]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/perf_event.c
Merge branch 'fix/hda' into for-linus
[mirror_ubuntu-bionic-kernel.git] / kernel / perf_event.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/vmalloc.h>
24 #include <linux/hardirq.h>
25 #include <linux/rculist.h>
26 #include <linux/uaccess.h>
27 #include <linux/syscalls.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/perf_event.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/hw_breakpoint.h>
33
34 #include <asm/irq_regs.h>
35
36 /*
37 * Each CPU has a list of per CPU events:
38 */
39 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
40
41 int perf_max_events __read_mostly = 1;
42 static int perf_reserved_percpu __read_mostly;
43 static int perf_overcommit __read_mostly = 1;
44
45 static atomic_t nr_events __read_mostly;
46 static atomic_t nr_mmap_events __read_mostly;
47 static atomic_t nr_comm_events __read_mostly;
48 static atomic_t nr_task_events __read_mostly;
49
50 /*
51 * perf event paranoia level:
52 * -1 - not paranoid at all
53 * 0 - disallow raw tracepoint access for unpriv
54 * 1 - disallow cpu events for unpriv
55 * 2 - disallow kernel profiling for unpriv
56 */
57 int sysctl_perf_event_paranoid __read_mostly = 1;
58
59 static inline bool perf_paranoid_tracepoint_raw(void)
60 {
61 return sysctl_perf_event_paranoid > -1;
62 }
63
64 static inline bool perf_paranoid_cpu(void)
65 {
66 return sysctl_perf_event_paranoid > 0;
67 }
68
69 static inline bool perf_paranoid_kernel(void)
70 {
71 return sysctl_perf_event_paranoid > 1;
72 }
73
74 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
75
76 /*
77 * max perf event sample rate
78 */
79 int sysctl_perf_event_sample_rate __read_mostly = 100000;
80
81 static atomic64_t perf_event_id;
82
83 /*
84 * Lock for (sysadmin-configurable) event reservations:
85 */
86 static DEFINE_SPINLOCK(perf_resource_lock);
87
88 /*
89 * Architecture provided APIs - weak aliases:
90 */
91 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
92 {
93 return NULL;
94 }
95
96 void __weak hw_perf_disable(void) { barrier(); }
97 void __weak hw_perf_enable(void) { barrier(); }
98
99 void __weak hw_perf_event_setup(int cpu) { barrier(); }
100 void __weak hw_perf_event_setup_online(int cpu) { barrier(); }
101
102 int __weak
103 hw_perf_group_sched_in(struct perf_event *group_leader,
104 struct perf_cpu_context *cpuctx,
105 struct perf_event_context *ctx, int cpu)
106 {
107 return 0;
108 }
109
110 void __weak perf_event_print_debug(void) { }
111
112 static DEFINE_PER_CPU(int, perf_disable_count);
113
114 void __perf_disable(void)
115 {
116 __get_cpu_var(perf_disable_count)++;
117 }
118
119 bool __perf_enable(void)
120 {
121 return !--__get_cpu_var(perf_disable_count);
122 }
123
124 void perf_disable(void)
125 {
126 __perf_disable();
127 hw_perf_disable();
128 }
129
130 void perf_enable(void)
131 {
132 if (__perf_enable())
133 hw_perf_enable();
134 }
135
136 static void get_ctx(struct perf_event_context *ctx)
137 {
138 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
139 }
140
141 static void free_ctx(struct rcu_head *head)
142 {
143 struct perf_event_context *ctx;
144
145 ctx = container_of(head, struct perf_event_context, rcu_head);
146 kfree(ctx);
147 }
148
149 static void put_ctx(struct perf_event_context *ctx)
150 {
151 if (atomic_dec_and_test(&ctx->refcount)) {
152 if (ctx->parent_ctx)
153 put_ctx(ctx->parent_ctx);
154 if (ctx->task)
155 put_task_struct(ctx->task);
156 call_rcu(&ctx->rcu_head, free_ctx);
157 }
158 }
159
160 static void unclone_ctx(struct perf_event_context *ctx)
161 {
162 if (ctx->parent_ctx) {
163 put_ctx(ctx->parent_ctx);
164 ctx->parent_ctx = NULL;
165 }
166 }
167
168 /*
169 * If we inherit events we want to return the parent event id
170 * to userspace.
171 */
172 static u64 primary_event_id(struct perf_event *event)
173 {
174 u64 id = event->id;
175
176 if (event->parent)
177 id = event->parent->id;
178
179 return id;
180 }
181
182 /*
183 * Get the perf_event_context for a task and lock it.
184 * This has to cope with with the fact that until it is locked,
185 * the context could get moved to another task.
186 */
187 static struct perf_event_context *
188 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
189 {
190 struct perf_event_context *ctx;
191
192 rcu_read_lock();
193 retry:
194 ctx = rcu_dereference(task->perf_event_ctxp);
195 if (ctx) {
196 /*
197 * If this context is a clone of another, it might
198 * get swapped for another underneath us by
199 * perf_event_task_sched_out, though the
200 * rcu_read_lock() protects us from any context
201 * getting freed. Lock the context and check if it
202 * got swapped before we could get the lock, and retry
203 * if so. If we locked the right context, then it
204 * can't get swapped on us any more.
205 */
206 raw_spin_lock_irqsave(&ctx->lock, *flags);
207 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
208 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
209 goto retry;
210 }
211
212 if (!atomic_inc_not_zero(&ctx->refcount)) {
213 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
214 ctx = NULL;
215 }
216 }
217 rcu_read_unlock();
218 return ctx;
219 }
220
221 /*
222 * Get the context for a task and increment its pin_count so it
223 * can't get swapped to another task. This also increments its
224 * reference count so that the context can't get freed.
225 */
226 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
227 {
228 struct perf_event_context *ctx;
229 unsigned long flags;
230
231 ctx = perf_lock_task_context(task, &flags);
232 if (ctx) {
233 ++ctx->pin_count;
234 raw_spin_unlock_irqrestore(&ctx->lock, flags);
235 }
236 return ctx;
237 }
238
239 static void perf_unpin_context(struct perf_event_context *ctx)
240 {
241 unsigned long flags;
242
243 raw_spin_lock_irqsave(&ctx->lock, flags);
244 --ctx->pin_count;
245 raw_spin_unlock_irqrestore(&ctx->lock, flags);
246 put_ctx(ctx);
247 }
248
249 static inline u64 perf_clock(void)
250 {
251 return cpu_clock(smp_processor_id());
252 }
253
254 /*
255 * Update the record of the current time in a context.
256 */
257 static void update_context_time(struct perf_event_context *ctx)
258 {
259 u64 now = perf_clock();
260
261 ctx->time += now - ctx->timestamp;
262 ctx->timestamp = now;
263 }
264
265 /*
266 * Update the total_time_enabled and total_time_running fields for a event.
267 */
268 static void update_event_times(struct perf_event *event)
269 {
270 struct perf_event_context *ctx = event->ctx;
271 u64 run_end;
272
273 if (event->state < PERF_EVENT_STATE_INACTIVE ||
274 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
275 return;
276
277 if (ctx->is_active)
278 run_end = ctx->time;
279 else
280 run_end = event->tstamp_stopped;
281
282 event->total_time_enabled = run_end - event->tstamp_enabled;
283
284 if (event->state == PERF_EVENT_STATE_INACTIVE)
285 run_end = event->tstamp_stopped;
286 else
287 run_end = ctx->time;
288
289 event->total_time_running = run_end - event->tstamp_running;
290 }
291
292 /*
293 * Add a event from the lists for its context.
294 * Must be called with ctx->mutex and ctx->lock held.
295 */
296 static void
297 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
298 {
299 struct perf_event *group_leader = event->group_leader;
300
301 /*
302 * Depending on whether it is a standalone or sibling event,
303 * add it straight to the context's event list, or to the group
304 * leader's sibling list:
305 */
306 if (group_leader == event)
307 list_add_tail(&event->group_entry, &ctx->group_list);
308 else {
309 list_add_tail(&event->group_entry, &group_leader->sibling_list);
310 group_leader->nr_siblings++;
311 }
312
313 list_add_rcu(&event->event_entry, &ctx->event_list);
314 ctx->nr_events++;
315 if (event->attr.inherit_stat)
316 ctx->nr_stat++;
317 }
318
319 /*
320 * Remove a event from the lists for its context.
321 * Must be called with ctx->mutex and ctx->lock held.
322 */
323 static void
324 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
325 {
326 struct perf_event *sibling, *tmp;
327
328 if (list_empty(&event->group_entry))
329 return;
330 ctx->nr_events--;
331 if (event->attr.inherit_stat)
332 ctx->nr_stat--;
333
334 list_del_init(&event->group_entry);
335 list_del_rcu(&event->event_entry);
336
337 if (event->group_leader != event)
338 event->group_leader->nr_siblings--;
339
340 update_event_times(event);
341
342 /*
343 * If event was in error state, then keep it
344 * that way, otherwise bogus counts will be
345 * returned on read(). The only way to get out
346 * of error state is by explicit re-enabling
347 * of the event
348 */
349 if (event->state > PERF_EVENT_STATE_OFF)
350 event->state = PERF_EVENT_STATE_OFF;
351
352 /*
353 * If this was a group event with sibling events then
354 * upgrade the siblings to singleton events by adding them
355 * to the context list directly:
356 */
357 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
358
359 list_move_tail(&sibling->group_entry, &ctx->group_list);
360 sibling->group_leader = sibling;
361 }
362 }
363
364 static void
365 event_sched_out(struct perf_event *event,
366 struct perf_cpu_context *cpuctx,
367 struct perf_event_context *ctx)
368 {
369 if (event->state != PERF_EVENT_STATE_ACTIVE)
370 return;
371
372 event->state = PERF_EVENT_STATE_INACTIVE;
373 if (event->pending_disable) {
374 event->pending_disable = 0;
375 event->state = PERF_EVENT_STATE_OFF;
376 }
377 event->tstamp_stopped = ctx->time;
378 event->pmu->disable(event);
379 event->oncpu = -1;
380
381 if (!is_software_event(event))
382 cpuctx->active_oncpu--;
383 ctx->nr_active--;
384 if (event->attr.exclusive || !cpuctx->active_oncpu)
385 cpuctx->exclusive = 0;
386 }
387
388 static void
389 group_sched_out(struct perf_event *group_event,
390 struct perf_cpu_context *cpuctx,
391 struct perf_event_context *ctx)
392 {
393 struct perf_event *event;
394
395 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
396 return;
397
398 event_sched_out(group_event, cpuctx, ctx);
399
400 /*
401 * Schedule out siblings (if any):
402 */
403 list_for_each_entry(event, &group_event->sibling_list, group_entry)
404 event_sched_out(event, cpuctx, ctx);
405
406 if (group_event->attr.exclusive)
407 cpuctx->exclusive = 0;
408 }
409
410 /*
411 * Cross CPU call to remove a performance event
412 *
413 * We disable the event on the hardware level first. After that we
414 * remove it from the context list.
415 */
416 static void __perf_event_remove_from_context(void *info)
417 {
418 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
419 struct perf_event *event = info;
420 struct perf_event_context *ctx = event->ctx;
421
422 /*
423 * If this is a task context, we need to check whether it is
424 * the current task context of this cpu. If not it has been
425 * scheduled out before the smp call arrived.
426 */
427 if (ctx->task && cpuctx->task_ctx != ctx)
428 return;
429
430 raw_spin_lock(&ctx->lock);
431 /*
432 * Protect the list operation against NMI by disabling the
433 * events on a global level.
434 */
435 perf_disable();
436
437 event_sched_out(event, cpuctx, ctx);
438
439 list_del_event(event, ctx);
440
441 if (!ctx->task) {
442 /*
443 * Allow more per task events with respect to the
444 * reservation:
445 */
446 cpuctx->max_pertask =
447 min(perf_max_events - ctx->nr_events,
448 perf_max_events - perf_reserved_percpu);
449 }
450
451 perf_enable();
452 raw_spin_unlock(&ctx->lock);
453 }
454
455
456 /*
457 * Remove the event from a task's (or a CPU's) list of events.
458 *
459 * Must be called with ctx->mutex held.
460 *
461 * CPU events are removed with a smp call. For task events we only
462 * call when the task is on a CPU.
463 *
464 * If event->ctx is a cloned context, callers must make sure that
465 * every task struct that event->ctx->task could possibly point to
466 * remains valid. This is OK when called from perf_release since
467 * that only calls us on the top-level context, which can't be a clone.
468 * When called from perf_event_exit_task, it's OK because the
469 * context has been detached from its task.
470 */
471 static void perf_event_remove_from_context(struct perf_event *event)
472 {
473 struct perf_event_context *ctx = event->ctx;
474 struct task_struct *task = ctx->task;
475
476 if (!task) {
477 /*
478 * Per cpu events are removed via an smp call and
479 * the removal is always successful.
480 */
481 smp_call_function_single(event->cpu,
482 __perf_event_remove_from_context,
483 event, 1);
484 return;
485 }
486
487 retry:
488 task_oncpu_function_call(task, __perf_event_remove_from_context,
489 event);
490
491 raw_spin_lock_irq(&ctx->lock);
492 /*
493 * If the context is active we need to retry the smp call.
494 */
495 if (ctx->nr_active && !list_empty(&event->group_entry)) {
496 raw_spin_unlock_irq(&ctx->lock);
497 goto retry;
498 }
499
500 /*
501 * The lock prevents that this context is scheduled in so we
502 * can remove the event safely, if the call above did not
503 * succeed.
504 */
505 if (!list_empty(&event->group_entry))
506 list_del_event(event, ctx);
507 raw_spin_unlock_irq(&ctx->lock);
508 }
509
510 /*
511 * Update total_time_enabled and total_time_running for all events in a group.
512 */
513 static void update_group_times(struct perf_event *leader)
514 {
515 struct perf_event *event;
516
517 update_event_times(leader);
518 list_for_each_entry(event, &leader->sibling_list, group_entry)
519 update_event_times(event);
520 }
521
522 /*
523 * Cross CPU call to disable a performance event
524 */
525 static void __perf_event_disable(void *info)
526 {
527 struct perf_event *event = info;
528 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
529 struct perf_event_context *ctx = event->ctx;
530
531 /*
532 * If this is a per-task event, need to check whether this
533 * event's task is the current task on this cpu.
534 */
535 if (ctx->task && cpuctx->task_ctx != ctx)
536 return;
537
538 raw_spin_lock(&ctx->lock);
539
540 /*
541 * If the event is on, turn it off.
542 * If it is in error state, leave it in error state.
543 */
544 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
545 update_context_time(ctx);
546 update_group_times(event);
547 if (event == event->group_leader)
548 group_sched_out(event, cpuctx, ctx);
549 else
550 event_sched_out(event, cpuctx, ctx);
551 event->state = PERF_EVENT_STATE_OFF;
552 }
553
554 raw_spin_unlock(&ctx->lock);
555 }
556
557 /*
558 * Disable a event.
559 *
560 * If event->ctx is a cloned context, callers must make sure that
561 * every task struct that event->ctx->task could possibly point to
562 * remains valid. This condition is satisifed when called through
563 * perf_event_for_each_child or perf_event_for_each because they
564 * hold the top-level event's child_mutex, so any descendant that
565 * goes to exit will block in sync_child_event.
566 * When called from perf_pending_event it's OK because event->ctx
567 * is the current context on this CPU and preemption is disabled,
568 * hence we can't get into perf_event_task_sched_out for this context.
569 */
570 void perf_event_disable(struct perf_event *event)
571 {
572 struct perf_event_context *ctx = event->ctx;
573 struct task_struct *task = ctx->task;
574
575 if (!task) {
576 /*
577 * Disable the event on the cpu that it's on
578 */
579 smp_call_function_single(event->cpu, __perf_event_disable,
580 event, 1);
581 return;
582 }
583
584 retry:
585 task_oncpu_function_call(task, __perf_event_disable, event);
586
587 raw_spin_lock_irq(&ctx->lock);
588 /*
589 * If the event is still active, we need to retry the cross-call.
590 */
591 if (event->state == PERF_EVENT_STATE_ACTIVE) {
592 raw_spin_unlock_irq(&ctx->lock);
593 goto retry;
594 }
595
596 /*
597 * Since we have the lock this context can't be scheduled
598 * in, so we can change the state safely.
