]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/perf_event.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6
[mirror_ubuntu-hirsute-kernel.git] / kernel / perf_event.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/hardirq.h>
24 #include <linux/rculist.h>
25 #include <linux/uaccess.h>
26 #include <linux/syscalls.h>
27 #include <linux/anon_inodes.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/perf_event.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34 * Each CPU has a list of per CPU events:
35 */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_events __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_events __read_mostly;
43 static atomic_t nr_mmap_events __read_mostly;
44 static atomic_t nr_comm_events __read_mostly;
45 static atomic_t nr_task_events __read_mostly;
46
47 /*
48 * perf event paranoia level:
49 * -1 - not paranoid at all
50 * 0 - disallow raw tracepoint access for unpriv
51 * 1 - disallow cpu events for unpriv
52 * 2 - disallow kernel profiling for unpriv
53 */
54 int sysctl_perf_event_paranoid __read_mostly = 1;
55
56 static inline bool perf_paranoid_tracepoint_raw(void)
57 {
58 return sysctl_perf_event_paranoid > -1;
59 }
60
61 static inline bool perf_paranoid_cpu(void)
62 {
63 return sysctl_perf_event_paranoid > 0;
64 }
65
66 static inline bool perf_paranoid_kernel(void)
67 {
68 return sysctl_perf_event_paranoid > 1;
69 }
70
71 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
72
73 /*
74 * max perf event sample rate
75 */
76 int sysctl_perf_event_sample_rate __read_mostly = 100000;
77
78 static atomic64_t perf_event_id;
79
80 /*
81 * Lock for (sysadmin-configurable) event reservations:
82 */
83 static DEFINE_SPINLOCK(perf_resource_lock);
84
85 /*
86 * Architecture provided APIs - weak aliases:
87 */
88 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
89 {
90 return NULL;
91 }
92
93 void __weak hw_perf_disable(void) { barrier(); }
94 void __weak hw_perf_enable(void) { barrier(); }
95
96 void __weak hw_perf_event_setup(int cpu) { barrier(); }
97 void __weak hw_perf_event_setup_online(int cpu) { barrier(); }
98
99 int __weak
100 hw_perf_group_sched_in(struct perf_event *group_leader,
101 struct perf_cpu_context *cpuctx,
102 struct perf_event_context *ctx, int cpu)
103 {
104 return 0;
105 }
106
107 void __weak perf_event_print_debug(void) { }
108
109 static DEFINE_PER_CPU(int, perf_disable_count);
110
111 void __perf_disable(void)
112 {
113 __get_cpu_var(perf_disable_count)++;
114 }
115
116 bool __perf_enable(void)
117 {
118 return !--__get_cpu_var(perf_disable_count);
119 }
120
121 void perf_disable(void)
122 {
123 __perf_disable();
124 hw_perf_disable();
125 }
126
127 void perf_enable(void)
128 {
129 if (__perf_enable())
130 hw_perf_enable();
131 }
132
133 static void get_ctx(struct perf_event_context *ctx)
134 {
135 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
136 }
137
138 static void free_ctx(struct rcu_head *head)
139 {
140 struct perf_event_context *ctx;
141
142 ctx = container_of(head, struct perf_event_context, rcu_head);
143 kfree(ctx);
144 }
145
146 static void put_ctx(struct perf_event_context *ctx)
147 {
148 if (atomic_dec_and_test(&ctx->refcount)) {
149 if (ctx->parent_ctx)
150 put_ctx(ctx->parent_ctx);
151 if (ctx->task)
152 put_task_struct(ctx->task);
153 call_rcu(&ctx->rcu_head, free_ctx);
154 }
155 }
156
157 static void unclone_ctx(struct perf_event_context *ctx)
158 {
159 if (ctx->parent_ctx) {
160 put_ctx(ctx->parent_ctx);
161 ctx->parent_ctx = NULL;
162 }
163 }
164
165 /*
166 * If we inherit events we want to return the parent event id
167 * to userspace.
168 */
169 static u64 primary_event_id(struct perf_event *event)
170 {
171 u64 id = event->id;
172
173 if (event->parent)
174 id = event->parent->id;
175
176 return id;
177 }
178
179 /*
180 * Get the perf_event_context for a task and lock it.
181 * This has to cope with with the fact that until it is locked,
182 * the context could get moved to another task.
183 */
184 static struct perf_event_context *
185 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
186 {
187 struct perf_event_context *ctx;
188
189 rcu_read_lock();
190 retry:
191 ctx = rcu_dereference(task->perf_event_ctxp);
192 if (ctx) {
193 /*
194 * If this context is a clone of another, it might
195 * get swapped for another underneath us by
196 * perf_event_task_sched_out, though the
197 * rcu_read_lock() protects us from any context
198 * getting freed. Lock the context and check if it
199 * got swapped before we could get the lock, and retry
200 * if so. If we locked the right context, then it
201 * can't get swapped on us any more.
202 */
203 spin_lock_irqsave(&ctx->lock, *flags);
204 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
205 spin_unlock_irqrestore(&ctx->lock, *flags);
206 goto retry;
207 }
208
209 if (!atomic_inc_not_zero(&ctx->refcount)) {
210 spin_unlock_irqrestore(&ctx->lock, *flags);
211 ctx = NULL;
212 }
213 }
214 rcu_read_unlock();
215 return ctx;
216 }
217
218 /*
219 * Get the context for a task and increment its pin_count so it
220 * can't get swapped to another task. This also increments its
221 * reference count so that the context can't get freed.
222 */
223 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
224 {
225 struct perf_event_context *ctx;
226 unsigned long flags;
227
228 ctx = perf_lock_task_context(task, &flags);
229 if (ctx) {
230 ++ctx->pin_count;
231 spin_unlock_irqrestore(&ctx->lock, flags);
232 }
233 return ctx;
234 }
235
236 static void perf_unpin_context(struct perf_event_context *ctx)
237 {
238 unsigned long flags;
239
240 spin_lock_irqsave(&ctx->lock, flags);
241 --ctx->pin_count;
242 spin_unlock_irqrestore(&ctx->lock, flags);
243 put_ctx(ctx);
244 }
245
246 /*
247 * Add a event from the lists for its context.
248 * Must be called with ctx->mutex and ctx->lock held.
249 */
250 static void
251 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
252 {
253 struct perf_event *group_leader = event->group_leader;
254
255 /*
256 * Depending on whether it is a standalone or sibling event,
257 * add it straight to the context's event list, or to the group
258 * leader's sibling list:
259 */
260 if (group_leader == event)
261 list_add_tail(&event->group_entry, &ctx->group_list);
262 else {
263 list_add_tail(&event->group_entry, &group_leader->sibling_list);
264 group_leader->nr_siblings++;
265 }
266
267 list_add_rcu(&event->event_entry, &ctx->event_list);
268 ctx->nr_events++;
269 if (event->attr.inherit_stat)
270 ctx->nr_stat++;
271 }
272
273 /*
274 * Remove a event from the lists for its context.
275 * Must be called with ctx->mutex and ctx->lock held.
276 */
277 static void
278 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
279 {
280 struct perf_event *sibling, *tmp;
281
282 if (list_empty(&event->group_entry))
283 return;
284 ctx->nr_events--;
285 if (event->attr.inherit_stat)
286 ctx->nr_stat--;
287
288 list_del_init(&event->group_entry);
289 list_del_rcu(&event->event_entry);
290
291 if (event->group_leader != event)
292 event->group_leader->nr_siblings--;
293
294 /*
295 * If this was a group event with sibling events then
296 * upgrade the siblings to singleton events by adding them
297 * to the context list directly:
298 */
299 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
300
301 list_move_tail(&sibling->group_entry, &ctx->group_list);
302 sibling->group_leader = sibling;
303 }
304 }
305
306 static void
307 event_sched_out(struct perf_event *event,
308 struct perf_cpu_context *cpuctx,
309 struct perf_event_context *ctx)
310 {
311 if (event->state != PERF_EVENT_STATE_ACTIVE)
312 return;
313
314 event->state = PERF_EVENT_STATE_INACTIVE;
315 if (event->pending_disable) {
316 event->pending_disable = 0;
317 event->state = PERF_EVENT_STATE_OFF;
318 }
319 event->tstamp_stopped = ctx->time;
320 event->pmu->disable(event);
321 event->oncpu = -1;
322
323 if (!is_software_event(event))
324 cpuctx->active_oncpu--;
325 ctx->nr_active--;
326 if (event->attr.exclusive || !cpuctx->active_oncpu)
327 cpuctx->exclusive = 0;
328 }
329
330 static void
331 group_sched_out(struct perf_event *group_event,
332 struct perf_cpu_context *cpuctx,
333 struct perf_event_context *ctx)
334 {
335 struct perf_event *event;
336
337 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
338 return;
339
340 event_sched_out(group_event, cpuctx, ctx);
341
342 /*
343 * Schedule out siblings (if any):
344 */
345 list_for_each_entry(event, &group_event->sibling_list, group_entry)
346 event_sched_out(event, cpuctx, ctx);
347
348 if (group_event->attr.exclusive)
349 cpuctx->exclusive = 0;
350 }
351
352 /*
353 * Cross CPU call to remove a performance event
354 *
355 * We disable the event on the hardware level first. After that we
356 * remove it from the context list.
357 */
358 static void __perf_event_remove_from_context(void *info)
359 {
360 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
361 struct perf_event *event = info;
362 struct perf_event_context *ctx = event->ctx;
363
364 /*
365 * If this is a task context, we need to check whether it is
366 * the current task context of this cpu. If not it has been
367 * scheduled out before the smp call arrived.
368 */
369 if (ctx->task && cpuctx->task_ctx != ctx)
370 return;
371
372 spin_lock(&ctx->lock);
373 /*
374 * Protect the list operation against NMI by disabling the
375 * events on a global level.
376 */
377 perf_disable();
378
379 event_sched_out(event, cpuctx, ctx);
380
381 list_del_event(event, ctx);
382
383 if (!ctx->task) {
384 /*
385 * Allow more per task events with respect to the
386 * reservation:
387 */
388 cpuctx->max_pertask =
389 min(perf_max_events - ctx->nr_events,
390 perf_max_events - perf_reserved_percpu);
391 }
392
393 perf_enable();
394 spin_unlock(&ctx->lock);
395 }
396
397
398 /*
399 * Remove the event from a task's (or a CPU's) list of events.
400 *
401 * Must be called with ctx->mutex held.
402 *
403 * CPU events are removed with a smp call. For task events we only
404 * call when the task is on a CPU.
405 *
406 * If event->ctx is a cloned context, callers must make sure that
407 * every task struct that event->ctx->task could possibly point to
408 * remains valid. This is OK when called from perf_release since
409 * that only calls us on the top-level context, which can't be a clone.
410 * When called from perf_event_exit_task, it's OK because the
411 * context has been detached from its task.
412 */
413 static void perf_event_remove_from_context(struct perf_event *event)
414 {
415 struct perf_event_context *ctx = event->ctx;
416 struct task_struct *task = ctx->task;
417
418 if (!task) {
419 /*
420 * Per cpu events are removed via an smp call and
421 * the removal is always sucessful.
422 */
423 smp_call_function_single(event->cpu,
424 __perf_event_remove_from_context,
425 event, 1);
426 return;
427 }
428
429 retry:
430 task_oncpu_function_call(task, __perf_event_remove_from_context,
431 event);
432
433 spin_lock_irq(&ctx->lock);
434 /*
435 * If the context is active we need to retry the smp call.
436 */
437 if (ctx->nr_active && !list_empty(&event->group_entry)) {
438 spin_unlock_irq(&ctx->lock);
439 goto retry;
440 }
441
442 /*
443 * The lock prevents that this context is scheduled in so we
444 * can remove the event safely, if the call above did not
445 * succeed.
446 */
447 if (!list_empty(&event->group_entry)) {
448 list_del_event(event, ctx);
449 }
450 spin_unlock_irq(&ctx->lock);
451 }
452
453 static inline u64 perf_clock(void)
454 {
455 return cpu_clock(smp_processor_id());
456 }
457
458 /*
459 * Update the record of the current time in a context.
460 */
461 static void update_context_time(struct perf_event_context *ctx)
462 {
463 u64 now = perf_clock();
464
465 ctx->time += now - ctx->timestamp;
466 ctx->timestamp = now;
467 }
468
469 /*
470 * Update the total_time_enabled and total_time_running fields for a event.
471 */
472 static void update_event_times(struct perf_event *event)
473 {
474 struct perf_event_context *ctx = event->ctx;
475 u64 run_end;
476
477 if (event->state < PERF_EVENT_STATE_INACTIVE ||
478 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
479 return;
480
481 event->total_time_enabled = ctx->time - event->tstamp_enabled;
482
483 if (event->state == PERF_EVENT_STATE_INACTIVE)
484 run_end = event->tstamp_stopped;
485 else
486 run_end = ctx->time;
487
488 event->total_time_running = run_end - event->tstamp_running;
489 }
490
491 /*
492 * Update total_time_enabled and total_time_running for all events in a group.
493 */
494 static void update_group_times(struct perf_event *leader)
495 {
496 struct perf_event *event;
497
498 update_event_times(leader);
499 list_for_each_entry(event, &leader->sibling_list, group_entry)
500 update_event_times(event);
501 }
502
503 /*
504 * Cross CPU call to disable a performance event
505 */
506 static void __perf_event_disable(void *info)
507 {
508 struct perf_event *event = info;
509 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
510 struct perf_event_context *ctx = event->ctx;
511
512 /*
513 * If this is a per-task event, need to check whether this
514 * event's task is the current task on this cpu.
515 */
516 if (ctx->task && cpuctx->task_ctx != ctx)
517 return;
518
519 spin_lock(&ctx->lock);
520
521 /*
522 * If the event is on, turn it off.
523 * If it is in error state, leave it in error state.
524 */
525 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
526 update_context_time(ctx);
527 update_group_times(event);
528 if (event == event->group_leader)
529 group_sched_out(event, cpuctx, ctx);
530 else
531 event_sched_out(event, cpuctx, ctx);
532 event->state = PERF_EVENT_STATE_OFF;
533 }
534
535 spin_unlock(&ctx->lock);
536 }
537
538 /*
539 * Disable a event.
540 *
541 * If event->ctx is a cloned context, callers must make sure that
542 * every task struct that event->ctx->task could possibly point to
543 * remains valid. This condition is satisifed when called through
544 * perf_event_for_each_child or perf_event_for_each because they
545 * hold the top-level event's child_mutex, so any descendant that
546 * goes to exit will block in sync_child_event.
547 * When called from perf_pending_event it's OK because event->ctx
548 * is the current context on this CPU and preemption is disabled,
549 * hence we can't get into perf_event_task_sched_out for this context.
550 */
551 static void perf_event_disable(struct perf_event *event)
552 {
553 struct perf_event_context *ctx = event->ctx;
554 struct task_struct *task = ctx->task;
555
556 if (!task) {
557 /*
558 * Disable the event on the cpu that it's on
559 */
560 smp_call_function_single(event->cpu, __perf_event_disable,
561 event, 1);
562 return;
563 }
564
565 retry:
566 task_oncpu_function_call(task, __perf_event_disable, event);
567
568 spin_lock_irq(&ctx->lock);
569 /*
570 * If the event is still active, we need to retry the cross-call.
571 */
572 if (event->state == PERF_EVENT_STATE_ACTIVE) {
573 spin_unlock_irq(&ctx->lock);
574 goto retry;
575 }
576
577 /*
578 * Since we have the lock this context can't be scheduled
579 * in, so we can change the state safely.
580 */
581 if (event->state == PERF_EVENT_STATE_INACTIVE) {
582 update_group_times(event);
583 event->state = PERF_EVENT_STATE_OFF;
584 }
585
586 spin_unlock_irq(&ctx->lock);
587 }
588
589 static int
590 event_sched_in(struct perf_event *event,
591 struct perf_cpu_context *cpuctx,
592 struct perf_event_context *ctx,
593 int cpu)
594 {
595 if (event->state <= PERF_EVENT_STATE_OFF)
596 return 0;
597
598 event->state = PERF_EVENT_STATE_ACTIVE;
599 event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
600 /*
601 * The new state must be visible before we turn it on in the hardware:
602 */
603 smp_wmb();
604
605 if (event->pmu->enable(event)) {
606 event->state = PERF_EVENT_STATE_INACTIVE;
607 event->oncpu = -1;
608 return -EAGAIN;
609 }
610
611 event->tstamp_running += ctx->time - event->tstamp_stopped;
612
613 if (!is_software_event(event))
614 cpuctx->active_oncpu++;
615 ctx->nr_active++;
616
617 if (event->attr.exclusive)
618 cpuctx->exclusive = 1;
619
620 return 0;
621 }
622
623 static int
624 group_sched_in(struct perf_event *group_event,
625 struct perf_cpu_context *cpuctx,
626 struct perf_event_context *ctx,
627 int cpu)
628 {
629 struct perf_event *event, *partial_group;
630 int ret;
631
632 if (group_event->state == PERF_EVENT_STATE_OFF)
633 return 0;
634
635 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
636 if (ret)
637 return ret < 0 ? ret : 0;
638
639 if (event_sched_in(group_event, cpuctx, ctx, cpu))
640 return -EAGAIN;
641
642 /*
643 * Schedule in siblings as one group (if any):
644 */
645 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
646 if (event_sched_in(event, cpuctx, ctx, cpu)) {
647 partial_group = event;
648 goto group_error;
649 }
650 }
651
652 return 0;
653
654 group_error:
655 /*
656 * Groups can be scheduled in as one unit only, so undo any
657 * partial group before returning:
658 */
659 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
660 if (event == partial_group)
661 break;
662 event_sched_out(event, cpuctx, ctx);
663 }
664 event_sched_out(group_event, cpuctx, ctx);
665
666 return -EAGAIN;
667 }
668
669 /*
670 * Return 1 for a group consisting entirely of software events,
671 * 0 if the group contains any hardware events.
