_call_function_single(cpu, __perf_install_in_context,
878 event, 1);
879 return;
880 }
881
882 retry:
883 task_oncpu_function_call(task, __perf_install_in_context,
884 event);
885
886 raw_spin_lock_irq(&ctx->lock);
887 /*
888 * we need to retry the smp call.
889 */
890 if (ctx->is_active && list_empty(&event->group_entry)) {
891 raw_spin_unlock_irq(&ctx->lock);
892 goto retry;
893 }
894
895 /*
896 * The lock prevents that this context is scheduled in so we
897 * can add the event safely, if it the call above did not
898 * succeed.
899 */
900 if (list_empty(&event->group_entry))
901 add_event_to_ctx(event, ctx);
902 raw_spin_unlock_irq(&ctx->lock);
903 }
904
905 /*
906 * Put a event into inactive state and update time fields.
907 * Enabling the leader of a group effectively enables all
908 * the group members that aren't explicitly disabled, so we
909 * have to update their ->tstamp_enabled also.
910 * Note: this works for group members as well as group leaders
911 * since the non-leader members' sibling_lists will be empty.
912 */
913 static void __perf_event_mark_enabled(struct perf_event *event,
914 struct perf_event_context *ctx)
915 {
916 struct perf_event *sub;
917
918 event->state = PERF_EVENT_STATE_INACTIVE;
919 event->tstamp_enabled = ctx->time - event->total_time_enabled;
920 list_for_each_entry(sub, &event->sibling_list, group_entry)
921 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
922 sub->tstamp_enabled =
923 ctx->time - sub->total_time_enabled;
924 }
925
926 /*
927 * Cross CPU call to enable a performance event
928 */
929 static void __perf_event_enable(void *info)
930 {
931 struct perf_event *event = info;
932 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
933 struct perf_event_context *ctx = event->ctx;
934 struct perf_event *leader = event->group_leader;
935 int err;
936
937 /*
938 * If this is a per-task event, need to check whether this
939 * event's task is the current task on this cpu.
940 */
941 if (ctx->task && cpuctx->task_ctx != ctx) {
942 if (cpuctx->task_ctx || ctx->task != current)
943 return;
944 cpuctx->task_ctx = ctx;
945 }
946
947 raw_spin_lock(&ctx->lock);
948 ctx->is_active = 1;
949 update_context_time(ctx);
950
951 if (event->state >= PERF_EVENT_STATE_INACTIVE)
952 goto unlock;
953 __perf_event_mark_enabled(event, ctx);
954
955 if (event->cpu != -1 && event->cpu != smp_processor_id())
956 goto unlock;
957
958 /*
959 * If the event is in a group and isn't the group leader,
960 * then don't put it on unless the group is on.
961 */
962 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
963 goto unlock;
964
965 if (!group_can_go_on(event, cpuctx, 1)) {
966 err = -EEXIST;
967 } else {
968 perf_disable();
969 if (event == leader)
970 err = group_sched_in(event, cpuctx, ctx);
971 else
972 err = event_sched_in(event, cpuctx, ctx);
973 perf_enable();
974 }
975
976 if (err) {
977 /*
978 * If this event can't go on and it's part of a
979 * group, then the whole group has to come off.
980 */
981 if (leader != event)
982 group_sched_out(leader, cpuctx, ctx);
983 if (leader->attr.pinned) {
984 update_group_times(leader);
985 leader->state = PERF_EVENT_STATE_ERROR;
986 }
987 }
988
989 unlock:
990 raw_spin_unlock(&ctx->lock);
991 }
992
993 /*
994 * Enable a event.
995 *
996 * If event->ctx is a cloned context, callers must make sure that
997 * every task struct that event->ctx->task could possibly point to
998 * remains valid. This condition is satisfied when called through
999 * perf_event_for_each_child or perf_event_for_each as described
1000 * for perf_event_disable.
1001 */
1002 void perf_event_enable(struct perf_event *event)
1003 {
1004 struct perf_event_context *ctx = event->ctx;
1005 struct task_struct *task = ctx->task;
1006
1007 if (!task) {
1008 /*
1009 * Enable the event on the cpu that it's on
1010 */
1011 smp_call_function_single(event->cpu, __perf_event_enable,
1012 event, 1);
1013 return;
1014 }
1015
1016 raw_spin_lock_irq(&ctx->lock);
1017 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1018 goto out;
1019
1020 /*
1021 * If the event is in error state, clear that first.
1022 * That way, if we see the event in error state below, we
1023 * know that it has gone back into error state, as distinct
1024 * from the task having been scheduled away before the
1025 * cross-call arrived.
1026 */
1027 if (event->state == PERF_EVENT_STATE_ERROR)
1028 event->state = PERF_EVENT_STATE_OFF;
1029
1030 retry:
1031 raw_spin_unlock_irq(&ctx->lock);
1032 task_oncpu_function_call(task, __perf_event_enable, event);
1033
1034 raw_spin_lock_irq(&ctx->lock);
1035
1036 /*
1037 * If the context is active and the event is still off,
1038 * we need to retry the cross-call.
1039 */
1040 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1041 goto retry;
1042
1043 /*
1044 * Since we have the lock this context can't be scheduled
1045 * in, so we can change the state safely.
1046 */
1047 if (event->state == PERF_EVENT_STATE_OFF)
1048 __perf_event_mark_enabled(event, ctx);
1049
1050 out:
1051 raw_spin_unlock_irq(&ctx->lock);
1052 }
1053
1054 static int perf_event_refresh(struct perf_event *event, int refresh)
1055 {
1056 /*
1057 * not supported on inherited events
1058 */
1059 if (event->attr.inherit)
1060 return -EINVAL;
1061
1062 atomic_add(refresh, &event->event_limit);
1063 perf_event_enable(event);
1064
1065 return 0;
1066 }
1067
1068 enum event_type_t {
1069 EVENT_FLEXIBLE = 0x1,
1070 EVENT_PINNED = 0x2,
1071 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1072 };
1073
1074 static void ctx_sched_out(struct perf_event_context *ctx,
1075 struct perf_cpu_context *cpuctx,
1076 enum event_type_t event_type)
1077 {
1078 struct perf_event *event;
1079
1080 raw_spin_lock(&ctx->lock);
1081 ctx->is_active = 0;
1082 if (likely(!ctx->nr_events))
1083 goto out;
1084 update_context_time(ctx);
1085
1086 perf_disable();
1087 if (!ctx->nr_active)
1088 goto out_enable;
1089
1090 if (event_type & EVENT_PINNED)
1091 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1092 group_sched_out(event, cpuctx, ctx);
1093
1094 if (event_type & EVENT_FLEXIBLE)
1095 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1096 group_sched_out(event, cpuctx, ctx);
1097
1098 out_enable:
1099 perf_enable();
1100 out:
1101 raw_spin_unlock(&ctx->lock);
1102 }
1103
1104 /*
1105 * Test whether two contexts are equivalent, i.e. whether they
1106 * have both been cloned from the same version of the same context
1107 * and they both have the same number of enabled events.
1108 * If the number of enabled events is the same, then the set
1109 * of enabled events should be the same, because these are both
1110 * inherited contexts, therefore we can't access individual events
1111 * in them directly with an fd; we can only enable/disable all
1112 * events via prctl, or enable/disable all events in a family
1113 * via ioctl, which will have the same effect on both contexts.
1114 */
1115 static int context_equiv(struct perf_event_context *ctx1,
1116 struct perf_event_context *ctx2)
1117 {
1118 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1119 && ctx1->parent_gen == ctx2->parent_gen
1120 && !ctx1->pin_count && !ctx2->pin_count;
1121 }
1122
1123 static void __perf_event_sync_stat(struct perf_event *event,
1124 struct perf_event *next_event)
1125 {
1126 u64 value;
1127
1128 if (!event->attr.inherit_stat)
1129 return;
1130
1131 /*
1132 * Update the event value, we cannot use perf_event_read()
1133 * because we're in the middle of a context switch and have IRQs
1134 * disabled, which upsets smp_call_function_single(), however
1135 * we know the event must be on the current CPU, therefore we
1136 * don't need to use it.
1137 */
1138 switch (event->state) {
1139 case PERF_EVENT_STATE_ACTIVE:
1140 event->pmu->read(event);
1141 /* fall-through */
1142
1143 case PERF_EVENT_STATE_INACTIVE:
1144 update_event_times(event);
1145 break;
1146
1147 default:
1148 break;
1149 }
1150
1151 /*
1152 * In order to keep per-task stats reliable we need to flip the event
1153 * values when we flip the contexts.
1154 */
1155 value = atomic64_read(&next_event->count);
1156 value = atomic64_xchg(&event->count, value);
1157 atomic64_set(&next_event->count, value);
1158
1159 swap(event->total_time_enabled, next_event->total_time_enabled);
1160 swap(event->total_time_running, next_event->total_time_running);
1161
1162 /*
1163 * Since we swizzled the values, update the user visible data too.
1164 */
1165 perf_event_update_userpage(event);
1166 perf_event_update_userpage(next_event);
1167 }
1168
1169 #define list_next_entry(pos, member) \
1170 list_entry(pos->member.next, typeof(*pos), member)
1171
1172 static void perf_event_sync_stat(struct perf_event_context *ctx,
1173 struct perf_event_context *next_ctx)
1174 {
1175 struct perf_event *event, *next_event;
1176
1177 if (!ctx->nr_stat)
1178 return;
1179
1180 update_context_time(ctx);
1181
1182 event = list_first_entry(&ctx->event_list,
1183 struct perf_event, event_entry);
1184
1185 next_event = list_first_entry(&next_ctx->event_list,
1186 struct perf_event, event_entry);
1187
1188 while (&event->event_entry != &ctx->event_list &&
1189 &next_event->event_entry != &next_ctx->event_list) {
1190
1191 __perf_event_sync_stat(event, next_event);
1192
1193 event = list_next_entry(event, event_entry);
1194 next_event = list_next_entry(next_event, event_entry);
1195 }
1196 }
1197
1198 /*
1199 * Called from scheduler to remove the events of the current task,
1200 * with interrupts disabled.
1201 *
1202 * We stop each event and update the event value in event->count.
1203 *
1204 * This does not protect us against NMI, but disable()
1205 * sets the disabled bit in the control field of event _before_
1206 * accessing the event control register. If a NMI hits, then it will
1207 * not restart the event.
1208 */
1209 void perf_event_task_sched_out(struct task_struct *task,
1210 struct task_struct *next)
1211 {
1212 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1213 struct perf_event_context *ctx = task->perf_event_ctxp;
1214 struct perf_event_context *next_ctx;
1215 struct perf_event_context *parent;
1216 int do_switch = 1;
1217
1218 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1219
1220 if (likely(!ctx || !cpuctx->task_ctx))
1221 return;
1222
1223 rcu_read_lock();
1224 parent = rcu_dereference(ctx->parent_ctx);
1225 next_ctx = next->perf_event_ctxp;
1226 if (parent && next_ctx &&
1227 rcu_dereference(next_ctx->parent_ctx) == parent) {
1228 /*
1229 * Looks like the two contexts are clones, so we might be
1230 * able to optimize the context switch. We lock both
1231 * contexts and check that they are clones under the
1232 * lock (including re-checking that neither has been
1233 * uncloned in the meantime). It doesn't matter which
1234 * order we take the locks because no other cpu could
1235 * be trying to lock both of these tasks.
1236 */
1237 raw_spin_lock(&ctx->lock);
1238 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1239 if (context_equiv(ctx, next_ctx)) {
1240 /*
1241 * XXX do we need a memory barrier of sorts
1242 * wrt to rcu_dereference() of perf_event_ctxp
1243 */
1244 task->perf_event_ctxp = next_ctx;
1245 next->perf_event_ctxp = ctx;
1246 ctx->task = next;
1247 next_ctx->task = task;
1248 do_switch = 0;
1249
1250 perf_event_sync_stat(ctx, next_ctx);
1251 }
1252 raw_spin_unlock(&next_ctx->lock);
1253 raw_spin_unlock(&ctx->lock);
1254 }
1255 rcu_read_unlock();
1256
1257 if (do_switch) {
1258 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1259 cpuctx->task_ctx = NULL;
1260 }
1261 }
1262
1263 static void task_ctx_sched_out(struct perf_event_context *ctx,
1264 enum event_type_t event_type)
1265 {
1266 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1267
1268 if (!cpuctx->task_ctx)
1269 return;
1270
1271 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1272 return;
1273
1274 ctx_sched_out(ctx, cpuctx, event_type);
1275 cpuctx->task_ctx = NULL;
1276 }
1277
1278 /*
1279 * Called with IRQs disabled
1280 */
1281 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1282 {
1283 task_ctx_sched_out(ctx, EVENT_ALL);
1284 }
1285
1286 /*
1287 * Called with IRQs disabled
1288 */
1289 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1290 enum event_type_t event_type)
1291 {
1292 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1293 }
1294
1295 static void
1296 ctx_pinned_sched_in(struct perf_event_context *ctx,
1297 struct perf_cpu_context *cpuctx)
1298 {
1299 struct perf_event *event;
1300
1301 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1302 if (event->state <= PERF_EVENT_STATE_OFF)
1303 continue;
1304 if (event->cpu != -1 && event->cpu != smp_processor_id())
1305 continue;
1306
1307 if (group_can_go_on(event, cpuctx, 1))
1308 group_sched_in(event, cpuctx, ctx);
1309
1310 /*
1311 * If this pinned group hasn't been scheduled,
1312 * put it in error state.
1313 */
1314 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1315 update_group_times(event);
1316 event->state = PERF_EVENT_STATE_ERROR;
1317 }
1318 }
1319 }
1320
1321 static void
1322 ctx_flexible_sched_in(struct perf_event_context *ctx,
1323 struct perf_cpu_context *cpuctx)
1324 {
1325 struct perf_event *event;
1326 int can_add_hw = 1;
1327
1328 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1329 /* Ignore events in OFF or ERROR state */
1330 if (event->state <= PERF_EVENT_STATE_OFF)
1331 continue;
1332 /*
1333 * Listen to the 'cpu' scheduling filter constraint
1334 * of events:
1335 */
1336 if (event->cpu != -1 && event->cpu != smp_processor_id())
1337 continue;
1338
1339 if (group_can_go_on(event, cpuctx, can_add_hw))
1340 if (group_sched_in(event, cpuctx, ctx))
1341 can_add_hw = 0;
1342 }
1343 }
1344
1345 static void
1346 ctx_sched_in(struct perf_event_context *ctx,
1347 struct perf_cpu_context *cpuctx,
1348 enum event_type_t event_type)
1349 {
1350 raw_spin_lock(&ctx->lock);
1351 ctx->is_active = 1;
1352 if (likely(!ctx->nr_events))
1353 goto out;
1354
1355 ctx->timestamp = perf_clock();
1356
1357 perf_disable();
1358
1359 /*
1360 * First go through the list and put on any pinned groups
1361 * in order to give them the best chance of going on.
1362 */
1363 if (event_type & EVENT_PINNED)
1364 ctx_pinned_sched_in(ctx, cpuctx);
1365
1366 /* Then walk through the lower prio flexible groups */
1367 if (event_type & EVENT_FLEXIBLE)
1368 ctx_flexible_sched_in(ctx, cpuctx);
1369
1370 perf_enable();
1371 out:
1372 raw_spin_unlock(&ctx->lock);
1373 }
1374
1375 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1376 enum event_type_t event_type)
1377 {
1378 struct perf_event_context *ctx = &cpuctx->ctx;
1379
1380 ctx_sched_in(ctx, cpuctx, event_type);
1381 }
1382
1383 static void task_ctx_sched_in(struct task_struct *task,
1384 enum event_type_t event_type)
1385 {
1386 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1387 struct perf_event_context *ctx = task->perf_event_ctxp;
1388
1389 if (likely(!ctx))
1390 return;
1391 if (cpuctx->task_ctx == ctx)
1392 return;
1393 ctx_sched_in(ctx, cpuctx, event_type);
1394 cpuctx->task_ctx = ctx;
1395 }
1396 /*
1397 * Called from scheduler to add the events of the current task
1398 * with interrupts disabled.
1399 *
1400 * We restore the event value and then enable it.
1401 *
1402 * This does not protect us against NMI, but enable()
1403 * sets the enabled bit in the control field of event _before_
1404 * accessing the event control register. If a NMI hits, then it will
1405 * keep the event running.
1406 */
1407 void perf_event_task_sched_in(struct task_struct *task)
1408 {
1409 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1410 struct perf_event_context *ctx = task->perf_event_ctxp;
1411
1412 if (likely(!ctx))
1413 return;
1414
1415 if (cpuctx->task_ctx == ctx)
1416 return;
1417
1418 perf_disable();
1419
1420 /*
1421 * We want to keep the following priority order:
1422 * cpu pinned (that don't need to move), task pinned,
1423 * cpu flexible, task flexible.
1424 */
1425 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1426
1427 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1428 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1429 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1430
1431 cpuctx->task_ctx = ctx;
1432
1433 perf_enable();
1434 }
1435
1436 #define MAX_INTERRUPTS (~0ULL)
1437
1438 static void perf_log_throttle(struct perf_event *event, int enable);
1439
1440 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1441 {
1442 u64 frequency = event->attr.sample_freq;
1443 u64 sec = NSEC_PER_SEC;
1444 u64 divisor, dividend;
1445
1446 int count_fls, nsec_fls, frequency_fls, sec_fls;
1447
1448 count_fls = fls64(count);
1449 nsec_fls = fls64(nsec);
1450 frequency_fls = fls64(frequency);
1451 sec_fls = 30;
1452
1453 /*
1454 * We got @count in @nsec, with a target of sample_freq HZ
1455 * the target period becomes:
1456 *
1457 * @count * 10^9
1458 * period = -------------------
1459 * @nsec * sample_freq
1460 *
1461 */
1462
1463 /*
1464 * Reduce accuracy by one bit such that @a and @b converge
1465 * to a similar magnitude.