599 */
600 if (event->state == PERF_EVENT_STATE_INACTIVE) {
601 update_group_times(event);
602 event->state = PERF_EVENT_STATE_OFF;
603 }
604
605 raw_spin_unlock_irq(&ctx->lock);
606 }
607
608 static int
609 event_sched_in(struct perf_event *event,
610 struct perf_cpu_context *cpuctx,
611 struct perf_event_context *ctx,
612 int cpu)
613 {
614 if (event->state <= PERF_EVENT_STATE_OFF)
615 return 0;
616
617 event->state = PERF_EVENT_STATE_ACTIVE;
618 event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
619 /*
620 * The new state must be visible before we turn it on in the hardware:
621 */
622 smp_wmb();
623
624 if (event->pmu->enable(event)) {
625 event->state = PERF_EVENT_STATE_INACTIVE;
626 event->oncpu = -1;
627 return -EAGAIN;
628 }
629
630 event->tstamp_running += ctx->time - event->tstamp_stopped;
631
632 if (!is_software_event(event))
633 cpuctx->active_oncpu++;
634 ctx->nr_active++;
635
636 if (event->attr.exclusive)
637 cpuctx->exclusive = 1;
638
639 return 0;
640 }
641
642 static int
643 group_sched_in(struct perf_event *group_event,
644 struct perf_cpu_context *cpuctx,
645 struct perf_event_context *ctx,
646 int cpu)
647 {
648 struct perf_event *event, *partial_group;
649 int ret;
650
651 if (group_event->state == PERF_EVENT_STATE_OFF)
652 return 0;
653
654 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
655 if (ret)
656 return ret < 0 ? ret : 0;
657
658 if (event_sched_in(group_event, cpuctx, ctx, cpu))
659 return -EAGAIN;
660
661 /*
662 * Schedule in siblings as one group (if any):
663 */
664 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
665 if (event_sched_in(event, cpuctx, ctx, cpu)) {
666 partial_group = event;
667 goto group_error;
668 }
669 }
670
671 return 0;
672
673 group_error:
674 /*
675 * Groups can be scheduled in as one unit only, so undo any
676 * partial group before returning:
677 */
678 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
679 if (event == partial_group)
680 break;
681 event_sched_out(event, cpuctx, ctx);
682 }
683 event_sched_out(group_event, cpuctx, ctx);
684
685 return -EAGAIN;
686 }
687
688 /*
689 * Return 1 for a group consisting entirely of software events,
690 * 0 if the group contains any hardware events.
691 */
692 static int is_software_only_group(struct perf_event *leader)
693 {
694 struct perf_event *event;
695
696 if (!is_software_event(leader))
697 return 0;
698
699 list_for_each_entry(event, &leader->sibling_list, group_entry)
700 if (!is_software_event(event))
701 return 0;
702
703 return 1;
704 }
705
706 /*
707 * Work out whether we can put this event group on the CPU now.
708 */
709 static int group_can_go_on(struct perf_event *event,
710 struct perf_cpu_context *cpuctx,
711 int can_add_hw)
712 {
713 /*
714 * Groups consisting entirely of software events can always go on.
715 */
716 if (is_software_only_group(event))
717 return 1;
718 /*
719 * If an exclusive group is already on, no other hardware
720 * events can go on.
721 */
722 if (cpuctx->exclusive)
723 return 0;
724 /*
725 * If this group is exclusive and there are already
726 * events on the CPU, it can't go on.
727 */
728 if (event->attr.exclusive && cpuctx->active_oncpu)
729 return 0;
730 /*
731 * Otherwise, try to add it if all previous groups were able
732 * to go on.
733 */
734 return can_add_hw;
735 }
736
737 static void add_event_to_ctx(struct perf_event *event,
738 struct perf_event_context *ctx)
739 {
740 list_add_event(event, ctx);
741 event->tstamp_enabled = ctx->time;
742 event->tstamp_running = ctx->time;
743 event->tstamp_stopped = ctx->time;
744 }
745
746 /*
747 * Cross CPU call to install and enable a performance event
748 *
749 * Must be called with ctx->mutex held
750 */
751 static void __perf_install_in_context(void *info)
752 {
753 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
754 struct perf_event *event = info;
755 struct perf_event_context *ctx = event->ctx;
756 struct perf_event *leader = event->group_leader;
757 int cpu = smp_processor_id();
758 int err;
759
760 /*
761 * If this is a task context, we need to check whether it is
762 * the current task context of this cpu. If not it has been
763 * scheduled out before the smp call arrived.
764 * Or possibly this is the right context but it isn't
765 * on this cpu because it had no events.
766 */
767 if (ctx->task && cpuctx->task_ctx != ctx) {
768 if (cpuctx->task_ctx || ctx->task != current)
769 return;
770 cpuctx->task_ctx = ctx;
771 }
772
773 raw_spin_lock(&ctx->lock);
774 ctx->is_active = 1;
775 update_context_time(ctx);
776
777 /*
778 * Protect the list operation against NMI by disabling the
779 * events on a global level. NOP for non NMI based events.
780 */
781 perf_disable();
782
783 add_event_to_ctx(event, ctx);
784
785 if (event->cpu != -1 && event->cpu != smp_processor_id())
786 goto unlock;
787
788 /*
789 * Don't put the event on if it is disabled or if
790 * it is in a group and the group isn't on.
791 */
792 if (event->state != PERF_EVENT_STATE_INACTIVE ||
793 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
794 goto unlock;
795
796 /*
797 * An exclusive event can't go on if there are already active
798 * hardware events, and no hardware event can go on if there
799 * is already an exclusive event on.
800 */
801 if (!group_can_go_on(event, cpuctx, 1))
802 err = -EEXIST;
803 else
804 err = event_sched_in(event, cpuctx, ctx, cpu);
805
806 if (err) {
807 /*
808 * This event couldn't go on. If it is in a group
809 * then we have to pull the whole group off.
810 * If the event group is pinned then put it in error state.
811 */
812 if (leader != event)
813 group_sched_out(leader, cpuctx, ctx);
814 if (leader->attr.pinned) {
815 update_group_times(leader);
816 leader->state = PERF_EVENT_STATE_ERROR;
817 }
818 }
819
820 if (!err && !ctx->task && cpuctx->max_pertask)
821 cpuctx->max_pertask--;
822
823 unlock:
824 perf_enable();
825
826 raw_spin_unlock(&ctx->lock);
827 }
828
829 /*
830 * Attach a performance event to a context
831 *
832 * First we add the event to the list with the hardware enable bit
833 * in event->hw_config cleared.
834 *
835 * If the event is attached to a task which is on a CPU we use a smp
836 * call to enable it in the task context. The task might have been
837 * scheduled away, but we check this in the smp call again.
838 *
839 * Must be called with ctx->mutex held.
840 */
841 static void
842 perf_install_in_context(struct perf_event_context *ctx,
843 struct perf_event *event,
844 int cpu)
845 {
846 struct task_struct *task = ctx->task;
847
848 if (!task) {
849 /*
850 * Per cpu events are installed via an smp call and
851 * the install is always successful.
852 */
853 smp_call_function_single(cpu, __perf_install_in_context,
854 event, 1);
855 return;
856 }
857
858 retry:
859 task_oncpu_function_call(task, __perf_install_in_context,
860 event);
861
862 raw_spin_lock_irq(&ctx->lock);
863 /*
864 * we need to retry the smp call.
865 */
866 if (ctx->is_active && list_empty(&event->group_entry)) {
867 raw_spin_unlock_irq(&ctx->lock);
868 goto retry;
869 }
870
871 /*
872 * The lock prevents that this context is scheduled in so we
873 * can add the event safely, if it the call above did not
874 * succeed.
875 */
876 if (list_empty(&event->group_entry))
877 add_event_to_ctx(event, ctx);
878 raw_spin_unlock_irq(&ctx->lock);
879 }
880
881 /*
882 * Put a event into inactive state and update time fields.
883 * Enabling the leader of a group effectively enables all
884 * the group members that aren't explicitly disabled, so we
885 * have to update their ->tstamp_enabled also.
886 * Note: this works for group members as well as group leaders
887 * since the non-leader members' sibling_lists will be empty.
888 */
889 static void __perf_event_mark_enabled(struct perf_event *event,
890 struct perf_event_context *ctx)
891 {
892 struct perf_event *sub;
893
894 event->state = PERF_EVENT_STATE_INACTIVE;
895 event->tstamp_enabled = ctx->time - event->total_time_enabled;
896 list_for_each_entry(sub, &event->sibling_list, group_entry)
897 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
898 sub->tstamp_enabled =
899 ctx->time - sub->total_time_enabled;
900 }
901
902 /*
903 * Cross CPU call to enable a performance event
904 */
905 static void __perf_event_enable(void *info)
906 {
907 struct perf_event *event = info;
908 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
909 struct perf_event_context *ctx = event->ctx;
910 struct perf_event *leader = event->group_leader;
911 int err;
912
913 /*
914 * If this is a per-task event, need to check whether this
915 * event's task is the current task on this cpu.
916 */
917 if (ctx->task && cpuctx->task_ctx != ctx) {
918 if (cpuctx->task_ctx || ctx->task != current)
919 return;
920 cpuctx->task_ctx = ctx;
921 }
922
923 raw_spin_lock(&ctx->lock);
924 ctx->is_active = 1;
925 update_context_time(ctx);
926
927 if (event->state >= PERF_EVENT_STATE_INACTIVE)
928 goto unlock;
929 __perf_event_mark_enabled(event, ctx);
930
931 if (event->cpu != -1 && event->cpu != smp_processor_id())
932 goto unlock;
933
934 /*
935 * If the event is in a group and isn't the group leader,
936 * then don't put it on unless the group is on.
937 */
938 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
939 goto unlock;
940
941 if (!group_can_go_on(event, cpuctx, 1)) {
942 err = -EEXIST;
943 } else {
944 perf_disable();
945 if (event == leader)
946 err = group_sched_in(event, cpuctx, ctx,
947 smp_processor_id());
948 else
949 err = event_sched_in(event, cpuctx, ctx,
950 smp_processor_id());
951 perf_enable();
952 }
953
954 if (err) {
955 /*
956 * If this event can't go on and it's part of a
957 * group, then the whole group has to come off.
958 */
959 if (leader != event)
960 group_sched_out(leader, cpuctx, ctx);
961 if (leader->attr.pinned) {
962 update_group_times(leader);
963 leader->state = PERF_EVENT_STATE_ERROR;
964 }
965 }
966
967 unlock:
968 raw_spin_unlock(&ctx->lock);
969 }
970
971 /*
972 * Enable a event.
973 *
974 * If event->ctx is a cloned context, callers must make sure that
975 * every task struct that event->ctx->task could possibly point to
976 * remains valid. This condition is satisfied when called through
977 * perf_event_for_each_child or perf_event_for_each as described
978 * for perf_event_disable.
979 */
980 void perf_event_enable(struct perf_event *event)
981 {
982 struct perf_event_context *ctx = event->ctx;
983 struct task_struct *task = ctx->task;
984
985 if (!task) {
986 /*
987 * Enable the event on the cpu that it's on
988 */
989 smp_call_function_single(event->cpu, __perf_event_enable,
990 event, 1);
991 return;
992 }
993
994 raw_spin_lock_irq(&ctx->lock);
995 if (event->state >= PERF_EVENT_STATE_INACTIVE)
996 goto out;
997
998 /*
999 * If the event is in error state, clear that first.
1000 * That way, if we see the event in error state below, we
1001 * know that it has gone back into error state, as distinct
1002 * from the task having been scheduled away before the
1003 * cross-call arrived.
1004 */
1005 if (event->state == PERF_EVENT_STATE_ERROR)
1006 event->state = PERF_EVENT_STATE_OFF;
1007
1008 retry:
1009 raw_spin_unlock_irq(&ctx->lock);
1010 task_oncpu_function_call(task, __perf_event_enable, event);
1011
1012 raw_spin_lock_irq(&ctx->lock);
1013
1014 /*
1015 * If the context is active and the event is still off,
1016 * we need to retry the cross-call.
1017 */
1018 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1019 goto retry;
1020
1021 /*
1022 * Since we have the lock this context can't be scheduled
1023 * in, so we can change the state safely.
1024 */
1025 if (event->state == PERF_EVENT_STATE_OFF)
1026 __perf_event_mark_enabled(event, ctx);
1027
1028 out:
1029 raw_spin_unlock_irq(&ctx->lock);
1030 }
1031
1032 static int perf_event_refresh(struct perf_event *event, int refresh)
1033 {
1034 /*
1035 * not supported on inherited events
1036 */
1037 if (event->attr.inherit)
1038 return -EINVAL;
1039
1040 atomic_add(refresh, &event->event_limit);
1041 perf_event_enable(event);
1042
1043 return 0;
1044 }
1045
1046 void __perf_event_sched_out(struct perf_event_context *ctx,
1047 struct perf_cpu_context *cpuctx)
1048 {
1049 struct perf_event *event;
1050
1051 raw_spin_lock(&ctx->lock);
1052 ctx->is_active = 0;
1053 if (likely(!ctx->nr_events))
1054 goto out;
1055 update_context_time(ctx);
1056
1057 perf_disable();
1058 if (ctx->nr_active) {
1059 list_for_each_entry(event, &ctx->group_list, group_entry)
1060 group_sched_out(event, cpuctx, ctx);
1061 }
1062 perf_enable();
1063 out:
1064 raw_spin_unlock(&ctx->lock);
1065 }
1066
1067 /*
1068 * Test whether two contexts are equivalent, i.e. whether they
1069 * have both been cloned from the same version of the same context
1070 * and they both have the same number of enabled events.
1071 * If the number of enabled events is the same, then the set
1072 * of enabled events should be the same, because these are both
1073 * inherited contexts, therefore we can't access individual events
1074 * in them directly with an fd; we can only enable/disable all
1075 * events via prctl, or enable/disable all events in a family
1076 * via ioctl, which will have the same effect on both contexts.
1077 */
1078 static int context_equiv(struct perf_event_context *ctx1,
1079 struct perf_event_context *ctx2)
1080 {
1081 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1082 && ctx1->parent_gen == ctx2->parent_gen
1083 && !ctx1->pin_count && !ctx2->pin_count;
1084 }
1085
1086 static void __perf_event_sync_stat(struct perf_event *event,
1087 struct perf_event *next_event)
1088 {
1089 u64 value;
1090
1091 if (!event->attr.inherit_stat)
1092 return;
1093
1094 /*
1095 * Update the event value, we cannot use perf_event_read()
1096 * because we're in the middle of a context switch and have IRQs
1097 * disabled, which upsets smp_call_function_single(), however
1098 * we know the event must be on the current CPU, therefore we
1099 * don't need to use it.
1100 */
1101 switch (event->state) {
1102 case PERF_EVENT_STATE_ACTIVE:
1103 event->pmu->read(event);
1104 /* fall-through */
1105
1106 case PERF_EVENT_STATE_INACTIVE:
1107 update_event_times(event);
1108 break;
1109
1110 default:
1111 break;
1112 }
1113
1114 /*
1115 * In order to keep per-task stats reliable we need to flip the event
1116 * values when we flip the contexts.
1117 */
1118 value = atomic64_read(&next_event->count);
1119 value = atomic64_xchg(&event->count, value);
1120 atomic64_set(&next_event->count, value);
1121
1122 swap(event->total_time_enabled, next_event->total_time_enabled);
1123 swap(event->total_time_running, next_event->total_time_running);
1124
1125 /*
1126 * Since we swizzled the values, update the user visible data too.
1127 */
1128 perf_event_update_userpage(event);
1129 perf_event_update_userpage(next_event);
1130 }
1131
1132 #define list_next_entry(pos, member) \
1133 list_entry(pos->member.next, typeof(*pos), member)
1134
1135 static void perf_event_sync_stat(struct perf_event_context *ctx,
1136 struct perf_event_context *next_ctx)
1137 {
1138 struct perf_event *event, *next_event;
1139
1140 if (!ctx->nr_stat)
1141 return;
1142
1143 update_context_time(ctx);
1144
1145 event = list_first_entry(&ctx->event_list,
1146 struct perf_event, event_entry);
1147
1148 next_event = list_first_entry(&next_ctx->event_list,
1149 struct perf_event, event_entry);
1150
1151 while (&event->event_entry != &ctx->event_list &&
1152 &next_event->event_entry != &next_ctx->event_list) {
1153
1154 __perf_event_sync_stat(event, next_event);
1155
1156 event = list_next_entry(event, event_entry);
1157 next_event = list_next_entry(next_event, event_entry);
1158 }
1159 }
1160
1161 /*
1162 * Called from scheduler to remove the events of the current task,
1163 * with interrupts disabled.