672 */
673 static int is_software_only_group(struct perf_event *leader)
674 {
675 struct perf_event *event;
676
677 if (!is_software_event(leader))
678 return 0;
679
680 list_for_each_entry(event, &leader->sibling_list, group_entry)
681 if (!is_software_event(event))
682 return 0;
683
684 return 1;
685 }
686
687 /*
688 * Work out whether we can put this event group on the CPU now.
689 */
690 static int group_can_go_on(struct perf_event *event,
691 struct perf_cpu_context *cpuctx,
692 int can_add_hw)
693 {
694 /*
695 * Groups consisting entirely of software events can always go on.
696 */
697 if (is_software_only_group(event))
698 return 1;
699 /*
700 * If an exclusive group is already on, no other hardware
701 * events can go on.
702 */
703 if (cpuctx->exclusive)
704 return 0;
705 /*
706 * If this group is exclusive and there are already
707 * events on the CPU, it can't go on.
708 */
709 if (event->attr.exclusive && cpuctx->active_oncpu)
710 return 0;
711 /*
712 * Otherwise, try to add it if all previous groups were able
713 * to go on.
714 */
715 return can_add_hw;
716 }
717
718 static void add_event_to_ctx(struct perf_event *event,
719 struct perf_event_context *ctx)
720 {
721 list_add_event(event, ctx);
722 event->tstamp_enabled = ctx->time;
723 event->tstamp_running = ctx->time;
724 event->tstamp_stopped = ctx->time;
725 }
726
727 /*
728 * Cross CPU call to install and enable a performance event
729 *
730 * Must be called with ctx->mutex held
731 */
732 static void __perf_install_in_context(void *info)
733 {
734 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
735 struct perf_event *event = info;
736 struct perf_event_context *ctx = event->ctx;
737 struct perf_event *leader = event->group_leader;
738 int cpu = smp_processor_id();
739 int err;
740
741 /*
742 * If this is a task context, we need to check whether it is
743 * the current task context of this cpu. If not it has been
744 * scheduled out before the smp call arrived.
745 * Or possibly this is the right context but it isn't
746 * on this cpu because it had no events.
747 */
748 if (ctx->task && cpuctx->task_ctx != ctx) {
749 if (cpuctx->task_ctx || ctx->task != current)
750 return;
751 cpuctx->task_ctx = ctx;
752 }
753
754 spin_lock(&ctx->lock);
755 ctx->is_active = 1;
756 update_context_time(ctx);
757
758 /*
759 * Protect the list operation against NMI by disabling the
760 * events on a global level. NOP for non NMI based events.
761 */
762 perf_disable();
763
764 add_event_to_ctx(event, ctx);
765
766 /*
767 * Don't put the event on if it is disabled or if
768 * it is in a group and the group isn't on.
769 */
770 if (event->state != PERF_EVENT_STATE_INACTIVE ||
771 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
772 goto unlock;
773
774 /*
775 * An exclusive event can't go on if there are already active
776 * hardware events, and no hardware event can go on if there
777 * is already an exclusive event on.
778 */
779 if (!group_can_go_on(event, cpuctx, 1))
780 err = -EEXIST;
781 else
782 err = event_sched_in(event, cpuctx, ctx, cpu);
783
784 if (err) {
785 /*
786 * This event couldn't go on. If it is in a group
787 * then we have to pull the whole group off.
788 * If the event group is pinned then put it in error state.
789 */
790 if (leader != event)
791 group_sched_out(leader, cpuctx, ctx);
792 if (leader->attr.pinned) {
793 update_group_times(leader);
794 leader->state = PERF_EVENT_STATE_ERROR;
795 }
796 }
797
798 if (!err && !ctx->task && cpuctx->max_pertask)
799 cpuctx->max_pertask--;
800
801 unlock:
802 perf_enable();
803
804 spin_unlock(&ctx->lock);
805 }
806
807 /*
808 * Attach a performance event to a context
809 *
810 * First we add the event to the list with the hardware enable bit
811 * in event->hw_config cleared.
812 *
813 * If the event is attached to a task which is on a CPU we use a smp
814 * call to enable it in the task context. The task might have been
815 * scheduled away, but we check this in the smp call again.
816 *
817 * Must be called with ctx->mutex held.
818 */
819 static void
820 perf_install_in_context(struct perf_event_context *ctx,
821 struct perf_event *event,
822 int cpu)
823 {
824 struct task_struct *task = ctx->task;
825
826 if (!task) {
827 /*
828 * Per cpu events are installed via an smp call and
829 * the install is always sucessful.
830 */
831 smp_call_function_single(cpu, __perf_install_in_context,
832 event, 1);
833 return;
834 }
835
836 retry:
837 task_oncpu_function_call(task, __perf_install_in_context,
838 event);
839
840 spin_lock_irq(&ctx->lock);
841 /*
842 * we need to retry the smp call.
843 */
844 if (ctx->is_active && list_empty(&event->group_entry)) {
845 spin_unlock_irq(&ctx->lock);
846 goto retry;
847 }
848
849 /*
850 * The lock prevents that this context is scheduled in so we
851 * can add the event safely, if it the call above did not
852 * succeed.
853 */
854 if (list_empty(&event->group_entry))
855 add_event_to_ctx(event, ctx);
856 spin_unlock_irq(&ctx->lock);
857 }
858
859 /*
860 * Put a event into inactive state and update time fields.
861 * Enabling the leader of a group effectively enables all
862 * the group members that aren't explicitly disabled, so we
863 * have to update their ->tstamp_enabled also.
864 * Note: this works for group members as well as group leaders
865 * since the non-leader members' sibling_lists will be empty.
866 */
867 static void __perf_event_mark_enabled(struct perf_event *event,
868 struct perf_event_context *ctx)
869 {
870 struct perf_event *sub;
871
872 event->state = PERF_EVENT_STATE_INACTIVE;
873 event->tstamp_enabled = ctx->time - event->total_time_enabled;
874 list_for_each_entry(sub, &event->sibling_list, group_entry)
875 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
876 sub->tstamp_enabled =
877 ctx->time - sub->total_time_enabled;
878 }
879
880 /*
881 * Cross CPU call to enable a performance event
882 */
883 static void __perf_event_enable(void *info)
884 {
885 struct perf_event *event = info;
886 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
887 struct perf_event_context *ctx = event->ctx;
888 struct perf_event *leader = event->group_leader;
889 int err;
890
891 /*
892 * If this is a per-task event, need to check whether this
893 * event's task is the current task on this cpu.
894 */
895 if (ctx->task && cpuctx->task_ctx != ctx) {
896 if (cpuctx->task_ctx || ctx->task != current)
897 return;
898 cpuctx->task_ctx = ctx;
899 }
900
901 spin_lock(&ctx->lock);
902 ctx->is_active = 1;
903 update_context_time(ctx);
904
905 if (event->state >= PERF_EVENT_STATE_INACTIVE)
906 goto unlock;
907 __perf_event_mark_enabled(event, ctx);
908
909 /*
910 * If the event is in a group and isn't the group leader,
911 * then don't put it on unless the group is on.
912 */
913 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
914 goto unlock;
915
916 if (!group_can_go_on(event, cpuctx, 1)) {
917 err = -EEXIST;
918 } else {
919 perf_disable();
920 if (event == leader)
921 err = group_sched_in(event, cpuctx, ctx,
922 smp_processor_id());
923 else
924 err = event_sched_in(event, cpuctx, ctx,
925 smp_processor_id());
926 perf_enable();
927 }
928
929 if (err) {
930 /*
931 * If this event can't go on and it's part of a
932 * group, then the whole group has to come off.
933 */
934 if (leader != event)
935 group_sched_out(leader, cpuctx, ctx);
936 if (leader->attr.pinned) {
937 update_group_times(leader);
938 leader->state = PERF_EVENT_STATE_ERROR;
939 }
940 }
941
942 unlock:
943 spin_unlock(&ctx->lock);
944 }
945
946 /*
947 * Enable a event.
948 *
949 * If event->ctx is a cloned context, callers must make sure that
950 * every task struct that event->ctx->task could possibly point to
951 * remains valid. This condition is satisfied when called through
952 * perf_event_for_each_child or perf_event_for_each as described
953 * for perf_event_disable.
954 */
955 static void perf_event_enable(struct perf_event *event)
956 {
957 struct perf_event_context *ctx = event->ctx;
958 struct task_struct *task = ctx->task;
959
960 if (!task) {
961 /*
962 * Enable the event on the cpu that it's on
963 */
964 smp_call_function_single(event->cpu, __perf_event_enable,
965 event, 1);
966 return;
967 }
968
969 spin_lock_irq(&ctx->lock);
970 if (event->state >= PERF_EVENT_STATE_INACTIVE)
971 goto out;
972
973 /*
974 * If the event is in error state, clear that first.
975 * That way, if we see the event in error state below, we
976 * know that it has gone back into error state, as distinct
977 * from the task having been scheduled away before the
978 * cross-call arrived.
979 */
980 if (event->state == PERF_EVENT_STATE_ERROR)
981 event->state = PERF_EVENT_STATE_OFF;
982
983 retry:
984 spin_unlock_irq(&ctx->lock);
985 task_oncpu_function_call(task, __perf_event_enable, event);
986
987 spin_lock_irq(&ctx->lock);
988
989 /*
990 * If the context is active and the event is still off,
991 * we need to retry the cross-call.
992 */
993 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
994 goto retry;
995
996 /*
997 * Since we have the lock this context can't be scheduled
998 * in, so we can change the state safely.
999 */
1000 if (event->state == PERF_EVENT_STATE_OFF)
1001 __perf_event_mark_enabled(event, ctx);
1002
1003 out:
1004 spin_unlock_irq(&ctx->lock);
1005 }
1006
1007 static int perf_event_refresh(struct perf_event *event, int refresh)
1008 {
1009 /*
1010 * not supported on inherited events
1011 */
1012 if (event->attr.inherit)
1013 return -EINVAL;
1014
1015 atomic_add(refresh, &event->event_limit);
1016 perf_event_enable(event);
1017
1018 return 0;
1019 }
1020
1021 void __perf_event_sched_out(struct perf_event_context *ctx,
1022 struct perf_cpu_context *cpuctx)
1023 {
1024 struct perf_event *event;
1025
1026 spin_lock(&ctx->lock);
1027 ctx->is_active = 0;
1028 if (likely(!ctx->nr_events))
1029 goto out;
1030 update_context_time(ctx);
1031
1032 perf_disable();
1033 if (ctx->nr_active)
1034 list_for_each_entry(event, &ctx->group_list, group_entry)
1035 group_sched_out(event, cpuctx, ctx);
1036
1037 perf_enable();
1038 out:
1039 spin_unlock(&ctx->lock);
1040 }
1041
1042 /*
1043 * Test whether two contexts are equivalent, i.e. whether they
1044 * have both been cloned from the same version of the same context
1045 * and they both have the same number of enabled events.
1046 * If the number of enabled events is the same, then the set
1047 * of enabled events should be the same, because these are both
1048 * inherited contexts, therefore we can't access individual events
1049 * in them directly with an fd; we can only enable/disable all
1050 * events via prctl, or enable/disable all events in a family
1051 * via ioctl, which will have the same effect on both contexts.
1052 */
1053 static int context_equiv(struct perf_event_context *ctx1,
1054 struct perf_event_context *ctx2)
1055 {
1056 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1057 && ctx1->parent_gen == ctx2->parent_gen
1058 && !ctx1->pin_count && !ctx2->pin_count;
1059 }
1060
1061 static void __perf_event_read(void *event);
1062
1063 static void __perf_event_sync_stat(struct perf_event *event,
1064 struct perf_event *next_event)
1065 {
1066 u64 value;
1067
1068 if (!event->attr.inherit_stat)
1069 return;
1070
1071 /*
1072 * Update the event value, we cannot use perf_event_read()
1073 * because we're in the middle of a context switch and have IRQs
1074 * disabled, which upsets smp_call_function_single(), however
1075 * we know the event must be on the current CPU, therefore we
1076 * don't need to use it.
1077 */
1078 switch (event->state) {
1079 case PERF_EVENT_STATE_ACTIVE:
1080 __perf_event_read(event);
1081 break;
1082
1083 case PERF_EVENT_STATE_INACTIVE:
1084 update_event_times(event);
1085 break;
1086
1087 default:
1088 break;
1089 }
1090
1091 /*
1092 * In order to keep per-task stats reliable we need to flip the event
1093 * values when we flip the contexts.
1094 */
1095 value = atomic64_read(&next_event->count);
1096 value = atomic64_xchg(&event->count, value);
1097 atomic64_set(&next_event->count, value);
1098
1099 swap(event->total_time_enabled, next_event->total_time_enabled);
1100 swap(event->total_time_running, next_event->total_time_running);
1101
1102 /*
1103 * Since we swizzled the values, update the user visible data too.
1104 */
1105 perf_event_update_userpage(event);
1106 perf_event_update_userpage(next_event);
1107 }
1108
1109 #define list_next_entry(pos, member) \
1110 list_entry(pos->member.next, typeof(*pos), member)
1111
1112 static void perf_event_sync_stat(struct perf_event_context *ctx,
1113 struct perf_event_context *next_ctx)
1114 {
1115 struct perf_event *event, *next_event;
1116
1117 if (!ctx->nr_stat)
1118 return;
1119
1120 event = list_first_entry(&ctx->event_list,
1121 struct perf_event, event_entry);
1122
1123 next_event = list_first_entry(&next_ctx->event_list,
1124 struct perf_event, event_entry);
1125
1126 while (&event->event_entry != &ctx->event_list &&
1127 &next_event->event_entry != &next_ctx->event_list) {
1128
1129 __perf_event_sync_stat(event, next_event);
1130
1131 event = list_next_entry(event, event_entry);
1132 next_event = list_next_entry(next_event, event_entry);
1133 }
1134 }
1135
1136 /*
1137 * Called from scheduler to remove the events of the current task,
1138 * with interrupts disabled.
1139 *
1140 * We stop each event and update the event value in event->count.
1141 *
1142 * This does not protect us against NMI, but disable()
1143 * sets the disabled bit in the control field of event _before_
1144 * accessing the event control register. If a NMI hits, then it will
1145 * not restart the event.
1146 */
1147 void perf_event_task_sched_out(struct task_struct *task,
1148 struct task_struct *next, int cpu)
1149 {
1150 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1151 struct perf_event_context *ctx = task->perf_event_ctxp;
1152 struct perf_event_context *next_ctx;
1153 struct perf_event_context *parent;
1154 struct pt_regs *regs;
1155 int do_switch = 1;
1156
1157 regs = task_pt_regs(task);
1158 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1159
1160 if (likely(!ctx || !cpuctx->task_ctx))
1161 return;
1162
1163 update_context_time(ctx);
1164
1165 rcu_read_lock();
1166 parent = rcu_dereference(ctx->parent_ctx);
1167 next_ctx = next->perf_event_ctxp;
1168 if (parent && next_ctx &&
1169 rcu_dereference(next_ctx->parent_ctx) == parent) {
1170 /*
1171 * Looks like the two contexts are clones, so we might be
1172 * able to optimize the context switch. We lock both
1173 * contexts and check that they are clones under the
1174 * lock (including re-checking that neither has been
1175 * uncloned in the meantime). It doesn't matter which
1176 * order we take the locks because no other cpu could
1177 * be trying to lock both of these tasks.
1178 */
1179 spin_lock(&ctx->lock);
1180 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1181 if (context_equiv(ctx, next_ctx)) {
1182 /*
1183 * XXX do we need a memory barrier of sorts
1184 * wrt to rcu_dereference() of perf_event_ctxp
1185 */
1186 task->perf_event_ctxp = next_ctx;
1187 next->perf_event_ctxp = ctx;
1188 ctx->task = next;
1189 next_ctx->task = task;
1190 do_switch = 0;
1191
1192 perf_event_sync_stat(ctx, next_ctx);
1193 }
1194 spin_unlock(&next_ctx->lock);
1195 spin_unlock(&ctx->lock);
1196 }
1197 rcu_read_unlock();
1198
1199 if (do_switch) {
1200 __perf_event_sched_out(ctx, cpuctx);
1201 cpuctx->task_ctx = NULL;
1202 }
1203 }
1204
1205 /*
1206 * Called with IRQs disabled
1207 */
1208 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1209 {
1210 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1211
1212 if (!cpuctx->task_ctx)
1213 return;
1214
1215 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1216 return;
1217
1218 __perf_event_sched_out(ctx, cpuctx);
1219 cpuctx->task_ctx = NULL;
1220 }
1221
1222 /*
1223 * Called with IRQs disabled
1224 */
1225 static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1226 {
1227 __perf_event_sched_out(&cpuctx->ctx, cpuctx);
1228 }
1229
1230 static void
1231 __perf_event_sched_in(struct perf_event_context *ctx,
1232 struct perf_cpu_context *cpuctx, int cpu)
1233 {
1234 struct perf_event *event;
1235 int can_add_hw = 1;
1236
1237 spin_lock(&ctx->lock);
1238 ctx->is_active = 1;
1239 if (likely(!ctx->nr_events))
1240 goto out;
1241
1242 ctx->timestamp = perf_clock();
1243
1244 perf_disable();
1245
1246 /*
1247 * First go through the list and put on any pinned groups
1248 * in order to give them the best chance of going on.
1249 */
1250 list_for_each_entry(event, &ctx->group_list, group_entry) {
1251 if (event->state <= PERF_EVENT_STATE_OFF ||
1252 !event->attr.pinned)
1253 continue;
1254 if (event->cpu != -1 && event->cpu != cpu)
1255 continue;
1256
1257 if (group_can_go_on(event, cpuctx, 1))
1258 group_sched_in(event, cpuctx, ctx, cpu);
1259
1260 /*
1261 * If this pinned group hasn't been scheduled,
1262 * put it in error state.
1263 */
1264 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1265 update_group_times(event);
1266 event->state = PERF_EVENT_STATE_ERROR;
1267 }
1268 }
1269
1270 list_for_each_entry(event, &ctx->group_list, group_entry) {
1271 /*
1272 * Ignore events in OFF or ERROR state, and
1273 * ignore pinned events since we did them already.