1466 */
1467 #define REDUCE_FLS(a, b) \
1468 do { \
1469 if (a##_fls > b##_fls) { \
1470 a >>= 1; \
1471 a##_fls--; \
1472 } else { \
1473 b >>= 1; \
1474 b##_fls--; \
1475 } \
1476 } while (0)
1477
1478 /*
1479 * Reduce accuracy until either term fits in a u64, then proceed with
1480 * the other, so that finally we can do a u64/u64 division.
1481 */
1482 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1483 REDUCE_FLS(nsec, frequency);
1484 REDUCE_FLS(sec, count);
1485 }
1486
1487 if (count_fls + sec_fls > 64) {
1488 divisor = nsec * frequency;
1489
1490 while (count_fls + sec_fls > 64) {
1491 REDUCE_FLS(count, sec);
1492 divisor >>= 1;
1493 }
1494
1495 dividend = count * sec;
1496 } else {
1497 dividend = count * sec;
1498
1499 while (nsec_fls + frequency_fls > 64) {
1500 REDUCE_FLS(nsec, frequency);
1501 dividend >>= 1;
1502 }
1503
1504 divisor = nsec * frequency;
1505 }
1506
1507 return div64_u64(dividend, divisor);
1508 }
1509
1510 static void perf_event_stop(struct perf_event *event)
1511 {
1512 if (!event->pmu->stop)
1513 return event->pmu->disable(event);
1514
1515 return event->pmu->stop(event);
1516 }
1517
1518 static int perf_event_start(struct perf_event *event)
1519 {
1520 if (!event->pmu->start)
1521 return event->pmu->enable(event);
1522
1523 return event->pmu->start(event);
1524 }
1525
1526 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1527 {
1528 struct hw_perf_event *hwc = &event->hw;
1529 u64 period, sample_period;
1530 s64 delta;
1531
1532 period = perf_calculate_period(event, nsec, count);
1533
1534 delta = (s64)(period - hwc->sample_period);
1535 delta = (delta + 7) / 8; /* low pass filter */
1536
1537 sample_period = hwc->sample_period + delta;
1538
1539 if (!sample_period)
1540 sample_period = 1;
1541
1542 hwc->sample_period = sample_period;
1543
1544 if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1545 perf_disable();
1546 perf_event_stop(event);
1547 atomic64_set(&hwc->period_left, 0);
1548 perf_event_start(event);
1549 perf_enable();
1550 }
1551 }
1552
1553 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1554 {
1555 struct perf_event *event;
1556 struct hw_perf_event *hwc;
1557 u64 interrupts, now;
1558 s64 delta;
1559
1560 raw_spin_lock(&ctx->lock);
1561 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1562 if (event->state != PERF_EVENT_STATE_ACTIVE)
1563 continue;
1564
1565 if (event->cpu != -1 && event->cpu != smp_processor_id())
1566 continue;
1567
1568 hwc = &event->hw;
1569
1570 interrupts = hwc->interrupts;
1571 hwc->interrupts = 0;
1572
1573 /*
1574 * unthrottle events on the tick
1575 */
1576 if (interrupts == MAX_INTERRUPTS) {
1577 perf_log_throttle(event, 1);
1578 perf_disable();
1579 event->pmu->unthrottle(event);
1580 perf_enable();
1581 }
1582
1583 if (!event->attr.freq || !event->attr.sample_freq)
1584 continue;
1585
1586 perf_disable();
1587 event->pmu->read(event);
1588 now = atomic64_read(&event->count);
1589 delta = now - hwc->freq_count_stamp;
1590 hwc->freq_count_stamp = now;
1591
1592 if (delta > 0)
1593 perf_adjust_period(event, TICK_NSEC, delta);
1594 perf_enable();
1595 }
1596 raw_spin_unlock(&ctx->lock);
1597 }
1598
1599 /*
1600 * Round-robin a context's events:
1601 */
1602 static void rotate_ctx(struct perf_event_context *ctx)
1603 {
1604 raw_spin_lock(&ctx->lock);
1605
1606 /* Rotate the first entry last of non-pinned groups */
1607 list_rotate_left(&ctx->flexible_groups);
1608
1609 raw_spin_unlock(&ctx->lock);
1610 }
1611
1612 void perf_event_task_tick(struct task_struct *curr)
1613 {
1614 struct perf_cpu_context *cpuctx;
1615 struct perf_event_context *ctx;
1616 int rotate = 0;
1617
1618 if (!atomic_read(&nr_events))
1619 return;
1620
1621 cpuctx = &__get_cpu_var(perf_cpu_context);
1622 if (cpuctx->ctx.nr_events &&
1623 cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1624 rotate = 1;
1625
1626 ctx = curr->perf_event_ctxp;
1627 if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1628 rotate = 1;
1629
1630 perf_ctx_adjust_freq(&cpuctx->ctx);
1631 if (ctx)
1632 perf_ctx_adjust_freq(ctx);
1633
1634 if (!rotate)
1635 return;
1636
1637 perf_disable();
1638 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1639 if (ctx)
1640 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1641
1642 rotate_ctx(&cpuctx->ctx);
1643 if (ctx)
1644 rotate_ctx(ctx);
1645
1646 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1647 if (ctx)
1648 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1649 perf_enable();
1650 }
1651
1652 static int event_enable_on_exec(struct perf_event *event,
1653 struct perf_event_context *ctx)
1654 {
1655 if (!event->attr.enable_on_exec)
1656 return 0;
1657
1658 event->attr.enable_on_exec = 0;
1659 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1660 return 0;
1661
1662 __perf_event_mark_enabled(event, ctx);
1663
1664 return 1;
1665 }
1666
1667 /*
1668 * Enable all of a task's events that have been marked enable-on-exec.
1669 * This expects task == current.
1670 */
1671 static void perf_event_enable_on_exec(struct task_struct *task)
1672 {
1673 struct perf_event_context *ctx;
1674 struct perf_event *event;
1675 unsigned long flags;
1676 int enabled = 0;
1677 int ret;
1678
1679 local_irq_save(flags);
1680 ctx = task->perf_event_ctxp;
1681 if (!ctx || !ctx->nr_events)
1682 goto out;
1683
1684 __perf_event_task_sched_out(ctx);
1685
1686 raw_spin_lock(&ctx->lock);
1687
1688 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1689 ret = event_enable_on_exec(event, ctx);
1690 if (ret)
1691 enabled = 1;
1692 }
1693
1694 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1695 ret = event_enable_on_exec(event, ctx);
1696 if (ret)
1697 enabled = 1;
1698 }
1699
1700 /*
1701 * Unclone this context if we enabled any event.
1702 */
1703 if (enabled)
1704 unclone_ctx(ctx);
1705
1706 raw_spin_unlock(&ctx->lock);
1707
1708 perf_event_task_sched_in(task);
1709 out:
1710 local_irq_restore(flags);
1711 }
1712
1713 /*
1714 * Cross CPU call to read the hardware event
1715 */
1716 static void __perf_event_read(void *info)
1717 {
1718 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1719 struct perf_event *event = info;
1720 struct perf_event_context *ctx = event->ctx;
1721
1722 /*
1723 * If this is a task context, we need to check whether it is
1724 * the current task context of this cpu. If not it has been
1725 * scheduled out before the smp call arrived. In that case
1726 * event->count would have been updated to a recent sample
1727 * when the event was scheduled out.
1728 */
1729 if (ctx->task && cpuctx->task_ctx != ctx)
1730 return;
1731
1732 raw_spin_lock(&ctx->lock);
1733 update_context_time(ctx);
1734 update_event_times(event);
1735 raw_spin_unlock(&ctx->lock);
1736
1737 event->pmu->read(event);
1738 }
1739
1740 static u64 perf_event_read(struct perf_event *event)
1741 {
1742 /*
1743 * If event is enabled and currently active on a CPU, update the
1744 * value in the event structure:
1745 */
1746 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1747 smp_call_function_single(event->oncpu,
1748 __perf_event_read, event, 1);
1749 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1750 struct perf_event_context *ctx = event->ctx;
1751 unsigned long flags;
1752
1753 raw_spin_lock_irqsave(&ctx->lock, flags);
1754 update_context_time(ctx);
1755 update_event_times(event);
1756 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1757 }
1758
1759 return atomic64_read(&event->count);
1760 }
1761
1762 /*
1763 * Initialize the perf_event context in a task_struct:
1764 */
1765 static void
1766 __perf_event_init_context(struct perf_event_context *ctx,
1767 struct task_struct *task)
1768 {
1769 raw_spin_lock_init(&ctx->lock);
1770 mutex_init(&ctx->mutex);
1771 INIT_LIST_HEAD(&ctx->pinned_groups);
1772 INIT_LIST_HEAD(&ctx->flexible_groups);
1773 INIT_LIST_HEAD(&ctx->event_list);
1774 atomic_set(&ctx->refcount, 1);
1775 ctx->task = task;
1776 }
1777
1778 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1779 {
1780 struct perf_event_context *ctx;
1781 struct perf_cpu_context *cpuctx;
1782 struct task_struct *task;
1783 unsigned long flags;
1784 int err;
1785
1786 if (pid == -1 && cpu != -1) {
1787 /* Must be root to operate on a CPU event: */
1788 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1789 return ERR_PTR(-EACCES);
1790
1791 if (cpu < 0 || cpu >= nr_cpumask_bits)
1792 return ERR_PTR(-EINVAL);
1793
1794 /*
1795 * We could be clever and allow to attach a event to an
1796 * offline CPU and activate it when the CPU comes up, but
1797 * that's for later.
1798 */
1799 if (!cpu_online(cpu))
1800 return ERR_PTR(-ENODEV);
1801
1802 cpuctx = &per_cpu(perf_cpu_context, cpu);
1803 ctx = &cpuctx->ctx;
1804 get_ctx(ctx);
1805
1806 return ctx;
1807 }
1808
1809 rcu_read_lock();
1810 if (!pid)
1811 task = current;
1812 else
1813 task = find_task_by_vpid(pid);
1814 if (task)
1815 get_task_struct(task);
1816 rcu_read_unlock();
1817
1818 if (!task)
1819 return ERR_PTR(-ESRCH);
1820
1821 /*
1822 * Can't attach events to a dying task.
1823 */
1824 err = -ESRCH;
1825 if (task->flags & PF_EXITING)
1826 goto errout;
1827
1828 /* Reuse ptrace permission checks for now. */
1829 err = -EACCES;
1830 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1831 goto errout;
1832
1833 retry:
1834 ctx = perf_lock_task_context(task, &flags);
1835 if (ctx) {
1836 unclone_ctx(ctx);
1837 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1838 }
1839
1840 if (!ctx) {
1841 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1842 err = -ENOMEM;
1843 if (!ctx)
1844 goto errout;
1845 __perf_event_init_context(ctx, task);
1846 get_ctx(ctx);
1847 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1848 /*
1849 * We raced with some other task; use
1850 * the context they set.
1851 */
1852 kfree(ctx);
1853 goto retry;
1854 }
1855 get_task_struct(task);
1856 }
1857
1858 put_task_struct(task);
1859 return ctx;
1860
1861 errout:
1862 put_task_struct(task);
1863 return ERR_PTR(err);
1864 }
1865
1866 static void perf_event_free_filter(struct perf_event *event);
1867
1868 static void free_event_rcu(struct rcu_head *head)
1869 {
1870 struct perf_event *event;
1871
1872 event = container_of(head, struct perf_event, rcu_head);
1873 if (event->ns)
1874 put_pid_ns(event->ns);
1875 perf_event_free_filter(event);
1876 kfree(event);
1877 }
1878
1879 static void perf_pending_sync(struct perf_event *event);
1880 static void perf_mmap_data_put(struct perf_mmap_data *data);
1881
1882 static void free_event(struct perf_event *event)
1883 {
1884 perf_pending_sync(event);
1885
1886 if (!event->parent) {
1887 atomic_dec(&nr_events);
1888 if (event->attr.mmap)
1889 atomic_dec(&nr_mmap_events);
1890 if (event->attr.comm)
1891 atomic_dec(&nr_comm_events);
1892 if (event->attr.task)
1893 atomic_dec(&nr_task_events);
1894 }
1895
1896 if (event->data) {
1897 perf_mmap_data_put(event->data);
1898 event->data = NULL;
1899 }
1900
1901 if (event->destroy)
1902 event->destroy(event);
1903
1904 put_ctx(event->ctx);
1905 call_rcu(&event->rcu_head, free_event_rcu);
1906 }
1907
1908 int perf_event_release_kernel(struct perf_event *event)
1909 {
1910 struct perf_event_context *ctx = event->ctx;
1911
1912 /*
1913 * Remove from the PMU, can't get re-enabled since we got
1914 * here because the last ref went.
1915 */
1916 perf_event_disable(event);
1917
1918 WARN_ON_ONCE(ctx->parent_ctx);
1919 /*
1920 * There are two ways this annotation is useful:
1921 *
1922 * 1) there is a lock recursion from perf_event_exit_task
1923 * see the comment there.
1924 *
1925 * 2) there is a lock-inversion with mmap_sem through
1926 * perf_event_read_group(), which takes faults while
1927 * holding ctx->mutex, however this is called after
1928 * the last filedesc died, so there is no possibility
1929 * to trigger the AB-BA case.
1930 */
1931 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
1932 raw_spin_lock_irq(&ctx->lock);
1933 perf_group_detach(event);
1934 list_del_event(event, ctx);
1935 raw_spin_unlock_irq(&ctx->lock);
1936 mutex_unlock(&ctx->mutex);
1937
1938 mutex_lock(&event->owner->perf_event_mutex);
1939 list_del_init(&event->owner_entry);
1940 mutex_unlock(&event->owner->perf_event_mutex);
1941 put_task_struct(event->owner);
1942
1943 free_event(event);
1944
1945 return 0;
1946 }
1947 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1948
1949 /*
1950 * Called when the last reference to the file is gone.
1951 */
1952 static int perf_release(struct inode *inode, struct file *file)
1953 {
1954 struct perf_event *event = file->private_data;
1955
1956 file->private_data = NULL;
1957
1958 return perf_event_release_kernel(event);
1959 }
1960
1961 static int perf_event_read_size(struct perf_event *event)
1962 {
1963 int entry = sizeof(u64); /* value */
1964 int size = 0;
1965 int nr = 1;
1966
1967 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1968 size += sizeof(u64);
1969
1970 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1971 size += sizeof(u64);
1972
1973 if (event->attr.read_format & PERF_FORMAT_ID)
1974 entry += sizeof(u64);
1975
1976 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1977 nr += event->group_leader->nr_siblings;
1978 size += sizeof(u64);
1979 }
1980
1981 size += entry * nr;
1982
1983 return size;
1984 }
1985
1986 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1987 {
1988 struct perf_event *child;
1989 u64 total = 0;
1990
1991 *enabled = 0;
1992 *running = 0;
1993
1994 mutex_lock(&event->child_mutex);
1995 total += perf_event_read(event);
1996 *enabled += event->total_time_enabled +
1997 atomic64_read(&event->child_total_time_enabled);
1998 *running += event->total_time_running +
1999 atomic64_read(&event->child_total_time_running);
2000
2001 list_for_each_entry(child, &event->child_list, child_list) {
2002 total += perf_event_read(child);
2003 *enabled += child->total_time_enabled;
2004 *running += child->total_time_running;
2005 }
2006 mutex_unlock(&event->child_mutex);
2007
2008 return total;
2009 }
2010 EXPORT_SYMBOL_GPL(perf_event_read_value);
2011
2012 static int perf_event_read_group(struct perf_event *event,
2013 u64 read_format, char __user *buf)
2014 {
2015 struct perf_event *leader = event->group_leader, *sub;
2016 int n = 0, size = 0, ret = -EFAULT;
2017 struct perf_event_context *ctx = leader->ctx;
2018 u64 values[5];
2019 u64 count, enabled, running;
2020
2021 mutex_lock(&ctx->mutex);
2022 count = perf_event_read_value(leader, &enabled, &running);
2023
2024 values[n++] = 1 + leader->nr_siblings;
2025 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2026 values[n++] = enabled;
2027 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2028 values[n++] = running;
2029 values[n++] = count;
2030 if (read_format & PERF_FORMAT_ID)
2031 values[n++] = primary_event_id(leader);
2032
2033 size = n * sizeof(u64);
2034
2035 if (copy_to_user(buf, values, size))
2036 goto unlock;
2037
2038 ret = size;
2039
2040 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2041 n = 0;
2042
2043 values[n++] = perf_event_read_value(sub, &enabled, &running);
2044 if (read_format & PERF_FORMAT_ID)
2045 values[n++] = primary_event_id(sub);
2046
2047 size = n * sizeof(u64);
2048
2049 if (copy_to_user(buf + ret, values, size)) {
2050 ret = -EFAULT;
2051 goto unlock;
2052 }
2053
2054 ret += size;
2055 }
2056 unlock:
2057 mutex_unlock(&ctx->mutex);
2058
2059 return ret;
2060 }
2061
2062 static int perf_event_read_one(struct perf_event *event,
2063 u64 read_format, char __user *buf)
2064 {
2065 u64 enabled, running;
2066 u64 values[4];
2067 int n = 0;
2068
2069 values[n++] = perf_event_read_value(event, &enabled, &running);
2070 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2071 values[n++] = enabled;
2072 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2073 values[n++] = running;
2074 if (read_format & PERF_FORMAT_ID)
2075 values[n++] = primary_event_id(event);
2076
2077 if (copy_to_user(buf, values, n * sizeof(u64)))
2078 return -EFAULT;
2079
2080 return n * sizeof(u64);
2081 }
2082
2083 /*
2084 * Read the performance event - simple non blocking version for now
2085 */
2086 static ssize_t
2087 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2088 {
2089 u64 read_format = event->attr.read_format;
2090 int ret;
2091
2092 /*
2093 * Return end-of-file for a read on a event that is in
2094 * error state (i.e. because it was pinned but it couldn't be
2095 * scheduled on to the CPU at some point).