1164 *
1165 * We stop each event and update the event value in event->count.
1166 *
1167 * This does not protect us against NMI, but disable()
1168 * sets the disabled bit in the control field of event _before_
1169 * accessing the event control register. If a NMI hits, then it will
1170 * not restart the event.
1171 */
1172 void perf_event_task_sched_out(struct task_struct *task,
1173 struct task_struct *next, int cpu)
1174 {
1175 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1176 struct perf_event_context *ctx = task->perf_event_ctxp;
1177 struct perf_event_context *next_ctx;
1178 struct perf_event_context *parent;
1179 struct pt_regs *regs;
1180 int do_switch = 1;
1181
1182 regs = task_pt_regs(task);
1183 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1184
1185 if (likely(!ctx || !cpuctx->task_ctx))
1186 return;
1187
1188 rcu_read_lock();
1189 parent = rcu_dereference(ctx->parent_ctx);
1190 next_ctx = next->perf_event_ctxp;
1191 if (parent && next_ctx &&
1192 rcu_dereference(next_ctx->parent_ctx) == parent) {
1193 /*
1194 * Looks like the two contexts are clones, so we might be
1195 * able to optimize the context switch. We lock both
1196 * contexts and check that they are clones under the
1197 * lock (including re-checking that neither has been
1198 * uncloned in the meantime). It doesn't matter which
1199 * order we take the locks because no other cpu could
1200 * be trying to lock both of these tasks.
1201 */
1202 raw_spin_lock(&ctx->lock);
1203 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1204 if (context_equiv(ctx, next_ctx)) {
1205 /*
1206 * XXX do we need a memory barrier of sorts
1207 * wrt to rcu_dereference() of perf_event_ctxp
1208 */
1209 task->perf_event_ctxp = next_ctx;
1210 next->perf_event_ctxp = ctx;
1211 ctx->task = next;
1212 next_ctx->task = task;
1213 do_switch = 0;
1214
1215 perf_event_sync_stat(ctx, next_ctx);
1216 }
1217 raw_spin_unlock(&next_ctx->lock);
1218 raw_spin_unlock(&ctx->lock);
1219 }
1220 rcu_read_unlock();
1221
1222 if (do_switch) {
1223 __perf_event_sched_out(ctx, cpuctx);
1224 cpuctx->task_ctx = NULL;
1225 }
1226 }
1227
1228 /*
1229 * Called with IRQs disabled
1230 */
1231 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1232 {
1233 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1234
1235 if (!cpuctx->task_ctx)
1236 return;
1237
1238 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1239 return;
1240
1241 __perf_event_sched_out(ctx, cpuctx);
1242 cpuctx->task_ctx = NULL;
1243 }
1244
1245 /*
1246 * Called with IRQs disabled
1247 */
1248 static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1249 {
1250 __perf_event_sched_out(&cpuctx->ctx, cpuctx);
1251 }
1252
1253 static void
1254 __perf_event_sched_in(struct perf_event_context *ctx,
1255 struct perf_cpu_context *cpuctx, int cpu)
1256 {
1257 struct perf_event *event;
1258 int can_add_hw = 1;
1259
1260 raw_spin_lock(&ctx->lock);
1261 ctx->is_active = 1;
1262 if (likely(!ctx->nr_events))
1263 goto out;
1264
1265 ctx->timestamp = perf_clock();
1266
1267 perf_disable();
1268
1269 /*
1270 * First go through the list and put on any pinned groups
1271 * in order to give them the best chance of going on.
1272 */
1273 list_for_each_entry(event, &ctx->group_list, group_entry) {
1274 if (event->state <= PERF_EVENT_STATE_OFF ||
1275 !event->attr.pinned)
1276 continue;
1277 if (event->cpu != -1 && event->cpu != cpu)
1278 continue;
1279
1280 if (group_can_go_on(event, cpuctx, 1))
1281 group_sched_in(event, cpuctx, ctx, cpu);
1282
1283 /*
1284 * If this pinned group hasn't been scheduled,
1285 * put it in error state.
1286 */
1287 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1288 update_group_times(event);
1289 event->state = PERF_EVENT_STATE_ERROR;
1290 }
1291 }
1292
1293 list_for_each_entry(event, &ctx->group_list, group_entry) {
1294 /*
1295 * Ignore events in OFF or ERROR state, and
1296 * ignore pinned events since we did them already.
1297 */
1298 if (event->state <= PERF_EVENT_STATE_OFF ||
1299 event->attr.pinned)
1300 continue;
1301
1302 /*
1303 * Listen to the 'cpu' scheduling filter constraint
1304 * of events:
1305 */
1306 if (event->cpu != -1 && event->cpu != cpu)
1307 continue;
1308
1309 if (group_can_go_on(event, cpuctx, can_add_hw))
1310 if (group_sched_in(event, cpuctx, ctx, cpu))
1311 can_add_hw = 0;
1312 }
1313 perf_enable();
1314 out:
1315 raw_spin_unlock(&ctx->lock);
1316 }
1317
1318 /*
1319 * Called from scheduler to add the events of the current task
1320 * with interrupts disabled.
1321 *
1322 * We restore the event value and then enable it.
1323 *
1324 * This does not protect us against NMI, but enable()
1325 * sets the enabled bit in the control field of event _before_
1326 * accessing the event control register. If a NMI hits, then it will
1327 * keep the event running.
1328 */
1329 void perf_event_task_sched_in(struct task_struct *task, int cpu)
1330 {
1331 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1332 struct perf_event_context *ctx = task->perf_event_ctxp;
1333
1334 if (likely(!ctx))
1335 return;
1336 if (cpuctx->task_ctx == ctx)
1337 return;
1338 __perf_event_sched_in(ctx, cpuctx, cpu);
1339 cpuctx->task_ctx = ctx;
1340 }
1341
1342 static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1343 {
1344 struct perf_event_context *ctx = &cpuctx->ctx;
1345
1346 __perf_event_sched_in(ctx, cpuctx, cpu);
1347 }
1348
1349 #define MAX_INTERRUPTS (~0ULL)
1350
1351 static void perf_log_throttle(struct perf_event *event, int enable);
1352
1353 static void perf_adjust_period(struct perf_event *event, u64 events)
1354 {
1355 struct hw_perf_event *hwc = &event->hw;
1356 u64 period, sample_period;
1357 s64 delta;
1358
1359 events *= hwc->sample_period;
1360 period = div64_u64(events, event->attr.sample_freq);
1361
1362 delta = (s64)(period - hwc->sample_period);
1363 delta = (delta + 7) / 8; /* low pass filter */
1364
1365 sample_period = hwc->sample_period + delta;
1366
1367 if (!sample_period)
1368 sample_period = 1;
1369
1370 hwc->sample_period = sample_period;
1371 }
1372
1373 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1374 {
1375 struct perf_event *event;
1376 struct hw_perf_event *hwc;
1377 u64 interrupts, freq;
1378
1379 raw_spin_lock(&ctx->lock);
1380 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1381 if (event->state != PERF_EVENT_STATE_ACTIVE)
1382 continue;
1383
1384 if (event->cpu != -1 && event->cpu != smp_processor_id())
1385 continue;
1386
1387 hwc = &event->hw;
1388
1389 interrupts = hwc->interrupts;
1390 hwc->interrupts = 0;
1391
1392 /*
1393 * unthrottle events on the tick
1394 */
1395 if (interrupts == MAX_INTERRUPTS) {
1396 perf_log_throttle(event, 1);
1397 event->pmu->unthrottle(event);
1398 interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1399 }
1400
1401 if (!event->attr.freq || !event->attr.sample_freq)
1402 continue;
1403
1404 /*
1405 * if the specified freq < HZ then we need to skip ticks
1406 */
1407 if (event->attr.sample_freq < HZ) {
1408 freq = event->attr.sample_freq;
1409
1410 hwc->freq_count += freq;
1411 hwc->freq_interrupts += interrupts;
1412
1413 if (hwc->freq_count < HZ)
1414 continue;
1415
1416 interrupts = hwc->freq_interrupts;
1417 hwc->freq_interrupts = 0;
1418 hwc->freq_count -= HZ;
1419 } else
1420 freq = HZ;
1421
1422 perf_adjust_period(event, freq * interrupts);
1423
1424 /*
1425 * In order to avoid being stalled by an (accidental) huge
1426 * sample period, force reset the sample period if we didn't
1427 * get any events in this freq period.
1428 */
1429 if (!interrupts) {
1430 perf_disable();
1431 event->pmu->disable(event);
1432 atomic64_set(&hwc->period_left, 0);
1433 event->pmu->enable(event);
1434 perf_enable();
1435 }
1436 }
1437 raw_spin_unlock(&ctx->lock);
1438 }
1439
1440 /*
1441 * Round-robin a context's events:
1442 */
1443 static void rotate_ctx(struct perf_event_context *ctx)
1444 {
1445 struct perf_event *event;
1446
1447 if (!ctx->nr_events)
1448 return;
1449
1450 raw_spin_lock(&ctx->lock);
1451 /*
1452 * Rotate the first entry last (works just fine for group events too):
1453 */
1454 perf_disable();
1455 list_for_each_entry(event, &ctx->group_list, group_entry) {
1456 list_move_tail(&event->group_entry, &ctx->group_list);
1457 break;
1458 }
1459 perf_enable();
1460
1461 raw_spin_unlock(&ctx->lock);
1462 }
1463
1464 void perf_event_task_tick(struct task_struct *curr, int cpu)
1465 {
1466 struct perf_cpu_context *cpuctx;
1467 struct perf_event_context *ctx;
1468
1469 if (!atomic_read(&nr_events))
1470 return;
1471
1472 cpuctx = &per_cpu(perf_cpu_context, cpu);
1473 ctx = curr->perf_event_ctxp;
1474
1475 perf_ctx_adjust_freq(&cpuctx->ctx);
1476 if (ctx)
1477 perf_ctx_adjust_freq(ctx);
1478
1479 perf_event_cpu_sched_out(cpuctx);
1480 if (ctx)
1481 __perf_event_task_sched_out(ctx);
1482
1483 rotate_ctx(&cpuctx->ctx);
1484 if (ctx)
1485 rotate_ctx(ctx);
1486
1487 perf_event_cpu_sched_in(cpuctx, cpu);
1488 if (ctx)
1489 perf_event_task_sched_in(curr, cpu);
1490 }
1491
1492 /*
1493 * Enable all of a task's events that have been marked enable-on-exec.
1494 * This expects task == current.
1495 */
1496 static void perf_event_enable_on_exec(struct task_struct *task)
1497 {
1498 struct perf_event_context *ctx;
1499 struct perf_event *event;
1500 unsigned long flags;
1501 int enabled = 0;
1502
1503 local_irq_save(flags);
1504 ctx = task->perf_event_ctxp;
1505 if (!ctx || !ctx->nr_events)
1506 goto out;
1507
1508 __perf_event_task_sched_out(ctx);
1509
1510 raw_spin_lock(&ctx->lock);
1511
1512 list_for_each_entry(event, &ctx->group_list, group_entry) {
1513 if (!event->attr.enable_on_exec)
1514 continue;
1515 event->attr.enable_on_exec = 0;
1516 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1517 continue;
1518 __perf_event_mark_enabled(event, ctx);
1519 enabled = 1;
1520 }
1521
1522 /*
1523 * Unclone this context if we enabled any event.
1524 */
1525 if (enabled)
1526 unclone_ctx(ctx);
1527
1528 raw_spin_unlock(&ctx->lock);
1529
1530 perf_event_task_sched_in(task, smp_processor_id());
1531 out:
1532 local_irq_restore(flags);
1533 }
1534
1535 /*
1536 * Cross CPU call to read the hardware event
1537 */
1538 static void __perf_event_read(void *info)
1539 {
1540 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1541 struct perf_event *event = info;
1542 struct perf_event_context *ctx = event->ctx;
1543
1544 /*
1545 * If this is a task context, we need to check whether it is
1546 * the current task context of this cpu. If not it has been
1547 * scheduled out before the smp call arrived. In that case
1548 * event->count would have been updated to a recent sample
1549 * when the event was scheduled out.
1550 */
1551 if (ctx->task && cpuctx->task_ctx != ctx)
1552 return;
1553
1554 raw_spin_lock(&ctx->lock);
1555 update_context_time(ctx);
1556 update_event_times(event);
1557 raw_spin_unlock(&ctx->lock);
1558
1559 event->pmu->read(event);
1560 }
1561
1562 static u64 perf_event_read(struct perf_event *event)
1563 {
1564 /*
1565 * If event is enabled and currently active on a CPU, update the
1566 * value in the event structure:
1567 */
1568 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1569 smp_call_function_single(event->oncpu,
1570 __perf_event_read, event, 1);
1571 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1572 struct perf_event_context *ctx = event->ctx;
1573 unsigned long flags;
1574
1575 raw_spin_lock_irqsave(&ctx->lock, flags);
1576 update_context_time(ctx);
1577 update_event_times(event);
1578 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1579 }
1580
1581 return atomic64_read(&event->count);
1582 }
1583
1584 /*
1585 * Initialize the perf_event context in a task_struct:
1586 */
1587 static void
1588 __perf_event_init_context(struct perf_event_context *ctx,
1589 struct task_struct *task)
1590 {
1591 raw_spin_lock_init(&ctx->lock);
1592 mutex_init(&ctx->mutex);
1593 INIT_LIST_HEAD(&ctx->group_list);
1594 INIT_LIST_HEAD(&ctx->event_list);
1595 atomic_set(&ctx->refcount, 1);
1596 ctx->task = task;
1597 }
1598
1599 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1600 {
1601 struct perf_event_context *ctx;
1602 struct perf_cpu_context *cpuctx;
1603 struct task_struct *task;
1604 unsigned long flags;
1605 int err;
1606
1607 if (pid == -1 && cpu != -1) {
1608 /* Must be root to operate on a CPU event: */
1609 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1610 return ERR_PTR(-EACCES);
1611
1612 if (cpu < 0 || cpu >= nr_cpumask_bits)
1613 return ERR_PTR(-EINVAL);
1614
1615 /*
1616 * We could be clever and allow to attach a event to an
1617 * offline CPU and activate it when the CPU comes up, but
1618 * that's for later.
1619 */
1620 if (!cpu_online(cpu))
1621 return ERR_PTR(-ENODEV);
1622
1623 cpuctx = &per_cpu(perf_cpu_context, cpu);
1624 ctx = &cpuctx->ctx;
1625 get_ctx(ctx);
1626
1627 return ctx;
1628 }
1629
1630 rcu_read_lock();
1631 if (!pid)
1632 task = current;
1633 else
1634 task = find_task_by_vpid(pid);
1635 if (task)
1636 get_task_struct(task);
1637 rcu_read_unlock();
1638
1639 if (!task)
1640 return ERR_PTR(-ESRCH);
1641
1642 /*
1643 * Can't attach events to a dying task.
1644 */
1645 err = -ESRCH;
1646 if (task->flags & PF_EXITING)
1647 goto errout;
1648
1649 /* Reuse ptrace permission checks for now. */
1650 err = -EACCES;
1651 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1652 goto errout;
1653
1654 retry:
1655 ctx = perf_lock_task_context(task, &flags);
1656 if (ctx) {
1657 unclone_ctx(ctx);
1658 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1659 }
1660
1661 if (!ctx) {
1662 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1663 err = -ENOMEM;
1664 if (!ctx)
1665 goto errout;
1666 __perf_event_init_context(ctx, task);
1667 get_ctx(ctx);
1668 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1669 /*
1670 * We raced with some other task; use
1671 * the context they set.