1274 */
1275 if (event->state <= PERF_EVENT_STATE_OFF ||
1276 event->attr.pinned)
1277 continue;
1278
1279 /*
1280 * Listen to the 'cpu' scheduling filter constraint
1281 * of events:
1282 */
1283 if (event->cpu != -1 && event->cpu != cpu)
1284 continue;
1285
1286 if (group_can_go_on(event, cpuctx, can_add_hw))
1287 if (group_sched_in(event, cpuctx, ctx, cpu))
1288 can_add_hw = 0;
1289 }
1290 perf_enable();
1291 out:
1292 spin_unlock(&ctx->lock);
1293 }
1294
1295 /*
1296 * Called from scheduler to add the events of the current task
1297 * with interrupts disabled.
1298 *
1299 * We restore the event value and then enable it.
1300 *
1301 * This does not protect us against NMI, but enable()
1302 * sets the enabled bit in the control field of event _before_
1303 * accessing the event control register. If a NMI hits, then it will
1304 * keep the event running.
1305 */
1306 void perf_event_task_sched_in(struct task_struct *task, int cpu)
1307 {
1308 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1309 struct perf_event_context *ctx = task->perf_event_ctxp;
1310
1311 if (likely(!ctx))
1312 return;
1313 if (cpuctx->task_ctx == ctx)
1314 return;
1315 __perf_event_sched_in(ctx, cpuctx, cpu);
1316 cpuctx->task_ctx = ctx;
1317 }
1318
1319 static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1320 {
1321 struct perf_event_context *ctx = &cpuctx->ctx;
1322
1323 __perf_event_sched_in(ctx, cpuctx, cpu);
1324 }
1325
1326 #define MAX_INTERRUPTS (~0ULL)
1327
1328 static void perf_log_throttle(struct perf_event *event, int enable);
1329
1330 static void perf_adjust_period(struct perf_event *event, u64 events)
1331 {
1332 struct hw_perf_event *hwc = &event->hw;
1333 u64 period, sample_period;
1334 s64 delta;
1335
1336 events *= hwc->sample_period;
1337 period = div64_u64(events, event->attr.sample_freq);
1338
1339 delta = (s64)(period - hwc->sample_period);
1340 delta = (delta + 7) / 8; /* low pass filter */
1341
1342 sample_period = hwc->sample_period + delta;
1343
1344 if (!sample_period)
1345 sample_period = 1;
1346
1347 hwc->sample_period = sample_period;
1348 }
1349
1350 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1351 {
1352 struct perf_event *event;
1353 struct hw_perf_event *hwc;
1354 u64 interrupts, freq;
1355
1356 spin_lock(&ctx->lock);
1357 list_for_each_entry(event, &ctx->group_list, group_entry) {
1358 if (event->state != PERF_EVENT_STATE_ACTIVE)
1359 continue;
1360
1361 hwc = &event->hw;
1362
1363 interrupts = hwc->interrupts;
1364 hwc->interrupts = 0;
1365
1366 /*
1367 * unthrottle events on the tick
1368 */
1369 if (interrupts == MAX_INTERRUPTS) {
1370 perf_log_throttle(event, 1);
1371 event->pmu->unthrottle(event);
1372 interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1373 }
1374
1375 if (!event->attr.freq || !event->attr.sample_freq)
1376 continue;
1377
1378 /*
1379 * if the specified freq < HZ then we need to skip ticks
1380 */
1381 if (event->attr.sample_freq < HZ) {
1382 freq = event->attr.sample_freq;
1383
1384 hwc->freq_count += freq;
1385 hwc->freq_interrupts += interrupts;
1386
1387 if (hwc->freq_count < HZ)
1388 continue;
1389
1390 interrupts = hwc->freq_interrupts;
1391 hwc->freq_interrupts = 0;
1392 hwc->freq_count -= HZ;
1393 } else
1394 freq = HZ;
1395
1396 perf_adjust_period(event, freq * interrupts);
1397
1398 /*
1399 * In order to avoid being stalled by an (accidental) huge
1400 * sample period, force reset the sample period if we didn't
1401 * get any events in this freq period.
1402 */
1403 if (!interrupts) {
1404 perf_disable();
1405 event->pmu->disable(event);
1406 atomic64_set(&hwc->period_left, 0);
1407 event->pmu->enable(event);
1408 perf_enable();
1409 }
1410 }
1411 spin_unlock(&ctx->lock);
1412 }
1413
1414 /*
1415 * Round-robin a context's events:
1416 */
1417 static void rotate_ctx(struct perf_event_context *ctx)
1418 {
1419 struct perf_event *event;
1420
1421 if (!ctx->nr_events)
1422 return;
1423
1424 spin_lock(&ctx->lock);
1425 /*
1426 * Rotate the first entry last (works just fine for group events too):
1427 */
1428 perf_disable();
1429 list_for_each_entry(event, &ctx->group_list, group_entry) {
1430 list_move_tail(&event->group_entry, &ctx->group_list);
1431 break;
1432 }
1433 perf_enable();
1434
1435 spin_unlock(&ctx->lock);
1436 }
1437
1438 void perf_event_task_tick(struct task_struct *curr, int cpu)
1439 {
1440 struct perf_cpu_context *cpuctx;
1441 struct perf_event_context *ctx;
1442
1443 if (!atomic_read(&nr_events))
1444 return;
1445
1446 cpuctx = &per_cpu(perf_cpu_context, cpu);
1447 ctx = curr->perf_event_ctxp;
1448
1449 perf_ctx_adjust_freq(&cpuctx->ctx);
1450 if (ctx)
1451 perf_ctx_adjust_freq(ctx);
1452
1453 perf_event_cpu_sched_out(cpuctx);
1454 if (ctx)
1455 __perf_event_task_sched_out(ctx);
1456
1457 rotate_ctx(&cpuctx->ctx);
1458 if (ctx)
1459 rotate_ctx(ctx);
1460
1461 perf_event_cpu_sched_in(cpuctx, cpu);
1462 if (ctx)
1463 perf_event_task_sched_in(curr, cpu);
1464 }
1465
1466 /*
1467 * Enable all of a task's events that have been marked enable-on-exec.
1468 * This expects task == current.
1469 */
1470 static void perf_event_enable_on_exec(struct task_struct *task)
1471 {
1472 struct perf_event_context *ctx;
1473 struct perf_event *event;
1474 unsigned long flags;
1475 int enabled = 0;
1476
1477 local_irq_save(flags);
1478 ctx = task->perf_event_ctxp;
1479 if (!ctx || !ctx->nr_events)
1480 goto out;
1481
1482 __perf_event_task_sched_out(ctx);
1483
1484 spin_lock(&ctx->lock);
1485
1486 list_for_each_entry(event, &ctx->group_list, group_entry) {
1487 if (!event->attr.enable_on_exec)
1488 continue;
1489 event->attr.enable_on_exec = 0;
1490 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1491 continue;
1492 __perf_event_mark_enabled(event, ctx);
1493 enabled = 1;
1494 }
1495
1496 /*
1497 * Unclone this context if we enabled any event.
1498 */
1499 if (enabled)
1500 unclone_ctx(ctx);
1501
1502 spin_unlock(&ctx->lock);
1503
1504 perf_event_task_sched_in(task, smp_processor_id());
1505 out:
1506 local_irq_restore(flags);
1507 }
1508
1509 /*
1510 * Cross CPU call to read the hardware event
1511 */
1512 static void __perf_event_read(void *info)
1513 {
1514 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1515 struct perf_event *event = info;
1516 struct perf_event_context *ctx = event->ctx;
1517 unsigned long flags;
1518
1519 /*
1520 * If this is a task context, we need to check whether it is
1521 * the current task context of this cpu. If not it has been
1522 * scheduled out before the smp call arrived. In that case
1523 * event->count would have been updated to a recent sample
1524 * when the event was scheduled out.
1525 */
1526 if (ctx->task && cpuctx->task_ctx != ctx)
1527 return;
1528
1529 local_irq_save(flags);
1530 if (ctx->is_active)
1531 update_context_time(ctx);
1532 event->pmu->read(event);
1533 update_event_times(event);
1534 local_irq_restore(flags);
1535 }
1536
1537 static u64 perf_event_read(struct perf_event *event)
1538 {
1539 /*
1540 * If event is enabled and currently active on a CPU, update the
1541 * value in the event structure:
1542 */
1543 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1544 smp_call_function_single(event->oncpu,
1545 __perf_event_read, event, 1);
1546 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1547 update_event_times(event);
1548 }
1549
1550 return atomic64_read(&event->count);
1551 }
1552
1553 /*
1554 * Initialize the perf_event context in a task_struct:
1555 */
1556 static void
1557 __perf_event_init_context(struct perf_event_context *ctx,
1558 struct task_struct *task)
1559 {
1560 memset(ctx, 0, sizeof(*ctx));
1561 spin_lock_init(&ctx->lock);
1562 mutex_init(&ctx->mutex);
1563 INIT_LIST_HEAD(&ctx->group_list);
1564 INIT_LIST_HEAD(&ctx->event_list);
1565 atomic_set(&ctx->refcount, 1);
1566 ctx->task = task;
1567 }
1568
1569 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1570 {
1571 struct perf_event_context *ctx;
1572 struct perf_cpu_context *cpuctx;
1573 struct task_struct *task;
1574 unsigned long flags;
1575 int err;
1576
1577 /*
1578 * If cpu is not a wildcard then this is a percpu event:
1579 */
1580 if (cpu != -1) {
1581 /* Must be root to operate on a CPU event: */
1582 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1583 return ERR_PTR(-EACCES);
1584
1585 if (cpu < 0 || cpu > num_possible_cpus())
1586 return ERR_PTR(-EINVAL);
1587
1588 /*
1589 * We could be clever and allow to attach a event to an
1590 * offline CPU and activate it when the CPU comes up, but
1591 * that's for later.
1592 */
1593 if (!cpu_isset(cpu, cpu_online_map))
1594 return ERR_PTR(-ENODEV);
1595
1596 cpuctx = &per_cpu(perf_cpu_context, cpu);
1597 ctx = &cpuctx->ctx;
1598 get_ctx(ctx);
1599
1600 return ctx;
1601 }
1602
1603 rcu_read_lock();
1604 if (!pid)
1605 task = current;
1606 else
1607 task = find_task_by_vpid(pid);
1608 if (task)
1609 get_task_struct(task);
1610 rcu_read_unlock();
1611
1612 if (!task)
1613 return ERR_PTR(-ESRCH);
1614
1615 /*
1616 * Can't attach events to a dying task.
1617 */
1618 err = -ESRCH;
1619 if (task->flags & PF_EXITING)
1620 goto errout;
1621
1622 /* Reuse ptrace permission checks for now. */
1623 err = -EACCES;
1624 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1625 goto errout;
1626
1627 retry:
1628 ctx = perf_lock_task_context(task, &flags);
1629 if (ctx) {
1630 unclone_ctx(ctx);
1631 spin_unlock_irqrestore(&ctx->lock, flags);
1632 }
1633
1634 if (!ctx) {
1635 ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1636 err = -ENOMEM;
1637 if (!ctx)
1638 goto errout;
1639 __perf_event_init_context(ctx, task);
1640 get_ctx(ctx);
1641 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1642 /*
1643 * We raced with some other task; use
1644 * the context they set.
1645 */
1646 kfree(ctx);
1647 goto retry;
1648 }
1649 get_task_struct(task);
1650 }
1651
1652 put_task_struct(task);
1653 return ctx;
1654
1655 errout:
1656 put_task_struct(task);
1657 return ERR_PTR(err);
1658 }
1659
1660 static void free_event_rcu(struct rcu_head *head)
1661 {
1662 struct perf_event *event;
1663
1664 event = container_of(head, struct perf_event, rcu_head);
1665 if (event->ns)
1666 put_pid_ns(event->ns);
1667 kfree(event);
1668 }
1669
1670 static void perf_pending_sync(struct perf_event *event);
1671
1672 static void free_event(struct perf_event *event)
1673 {
1674 perf_pending_sync(event);
1675
1676 if (!event->parent) {
1677 atomic_dec(&nr_events);
1678 if (event->attr.mmap)
1679 atomic_dec(&nr_mmap_events);
1680 if (event->attr.comm)
1681 atomic_dec(&nr_comm_events);
1682 if (event->attr.task)
1683 atomic_dec(&nr_task_events);
1684 }
1685
1686 if (event->output) {
1687 fput(event->output->filp);
1688 event->output = NULL;
1689 }
1690
1691 if (event->destroy)
1692 event->destroy(event);
1693
1694 put_ctx(event->ctx);
1695 call_rcu(&event->rcu_head, free_event_rcu);
1696 }
1697
1698 /*
1699 * Called when the last reference to the file is gone.
1700 */
1701 static int perf_release(struct inode *inode, struct file *file)
1702 {
1703 struct perf_event *event = file->private_data;
1704 struct perf_event_context *ctx = event->ctx;
1705
1706 file->private_data = NULL;
1707
1708 WARN_ON_ONCE(ctx->parent_ctx);
1709 mutex_lock(&ctx->mutex);
1710 perf_event_remove_from_context(event);
1711 mutex_unlock(&ctx->mutex);
1712
1713 mutex_lock(&event->owner->perf_event_mutex);
1714 list_del_init(&event->owner_entry);
1715 mutex_unlock(&event->owner->perf_event_mutex);
1716 put_task_struct(event->owner);
1717
1718 free_event(event);
1719
1720 return 0;
1721 }
1722
1723 static int perf_event_read_size(struct perf_event *event)
1724 {
1725 int entry = sizeof(u64); /* value */
1726 int size = 0;
1727 int nr = 1;
1728
1729 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1730 size += sizeof(u64);
1731
1732 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1733 size += sizeof(u64);
1734
1735 if (event->attr.read_format & PERF_FORMAT_ID)
1736 entry += sizeof(u64);
1737
1738 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1739 nr += event->group_leader->nr_siblings;
1740 size += sizeof(u64);
1741 }
1742
1743 size += entry * nr;
1744
1745 return size;
1746 }
1747
1748 static u64 perf_event_read_value(struct perf_event *event)
1749 {
1750 struct perf_event *child;
1751 u64 total = 0;
1752
1753 total += perf_event_read(event);
1754 list_for_each_entry(child, &event->child_list, child_list)
1755 total += perf_event_read(child);
1756
1757 return total;
1758 }
1759
1760 static int perf_event_read_entry(struct perf_event *event,
1761 u64 read_format, char __user *buf)
1762 {
1763 int n = 0, count = 0;
1764 u64 values[2];
1765
1766 values[n++] = perf_event_read_value(event);
1767 if (read_format & PERF_FORMAT_ID)
1768 values[n++] = primary_event_id(event);
1769
1770 count = n * sizeof(u64);
1771
1772 if (copy_to_user(buf, values, count))
1773 return -EFAULT;
1774
1775 return count;
1776 }
1777
1778 static int perf_event_read_group(struct perf_event *event,
1779 u64 read_format, char __user *buf)
1780 {
1781 struct perf_event *leader = event->group_leader, *sub;
1782 int n = 0, size = 0, err = -EFAULT;
1783 u64 values[3];
1784
1785 values[n++] = 1 + leader->nr_siblings;
1786 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1787 values[n++] = leader->total_time_enabled +
1788 atomic64_read(&leader->child_total_time_enabled);
1789 }
1790 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1791 values[n++] = leader->total_time_running +
1792 atomic64_read(&leader->child_total_time_running);
1793 }
1794
1795 size = n * sizeof(u64);
1796
1797 if (copy_to_user(buf, values, size))
1798 return -EFAULT;
1799
1800 err = perf_event_read_entry(leader, read_format, buf + size);
1801 if (err < 0)
1802 return err;
1803
1804 size += err;
1805
1806 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1807 err = perf_event_read_entry(sub, read_format,
1808 buf + size);
1809 if (err < 0)
1810 return err;
1811
1812 size += err;
1813 }
1814
1815 return size;
1816 }
1817
1818 static int perf_event_read_one(struct perf_event *event,
1819 u64 read_format, char __user *buf)
1820 {
1821 u64 values[4];
1822 int n = 0;
1823
1824 values[n++] = perf_event_read_value(event);
1825 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1826 values[n++] = event->total_time_enabled +
1827 atomic64_read(&event->child_total_time_enabled);
1828 }
1829 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1830 values[n++] = event->total_time_running +
1831 atomic64_read(&event->child_total_time_running);
1832 }
1833 if (read_format & PERF_FORMAT_ID)
1834 values[n++] = primary_event_id(event);
1835
1836 if (copy_to_user(buf, values, n * sizeof(u64)))
1837 return -EFAULT;
1838
1839 return n * sizeof(u64);
1840 }
1841
1842 /*
1843 * Read the performance event - simple non blocking version for now
1844 */
1845 static ssize_t
1846 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
1847 {
1848 u64 read_format = event->attr.read_format;
1849 int ret;
1850
1851 /*
1852 * Return end-of-file for a read on a event that is in
1853 * error state (i.e. because it was pinned but it couldn't be
1854 * scheduled on to the CPU at some point).
1855 */
1856 if (event->state == PERF_EVENT_STATE_ERROR)
1857 return 0;
1858
1859 if (count < perf_event_read_size(event))
1860 return -ENOSPC;
1861
1862 WARN_ON_ONCE(event->ctx->parent_ctx);
1863 mutex_lock(&event->child_mutex);
1864 if (read_format & PERF_FORMAT_GROUP)
1865 ret = perf_event_read_group(event, read_format, buf);
1866 else
1867 ret = perf_event_read_one(event, read_format, buf);
1868 mutex_unlock(&event->child_mutex);
1869
1870 return ret;
1871 }
1872
1873 static ssize_t
1874 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1875 {
1876 struct perf_event *event = file->private_data;
1877
1878 return perf_read_hw(event, buf, count);
1879 }
1880
1881 static unsigned int perf_poll(struct file *file, poll_table *wait)
1882 {
1883 struct perf_event *event = file->private_data;
1884 struct perf_mmap_data *data;
1885 unsigned int events = POLL_HUP;
1886
1887 rcu_read_lock();
1888 data = rcu_dereference(event->data);
1889 if (data)
1890 events = atomic_xchg(&data->poll, 0);
1891 rcu_read_unlock();
1892
1893 poll_wait(file, &event->waitq, wait);
1894
1895 return events;
1896 }
1897
1898 static void perf_event_reset(struct perf_event *event)
1899 {
1900 (void)perf_event_read(event);
1901 atomic64_set(&event->count, 0);
1902 perf_event_update_userpage(event);
1903 }
1904
1905 /*
1906 * Holding the top-level event's child_mutex means that any
1907 * descendant process that has inherited this event will block
1908 * in sync_child_event if it goes to exit, thus satisfying the
1909 * task existence requirements of perf_event_enable/disable.