2096 */
2097 if (event->state == PERF_EVENT_STATE_ERROR)
2098 return 0;
2099
2100 if (count < perf_event_read_size(event))
2101 return -ENOSPC;
2102
2103 WARN_ON_ONCE(event->ctx->parent_ctx);
2104 if (read_format & PERF_FORMAT_GROUP)
2105 ret = perf_event_read_group(event, read_format, buf);
2106 else
2107 ret = perf_event_read_one(event, read_format, buf);
2108
2109 return ret;
2110 }
2111
2112 static ssize_t
2113 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2114 {
2115 struct perf_event *event = file->private_data;
2116
2117 return perf_read_hw(event, buf, count);
2118 }
2119
2120 static unsigned int perf_poll(struct file *file, poll_table *wait)
2121 {
2122 struct perf_event *event = file->private_data;
2123 struct perf_mmap_data *data;
2124 unsigned int events = POLL_HUP;
2125
2126 rcu_read_lock();
2127 data = rcu_dereference(event->data);
2128 if (data)
2129 events = atomic_xchg(&data->poll, 0);
2130 rcu_read_unlock();
2131
2132 poll_wait(file, &event->waitq, wait);
2133
2134 return events;
2135 }
2136
2137 static void perf_event_reset(struct perf_event *event)
2138 {
2139 (void)perf_event_read(event);
2140 atomic64_set(&event->count, 0);
2141 perf_event_update_userpage(event);
2142 }
2143
2144 /*
2145 * Holding the top-level event's child_mutex means that any
2146 * descendant process that has inherited this event will block
2147 * in sync_child_event if it goes to exit, thus satisfying the
2148 * task existence requirements of perf_event_enable/disable.
2149 */
2150 static void perf_event_for_each_child(struct perf_event *event,
2151 void (*func)(struct perf_event *))
2152 {
2153 struct perf_event *child;
2154
2155 WARN_ON_ONCE(event->ctx->parent_ctx);
2156 mutex_lock(&event->child_mutex);
2157 func(event);
2158 list_for_each_entry(child, &event->child_list, child_list)
2159 func(child);
2160 mutex_unlock(&event->child_mutex);
2161 }
2162
2163 static void perf_event_for_each(struct perf_event *event,
2164 void (*func)(struct perf_event *))
2165 {
2166 struct perf_event_context *ctx = event->ctx;
2167 struct perf_event *sibling;
2168
2169 WARN_ON_ONCE(ctx->parent_ctx);
2170 mutex_lock(&ctx->mutex);
2171 event = event->group_leader;
2172
2173 perf_event_for_each_child(event, func);
2174 func(event);
2175 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2176 perf_event_for_each_child(event, func);
2177 mutex_unlock(&ctx->mutex);
2178 }
2179
2180 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2181 {
2182 struct perf_event_context *ctx = event->ctx;
2183 unsigned long size;
2184 int ret = 0;
2185 u64 value;
2186
2187 if (!event->attr.sample_period)
2188 return -EINVAL;
2189
2190 size = copy_from_user(&value, arg, sizeof(value));
2191 if (size != sizeof(value))
2192 return -EFAULT;
2193
2194 if (!value)
2195 return -EINVAL;
2196
2197 raw_spin_lock_irq(&ctx->lock);
2198 if (event->attr.freq) {
2199 if (value > sysctl_perf_event_sample_rate) {
2200 ret = -EINVAL;
2201 goto unlock;
2202 }
2203
2204 event->attr.sample_freq = value;
2205 } else {
2206 event->attr.sample_period = value;
2207 event->hw.sample_period = value;
2208 }
2209 unlock:
2210 raw_spin_unlock_irq(&ctx->lock);
2211
2212 return ret;
2213 }
2214
2215 static const struct file_operations perf_fops;
2216
2217 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2218 {
2219 struct file *file;
2220
2221 file = fget_light(fd, fput_needed);
2222 if (!file)
2223 return ERR_PTR(-EBADF);
2224
2225 if (file->f_op != &perf_fops) {
2226 fput_light(file, *fput_needed);
2227 *fput_needed = 0;
2228 return ERR_PTR(-EBADF);
2229 }
2230
2231 return file->private_data;
2232 }
2233
2234 static int perf_event_set_output(struct perf_event *event,
2235 struct perf_event *output_event);
2236 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2237
2238 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2239 {
2240 struct perf_event *event = file->private_data;
2241 void (*func)(struct perf_event *);
2242 u32 flags = arg;
2243
2244 switch (cmd) {
2245 case PERF_EVENT_IOC_ENABLE:
2246 func = perf_event_enable;
2247 break;
2248 case PERF_EVENT_IOC_DISABLE:
2249 func = perf_event_disable;
2250 break;
2251 case PERF_EVENT_IOC_RESET:
2252 func = perf_event_reset;
2253 break;
2254
2255 case PERF_EVENT_IOC_REFRESH:
2256 return perf_event_refresh(event, arg);
2257
2258 case PERF_EVENT_IOC_PERIOD:
2259 return perf_event_period(event, (u64 __user *)arg);
2260
2261 case PERF_EVENT_IOC_SET_OUTPUT:
2262 {
2263 struct perf_event *output_event = NULL;
2264 int fput_needed = 0;
2265 int ret;
2266
2267 if (arg != -1) {
2268 output_event = perf_fget_light(arg, &fput_needed);
2269 if (IS_ERR(output_event))
2270 return PTR_ERR(output_event);
2271 }
2272
2273 ret = perf_event_set_output(event, output_event);
2274 if (output_event)
2275 fput_light(output_event->filp, fput_needed);
2276
2277 return ret;
2278 }
2279
2280 case PERF_EVENT_IOC_SET_FILTER:
2281 return perf_event_set_filter(event, (void __user *)arg);
2282
2283 default:
2284 return -ENOTTY;
2285 }
2286
2287 if (flags & PERF_IOC_FLAG_GROUP)
2288 perf_event_for_each(event, func);
2289 else
2290 perf_event_for_each_child(event, func);
2291
2292 return 0;
2293 }
2294
2295 int perf_event_task_enable(void)
2296 {
2297 struct perf_event *event;
2298
2299 mutex_lock(&current->perf_event_mutex);
2300 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2301 perf_event_for_each_child(event, perf_event_enable);
2302 mutex_unlock(&current->perf_event_mutex);
2303
2304 return 0;
2305 }
2306
2307 int perf_event_task_disable(void)
2308 {
2309 struct perf_event *event;
2310
2311 mutex_lock(&current->perf_event_mutex);
2312 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2313 perf_event_for_each_child(event, perf_event_disable);
2314 mutex_unlock(&current->perf_event_mutex);
2315
2316 return 0;
2317 }
2318
2319 #ifndef PERF_EVENT_INDEX_OFFSET
2320 # define PERF_EVENT_INDEX_OFFSET 0
2321 #endif
2322
2323 static int perf_event_index(struct perf_event *event)
2324 {
2325 if (event->state != PERF_EVENT_STATE_ACTIVE)
2326 return 0;
2327
2328 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2329 }
2330
2331 /*
2332 * Callers need to ensure there can be no nesting of this function, otherwise
2333 * the seqlock logic goes bad. We can not serialize this because the arch
2334 * code calls this from NMI context.
2335 */
2336 void perf_event_update_userpage(struct perf_event *event)
2337 {
2338 struct perf_event_mmap_page *userpg;
2339 struct perf_mmap_data *data;
2340
2341 rcu_read_lock();
2342 data = rcu_dereference(event->data);
2343 if (!data)
2344 goto unlock;
2345
2346 userpg = data->user_page;
2347
2348 /*
2349 * Disable preemption so as to not let the corresponding user-space
2350 * spin too long if we get preempted.
2351 */
2352 preempt_disable();
2353 ++userpg->lock;
2354 barrier();
2355 userpg->index = perf_event_index(event);
2356 userpg->offset = atomic64_read(&event->count);
2357 if (event->state == PERF_EVENT_STATE_ACTIVE)
2358 userpg->offset -= atomic64_read(&event->hw.prev_count);
2359
2360 userpg->time_enabled = event->total_time_enabled +
2361 atomic64_read(&event->child_total_time_enabled);
2362
2363 userpg->time_running = event->total_time_running +
2364 atomic64_read(&event->child_total_time_running);
2365
2366 barrier();
2367 ++userpg->lock;
2368 preempt_enable();
2369 unlock:
2370 rcu_read_unlock();
2371 }
2372
2373 #ifndef CONFIG_PERF_USE_VMALLOC
2374
2375 /*
2376 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2377 */
2378
2379 static struct page *
2380 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2381 {
2382 if (pgoff > data->nr_pages)
2383 return NULL;
2384
2385 if (pgoff == 0)
2386 return virt_to_page(data->user_page);
2387
2388 return virt_to_page(data->data_pages[pgoff - 1]);
2389 }
2390
2391 static void *perf_mmap_alloc_page(int cpu)
2392 {
2393 struct page *page;
2394 int node;
2395
2396 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2397 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2398 if (!page)
2399 return NULL;
2400
2401 return page_address(page);
2402 }
2403
2404 static struct perf_mmap_data *
2405 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2406 {
2407 struct perf_mmap_data *data;
2408 unsigned long size;
2409 int i;
2410
2411 size = sizeof(struct perf_mmap_data);
2412 size += nr_pages * sizeof(void *);
2413
2414 data = kzalloc(size, GFP_KERNEL);
2415 if (!data)
2416 goto fail;
2417
2418 data->user_page = perf_mmap_alloc_page(event->cpu);
2419 if (!data->user_page)
2420 goto fail_user_page;
2421
2422 for (i = 0; i < nr_pages; i++) {
2423 data->data_pages[i] = perf_mmap_alloc_page(event->cpu);
2424 if (!data->data_pages[i])
2425 goto fail_data_pages;
2426 }
2427
2428 data->nr_pages = nr_pages;
2429
2430 return data;
2431
2432 fail_data_pages:
2433 for (i--; i >= 0; i--)
2434 free_page((unsigned long)data->data_pages[i]);
2435
2436 free_page((unsigned long)data->user_page);
2437
2438 fail_user_page:
2439 kfree(data);
2440
2441 fail:
2442 return NULL;
2443 }
2444
2445 static void perf_mmap_free_page(unsigned long addr)
2446 {
2447 struct page *page = virt_to_page((void *)addr);
2448
2449 page->mapping = NULL;
2450 __free_page(page);
2451 }
2452
2453 static void perf_mmap_data_free(struct perf_mmap_data *data)
2454 {
2455 int i;
2456
2457 perf_mmap_free_page((unsigned long)data->user_page);
2458 for (i = 0; i < data->nr_pages; i++)
2459 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2460 kfree(data);
2461 }
2462
2463 static inline int page_order(struct perf_mmap_data *data)
2464 {
2465 return 0;
2466 }
2467
2468 #else
2469
2470 /*
2471 * Back perf_mmap() with vmalloc memory.
2472 *
2473 * Required for architectures that have d-cache aliasing issues.
2474 */
2475
2476 static inline int page_order(struct perf_mmap_data *data)
2477 {
2478 return data->page_order;
2479 }
2480
2481 static struct page *
2482 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2483 {
2484 if (pgoff > (1UL << page_order(data)))
2485 return NULL;
2486
2487 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2488 }
2489
2490 static void perf_mmap_unmark_page(void *addr)
2491 {
2492 struct page *page = vmalloc_to_page(addr);
2493
2494 page->mapping = NULL;
2495 }
2496
2497 static void perf_mmap_data_free_work(struct work_struct *work)
2498 {
2499 struct perf_mmap_data *data;
2500 void *base;
2501 int i, nr;
2502
2503 data = container_of(work, struct perf_mmap_data, work);
2504 nr = 1 << page_order(data);
2505
2506 base = data->user_page;
2507 for (i = 0; i < nr + 1; i++)
2508 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2509
2510 vfree(base);
2511 kfree(data);
2512 }
2513
2514 static void perf_mmap_data_free(struct perf_mmap_data *data)
2515 {
2516 schedule_work(&data->work);
2517 }
2518
2519 static struct perf_mmap_data *
2520 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2521 {
2522 struct perf_mmap_data *data;
2523 unsigned long size;
2524 void *all_buf;
2525
2526 size = sizeof(struct perf_mmap_data);
2527 size += sizeof(void *);
2528
2529 data = kzalloc(size, GFP_KERNEL);
2530 if (!data)
2531 goto fail;
2532
2533 INIT_WORK(&data->work, perf_mmap_data_free_work);
2534
2535 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2536 if (!all_buf)
2537 goto fail_all_buf;
2538
2539 data->user_page = all_buf;
2540 data->data_pages[0] = all_buf + PAGE_SIZE;
2541 data->page_order = ilog2(nr_pages);
2542 data->nr_pages = 1;
2543
2544 return data;
2545
2546 fail_all_buf:
2547 kfree(data);
2548
2549 fail:
2550 return NULL;
2551 }
2552
2553 #endif
2554
2555 static unsigned long perf_data_size(struct perf_mmap_data *data)
2556 {
2557 return data->nr_pages << (PAGE_SHIFT + page_order(data));
2558 }
2559
2560 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2561 {
2562 struct perf_event *event = vma->vm_file->private_data;
2563 struct perf_mmap_data *data;
2564 int ret = VM_FAULT_SIGBUS;
2565
2566 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2567 if (vmf->pgoff == 0)
2568 ret = 0;
2569 return ret;
2570 }
2571
2572 rcu_read_lock();
2573 data = rcu_dereference(event->data);
2574 if (!data)
2575 goto unlock;
2576
2577 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2578 goto unlock;
2579
2580 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2581 if (!vmf->page)
2582 goto unlock;
2583
2584 get_page(vmf->page);
2585 vmf->page->mapping = vma->vm_file->f_mapping;
2586 vmf->page->index = vmf->pgoff;
2587
2588 ret = 0;
2589 unlock:
2590 rcu_read_unlock();
2591
2592 return ret;
2593 }
2594
2595 static void
2596 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2597 {
2598 long max_size = perf_data_size(data);
2599
2600 if (event->attr.watermark) {
2601 data->watermark = min_t(long, max_size,
2602 event->attr.wakeup_watermark);
2603 }
2604
2605 if (!data->watermark)
2606 data->watermark = max_size / 2;
2607
2608 atomic_set(&data->refcount, 1);
2609 rcu_assign_pointer(event->data, data);
2610 }
2611
2612 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2613 {
2614 struct perf_mmap_data *data;
2615
2616 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2617 perf_mmap_data_free(data);
2618 }
2619
2620 static struct perf_mmap_data *perf_mmap_data_get(struct perf_event *event)
2621 {
2622 struct perf_mmap_data *data;
2623
2624 rcu_read_lock();
2625 data = rcu_dereference(event->data);
2626 if (data) {
2627 if (!atomic_inc_not_zero(&data->refcount))
2628 data = NULL;
2629 }
2630 rcu_read_unlock();
2631
2632 return data;
2633 }
2634
2635 static void perf_mmap_data_put(struct perf_mmap_data *data)
2636 {
2637 if (!atomic_dec_and_test(&data->refcount))
2638 return;
2639
2640 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2641 }
2642
2643 static void perf_mmap_open(struct vm_area_struct *vma)
2644 {
2645 struct perf_event *event = vma->vm_file->private_data;
2646
2647 atomic_inc(&event->mmap_count);
2648 }
2649
2650 static void perf_mmap_close(struct vm_area_struct *vma)
2651 {
2652 struct perf_event *event = vma->vm_file->private_data;
2653
2654 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2655 unsigned long size = perf_data_size(event->data);
2656 struct user_struct *user = event->mmap_user;
2657 struct perf_mmap_data *data = event->data;
2658
2659 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2660 vma->vm_mm->locked_vm -= event->mmap_locked;
2661 rcu_assign_pointer(event->data, NULL);
2662 mutex_unlock(&event->mmap_mutex);
2663
2664 perf_mmap_data_put(data);
2665 free_uid(user);
2666 }
2667 }
2668
2669 static const struct vm_operations_struct perf_mmap_vmops = {
2670 .open = perf_mmap_open,
2671 .close = perf_mmap_close,
2672 .fault = perf_mmap_fault,
2673 .page_mkwrite = perf_mmap_fault,
2674 };
2675
2676 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2677 {
2678 struct perf_event *event = file->private_data;
2679 unsigned long user_locked, user_lock_limit;
2680 struct user_struct *user = current_user();
2681 unsigned long locked, lock_limit;
2682 struct perf_mmap_data *data;
2683 unsigned long vma_size;
2684 unsigned long nr_pages;
2685 long user_extra, extra;
2686 int ret = 0;
2687
2688 /*
2689 * Don't allow mmap() of inherited per-task counters. This would
2690 * create a performance issue due to all children writing to the
2691 * same buffer.
2692 */
2693 if (event->cpu == -1 && event->attr.inherit)
2694 return -EINVAL;
2695
2696 if (!(vma->vm_flags & VM_SHARED))
2697 return -EINVAL;
2698
2699 vma_size = vma->vm_end - vma->vm_start;
2700 nr_pages = (vma_size / PAGE_SIZE) - 1;
2701
2702 /*
2703 * If we have data pages ensure they're a power-of-two number, so we
2704 * can do bitmasks instead of modulo.