1672 */
1673 kfree(ctx);
1674 goto retry;
1675 }
1676 get_task_struct(task);
1677 }
1678
1679 put_task_struct(task);
1680 return ctx;
1681
1682 errout:
1683 put_task_struct(task);
1684 return ERR_PTR(err);
1685 }
1686
1687 static void perf_event_free_filter(struct perf_event *event);
1688
1689 static void free_event_rcu(struct rcu_head *head)
1690 {
1691 struct perf_event *event;
1692
1693 event = container_of(head, struct perf_event, rcu_head);
1694 if (event->ns)
1695 put_pid_ns(event->ns);
1696 perf_event_free_filter(event);
1697 kfree(event);
1698 }
1699
1700 static void perf_pending_sync(struct perf_event *event);
1701
1702 static void free_event(struct perf_event *event)
1703 {
1704 perf_pending_sync(event);
1705
1706 if (!event->parent) {
1707 atomic_dec(&nr_events);
1708 if (event->attr.mmap)
1709 atomic_dec(&nr_mmap_events);
1710 if (event->attr.comm)
1711 atomic_dec(&nr_comm_events);
1712 if (event->attr.task)
1713 atomic_dec(&nr_task_events);
1714 }
1715
1716 if (event->output) {
1717 fput(event->output->filp);
1718 event->output = NULL;
1719 }
1720
1721 if (event->destroy)
1722 event->destroy(event);
1723
1724 put_ctx(event->ctx);
1725 call_rcu(&event->rcu_head, free_event_rcu);
1726 }
1727
1728 int perf_event_release_kernel(struct perf_event *event)
1729 {
1730 struct perf_event_context *ctx = event->ctx;
1731
1732 WARN_ON_ONCE(ctx->parent_ctx);
1733 mutex_lock(&ctx->mutex);
1734 perf_event_remove_from_context(event);
1735 mutex_unlock(&ctx->mutex);
1736
1737 mutex_lock(&event->owner->perf_event_mutex);
1738 list_del_init(&event->owner_entry);
1739 mutex_unlock(&event->owner->perf_event_mutex);
1740 put_task_struct(event->owner);
1741
1742 free_event(event);
1743
1744 return 0;
1745 }
1746 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1747
1748 /*
1749 * Called when the last reference to the file is gone.
1750 */
1751 static int perf_release(struct inode *inode, struct file *file)
1752 {
1753 struct perf_event *event = file->private_data;
1754
1755 file->private_data = NULL;
1756
1757 return perf_event_release_kernel(event);
1758 }
1759
1760 static int perf_event_read_size(struct perf_event *event)
1761 {
1762 int entry = sizeof(u64); /* value */
1763 int size = 0;
1764 int nr = 1;
1765
1766 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1767 size += sizeof(u64);
1768
1769 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1770 size += sizeof(u64);
1771
1772 if (event->attr.read_format & PERF_FORMAT_ID)
1773 entry += sizeof(u64);
1774
1775 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1776 nr += event->group_leader->nr_siblings;
1777 size += sizeof(u64);
1778 }
1779
1780 size += entry * nr;
1781
1782 return size;
1783 }
1784
1785 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1786 {
1787 struct perf_event *child;
1788 u64 total = 0;
1789
1790 *enabled = 0;
1791 *running = 0;
1792
1793 mutex_lock(&event->child_mutex);
1794 total += perf_event_read(event);
1795 *enabled += event->total_time_enabled +
1796 atomic64_read(&event->child_total_time_enabled);
1797 *running += event->total_time_running +
1798 atomic64_read(&event->child_total_time_running);
1799
1800 list_for_each_entry(child, &event->child_list, child_list) {
1801 total += perf_event_read(child);
1802 *enabled += child->total_time_enabled;
1803 *running += child->total_time_running;
1804 }
1805 mutex_unlock(&event->child_mutex);
1806
1807 return total;
1808 }
1809 EXPORT_SYMBOL_GPL(perf_event_read_value);
1810
1811 static int perf_event_read_group(struct perf_event *event,
1812 u64 read_format, char __user *buf)
1813 {
1814 struct perf_event *leader = event->group_leader, *sub;
1815 int n = 0, size = 0, ret = -EFAULT;
1816 struct perf_event_context *ctx = leader->ctx;
1817 u64 values[5];
1818 u64 count, enabled, running;
1819
1820 mutex_lock(&ctx->mutex);
1821 count = perf_event_read_value(leader, &enabled, &running);
1822
1823 values[n++] = 1 + leader->nr_siblings;
1824 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1825 values[n++] = enabled;
1826 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1827 values[n++] = running;
1828 values[n++] = count;
1829 if (read_format & PERF_FORMAT_ID)
1830 values[n++] = primary_event_id(leader);
1831
1832 size = n * sizeof(u64);
1833
1834 if (copy_to_user(buf, values, size))
1835 goto unlock;
1836
1837 ret = size;
1838
1839 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1840 n = 0;
1841
1842 values[n++] = perf_event_read_value(sub, &enabled, &running);
1843 if (read_format & PERF_FORMAT_ID)
1844 values[n++] = primary_event_id(sub);
1845
1846 size = n * sizeof(u64);
1847
1848 if (copy_to_user(buf + ret, values, size)) {
1849 ret = -EFAULT;
1850 goto unlock;
1851 }
1852
1853 ret += size;
1854 }
1855 unlock:
1856 mutex_unlock(&ctx->mutex);
1857
1858 return ret;
1859 }
1860
1861 static int perf_event_read_one(struct perf_event *event,
1862 u64 read_format, char __user *buf)
1863 {
1864 u64 enabled, running;
1865 u64 values[4];
1866 int n = 0;
1867
1868 values[n++] = perf_event_read_value(event, &enabled, &running);
1869 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1870 values[n++] = enabled;
1871 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1872 values[n++] = running;
1873 if (read_format & PERF_FORMAT_ID)
1874 values[n++] = primary_event_id(event);
1875
1876 if (copy_to_user(buf, values, n * sizeof(u64)))
1877 return -EFAULT;
1878
1879 return n * sizeof(u64);
1880 }
1881
1882 /*
1883 * Read the performance event - simple non blocking version for now
1884 */
1885 static ssize_t
1886 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
1887 {
1888 u64 read_format = event->attr.read_format;
1889 int ret;
1890
1891 /*
1892 * Return end-of-file for a read on a event that is in
1893 * error state (i.e. because it was pinned but it couldn't be
1894 * scheduled on to the CPU at some point).
1895 */
1896 if (event->state == PERF_EVENT_STATE_ERROR)
1897 return 0;
1898
1899 if (count < perf_event_read_size(event))
1900 return -ENOSPC;
1901
1902 WARN_ON_ONCE(event->ctx->parent_ctx);
1903 if (read_format & PERF_FORMAT_GROUP)
1904 ret = perf_event_read_group(event, read_format, buf);
1905 else
1906 ret = perf_event_read_one(event, read_format, buf);
1907
1908 return ret;
1909 }
1910
1911 static ssize_t
1912 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1913 {
1914 struct perf_event *event = file->private_data;
1915
1916 return perf_read_hw(event, buf, count);
1917 }
1918
1919 static unsigned int perf_poll(struct file *file, poll_table *wait)
1920 {
1921 struct perf_event *event = file->private_data;
1922 struct perf_mmap_data *data;
1923 unsigned int events = POLL_HUP;
1924
1925 rcu_read_lock();
1926 data = rcu_dereference(event->data);
1927 if (data)
1928 events = atomic_xchg(&data->poll, 0);
1929 rcu_read_unlock();
1930
1931 poll_wait(file, &event->waitq, wait);
1932
1933 return events;
1934 }
1935
1936 static void perf_event_reset(struct perf_event *event)
1937 {
1938 (void)perf_event_read(event);
1939 atomic64_set(&event->count, 0);
1940 perf_event_update_userpage(event);
1941 }
1942
1943 /*
1944 * Holding the top-level event's child_mutex means that any
1945 * descendant process that has inherited this event will block
1946 * in sync_child_event if it goes to exit, thus satisfying the
1947 * task existence requirements of perf_event_enable/disable.
1948 */
1949 static void perf_event_for_each_child(struct perf_event *event,
1950 void (*func)(struct perf_event *))
1951 {
1952 struct perf_event *child;
1953
1954 WARN_ON_ONCE(event->ctx->parent_ctx);
1955 mutex_lock(&event->child_mutex);
1956 func(event);
1957 list_for_each_entry(child, &event->child_list, child_list)
1958 func(child);
1959 mutex_unlock(&event->child_mutex);
1960 }
1961
1962 static void perf_event_for_each(struct perf_event *event,
1963 void (*func)(struct perf_event *))
1964 {
1965 struct perf_event_context *ctx = event->ctx;
1966 struct perf_event *sibling;
1967
1968 WARN_ON_ONCE(ctx->parent_ctx);
1969 mutex_lock(&ctx->mutex);
1970 event = event->group_leader;
1971
1972 perf_event_for_each_child(event, func);
1973 func(event);
1974 list_for_each_entry(sibling, &event->sibling_list, group_entry)
1975 perf_event_for_each_child(event, func);
1976 mutex_unlock(&ctx->mutex);
1977 }
1978
1979 static int perf_event_period(struct perf_event *event, u64 __user *arg)
1980 {
1981 struct perf_event_context *ctx = event->ctx;
1982 unsigned long size;
1983 int ret = 0;
1984 u64 value;
1985
1986 if (!event->attr.sample_period)
1987 return -EINVAL;
1988
1989 size = copy_from_user(&value, arg, sizeof(value));
1990 if (size != sizeof(value))
1991 return -EFAULT;
1992
1993 if (!value)
1994 return -EINVAL;
1995
1996 raw_spin_lock_irq(&ctx->lock);
1997 if (event->attr.freq) {
1998 if (value > sysctl_perf_event_sample_rate) {
1999 ret = -EINVAL;
2000 goto unlock;
2001 }
2002
2003 event->attr.sample_freq = value;
2004 } else {
2005 event->attr.sample_period = value;
2006 event->hw.sample_period = value;
2007 }
2008 unlock:
2009 raw_spin_unlock_irq(&ctx->lock);
2010
2011 return ret;
2012 }
2013
2014 static int perf_event_set_output(struct perf_event *event, int output_fd);
2015 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2016
2017 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2018 {
2019 struct perf_event *event = file->private_data;
2020 void (*func)(struct perf_event *);
2021 u32 flags = arg;
2022
2023 switch (cmd) {
2024 case PERF_EVENT_IOC_ENABLE:
2025 func = perf_event_enable;
2026 break;
2027 case PERF_EVENT_IOC_DISABLE:
2028 func = perf_event_disable;
2029 break;
2030 case PERF_EVENT_IOC_RESET:
2031 func = perf_event_reset;
2032 break;
2033
2034 case PERF_EVENT_IOC_REFRESH:
2035 return perf_event_refresh(event, arg);
2036
2037 case PERF_EVENT_IOC_PERIOD:
2038 return perf_event_period(event, (u64 __user *)arg);
2039
2040 case PERF_EVENT_IOC_SET_OUTPUT:
2041 return perf_event_set_output(event, arg);
2042
2043 case PERF_EVENT_IOC_SET_FILTER:
2044 return perf_event_set_filter(event, (void __user *)arg);
2045
2046 default:
2047 return -ENOTTY;
2048 }
2049
2050 if (flags & PERF_IOC_FLAG_GROUP)
2051 perf_event_for_each(event, func);
2052 else
2053 perf_event_for_each_child(event, func);
2054
2055 return 0;
2056 }
2057
2058 int perf_event_task_enable(void)
2059 {
2060 struct perf_event *event;
2061
2062 mutex_lock(&current->perf_event_mutex);
2063 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2064 perf_event_for_each_child(event, perf_event_enable);
2065 mutex_unlock(&current->perf_event_mutex);
2066
2067 return 0;
2068 }
2069
2070 int perf_event_task_disable(void)
2071 {
2072 struct perf_event *event;
2073
2074 mutex_lock(&current->perf_event_mutex);
2075 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2076 perf_event_for_each_child(event, perf_event_disable);
2077 mutex_unlock(&current->perf_event_mutex);
2078
2079 return 0;
2080 }
2081
2082 #ifndef PERF_EVENT_INDEX_OFFSET
2083 # define PERF_EVENT_INDEX_OFFSET 0
2084 #endif
2085
2086 static int perf_event_index(struct perf_event *event)
2087 {
2088 if (event->state != PERF_EVENT_STATE_ACTIVE)
2089 return 0;
2090
2091 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2092 }
2093
2094 /*
2095 * Callers need to ensure there can be no nesting of this function, otherwise
2096 * the seqlock logic goes bad. We can not serialize this because the arch
2097 * code calls this from NMI context.
2098 */
2099 void perf_event_update_userpage(struct perf_event *event)
2100 {
2101 struct perf_event_mmap_page *userpg;
2102 struct perf_mmap_data *data;
2103
2104 rcu_read_lock();
2105 data = rcu_dereference(event->data);
2106 if (!data)
2107 goto unlock;
2108
2109 userpg = data->user_page;
2110
2111 /*
2112 * Disable preemption so as to not let the corresponding user-space
2113 * spin too long if we get preempted.
2114 */
2115 preempt_disable();
2116 ++userpg->lock;
2117 barrier();
2118 userpg->index = perf_event_index(event);
2119 userpg->offset = atomic64_read(&event->count);
2120 if (event->state == PERF_EVENT_STATE_ACTIVE)
2121 userpg->offset -= atomic64_read(&event->hw.prev_count);
2122
2123 userpg->time_enabled = event->total_time_enabled +
2124 atomic64_read(&event->child_total_time_enabled);
2125
2126 userpg->time_running = event->total_time_running +
2127 atomic64_read(&event->child_total_time_running);
2128
2129 barrier();
2130 ++userpg->lock;
2131 preempt_enable();
2132 unlock:
2133 rcu_read_unlock();
2134 }
2135
2136 static unsigned long perf_data_size(struct perf_mmap_data *data)
2137 {
2138 return data->nr_pages << (PAGE_SHIFT + data->data_order);
2139 }
2140
2141 #ifndef CONFIG_PERF_USE_VMALLOC
2142
2143 /*
2144 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2145 */
2146
2147 static struct page *
2148 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2149 {
2150 if (pgoff > data->nr_pages)
2151 return NULL;
2152
2153 if (pgoff == 0)
2154 return virt_to_page(data->user_page);
2155
2156 return virt_to_page(data->data_pages[pgoff - 1]);
2157 }
2158
2159 static struct perf_mmap_data *
2160 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2161 {
2162 struct perf_mmap_data *data;
2163 unsigned long size;
2164 int i;
2165
2166 WARN_ON(atomic_read(&event->mmap_count));
2167
2168 size = sizeof(struct perf_mmap_data);
2169 size += nr_pages * sizeof(void *);
2170
2171 data = kzalloc(size, GFP_KERNEL);
2172 if (!data)
2173 goto fail;
2174
2175 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2176 if (!data->user_page)
2177 goto fail_user_page;
2178
2179 for (i = 0; i < nr_pages; i++) {
2180 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2181 if (!data->data_pages[i])
2182 goto fail_data_pages;
2183 }
2184
2185 data->data_order = 0;
2186 data->nr_pages = nr_pages;
2187
2188 return data;
2189
2190 fail_data_pages:
2191 for (i--; i >= 0; i--)
2192 free_page((unsigned long)data->data_pages[i]);
2193
2194 free_page((unsigned long)data->user_page);
2195
2196 fail_user_page:
2197 kfree(data);
2198
2199 fail:
2200 return NULL;
2201 }
2202
2203 static void perf_mmap_free_page(unsigned long addr)
2204 {
2205 struct page *page = virt_to_page((void *)addr);
2206
2207 page->mapping = NULL;
2208 __free_page(page);
2209 }
2210
2211 static void perf_mmap_data_free(struct perf_mmap_data *data)
2212 {
2213 int i;
2214
2215 perf_mmap_free_page((unsigned long)data->user_page);
2216 for (i = 0; i < data->nr_pages; i++)
2217 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2218 kfree(data);
2219 }
2220
2221 #else
2222
2223 /*
2224 * Back perf_mmap() with vmalloc memory.
2225 *
2226 * Required for architectures that have d-cache aliasing issues.