1910 */
1911 static void perf_event_for_each_child(struct perf_event *event,
1912 void (*func)(struct perf_event *))
1913 {
1914 struct perf_event *child;
1915
1916 WARN_ON_ONCE(event->ctx->parent_ctx);
1917 mutex_lock(&event->child_mutex);
1918 func(event);
1919 list_for_each_entry(child, &event->child_list, child_list)
1920 func(child);
1921 mutex_unlock(&event->child_mutex);
1922 }
1923
1924 static void perf_event_for_each(struct perf_event *event,
1925 void (*func)(struct perf_event *))
1926 {
1927 struct perf_event_context *ctx = event->ctx;
1928 struct perf_event *sibling;
1929
1930 WARN_ON_ONCE(ctx->parent_ctx);
1931 mutex_lock(&ctx->mutex);
1932 event = event->group_leader;
1933
1934 perf_event_for_each_child(event, func);
1935 func(event);
1936 list_for_each_entry(sibling, &event->sibling_list, group_entry)
1937 perf_event_for_each_child(event, func);
1938 mutex_unlock(&ctx->mutex);
1939 }
1940
1941 static int perf_event_period(struct perf_event *event, u64 __user *arg)
1942 {
1943 struct perf_event_context *ctx = event->ctx;
1944 unsigned long size;
1945 int ret = 0;
1946 u64 value;
1947
1948 if (!event->attr.sample_period)
1949 return -EINVAL;
1950
1951 size = copy_from_user(&value, arg, sizeof(value));
1952 if (size != sizeof(value))
1953 return -EFAULT;
1954
1955 if (!value)
1956 return -EINVAL;
1957
1958 spin_lock_irq(&ctx->lock);
1959 if (event->attr.freq) {
1960 if (value > sysctl_perf_event_sample_rate) {
1961 ret = -EINVAL;
1962 goto unlock;
1963 }
1964
1965 event->attr.sample_freq = value;
1966 } else {
1967 event->attr.sample_period = value;
1968 event->hw.sample_period = value;
1969 }
1970 unlock:
1971 spin_unlock_irq(&ctx->lock);
1972
1973 return ret;
1974 }
1975
1976 int perf_event_set_output(struct perf_event *event, int output_fd);
1977
1978 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1979 {
1980 struct perf_event *event = file->private_data;
1981 void (*func)(struct perf_event *);
1982 u32 flags = arg;
1983
1984 switch (cmd) {
1985 case PERF_EVENT_IOC_ENABLE:
1986 func = perf_event_enable;
1987 break;
1988 case PERF_EVENT_IOC_DISABLE:
1989 func = perf_event_disable;
1990 break;
1991 case PERF_EVENT_IOC_RESET:
1992 func = perf_event_reset;
1993 break;
1994
1995 case PERF_EVENT_IOC_REFRESH:
1996 return perf_event_refresh(event, arg);
1997
1998 case PERF_EVENT_IOC_PERIOD:
1999 return perf_event_period(event, (u64 __user *)arg);
2000
2001 case PERF_EVENT_IOC_SET_OUTPUT:
2002 return perf_event_set_output(event, arg);
2003
2004 default:
2005 return -ENOTTY;
2006 }
2007
2008 if (flags & PERF_IOC_FLAG_GROUP)
2009 perf_event_for_each(event, func);
2010 else
2011 perf_event_for_each_child(event, func);
2012
2013 return 0;
2014 }
2015
2016 int perf_event_task_enable(void)
2017 {
2018 struct perf_event *event;
2019
2020 mutex_lock(&current->perf_event_mutex);
2021 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2022 perf_event_for_each_child(event, perf_event_enable);
2023 mutex_unlock(&current->perf_event_mutex);
2024
2025 return 0;
2026 }
2027
2028 int perf_event_task_disable(void)
2029 {
2030 struct perf_event *event;
2031
2032 mutex_lock(&current->perf_event_mutex);
2033 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2034 perf_event_for_each_child(event, perf_event_disable);
2035 mutex_unlock(&current->perf_event_mutex);
2036
2037 return 0;
2038 }
2039
2040 #ifndef PERF_EVENT_INDEX_OFFSET
2041 # define PERF_EVENT_INDEX_OFFSET 0
2042 #endif
2043
2044 static int perf_event_index(struct perf_event *event)
2045 {
2046 if (event->state != PERF_EVENT_STATE_ACTIVE)
2047 return 0;
2048
2049 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2050 }
2051
2052 /*
2053 * Callers need to ensure there can be no nesting of this function, otherwise
2054 * the seqlock logic goes bad. We can not serialize this because the arch
2055 * code calls this from NMI context.
2056 */
2057 void perf_event_update_userpage(struct perf_event *event)
2058 {
2059 struct perf_event_mmap_page *userpg;
2060 struct perf_mmap_data *data;
2061
2062 rcu_read_lock();
2063 data = rcu_dereference(event->data);
2064 if (!data)
2065 goto unlock;
2066
2067 userpg = data->user_page;
2068
2069 /*
2070 * Disable preemption so as to not let the corresponding user-space
2071 * spin too long if we get preempted.
2072 */
2073 preempt_disable();
2074 ++userpg->lock;
2075 barrier();
2076 userpg->index = perf_event_index(event);
2077 userpg->offset = atomic64_read(&event->count);
2078 if (event->state == PERF_EVENT_STATE_ACTIVE)
2079 userpg->offset -= atomic64_read(&event->hw.prev_count);
2080
2081 userpg->time_enabled = event->total_time_enabled +
2082 atomic64_read(&event->child_total_time_enabled);
2083
2084 userpg->time_running = event->total_time_running +
2085 atomic64_read(&event->child_total_time_running);
2086
2087 barrier();
2088 ++userpg->lock;
2089 preempt_enable();
2090 unlock:
2091 rcu_read_unlock();
2092 }
2093
2094 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2095 {
2096 struct perf_event *event = vma->vm_file->private_data;
2097 struct perf_mmap_data *data;
2098 int ret = VM_FAULT_SIGBUS;
2099
2100 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2101 if (vmf->pgoff == 0)
2102 ret = 0;
2103 return ret;
2104 }
2105
2106 rcu_read_lock();
2107 data = rcu_dereference(event->data);
2108 if (!data)
2109 goto unlock;
2110
2111 if (vmf->pgoff == 0) {
2112 vmf->page = virt_to_page(data->user_page);
2113 } else {
2114 int nr = vmf->pgoff - 1;
2115
2116 if ((unsigned)nr > data->nr_pages)
2117 goto unlock;
2118
2119 if (vmf->flags & FAULT_FLAG_WRITE)
2120 goto unlock;
2121
2122 vmf->page = virt_to_page(data->data_pages[nr]);
2123 }
2124
2125 get_page(vmf->page);
2126 vmf->page->mapping = vma->vm_file->f_mapping;
2127 vmf->page->index = vmf->pgoff;
2128
2129 ret = 0;
2130 unlock:
2131 rcu_read_unlock();
2132
2133 return ret;
2134 }
2135
2136 static int perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2137 {
2138 struct perf_mmap_data *data;
2139 unsigned long size;
2140 int i;
2141
2142 WARN_ON(atomic_read(&event->mmap_count));
2143
2144 size = sizeof(struct perf_mmap_data);
2145 size += nr_pages * sizeof(void *);
2146
2147 data = kzalloc(size, GFP_KERNEL);
2148 if (!data)
2149 goto fail;
2150
2151 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2152 if (!data->user_page)
2153 goto fail_user_page;
2154
2155 for (i = 0; i < nr_pages; i++) {
2156 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2157 if (!data->data_pages[i])
2158 goto fail_data_pages;
2159 }
2160
2161 data->nr_pages = nr_pages;
2162 atomic_set(&data->lock, -1);
2163
2164 if (event->attr.watermark) {
2165 data->watermark = min_t(long, PAGE_SIZE * nr_pages,
2166 event->attr.wakeup_watermark);
2167 }
2168 if (!data->watermark)
2169 data->watermark = max(PAGE_SIZE, PAGE_SIZE * nr_pages / 4);
2170
2171 rcu_assign_pointer(event->data, data);
2172
2173 return 0;
2174
2175 fail_data_pages:
2176 for (i--; i >= 0; i--)
2177 free_page((unsigned long)data->data_pages[i]);
2178
2179 free_page((unsigned long)data->user_page);
2180
2181 fail_user_page:
2182 kfree(data);
2183
2184 fail:
2185 return -ENOMEM;
2186 }
2187
2188 static void perf_mmap_free_page(unsigned long addr)
2189 {
2190 struct page *page = virt_to_page((void *)addr);
2191
2192 page->mapping = NULL;
2193 __free_page(page);
2194 }
2195
2196 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
2197 {
2198 struct perf_mmap_data *data;
2199 int i;
2200
2201 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2202
2203 perf_mmap_free_page((unsigned long)data->user_page);
2204 for (i = 0; i < data->nr_pages; i++)
2205 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2206
2207 kfree(data);
2208 }
2209
2210 static void perf_mmap_data_free(struct perf_event *event)
2211 {
2212 struct perf_mmap_data *data = event->data;
2213
2214 WARN_ON(atomic_read(&event->mmap_count));
2215
2216 rcu_assign_pointer(event->data, NULL);
2217 call_rcu(&data->rcu_head, __perf_mmap_data_free);
2218 }
2219
2220 static void perf_mmap_open(struct vm_area_struct *vma)
2221 {
2222 struct perf_event *event = vma->vm_file->private_data;
2223
2224 atomic_inc(&event->mmap_count);
2225 }
2226
2227 static void perf_mmap_close(struct vm_area_struct *vma)
2228 {
2229 struct perf_event *event = vma->vm_file->private_data;
2230
2231 WARN_ON_ONCE(event->ctx->parent_ctx);
2232 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2233 struct user_struct *user = current_user();
2234
2235 atomic_long_sub(event->data->nr_pages + 1, &user->locked_vm);
2236 vma->vm_mm->locked_vm -= event->data->nr_locked;
2237 perf_mmap_data_free(event);
2238 mutex_unlock(&event->mmap_mutex);
2239 }
2240 }
2241
2242 static const struct vm_operations_struct perf_mmap_vmops = {
2243 .open = perf_mmap_open,
2244 .close = perf_mmap_close,
2245 .fault = perf_mmap_fault,
2246 .page_mkwrite = perf_mmap_fault,
2247 };
2248
2249 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2250 {
2251 struct perf_event *event = file->private_data;
2252 unsigned long user_locked, user_lock_limit;
2253 struct user_struct *user = current_user();
2254 unsigned long locked, lock_limit;
2255 unsigned long vma_size;
2256 unsigned long nr_pages;
2257 long user_extra, extra;
2258 int ret = 0;
2259
2260 if (!(vma->vm_flags & VM_SHARED))
2261 return -EINVAL;
2262
2263 vma_size = vma->vm_end - vma->vm_start;
2264 nr_pages = (vma_size / PAGE_SIZE) - 1;
2265
2266 /*
2267 * If we have data pages ensure they're a power-of-two number, so we
2268 * can do bitmasks instead of modulo.
2269 */
2270 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2271 return -EINVAL;
2272
2273 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2274 return -EINVAL;
2275
2276 if (vma->vm_pgoff != 0)
2277 return -EINVAL;
2278
2279 WARN_ON_ONCE(event->ctx->parent_ctx);
2280 mutex_lock(&event->mmap_mutex);
2281 if (event->output) {
2282 ret = -EINVAL;
2283 goto unlock;
2284 }
2285
2286 if (atomic_inc_not_zero(&event->mmap_count)) {
2287 if (nr_pages != event->data->nr_pages)
2288 ret = -EINVAL;
2289 goto unlock;
2290 }
2291
2292 user_extra = nr_pages + 1;
2293 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2294
2295 /*
2296 * Increase the limit linearly with more CPUs:
2297 */
2298 user_lock_limit *= num_online_cpus();
2299
2300 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2301
2302 extra = 0;
2303 if (user_locked > user_lock_limit)
2304 extra = user_locked - user_lock_limit;
2305
2306 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2307 lock_limit >>= PAGE_SHIFT;
2308 locked = vma->vm_mm->locked_vm + extra;
2309
2310 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2311 !capable(CAP_IPC_LOCK)) {
2312 ret = -EPERM;
2313 goto unlock;
2314 }
2315
2316 WARN_ON(event->data);
2317 ret = perf_mmap_data_alloc(event, nr_pages);
2318 if (ret)
2319 goto unlock;
2320
2321 atomic_set(&event->mmap_count, 1);
2322 atomic_long_add(user_extra, &user->locked_vm);
2323 vma->vm_mm->locked_vm += extra;
2324 event->data->nr_locked = extra;
2325 if (vma->vm_flags & VM_WRITE)
2326 event->data->writable = 1;
2327
2328 unlock:
2329 mutex_unlock(&event->mmap_mutex);
2330
2331 vma->vm_flags |= VM_RESERVED;
2332 vma->vm_ops = &perf_mmap_vmops;
2333
2334 return ret;
2335 }
2336
2337 static int perf_fasync(int fd, struct file *filp, int on)
2338 {
2339 struct inode *inode = filp->f_path.dentry->d_inode;
2340 struct perf_event *event = filp->private_data;
2341 int retval;
2342
2343 mutex_lock(&inode->i_mutex);
2344 retval = fasync_helper(fd, filp, on, &event->fasync);
2345 mutex_unlock(&inode->i_mutex);
2346
2347 if (retval < 0)
2348 return retval;
2349
2350 return 0;
2351 }
2352
2353 static const struct file_operations perf_fops = {
2354 .release = perf_release,
2355 .read = perf_read,
2356 .poll = perf_poll,
2357 .unlocked_ioctl = perf_ioctl,
2358 .compat_ioctl = perf_ioctl,
2359 .mmap = perf_mmap,
2360 .fasync = perf_fasync,
2361 };
2362
2363 /*
2364 * Perf event wakeup
2365 *
2366 * If there's data, ensure we set the poll() state and publish everything
2367 * to user-space before waking everybody up.
2368 */
2369
2370 void perf_event_wakeup(struct perf_event *event)
2371 {
2372 wake_up_all(&event->waitq);
2373
2374 if (event->pending_kill) {
2375 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2376 event->pending_kill = 0;
2377 }
2378 }
2379
2380 /*
2381 * Pending wakeups
2382 *
2383 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2384 *
2385 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2386 * single linked list and use cmpxchg() to add entries lockless.
2387 */
2388
2389 static void perf_pending_event(struct perf_pending_entry *entry)
2390 {
2391 struct perf_event *event = container_of(entry,
2392 struct perf_event, pending);
2393
2394 if (event->pending_disable) {
2395 event->pending_disable = 0;
2396 __perf_event_disable(event);
2397 }
2398
2399 if (event->pending_wakeup) {
2400 event->pending_wakeup = 0;
2401 perf_event_wakeup(event);
2402 }
2403 }
2404
2405 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2406
2407 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2408 PENDING_TAIL,
2409 };
2410
2411 static void perf_pending_queue(struct perf_pending_entry *entry,
2412 void (*func)(struct perf_pending_entry *))
2413 {
2414 struct perf_pending_entry **head;
2415
2416 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2417 return;
2418
2419 entry->func = func;
2420
2421 head = &get_cpu_var(perf_pending_head);
2422
2423 do {
2424 entry->next = *head;
2425 } while (cmpxchg(head, entry->next, entry) != entry->next);
2426
2427 set_perf_event_pending();
2428
2429 put_cpu_var(perf_pending_head);
2430 }
2431
2432 static int __perf_pending_run(void)
2433 {
2434 struct perf_pending_entry *list;
2435 int nr = 0;
2436
2437 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2438 while (list != PENDING_TAIL) {
2439 void (*func)(struct perf_pending_entry *);
2440 struct perf_pending_entry *entry = list;
2441
2442 list = list->next;
2443
2444 func = entry->func;
2445 entry->next = NULL;
2446 /*
2447 * Ensure we observe the unqueue before we issue the wakeup,
2448 * so that we won't be waiting forever.
2449 * -- see perf_not_pending().
2450 */
2451 smp_wmb();
2452
2453 func(entry);
2454 nr++;
2455 }
2456
2457 return nr;
2458 }
2459
2460 static inline int perf_not_pending(struct perf_event *event)
2461 {
2462 /*
2463 * If we flush on whatever cpu we run, there is a chance we don't
2464 * need to wait.
2465 */
2466 get_cpu();
2467 __perf_pending_run();
2468 put_cpu();
2469
2470 /*
2471 * Ensure we see the proper queue state before going to sleep
2472 * so that we do not miss the wakeup. -- see perf_pending_handle()
2473 */
2474 smp_rmb();
2475 return event->pending.next == NULL;
2476 }
2477
2478 static void perf_pending_sync(struct perf_event *event)
2479 {
2480 wait_event(event->waitq, perf_not_pending(event));
2481 }
2482
2483 void perf_event_do_pending(void)
2484 {
2485 __perf_pending_run();
2486 }
2487
2488 /*
2489 * Callchain support -- arch specific
2490 */
2491
2492 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2493 {
2494 return NULL;
2495 }
2496
2497 /*
2498 * Output
2499 */
2500 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2501 unsigned long offset, unsigned long head)
2502 {
2503 unsigned long mask;
2504
2505 if (!data->writable)
2506 return true;
2507
2508 mask = (data->nr_pages << PAGE_SHIFT) - 1;
2509
2510 offset = (offset - tail) & mask;
2511 head = (head - tail) & mask;
2512
2513 if ((int)(head - offset) < 0)
2514 return false;
2515
2516 return true;
2517 }
2518
2519 static void perf_output_wakeup(struct perf_output_handle *handle)
2520 {
2521 atomic_set(&handle->data->poll, POLL_IN);
2522
2523 if (handle->nmi) {
2524 handle->event->pending_wakeup = 1;
2525 perf_pending_queue(&handle->event->pending,
2526 perf_pending_event);
2527 } else
2528 perf_event_wakeup(handle->event);
2529 }
2530
2531 /*
2532 * Curious locking construct.