2705 */
2706 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2707 return -EINVAL;
2708
2709 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2710 return -EINVAL;
2711
2712 if (vma->vm_pgoff != 0)
2713 return -EINVAL;
2714
2715 WARN_ON_ONCE(event->ctx->parent_ctx);
2716 mutex_lock(&event->mmap_mutex);
2717 if (event->data) {
2718 if (event->data->nr_pages == nr_pages)
2719 atomic_inc(&event->data->refcount);
2720 else
2721 ret = -EINVAL;
2722 goto unlock;
2723 }
2724
2725 user_extra = nr_pages + 1;
2726 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2727
2728 /*
2729 * Increase the limit linearly with more CPUs:
2730 */
2731 user_lock_limit *= num_online_cpus();
2732
2733 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2734
2735 extra = 0;
2736 if (user_locked > user_lock_limit)
2737 extra = user_locked - user_lock_limit;
2738
2739 lock_limit = rlimit(RLIMIT_MEMLOCK);
2740 lock_limit >>= PAGE_SHIFT;
2741 locked = vma->vm_mm->locked_vm + extra;
2742
2743 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2744 !capable(CAP_IPC_LOCK)) {
2745 ret = -EPERM;
2746 goto unlock;
2747 }
2748
2749 WARN_ON(event->data);
2750
2751 data = perf_mmap_data_alloc(event, nr_pages);
2752 if (!data) {
2753 ret = -ENOMEM;
2754 goto unlock;
2755 }
2756
2757 perf_mmap_data_init(event, data);
2758 if (vma->vm_flags & VM_WRITE)
2759 event->data->writable = 1;
2760
2761 atomic_long_add(user_extra, &user->locked_vm);
2762 event->mmap_locked = extra;
2763 event->mmap_user = get_current_user();
2764 vma->vm_mm->locked_vm += event->mmap_locked;
2765
2766 unlock:
2767 if (!ret)
2768 atomic_inc(&event->mmap_count);
2769 mutex_unlock(&event->mmap_mutex);
2770
2771 vma->vm_flags |= VM_RESERVED;
2772 vma->vm_ops = &perf_mmap_vmops;
2773
2774 return ret;
2775 }
2776
2777 static int perf_fasync(int fd, struct file *filp, int on)
2778 {
2779 struct inode *inode = filp->f_path.dentry->d_inode;
2780 struct perf_event *event = filp->private_data;
2781 int retval;
2782
2783 mutex_lock(&inode->i_mutex);
2784 retval = fasync_helper(fd, filp, on, &event->fasync);
2785 mutex_unlock(&inode->i_mutex);
2786
2787 if (retval < 0)
2788 return retval;
2789
2790 return 0;
2791 }
2792
2793 static const struct file_operations perf_fops = {
2794 .llseek = no_llseek,
2795 .release = perf_release,
2796 .read = perf_read,
2797 .poll = perf_poll,
2798 .unlocked_ioctl = perf_ioctl,
2799 .compat_ioctl = perf_ioctl,
2800 .mmap = perf_mmap,
2801 .fasync = perf_fasync,
2802 };
2803
2804 /*
2805 * Perf event wakeup
2806 *
2807 * If there's data, ensure we set the poll() state and publish everything
2808 * to user-space before waking everybody up.
2809 */
2810
2811 void perf_event_wakeup(struct perf_event *event)
2812 {
2813 wake_up_all(&event->waitq);
2814
2815 if (event->pending_kill) {
2816 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2817 event->pending_kill = 0;
2818 }
2819 }
2820
2821 /*
2822 * Pending wakeups
2823 *
2824 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2825 *
2826 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2827 * single linked list and use cmpxchg() to add entries lockless.
2828 */
2829
2830 static void perf_pending_event(struct perf_pending_entry *entry)
2831 {
2832 struct perf_event *event = container_of(entry,
2833 struct perf_event, pending);
2834
2835 if (event->pending_disable) {
2836 event->pending_disable = 0;
2837 __perf_event_disable(event);
2838 }
2839
2840 if (event->pending_wakeup) {
2841 event->pending_wakeup = 0;
2842 perf_event_wakeup(event);
2843 }
2844 }
2845
2846 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2847
2848 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2849 PENDING_TAIL,
2850 };
2851
2852 static void perf_pending_queue(struct perf_pending_entry *entry,
2853 void (*func)(struct perf_pending_entry *))
2854 {
2855 struct perf_pending_entry **head;
2856
2857 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2858 return;
2859
2860 entry->func = func;
2861
2862 head = &get_cpu_var(perf_pending_head);
2863
2864 do {
2865 entry->next = *head;
2866 } while (cmpxchg(head, entry->next, entry) != entry->next);
2867
2868 set_perf_event_pending();
2869
2870 put_cpu_var(perf_pending_head);
2871 }
2872
2873 static int __perf_pending_run(void)
2874 {
2875 struct perf_pending_entry *list;
2876 int nr = 0;
2877
2878 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2879 while (list != PENDING_TAIL) {
2880 void (*func)(struct perf_pending_entry *);
2881 struct perf_pending_entry *entry = list;
2882
2883 list = list->next;
2884
2885 func = entry->func;
2886 entry->next = NULL;
2887 /*
2888 * Ensure we observe the unqueue before we issue the wakeup,
2889 * so that we won't be waiting forever.
2890 * -- see perf_not_pending().
2891 */
2892 smp_wmb();
2893
2894 func(entry);
2895 nr++;
2896 }
2897
2898 return nr;
2899 }
2900
2901 static inline int perf_not_pending(struct perf_event *event)
2902 {
2903 /*
2904 * If we flush on whatever cpu we run, there is a chance we don't
2905 * need to wait.
2906 */
2907 get_cpu();
2908 __perf_pending_run();
2909 put_cpu();
2910
2911 /*
2912 * Ensure we see the proper queue state before going to sleep
2913 * so that we do not miss the wakeup. -- see perf_pending_handle()
2914 */
2915 smp_rmb();
2916 return event->pending.next == NULL;
2917 }
2918
2919 static void perf_pending_sync(struct perf_event *event)
2920 {
2921 wait_event(event->waitq, perf_not_pending(event));
2922 }
2923
2924 void perf_event_do_pending(void)
2925 {
2926 __perf_pending_run();
2927 }
2928
2929 /*
2930 * Callchain support -- arch specific
2931 */
2932
2933 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2934 {
2935 return NULL;
2936 }
2937
2938 __weak
2939 void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
2940 {
2941 }
2942
2943
2944 /*
2945 * We assume there is only KVM supporting the callbacks.
2946 * Later on, we might change it to a list if there is
2947 * another virtualization implementation supporting the callbacks.
2948 */
2949 struct perf_guest_info_callbacks *perf_guest_cbs;
2950
2951 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2952 {
2953 perf_guest_cbs = cbs;
2954 return 0;
2955 }
2956 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
2957
2958 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2959 {
2960 perf_guest_cbs = NULL;
2961 return 0;
2962 }
2963 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
2964
2965 /*
2966 * Output
2967 */
2968 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2969 unsigned long offset, unsigned long head)
2970 {
2971 unsigned long mask;
2972
2973 if (!data->writable)
2974 return true;
2975
2976 mask = perf_data_size(data) - 1;
2977
2978 offset = (offset - tail) & mask;
2979 head = (head - tail) & mask;
2980
2981 if ((int)(head - offset) < 0)
2982 return false;
2983
2984 return true;
2985 }
2986
2987 static void perf_output_wakeup(struct perf_output_handle *handle)
2988 {
2989 atomic_set(&handle->data->poll, POLL_IN);
2990
2991 if (handle->nmi) {
2992 handle->event->pending_wakeup = 1;
2993 perf_pending_queue(&handle->event->pending,
2994 perf_pending_event);
2995 } else
2996 perf_event_wakeup(handle->event);
2997 }
2998
2999 /*
3000 * We need to ensure a later event_id doesn't publish a head when a former
3001 * event isn't done writing. However since we need to deal with NMIs we
3002 * cannot fully serialize things.
3003 *
3004 * We only publish the head (and generate a wakeup) when the outer-most
3005 * event completes.
3006 */
3007 static void perf_output_get_handle(struct perf_output_handle *handle)
3008 {
3009 struct perf_mmap_data *data = handle->data;
3010
3011 preempt_disable();
3012 local_inc(&data->nest);
3013 handle->wakeup = local_read(&data->wakeup);
3014 }
3015
3016 static void perf_output_put_handle(struct perf_output_handle *handle)
3017 {
3018 struct perf_mmap_data *data = handle->data;
3019 unsigned long head;
3020
3021 again:
3022 head = local_read(&data->head);
3023
3024 /*
3025 * IRQ/NMI can happen here, which means we can miss a head update.
3026 */
3027
3028 if (!local_dec_and_test(&data->nest))
3029 goto out;
3030
3031 /*
3032 * Publish the known good head. Rely on the full barrier implied
3033 * by atomic_dec_and_test() order the data->head read and this
3034 * write.
3035 */
3036 data->user_page->data_head = head;
3037
3038 /*
3039 * Now check if we missed an update, rely on the (compiler)
3040 * barrier in atomic_dec_and_test() to re-read data->head.
3041 */
3042 if (unlikely(head != local_read(&data->head))) {
3043 local_inc(&data->nest);
3044 goto again;
3045 }
3046
3047 if (handle->wakeup != local_read(&data->wakeup))
3048 perf_output_wakeup(handle);
3049
3050 out:
3051 preempt_enable();
3052 }
3053
3054 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3055 const void *buf, unsigned int len)
3056 {
3057 do {
3058 unsigned long size = min_t(unsigned long, handle->size, len);
3059
3060 memcpy(handle->addr, buf, size);
3061
3062 len -= size;
3063 handle->addr += size;
3064 handle->size -= size;
3065 if (!handle->size) {
3066 struct perf_mmap_data *data = handle->data;
3067
3068 handle->page++;
3069 handle->page &= data->nr_pages - 1;
3070 handle->addr = data->data_pages[handle->page];
3071 handle->size = PAGE_SIZE << page_order(data);
3072 }
3073 } while (len);
3074 }
3075
3076 int perf_output_begin(struct perf_output_handle *handle,
3077 struct perf_event *event, unsigned int size,
3078 int nmi, int sample)
3079 {
3080 struct perf_mmap_data *data;
3081 unsigned long tail, offset, head;
3082 int have_lost;
3083 struct {
3084 struct perf_event_header header;
3085 u64 id;
3086 u64 lost;
3087 } lost_event;
3088
3089 rcu_read_lock();
3090 /*
3091 * For inherited events we send all the output towards the parent.
3092 */
3093 if (event->parent)
3094 event = event->parent;
3095
3096 data = rcu_dereference(event->data);
3097 if (!data)
3098 goto out;
3099
3100 handle->data = data;
3101 handle->event = event;
3102 handle->nmi = nmi;
3103 handle->sample = sample;
3104
3105 if (!data->nr_pages)
3106 goto out;
3107
3108 have_lost = local_read(&data->lost);
3109 if (have_lost)
3110 size += sizeof(lost_event);
3111
3112 perf_output_get_handle(handle);
3113
3114 do {
3115 /*
3116 * Userspace could choose to issue a mb() before updating the
3117 * tail pointer. So that all reads will be completed before the
3118 * write is issued.
3119 */
3120 tail = ACCESS_ONCE(data->user_page->data_tail);
3121 smp_rmb();
3122 offset = head = local_read(&data->head);
3123 head += size;
3124 if (unlikely(!perf_output_space(data, tail, offset, head)))
3125 goto fail;
3126 } while (local_cmpxchg(&data->head, offset, head) != offset);
3127
3128 if (head - local_read(&data->wakeup) > data->watermark)
3129 local_add(data->watermark, &data->wakeup);
3130
3131 handle->page = offset >> (PAGE_SHIFT + page_order(data));
3132 handle->page &= data->nr_pages - 1;
3133 handle->size = offset & ((PAGE_SIZE << page_order(data)) - 1);
3134 handle->addr = data->data_pages[handle->page];
3135 handle->addr += handle->size;
3136 handle->size = (PAGE_SIZE << page_order(data)) - handle->size;
3137
3138 if (have_lost) {
3139 lost_event.header.type = PERF_RECORD_LOST;
3140 lost_event.header.misc = 0;
3141 lost_event.header.size = sizeof(lost_event);
3142 lost_event.id = event->id;
3143 lost_event.lost = local_xchg(&data->lost, 0);
3144
3145 perf_output_put(handle, lost_event);
3146 }
3147
3148 return 0;
3149
3150 fail:
3151 local_inc(&data->lost);
3152 perf_output_put_handle(handle);
3153 out:
3154 rcu_read_unlock();
3155
3156 return -ENOSPC;
3157 }
3158
3159 void perf_output_end(struct perf_output_handle *handle)
3160 {
3161 struct perf_event *event = handle->event;
3162 struct perf_mmap_data *data = handle->data;
3163
3164 int wakeup_events = event->attr.wakeup_events;
3165
3166 if (handle->sample && wakeup_events) {
3167 int events = local_inc_return(&data->events);
3168 if (events >= wakeup_events) {
3169 local_sub(wakeup_events, &data->events);
3170 local_inc(&data->wakeup);
3171 }
3172 }
3173
3174 perf_output_put_handle(handle);
3175 rcu_read_unlock();
3176 }
3177
3178 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3179 {
3180 /*
3181 * only top level events have the pid namespace they were created in
3182 */
3183 if (event->parent)
3184 event = event->parent;
3185
3186 return task_tgid_nr_ns(p, event->ns);
3187 }
3188
3189 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3190 {
3191 /*
3192 * only top level events have the pid namespace they were created in
3193 */
3194 if (event->parent)
3195 event = event->parent;
3196
3197 return task_pid_nr_ns(p, event->ns);
3198 }
3199
3200 static void perf_output_read_one(struct perf_output_handle *handle,
3201 struct perf_event *event)
3202 {
3203 u64 read_format = event->attr.read_format;
3204 u64 values[4];
3205 int n = 0;
3206
3207 values[n++] = atomic64_read(&event->count);
3208 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3209 values[n++] = event->total_time_enabled +
3210 atomic64_read(&event->child_total_time_enabled);
3211 }
3212 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3213 values[n++] = event->total_time_running +
3214 atomic64_read(&event->child_total_time_running);
3215 }
3216 if (read_format & PERF_FORMAT_ID)
3217 values[n++] = primary_event_id(event);
3218
3219 perf_output_copy(handle, values, n * sizeof(u64));
3220 }
3221
3222 /*
3223 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3224 */
3225 static void perf_output_read_group(struct perf_output_handle *handle,
3226 struct perf_event *event)
3227 {
3228 struct perf_event *leader = event->group_leader, *sub;
3229 u64 read_format = event->attr.read_format;
3230 u64 values[5];
3231 int n = 0;
3232
3233 values[n++] = 1 + leader->nr_siblings;
3234
3235 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3236 values[n++] = leader->total_time_enabled;
3237
3238 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3239 values[n++] = leader->total_time_running;
3240
3241 if (leader != event)
3242 leader->pmu->read(leader);
3243
3244 values[n++] = atomic64_read(&leader->count);
3245 if (read_format & PERF_FORMAT_ID)
3246 values[n++] = primary_event_id(leader);
3247
3248 perf_output_copy(handle, values, n * sizeof(u64));
3249
3250 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3251 n = 0;
3252
3253 if (sub != event)
3254 sub->pmu->read(sub);
3255
3256 values[n++] = atomic64_read(&sub->count);
3257 if (read_format & PERF_FORMAT_ID)
3258 values[n++] = primary_event_id(sub);
3259
3260 perf_output_copy(handle, values, n * sizeof(u64));
3261 }
3262 }
3263
3264 static void perf_output_read(struct perf_output_handle *handle,
3265 struct perf_event *event)
3266 {
3267 if (event->attr.read_format & PERF_FORMAT_GROUP)
3268 perf_output_read_group(handle, event);
3269 else
3270 perf_output_read_one(handle, event);
3271 }
3272
3273 void perf_output_sample(struct perf_output_handle *handle,
3274 struct perf_event_header *header,
3275 struct perf_sample_data *data,
3276 struct perf_event *event)
3277 {
3278 u64 sample_type = data->type;
3279
3280 perf_output_put(handle, *header);
3281
3282 if (sample_type & PERF_SAMPLE_IP)
3283 perf_output_put(handle, data->ip);
3284
3285 if (sample_type & PERF_SAMPLE_TID)
3286 perf_output_put(handle, data->tid_entry);
3287
3288 if (sample_type & PERF_SAMPLE_TIME)
3289 perf_output_put(handle, data->time);
3290
3291 if (sample_type & PERF_SAMPLE_ADDR)
3292 perf_output_put(handle, data->addr);
3293
3294 if (sample_type & PERF_SAMPLE_ID)
3295 perf_output_put(handle, data->id);
3296
3297 if (sample_type & PERF_SAMPLE_STREAM_ID)
3298 perf_output_put(handle, data->stream_id);
3299
3300 if (sample_type & PERF_SAMPLE_CPU)
3301 perf_output_put(handle, data->cpu_entry);
3302
3303 if (sample_type & PERF_SAMPLE_PERIOD)
3304 perf_output_put(handle, data->period);
3305
3306 if (sample_type & PERF_SAMPLE_READ)
3307 perf_output_read(handle, event);
3308
3309 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3310 if (data->callchain) {
3311 int size = 1;
3312
3313 if (data->callchain)
3314 size += data->callchain->nr;
3315
3316 size *= sizeof(u64);
3317
3318 perf_output_copy(handle, data->callchain, size);
3319 } else {
3320 u64 nr = 0;
3321 perf_output_put(handle, nr);
3322 }
3323 }
3324
3325 if (sample_type & PERF_SAMPLE_RAW) {
3326 if (data->raw) {
3327 perf_output_put(handle, data->raw->size);
3328 perf_output_copy(handle, data->raw->data,
3329 data->raw->size);
3330 } else {
3331 struct {
3332 u32 size;
3333 u32 data;
3334 } raw = {
3335 .size = sizeof(u32),
3336 .data = 0,
3337 };