2227 */
2228
2229 static struct page *
2230 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2231 {
2232 if (pgoff > (1UL << data->data_order))
2233 return NULL;
2234
2235 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2236 }
2237
2238 static void perf_mmap_unmark_page(void *addr)
2239 {
2240 struct page *page = vmalloc_to_page(addr);
2241
2242 page->mapping = NULL;
2243 }
2244
2245 static void perf_mmap_data_free_work(struct work_struct *work)
2246 {
2247 struct perf_mmap_data *data;
2248 void *base;
2249 int i, nr;
2250
2251 data = container_of(work, struct perf_mmap_data, work);
2252 nr = 1 << data->data_order;
2253
2254 base = data->user_page;
2255 for (i = 0; i < nr + 1; i++)
2256 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2257
2258 vfree(base);
2259 kfree(data);
2260 }
2261
2262 static void perf_mmap_data_free(struct perf_mmap_data *data)
2263 {
2264 schedule_work(&data->work);
2265 }
2266
2267 static struct perf_mmap_data *
2268 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2269 {
2270 struct perf_mmap_data *data;
2271 unsigned long size;
2272 void *all_buf;
2273
2274 WARN_ON(atomic_read(&event->mmap_count));
2275
2276 size = sizeof(struct perf_mmap_data);
2277 size += sizeof(void *);
2278
2279 data = kzalloc(size, GFP_KERNEL);
2280 if (!data)
2281 goto fail;
2282
2283 INIT_WORK(&data->work, perf_mmap_data_free_work);
2284
2285 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2286 if (!all_buf)
2287 goto fail_all_buf;
2288
2289 data->user_page = all_buf;
2290 data->data_pages[0] = all_buf + PAGE_SIZE;
2291 data->data_order = ilog2(nr_pages);
2292 data->nr_pages = 1;
2293
2294 return data;
2295
2296 fail_all_buf:
2297 kfree(data);
2298
2299 fail:
2300 return NULL;
2301 }
2302
2303 #endif
2304
2305 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2306 {
2307 struct perf_event *event = vma->vm_file->private_data;
2308 struct perf_mmap_data *data;
2309 int ret = VM_FAULT_SIGBUS;
2310
2311 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2312 if (vmf->pgoff == 0)
2313 ret = 0;
2314 return ret;
2315 }
2316
2317 rcu_read_lock();
2318 data = rcu_dereference(event->data);
2319 if (!data)
2320 goto unlock;
2321
2322 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2323 goto unlock;
2324
2325 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2326 if (!vmf->page)
2327 goto unlock;
2328
2329 get_page(vmf->page);
2330 vmf->page->mapping = vma->vm_file->f_mapping;
2331 vmf->page->index = vmf->pgoff;
2332
2333 ret = 0;
2334 unlock:
2335 rcu_read_unlock();
2336
2337 return ret;
2338 }
2339
2340 static void
2341 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2342 {
2343 long max_size = perf_data_size(data);
2344
2345 atomic_set(&data->lock, -1);
2346
2347 if (event->attr.watermark) {
2348 data->watermark = min_t(long, max_size,
2349 event->attr.wakeup_watermark);
2350 }
2351
2352 if (!data->watermark)
2353 data->watermark = max_size / 2;
2354
2355
2356 rcu_assign_pointer(event->data, data);
2357 }
2358
2359 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2360 {
2361 struct perf_mmap_data *data;
2362
2363 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2364 perf_mmap_data_free(data);
2365 }
2366
2367 static void perf_mmap_data_release(struct perf_event *event)
2368 {
2369 struct perf_mmap_data *data = event->data;
2370
2371 WARN_ON(atomic_read(&event->mmap_count));
2372
2373 rcu_assign_pointer(event->data, NULL);
2374 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2375 }
2376
2377 static void perf_mmap_open(struct vm_area_struct *vma)
2378 {
2379 struct perf_event *event = vma->vm_file->private_data;
2380
2381 atomic_inc(&event->mmap_count);
2382 }
2383
2384 static void perf_mmap_close(struct vm_area_struct *vma)
2385 {
2386 struct perf_event *event = vma->vm_file->private_data;
2387
2388 WARN_ON_ONCE(event->ctx->parent_ctx);
2389 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2390 unsigned long size = perf_data_size(event->data);
2391 struct user_struct *user = current_user();
2392
2393 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2394 vma->vm_mm->locked_vm -= event->data->nr_locked;
2395 perf_mmap_data_release(event);
2396 mutex_unlock(&event->mmap_mutex);
2397 }
2398 }
2399
2400 static const struct vm_operations_struct perf_mmap_vmops = {
2401 .open = perf_mmap_open,
2402 .close = perf_mmap_close,
2403 .fault = perf_mmap_fault,
2404 .page_mkwrite = perf_mmap_fault,
2405 };
2406
2407 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2408 {
2409 struct perf_event *event = file->private_data;
2410 unsigned long user_locked, user_lock_limit;
2411 struct user_struct *user = current_user();
2412 unsigned long locked, lock_limit;
2413 struct perf_mmap_data *data;
2414 unsigned long vma_size;
2415 unsigned long nr_pages;
2416 long user_extra, extra;
2417 int ret = 0;
2418
2419 if (!(vma->vm_flags & VM_SHARED))
2420 return -EINVAL;
2421
2422 vma_size = vma->vm_end - vma->vm_start;
2423 nr_pages = (vma_size / PAGE_SIZE) - 1;
2424
2425 /*
2426 * If we have data pages ensure they're a power-of-two number, so we
2427 * can do bitmasks instead of modulo.
2428 */
2429 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2430 return -EINVAL;
2431
2432 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2433 return -EINVAL;
2434
2435 if (vma->vm_pgoff != 0)
2436 return -EINVAL;
2437
2438 WARN_ON_ONCE(event->ctx->parent_ctx);
2439 mutex_lock(&event->mmap_mutex);
2440 if (event->output) {
2441 ret = -EINVAL;
2442 goto unlock;
2443 }
2444
2445 if (atomic_inc_not_zero(&event->mmap_count)) {
2446 if (nr_pages != event->data->nr_pages)
2447 ret = -EINVAL;
2448 goto unlock;
2449 }
2450
2451 user_extra = nr_pages + 1;
2452 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2453
2454 /*
2455 * Increase the limit linearly with more CPUs:
2456 */
2457 user_lock_limit *= num_online_cpus();
2458
2459 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2460
2461 extra = 0;
2462 if (user_locked > user_lock_limit)
2463 extra = user_locked - user_lock_limit;
2464
2465 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2466 lock_limit >>= PAGE_SHIFT;
2467 locked = vma->vm_mm->locked_vm + extra;
2468
2469 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2470 !capable(CAP_IPC_LOCK)) {
2471 ret = -EPERM;
2472 goto unlock;
2473 }
2474
2475 WARN_ON(event->data);
2476
2477 data = perf_mmap_data_alloc(event, nr_pages);
2478 ret = -ENOMEM;
2479 if (!data)
2480 goto unlock;
2481
2482 ret = 0;
2483 perf_mmap_data_init(event, data);
2484
2485 atomic_set(&event->mmap_count, 1);
2486 atomic_long_add(user_extra, &user->locked_vm);
2487 vma->vm_mm->locked_vm += extra;
2488 event->data->nr_locked = extra;
2489 if (vma->vm_flags & VM_WRITE)
2490 event->data->writable = 1;
2491
2492 unlock:
2493 mutex_unlock(&event->mmap_mutex);
2494
2495 vma->vm_flags |= VM_RESERVED;
2496 vma->vm_ops = &perf_mmap_vmops;
2497
2498 return ret;
2499 }
2500
2501 static int perf_fasync(int fd, struct file *filp, int on)
2502 {
2503 struct inode *inode = filp->f_path.dentry->d_inode;
2504 struct perf_event *event = filp->private_data;
2505 int retval;
2506
2507 mutex_lock(&inode->i_mutex);
2508 retval = fasync_helper(fd, filp, on, &event->fasync);
2509 mutex_unlock(&inode->i_mutex);
2510
2511 if (retval < 0)
2512 return retval;
2513
2514 return 0;
2515 }
2516
2517 static const struct file_operations perf_fops = {
2518 .release = perf_release,
2519 .read = perf_read,
2520 .poll = perf_poll,
2521 .unlocked_ioctl = perf_ioctl,
2522 .compat_ioctl = perf_ioctl,
2523 .mmap = perf_mmap,
2524 .fasync = perf_fasync,
2525 };
2526
2527 /*
2528 * Perf event wakeup
2529 *
2530 * If there's data, ensure we set the poll() state and publish everything
2531 * to user-space before waking everybody up.
2532 */
2533
2534 void perf_event_wakeup(struct perf_event *event)
2535 {
2536 wake_up_all(&event->waitq);
2537
2538 if (event->pending_kill) {
2539 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2540 event->pending_kill = 0;
2541 }
2542 }
2543
2544 /*
2545 * Pending wakeups
2546 *
2547 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2548 *
2549 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2550 * single linked list and use cmpxchg() to add entries lockless.
2551 */
2552
2553 static void perf_pending_event(struct perf_pending_entry *entry)
2554 {
2555 struct perf_event *event = container_of(entry,
2556 struct perf_event, pending);
2557
2558 if (event->pending_disable) {
2559 event->pending_disable = 0;
2560 __perf_event_disable(event);
2561 }
2562
2563 if (event->pending_wakeup) {
2564 event->pending_wakeup = 0;
2565 perf_event_wakeup(event);
2566 }
2567 }
2568
2569 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2570
2571 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2572 PENDING_TAIL,
2573 };
2574
2575 static void perf_pending_queue(struct perf_pending_entry *entry,
2576 void (*func)(struct perf_pending_entry *))
2577 {
2578 struct perf_pending_entry **head;
2579
2580 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2581 return;
2582
2583 entry->func = func;
2584
2585 head = &get_cpu_var(perf_pending_head);
2586
2587 do {
2588 entry->next = *head;
2589 } while (cmpxchg(head, entry->next, entry) != entry->next);
2590
2591 set_perf_event_pending();
2592
2593 put_cpu_var(perf_pending_head);
2594 }
2595
2596 static int __perf_pending_run(void)
2597 {
2598 struct perf_pending_entry *list;
2599 int nr = 0;
2600
2601 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2602 while (list != PENDING_TAIL) {
2603 void (*func)(struct perf_pending_entry *);
2604 struct perf_pending_entry *entry = list;
2605
2606 list = list->next;
2607
2608 func = entry->func;
2609 entry->next = NULL;
2610 /*
2611 * Ensure we observe the unqueue before we issue the wakeup,
2612 * so that we won't be waiting forever.
2613 * -- see perf_not_pending().
2614 */
2615 smp_wmb();
2616
2617 func(entry);
2618 nr++;
2619 }
2620
2621 return nr;
2622 }
2623
2624 static inline int perf_not_pending(struct perf_event *event)
2625 {
2626 /*
2627 * If we flush on whatever cpu we run, there is a chance we don't
2628 * need to wait.
2629 */
2630 get_cpu();
2631 __perf_pending_run();
2632 put_cpu();
2633
2634 /*
2635 * Ensure we see the proper queue state before going to sleep
2636 * so that we do not miss the wakeup. -- see perf_pending_handle()
2637 */
2638 smp_rmb();
2639 return event->pending.next == NULL;
2640 }
2641
2642 static void perf_pending_sync(struct perf_event *event)
2643 {
2644 wait_event(event->waitq, perf_not_pending(event));
2645 }
2646
2647 void perf_event_do_pending(void)
2648 {
2649 __perf_pending_run();
2650 }
2651
2652 /*
2653 * Callchain support -- arch specific
2654 */
2655
2656 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2657 {
2658 return NULL;
2659 }
2660
2661 /*
2662 * Output
2663 */
2664 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2665 unsigned long offset, unsigned long head)
2666 {
2667 unsigned long mask;
2668
2669 if (!data->writable)
2670 return true;
2671
2672 mask = perf_data_size(data) - 1;
2673
2674 offset = (offset - tail) & mask;
2675 head = (head - tail) & mask;
2676
2677 if ((int)(head - offset) < 0)
2678 return false;
2679
2680 return true;
2681 }
2682
2683 static void perf_output_wakeup(struct perf_output_handle *handle)
2684 {
2685 atomic_set(&handle->data->poll, POLL_IN);
2686
2687 if (handle->nmi) {
2688 handle->event->pending_wakeup = 1;
2689 perf_pending_queue(&handle->event->pending,
2690 perf_pending_event);
2691 } else
2692 perf_event_wakeup(handle->event);
2693 }
2694
2695 /*
2696 * Curious locking construct.
2697 *
2698 * We need to ensure a later event_id doesn't publish a head when a former
2699 * event_id isn't done writing. However since we need to deal with NMIs we
2700 * cannot fully serialize things.
2701 *
2702 * What we do is serialize between CPUs so we only have to deal with NMI
2703 * nesting on a single CPU.
2704 *
2705 * We only publish the head (and generate a wakeup) when the outer-most
2706 * event_id completes.
2707 */
2708 static void perf_output_lock(struct perf_output_handle *handle)
2709 {
2710 struct perf_mmap_data *data = handle->data;
2711 int cur, cpu = get_cpu();
2712
2713 handle->locked = 0;
2714
2715 for (;;) {
2716 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2717 if (cur == -1) {
2718 handle->locked = 1;
2719 break;
2720 }
2721 if (cur == cpu)
2722 break;
2723
2724 cpu_relax();
2725 }
2726 }
2727
2728 static void perf_output_unlock(struct perf_output_handle *handle)
2729 {
2730 struct perf_mmap_data *data = handle->data;
2731 unsigned long head;
2732 int cpu;
2733
2734 data->done_head = data->head;
2735
2736 if (!handle->locked)
2737 goto out;
2738
2739 again:
2740 /*
2741 * The xchg implies a full barrier that ensures all writes are done
2742 * before we publish the new head, matched by a rmb() in userspace when
2743 * reading this position.
2744 */
2745 while ((head = atomic_long_xchg(&data->done_head, 0)))
2746 data->user_page->data_head = head;
2747
2748 /*
2749 * NMI can happen here, which means we can miss a done_head update.
2750 */
2751
2752 cpu = atomic_xchg(&data->lock, -1);
2753 WARN_ON_ONCE(cpu != smp_processor_id());
2754
2755 /*
2756 * Therefore we have to validate we did not indeed do so.
2757 */
2758 if (unlikely(atomic_long_read(&data->done_head))) {
2759 /*
2760 * Since we had it locked, we can lock it again.
2761 */
2762 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2763 cpu_relax();
2764
2765 goto again;
2766 }
2767
2768 if (atomic_xchg(&data->wakeup, 0))
2769 perf_output_wakeup(handle);
2770 out:
2771 put_cpu();
2772 }
2773
2774 void perf_output_copy(struct perf_output_handle *handle,
2775 const void *buf, unsigned int len)
2776 {
2777 unsigned int pages_mask;
2778 unsigned long offset;
2779 unsigned int size;
2780 void **pages;
2781
2782 offset = handle->offset;
2783 pages_mask = handle->data->nr_pages - 1;
2784 pages = handle->data->data_pages;
2785
2786 do {
2787 unsigned long page_offset;
2788 unsigned long page_size;
2789 int nr;
2790
2791 nr = (offset >> PAGE_SHIFT) & pages_mask;
2792 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2793 page_offset = offset & (page_size - 1);
2794 size = min_t(unsigned int, page_size - page_offset, len);
2795
2796 memcpy(pages[nr] + page_offset, buf, size);
2797
2798 len -= size;
2799 buf += size;
2800 offset += size;
2801 } while (len);
2802
2803 handle->offset = offset;
2804
2805 /*
2806 * Check we didn't copy past our reservation window, taking the
2807 * possible unsigned int wrap into account.
2808 */
2809 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2810 }
2811
2812 int perf_output_begin(struct perf_output_handle *handle,
2813 struct perf_event *event, unsigned int size,
2814 int nmi, int sample)
2815 {
2816 struct perf_event *output_event;
2817 struct perf_mmap_data *data;
2818 unsigned long tail, offset, head;
2819 int have_lost;
2820 struct {
2821 struct perf_event_header header;
2822 u64 id;
2823 u64 lost;
2824 } lost_event;
2825
2826 rcu_read_lock();
2827 /*
2828 * For inherited events we send all the output towards the parent.
2829 */
2830 if (event->parent)
2831 event = event->parent;
2832
2833 output_event = rcu_dereference(event->output);
2834 if (output_event)
2835 event = output_event;
2836
2837 data = rcu_dereference(event->data);
2838 if (!data)
2839 goto out;
2840
2841 handle->data = data;
2842 handle->event = event;
2843 handle->nmi = nmi;
2844 handle->sample = sample;
2845
2846 if (!data->nr_pages)
2847 goto fail;
2848
2849 have_lost = atomic_read(&data->lost);
2850 if (have_lost)
2851 size += sizeof(lost_event);
2852
2853 perf_output_lock(handle);
2854
2855 do {
2856 /*
2857 * Userspace could choose to issue a mb() before updating the
2858 * tail pointer. So that all reads will be completed before the
2859 * write is issued.