2533 *
2534 * We need to ensure a later event_id doesn't publish a head when a former
2535 * event_id isn't done writing. However since we need to deal with NMIs we
2536 * cannot fully serialize things.
2537 *
2538 * What we do is serialize between CPUs so we only have to deal with NMI
2539 * nesting on a single CPU.
2540 *
2541 * We only publish the head (and generate a wakeup) when the outer-most
2542 * event_id completes.
2543 */
2544 static void perf_output_lock(struct perf_output_handle *handle)
2545 {
2546 struct perf_mmap_data *data = handle->data;
2547 int cpu;
2548
2549 handle->locked = 0;
2550
2551 local_irq_save(handle->flags);
2552 cpu = smp_processor_id();
2553
2554 if (in_nmi() && atomic_read(&data->lock) == cpu)
2555 return;
2556
2557 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2558 cpu_relax();
2559
2560 handle->locked = 1;
2561 }
2562
2563 static void perf_output_unlock(struct perf_output_handle *handle)
2564 {
2565 struct perf_mmap_data *data = handle->data;
2566 unsigned long head;
2567 int cpu;
2568
2569 data->done_head = data->head;
2570
2571 if (!handle->locked)
2572 goto out;
2573
2574 again:
2575 /*
2576 * The xchg implies a full barrier that ensures all writes are done
2577 * before we publish the new head, matched by a rmb() in userspace when
2578 * reading this position.
2579 */
2580 while ((head = atomic_long_xchg(&data->done_head, 0)))
2581 data->user_page->data_head = head;
2582
2583 /*
2584 * NMI can happen here, which means we can miss a done_head update.
2585 */
2586
2587 cpu = atomic_xchg(&data->lock, -1);
2588 WARN_ON_ONCE(cpu != smp_processor_id());
2589
2590 /*
2591 * Therefore we have to validate we did not indeed do so.
2592 */
2593 if (unlikely(atomic_long_read(&data->done_head))) {
2594 /*
2595 * Since we had it locked, we can lock it again.
2596 */
2597 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2598 cpu_relax();
2599
2600 goto again;
2601 }
2602
2603 if (atomic_xchg(&data->wakeup, 0))
2604 perf_output_wakeup(handle);
2605 out:
2606 local_irq_restore(handle->flags);
2607 }
2608
2609 void perf_output_copy(struct perf_output_handle *handle,
2610 const void *buf, unsigned int len)
2611 {
2612 unsigned int pages_mask;
2613 unsigned int offset;
2614 unsigned int size;
2615 void **pages;
2616
2617 offset = handle->offset;
2618 pages_mask = handle->data->nr_pages - 1;
2619 pages = handle->data->data_pages;
2620
2621 do {
2622 unsigned int page_offset;
2623 int nr;
2624
2625 nr = (offset >> PAGE_SHIFT) & pages_mask;
2626 page_offset = offset & (PAGE_SIZE - 1);
2627 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2628
2629 memcpy(pages[nr] + page_offset, buf, size);
2630
2631 len -= size;
2632 buf += size;
2633 offset += size;
2634 } while (len);
2635
2636 handle->offset = offset;
2637
2638 /*
2639 * Check we didn't copy past our reservation window, taking the
2640 * possible unsigned int wrap into account.
2641 */
2642 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2643 }
2644
2645 int perf_output_begin(struct perf_output_handle *handle,
2646 struct perf_event *event, unsigned int size,
2647 int nmi, int sample)
2648 {
2649 struct perf_event *output_event;
2650 struct perf_mmap_data *data;
2651 unsigned long tail, offset, head;
2652 int have_lost;
2653 struct {
2654 struct perf_event_header header;
2655 u64 id;
2656 u64 lost;
2657 } lost_event;
2658
2659 rcu_read_lock();
2660 /*
2661 * For inherited events we send all the output towards the parent.
2662 */
2663 if (event->parent)
2664 event = event->parent;
2665
2666 output_event = rcu_dereference(event->output);
2667 if (output_event)
2668 event = output_event;
2669
2670 data = rcu_dereference(event->data);
2671 if (!data)
2672 goto out;
2673
2674 handle->data = data;
2675 handle->event = event;
2676 handle->nmi = nmi;
2677 handle->sample = sample;
2678
2679 if (!data->nr_pages)
2680 goto fail;
2681
2682 have_lost = atomic_read(&data->lost);
2683 if (have_lost)
2684 size += sizeof(lost_event);
2685
2686 perf_output_lock(handle);
2687
2688 do {
2689 /*
2690 * Userspace could choose to issue a mb() before updating the
2691 * tail pointer. So that all reads will be completed before the
2692 * write is issued.
2693 */
2694 tail = ACCESS_ONCE(data->user_page->data_tail);
2695 smp_rmb();
2696 offset = head = atomic_long_read(&data->head);
2697 head += size;
2698 if (unlikely(!perf_output_space(data, tail, offset, head)))
2699 goto fail;
2700 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2701
2702 handle->offset = offset;
2703 handle->head = head;
2704
2705 if (head - tail > data->watermark)
2706 atomic_set(&data->wakeup, 1);
2707
2708 if (have_lost) {
2709 lost_event.header.type = PERF_RECORD_LOST;
2710 lost_event.header.misc = 0;
2711 lost_event.header.size = sizeof(lost_event);
2712 lost_event.id = event->id;
2713 lost_event.lost = atomic_xchg(&data->lost, 0);
2714
2715 perf_output_put(handle, lost_event);
2716 }
2717
2718 return 0;
2719
2720 fail:
2721 atomic_inc(&data->lost);
2722 perf_output_unlock(handle);
2723 out:
2724 rcu_read_unlock();
2725
2726 return -ENOSPC;
2727 }
2728
2729 void perf_output_end(struct perf_output_handle *handle)
2730 {
2731 struct perf_event *event = handle->event;
2732 struct perf_mmap_data *data = handle->data;
2733
2734 int wakeup_events = event->attr.wakeup_events;
2735
2736 if (handle->sample && wakeup_events) {
2737 int events = atomic_inc_return(&data->events);
2738 if (events >= wakeup_events) {
2739 atomic_sub(wakeup_events, &data->events);
2740 atomic_set(&data->wakeup, 1);
2741 }
2742 }
2743
2744 perf_output_unlock(handle);
2745 rcu_read_unlock();
2746 }
2747
2748 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2749 {
2750 /*
2751 * only top level events have the pid namespace they were created in
2752 */
2753 if (event->parent)
2754 event = event->parent;
2755
2756 return task_tgid_nr_ns(p, event->ns);
2757 }
2758
2759 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2760 {
2761 /*
2762 * only top level events have the pid namespace they were created in
2763 */
2764 if (event->parent)
2765 event = event->parent;
2766
2767 return task_pid_nr_ns(p, event->ns);
2768 }
2769
2770 static void perf_output_read_one(struct perf_output_handle *handle,
2771 struct perf_event *event)
2772 {
2773 u64 read_format = event->attr.read_format;
2774 u64 values[4];
2775 int n = 0;
2776
2777 values[n++] = atomic64_read(&event->count);
2778 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2779 values[n++] = event->total_time_enabled +
2780 atomic64_read(&event->child_total_time_enabled);
2781 }
2782 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2783 values[n++] = event->total_time_running +
2784 atomic64_read(&event->child_total_time_running);
2785 }
2786 if (read_format & PERF_FORMAT_ID)
2787 values[n++] = primary_event_id(event);
2788
2789 perf_output_copy(handle, values, n * sizeof(u64));
2790 }
2791
2792 /*
2793 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2794 */
2795 static void perf_output_read_group(struct perf_output_handle *handle,
2796 struct perf_event *event)
2797 {
2798 struct perf_event *leader = event->group_leader, *sub;
2799 u64 read_format = event->attr.read_format;
2800 u64 values[5];
2801 int n = 0;
2802
2803 values[n++] = 1 + leader->nr_siblings;
2804
2805 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2806 values[n++] = leader->total_time_enabled;
2807
2808 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2809 values[n++] = leader->total_time_running;
2810
2811 if (leader != event)
2812 leader->pmu->read(leader);
2813
2814 values[n++] = atomic64_read(&leader->count);
2815 if (read_format & PERF_FORMAT_ID)
2816 values[n++] = primary_event_id(leader);
2817
2818 perf_output_copy(handle, values, n * sizeof(u64));
2819
2820 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2821 n = 0;
2822
2823 if (sub != event)
2824 sub->pmu->read(sub);
2825
2826 values[n++] = atomic64_read(&sub->count);
2827 if (read_format & PERF_FORMAT_ID)
2828 values[n++] = primary_event_id(sub);
2829
2830 perf_output_copy(handle, values, n * sizeof(u64));
2831 }
2832 }
2833
2834 static void perf_output_read(struct perf_output_handle *handle,
2835 struct perf_event *event)
2836 {
2837 if (event->attr.read_format & PERF_FORMAT_GROUP)
2838 perf_output_read_group(handle, event);
2839 else
2840 perf_output_read_one(handle, event);
2841 }
2842
2843 void perf_output_sample(struct perf_output_handle *handle,
2844 struct perf_event_header *header,
2845 struct perf_sample_data *data,
2846 struct perf_event *event)
2847 {
2848 u64 sample_type = data->type;
2849
2850 perf_output_put(handle, *header);
2851
2852 if (sample_type & PERF_SAMPLE_IP)
2853 perf_output_put(handle, data->ip);
2854
2855 if (sample_type & PERF_SAMPLE_TID)
2856 perf_output_put(handle, data->tid_entry);
2857
2858 if (sample_type & PERF_SAMPLE_TIME)
2859 perf_output_put(handle, data->time);
2860
2861 if (sample_type & PERF_SAMPLE_ADDR)
2862 perf_output_put(handle, data->addr);
2863
2864 if (sample_type & PERF_SAMPLE_ID)
2865 perf_output_put(handle, data->id);
2866
2867 if (sample_type & PERF_SAMPLE_STREAM_ID)
2868 perf_output_put(handle, data->stream_id);
2869
2870 if (sample_type & PERF_SAMPLE_CPU)
2871 perf_output_put(handle, data->cpu_entry);
2872
2873 if (sample_type & PERF_SAMPLE_PERIOD)
2874 perf_output_put(handle, data->period);
2875
2876 if (sample_type & PERF_SAMPLE_READ)
2877 perf_output_read(handle, event);
2878
2879 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2880 if (data->callchain) {
2881 int size = 1;
2882
2883 if (data->callchain)
2884 size += data->callchain->nr;
2885
2886 size *= sizeof(u64);
2887
2888 perf_output_copy(handle, data->callchain, size);
2889 } else {
2890 u64 nr = 0;
2891 perf_output_put(handle, nr);
2892 }
2893 }
2894
2895 if (sample_type & PERF_SAMPLE_RAW) {
2896 if (data->raw) {
2897 perf_output_put(handle, data->raw->size);
2898 perf_output_copy(handle, data->raw->data,
2899 data->raw->size);
2900 } else {
2901 struct {
2902 u32 size;
2903 u32 data;
2904 } raw = {
2905 .size = sizeof(u32),
2906 .data = 0,
2907 };
2908 perf_output_put(handle, raw);
2909 }
2910 }
2911 }
2912
2913 void perf_prepare_sample(struct perf_event_header *header,
2914 struct perf_sample_data *data,
2915 struct perf_event *event,
2916 struct pt_regs *regs)
2917 {
2918 u64 sample_type = event->attr.sample_type;
2919
2920 data->type = sample_type;
2921
2922 header->type = PERF_RECORD_SAMPLE;
2923 header->size = sizeof(*header);
2924
2925 header->misc = 0;
2926 header->misc |= perf_misc_flags(regs);
2927
2928 if (sample_type & PERF_SAMPLE_IP) {
2929 data->ip = perf_instruction_pointer(regs);
2930
2931 header->size += sizeof(data->ip);
2932 }
2933
2934 if (sample_type & PERF_SAMPLE_TID) {
2935 /* namespace issues */
2936 data->tid_entry.pid = perf_event_pid(event, current);
2937 data->tid_entry.tid = perf_event_tid(event, current);
2938
2939 header->size += sizeof(data->tid_entry);
2940 }
2941
2942 if (sample_type & PERF_SAMPLE_TIME) {
2943 data->time = perf_clock();
2944
2945 header->size += sizeof(data->time);
2946 }
2947
2948 if (sample_type & PERF_SAMPLE_ADDR)
2949 header->size += sizeof(data->addr);
2950
2951 if (sample_type & PERF_SAMPLE_ID) {
2952 data->id = primary_event_id(event);
2953
2954 header->size += sizeof(data->id);
2955 }
2956
2957 if (sample_type & PERF_SAMPLE_STREAM_ID) {
2958 data->stream_id = event->id;
2959
2960 header->size += sizeof(data->stream_id);
2961 }
2962
2963 if (sample_type & PERF_SAMPLE_CPU) {
2964 data->cpu_entry.cpu = raw_smp_processor_id();
2965 data->cpu_entry.reserved = 0;
2966
2967 header->size += sizeof(data->cpu_entry);
2968 }
2969
2970 if (sample_type & PERF_SAMPLE_PERIOD)
2971 header->size += sizeof(data->period);
2972
2973 if (sample_type & PERF_SAMPLE_READ)
2974 header->size += perf_event_read_size(event);
2975
2976 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2977 int size = 1;
2978
2979 data->callchain = perf_callchain(regs);
2980
2981 if (data->callchain)
2982 size += data->callchain->nr;
2983
2984 header->size += size * sizeof(u64);
2985 }
2986
2987 if (sample_type & PERF_SAMPLE_RAW) {
2988 int size = sizeof(u32);
2989
2990 if (data->raw)
2991 size += data->raw->size;
2992 else
2993 size += sizeof(u32);
2994
2995 WARN_ON_ONCE(size & (sizeof(u64)-1));
2996 header->size += size;
2997 }
2998 }
2999
3000 static void perf_event_output(struct perf_event *event, int nmi,
3001 struct perf_sample_data *data,
3002 struct pt_regs *regs)
3003 {
3004 struct perf_output_handle handle;
3005 struct perf_event_header header;
3006
3007 perf_prepare_sample(&header, data, event, regs);
3008
3009 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3010 return;
3011
3012 perf_output_sample(&handle, &header, data, event);
3013
3014 perf_output_end(&handle);
3015 }
3016
3017 /*
3018 * read event_id
3019 */
3020
3021 struct perf_read_event {
3022 struct perf_event_header header;
3023
3024 u32 pid;
3025 u32 tid;
3026 };
3027
3028 static void
3029 perf_event_read_event(struct perf_event *event,
3030 struct task_struct *task)
3031 {
3032 struct perf_output_handle handle;
3033 struct perf_read_event read_event = {
3034 .header = {
3035 .type = PERF_RECORD_READ,
3036 .misc = 0,
3037 .size = sizeof(read_event) + perf_event_read_size(event),
3038 },
3039 .pid = perf_event_pid(event, task),
3040 .tid = perf_event_tid(event, task),
3041 };
3042 int ret;
3043
3044 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3045 if (ret)
3046 return;
3047
3048 perf_output_put(&handle, read_event);
3049 perf_output_read(&handle, event);
3050
3051 perf_output_end(&handle);
3052 }
3053
3054 /*
3055 * task tracking -- fork/exit
3056 *
3057 * enabled by: attr.comm | attr.mmap | attr.task
3058 */
3059
3060 struct perf_task_event {
3061 struct task_struct *task;
3062 struct perf_event_context *task_ctx;
3063
3064 struct {
3065 struct perf_event_header header;
3066
3067 u32 pid;
3068 u32 ppid;
3069 u32 tid;
3070 u32 ptid;
3071 u64 time;
3072 } event_id;
3073 };
3074
3075 static void perf_event_task_output(struct perf_event *event,
3076 struct perf_task_event *task_event)
3077 {
3078 struct perf_output_handle handle;
3079 int size;
3080 struct task_struct *task = task_event->task;
3081 int ret;
3082
3083 size = task_event->event_id.header.size;
3084 ret = perf_output_begin(&handle, event, size, 0, 0);
3085
3086 if (ret)
3087 return;
3088
3089 task_event->event_id.pid = perf_event_pid(event, task);
3090 task_event->event_id.ppid = perf_event_pid(event, current);
3091
3092 task_event->event_id.tid = perf_event_tid(event, task);
3093 task_event->event_id.ptid = perf_event_tid(event, current);
3094
3095 task_event->event_id.time = perf_clock();
3096
3097 perf_output_put(&handle, task_event->event_id);
3098
3099 perf_output_end(&handle);
3100 }
3101
3102 static int perf_event_task_match(struct perf_event *event)
3103 {
3104 if (event->attr.comm || event->attr.mmap || event->attr.task)
3105 return 1;
3106
3107 return 0;
3108 }
3109
3110 static void perf_event_task_ctx(struct perf_event_context *ctx,
3111 struct perf_task_event *task_event)
3112 {
3113 struct perf_event *event;
3114
3115 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3116 return;
3117
3118 rcu_read_lock();
3119 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3120 if (perf_event_task_match(event))
3121 perf_event_task_output(event, task_event);
3122 }
3123 rcu_read_unlock();
3124 }
3125
3126 static void perf_event_task_event(struct perf_task_event *task_event)
3127 {
3128 struct perf_cpu_context *cpuctx;
3129 struct perf_event_context *ctx = task_event->task_ctx;
3130
3131 cpuctx = &get_cpu_var(perf_cpu_context);
3132 perf_event_task_ctx(&cpuctx->ctx, task_event);
3133 put_cpu_var(perf_cpu_context);
3134
3135 rcu_read_lock();
3136 if (!ctx)
3137 ctx = rcu_dereference(task_event->task->perf_event_ctxp);
3138 if (ctx)
3139 perf_event_task_ctx(ctx, task_event);
3140 rcu_read_unlock();
3141 }
3142
3143 static void perf_event_task(struct task_struct *task,
3144 struct perf_event_context *task_ctx,
3145 int new)
3146 {
3147 struct perf_task_event task_event;
3148
3149 if (!atomic_read(&nr_comm_events) &&
3150 !atomic_read(&nr_mmap_events) &&
3151 !atomic_read(&nr_task_events))
3152 return;
3153
3154 task_event = (struct perf_task_event){
3155 .task = task,
3156 .task_ctx = task_ctx,
3157 .event_id = {
3158 .header = {
3159 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3160 .misc = 0,
3161 .size = sizeof(task_event.event_id),
3162 },
3163 /* .pid */
3164 /* .ppid */
3165 /* .tid */
3166 /* .ptid */
3167 },
3168 };
3169
3170 perf_event_task_event(&task_event);
3171 }
3172
3173 void perf_event_fork(struct task_struct *task)
3174 {
3175 perf_event_task(task, NULL, 1);
3176 }
3177
3178 /*
3179 * comm tracking
3180 */
3181
3182 struct perf_comm_event {
3183 struct task_struct *task;
3184 char *comm;
3185 int comm_size;
3186
3187 struct {
3188 struct perf_event_header header;
3189
3190 u32 pid;
3191 u32 tid;
3192 } event_id;
3193 };
3194
3195 static void perf_event_comm_output(struct perf_event *event,
3196 struct perf_comm_event *comm_event)
3197 {
3198 struct perf_output_handle handle;
3199 int size = comm_event->event_id.header.size;
3200 int ret = perf_output_begin(&handle, event, size, 0, 0);
3201
3202 if (ret)
3203 return;
3204
3205 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3206 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3207
3208 perf_output_put(&handle, comm_event->event_id);
3209 perf_output_copy(&handle, comm_event->comm,
3210 comm_event->comm_size);
3211 perf_output_end(&handle);
3212 }
3213
3214 static int perf_event_comm_match(struct perf_event *event)
3215 {
3216 if (event->attr.comm)
3217 return 1;
3218
3219 return 0;
3220 }
3221
3222 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3223 struct perf_comm_event *comm_event)
3224 {
3225 struct perf_event *event;
3226
3227 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3228 return;
3229
3230 rcu_read_lock();
3231 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3232 if (perf_event_comm_match(event))
3233 perf_event_comm_output(event, comm_event);
3234 }
3235 rcu_read_unlock();
3236 }
3237
3238 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3239 {
3240 struct perf_cpu_context *cpuctx;
3241 struct perf_event_context *ctx;
3242 unsigned int size;
3243 char comm[TASK_COMM_LEN];
3244
3245 memset(comm, 0, sizeof(comm));
3246 strncpy(comm, comm_event->task->comm, sizeof(comm));
3247 size = ALIGN(strlen(comm)+1, sizeof(u64));
3248
3249 comm_event->comm = comm;
3250 comm_event->comm_size = size;
3251
3252 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3253
3254 cpuctx = &get_cpu_var(perf_cpu_context);
3255 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3256 put_cpu_var(perf_cpu_context);
3257
3258 rcu_read_lock();
3259 /*
3260 * doesn't really matter which of the child contexts the
3261 * events ends up in.