3338 perf_output_put(handle, raw);
3339 }
3340 }
3341 }
3342
3343 void perf_prepare_sample(struct perf_event_header *header,
3344 struct perf_sample_data *data,
3345 struct perf_event *event,
3346 struct pt_regs *regs)
3347 {
3348 u64 sample_type = event->attr.sample_type;
3349
3350 data->type = sample_type;
3351
3352 header->type = PERF_RECORD_SAMPLE;
3353 header->size = sizeof(*header);
3354
3355 header->misc = 0;
3356 header->misc |= perf_misc_flags(regs);
3357
3358 if (sample_type & PERF_SAMPLE_IP) {
3359 data->ip = perf_instruction_pointer(regs);
3360
3361 header->size += sizeof(data->ip);
3362 }
3363
3364 if (sample_type & PERF_SAMPLE_TID) {
3365 /* namespace issues */
3366 data->tid_entry.pid = perf_event_pid(event, current);
3367 data->tid_entry.tid = perf_event_tid(event, current);
3368
3369 header->size += sizeof(data->tid_entry);
3370 }
3371
3372 if (sample_type & PERF_SAMPLE_TIME) {
3373 data->time = perf_clock();
3374
3375 header->size += sizeof(data->time);
3376 }
3377
3378 if (sample_type & PERF_SAMPLE_ADDR)
3379 header->size += sizeof(data->addr);
3380
3381 if (sample_type & PERF_SAMPLE_ID) {
3382 data->id = primary_event_id(event);
3383
3384 header->size += sizeof(data->id);
3385 }
3386
3387 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3388 data->stream_id = event->id;
3389
3390 header->size += sizeof(data->stream_id);
3391 }
3392
3393 if (sample_type & PERF_SAMPLE_CPU) {
3394 data->cpu_entry.cpu = raw_smp_processor_id();
3395 data->cpu_entry.reserved = 0;
3396
3397 header->size += sizeof(data->cpu_entry);
3398 }
3399
3400 if (sample_type & PERF_SAMPLE_PERIOD)
3401 header->size += sizeof(data->period);
3402
3403 if (sample_type & PERF_SAMPLE_READ)
3404 header->size += perf_event_read_size(event);
3405
3406 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3407 int size = 1;
3408
3409 data->callchain = perf_callchain(regs);
3410
3411 if (data->callchain)
3412 size += data->callchain->nr;
3413
3414 header->size += size * sizeof(u64);
3415 }
3416
3417 if (sample_type & PERF_SAMPLE_RAW) {
3418 int size = sizeof(u32);
3419
3420 if (data->raw)
3421 size += data->raw->size;
3422 else
3423 size += sizeof(u32);
3424
3425 WARN_ON_ONCE(size & (sizeof(u64)-1));
3426 header->size += size;
3427 }
3428 }
3429
3430 static void perf_event_output(struct perf_event *event, int nmi,
3431 struct perf_sample_data *data,
3432 struct pt_regs *regs)
3433 {
3434 struct perf_output_handle handle;
3435 struct perf_event_header header;
3436
3437 perf_prepare_sample(&header, data, event, regs);
3438
3439 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3440 return;
3441
3442 perf_output_sample(&handle, &header, data, event);
3443
3444 perf_output_end(&handle);
3445 }
3446
3447 /*
3448 * read event_id
3449 */
3450
3451 struct perf_read_event {
3452 struct perf_event_header header;
3453
3454 u32 pid;
3455 u32 tid;
3456 };
3457
3458 static void
3459 perf_event_read_event(struct perf_event *event,
3460 struct task_struct *task)
3461 {
3462 struct perf_output_handle handle;
3463 struct perf_read_event read_event = {
3464 .header = {
3465 .type = PERF_RECORD_READ,
3466 .misc = 0,
3467 .size = sizeof(read_event) + perf_event_read_size(event),
3468 },
3469 .pid = perf_event_pid(event, task),
3470 .tid = perf_event_tid(event, task),
3471 };
3472 int ret;
3473
3474 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3475 if (ret)
3476 return;
3477
3478 perf_output_put(&handle, read_event);
3479 perf_output_read(&handle, event);
3480
3481 perf_output_end(&handle);
3482 }
3483
3484 /*
3485 * task tracking -- fork/exit
3486 *
3487 * enabled by: attr.comm | attr.mmap | attr.task
3488 */
3489
3490 struct perf_task_event {
3491 struct task_struct *task;
3492 struct perf_event_context *task_ctx;
3493
3494 struct {
3495 struct perf_event_header header;
3496
3497 u32 pid;
3498 u32 ppid;
3499 u32 tid;
3500 u32 ptid;
3501 u64 time;
3502 } event_id;
3503 };
3504
3505 static void perf_event_task_output(struct perf_event *event,
3506 struct perf_task_event *task_event)
3507 {
3508 struct perf_output_handle handle;
3509 struct task_struct *task = task_event->task;
3510 int size, ret;
3511
3512 size = task_event->event_id.header.size;
3513 ret = perf_output_begin(&handle, event, size, 0, 0);
3514
3515 if (ret)
3516 return;
3517
3518 task_event->event_id.pid = perf_event_pid(event, task);
3519 task_event->event_id.ppid = perf_event_pid(event, current);
3520
3521 task_event->event_id.tid = perf_event_tid(event, task);
3522 task_event->event_id.ptid = perf_event_tid(event, current);
3523
3524 perf_output_put(&handle, task_event->event_id);
3525
3526 perf_output_end(&handle);
3527 }
3528
3529 static int perf_event_task_match(struct perf_event *event)
3530 {
3531 if (event->state < PERF_EVENT_STATE_INACTIVE)
3532 return 0;
3533
3534 if (event->cpu != -1 && event->cpu != smp_processor_id())
3535 return 0;
3536
3537 if (event->attr.comm || event->attr.mmap || event->attr.task)
3538 return 1;
3539
3540 return 0;
3541 }
3542
3543 static void perf_event_task_ctx(struct perf_event_context *ctx,
3544 struct perf_task_event *task_event)
3545 {
3546 struct perf_event *event;
3547
3548 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3549 if (perf_event_task_match(event))
3550 perf_event_task_output(event, task_event);
3551 }
3552 }
3553
3554 static void perf_event_task_event(struct perf_task_event *task_event)
3555 {
3556 struct perf_cpu_context *cpuctx;
3557 struct perf_event_context *ctx = task_event->task_ctx;
3558
3559 rcu_read_lock();
3560 cpuctx = &get_cpu_var(perf_cpu_context);
3561 perf_event_task_ctx(&cpuctx->ctx, task_event);
3562 if (!ctx)
3563 ctx = rcu_dereference(current->perf_event_ctxp);
3564 if (ctx)
3565 perf_event_task_ctx(ctx, task_event);
3566 put_cpu_var(perf_cpu_context);
3567 rcu_read_unlock();
3568 }
3569
3570 static void perf_event_task(struct task_struct *task,
3571 struct perf_event_context *task_ctx,
3572 int new)
3573 {
3574 struct perf_task_event task_event;
3575
3576 if (!atomic_read(&nr_comm_events) &&
3577 !atomic_read(&nr_mmap_events) &&
3578 !atomic_read(&nr_task_events))
3579 return;
3580
3581 task_event = (struct perf_task_event){
3582 .task = task,
3583 .task_ctx = task_ctx,
3584 .event_id = {
3585 .header = {
3586 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3587 .misc = 0,
3588 .size = sizeof(task_event.event_id),
3589 },
3590 /* .pid */
3591 /* .ppid */
3592 /* .tid */
3593 /* .ptid */
3594 .time = perf_clock(),
3595 },
3596 };
3597
3598 perf_event_task_event(&task_event);
3599 }
3600
3601 void perf_event_fork(struct task_struct *task)
3602 {
3603 perf_event_task(task, NULL, 1);
3604 }
3605
3606 /*
3607 * comm tracking
3608 */
3609
3610 struct perf_comm_event {
3611 struct task_struct *task;
3612 char *comm;
3613 int comm_size;
3614
3615 struct {
3616 struct perf_event_header header;
3617
3618 u32 pid;
3619 u32 tid;
3620 } event_id;
3621 };
3622
3623 static void perf_event_comm_output(struct perf_event *event,
3624 struct perf_comm_event *comm_event)
3625 {
3626 struct perf_output_handle handle;
3627 int size = comm_event->event_id.header.size;
3628 int ret = perf_output_begin(&handle, event, size, 0, 0);
3629
3630 if (ret)
3631 return;
3632
3633 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3634 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3635
3636 perf_output_put(&handle, comm_event->event_id);
3637 perf_output_copy(&handle, comm_event->comm,
3638 comm_event->comm_size);
3639 perf_output_end(&handle);
3640 }
3641
3642 static int perf_event_comm_match(struct perf_event *event)
3643 {
3644 if (event->state < PERF_EVENT_STATE_INACTIVE)
3645 return 0;
3646
3647 if (event->cpu != -1 && event->cpu != smp_processor_id())
3648 return 0;
3649
3650 if (event->attr.comm)
3651 return 1;
3652
3653 return 0;
3654 }
3655
3656 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3657 struct perf_comm_event *comm_event)
3658 {
3659 struct perf_event *event;
3660
3661 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3662 if (perf_event_comm_match(event))
3663 perf_event_comm_output(event, comm_event);
3664 }
3665 }
3666
3667 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3668 {
3669 struct perf_cpu_context *cpuctx;
3670 struct perf_event_context *ctx;
3671 unsigned int size;
3672 char comm[TASK_COMM_LEN];
3673
3674 memset(comm, 0, sizeof(comm));
3675 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3676 size = ALIGN(strlen(comm)+1, sizeof(u64));
3677
3678 comm_event->comm = comm;
3679 comm_event->comm_size = size;
3680
3681 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3682
3683 rcu_read_lock();
3684 cpuctx = &get_cpu_var(perf_cpu_context);
3685 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3686 ctx = rcu_dereference(current->perf_event_ctxp);
3687 if (ctx)
3688 perf_event_comm_ctx(ctx, comm_event);
3689 put_cpu_var(perf_cpu_context);
3690 rcu_read_unlock();
3691 }
3692
3693 void perf_event_comm(struct task_struct *task)
3694 {
3695 struct perf_comm_event comm_event;
3696
3697 if (task->perf_event_ctxp)
3698 perf_event_enable_on_exec(task);
3699
3700 if (!atomic_read(&nr_comm_events))
3701 return;
3702
3703 comm_event = (struct perf_comm_event){
3704 .task = task,
3705 /* .comm */
3706 /* .comm_size */
3707 .event_id = {
3708 .header = {
3709 .type = PERF_RECORD_COMM,
3710 .misc = 0,
3711 /* .size */
3712 },
3713 /* .pid */
3714 /* .tid */
3715 },
3716 };
3717
3718 perf_event_comm_event(&comm_event);
3719 }
3720
3721 /*
3722 * mmap tracking
3723 */
3724
3725 struct perf_mmap_event {
3726 struct vm_area_struct *vma;
3727
3728 const char *file_name;
3729 int file_size;
3730
3731 struct {
3732 struct perf_event_header header;
3733
3734 u32 pid;
3735 u32 tid;
3736 u64 start;
3737 u64 len;
3738 u64 pgoff;
3739 } event_id;
3740 };
3741
3742 static void perf_event_mmap_output(struct perf_event *event,
3743 struct perf_mmap_event *mmap_event)
3744 {
3745 struct perf_output_handle handle;
3746 int size = mmap_event->event_id.header.size;
3747 int ret = perf_output_begin(&handle, event, size, 0, 0);
3748
3749 if (ret)
3750 return;
3751
3752 mmap_event->event_id.pid = perf_event_pid(event, current);
3753 mmap_event->event_id.tid = perf_event_tid(event, current);
3754
3755 perf_output_put(&handle, mmap_event->event_id);
3756 perf_output_copy(&handle, mmap_event->file_name,
3757 mmap_event->file_size);
3758 perf_output_end(&handle);
3759 }
3760
3761 static int perf_event_mmap_match(struct perf_event *event,
3762 struct perf_mmap_event *mmap_event)
3763 {
3764 if (event->state < PERF_EVENT_STATE_INACTIVE)
3765 return 0;
3766
3767 if (event->cpu != -1 && event->cpu != smp_processor_id())
3768 return 0;
3769
3770 if (event->attr.mmap)
3771 return 1;
3772
3773 return 0;
3774 }
3775
3776 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3777 struct perf_mmap_event *mmap_event)
3778 {
3779 struct perf_event *event;
3780
3781 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3782 if (perf_event_mmap_match(event, mmap_event))
3783 perf_event_mmap_output(event, mmap_event);
3784 }
3785 }
3786
3787 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3788 {
3789 struct perf_cpu_context *cpuctx;
3790 struct perf_event_context *ctx;
3791 struct vm_area_struct *vma = mmap_event->vma;
3792 struct file *file = vma->vm_file;
3793 unsigned int size;
3794 char tmp[16];
3795 char *buf = NULL;
3796 const char *name;
3797
3798 memset(tmp, 0, sizeof(tmp));
3799
3800 if (file) {
3801 /*
3802 * d_path works from the end of the buffer backwards, so we
3803 * need to add enough zero bytes after the string to handle
3804 * the 64bit alignment we do later.
3805 */
3806 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3807 if (!buf) {
3808 name = strncpy(tmp, "//enomem", sizeof(tmp));
3809 goto got_name;
3810 }
3811 name = d_path(&file->f_path, buf, PATH_MAX);
3812 if (IS_ERR(name)) {
3813 name = strncpy(tmp, "//toolong", sizeof(tmp));
3814 goto got_name;
3815 }
3816 } else {
3817 if (arch_vma_name(mmap_event->vma)) {
3818 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3819 sizeof(tmp));
3820 goto got_name;
3821 }
3822
3823 if (!vma->vm_mm) {
3824 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3825 goto got_name;
3826 }
3827
3828 name = strncpy(tmp, "//anon", sizeof(tmp));
3829 goto got_name;
3830 }
3831
3832 got_name:
3833 size = ALIGN(strlen(name)+1, sizeof(u64));
3834
3835 mmap_event->file_name = name;
3836 mmap_event->file_size = size;
3837
3838 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3839
3840 rcu_read_lock();
3841 cpuctx = &get_cpu_var(perf_cpu_context);
3842 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3843 ctx = rcu_dereference(current->perf_event_ctxp);
3844 if (ctx)
3845 perf_event_mmap_ctx(ctx, mmap_event);
3846 put_cpu_var(perf_cpu_context);
3847 rcu_read_unlock();
3848
3849 kfree(buf);
3850 }
3851
3852 void __perf_event_mmap(struct vm_area_struct *vma)
3853 {
3854 struct perf_mmap_event mmap_event;
3855
3856 if (!atomic_read(&nr_mmap_events))
3857 return;
3858
3859 mmap_event = (struct perf_mmap_event){
3860 .vma = vma,
3861 /* .file_name */
3862 /* .file_size */
3863 .event_id = {
3864 .header = {
3865 .type = PERF_RECORD_MMAP,
3866 .misc = PERF_RECORD_MISC_USER,
3867 /* .size */
3868 },
3869 /* .pid */
3870 /* .tid */
3871 .start = vma->vm_start,
3872 .len = vma->vm_end - vma->vm_start,
3873 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
3874 },
3875 };
3876
3877 perf_event_mmap_event(&mmap_event);
3878 }
3879
3880 /*
3881 * IRQ throttle logging
3882 */
3883
3884 static void perf_log_throttle(struct perf_event *event, int enable)
3885 {
3886 struct perf_output_handle handle;
3887 int ret;
3888
3889 struct {
3890 struct perf_event_header header;
3891 u64 time;
3892 u64 id;
3893 u64 stream_id;
3894 } throttle_event = {
3895 .header = {
3896 .type = PERF_RECORD_THROTTLE,
3897 .misc = 0,
3898 .size = sizeof(throttle_event),
3899 },
3900 .time = perf_clock(),
3901 .id = primary_event_id(event),
3902 .stream_id = event->id,
3903 };
3904
3905 if (enable)
3906 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3907
3908 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3909 if (ret)
3910 return;
3911
3912 perf_output_put(&handle, throttle_event);
3913 perf_output_end(&handle);
3914 }
3915
3916 /*
3917 * Generic event overflow handling, sampling.
3918 */
3919
3920 static int __perf_event_overflow(struct perf_event *event, int nmi,
3921 int throttle, struct perf_sample_data *data,
3922 struct pt_regs *regs)
3923 {
3924 int events = atomic_read(&event->event_limit);
3925 struct hw_perf_event *hwc = &event->hw;
3926 int ret = 0;
3927
3928 throttle = (throttle && event->pmu->unthrottle != NULL);
3929
3930 if (!throttle) {
3931 hwc->interrupts++;
3932 } else {
3933 if (hwc->interrupts != MAX_INTERRUPTS) {
3934 hwc->interrupts++;
3935 if (HZ * hwc->interrupts >
3936 (u64)sysctl_perf_event_sample_rate) {
3937 hwc->interrupts = MAX_INTERRUPTS;
3938 perf_log_throttle(event, 0);
3939 ret = 1;
3940 }
3941 } else {
3942 /*
3943 * Keep re-disabling events even though on the previous
3944 * pass we disabled it - just in case we raced with a
3945 * sched-in and the event got enabled again:
3946 */
3947 ret = 1;
3948 }
3949 }
3950
3951 if (event->attr.freq) {
3952 u64 now = perf_clock();
3953 s64 delta = now - hwc->freq_time_stamp;
3954
3955 hwc->freq_time_stamp = now;
3956
3957 if (delta > 0 && delta < 2*TICK_NSEC)
3958 perf_adjust_period(event, delta, hwc->last_period);
3959 }
3960
3961 /*
3962 * XXX event_limit might not quite work as expected on inherited
3963 * events
3964 */
3965
3966 event->pending_kill = POLL_IN;
3967 if (events && atomic_dec_and_test(&event->event_limit)) {
3968 ret = 1;
3969 event->pending_kill = POLL_HUP;
3970 if (nmi) {
3971 event->pending_disable = 1;
3972 perf_pending_queue(&event->pending,
3973 perf_pending_event);
3974 } else
3975 perf_event_disable(event);
3976 }
3977
3978 if (event->overflow_handler)
3979 event->overflow_handler(event, nmi, data, regs);
3980 else
3981 perf_event_output(event, nmi, data, regs);
3982
3983 return ret;
3984 }
3985
3986 int perf_event_overflow(struct perf_event *event, int nmi,
3987 struct perf_sample_data *data,
3988 struct pt_regs *regs)
3989 {
3990 return __perf_event_overflow(event, nmi, 1, data, regs);
3991 }
3992
3993 /*
3994 * Generic software event infrastructure
3995 */
3996
3997 /*
3998 * We directly increment event->count and keep a second value in
3999 * event->hw.period_left to count intervals. This period event
4000 * is kept in the range [-sample_period, 0] so that we can use the
4001 * sign as trigger.