2860 */
2861 tail = ACCESS_ONCE(data->user_page->data_tail);
2862 smp_rmb();
2863 offset = head = atomic_long_read(&data->head);
2864 head += size;
2865 if (unlikely(!perf_output_space(data, tail, offset, head)))
2866 goto fail;
2867 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2868
2869 handle->offset = offset;
2870 handle->head = head;
2871
2872 if (head - tail > data->watermark)
2873 atomic_set(&data->wakeup, 1);
2874
2875 if (have_lost) {
2876 lost_event.header.type = PERF_RECORD_LOST;
2877 lost_event.header.misc = 0;
2878 lost_event.header.size = sizeof(lost_event);
2879 lost_event.id = event->id;
2880 lost_event.lost = atomic_xchg(&data->lost, 0);
2881
2882 perf_output_put(handle, lost_event);
2883 }
2884
2885 return 0;
2886
2887 fail:
2888 atomic_inc(&data->lost);
2889 perf_output_unlock(handle);
2890 out:
2891 rcu_read_unlock();
2892
2893 return -ENOSPC;
2894 }
2895
2896 void perf_output_end(struct perf_output_handle *handle)
2897 {
2898 struct perf_event *event = handle->event;
2899 struct perf_mmap_data *data = handle->data;
2900
2901 int wakeup_events = event->attr.wakeup_events;
2902
2903 if (handle->sample && wakeup_events) {
2904 int events = atomic_inc_return(&data->events);
2905 if (events >= wakeup_events) {
2906 atomic_sub(wakeup_events, &data->events);
2907 atomic_set(&data->wakeup, 1);
2908 }
2909 }
2910
2911 perf_output_unlock(handle);
2912 rcu_read_unlock();
2913 }
2914
2915 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2916 {
2917 /*
2918 * only top level events have the pid namespace they were created in
2919 */
2920 if (event->parent)
2921 event = event->parent;
2922
2923 return task_tgid_nr_ns(p, event->ns);
2924 }
2925
2926 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2927 {
2928 /*
2929 * only top level events have the pid namespace they were created in
2930 */
2931 if (event->parent)
2932 event = event->parent;
2933
2934 return task_pid_nr_ns(p, event->ns);
2935 }
2936
2937 static void perf_output_read_one(struct perf_output_handle *handle,
2938 struct perf_event *event)
2939 {
2940 u64 read_format = event->attr.read_format;
2941 u64 values[4];
2942 int n = 0;
2943
2944 values[n++] = atomic64_read(&event->count);
2945 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2946 values[n++] = event->total_time_enabled +
2947 atomic64_read(&event->child_total_time_enabled);
2948 }
2949 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2950 values[n++] = event->total_time_running +
2951 atomic64_read(&event->child_total_time_running);
2952 }
2953 if (read_format & PERF_FORMAT_ID)
2954 values[n++] = primary_event_id(event);
2955
2956 perf_output_copy(handle, values, n * sizeof(u64));
2957 }
2958
2959 /*
2960 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2961 */
2962 static void perf_output_read_group(struct perf_output_handle *handle,
2963 struct perf_event *event)
2964 {
2965 struct perf_event *leader = event->group_leader, *sub;
2966 u64 read_format = event->attr.read_format;
2967 u64 values[5];
2968 int n = 0;
2969
2970 values[n++] = 1 + leader->nr_siblings;
2971
2972 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2973 values[n++] = leader->total_time_enabled;
2974
2975 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2976 values[n++] = leader->total_time_running;
2977
2978 if (leader != event)
2979 leader->pmu->read(leader);
2980
2981 values[n++] = atomic64_read(&leader->count);
2982 if (read_format & PERF_FORMAT_ID)
2983 values[n++] = primary_event_id(leader);
2984
2985 perf_output_copy(handle, values, n * sizeof(u64));
2986
2987 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2988 n = 0;
2989
2990 if (sub != event)
2991 sub->pmu->read(sub);
2992
2993 values[n++] = atomic64_read(&sub->count);
2994 if (read_format & PERF_FORMAT_ID)
2995 values[n++] = primary_event_id(sub);
2996
2997 perf_output_copy(handle, values, n * sizeof(u64));
2998 }
2999 }
3000
3001 static void perf_output_read(struct perf_output_handle *handle,
3002 struct perf_event *event)
3003 {
3004 if (event->attr.read_format & PERF_FORMAT_GROUP)
3005 perf_output_read_group(handle, event);
3006 else
3007 perf_output_read_one(handle, event);
3008 }
3009
3010 void perf_output_sample(struct perf_output_handle *handle,
3011 struct perf_event_header *header,
3012 struct perf_sample_data *data,
3013 struct perf_event *event)
3014 {
3015 u64 sample_type = data->type;
3016
3017 perf_output_put(handle, *header);
3018
3019 if (sample_type & PERF_SAMPLE_IP)
3020 perf_output_put(handle, data->ip);
3021
3022 if (sample_type & PERF_SAMPLE_TID)
3023 perf_output_put(handle, data->tid_entry);
3024
3025 if (sample_type & PERF_SAMPLE_TIME)
3026 perf_output_put(handle, data->time);
3027
3028 if (sample_type & PERF_SAMPLE_ADDR)
3029 perf_output_put(handle, data->addr);
3030
3031 if (sample_type & PERF_SAMPLE_ID)
3032 perf_output_put(handle, data->id);
3033
3034 if (sample_type & PERF_SAMPLE_STREAM_ID)
3035 perf_output_put(handle, data->stream_id);
3036
3037 if (sample_type & PERF_SAMPLE_CPU)
3038 perf_output_put(handle, data->cpu_entry);
3039
3040 if (sample_type & PERF_SAMPLE_PERIOD)
3041 perf_output_put(handle, data->period);
3042
3043 if (sample_type & PERF_SAMPLE_READ)
3044 perf_output_read(handle, event);
3045
3046 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3047 if (data->callchain) {
3048 int size = 1;
3049
3050 if (data->callchain)
3051 size += data->callchain->nr;
3052
3053 size *= sizeof(u64);
3054
3055 perf_output_copy(handle, data->callchain, size);
3056 } else {
3057 u64 nr = 0;
3058 perf_output_put(handle, nr);
3059 }
3060 }
3061
3062 if (sample_type & PERF_SAMPLE_RAW) {
3063 if (data->raw) {
3064 perf_output_put(handle, data->raw->size);
3065 perf_output_copy(handle, data->raw->data,
3066 data->raw->size);
3067 } else {
3068 struct {
3069 u32 size;
3070 u32 data;
3071 } raw = {
3072 .size = sizeof(u32),
3073 .data = 0,
3074 };
3075 perf_output_put(handle, raw);
3076 }
3077 }
3078 }
3079
3080 void perf_prepare_sample(struct perf_event_header *header,
3081 struct perf_sample_data *data,
3082 struct perf_event *event,
3083 struct pt_regs *regs)
3084 {
3085 u64 sample_type = event->attr.sample_type;
3086
3087 data->type = sample_type;
3088
3089 header->type = PERF_RECORD_SAMPLE;
3090 header->size = sizeof(*header);
3091
3092 header->misc = 0;
3093 header->misc |= perf_misc_flags(regs);
3094
3095 if (sample_type & PERF_SAMPLE_IP) {
3096 data->ip = perf_instruction_pointer(regs);
3097
3098 header->size += sizeof(data->ip);
3099 }
3100
3101 if (sample_type & PERF_SAMPLE_TID) {
3102 /* namespace issues */
3103 data->tid_entry.pid = perf_event_pid(event, current);
3104 data->tid_entry.tid = perf_event_tid(event, current);
3105
3106 header->size += sizeof(data->tid_entry);
3107 }
3108
3109 if (sample_type & PERF_SAMPLE_TIME) {
3110 data->time = perf_clock();
3111
3112 header->size += sizeof(data->time);
3113 }
3114
3115 if (sample_type & PERF_SAMPLE_ADDR)
3116 header->size += sizeof(data->addr);
3117
3118 if (sample_type & PERF_SAMPLE_ID) {
3119 data->id = primary_event_id(event);
3120
3121 header->size += sizeof(data->id);
3122 }
3123
3124 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3125 data->stream_id = event->id;
3126
3127 header->size += sizeof(data->stream_id);
3128 }
3129
3130 if (sample_type & PERF_SAMPLE_CPU) {
3131 data->cpu_entry.cpu = raw_smp_processor_id();
3132 data->cpu_entry.reserved = 0;
3133
3134 header->size += sizeof(data->cpu_entry);
3135 }
3136
3137 if (sample_type & PERF_SAMPLE_PERIOD)
3138 header->size += sizeof(data->period);
3139
3140 if (sample_type & PERF_SAMPLE_READ)
3141 header->size += perf_event_read_size(event);
3142
3143 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3144 int size = 1;
3145
3146 data->callchain = perf_callchain(regs);
3147
3148 if (data->callchain)
3149 size += data->callchain->nr;
3150
3151 header->size += size * sizeof(u64);
3152 }
3153
3154 if (sample_type & PERF_SAMPLE_RAW) {
3155 int size = sizeof(u32);
3156
3157 if (data->raw)
3158 size += data->raw->size;
3159 else
3160 size += sizeof(u32);
3161
3162 WARN_ON_ONCE(size & (sizeof(u64)-1));
3163 header->size += size;
3164 }
3165 }
3166
3167 static void perf_event_output(struct perf_event *event, int nmi,
3168 struct perf_sample_data *data,
3169 struct pt_regs *regs)
3170 {
3171 struct perf_output_handle handle;
3172 struct perf_event_header header;
3173
3174 perf_prepare_sample(&header, data, event, regs);
3175
3176 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3177 return;
3178
3179 perf_output_sample(&handle, &header, data, event);
3180
3181 perf_output_end(&handle);
3182 }
3183
3184 /*
3185 * read event_id
3186 */
3187
3188 struct perf_read_event {
3189 struct perf_event_header header;
3190
3191 u32 pid;
3192 u32 tid;
3193 };
3194
3195 static void
3196 perf_event_read_event(struct perf_event *event,
3197 struct task_struct *task)
3198 {
3199 struct perf_output_handle handle;
3200 struct perf_read_event read_event = {
3201 .header = {
3202 .type = PERF_RECORD_READ,
3203 .misc = 0,
3204 .size = sizeof(read_event) + perf_event_read_size(event),
3205 },
3206 .pid = perf_event_pid(event, task),
3207 .tid = perf_event_tid(event, task),
3208 };
3209 int ret;
3210
3211 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3212 if (ret)
3213 return;
3214
3215 perf_output_put(&handle, read_event);
3216 perf_output_read(&handle, event);
3217
3218 perf_output_end(&handle);
3219 }
3220
3221 /*
3222 * task tracking -- fork/exit
3223 *
3224 * enabled by: attr.comm | attr.mmap | attr.task
3225 */
3226
3227 struct perf_task_event {
3228 struct task_struct *task;
3229 struct perf_event_context *task_ctx;
3230
3231 struct {
3232 struct perf_event_header header;
3233
3234 u32 pid;
3235 u32 ppid;
3236 u32 tid;
3237 u32 ptid;
3238 u64 time;
3239 } event_id;
3240 };
3241
3242 static void perf_event_task_output(struct perf_event *event,
3243 struct perf_task_event *task_event)
3244 {
3245 struct perf_output_handle handle;
3246 int size;
3247 struct task_struct *task = task_event->task;
3248 int ret;
3249
3250 size = task_event->event_id.header.size;
3251 ret = perf_output_begin(&handle, event, size, 0, 0);
3252
3253 if (ret)
3254 return;
3255
3256 task_event->event_id.pid = perf_event_pid(event, task);
3257 task_event->event_id.ppid = perf_event_pid(event, current);
3258
3259 task_event->event_id.tid = perf_event_tid(event, task);
3260 task_event->event_id.ptid = perf_event_tid(event, current);
3261
3262 perf_output_put(&handle, task_event->event_id);
3263
3264 perf_output_end(&handle);
3265 }
3266
3267 static int perf_event_task_match(struct perf_event *event)
3268 {
3269 if (event->state < PERF_EVENT_STATE_INACTIVE)
3270 return 0;
3271
3272 if (event->cpu != -1 && event->cpu != smp_processor_id())
3273 return 0;
3274
3275 if (event->attr.comm || event->attr.mmap || event->attr.task)
3276 return 1;
3277
3278 return 0;
3279 }
3280
3281 static void perf_event_task_ctx(struct perf_event_context *ctx,
3282 struct perf_task_event *task_event)
3283 {
3284 struct perf_event *event;
3285
3286 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3287 if (perf_event_task_match(event))
3288 perf_event_task_output(event, task_event);
3289 }
3290 }
3291
3292 static void perf_event_task_event(struct perf_task_event *task_event)
3293 {
3294 struct perf_cpu_context *cpuctx;
3295 struct perf_event_context *ctx = task_event->task_ctx;
3296
3297 rcu_read_lock();
3298 cpuctx = &get_cpu_var(perf_cpu_context);
3299 perf_event_task_ctx(&cpuctx->ctx, task_event);
3300 if (!ctx)
3301 ctx = rcu_dereference(current->perf_event_ctxp);
3302 if (ctx)
3303 perf_event_task_ctx(ctx, task_event);
3304 put_cpu_var(perf_cpu_context);
3305 rcu_read_unlock();
3306 }
3307
3308 static void perf_event_task(struct task_struct *task,
3309 struct perf_event_context *task_ctx,
3310 int new)
3311 {
3312 struct perf_task_event task_event;
3313
3314 if (!atomic_read(&nr_comm_events) &&
3315 !atomic_read(&nr_mmap_events) &&
3316 !atomic_read(&nr_task_events))
3317 return;
3318
3319 task_event = (struct perf_task_event){
3320 .task = task,
3321 .task_ctx = task_ctx,
3322 .event_id = {
3323 .header = {
3324 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3325 .misc = 0,
3326 .size = sizeof(task_event.event_id),
3327 },
3328 /* .pid */
3329 /* .ppid */
3330 /* .tid */
3331 /* .ptid */
3332 .time = perf_clock(),
3333 },
3334 };
3335
3336 perf_event_task_event(&task_event);
3337 }
3338
3339 void perf_event_fork(struct task_struct *task)
3340 {
3341 perf_event_task(task, NULL, 1);
3342 }
3343
3344 /*
3345 * comm tracking
3346 */
3347
3348 struct perf_comm_event {
3349 struct task_struct *task;
3350 char *comm;
3351 int comm_size;
3352
3353 struct {
3354 struct perf_event_header header;
3355
3356 u32 pid;
3357 u32 tid;
3358 } event_id;
3359 };
3360
3361 static void perf_event_comm_output(struct perf_event *event,
3362 struct perf_comm_event *comm_event)
3363 {
3364 struct perf_output_handle handle;
3365 int size = comm_event->event_id.header.size;
3366 int ret = perf_output_begin(&handle, event, size, 0, 0);
3367
3368 if (ret)
3369 return;
3370
3371 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3372 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3373
3374 perf_output_put(&handle, comm_event->event_id);
3375 perf_output_copy(&handle, comm_event->comm,
3376 comm_event->comm_size);
3377 perf_output_end(&handle);
3378 }
3379
3380 static int perf_event_comm_match(struct perf_event *event)
3381 {
3382 if (event->state < PERF_EVENT_STATE_INACTIVE)
3383 return 0;
3384
3385 if (event->cpu != -1 && event->cpu != smp_processor_id())
3386 return 0;
3387
3388 if (event->attr.comm)
3389 return 1;
3390
3391 return 0;
3392 }
3393
3394 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3395 struct perf_comm_event *comm_event)
3396 {
3397 struct perf_event *event;
3398
3399 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3400 if (perf_event_comm_match(event))
3401 perf_event_comm_output(event, comm_event);
3402 }
3403 }
3404
3405 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3406 {
3407 struct perf_cpu_context *cpuctx;
3408 struct perf_event_context *ctx;
3409 unsigned int size;
3410 char comm[TASK_COMM_LEN];
3411
3412 memset(comm, 0, sizeof(comm));
3413 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3414 size = ALIGN(strlen(comm)+1, sizeof(u64));
3415
3416 comm_event->comm = comm;
3417 comm_event->comm_size = size;
3418
3419 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3420
3421 rcu_read_lock();
3422 cpuctx = &get_cpu_var(perf_cpu_context);
3423 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3424 ctx = rcu_dereference(current->perf_event_ctxp);
3425 if (ctx)
3426 perf_event_comm_ctx(ctx, comm_event);
3427 put_cpu_var(perf_cpu_context);
3428 rcu_read_unlock();
3429 }
3430
3431 void perf_event_comm(struct task_struct *task)
3432 {
3433 struct perf_comm_event comm_event;
3434
3435 if (task->perf_event_ctxp)
3436 perf_event_enable_on_exec(task);
3437
3438 if (!atomic_read(&nr_comm_events))
3439 return;
3440
3441 comm_event = (struct perf_comm_event){
3442 .task = task,
3443 /* .comm */
3444 /* .comm_size */
3445 .event_id = {
3446 .header = {
3447 .type = PERF_RECORD_COMM,
3448 .misc = 0,
3449 /* .size */
3450 },
3451 /* .pid */
3452 /* .tid */
3453 },
3454 };
3455
3456 perf_event_comm_event(&comm_event);
3457 }
3458
3459 /*
3460 * mmap tracking
3461 */
3462
3463 struct perf_mmap_event {
3464 struct vm_area_struct *vma;
3465
3466 const char *file_name;
3467 int file_size;
3468
3469 struct {
3470 struct perf_event_header header;
3471
3472 u32 pid;
3473 u32 tid;
3474 u64 start;
3475 u64 len;
3476 u64 pgoff;
3477 } event_id;
3478 };
3479
3480 static void perf_event_mmap_output(struct perf_event *event,
3481 struct perf_mmap_event *mmap_event)
3482 {
3483 struct perf_output_handle handle;
3484 int size = mmap_event->event_id.header.size;
3485 int ret = perf_output_begin(&handle, event, size, 0, 0);
3486
3487 if (ret)
3488 return;
3489
3490 mmap_event->event_id.pid = perf_event_pid(event, current);
3491 mmap_event->event_id.tid = perf_event_tid(event, current);
3492
3493 perf_output_put(&handle, mmap_event->event_id);
3494 perf_output_copy(&handle, mmap_event->file_name,
3495 mmap_event->file_size);
3496 perf_output_end(&handle);
3497 }
3498
3499 static int perf_event_mmap_match(struct perf_event *event,
3500 struct perf_mmap_event *mmap_event)
3501 {
3502 if (event->state < PERF_EVENT_STATE_INACTIVE)
3503 return 0;
3504
3505 if (event->cpu != -1 && event->cpu != smp_processor_id())
3506 return 0;
3507
3508 if (event->attr.mmap)
3509 return 1;
3510
3511 return 0;
3512 }
3513
3514 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3515 struct perf_mmap_event *mmap_event)
3516 {
3517 struct perf_event *event;
3518
3519 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3520 if (perf_event_mmap_match(event, mmap_event))
3521 perf_event_mmap_output(event, mmap_event);
3522 }
3523 }
3524
3525 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3526 {
3527 struct perf_cpu_context *cpuctx;
3528 struct perf_event_context *ctx;
3529 struct vm_area_struct *vma = mmap_event->vma;
3530 struct file *file = vma->vm_file;
3531 unsigned int size;
3532 char tmp[16];
3533 char *buf = NULL;
3534 const char *name;
3535
3536 memset(tmp, 0, sizeof(tmp));
3537
3538 if (file) {
3539 /*
3540 * d_path works from the end of the buffer backwards, so we
3541 * need to add enough zero bytes after the string to handle
3542 * the 64bit alignment we do later.