3262 */
3263 ctx = rcu_dereference(current->perf_event_ctxp);
3264 if (ctx)
3265 perf_event_comm_ctx(ctx, comm_event);
3266 rcu_read_unlock();
3267 }
3268
3269 void perf_event_comm(struct task_struct *task)
3270 {
3271 struct perf_comm_event comm_event;
3272
3273 if (task->perf_event_ctxp)
3274 perf_event_enable_on_exec(task);
3275
3276 if (!atomic_read(&nr_comm_events))
3277 return;
3278
3279 comm_event = (struct perf_comm_event){
3280 .task = task,
3281 /* .comm */
3282 /* .comm_size */
3283 .event_id = {
3284 .header = {
3285 .type = PERF_RECORD_COMM,
3286 .misc = 0,
3287 /* .size */
3288 },
3289 /* .pid */
3290 /* .tid */
3291 },
3292 };
3293
3294 perf_event_comm_event(&comm_event);
3295 }
3296
3297 /*
3298 * mmap tracking
3299 */
3300
3301 struct perf_mmap_event {
3302 struct vm_area_struct *vma;
3303
3304 const char *file_name;
3305 int file_size;
3306
3307 struct {
3308 struct perf_event_header header;
3309
3310 u32 pid;
3311 u32 tid;
3312 u64 start;
3313 u64 len;
3314 u64 pgoff;
3315 } event_id;
3316 };
3317
3318 static void perf_event_mmap_output(struct perf_event *event,
3319 struct perf_mmap_event *mmap_event)
3320 {
3321 struct perf_output_handle handle;
3322 int size = mmap_event->event_id.header.size;
3323 int ret = perf_output_begin(&handle, event, size, 0, 0);
3324
3325 if (ret)
3326 return;
3327
3328 mmap_event->event_id.pid = perf_event_pid(event, current);
3329 mmap_event->event_id.tid = perf_event_tid(event, current);
3330
3331 perf_output_put(&handle, mmap_event->event_id);
3332 perf_output_copy(&handle, mmap_event->file_name,
3333 mmap_event->file_size);
3334 perf_output_end(&handle);
3335 }
3336
3337 static int perf_event_mmap_match(struct perf_event *event,
3338 struct perf_mmap_event *mmap_event)
3339 {
3340 if (event->attr.mmap)
3341 return 1;
3342
3343 return 0;
3344 }
3345
3346 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3347 struct perf_mmap_event *mmap_event)
3348 {
3349 struct perf_event *event;
3350
3351 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3352 return;
3353
3354 rcu_read_lock();
3355 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3356 if (perf_event_mmap_match(event, mmap_event))
3357 perf_event_mmap_output(event, mmap_event);
3358 }
3359 rcu_read_unlock();
3360 }
3361
3362 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3363 {
3364 struct perf_cpu_context *cpuctx;
3365 struct perf_event_context *ctx;
3366 struct vm_area_struct *vma = mmap_event->vma;
3367 struct file *file = vma->vm_file;
3368 unsigned int size;
3369 char tmp[16];
3370 char *buf = NULL;
3371 const char *name;
3372
3373 memset(tmp, 0, sizeof(tmp));
3374
3375 if (file) {
3376 /*
3377 * d_path works from the end of the buffer backwards, so we
3378 * need to add enough zero bytes after the string to handle
3379 * the 64bit alignment we do later.
3380 */
3381 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3382 if (!buf) {
3383 name = strncpy(tmp, "//enomem", sizeof(tmp));
3384 goto got_name;
3385 }
3386 name = d_path(&file->f_path, buf, PATH_MAX);
3387 if (IS_ERR(name)) {
3388 name = strncpy(tmp, "//toolong", sizeof(tmp));
3389 goto got_name;
3390 }
3391 } else {
3392 if (arch_vma_name(mmap_event->vma)) {
3393 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3394 sizeof(tmp));
3395 goto got_name;
3396 }
3397
3398 if (!vma->vm_mm) {
3399 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3400 goto got_name;
3401 }
3402
3403 name = strncpy(tmp, "//anon", sizeof(tmp));
3404 goto got_name;
3405 }
3406
3407 got_name:
3408 size = ALIGN(strlen(name)+1, sizeof(u64));
3409
3410 mmap_event->file_name = name;
3411 mmap_event->file_size = size;
3412
3413 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3414
3415 cpuctx = &get_cpu_var(perf_cpu_context);
3416 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3417 put_cpu_var(perf_cpu_context);
3418
3419 rcu_read_lock();
3420 /*
3421 * doesn't really matter which of the child contexts the
3422 * events ends up in.
3423 */
3424 ctx = rcu_dereference(current->perf_event_ctxp);
3425 if (ctx)
3426 perf_event_mmap_ctx(ctx, mmap_event);
3427 rcu_read_unlock();
3428
3429 kfree(buf);
3430 }
3431
3432 void __perf_event_mmap(struct vm_area_struct *vma)
3433 {
3434 struct perf_mmap_event mmap_event;
3435
3436 if (!atomic_read(&nr_mmap_events))
3437 return;
3438
3439 mmap_event = (struct perf_mmap_event){
3440 .vma = vma,
3441 /* .file_name */
3442 /* .file_size */
3443 .event_id = {
3444 .header = {
3445 .type = PERF_RECORD_MMAP,
3446 .misc = 0,
3447 /* .size */
3448 },
3449 /* .pid */
3450 /* .tid */
3451 .start = vma->vm_start,
3452 .len = vma->vm_end - vma->vm_start,
3453 .pgoff = vma->vm_pgoff,
3454 },
3455 };
3456
3457 perf_event_mmap_event(&mmap_event);
3458 }
3459
3460 /*
3461 * IRQ throttle logging
3462 */
3463
3464 static void perf_log_throttle(struct perf_event *event, int enable)
3465 {
3466 struct perf_output_handle handle;
3467 int ret;
3468
3469 struct {
3470 struct perf_event_header header;
3471 u64 time;
3472 u64 id;
3473 u64 stream_id;
3474 } throttle_event = {
3475 .header = {
3476 .type = PERF_RECORD_THROTTLE,
3477 .misc = 0,
3478 .size = sizeof(throttle_event),
3479 },
3480 .time = perf_clock(),
3481 .id = primary_event_id(event),
3482 .stream_id = event->id,
3483 };
3484
3485 if (enable)
3486 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3487
3488 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3489 if (ret)
3490 return;
3491
3492 perf_output_put(&handle, throttle_event);
3493 perf_output_end(&handle);
3494 }
3495
3496 /*
3497 * Generic event overflow handling, sampling.
3498 */
3499
3500 static int __perf_event_overflow(struct perf_event *event, int nmi,
3501 int throttle, struct perf_sample_data *data,
3502 struct pt_regs *regs)
3503 {
3504 int events = atomic_read(&event->event_limit);
3505 struct hw_perf_event *hwc = &event->hw;
3506 int ret = 0;
3507
3508 throttle = (throttle && event->pmu->unthrottle != NULL);
3509
3510 if (!throttle) {
3511 hwc->interrupts++;
3512 } else {
3513 if (hwc->interrupts != MAX_INTERRUPTS) {
3514 hwc->interrupts++;
3515 if (HZ * hwc->interrupts >
3516 (u64)sysctl_perf_event_sample_rate) {
3517 hwc->interrupts = MAX_INTERRUPTS;
3518 perf_log_throttle(event, 0);
3519 ret = 1;
3520 }
3521 } else {
3522 /*
3523 * Keep re-disabling events even though on the previous
3524 * pass we disabled it - just in case we raced with a
3525 * sched-in and the event got enabled again:
3526 */
3527 ret = 1;
3528 }
3529 }
3530
3531 if (event->attr.freq) {
3532 u64 now = perf_clock();
3533 s64 delta = now - hwc->freq_stamp;
3534
3535 hwc->freq_stamp = now;
3536
3537 if (delta > 0 && delta < TICK_NSEC)
3538 perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3539 }
3540
3541 /*
3542 * XXX event_limit might not quite work as expected on inherited
3543 * events
3544 */
3545
3546 event->pending_kill = POLL_IN;
3547 if (events && atomic_dec_and_test(&event->event_limit)) {
3548 ret = 1;
3549 event->pending_kill = POLL_HUP;
3550 if (nmi) {
3551 event->pending_disable = 1;
3552 perf_pending_queue(&event->pending,
3553 perf_pending_event);
3554 } else
3555 perf_event_disable(event);
3556 }
3557
3558 perf_event_output(event, nmi, data, regs);
3559 return ret;
3560 }
3561
3562 int perf_event_overflow(struct perf_event *event, int nmi,
3563 struct perf_sample_data *data,
3564 struct pt_regs *regs)
3565 {
3566 return __perf_event_overflow(event, nmi, 1, data, regs);
3567 }
3568
3569 /*
3570 * Generic software event infrastructure
3571 */
3572
3573 /*
3574 * We directly increment event->count and keep a second value in
3575 * event->hw.period_left to count intervals. This period event
3576 * is kept in the range [-sample_period, 0] so that we can use the
3577 * sign as trigger.
3578 */
3579
3580 static u64 perf_swevent_set_period(struct perf_event *event)
3581 {
3582 struct hw_perf_event *hwc = &event->hw;
3583 u64 period = hwc->last_period;
3584 u64 nr, offset;
3585 s64 old, val;
3586
3587 hwc->last_period = hwc->sample_period;
3588
3589 again:
3590 old = val = atomic64_read(&hwc->period_left);
3591 if (val < 0)
3592 return 0;
3593
3594 nr = div64_u64(period + val, period);
3595 offset = nr * period;
3596 val -= offset;
3597 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3598 goto again;
3599
3600 return nr;
3601 }
3602
3603 static void perf_swevent_overflow(struct perf_event *event,
3604 int nmi, struct perf_sample_data *data,
3605 struct pt_regs *regs)
3606 {
3607 struct hw_perf_event *hwc = &event->hw;
3608 int throttle = 0;
3609 u64 overflow;
3610
3611 data->period = event->hw.last_period;
3612 overflow = perf_swevent_set_period(event);
3613
3614 if (hwc->interrupts == MAX_INTERRUPTS)
3615 return;
3616
3617 for (; overflow; overflow--) {
3618 if (__perf_event_overflow(event, nmi, throttle,
3619 data, regs)) {
3620 /*
3621 * We inhibit the overflow from happening when
3622 * hwc->interrupts == MAX_INTERRUPTS.
3623 */
3624 break;
3625 }
3626 throttle = 1;
3627 }
3628 }
3629
3630 static void perf_swevent_unthrottle(struct perf_event *event)
3631 {
3632 /*
3633 * Nothing to do, we already reset hwc->interrupts.
3634 */
3635 }
3636
3637 static void perf_swevent_add(struct perf_event *event, u64 nr,
3638 int nmi, struct perf_sample_data *data,
3639 struct pt_regs *regs)
3640 {
3641 struct hw_perf_event *hwc = &event->hw;
3642
3643 atomic64_add(nr, &event->count);
3644
3645 if (!hwc->sample_period)
3646 return;
3647
3648 if (!regs)
3649 return;
3650
3651 if (!atomic64_add_negative(nr, &hwc->period_left))
3652 perf_swevent_overflow(event, nmi, data, regs);
3653 }
3654
3655 static int perf_swevent_is_counting(struct perf_event *event)
3656 {
3657 /*
3658 * The event is active, we're good!
3659 */
3660 if (event->state == PERF_EVENT_STATE_ACTIVE)
3661 return 1;
3662
3663 /*
3664 * The event is off/error, not counting.
3665 */
3666 if (event->state != PERF_EVENT_STATE_INACTIVE)
3667 return 0;
3668
3669 /*
3670 * The event is inactive, if the context is active
3671 * we're part of a group that didn't make it on the 'pmu',
3672 * not counting.
3673 */
3674 if (event->ctx->is_active)
3675 return 0;
3676
3677 /*
3678 * We're inactive and the context is too, this means the
3679 * task is scheduled out, we're counting events that happen
3680 * to us, like migration events.
3681 */
3682 return 1;
3683 }
3684
3685 static int perf_swevent_match(struct perf_event *event,
3686 enum perf_type_id type,
3687 u32 event_id, struct pt_regs *regs)
3688 {
3689 if (!perf_swevent_is_counting(event))
3690 return 0;
3691
3692 if (event->attr.type != type)
3693 return 0;
3694 if (event->attr.config != event_id)
3695 return 0;
3696
3697 if (regs) {
3698 if (event->attr.exclude_user && user_mode(regs))
3699 return 0;
3700
3701 if (event->attr.exclude_kernel && !user_mode(regs))
3702 return 0;
3703 }
3704
3705 return 1;
3706 }
3707
3708 static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3709 enum perf_type_id type,
3710 u32 event_id, u64 nr, int nmi,
3711 struct perf_sample_data *data,
3712 struct pt_regs *regs)
3713 {
3714 struct perf_event *event;
3715
3716 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3717 return;
3718
3719 rcu_read_lock();
3720 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3721 if (perf_swevent_match(event, type, event_id, regs))
3722 perf_swevent_add(event, nr, nmi, data, regs);
3723 }
3724 rcu_read_unlock();
3725 }
3726
3727 static int *perf_swevent_recursion_context(struct perf_cpu_context *cpuctx)
3728 {
3729 if (in_nmi())
3730 return &cpuctx->recursion[3];
3731
3732 if (in_irq())
3733 return &cpuctx->recursion[2];
3734
3735 if (in_softirq())
3736 return &cpuctx->recursion[1];
3737
3738 return &cpuctx->recursion[0];
3739 }
3740
3741 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
3742 u64 nr, int nmi,
3743 struct perf_sample_data *data,
3744 struct pt_regs *regs)
3745 {
3746 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3747 int *recursion = perf_swevent_recursion_context(cpuctx);
3748 struct perf_event_context *ctx;
3749
3750 if (*recursion)
3751 goto out;
3752
3753 (*recursion)++;
3754 barrier();
3755
3756 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
3757 nr, nmi, data, regs);
3758 rcu_read_lock();
3759 /*
3760 * doesn't really matter which of the child contexts the
3761 * events ends up in.