4002 */
4003
4004 static u64 perf_swevent_set_period(struct perf_event *event)
4005 {
4006 struct hw_perf_event *hwc = &event->hw;
4007 u64 period = hwc->last_period;
4008 u64 nr, offset;
4009 s64 old, val;
4010
4011 hwc->last_period = hwc->sample_period;
4012
4013 again:
4014 old = val = atomic64_read(&hwc->period_left);
4015 if (val < 0)
4016 return 0;
4017
4018 nr = div64_u64(period + val, period);
4019 offset = nr * period;
4020 val -= offset;
4021 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
4022 goto again;
4023
4024 return nr;
4025 }
4026
4027 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4028 int nmi, struct perf_sample_data *data,
4029 struct pt_regs *regs)
4030 {
4031 struct hw_perf_event *hwc = &event->hw;
4032 int throttle = 0;
4033
4034 data->period = event->hw.last_period;
4035 if (!overflow)
4036 overflow = perf_swevent_set_period(event);
4037
4038 if (hwc->interrupts == MAX_INTERRUPTS)
4039 return;
4040
4041 for (; overflow; overflow--) {
4042 if (__perf_event_overflow(event, nmi, throttle,
4043 data, regs)) {
4044 /*
4045 * We inhibit the overflow from happening when
4046 * hwc->interrupts == MAX_INTERRUPTS.
4047 */
4048 break;
4049 }
4050 throttle = 1;
4051 }
4052 }
4053
4054 static void perf_swevent_unthrottle(struct perf_event *event)
4055 {
4056 /*
4057 * Nothing to do, we already reset hwc->interrupts.
4058 */
4059 }
4060
4061 static void perf_swevent_add(struct perf_event *event, u64 nr,
4062 int nmi, struct perf_sample_data *data,
4063 struct pt_regs *regs)
4064 {
4065 struct hw_perf_event *hwc = &event->hw;
4066
4067 atomic64_add(nr, &event->count);
4068
4069 if (!regs)
4070 return;
4071
4072 if (!hwc->sample_period)
4073 return;
4074
4075 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4076 return perf_swevent_overflow(event, 1, nmi, data, regs);
4077
4078 if (atomic64_add_negative(nr, &hwc->period_left))
4079 return;
4080
4081 perf_swevent_overflow(event, 0, nmi, data, regs);
4082 }
4083
4084 static int perf_exclude_event(struct perf_event *event,
4085 struct pt_regs *regs)
4086 {
4087 if (regs) {
4088 if (event->attr.exclude_user && user_mode(regs))
4089 return 1;
4090
4091 if (event->attr.exclude_kernel && !user_mode(regs))
4092 return 1;
4093 }
4094
4095 return 0;
4096 }
4097
4098 static int perf_swevent_match(struct perf_event *event,
4099 enum perf_type_id type,
4100 u32 event_id,
4101 struct perf_sample_data *data,
4102 struct pt_regs *regs)
4103 {
4104 if (event->attr.type != type)
4105 return 0;
4106
4107 if (event->attr.config != event_id)
4108 return 0;
4109
4110 if (perf_exclude_event(event, regs))
4111 return 0;
4112
4113 return 1;
4114 }
4115
4116 static inline u64 swevent_hash(u64 type, u32 event_id)
4117 {
4118 u64 val = event_id | (type << 32);
4119
4120 return hash_64(val, SWEVENT_HLIST_BITS);
4121 }
4122
4123 static inline struct hlist_head *
4124 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4125 {
4126 u64 hash = swevent_hash(type, event_id);
4127
4128 return &hlist->heads[hash];
4129 }
4130
4131 /* For the read side: events when they trigger */
4132 static inline struct hlist_head *
4133 find_swevent_head_rcu(struct perf_cpu_context *ctx, u64 type, u32 event_id)
4134 {
4135 struct swevent_hlist *hlist;
4136
4137 hlist = rcu_dereference(ctx->swevent_hlist);
4138 if (!hlist)
4139 return NULL;
4140
4141 return __find_swevent_head(hlist, type, event_id);
4142 }
4143
4144 /* For the event head insertion and removal in the hlist */
4145 static inline struct hlist_head *
4146 find_swevent_head(struct perf_cpu_context *ctx, struct perf_event *event)
4147 {
4148 struct swevent_hlist *hlist;
4149 u32 event_id = event->attr.config;
4150 u64 type = event->attr.type;
4151
4152 /*
4153 * Event scheduling is always serialized against hlist allocation
4154 * and release. Which makes the protected version suitable here.
4155 * The context lock guarantees that.
4156 */
4157 hlist = rcu_dereference_protected(ctx->swevent_hlist,
4158 lockdep_is_held(&event->ctx->lock));
4159 if (!hlist)
4160 return NULL;
4161
4162 return __find_swevent_head(hlist, type, event_id);
4163 }
4164
4165 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4166 u64 nr, int nmi,
4167 struct perf_sample_data *data,
4168 struct pt_regs *regs)
4169 {
4170 struct perf_cpu_context *cpuctx;
4171 struct perf_event *event;
4172 struct hlist_node *node;
4173 struct hlist_head *head;
4174
4175 cpuctx = &__get_cpu_var(perf_cpu_context);
4176
4177 rcu_read_lock();
4178
4179 head = find_swevent_head_rcu(cpuctx, type, event_id);
4180
4181 if (!head)
4182 goto end;
4183
4184 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4185 if (perf_swevent_match(event, type, event_id, data, regs))
4186 perf_swevent_add(event, nr, nmi, data, regs);
4187 }
4188 end:
4189 rcu_read_unlock();
4190 }
4191
4192 int perf_swevent_get_recursion_context(void)
4193 {
4194 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4195 int rctx;
4196
4197 if (in_nmi())
4198 rctx = 3;
4199 else if (in_irq())
4200 rctx = 2;
4201 else if (in_softirq())
4202 rctx = 1;
4203 else
4204 rctx = 0;
4205
4206 if (cpuctx->recursion[rctx])
4207 return -1;
4208
4209 cpuctx->recursion[rctx]++;
4210 barrier();
4211
4212 return rctx;
4213 }
4214 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4215
4216 void perf_swevent_put_recursion_context(int rctx)
4217 {
4218 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4219 barrier();
4220 cpuctx->recursion[rctx]--;
4221 }
4222 EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
4223
4224
4225 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4226 struct pt_regs *regs, u64 addr)
4227 {
4228 struct perf_sample_data data;
4229 int rctx;
4230
4231 preempt_disable_notrace();
4232 rctx = perf_swevent_get_recursion_context();
4233 if (rctx < 0)
4234 return;
4235
4236 perf_sample_data_init(&data, addr);
4237
4238 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4239
4240 perf_swevent_put_recursion_context(rctx);
4241 preempt_enable_notrace();
4242 }
4243
4244 static void perf_swevent_read(struct perf_event *event)
4245 {
4246 }
4247
4248 static int perf_swevent_enable(struct perf_event *event)
4249 {
4250 struct hw_perf_event *hwc = &event->hw;
4251 struct perf_cpu_context *cpuctx;
4252 struct hlist_head *head;
4253
4254 cpuctx = &__get_cpu_var(perf_cpu_context);
4255
4256 if (hwc->sample_period) {
4257 hwc->last_period = hwc->sample_period;
4258 perf_swevent_set_period(event);
4259 }
4260
4261 head = find_swevent_head(cpuctx, event);
4262 if (WARN_ON_ONCE(!head))
4263 return -EINVAL;
4264
4265 hlist_add_head_rcu(&event->hlist_entry, head);
4266
4267 return 0;
4268 }
4269
4270 static void perf_swevent_disable(struct perf_event *event)
4271 {
4272 hlist_del_rcu(&event->hlist_entry);
4273 }
4274
4275 static const struct pmu perf_ops_generic = {
4276 .enable = perf_swevent_enable,
4277 .disable = perf_swevent_disable,
4278 .read = perf_swevent_read,
4279 .unthrottle = perf_swevent_unthrottle,
4280 };
4281
4282 /*
4283 * hrtimer based swevent callback
4284 */
4285
4286 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4287 {
4288 enum hrtimer_restart ret = HRTIMER_RESTART;
4289 struct perf_sample_data data;
4290 struct pt_regs *regs;
4291 struct perf_event *event;
4292 u64 period;
4293
4294 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4295 event->pmu->read(event);
4296
4297 perf_sample_data_init(&data, 0);
4298 data.period = event->hw.last_period;
4299 regs = get_irq_regs();
4300
4301 if (regs && !perf_exclude_event(event, regs)) {
4302 if (!(event->attr.exclude_idle && current->pid == 0))
4303 if (perf_event_overflow(event, 0, &data, regs))
4304 ret = HRTIMER_NORESTART;
4305 }
4306
4307 period = max_t(u64, 10000, event->hw.sample_period);
4308 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4309
4310 return ret;
4311 }
4312
4313 static void perf_swevent_start_hrtimer(struct perf_event *event)
4314 {
4315 struct hw_perf_event *hwc = &event->hw;
4316
4317 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4318 hwc->hrtimer.function = perf_swevent_hrtimer;
4319 if (hwc->sample_period) {
4320 u64 period;
4321
4322 if (hwc->remaining) {
4323 if (hwc->remaining < 0)
4324 period = 10000;
4325 else
4326 period = hwc->remaining;
4327 hwc->remaining = 0;
4328 } else {
4329 period = max_t(u64, 10000, hwc->sample_period);
4330 }
4331 __hrtimer_start_range_ns(&hwc->hrtimer,
4332 ns_to_ktime(period), 0,
4333 HRTIMER_MODE_REL, 0);
4334 }
4335 }
4336
4337 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4338 {
4339 struct hw_perf_event *hwc = &event->hw;
4340
4341 if (hwc->sample_period) {
4342 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4343 hwc->remaining = ktime_to_ns(remaining);
4344
4345 hrtimer_cancel(&hwc->hrtimer);
4346 }
4347 }
4348
4349 /*
4350 * Software event: cpu wall time clock
4351 */
4352
4353 static void cpu_clock_perf_event_update(struct perf_event *event)
4354 {
4355 int cpu = raw_smp_processor_id();
4356 s64 prev;
4357 u64 now;
4358
4359 now = cpu_clock(cpu);
4360 prev = atomic64_xchg(&event->hw.prev_count, now);
4361 atomic64_add(now - prev, &event->count);
4362 }
4363
4364 static int cpu_clock_perf_event_enable(struct perf_event *event)
4365 {
4366 struct hw_perf_event *hwc = &event->hw;
4367 int cpu = raw_smp_processor_id();
4368
4369 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4370 perf_swevent_start_hrtimer(event);
4371
4372 return 0;
4373 }
4374
4375 static void cpu_clock_perf_event_disable(struct perf_event *event)
4376 {
4377 perf_swevent_cancel_hrtimer(event);
4378 cpu_clock_perf_event_update(event);
4379 }
4380
4381 static void cpu_clock_perf_event_read(struct perf_event *event)
4382 {
4383 cpu_clock_perf_event_update(event);
4384 }
4385
4386 static const struct pmu perf_ops_cpu_clock = {
4387 .enable = cpu_clock_perf_event_enable,
4388 .disable = cpu_clock_perf_event_disable,
4389 .read = cpu_clock_perf_event_read,
4390 };
4391
4392 /*
4393 * Software event: task time clock
4394 */
4395
4396 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4397 {
4398 u64 prev;
4399 s64 delta;
4400
4401 prev = atomic64_xchg(&event->hw.prev_count, now);
4402 delta = now - prev;
4403 atomic64_add(delta, &event->count);
4404 }
4405
4406 static int task_clock_perf_event_enable(struct perf_event *event)
4407 {
4408 struct hw_perf_event *hwc = &event->hw;
4409 u64 now;
4410
4411 now = event->ctx->time;
4412
4413 atomic64_set(&hwc->prev_count, now);
4414
4415 perf_swevent_start_hrtimer(event);
4416
4417 return 0;
4418 }
4419
4420 static void task_clock_perf_event_disable(struct perf_event *event)
4421 {
4422 perf_swevent_cancel_hrtimer(event);
4423 task_clock_perf_event_update(event, event->ctx->time);
4424
4425 }
4426
4427 static void task_clock_perf_event_read(struct perf_event *event)
4428 {
4429 u64 time;
4430
4431 if (!in_nmi()) {
4432 update_context_time(event->ctx);
4433 time = event->ctx->time;
4434 } else {
4435 u64 now = perf_clock();
4436 u64 delta = now - event->ctx->timestamp;
4437 time = event->ctx->time + delta;
4438 }
4439
4440 task_clock_perf_event_update(event, time);
4441 }
4442
4443 static const struct pmu perf_ops_task_clock = {
4444 .enable = task_clock_perf_event_enable,
4445 .disable = task_clock_perf_event_disable,
4446 .read = task_clock_perf_event_read,
4447 };
4448
4449 /* Deref the hlist from the update side */
4450 static inline struct swevent_hlist *
4451 swevent_hlist_deref(struct perf_cpu_context *cpuctx)
4452 {
4453 return rcu_dereference_protected(cpuctx->swevent_hlist,
4454 lockdep_is_held(&cpuctx->hlist_mutex));
4455 }
4456
4457 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4458 {
4459 struct swevent_hlist *hlist;
4460
4461 hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4462 kfree(hlist);
4463 }
4464
4465 static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
4466 {
4467 struct swevent_hlist *hlist = swevent_hlist_deref(cpuctx);
4468
4469 if (!hlist)
4470 return;
4471
4472 rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
4473 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4474 }
4475
4476 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4477 {
4478 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4479
4480 mutex_lock(&cpuctx->hlist_mutex);
4481
4482 if (!--cpuctx->hlist_refcount)
4483 swevent_hlist_release(cpuctx);
4484
4485 mutex_unlock(&cpuctx->hlist_mutex);
4486 }
4487
4488 static void swevent_hlist_put(struct perf_event *event)
4489 {
4490 int cpu;
4491
4492 if (event->cpu != -1) {
4493 swevent_hlist_put_cpu(event, event->cpu);
4494 return;
4495 }
4496
4497 for_each_possible_cpu(cpu)
4498 swevent_hlist_put_cpu(event, cpu);
4499 }
4500
4501 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4502 {
4503 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4504 int err = 0;
4505
4506 mutex_lock(&cpuctx->hlist_mutex);
4507
4508 if (!swevent_hlist_deref(cpuctx) && cpu_online(cpu)) {
4509 struct swevent_hlist *hlist;
4510
4511 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4512 if (!hlist) {
4513 err = -ENOMEM;
4514 goto exit;
4515 }
4516 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
4517 }
4518 cpuctx->hlist_refcount++;
4519 exit:
4520 mutex_unlock(&cpuctx->hlist_mutex);
4521
4522 return err;
4523 }
4524
4525 static int swevent_hlist_get(struct perf_event *event)
4526 {
4527 int err;
4528 int cpu, failed_cpu;
4529
4530 if (event->cpu != -1)
4531 return swevent_hlist_get_cpu(event, event->cpu);
4532
4533 get_online_cpus();
4534 for_each_possible_cpu(cpu) {
4535 err = swevent_hlist_get_cpu(event, cpu);
4536 if (err) {
4537 failed_cpu = cpu;
4538 goto fail;
4539 }
4540 }
4541 put_online_cpus();
4542
4543 return 0;
4544 fail:
4545 for_each_possible_cpu(cpu) {
4546 if (cpu == failed_cpu)
4547 break;
4548 swevent_hlist_put_cpu(event, cpu);
4549 }
4550
4551 put_online_cpus();
4552 return err;
4553 }
4554
4555 #ifdef CONFIG_EVENT_TRACING
4556
4557 static const struct pmu perf_ops_tracepoint = {
4558 .enable = perf_trace_enable,
4559 .disable = perf_trace_disable,
4560 .read = perf_swevent_read,
4561 .unthrottle = perf_swevent_unthrottle,
4562 };
4563
4564 static int perf_tp_filter_match(struct perf_event *event,
4565 struct perf_sample_data *data)
4566 {
4567 void *record = data->raw->data;
4568
4569 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4570 return 1;
4571 return 0;
4572 }
4573
4574 static int perf_tp_event_match(struct perf_event *event,
4575 struct perf_sample_data *data,
4576 struct pt_regs *regs)
4577 {
4578 /*
4579 * All tracepoints are from kernel-space.
4580 */
4581 if (event->attr.exclude_kernel)
4582 return 0;
4583
4584 if (!perf_tp_filter_match(event, data))
4585 return 0;
4586
4587 return 1;
4588 }
4589
4590 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4591 struct pt_regs *regs, struct hlist_head *head)
4592 {
4593 struct perf_sample_data data;
4594 struct perf_event *event;
4595 struct hlist_node *node;
4596
4597 struct perf_raw_record raw = {
4598 .size = entry_size,
4599 .data = record,
4600 };
4601
4602 perf_sample_data_init(&data, addr);
4603 data.raw = &raw;
4604
4605 rcu_read_lock();
4606 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4607 if (perf_tp_event_match(event, &data, regs))
4608 perf_swevent_add(event, count, 1, &data, regs);
4609 }
4610 rcu_read_unlock();
4611 }
4612 EXPORT_SYMBOL_GPL(perf_tp_event);
4613
4614 static void tp_perf_event_destroy(struct perf_event *event)
4615 {
4616 perf_trace_destroy(event);
4617 }
4618
4619 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4620 {
4621 int err;
4622
4623 /*
4624 * Raw tracepoint data is a severe data leak, only allow root to
4625 * have these.