3543 */
3544 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3545 if (!buf) {
3546 name = strncpy(tmp, "//enomem", sizeof(tmp));
3547 goto got_name;
3548 }
3549 name = d_path(&file->f_path, buf, PATH_MAX);
3550 if (IS_ERR(name)) {
3551 name = strncpy(tmp, "//toolong", sizeof(tmp));
3552 goto got_name;
3553 }
3554 } else {
3555 if (arch_vma_name(mmap_event->vma)) {
3556 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3557 sizeof(tmp));
3558 goto got_name;
3559 }
3560
3561 if (!vma->vm_mm) {
3562 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3563 goto got_name;
3564 }
3565
3566 name = strncpy(tmp, "//anon", sizeof(tmp));
3567 goto got_name;
3568 }
3569
3570 got_name:
3571 size = ALIGN(strlen(name)+1, sizeof(u64));
3572
3573 mmap_event->file_name = name;
3574 mmap_event->file_size = size;
3575
3576 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3577
3578 rcu_read_lock();
3579 cpuctx = &get_cpu_var(perf_cpu_context);
3580 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3581 ctx = rcu_dereference(current->perf_event_ctxp);
3582 if (ctx)
3583 perf_event_mmap_ctx(ctx, mmap_event);
3584 put_cpu_var(perf_cpu_context);
3585 rcu_read_unlock();
3586
3587 kfree(buf);
3588 }
3589
3590 void __perf_event_mmap(struct vm_area_struct *vma)
3591 {
3592 struct perf_mmap_event mmap_event;
3593
3594 if (!atomic_read(&nr_mmap_events))
3595 return;
3596
3597 mmap_event = (struct perf_mmap_event){
3598 .vma = vma,
3599 /* .file_name */
3600 /* .file_size */
3601 .event_id = {
3602 .header = {
3603 .type = PERF_RECORD_MMAP,
3604 .misc = 0,
3605 /* .size */
3606 },
3607 /* .pid */
3608 /* .tid */
3609 .start = vma->vm_start,
3610 .len = vma->vm_end - vma->vm_start,
3611 .pgoff = vma->vm_pgoff,
3612 },
3613 };
3614
3615 perf_event_mmap_event(&mmap_event);
3616 }
3617
3618 /*
3619 * IRQ throttle logging
3620 */
3621
3622 static void perf_log_throttle(struct perf_event *event, int enable)
3623 {
3624 struct perf_output_handle handle;
3625 int ret;
3626
3627 struct {
3628 struct perf_event_header header;
3629 u64 time;
3630 u64 id;
3631 u64 stream_id;
3632 } throttle_event = {
3633 .header = {
3634 .type = PERF_RECORD_THROTTLE,
3635 .misc = 0,
3636 .size = sizeof(throttle_event),
3637 },
3638 .time = perf_clock(),
3639 .id = primary_event_id(event),
3640 .stream_id = event->id,
3641 };
3642
3643 if (enable)
3644 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3645
3646 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3647 if (ret)
3648 return;
3649
3650 perf_output_put(&handle, throttle_event);
3651 perf_output_end(&handle);
3652 }
3653
3654 /*
3655 * Generic event overflow handling, sampling.
3656 */
3657
3658 static int __perf_event_overflow(struct perf_event *event, int nmi,
3659 int throttle, struct perf_sample_data *data,
3660 struct pt_regs *regs)
3661 {
3662 int events = atomic_read(&event->event_limit);
3663 struct hw_perf_event *hwc = &event->hw;
3664 int ret = 0;
3665
3666 throttle = (throttle && event->pmu->unthrottle != NULL);
3667
3668 if (!throttle) {
3669 hwc->interrupts++;
3670 } else {
3671 if (hwc->interrupts != MAX_INTERRUPTS) {
3672 hwc->interrupts++;
3673 if (HZ * hwc->interrupts >
3674 (u64)sysctl_perf_event_sample_rate) {
3675 hwc->interrupts = MAX_INTERRUPTS;
3676 perf_log_throttle(event, 0);
3677 ret = 1;
3678 }
3679 } else {
3680 /*
3681 * Keep re-disabling events even though on the previous
3682 * pass we disabled it - just in case we raced with a
3683 * sched-in and the event got enabled again:
3684 */
3685 ret = 1;
3686 }
3687 }
3688
3689 if (event->attr.freq) {
3690 u64 now = perf_clock();
3691 s64 delta = now - hwc->freq_stamp;
3692
3693 hwc->freq_stamp = now;
3694
3695 if (delta > 0 && delta < TICK_NSEC)
3696 perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3697 }
3698
3699 /*
3700 * XXX event_limit might not quite work as expected on inherited
3701 * events
3702 */
3703
3704 event->pending_kill = POLL_IN;
3705 if (events && atomic_dec_and_test(&event->event_limit)) {
3706 ret = 1;
3707 event->pending_kill = POLL_HUP;
3708 if (nmi) {
3709 event->pending_disable = 1;
3710 perf_pending_queue(&event->pending,
3711 perf_pending_event);
3712 } else
3713 perf_event_disable(event);
3714 }
3715
3716 if (event->overflow_handler)
3717 event->overflow_handler(event, nmi, data, regs);
3718 else
3719 perf_event_output(event, nmi, data, regs);
3720
3721 return ret;
3722 }
3723
3724 int perf_event_overflow(struct perf_event *event, int nmi,
3725 struct perf_sample_data *data,
3726 struct pt_regs *regs)
3727 {
3728 return __perf_event_overflow(event, nmi, 1, data, regs);
3729 }
3730
3731 /*
3732 * Generic software event infrastructure
3733 */
3734
3735 /*
3736 * We directly increment event->count and keep a second value in
3737 * event->hw.period_left to count intervals. This period event
3738 * is kept in the range [-sample_period, 0] so that we can use the
3739 * sign as trigger.
3740 */
3741
3742 static u64 perf_swevent_set_period(struct perf_event *event)
3743 {
3744 struct hw_perf_event *hwc = &event->hw;
3745 u64 period = hwc->last_period;
3746 u64 nr, offset;
3747 s64 old, val;
3748
3749 hwc->last_period = hwc->sample_period;
3750
3751 again:
3752 old = val = atomic64_read(&hwc->period_left);
3753 if (val < 0)
3754 return 0;
3755
3756 nr = div64_u64(period + val, period);
3757 offset = nr * period;
3758 val -= offset;
3759 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3760 goto again;
3761
3762 return nr;
3763 }
3764
3765 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3766 int nmi, struct perf_sample_data *data,
3767 struct pt_regs *regs)
3768 {
3769 struct hw_perf_event *hwc = &event->hw;
3770 int throttle = 0;
3771
3772 data->period = event->hw.last_period;
3773 if (!overflow)
3774 overflow = perf_swevent_set_period(event);
3775
3776 if (hwc->interrupts == MAX_INTERRUPTS)
3777 return;
3778
3779 for (; overflow; overflow--) {
3780 if (__perf_event_overflow(event, nmi, throttle,
3781 data, regs)) {
3782 /*
3783 * We inhibit the overflow from happening when
3784 * hwc->interrupts == MAX_INTERRUPTS.
3785 */
3786 break;
3787 }
3788 throttle = 1;
3789 }
3790 }
3791
3792 static void perf_swevent_unthrottle(struct perf_event *event)
3793 {
3794 /*
3795 * Nothing to do, we already reset hwc->interrupts.
3796 */
3797 }
3798
3799 static void perf_swevent_add(struct perf_event *event, u64 nr,
3800 int nmi, struct perf_sample_data *data,
3801 struct pt_regs *regs)
3802 {
3803 struct hw_perf_event *hwc = &event->hw;
3804
3805 atomic64_add(nr, &event->count);
3806
3807 if (!regs)
3808 return;
3809
3810 if (!hwc->sample_period)
3811 return;
3812
3813 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3814 return perf_swevent_overflow(event, 1, nmi, data, regs);
3815
3816 if (atomic64_add_negative(nr, &hwc->period_left))
3817 return;
3818
3819 perf_swevent_overflow(event, 0, nmi, data, regs);
3820 }
3821
3822 static int perf_swevent_is_counting(struct perf_event *event)
3823 {
3824 /*
3825 * The event is active, we're good!
3826 */
3827 if (event->state == PERF_EVENT_STATE_ACTIVE)
3828 return 1;
3829
3830 /*
3831 * The event is off/error, not counting.
3832 */
3833 if (event->state != PERF_EVENT_STATE_INACTIVE)
3834 return 0;
3835
3836 /*
3837 * The event is inactive, if the context is active
3838 * we're part of a group that didn't make it on the 'pmu',
3839 * not counting.
3840 */
3841 if (event->ctx->is_active)
3842 return 0;
3843
3844 /*
3845 * We're inactive and the context is too, this means the
3846 * task is scheduled out, we're counting events that happen
3847 * to us, like migration events.
3848 */
3849 return 1;
3850 }
3851
3852 static int perf_tp_event_match(struct perf_event *event,
3853 struct perf_sample_data *data);
3854
3855 static int perf_exclude_event(struct perf_event *event,
3856 struct pt_regs *regs)
3857 {
3858 if (regs) {
3859 if (event->attr.exclude_user && user_mode(regs))
3860 return 1;
3861
3862 if (event->attr.exclude_kernel && !user_mode(regs))
3863 return 1;
3864 }
3865
3866 return 0;
3867 }
3868
3869 static int perf_swevent_match(struct perf_event *event,
3870 enum perf_type_id type,
3871 u32 event_id,
3872 struct perf_sample_data *data,
3873 struct pt_regs *regs)
3874 {
3875 if (event->cpu != -1 && event->cpu != smp_processor_id())
3876 return 0;
3877
3878 if (!perf_swevent_is_counting(event))
3879 return 0;
3880
3881 if (event->attr.type != type)
3882 return 0;
3883
3884 if (event->attr.config != event_id)
3885 return 0;
3886
3887 if (perf_exclude_event(event, regs))
3888 return 0;
3889
3890 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
3891 !perf_tp_event_match(event, data))
3892 return 0;
3893
3894 return 1;
3895 }
3896
3897 static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3898 enum perf_type_id type,
3899 u32 event_id, u64 nr, int nmi,
3900 struct perf_sample_data *data,
3901 struct pt_regs *regs)
3902 {
3903 struct perf_event *event;
3904
3905 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3906 if (perf_swevent_match(event, type, event_id, data, regs))
3907 perf_swevent_add(event, nr, nmi, data, regs);
3908 }
3909 }
3910
3911 int perf_swevent_get_recursion_context(void)
3912 {
3913 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3914 int rctx;
3915
3916 if (in_nmi())
3917 rctx = 3;
3918 else if (in_irq())
3919 rctx = 2;
3920 else if (in_softirq())
3921 rctx = 1;
3922 else
3923 rctx = 0;
3924
3925 if (cpuctx->recursion[rctx]) {
3926 put_cpu_var(perf_cpu_context);
3927 return -1;
3928 }
3929
3930 cpuctx->recursion[rctx]++;
3931 barrier();
3932
3933 return rctx;
3934 }
3935 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
3936
3937 void perf_swevent_put_recursion_context(int rctx)
3938 {
3939 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3940 barrier();
3941 cpuctx->recursion[rctx]--;
3942 put_cpu_var(perf_cpu_context);
3943 }
3944 EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
3945
3946 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
3947 u64 nr, int nmi,
3948 struct perf_sample_data *data,
3949 struct pt_regs *regs)
3950 {
3951 struct perf_cpu_context *cpuctx;
3952 struct perf_event_context *ctx;
3953
3954 cpuctx = &__get_cpu_var(perf_cpu_context);
3955 rcu_read_lock();
3956 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
3957 nr, nmi, data, regs);
3958 /*
3959 * doesn't really matter which of the child contexts the
3960 * events ends up in.
3961 */
3962 ctx = rcu_dereference(current->perf_event_ctxp);
3963 if (ctx)
3964 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
3965 rcu_read_unlock();
3966 }
3967
3968 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
3969 struct pt_regs *regs, u64 addr)
3970 {
3971 struct perf_sample_data data;
3972 int rctx;
3973
3974 rctx = perf_swevent_get_recursion_context();
3975 if (rctx < 0)
3976 return;
3977
3978 data.addr = addr;
3979 data.raw = NULL;
3980
3981 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
3982
3983 perf_swevent_put_recursion_context(rctx);
3984 }
3985
3986 static void perf_swevent_read(struct perf_event *event)
3987 {
3988 }
3989
3990 static int perf_swevent_enable(struct perf_event *event)
3991 {
3992 struct hw_perf_event *hwc = &event->hw;
3993
3994 if (hwc->sample_period) {
3995 hwc->last_period = hwc->sample_period;
3996 perf_swevent_set_period(event);
3997 }
3998 return 0;
3999 }
4000
4001 static void perf_swevent_disable(struct perf_event *event)
4002 {
4003 }
4004
4005 static const struct pmu perf_ops_generic = {
4006 .enable = perf_swevent_enable,
4007 .disable = perf_swevent_disable,
4008 .read = perf_swevent_read,
4009 .unthrottle = perf_swevent_unthrottle,
4010 };
4011
4012 /*
4013 * hrtimer based swevent callback
4014 */
4015
4016 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4017 {
4018 enum hrtimer_restart ret = HRTIMER_RESTART;
4019 struct perf_sample_data data;
4020 struct pt_regs *regs;
4021 struct perf_event *event;
4022 u64 period;
4023
4024 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4025 event->pmu->read(event);
4026
4027 data.addr = 0;
4028 data.raw = NULL;
4029 data.period = event->hw.last_period;
4030 regs = get_irq_regs();
4031 /*
4032 * In case we exclude kernel IPs or are somehow not in interrupt
4033 * context, provide the next best thing, the user IP.