3762 */
3763 ctx = rcu_dereference(current->perf_event_ctxp);
3764 if (ctx)
3765 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
3766 rcu_read_unlock();
3767
3768 barrier();
3769 (*recursion)--;
3770
3771 out:
3772 put_cpu_var(perf_cpu_context);
3773 }
3774
3775 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
3776 struct pt_regs *regs, u64 addr)
3777 {
3778 struct perf_sample_data data = {
3779 .addr = addr,
3780 };
3781
3782 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi,
3783 &data, regs);
3784 }
3785
3786 static void perf_swevent_read(struct perf_event *event)
3787 {
3788 }
3789
3790 static int perf_swevent_enable(struct perf_event *event)
3791 {
3792 struct hw_perf_event *hwc = &event->hw;
3793
3794 if (hwc->sample_period) {
3795 hwc->last_period = hwc->sample_period;
3796 perf_swevent_set_period(event);
3797 }
3798 return 0;
3799 }
3800
3801 static void perf_swevent_disable(struct perf_event *event)
3802 {
3803 }
3804
3805 static const struct pmu perf_ops_generic = {
3806 .enable = perf_swevent_enable,
3807 .disable = perf_swevent_disable,
3808 .read = perf_swevent_read,
3809 .unthrottle = perf_swevent_unthrottle,
3810 };
3811
3812 /*
3813 * hrtimer based swevent callback
3814 */
3815
3816 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
3817 {
3818 enum hrtimer_restart ret = HRTIMER_RESTART;
3819 struct perf_sample_data data;
3820 struct pt_regs *regs;
3821 struct perf_event *event;
3822 u64 period;
3823
3824 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
3825 event->pmu->read(event);
3826
3827 data.addr = 0;
3828 regs = get_irq_regs();
3829 /*
3830 * In case we exclude kernel IPs or are somehow not in interrupt
3831 * context, provide the next best thing, the user IP.
3832 */
3833 if ((event->attr.exclude_kernel || !regs) &&
3834 !event->attr.exclude_user)
3835 regs = task_pt_regs(current);
3836
3837 if (regs) {
3838 if (perf_event_overflow(event, 0, &data, regs))
3839 ret = HRTIMER_NORESTART;
3840 }
3841
3842 period = max_t(u64, 10000, event->hw.sample_period);
3843 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3844
3845 return ret;
3846 }
3847
3848 /*
3849 * Software event: cpu wall time clock
3850 */
3851
3852 static void cpu_clock_perf_event_update(struct perf_event *event)
3853 {
3854 int cpu = raw_smp_processor_id();
3855 s64 prev;
3856 u64 now;
3857
3858 now = cpu_clock(cpu);
3859 prev = atomic64_read(&event->hw.prev_count);
3860 atomic64_set(&event->hw.prev_count, now);
3861 atomic64_add(now - prev, &event->count);
3862 }
3863
3864 static int cpu_clock_perf_event_enable(struct perf_event *event)
3865 {
3866 struct hw_perf_event *hwc = &event->hw;
3867 int cpu = raw_smp_processor_id();
3868
3869 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3870 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3871 hwc->hrtimer.function = perf_swevent_hrtimer;
3872 if (hwc->sample_period) {
3873 u64 period = max_t(u64, 10000, hwc->sample_period);
3874 __hrtimer_start_range_ns(&hwc->hrtimer,
3875 ns_to_ktime(period), 0,
3876 HRTIMER_MODE_REL, 0);
3877 }
3878
3879 return 0;
3880 }
3881
3882 static void cpu_clock_perf_event_disable(struct perf_event *event)
3883 {
3884 if (event->hw.sample_period)
3885 hrtimer_cancel(&event->hw.hrtimer);
3886 cpu_clock_perf_event_update(event);
3887 }
3888
3889 static void cpu_clock_perf_event_read(struct perf_event *event)
3890 {
3891 cpu_clock_perf_event_update(event);
3892 }
3893
3894 static const struct pmu perf_ops_cpu_clock = {
3895 .enable = cpu_clock_perf_event_enable,
3896 .disable = cpu_clock_perf_event_disable,
3897 .read = cpu_clock_perf_event_read,
3898 };
3899
3900 /*
3901 * Software event: task time clock
3902 */
3903
3904 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
3905 {
3906 u64 prev;
3907 s64 delta;
3908
3909 prev = atomic64_xchg(&event->hw.prev_count, now);
3910 delta = now - prev;
3911 atomic64_add(delta, &event->count);
3912 }
3913
3914 static int task_clock_perf_event_enable(struct perf_event *event)
3915 {
3916 struct hw_perf_event *hwc = &event->hw;
3917 u64 now;
3918
3919 now = event->ctx->time;
3920
3921 atomic64_set(&hwc->prev_count, now);
3922 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3923 hwc->hrtimer.function = perf_swevent_hrtimer;
3924 if (hwc->sample_period) {
3925 u64 period = max_t(u64, 10000, hwc->sample_period);
3926 __hrtimer_start_range_ns(&hwc->hrtimer,
3927 ns_to_ktime(period), 0,
3928 HRTIMER_MODE_REL, 0);
3929 }
3930
3931 return 0;
3932 }
3933
3934 static void task_clock_perf_event_disable(struct perf_event *event)
3935 {
3936 if (event->hw.sample_period)
3937 hrtimer_cancel(&event->hw.hrtimer);
3938 task_clock_perf_event_update(event, event->ctx->time);
3939
3940 }
3941
3942 static void task_clock_perf_event_read(struct perf_event *event)
3943 {
3944 u64 time;
3945
3946 if (!in_nmi()) {
3947 update_context_time(event->ctx);
3948 time = event->ctx->time;
3949 } else {
3950 u64 now = perf_clock();
3951 u64 delta = now - event->ctx->timestamp;
3952 time = event->ctx->time + delta;
3953 }
3954
3955 task_clock_perf_event_update(event, time);
3956 }
3957
3958 static const struct pmu perf_ops_task_clock = {
3959 .enable = task_clock_perf_event_enable,
3960 .disable = task_clock_perf_event_disable,
3961 .read = task_clock_perf_event_read,
3962 };
3963
3964 #ifdef CONFIG_EVENT_PROFILE
3965 void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
3966 int entry_size)
3967 {
3968 struct perf_raw_record raw = {
3969 .size = entry_size,
3970 .data = record,
3971 };
3972
3973 struct perf_sample_data data = {
3974 .addr = addr,
3975 .raw = &raw,
3976 };
3977
3978 struct pt_regs *regs = get_irq_regs();
3979
3980 if (!regs)
3981 regs = task_pt_regs(current);
3982
3983 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
3984 &data, regs);
3985 }
3986 EXPORT_SYMBOL_GPL(perf_tp_event);
3987
3988 extern int ftrace_profile_enable(int);
3989 extern void ftrace_profile_disable(int);
3990
3991 static void tp_perf_event_destroy(struct perf_event *event)
3992 {
3993 ftrace_profile_disable(event->attr.config);
3994 }
3995
3996 static const struct pmu *tp_perf_event_init(struct perf_event *event)
3997 {
3998 /*
3999 * Raw tracepoint data is a severe data leak, only allow root to
4000 * have these.
4001 */
4002 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4003 perf_paranoid_tracepoint_raw() &&
4004 !capable(CAP_SYS_ADMIN))
4005 return ERR_PTR(-EPERM);
4006
4007 if (ftrace_profile_enable(event->attr.config))
4008 return NULL;
4009
4010 event->destroy = tp_perf_event_destroy;
4011
4012 return &perf_ops_generic;
4013 }
4014 #else
4015 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4016 {
4017 return NULL;
4018 }
4019 #endif
4020
4021 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4022
4023 static void sw_perf_event_destroy(struct perf_event *event)
4024 {
4025 u64 event_id = event->attr.config;
4026
4027 WARN_ON(event->parent);
4028
4029 atomic_dec(&perf_swevent_enabled[event_id]);
4030 }
4031
4032 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4033 {
4034 const struct pmu *pmu = NULL;
4035 u64 event_id = event->attr.config;
4036
4037 /*
4038 * Software events (currently) can't in general distinguish
4039 * between user, kernel and hypervisor events.
4040 * However, context switches and cpu migrations are considered
4041 * to be kernel events, and page faults are never hypervisor
4042 * events.
4043 */
4044 switch (event_id) {
4045 case PERF_COUNT_SW_CPU_CLOCK:
4046 pmu = &perf_ops_cpu_clock;
4047
4048 break;
4049 case PERF_COUNT_SW_TASK_CLOCK:
4050 /*
4051 * If the user instantiates this as a per-cpu event,
4052 * use the cpu_clock event instead.
4053 */
4054 if (event->ctx->task)
4055 pmu = &perf_ops_task_clock;
4056 else
4057 pmu = &perf_ops_cpu_clock;
4058
4059 break;
4060 case PERF_COUNT_SW_PAGE_FAULTS:
4061 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4062 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4063 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4064 case PERF_COUNT_SW_CPU_MIGRATIONS:
4065 if (!event->parent) {
4066 atomic_inc(&perf_swevent_enabled[event_id]);
4067 event->destroy = sw_perf_event_destroy;
4068 }
4069 pmu = &perf_ops_generic;
4070 break;
4071 }
4072
4073 return pmu;
4074 }
4075
4076 /*
4077 * Allocate and initialize a event structure
4078 */
4079 static struct perf_event *
4080 perf_event_alloc(struct perf_event_attr *attr,
4081 int cpu,
4082 struct perf_event_context *ctx,
4083 struct perf_event *group_leader,
4084 struct perf_event *parent_event,
4085 gfp_t gfpflags)
4086 {
4087 const struct pmu *pmu;
4088 struct perf_event *event;
4089 struct hw_perf_event *hwc;
4090 long err;
4091
4092 event = kzalloc(sizeof(*event), gfpflags);
4093 if (!event)
4094 return ERR_PTR(-ENOMEM);
4095
4096 /*
4097 * Single events are their own group leaders, with an
4098 * empty sibling list:
4099 */
4100 if (!group_leader)
4101 group_leader = event;
4102
4103 mutex_init(&event->child_mutex);
4104 INIT_LIST_HEAD(&event->child_list);
4105
4106 INIT_LIST_HEAD(&event->group_entry);
4107 INIT_LIST_HEAD(&event->event_entry);
4108 INIT_LIST_HEAD(&event->sibling_list);
4109 init_waitqueue_head(&event->waitq);
4110
4111 mutex_init(&event->mmap_mutex);
4112
4113 event->cpu = cpu;
4114 event->attr = *attr;
4115 event->group_leader = group_leader;
4116 event->pmu = NULL;
4117 event->ctx = ctx;
4118 event->oncpu = -1;
4119
4120 event->parent = parent_event;
4121
4122 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4123 event->id = atomic64_inc_return(&perf_event_id);
4124
4125 event->state = PERF_EVENT_STATE_INACTIVE;
4126
4127 if (attr->disabled)
4128 event->state = PERF_EVENT_STATE_OFF;
4129
4130 pmu = NULL;
4131
4132 hwc = &event->hw;
4133 hwc->sample_period = attr->sample_period;
4134 if (attr->freq && attr->sample_freq)
4135 hwc->sample_period = 1;
4136 hwc->last_period = hwc->sample_period;
4137
4138 atomic64_set(&hwc->period_left, hwc->sample_period);
4139
4140 /*
4141 * we currently do not support PERF_FORMAT_GROUP on inherited events
4142 */
4143 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4144 goto done;
4145
4146 switch (attr->type) {
4147 case PERF_TYPE_RAW:
4148 case PERF_TYPE_HARDWARE:
4149 case PERF_TYPE_HW_CACHE:
4150 pmu = hw_perf_event_init(event);
4151 break;
4152
4153 case PERF_TYPE_SOFTWARE:
4154 pmu = sw_perf_event_init(event);
4155 break;
4156
4157 case PERF_TYPE_TRACEPOINT:
4158 pmu = tp_perf_event_init(event);
4159 break;
4160
4161 default:
4162 break;
4163 }
4164 done:
4165 err = 0;
4166 if (!pmu)
4167 err = -EINVAL;
4168 else if (IS_ERR(pmu))
4169 err = PTR_ERR(pmu);
4170
4171 if (err) {
4172 if (event->ns)
4173 put_pid_ns(event->ns);
4174 kfree(event);
4175 return ERR_PTR(err);
4176 }
4177
4178 event->pmu = pmu;
4179
4180 if (!event->parent) {
4181 atomic_inc(&nr_events);
4182 if (event->attr.mmap)
4183 atomic_inc(&nr_mmap_events);
4184 if (event->attr.comm)
4185 atomic_inc(&nr_comm_events);
4186 if (event->attr.task)
4187 atomic_inc(&nr_task_events);
4188 }
4189
4190 return event;
4191 }
4192
4193 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4194 struct perf_event_attr *attr)
4195 {
4196 u32 size;
4197 int ret;
4198
4199 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4200 return -EFAULT;
4201
4202 /*
4203 * zero the full structure, so that a short copy will be nice.
4204 */
4205 memset(attr, 0, sizeof(*attr));
4206
4207 ret = get_user(size, &uattr->size);
4208 if (ret)
4209 return ret;
4210
4211 if (size > PAGE_SIZE) /* silly large */
4212 goto err_size;
4213
4214 if (!size) /* abi compat */
4215 size = PERF_ATTR_SIZE_VER0;
4216
4217 if (size < PERF_ATTR_SIZE_VER0)
4218 goto err_size;
4219
4220 /*
4221 * If we're handed a bigger struct than we know of,
4222 * ensure all the unknown bits are 0 - i.e. new
4223 * user-space does not rely on any kernel feature
4224 * extensions we dont know about yet.
4225 */
4226 if (size > sizeof(*attr)) {
4227 unsigned char __user *addr;
4228 unsigned char __user *end;
4229 unsigned char val;
4230
4231 addr = (void __user *)uattr + sizeof(*attr);
4232 end = (void __user *)uattr + size;
4233
4234 for (; addr < end; addr++) {
4235 ret = get_user(val, addr);
4236 if (ret)
4237 return ret;
4238 if (val)
4239 goto err_size;
4240 }
4241 size = sizeof(*attr);
4242 }
4243
4244 ret = copy_from_user(attr, uattr, size);
4245 if (ret)
4246 return -EFAULT;
4247
4248 /*
4249 * If the type exists, the corresponding creation will verify
4250 * the attr->config.
4251 */
4252 if (attr->type >= PERF_TYPE_MAX)
4253 return -EINVAL;
4254
4255 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
4256 return -EINVAL;
4257
4258 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4259 return -EINVAL;
4260
4261 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4262 return -EINVAL;
4263
4264 out:
4265 return ret;
4266
4267 err_size:
4268 put_user(sizeof(*attr), &uattr->size);
4269 ret = -E2BIG;
4270 goto out;
4271 }
4272
4273 int perf_event_set_output(struct perf_event *event, int output_fd)
4274 {
4275 struct perf_event *output_event = NULL;
4276 struct file *output_file = NULL;
4277 struct perf_event *old_output;
4278 int fput_needed = 0;
4279 int ret = -EINVAL;
4280
4281 if (!output_fd)
4282 goto set;
4283
4284 output_file = fget_light(output_fd, &fput_needed);
4285 if (!output_file)
4286 return -EBADF;
4287
4288 if (output_file->f_op != &perf_fops)
4289 goto out;
4290
4291 output_event = output_file->private_data;
4292
4293 /* Don't chain output fds */
4294 if (output_event->output)
4295 goto out;
4296
4297 /* Don't set an output fd when we already have an output channel */
4298 if (event->data)
4299 goto out;
4300
4301 atomic_long_inc(&output_file->f_count);
4302
4303 set:
4304 mutex_lock(&event->mmap_mutex);
4305 old_output = event->output;
4306 rcu_assign_pointer(event->output, output_event);
4307 mutex_unlock(&event->mmap_mutex);
4308
4309 if (old_output) {
4310 /*
4311 * we need to make sure no existing perf_output_*()
4312 * is still referencing this event.