4626 */
4627 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4628 perf_paranoid_tracepoint_raw() &&
4629 !capable(CAP_SYS_ADMIN))
4630 return ERR_PTR(-EPERM);
4631
4632 err = perf_trace_init(event);
4633 if (err)
4634 return NULL;
4635
4636 event->destroy = tp_perf_event_destroy;
4637
4638 return &perf_ops_tracepoint;
4639 }
4640
4641 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4642 {
4643 char *filter_str;
4644 int ret;
4645
4646 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4647 return -EINVAL;
4648
4649 filter_str = strndup_user(arg, PAGE_SIZE);
4650 if (IS_ERR(filter_str))
4651 return PTR_ERR(filter_str);
4652
4653 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4654
4655 kfree(filter_str);
4656 return ret;
4657 }
4658
4659 static void perf_event_free_filter(struct perf_event *event)
4660 {
4661 ftrace_profile_free_filter(event);
4662 }
4663
4664 #else
4665
4666 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4667 {
4668 return NULL;
4669 }
4670
4671 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4672 {
4673 return -ENOENT;
4674 }
4675
4676 static void perf_event_free_filter(struct perf_event *event)
4677 {
4678 }
4679
4680 #endif /* CONFIG_EVENT_TRACING */
4681
4682 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4683 static void bp_perf_event_destroy(struct perf_event *event)
4684 {
4685 release_bp_slot(event);
4686 }
4687
4688 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4689 {
4690 int err;
4691
4692 err = register_perf_hw_breakpoint(bp);
4693 if (err)
4694 return ERR_PTR(err);
4695
4696 bp->destroy = bp_perf_event_destroy;
4697
4698 return &perf_ops_bp;
4699 }
4700
4701 void perf_bp_event(struct perf_event *bp, void *data)
4702 {
4703 struct perf_sample_data sample;
4704 struct pt_regs *regs = data;
4705
4706 perf_sample_data_init(&sample, bp->attr.bp_addr);
4707
4708 if (!perf_exclude_event(bp, regs))
4709 perf_swevent_add(bp, 1, 1, &sample, regs);
4710 }
4711 #else
4712 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4713 {
4714 return NULL;
4715 }
4716
4717 void perf_bp_event(struct perf_event *bp, void *regs)
4718 {
4719 }
4720 #endif
4721
4722 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4723
4724 static void sw_perf_event_destroy(struct perf_event *event)
4725 {
4726 u64 event_id = event->attr.config;
4727
4728 WARN_ON(event->parent);
4729
4730 atomic_dec(&perf_swevent_enabled[event_id]);
4731 swevent_hlist_put(event);
4732 }
4733
4734 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4735 {
4736 const struct pmu *pmu = NULL;
4737 u64 event_id = event->attr.config;
4738
4739 /*
4740 * Software events (currently) can't in general distinguish
4741 * between user, kernel and hypervisor events.
4742 * However, context switches and cpu migrations are considered
4743 * to be kernel events, and page faults are never hypervisor
4744 * events.
4745 */
4746 switch (event_id) {
4747 case PERF_COUNT_SW_CPU_CLOCK:
4748 pmu = &perf_ops_cpu_clock;
4749
4750 break;
4751 case PERF_COUNT_SW_TASK_CLOCK:
4752 /*
4753 * If the user instantiates this as a per-cpu event,
4754 * use the cpu_clock event instead.
4755 */
4756 if (event->ctx->task)
4757 pmu = &perf_ops_task_clock;
4758 else
4759 pmu = &perf_ops_cpu_clock;
4760
4761 break;
4762 case PERF_COUNT_SW_PAGE_FAULTS:
4763 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4764 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4765 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4766 case PERF_COUNT_SW_CPU_MIGRATIONS:
4767 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4768 case PERF_COUNT_SW_EMULATION_FAULTS:
4769 if (!event->parent) {
4770 int err;
4771
4772 err = swevent_hlist_get(event);
4773 if (err)
4774 return ERR_PTR(err);
4775
4776 atomic_inc(&perf_swevent_enabled[event_id]);
4777 event->destroy = sw_perf_event_destroy;
4778 }
4779 pmu = &perf_ops_generic;
4780 break;
4781 }
4782
4783 return pmu;
4784 }
4785
4786 /*
4787 * Allocate and initialize a event structure
4788 */
4789 static struct perf_event *
4790 perf_event_alloc(struct perf_event_attr *attr,
4791 int cpu,
4792 struct perf_event_context *ctx,
4793 struct perf_event *group_leader,
4794 struct perf_event *parent_event,
4795 perf_overflow_handler_t overflow_handler,
4796 gfp_t gfpflags)
4797 {
4798 const struct pmu *pmu;
4799 struct perf_event *event;
4800 struct hw_perf_event *hwc;
4801 long err;
4802
4803 event = kzalloc(sizeof(*event), gfpflags);
4804 if (!event)
4805 return ERR_PTR(-ENOMEM);
4806
4807 /*
4808 * Single events are their own group leaders, with an
4809 * empty sibling list:
4810 */
4811 if (!group_leader)
4812 group_leader = event;
4813
4814 mutex_init(&event->child_mutex);
4815 INIT_LIST_HEAD(&event->child_list);
4816
4817 INIT_LIST_HEAD(&event->group_entry);
4818 INIT_LIST_HEAD(&event->event_entry);
4819 INIT_LIST_HEAD(&event->sibling_list);
4820 init_waitqueue_head(&event->waitq);
4821
4822 mutex_init(&event->mmap_mutex);
4823
4824 event->cpu = cpu;
4825 event->attr = *attr;
4826 event->group_leader = group_leader;
4827 event->pmu = NULL;
4828 event->ctx = ctx;
4829 event->oncpu = -1;
4830
4831 event->parent = parent_event;
4832
4833 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4834 event->id = atomic64_inc_return(&perf_event_id);
4835
4836 event->state = PERF_EVENT_STATE_INACTIVE;
4837
4838 if (!overflow_handler && parent_event)
4839 overflow_handler = parent_event->overflow_handler;
4840
4841 event->overflow_handler = overflow_handler;
4842
4843 if (attr->disabled)
4844 event->state = PERF_EVENT_STATE_OFF;
4845
4846 pmu = NULL;
4847
4848 hwc = &event->hw;
4849 hwc->sample_period = attr->sample_period;
4850 if (attr->freq && attr->sample_freq)
4851 hwc->sample_period = 1;
4852 hwc->last_period = hwc->sample_period;
4853
4854 atomic64_set(&hwc->period_left, hwc->sample_period);
4855
4856 /*
4857 * we currently do not support PERF_FORMAT_GROUP on inherited events
4858 */
4859 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4860 goto done;
4861
4862 switch (attr->type) {
4863 case PERF_TYPE_RAW:
4864 case PERF_TYPE_HARDWARE:
4865 case PERF_TYPE_HW_CACHE:
4866 pmu = hw_perf_event_init(event);
4867 break;
4868
4869 case PERF_TYPE_SOFTWARE:
4870 pmu = sw_perf_event_init(event);
4871 break;
4872
4873 case PERF_TYPE_TRACEPOINT:
4874 pmu = tp_perf_event_init(event);
4875 break;
4876
4877 case PERF_TYPE_BREAKPOINT:
4878 pmu = bp_perf_event_init(event);
4879 break;
4880
4881
4882 default:
4883 break;
4884 }
4885 done:
4886 err = 0;
4887 if (!pmu)
4888 err = -EINVAL;
4889 else if (IS_ERR(pmu))
4890 err = PTR_ERR(pmu);
4891
4892 if (err) {
4893 if (event->ns)
4894 put_pid_ns(event->ns);
4895 kfree(event);
4896 return ERR_PTR(err);
4897 }
4898
4899 event->pmu = pmu;
4900
4901 if (!event->parent) {
4902 atomic_inc(&nr_events);
4903 if (event->attr.mmap)
4904 atomic_inc(&nr_mmap_events);
4905 if (event->attr.comm)
4906 atomic_inc(&nr_comm_events);
4907 if (event->attr.task)
4908 atomic_inc(&nr_task_events);
4909 }
4910
4911 return event;
4912 }
4913
4914 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4915 struct perf_event_attr *attr)
4916 {
4917 u32 size;
4918 int ret;
4919
4920 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4921 return -EFAULT;
4922
4923 /*
4924 * zero the full structure, so that a short copy will be nice.
4925 */
4926 memset(attr, 0, sizeof(*attr));
4927
4928 ret = get_user(size, &uattr->size);
4929 if (ret)
4930 return ret;
4931
4932 if (size > PAGE_SIZE) /* silly large */
4933 goto err_size;
4934
4935 if (!size) /* abi compat */
4936 size = PERF_ATTR_SIZE_VER0;
4937
4938 if (size < PERF_ATTR_SIZE_VER0)
4939 goto err_size;
4940
4941 /*
4942 * If we're handed a bigger struct than we know of,
4943 * ensure all the unknown bits are 0 - i.e. new
4944 * user-space does not rely on any kernel feature
4945 * extensions we dont know about yet.
4946 */
4947 if (size > sizeof(*attr)) {
4948 unsigned char __user *addr;
4949 unsigned char __user *end;
4950 unsigned char val;
4951
4952 addr = (void __user *)uattr + sizeof(*attr);
4953 end = (void __user *)uattr + size;
4954
4955 for (; addr < end; addr++) {
4956 ret = get_user(val, addr);
4957 if (ret)
4958 return ret;
4959 if (val)
4960 goto err_size;
4961 }
4962 size = sizeof(*attr);
4963 }
4964
4965 ret = copy_from_user(attr, uattr, size);
4966 if (ret)
4967 return -EFAULT;
4968
4969 /*
4970 * If the type exists, the corresponding creation will verify
4971 * the attr->config.
4972 */
4973 if (attr->type >= PERF_TYPE_MAX)
4974 return -EINVAL;
4975
4976 if (attr->__reserved_1)
4977 return -EINVAL;
4978
4979 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4980 return -EINVAL;
4981
4982 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4983 return -EINVAL;
4984
4985 out:
4986 return ret;
4987
4988 err_size:
4989 put_user(sizeof(*attr), &uattr->size);
4990 ret = -E2BIG;
4991 goto out;
4992 }
4993
4994 static int
4995 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
4996 {
4997 struct perf_mmap_data *data = NULL, *old_data = NULL;
4998 int ret = -EINVAL;
4999
5000 if (!output_event)
5001 goto set;
5002
5003 /* don't allow circular references */
5004 if (event == output_event)
5005 goto out;
5006
5007 /*
5008 * Don't allow cross-cpu buffers
5009 */
5010 if (output_event->cpu != event->cpu)
5011 goto out;
5012
5013 /*
5014 * If its not a per-cpu buffer, it must be the same task.
5015 */
5016 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5017 goto out;
5018
5019 set:
5020 mutex_lock(&event->mmap_mutex);
5021 /* Can't redirect output if we've got an active mmap() */
5022 if (atomic_read(&event->mmap_count))
5023 goto unlock;
5024
5025 if (output_event) {
5026 /* get the buffer we want to redirect to */
5027 data = perf_mmap_data_get(output_event);
5028 if (!data)
5029 goto unlock;
5030 }
5031
5032 old_data = event->data;
5033 rcu_assign_pointer(event->data, data);
5034 ret = 0;
5035 unlock:
5036 mutex_unlock(&event->mmap_mutex);
5037
5038 if (old_data)
5039 perf_mmap_data_put(old_data);
5040 out:
5041 return ret;
5042 }
5043
5044 /**
5045 * sys_perf_event_open - open a performance event, associate it to a task/cpu
5046 *
5047 * @attr_uptr: event_id type attributes for monitoring/sampling
5048 * @pid: target pid
5049 * @cpu: target cpu
5050 * @group_fd: group leader event fd
5051 */
5052 SYSCALL_DEFINE5(perf_event_open,
5053 struct perf_event_attr __user *, attr_uptr,
5054 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5055 {
5056 struct perf_event *event, *group_leader = NULL, *output_event = NULL;
5057 struct perf_event_attr attr;
5058 struct perf_event_context *ctx;
5059 struct file *event_file = NULL;
5060 struct file *group_file = NULL;
5061 int event_fd;
5062 int fput_needed = 0;
5063 int err;
5064
5065 /* for future expandability... */
5066 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5067 return -EINVAL;
5068
5069 err = perf_copy_attr(attr_uptr, &attr);
5070 if (err)
5071 return err;
5072
5073 if (!attr.exclude_kernel) {
5074 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5075 return -EACCES;
5076 }
5077
5078 if (attr.freq) {
5079 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5080 return -EINVAL;
5081 }
5082
5083 event_fd = get_unused_fd_flags(O_RDWR);
5084 if (event_fd < 0)
5085 return event_fd;
5086
5087 /*
5088 * Get the target context (task or percpu):
5089 */
5090 ctx = find_get_context(pid, cpu);
5091 if (IS_ERR(ctx)) {
5092 err = PTR_ERR(ctx);
5093 goto err_fd;
5094 }
5095
5096 if (group_fd != -1) {
5097 group_leader = perf_fget_light(group_fd, &fput_needed);
5098 if (IS_ERR(group_leader)) {
5099 err = PTR_ERR(group_leader);
5100 goto err_put_context;
5101 }
5102 group_file = group_leader->filp;
5103 if (flags & PERF_FLAG_FD_OUTPUT)
5104 output_event = group_leader;
5105 if (flags & PERF_FLAG_FD_NO_GROUP)
5106 group_leader = NULL;
5107 }
5108
5109 /*
5110 * Look up the group leader (we will attach this event to it):
5111 */
5112 if (group_leader) {
5113 err = -EINVAL;
5114
5115 /*
5116 * Do not allow a recursive hierarchy (this new sibling
5117 * becoming part of another group-sibling):
5118 */
5119 if (group_leader->group_leader != group_leader)
5120 goto err_put_context;
5121 /*
5122 * Do not allow to attach to a group in a different
5123 * task or CPU context:
5124 */
5125 if (group_leader->ctx != ctx)
5126 goto err_put_context;
5127 /*
5128 * Only a group leader can be exclusive or pinned
5129 */
5130 if (attr.exclusive || attr.pinned)
5131 goto err_put_context;
5132 }
5133
5134 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
5135 NULL, NULL, GFP_KERNEL);
5136 if (IS_ERR(event)) {
5137 err = PTR_ERR(event);
5138 goto err_put_context;
5139 }
5140
5141 if (output_event) {
5142 err = perf_event_set_output(event, output_event);
5143 if (err)
5144 goto err_free_put_context;
5145 }
5146
5147 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5148 if (IS_ERR(event_file)) {
5149 err = PTR_ERR(event_file);
5150 goto err_free_put_context;
5151 }
5152
5153 event->filp = event_file;
5154 WARN_ON_ONCE(ctx->parent_ctx);
5155 mutex_lock(&ctx->mutex);
5156 perf_install_in_context(ctx, event, cpu);
5157 ++ctx->generation;
5158 mutex_unlock(&ctx->mutex);
5159
5160 event->owner = current;
5161 get_task_struct(current);
5162 mutex_lock(&current->perf_event_mutex);
5163 list_add_tail(&event->owner_entry, &current->perf_event_list);
5164 mutex_unlock(&current->perf_event_mutex);
5165
5166 /*
5167 * Drop the reference on the group_event after placing the
5168 * new event on the sibling_list. This ensures destruction
5169 * of the group leader will find the pointer to itself in
5170 * perf_group_detach().
5171 */
5172 fput_light(group_file, fput_needed);
5173 fd_install(event_fd, event_file);
5174 return event_fd;
5175
5176 err_free_put_context:
5177 free_event(event);
5178 err_put_context:
5179 fput_light(group_file, fput_needed);
5180 put_ctx(ctx);
5181 err_fd:
5182 put_unused_fd(event_fd);
5183 return err;
5184 }
5185
5186 /**
5187 * perf_event_create_kernel_counter
5188 *
5189 * @attr: attributes of the counter to create
5190 * @cpu: cpu in which the counter is bound
5191 * @pid: task to profile
5192 */
5193 struct perf_event *
5194 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5195 pid_t pid,
5196 perf_overflow_handler_t overflow_handler)
5197 {
5198 struct perf_event *event;
5199 struct perf_event_context *ctx;
5200 int err;
5201
5202 /*
5203 * Get the target context (task or percpu):
5204 */
5205
5206 ctx = find_get_context(pid, cpu);
5207 if (IS_ERR(ctx)) {
5208 err = PTR_ERR(ctx);
5209 goto err_exit;
5210 }
5211
5212 event = perf_event_alloc(attr, cpu, ctx, NULL,
5213 NULL, overflow_handler, GFP_KERNEL);
5214 if (IS_ERR(event)) {
5215 err = PTR_ERR(event);
5216 goto err_put_context;
5217 }
5218
5219 event->filp = NULL;
5220 WARN_ON_ONCE(ctx->parent_ctx);
5221 mutex_lock(&ctx->mutex);
5222 perf_install_in_context(ctx, event, cpu);
5223 ++ctx->generation;
5224 mutex_unlock(&ctx->mutex);
5225
5226 event->owner = current;
5227 get_task_struct(current);
5228 mutex_lock(&current->perf_event_mutex);
5229 list_add_tail(&event->owner_entry, &current->perf_event_list);
5230 mutex_unlock(&current->perf_event_mutex);
5231
5232 return event;
5233
5234 err_put_context:
5235 put_ctx(ctx);
5236 err_exit:
5237 return ERR_PTR(err);
5238 }
5239 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5240
5241 /*
5242 * inherit a event from parent task to child task:
5243 */
5244 static struct perf_event *
5245 inherit_event(struct perf_event *parent_event,
5246 struct task_struct *parent,
5247 struct perf_event_context *parent_ctx,
5248 struct task_struct *child,
5249 struct perf_event *group_leader,
5250 struct perf_event_context *child_ctx)
5251 {
5252 struct perf_event *child_event;
5253
5254 /*
5255 * Instead of creating recursive hierarchies of events,
5256 * we link inherited events back to the original parent,
5257 * which has a filp for sure, which we use as the reference
5258 * count:
5259 */
5260 if (parent_event->parent)
5261 parent_event = parent_event->parent;
5262
5263 child_event = perf_event_alloc(&parent_event->attr,
5264 parent_event->cpu, child_ctx,
5265 group_leader, parent_event,
5266 NULL, GFP_KERNEL);
5267 if (IS_ERR(child_event))
5268 return child_event;
5269 get_ctx(child_ctx);
5270
5271 /*
5272 * Make the child state follow the state of the parent event,
5273 * not its attr.disabled bit. We hold the parent's mutex,
5274 * so we won't race with perf_event_{en, dis}able_family.