4313 */
4314 synchronize_rcu();
4315 fput(old_output->filp);
4316 }
4317
4318 ret = 0;
4319 out:
4320 fput_light(output_file, fput_needed);
4321 return ret;
4322 }
4323
4324 /**
4325 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4326 *
4327 * @attr_uptr: event_id type attributes for monitoring/sampling
4328 * @pid: target pid
4329 * @cpu: target cpu
4330 * @group_fd: group leader event fd
4331 */
4332 SYSCALL_DEFINE5(perf_event_open,
4333 struct perf_event_attr __user *, attr_uptr,
4334 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4335 {
4336 struct perf_event *event, *group_leader;
4337 struct perf_event_attr attr;
4338 struct perf_event_context *ctx;
4339 struct file *event_file = NULL;
4340 struct file *group_file = NULL;
4341 int fput_needed = 0;
4342 int fput_needed2 = 0;
4343 int err;
4344
4345 /* for future expandability... */
4346 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4347 return -EINVAL;
4348
4349 err = perf_copy_attr(attr_uptr, &attr);
4350 if (err)
4351 return err;
4352
4353 if (!attr.exclude_kernel) {
4354 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4355 return -EACCES;
4356 }
4357
4358 if (attr.freq) {
4359 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4360 return -EINVAL;
4361 }
4362
4363 /*
4364 * Get the target context (task or percpu):
4365 */
4366 ctx = find_get_context(pid, cpu);
4367 if (IS_ERR(ctx))
4368 return PTR_ERR(ctx);
4369
4370 /*
4371 * Look up the group leader (we will attach this event to it):
4372 */
4373 group_leader = NULL;
4374 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4375 err = -EINVAL;
4376 group_file = fget_light(group_fd, &fput_needed);
4377 if (!group_file)
4378 goto err_put_context;
4379 if (group_file->f_op != &perf_fops)
4380 goto err_put_context;
4381
4382 group_leader = group_file->private_data;
4383 /*
4384 * Do not allow a recursive hierarchy (this new sibling
4385 * becoming part of another group-sibling):
4386 */
4387 if (group_leader->group_leader != group_leader)
4388 goto err_put_context;
4389 /*
4390 * Do not allow to attach to a group in a different
4391 * task or CPU context:
4392 */
4393 if (group_leader->ctx != ctx)
4394 goto err_put_context;
4395 /*
4396 * Only a group leader can be exclusive or pinned
4397 */
4398 if (attr.exclusive || attr.pinned)
4399 goto err_put_context;
4400 }
4401
4402 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4403 NULL, GFP_KERNEL);
4404 err = PTR_ERR(event);
4405 if (IS_ERR(event))
4406 goto err_put_context;
4407
4408 err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0);
4409 if (err < 0)
4410 goto err_free_put_context;
4411
4412 event_file = fget_light(err, &fput_needed2);
4413 if (!event_file)
4414 goto err_free_put_context;
4415
4416 if (flags & PERF_FLAG_FD_OUTPUT) {
4417 err = perf_event_set_output(event, group_fd);
4418 if (err)
4419 goto err_fput_free_put_context;
4420 }
4421
4422 event->filp = event_file;
4423 WARN_ON_ONCE(ctx->parent_ctx);
4424 mutex_lock(&ctx->mutex);
4425 perf_install_in_context(ctx, event, cpu);
4426 ++ctx->generation;
4427 mutex_unlock(&ctx->mutex);
4428
4429 event->owner = current;
4430 get_task_struct(current);
4431 mutex_lock(&current->perf_event_mutex);
4432 list_add_tail(&event->owner_entry, &current->perf_event_list);
4433 mutex_unlock(&current->perf_event_mutex);
4434
4435 err_fput_free_put_context:
4436 fput_light(event_file, fput_needed2);
4437
4438 err_free_put_context:
4439 if (err < 0)
4440 kfree(event);
4441
4442 err_put_context:
4443 if (err < 0)
4444 put_ctx(ctx);
4445
4446 fput_light(group_file, fput_needed);
4447
4448 return err;
4449 }
4450
4451 /*
4452 * inherit a event from parent task to child task:
4453 */
4454 static struct perf_event *
4455 inherit_event(struct perf_event *parent_event,
4456 struct task_struct *parent,
4457 struct perf_event_context *parent_ctx,
4458 struct task_struct *child,
4459 struct perf_event *group_leader,
4460 struct perf_event_context *child_ctx)
4461 {
4462 struct perf_event *child_event;
4463
4464 /*
4465 * Instead of creating recursive hierarchies of events,
4466 * we link inherited events back to the original parent,
4467 * which has a filp for sure, which we use as the reference
4468 * count:
4469 */
4470 if (parent_event->parent)
4471 parent_event = parent_event->parent;
4472
4473 child_event = perf_event_alloc(&parent_event->attr,
4474 parent_event->cpu, child_ctx,
4475 group_leader, parent_event,
4476 GFP_KERNEL);
4477 if (IS_ERR(child_event))
4478 return child_event;
4479 get_ctx(child_ctx);
4480
4481 /*
4482 * Make the child state follow the state of the parent event,
4483 * not its attr.disabled bit. We hold the parent's mutex,
4484 * so we won't race with perf_event_{en, dis}able_family.
4485 */
4486 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
4487 child_event->state = PERF_EVENT_STATE_INACTIVE;
4488 else
4489 child_event->state = PERF_EVENT_STATE_OFF;
4490
4491 if (parent_event->attr.freq)
4492 child_event->hw.sample_period = parent_event->hw.sample_period;
4493
4494 /*
4495 * Link it up in the child's context:
4496 */
4497 add_event_to_ctx(child_event, child_ctx);
4498
4499 /*
4500 * Get a reference to the parent filp - we will fput it
4501 * when the child event exits. This is safe to do because
4502 * we are in the parent and we know that the filp still
4503 * exists and has a nonzero count:
4504 */
4505 atomic_long_inc(&parent_event->filp->f_count);
4506
4507 /*
4508 * Link this into the parent event's child list
4509 */
4510 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4511 mutex_lock(&parent_event->child_mutex);
4512 list_add_tail(&child_event->child_list, &parent_event->child_list);
4513 mutex_unlock(&parent_event->child_mutex);
4514
4515 return child_event;
4516 }
4517
4518 static int inherit_group(struct perf_event *parent_event,
4519 struct task_struct *parent,
4520 struct perf_event_context *parent_ctx,
4521 struct task_struct *child,
4522 struct perf_event_context *child_ctx)
4523 {
4524 struct perf_event *leader;
4525 struct perf_event *sub;
4526 struct perf_event *child_ctr;
4527
4528 leader = inherit_event(parent_event, parent, parent_ctx,
4529 child, NULL, child_ctx);
4530 if (IS_ERR(leader))
4531 return PTR_ERR(leader);
4532 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
4533 child_ctr = inherit_event(sub, parent, parent_ctx,
4534 child, leader, child_ctx);
4535 if (IS_ERR(child_ctr))
4536 return PTR_ERR(child_ctr);
4537 }
4538 return 0;
4539 }
4540
4541 static void sync_child_event(struct perf_event *child_event,
4542 struct task_struct *child)
4543 {
4544 struct perf_event *parent_event = child_event->parent;
4545 u64 child_val;
4546
4547 if (child_event->attr.inherit_stat)
4548 perf_event_read_event(child_event, child);
4549
4550 child_val = atomic64_read(&child_event->count);
4551
4552 /*
4553 * Add back the child's count to the parent's count:
4554 */
4555 atomic64_add(child_val, &parent_event->count);
4556 atomic64_add(child_event->total_time_enabled,
4557 &parent_event->child_total_time_enabled);
4558 atomic64_add(child_event->total_time_running,
4559 &parent_event->child_total_time_running);
4560
4561 /*
4562 * Remove this event from the parent's list
4563 */
4564 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4565 mutex_lock(&parent_event->child_mutex);
4566 list_del_init(&child_event->child_list);
4567 mutex_unlock(&parent_event->child_mutex);
4568
4569 /*
4570 * Release the parent event, if this was the last
4571 * reference to it.
4572 */
4573 fput(parent_event->filp);
4574 }
4575
4576 static void
4577 __perf_event_exit_task(struct perf_event *child_event,
4578 struct perf_event_context *child_ctx,
4579 struct task_struct *child)
4580 {
4581 struct perf_event *parent_event;
4582
4583 update_event_times(child_event);
4584 perf_event_remove_from_context(child_event);
4585
4586 parent_event = child_event->parent;
4587 /*
4588 * It can happen that parent exits first, and has events
4589 * that are still around due to the child reference. These
4590 * events need to be zapped - but otherwise linger.
4591 */
4592 if (parent_event) {
4593 sync_child_event(child_event, child);
4594 free_event(child_event);
4595 }
4596 }
4597
4598 /*
4599 * When a child task exits, feed back event values to parent events.
4600 */
4601 void perf_event_exit_task(struct task_struct *child)
4602 {
4603 struct perf_event *child_event, *tmp;
4604 struct perf_event_context *child_ctx;
4605 unsigned long flags;
4606
4607 if (likely(!child->perf_event_ctxp)) {
4608 perf_event_task(child, NULL, 0);
4609 return;
4610 }
4611
4612 local_irq_save(flags);
4613 /*
4614 * We can't reschedule here because interrupts are disabled,
4615 * and either child is current or it is a task that can't be
4616 * scheduled, so we are now safe from rescheduling changing
4617 * our context.
4618 */
4619 child_ctx = child->perf_event_ctxp;
4620 __perf_event_task_sched_out(child_ctx);
4621
4622 /*
4623 * Take the context lock here so that if find_get_context is
4624 * reading child->perf_event_ctxp, we wait until it has
4625 * incremented the context's refcount before we do put_ctx below.
4626 */
4627 spin_lock(&child_ctx->lock);
4628 child->perf_event_ctxp = NULL;
4629 /*
4630 * If this context is a clone; unclone it so it can't get
4631 * swapped to another process while we're removing all
4632 * the events from it.
4633 */
4634 unclone_ctx(child_ctx);
4635 spin_unlock_irqrestore(&child_ctx->lock, flags);
4636
4637 /*
4638 * Report the task dead after unscheduling the events so that we
4639 * won't get any samples after PERF_RECORD_EXIT. We can however still
4640 * get a few PERF_RECORD_READ events.
4641 */
4642 perf_event_task(child, child_ctx, 0);
4643
4644 /*
4645 * We can recurse on the same lock type through:
4646 *
4647 * __perf_event_exit_task()
4648 * sync_child_event()
4649 * fput(parent_event->filp)
4650 * perf_release()
4651 * mutex_lock(&ctx->mutex)
4652 *
4653 * But since its the parent context it won't be the same instance.
4654 */
4655 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4656
4657 again:
4658 list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
4659 group_entry)
4660 __perf_event_exit_task(child_event, child_ctx, child);
4661
4662 /*
4663 * If the last event was a group event, it will have appended all
4664 * its siblings to the list, but we obtained 'tmp' before that which
4665 * will still point to the list head terminating the iteration.
4666 */
4667 if (!list_empty(&child_ctx->group_list))
4668 goto again;
4669
4670 mutex_unlock(&child_ctx->mutex);
4671
4672 put_ctx(child_ctx);
4673 }
4674
4675 /*
4676 * free an unexposed, unused context as created by inheritance by
4677 * init_task below, used by fork() in case of fail.
4678 */
4679 void perf_event_free_task(struct task_struct *task)
4680 {
4681 struct perf_event_context *ctx = task->perf_event_ctxp;
4682 struct perf_event *event, *tmp;
4683
4684 if (!ctx)
4685 return;
4686
4687 mutex_lock(&ctx->mutex);
4688 again:
4689 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
4690 struct perf_event *parent = event->parent;
4691
4692 if (WARN_ON_ONCE(!parent))
4693 continue;
4694
4695 mutex_lock(&parent->child_mutex);
4696 list_del_init(&event->child_list);
4697 mutex_unlock(&parent->child_mutex);
4698
4699 fput(parent->filp);
4700
4701 list_del_event(event, ctx);
4702 free_event(event);
4703 }
4704
4705 if (!list_empty(&ctx->group_list))
4706 goto again;
4707
4708 mutex_unlock(&ctx->mutex);
4709
4710 put_ctx(ctx);
4711 }
4712
4713 /*
4714 * Initialize the perf_event context in task_struct
4715 */
4716 int perf_event_init_task(struct task_struct *child)
4717 {
4718 struct perf_event_context *child_ctx, *parent_ctx;
4719 struct perf_event_context *cloned_ctx;
4720 struct perf_event *event;
4721 struct task_struct *parent = current;
4722 int inherited_all = 1;
4723 int ret = 0;
4724
4725 child->perf_event_ctxp = NULL;
4726
4727 mutex_init(&child->perf_event_mutex);
4728 INIT_LIST_HEAD(&child->perf_event_list);
4729
4730 if (likely(!parent->perf_event_ctxp))
4731 return 0;
4732
4733 /*
4734 * This is executed from the parent task context, so inherit
4735 * events that have been marked for cloning.
4736 * First allocate and initialize a context for the child.
4737 */
4738
4739 child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4740 if (!child_ctx)
4741 return -ENOMEM;
4742
4743 __perf_event_init_context(child_ctx, child);
4744 child->perf_event_ctxp = child_ctx;
4745 get_task_struct(child);
4746
4747 /*
4748 * If the parent's context is a clone, pin it so it won't get
4749 * swapped under us.
4750 */
4751 parent_ctx = perf_pin_task_context(parent);
4752
4753 /*
4754 * No need to check if parent_ctx != NULL here; since we saw
4755 * it non-NULL earlier, the only reason for it to become NULL
4756 * is if we exit, and since we're currently in the middle of
4757 * a fork we can't be exiting at the same time.
4758 */
4759
4760 /*
4761 * Lock the parent list. No need to lock the child - not PID
4762 * hashed yet and not running, so nobody can access it.
4763 */
4764 mutex_lock(&parent_ctx->mutex);
4765
4766 /*
4767 * We dont have to disable NMIs - we are only looking at
4768 * the list, not manipulating it:
4769 */
4770 list_for_each_entry(event, &parent_ctx->group_list, group_entry) {
4771
4772 if (!event->attr.inherit) {
4773 inherited_all = 0;
4774 continue;
4775 }
4776
4777 ret = inherit_group(event, parent, parent_ctx,
4778 child, child_ctx);
4779 if (ret) {
4780 inherited_all = 0;
4781 break;
4782 }
4783 }
4784
4785 if (inherited_all) {
4786 /*
4787 * Mark the child context as a clone of the parent
4788 * context, or of whatever the parent is a clone of.
4789 * Note that if the parent is a clone, it could get
4790 * uncloned at any point, but that doesn't matter
4791 * because the list of events and the generation
4792 * count can't have changed since we took the mutex.
4793 */
4794 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
4795 if (cloned_ctx) {
4796 child_ctx->parent_ctx = cloned_ctx;
4797 child_ctx->parent_gen = parent_ctx->parent_gen;
4798 } else {
4799 child_ctx->parent_ctx = parent_ctx;
4800 child_ctx->parent_gen = parent_ctx->generation;
4801 }
4802 get_ctx(child_ctx->parent_ctx);
4803 }
4804
4805 mutex_unlock(&parent_ctx->mutex);
4806
4807 perf_unpin_context(parent_ctx);
4808
4809 return ret;
4810 }
4811
4812 static void __cpuinit perf_event_init_cpu(int cpu)
4813 {
4814 struct perf_cpu_context *cpuctx;
4815
4816 cpuctx = &per_cpu(perf_cpu_context, cpu);
4817 __perf_event_init_context(&cpuctx->ctx, NULL);
4818
4819 spin_lock(&perf_resource_lock);
4820 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
4821 spin_unlock(&perf_resource_lock);
4822
4823 hw_perf_event_setup(cpu);
4824 }
4825
4826 #ifdef CONFIG_HOTPLUG_CPU
4827 static void __perf_event_exit_cpu(void *info)
4828 {
4829 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4830 struct perf_event_context *ctx = &cpuctx->ctx;
4831 struct perf_event *event, *tmp;
4832
4833 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
4834 __perf_event_remove_from_context(event);
4835 }
4836 static void perf_event_exit_cpu(int cpu)
4837 {
4838 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4839 struct perf_event_context *ctx = &cpuctx->ctx;
4840
4841 mutex_lock(&ctx->mutex);
4842 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
4843 mutex_unlock(&ctx->mutex);
4844 }
4845 #else
4846 static inline void perf_event_exit_cpu(int cpu) { }
4847 #endif
4848
4849 static int __cpuinit
4850 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
4851 {
4852 unsigned int cpu = (long)hcpu;
4853
4854 switch (action) {
4855
4856 case CPU_UP_PREPARE:
4857 case CPU_UP_PREPARE_FROZEN:
4858 perf_event_init_cpu(cpu);
4859 break;
4860
4861 case CPU_ONLINE:
4862 case CPU_ONLINE_FROZEN:
4863 hw_perf_event_setup_online(cpu);
4864 break;
4865
4866 case CPU_DOWN_PREPARE:
4867 case CPU_DOWN_PREPARE_FROZEN:
4868 perf_event_exit_cpu(cpu);
4869 break;
4870
4871 default:
4872 break;
4873 }
4874
4875 return NOTIFY_OK;
4876 }
4877
4878 /*
4879 * This has to have a higher priority than migration_notifier in sched.c.
4880 */
4881 static struct notifier_block __cpuinitdata perf_cpu_nb = {
4882 .notifier_call = perf_cpu_notify,
4883 .priority = 20,
4884 };
4885
4886 void __init perf_event_init(void)
4887 {
4888 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
4889 (void *)(long)smp_processor_id());
4890 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
4891 (void *)(long)smp_processor_id());
4892 register_cpu_notifier(&perf_cpu_nb);
4893 }
4894
4895 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
4896 {
4897 return sprintf(buf, "%d\n", perf_reserved_percpu);
4898 }
4899
4900 static ssize_t
4901 perf_set_reserve_percpu(struct sysdev_class *class,
4902 const char *buf,
4903 size_t count)
4904 {
4905 struct perf_cpu_context *cpuctx;
4906 unsigned long val;
4907 int err, cpu, mpt;
4908
4909 err = strict_strtoul(buf, 10, &val);
4910 if (err)
4911 return err;
4912 if (val > perf_max_events)
4913 return -EINVAL;
4914
4915 spin_lock(&perf_resource_lock);
4916 perf_reserved_percpu = val;
4917 for_each_online_cpu(cpu) {
4918 cpuctx = &per_cpu(perf_cpu_context, cpu);
4919 spin_lock_irq(&cpuctx->ctx.lock);
4920 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
4921 perf_max_events - perf_reserved_percpu);
4922 cpuctx->max_pertask = mpt;
4923 spin_unlock_irq(&cpuctx->ctx.lock);
4924 }
4925 spin_unlock(&perf_resource_lock);
4926
4927 return count;
4928 }
4929
4930 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
4931 {
4932 return sprintf(buf, "%d\n", perf_overcommit);
4933 }
4934
4935 static ssize_t
4936 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
4937 {
4938 unsigned long val;
4939 int err;
4940
4941 err = strict_strtoul(buf, 10, &val);
4942 if (err)
4943 return err;
4944 if (val > 1)
4945 return -EINVAL;
4946
4947 spin_lock(&perf_resource_lock);
4948 perf_overcommit = val;
4949 spin_unlock(&perf_resource_lock);
4950
4951 return count;
4952 }
4953
4954 static SYSDEV_CLASS_ATTR(
4955 reserve_percpu,
4956 0644,
4957 perf_show_reserve_percpu,
4958 perf_set_reserve_percpu
4959 );
4960
4961 static SYSDEV_CLASS_ATTR(
4962 overcommit,
4963 0644,
4964 perf_show_overcommit,
4965 perf_set_overcommit
4966 );
4967
4968 static struct attribute *perfclass_attrs[] = {
4969 &attr_reserve_percpu.attr,
4970 &attr_overcommit.attr,
4971 NULL
4972 };
4973
4974 static struct attribute_group perfclass_attr_group = {
4975 .attrs = perfclass_attrs,
4976 .name = "perf_events",
4977 };
4978
4979 static int __init perf_event_sysfs_init(void)
4980 {
4981 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
4982 &perfclass_attr_group);
4983 }
4984 device_initcall(perf_event_sysfs_init);