5275 */
5276 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5277 child_event->state = PERF_EVENT_STATE_INACTIVE;
5278 else
5279 child_event->state = PERF_EVENT_STATE_OFF;
5280
5281 if (parent_event->attr.freq) {
5282 u64 sample_period = parent_event->hw.sample_period;
5283 struct hw_perf_event *hwc = &child_event->hw;
5284
5285 hwc->sample_period = sample_period;
5286 hwc->last_period = sample_period;
5287
5288 atomic64_set(&hwc->period_left, sample_period);
5289 }
5290
5291 child_event->overflow_handler = parent_event->overflow_handler;
5292
5293 /*
5294 * Link it up in the child's context:
5295 */
5296 add_event_to_ctx(child_event, child_ctx);
5297
5298 /*
5299 * Get a reference to the parent filp - we will fput it
5300 * when the child event exits. This is safe to do because
5301 * we are in the parent and we know that the filp still
5302 * exists and has a nonzero count:
5303 */
5304 atomic_long_inc(&parent_event->filp->f_count);
5305
5306 /*
5307 * Link this into the parent event's child list
5308 */
5309 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5310 mutex_lock(&parent_event->child_mutex);
5311 list_add_tail(&child_event->child_list, &parent_event->child_list);
5312 mutex_unlock(&parent_event->child_mutex);
5313
5314 return child_event;
5315 }
5316
5317 static int inherit_group(struct perf_event *parent_event,
5318 struct task_struct *parent,
5319 struct perf_event_context *parent_ctx,
5320 struct task_struct *child,
5321 struct perf_event_context *child_ctx)
5322 {
5323 struct perf_event *leader;
5324 struct perf_event *sub;
5325 struct perf_event *child_ctr;
5326
5327 leader = inherit_event(parent_event, parent, parent_ctx,
5328 child, NULL, child_ctx);
5329 if (IS_ERR(leader))
5330 return PTR_ERR(leader);
5331 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5332 child_ctr = inherit_event(sub, parent, parent_ctx,
5333 child, leader, child_ctx);
5334 if (IS_ERR(child_ctr))
5335 return PTR_ERR(child_ctr);
5336 }
5337 return 0;
5338 }
5339
5340 static void sync_child_event(struct perf_event *child_event,
5341 struct task_struct *child)
5342 {
5343 struct perf_event *parent_event = child_event->parent;
5344 u64 child_val;
5345
5346 if (child_event->attr.inherit_stat)
5347 perf_event_read_event(child_event, child);
5348
5349 child_val = atomic64_read(&child_event->count);
5350
5351 /*
5352 * Add back the child's count to the parent's count:
5353 */
5354 atomic64_add(child_val, &parent_event->count);
5355 atomic64_add(child_event->total_time_enabled,
5356 &parent_event->child_total_time_enabled);
5357 atomic64_add(child_event->total_time_running,
5358 &parent_event->child_total_time_running);
5359
5360 /*
5361 * Remove this event from the parent's list
5362 */
5363 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5364 mutex_lock(&parent_event->child_mutex);
5365 list_del_init(&child_event->child_list);
5366 mutex_unlock(&parent_event->child_mutex);
5367
5368 /*
5369 * Release the parent event, if this was the last
5370 * reference to it.
5371 */
5372 fput(parent_event->filp);
5373 }
5374
5375 static void
5376 __perf_event_exit_task(struct perf_event *child_event,
5377 struct perf_event_context *child_ctx,
5378 struct task_struct *child)
5379 {
5380 struct perf_event *parent_event;
5381
5382 perf_event_remove_from_context(child_event);
5383
5384 parent_event = child_event->parent;
5385 /*
5386 * It can happen that parent exits first, and has events
5387 * that are still around due to the child reference. These
5388 * events need to be zapped - but otherwise linger.
5389 */
5390 if (parent_event) {
5391 sync_child_event(child_event, child);
5392 free_event(child_event);
5393 }
5394 }
5395
5396 /*
5397 * When a child task exits, feed back event values to parent events.
5398 */
5399 void perf_event_exit_task(struct task_struct *child)
5400 {
5401 struct perf_event *child_event, *tmp;
5402 struct perf_event_context *child_ctx;
5403 unsigned long flags;
5404
5405 if (likely(!child->perf_event_ctxp)) {
5406 perf_event_task(child, NULL, 0);
5407 return;
5408 }
5409
5410 local_irq_save(flags);
5411 /*
5412 * We can't reschedule here because interrupts are disabled,
5413 * and either child is current or it is a task that can't be
5414 * scheduled, so we are now safe from rescheduling changing
5415 * our context.
5416 */
5417 child_ctx = child->perf_event_ctxp;
5418 __perf_event_task_sched_out(child_ctx);
5419
5420 /*
5421 * Take the context lock here so that if find_get_context is
5422 * reading child->perf_event_ctxp, we wait until it has
5423 * incremented the context's refcount before we do put_ctx below.
5424 */
5425 raw_spin_lock(&child_ctx->lock);
5426 child->perf_event_ctxp = NULL;
5427 /*
5428 * If this context is a clone; unclone it so it can't get
5429 * swapped to another process while we're removing all
5430 * the events from it.
5431 */
5432 unclone_ctx(child_ctx);
5433 update_context_time(child_ctx);
5434 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5435
5436 /*
5437 * Report the task dead after unscheduling the events so that we
5438 * won't get any samples after PERF_RECORD_EXIT. We can however still
5439 * get a few PERF_RECORD_READ events.
5440 */
5441 perf_event_task(child, child_ctx, 0);
5442
5443 /*
5444 * We can recurse on the same lock type through:
5445 *
5446 * __perf_event_exit_task()
5447 * sync_child_event()
5448 * fput(parent_event->filp)
5449 * perf_release()
5450 * mutex_lock(&ctx->mutex)
5451 *
5452 * But since its the parent context it won't be the same instance.
5453 */
5454 mutex_lock(&child_ctx->mutex);
5455
5456 again:
5457 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5458 group_entry)
5459 __perf_event_exit_task(child_event, child_ctx, child);
5460
5461 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5462 group_entry)
5463 __perf_event_exit_task(child_event, child_ctx, child);
5464
5465 /*
5466 * If the last event was a group event, it will have appended all
5467 * its siblings to the list, but we obtained 'tmp' before that which
5468 * will still point to the list head terminating the iteration.
5469 */
5470 if (!list_empty(&child_ctx->pinned_groups) ||
5471 !list_empty(&child_ctx->flexible_groups))
5472 goto again;
5473
5474 mutex_unlock(&child_ctx->mutex);
5475
5476 put_ctx(child_ctx);
5477 }
5478
5479 static void perf_free_event(struct perf_event *event,
5480 struct perf_event_context *ctx)
5481 {
5482 struct perf_event *parent = event->parent;
5483
5484 if (WARN_ON_ONCE(!parent))
5485 return;
5486
5487 mutex_lock(&parent->child_mutex);
5488 list_del_init(&event->child_list);
5489 mutex_unlock(&parent->child_mutex);
5490
5491 fput(parent->filp);
5492
5493 perf_group_detach(event);
5494 list_del_event(event, ctx);
5495 free_event(event);
5496 }
5497
5498 /*
5499 * free an unexposed, unused context as created by inheritance by
5500 * init_task below, used by fork() in case of fail.
5501 */
5502 void perf_event_free_task(struct task_struct *task)
5503 {
5504 struct perf_event_context *ctx = task->perf_event_ctxp;
5505 struct perf_event *event, *tmp;
5506
5507 if (!ctx)
5508 return;
5509
5510 mutex_lock(&ctx->mutex);
5511 again:
5512 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5513 perf_free_event(event, ctx);
5514
5515 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5516 group_entry)
5517 perf_free_event(event, ctx);
5518
5519 if (!list_empty(&ctx->pinned_groups) ||
5520 !list_empty(&ctx->flexible_groups))
5521 goto again;
5522
5523 mutex_unlock(&ctx->mutex);
5524
5525 put_ctx(ctx);
5526 }
5527
5528 static int
5529 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5530 struct perf_event_context *parent_ctx,
5531 struct task_struct *child,
5532 int *inherited_all)
5533 {
5534 int ret;
5535 struct perf_event_context *child_ctx = child->perf_event_ctxp;
5536
5537 if (!event->attr.inherit) {
5538 *inherited_all = 0;
5539 return 0;
5540 }
5541
5542 if (!child_ctx) {
5543 /*
5544 * This is executed from the parent task context, so
5545 * inherit events that have been marked for cloning.
5546 * First allocate and initialize a context for the
5547 * child.
5548 */
5549
5550 child_ctx = kzalloc(sizeof(struct perf_event_context),
5551 GFP_KERNEL);
5552 if (!child_ctx)
5553 return -ENOMEM;
5554
5555 __perf_event_init_context(child_ctx, child);
5556 child->perf_event_ctxp = child_ctx;
5557 get_task_struct(child);
5558 }
5559
5560 ret = inherit_group(event, parent, parent_ctx,
5561 child, child_ctx);
5562
5563 if (ret)
5564 *inherited_all = 0;
5565
5566 return ret;
5567 }
5568
5569
5570 /*
5571 * Initialize the perf_event context in task_struct
5572 */
5573 int perf_event_init_task(struct task_struct *child)
5574 {
5575 struct perf_event_context *child_ctx, *parent_ctx;
5576 struct perf_event_context *cloned_ctx;
5577 struct perf_event *event;
5578 struct task_struct *parent = current;
5579 int inherited_all = 1;
5580 int ret = 0;
5581
5582 child->perf_event_ctxp = NULL;
5583
5584 mutex_init(&child->perf_event_mutex);
5585 INIT_LIST_HEAD(&child->perf_event_list);
5586
5587 if (likely(!parent->perf_event_ctxp))
5588 return 0;
5589
5590 /*
5591 * If the parent's context is a clone, pin it so it won't get
5592 * swapped under us.
5593 */
5594 parent_ctx = perf_pin_task_context(parent);
5595
5596 /*
5597 * No need to check if parent_ctx != NULL here; since we saw
5598 * it non-NULL earlier, the only reason for it to become NULL
5599 * is if we exit, and since we're currently in the middle of
5600 * a fork we can't be exiting at the same time.
5601 */
5602
5603 /*
5604 * Lock the parent list. No need to lock the child - not PID
5605 * hashed yet and not running, so nobody can access it.
5606 */
5607 mutex_lock(&parent_ctx->mutex);
5608
5609 /*
5610 * We dont have to disable NMIs - we are only looking at
5611 * the list, not manipulating it:
5612 */
5613 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5614 ret = inherit_task_group(event, parent, parent_ctx, child,
5615 &inherited_all);
5616 if (ret)
5617 break;
5618 }
5619
5620 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5621 ret = inherit_task_group(event, parent, parent_ctx, child,
5622 &inherited_all);
5623 if (ret)
5624 break;
5625 }
5626
5627 child_ctx = child->perf_event_ctxp;
5628
5629 if (child_ctx && inherited_all) {
5630 /*
5631 * Mark the child context as a clone of the parent
5632 * context, or of whatever the parent is a clone of.
5633 * Note that if the parent is a clone, it could get
5634 * uncloned at any point, but that doesn't matter
5635 * because the list of events and the generation
5636 * count can't have changed since we took the mutex.
5637 */
5638 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5639 if (cloned_ctx) {
5640 child_ctx->parent_ctx = cloned_ctx;
5641 child_ctx->parent_gen = parent_ctx->parent_gen;
5642 } else {
5643 child_ctx->parent_ctx = parent_ctx;
5644 child_ctx->parent_gen = parent_ctx->generation;
5645 }
5646 get_ctx(child_ctx->parent_ctx);
5647 }
5648
5649 mutex_unlock(&parent_ctx->mutex);
5650
5651 perf_unpin_context(parent_ctx);
5652
5653 return ret;
5654 }
5655
5656 static void __init perf_event_init_all_cpus(void)
5657 {
5658 int cpu;
5659 struct perf_cpu_context *cpuctx;
5660
5661 for_each_possible_cpu(cpu) {
5662 cpuctx = &per_cpu(perf_cpu_context, cpu);
5663 mutex_init(&cpuctx->hlist_mutex);
5664 __perf_event_init_context(&cpuctx->ctx, NULL);
5665 }
5666 }
5667
5668 static void __cpuinit perf_event_init_cpu(int cpu)
5669 {
5670 struct perf_cpu_context *cpuctx;
5671
5672 cpuctx = &per_cpu(perf_cpu_context, cpu);
5673
5674 spin_lock(&perf_resource_lock);
5675 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5676 spin_unlock(&perf_resource_lock);
5677
5678 mutex_lock(&cpuctx->hlist_mutex);
5679 if (cpuctx->hlist_refcount > 0) {
5680 struct swevent_hlist *hlist;
5681
5682 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5683 WARN_ON_ONCE(!hlist);
5684 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
5685 }
5686 mutex_unlock(&cpuctx->hlist_mutex);
5687 }
5688
5689 #ifdef CONFIG_HOTPLUG_CPU
5690 static void __perf_event_exit_cpu(void *info)
5691 {
5692 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5693 struct perf_event_context *ctx = &cpuctx->ctx;
5694 struct perf_event *event, *tmp;
5695
5696 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5697 __perf_event_remove_from_context(event);
5698 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5699 __perf_event_remove_from_context(event);
5700 }
5701 static void perf_event_exit_cpu(int cpu)
5702 {
5703 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5704 struct perf_event_context *ctx = &cpuctx->ctx;
5705
5706 mutex_lock(&cpuctx->hlist_mutex);
5707 swevent_hlist_release(cpuctx);
5708 mutex_unlock(&cpuctx->hlist_mutex);
5709
5710 mutex_lock(&ctx->mutex);
5711 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5712 mutex_unlock(&ctx->mutex);
5713 }
5714 #else
5715 static inline void perf_event_exit_cpu(int cpu) { }
5716 #endif
5717
5718 static int __cpuinit
5719 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5720 {
5721 unsigned int cpu = (long)hcpu;
5722
5723 switch (action) {
5724
5725 case CPU_UP_PREPARE:
5726 case CPU_UP_PREPARE_FROZEN:
5727 perf_event_init_cpu(cpu);
5728 break;
5729
5730 case CPU_DOWN_PREPARE:
5731 case CPU_DOWN_PREPARE_FROZEN:
5732 perf_event_exit_cpu(cpu);
5733 break;
5734
5735 default:
5736 break;
5737 }
5738
5739 return NOTIFY_OK;
5740 }
5741
5742 /*
5743 * This has to have a higher priority than migration_notifier in sched.c.
5744 */
5745 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5746 .notifier_call = perf_cpu_notify,
5747 .priority = 20,
5748 };
5749
5750 void __init perf_event_init(void)
5751 {
5752 perf_event_init_all_cpus();
5753 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5754 (void *)(long)smp_processor_id());
5755 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5756 (void *)(long)smp_processor_id());
5757 register_cpu_notifier(&perf_cpu_nb);
5758 }
5759
5760 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5761 struct sysdev_class_attribute *attr,
5762 char *buf)
5763 {
5764 return sprintf(buf, "%d\n", perf_reserved_percpu);
5765 }
5766
5767 static ssize_t
5768 perf_set_reserve_percpu(struct sysdev_class *class,
5769 struct sysdev_class_attribute *attr,
5770 const char *buf,
5771 size_t count)
5772 {
5773 struct perf_cpu_context *cpuctx;
5774 unsigned long val;
5775 int err, cpu, mpt;
5776
5777 err = strict_strtoul(buf, 10, &val);
5778 if (err)
5779 return err;
5780 if (val > perf_max_events)
5781 return -EINVAL;
5782
5783 spin_lock(&perf_resource_lock);
5784 perf_reserved_percpu = val;
5785 for_each_online_cpu(cpu) {
5786 cpuctx = &per_cpu(perf_cpu_context, cpu);
5787 raw_spin_lock_irq(&cpuctx->ctx.lock);
5788 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5789 perf_max_events - perf_reserved_percpu);
5790 cpuctx->max_pertask = mpt;
5791 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5792 }
5793 spin_unlock(&perf_resource_lock);
5794
5795 return count;
5796 }
5797
5798 static ssize_t perf_show_overcommit(struct sysdev_class *class,
5799 struct sysdev_class_attribute *attr,
5800 char *buf)
5801 {
5802 return sprintf(buf, "%d\n", perf_overcommit);
5803 }
5804
5805 static ssize_t
5806 perf_set_overcommit(struct sysdev_class *class,
5807 struct sysdev_class_attribute *attr,
5808 const char *buf, size_t count)
5809 {
5810 unsigned long val;
5811 int err;
5812
5813 err = strict_strtoul(buf, 10, &val);
5814 if (err)
5815 return err;
5816 if (val > 1)
5817 return -EINVAL;
5818
5819 spin_lock(&perf_resource_lock);
5820 perf_overcommit = val;
5821 spin_unlock(&perf_resource_lock);
5822
5823 return count;
5824 }
5825
5826 static SYSDEV_CLASS_ATTR(
5827 reserve_percpu,
5828 0644,
5829 perf_show_reserve_percpu,
5830 perf_set_reserve_percpu
5831 );
5832
5833 static SYSDEV_CLASS_ATTR(
5834 overcommit,
5835 0644,
5836 perf_show_overcommit,
5837 perf_set_overcommit
5838 );
5839
5840 static struct attribute *perfclass_attrs[] = {
5841 &attr_reserve_percpu.attr,
5842 &attr_overcommit.attr,
5843 NULL
5844 };
5845
5846 static struct attribute_group perfclass_attr_group = {
5847 .attrs = perfclass_attrs,
5848 .name = "perf_events",
5849 };
5850
5851 static int __init perf_event_sysfs_init(void)
5852 {
5853 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5854 &perfclass_attr_group);
5855 }
5856 device_initcall(perf_event_sysfs_init);