4034 */
4035 if ((event->attr.exclude_kernel || !regs) &&
4036 !event->attr.exclude_user)
4037 regs = task_pt_regs(current);
4038
4039 if (regs) {
4040 if (!(event->attr.exclude_idle && current->pid == 0))
4041 if (perf_event_overflow(event, 0, &data, regs))
4042 ret = HRTIMER_NORESTART;
4043 }
4044
4045 period = max_t(u64, 10000, event->hw.sample_period);
4046 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4047
4048 return ret;
4049 }
4050
4051 static void perf_swevent_start_hrtimer(struct perf_event *event)
4052 {
4053 struct hw_perf_event *hwc = &event->hw;
4054
4055 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4056 hwc->hrtimer.function = perf_swevent_hrtimer;
4057 if (hwc->sample_period) {
4058 u64 period;
4059
4060 if (hwc->remaining) {
4061 if (hwc->remaining < 0)
4062 period = 10000;
4063 else
4064 period = hwc->remaining;
4065 hwc->remaining = 0;
4066 } else {
4067 period = max_t(u64, 10000, hwc->sample_period);
4068 }
4069 __hrtimer_start_range_ns(&hwc->hrtimer,
4070 ns_to_ktime(period), 0,
4071 HRTIMER_MODE_REL, 0);
4072 }
4073 }
4074
4075 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4076 {
4077 struct hw_perf_event *hwc = &event->hw;
4078
4079 if (hwc->sample_period) {
4080 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4081 hwc->remaining = ktime_to_ns(remaining);
4082
4083 hrtimer_cancel(&hwc->hrtimer);
4084 }
4085 }
4086
4087 /*
4088 * Software event: cpu wall time clock
4089 */
4090
4091 static void cpu_clock_perf_event_update(struct perf_event *event)
4092 {
4093 int cpu = raw_smp_processor_id();
4094 s64 prev;
4095 u64 now;
4096
4097 now = cpu_clock(cpu);
4098 prev = atomic64_xchg(&event->hw.prev_count, now);
4099 atomic64_add(now - prev, &event->count);
4100 }
4101
4102 static int cpu_clock_perf_event_enable(struct perf_event *event)
4103 {
4104 struct hw_perf_event *hwc = &event->hw;
4105 int cpu = raw_smp_processor_id();
4106
4107 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4108 perf_swevent_start_hrtimer(event);
4109
4110 return 0;
4111 }
4112
4113 static void cpu_clock_perf_event_disable(struct perf_event *event)
4114 {
4115 perf_swevent_cancel_hrtimer(event);
4116 cpu_clock_perf_event_update(event);
4117 }
4118
4119 static void cpu_clock_perf_event_read(struct perf_event *event)
4120 {
4121 cpu_clock_perf_event_update(event);
4122 }
4123
4124 static const struct pmu perf_ops_cpu_clock = {
4125 .enable = cpu_clock_perf_event_enable,
4126 .disable = cpu_clock_perf_event_disable,
4127 .read = cpu_clock_perf_event_read,
4128 };
4129
4130 /*
4131 * Software event: task time clock
4132 */
4133
4134 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4135 {
4136 u64 prev;
4137 s64 delta;
4138
4139 prev = atomic64_xchg(&event->hw.prev_count, now);
4140 delta = now - prev;
4141 atomic64_add(delta, &event->count);
4142 }
4143
4144 static int task_clock_perf_event_enable(struct perf_event *event)
4145 {
4146 struct hw_perf_event *hwc = &event->hw;
4147 u64 now;
4148
4149 now = event->ctx->time;
4150
4151 atomic64_set(&hwc->prev_count, now);
4152
4153 perf_swevent_start_hrtimer(event);
4154
4155 return 0;
4156 }
4157
4158 static void task_clock_perf_event_disable(struct perf_event *event)
4159 {
4160 perf_swevent_cancel_hrtimer(event);
4161 task_clock_perf_event_update(event, event->ctx->time);
4162
4163 }
4164
4165 static void task_clock_perf_event_read(struct perf_event *event)
4166 {
4167 u64 time;
4168
4169 if (!in_nmi()) {
4170 update_context_time(event->ctx);
4171 time = event->ctx->time;
4172 } else {
4173 u64 now = perf_clock();
4174 u64 delta = now - event->ctx->timestamp;
4175 time = event->ctx->time + delta;
4176 }
4177
4178 task_clock_perf_event_update(event, time);
4179 }
4180
4181 static const struct pmu perf_ops_task_clock = {
4182 .enable = task_clock_perf_event_enable,
4183 .disable = task_clock_perf_event_disable,
4184 .read = task_clock_perf_event_read,
4185 };
4186
4187 #ifdef CONFIG_EVENT_PROFILE
4188
4189 void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4190 int entry_size)
4191 {
4192 struct perf_raw_record raw = {
4193 .size = entry_size,
4194 .data = record,
4195 };
4196
4197 struct perf_sample_data data = {
4198 .addr = addr,
4199 .raw = &raw,
4200 };
4201
4202 struct pt_regs *regs = get_irq_regs();
4203
4204 if (!regs)
4205 regs = task_pt_regs(current);
4206
4207 /* Trace events already protected against recursion */
4208 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4209 &data, regs);
4210 }
4211 EXPORT_SYMBOL_GPL(perf_tp_event);
4212
4213 static int perf_tp_event_match(struct perf_event *event,
4214 struct perf_sample_data *data)
4215 {
4216 void *record = data->raw->data;
4217
4218 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4219 return 1;
4220 return 0;
4221 }
4222
4223 static void tp_perf_event_destroy(struct perf_event *event)
4224 {
4225 ftrace_profile_disable(event->attr.config);
4226 }
4227
4228 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4229 {
4230 /*
4231 * Raw tracepoint data is a severe data leak, only allow root to
4232 * have these.
4233 */
4234 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4235 perf_paranoid_tracepoint_raw() &&
4236 !capable(CAP_SYS_ADMIN))
4237 return ERR_PTR(-EPERM);
4238
4239 if (ftrace_profile_enable(event->attr.config))
4240 return NULL;
4241
4242 event->destroy = tp_perf_event_destroy;
4243
4244 return &perf_ops_generic;
4245 }
4246
4247 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4248 {
4249 char *filter_str;
4250 int ret;
4251
4252 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4253 return -EINVAL;
4254
4255 filter_str = strndup_user(arg, PAGE_SIZE);
4256 if (IS_ERR(filter_str))
4257 return PTR_ERR(filter_str);
4258
4259 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4260
4261 kfree(filter_str);
4262 return ret;
4263 }
4264
4265 static void perf_event_free_filter(struct perf_event *event)
4266 {
4267 ftrace_profile_free_filter(event);
4268 }
4269
4270 #else
4271
4272 static int perf_tp_event_match(struct perf_event *event,
4273 struct perf_sample_data *data)
4274 {
4275 return 1;
4276 }
4277
4278 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4279 {
4280 return NULL;
4281 }
4282
4283 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4284 {
4285 return -ENOENT;
4286 }
4287
4288 static void perf_event_free_filter(struct perf_event *event)
4289 {
4290 }
4291
4292 #endif /* CONFIG_EVENT_PROFILE */
4293
4294 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4295 static void bp_perf_event_destroy(struct perf_event *event)
4296 {
4297 release_bp_slot(event);
4298 }
4299
4300 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4301 {
4302 int err;
4303
4304 err = register_perf_hw_breakpoint(bp);
4305 if (err)
4306 return ERR_PTR(err);
4307
4308 bp->destroy = bp_perf_event_destroy;
4309
4310 return &perf_ops_bp;
4311 }
4312
4313 void perf_bp_event(struct perf_event *bp, void *data)
4314 {
4315 struct perf_sample_data sample;
4316 struct pt_regs *regs = data;
4317
4318 sample.raw = NULL;
4319 sample.addr = bp->attr.bp_addr;
4320
4321 if (!perf_exclude_event(bp, regs))
4322 perf_swevent_add(bp, 1, 1, &sample, regs);
4323 }
4324 #else
4325 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4326 {
4327 return NULL;
4328 }
4329
4330 void perf_bp_event(struct perf_event *bp, void *regs)
4331 {
4332 }
4333 #endif
4334
4335 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4336
4337 static void sw_perf_event_destroy(struct perf_event *event)
4338 {
4339 u64 event_id = event->attr.config;
4340
4341 WARN_ON(event->parent);
4342
4343 atomic_dec(&perf_swevent_enabled[event_id]);
4344 }
4345
4346 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4347 {
4348 const struct pmu *pmu = NULL;
4349 u64 event_id = event->attr.config;
4350
4351 /*
4352 * Software events (currently) can't in general distinguish
4353 * between user, kernel and hypervisor events.
4354 * However, context switches and cpu migrations are considered
4355 * to be kernel events, and page faults are never hypervisor
4356 * events.
4357 */
4358 switch (event_id) {
4359 case PERF_COUNT_SW_CPU_CLOCK:
4360 pmu = &perf_ops_cpu_clock;
4361
4362 break;
4363 case PERF_COUNT_SW_TASK_CLOCK:
4364 /*
4365 * If the user instantiates this as a per-cpu event,
4366 * use the cpu_clock event instead.
4367 */
4368 if (event->ctx->task)
4369 pmu = &perf_ops_task_clock;
4370 else
4371 pmu = &perf_ops_cpu_clock;
4372
4373 break;
4374 case PERF_COUNT_SW_PAGE_FAULTS:
4375 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4376 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4377 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4378 case PERF_COUNT_SW_CPU_MIGRATIONS:
4379 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4380 case PERF_COUNT_SW_EMULATION_FAULTS:
4381 if (!event->parent) {
4382 atomic_inc(&perf_swevent_enabled[event_id]);
4383 event->destroy = sw_perf_event_destroy;
4384 }
4385 pmu = &perf_ops_generic;
4386 break;
4387 }
4388
4389 return pmu;
4390 }
4391
4392 /*
4393 * Allocate and initialize a event structure
4394 */
4395 static struct perf_event *
4396 perf_event_alloc(struct perf_event_attr *attr,
4397 int cpu,
4398 struct perf_event_context *ctx,
4399 struct perf_event *group_leader,
4400 struct perf_event *parent_event,
4401 perf_overflow_handler_t overflow_handler,
4402 gfp_t gfpflags)
4403 {
4404 const struct pmu *pmu;
4405 struct perf_event *event;
4406 struct hw_perf_event *hwc;
4407 long err;
4408
4409 event = kzalloc(sizeof(*event), gfpflags);
4410 if (!event)
4411 return ERR_PTR(-ENOMEM);
4412
4413 /*
4414 * Single events are their own group leaders, with an
4415 * empty sibling list:
4416 */
4417 if (!group_leader)
4418 group_leader = event;
4419
4420 mutex_init(&event->child_mutex);
4421 INIT_LIST_HEAD(&event->child_list);
4422
4423 INIT_LIST_HEAD(&event->group_entry);
4424 INIT_LIST_HEAD(&event->event_entry);
4425 INIT_LIST_HEAD(&event->sibling_list);
4426 init_waitqueue_head(&event->waitq);
4427
4428 mutex_init(&event->mmap_mutex);
4429
4430 event->cpu = cpu;
4431 event->attr = *attr;
4432 event->group_leader = group_leader;
4433 event->pmu = NULL;
4434 event->ctx = ctx;
4435 event->oncpu = -1;
4436
4437 event->parent = parent_event;
4438
4439 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4440 event->id = atomic64_inc_return(&perf_event_id);
4441
4442 event->state = PERF_EVENT_STATE_INACTIVE;
4443
4444 if (!overflow_handler && parent_event)
4445 overflow_handler = parent_event->overflow_handler;
4446
4447 event->overflow_handler = overflow_handler;
4448
4449 if (attr->disabled)
4450 event->state = PERF_EVENT_STATE_OFF;
4451
4452 pmu = NULL;
4453
4454 hwc = &event->hw;
4455 hwc->sample_period = attr->sample_period;
4456 if (attr->freq && attr->sample_freq)
4457 hwc->sample_period = 1;
4458 hwc->last_period = hwc->sample_period;
4459
4460 atomic64_set(&hwc->period_left, hwc->sample_period);
4461
4462 /*
4463 * we currently do not support PERF_FORMAT_GROUP on inherited events
4464 */
4465 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4466 goto done;
4467
4468 switch (attr->type) {
4469 case PERF_TYPE_RAW:
4470 case PERF_TYPE_HARDWARE:
4471 case PERF_TYPE_HW_CACHE:
4472 pmu = hw_perf_event_init(event);
4473 break;
4474
4475 case PERF_TYPE_SOFTWARE:
4476 pmu = sw_perf_event_init(event);
4477 break;
4478
4479 case PERF_TYPE_TRACEPOINT:
4480 pmu = tp_perf_event_init(event);
4481 break;
4482
4483 case PERF_TYPE_BREAKPOINT:
4484 pmu = bp_perf_event_init(event);
4485 break;
4486
4487
4488 default:
4489 break;
4490 }
4491 done:
4492 err = 0;
4493 if (!pmu)
4494 err = -EINVAL;
4495 else if (IS_ERR(pmu))
4496 err = PTR_ERR(pmu);
4497
4498 if (err) {
4499 if (event->ns)
4500 put_pid_ns(event->ns);
4501 kfree(event);
4502 return ERR_PTR(err);
4503 }
4504
4505 event->pmu = pmu;
4506
4507 if (!event->parent) {
4508 atomic_inc(&nr_events);
4509 if (event->attr.mmap)
4510 atomic_inc(&nr_mmap_events);
4511 if (event->attr.comm)
4512 atomic_inc(&nr_comm_events);
4513 if (event->attr.task)
4514 atomic_inc(&nr_task_events);
4515 }
4516
4517 return event;
4518 }
4519
4520 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4521 struct perf_event_attr *attr)
4522 {
4523 u32 size;
4524 int ret;
4525
4526 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4527 return -EFAULT;
4528
4529 /*
4530 * zero the full structure, so that a short copy will be nice.
4531 */
4532 memset(attr, 0, sizeof(*attr));
4533
4534 ret = get_user(size, &uattr->size);
4535 if (ret)
4536 return ret;
4537
4538 if (size > PAGE_SIZE) /* silly large */
4539 goto err_size;
4540
4541 if (!size) /* abi compat */
4542 size = PERF_ATTR_SIZE_VER0;
4543
4544 if (size < PERF_ATTR_SIZE_VER0)
4545 goto err_size;
4546
4547 /*
4548 * If we're handed a bigger struct than we know of,
4549 * ensure all the unknown bits are 0 - i.e. new
4550 * user-space does not rely on any kernel feature
4551 * extensions we dont know about yet.
4552 */
4553 if (size > sizeof(*attr)) {
4554 unsigned char __user *addr;
4555 unsigned char __user *end;
4556 unsigned char val;
4557
4558 addr = (void __user *)uattr + sizeof(*attr);
4559 end = (void __user *)uattr + size;
4560
4561 for (; addr < end; addr++) {
4562 ret = get_user(val, addr);
4563 if (ret)
4564 return ret;
4565 if (val)
4566 goto err_size;
4567 }
4568 size = sizeof(*attr);
4569 }
4570
4571 ret = copy_from_user(attr, uattr, size);
4572 if (ret)
4573 return -EFAULT;
4574
4575 /*
4576 * If the type exists, the corresponding creation will verify
4577 * the attr->config.
4578 */
4579 if (attr->type >= PERF_TYPE_MAX)
4580 return -EINVAL;
4581
4582 if (attr->__reserved_1)
4583 return -EINVAL;
4584
4585 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4586 return -EINVAL;
4587
4588 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4589 return -EINVAL;
4590
4591 out:
4592 return ret;
4593
4594 err_size:
4595 put_user(sizeof(*attr), &uattr->size);
4596 ret = -E2BIG;
4597 goto out;
4598 }
4599
4600 static int perf_event_set_output(struct perf_event *event, int output_fd)
4601 {
4602 struct perf_event *output_event = NULL;
4603 struct file *output_file = NULL;
4604 struct perf_event *old_output;
4605 int fput_needed = 0;
4606 int ret = -EINVAL;
4607
4608 if (!output_fd)
4609 goto set;
4610
4611 output_file = fget_light(output_fd, &fput_needed);
4612 if (!output_file)
4613 return -EBADF;
4614
4615 if (output_file->f_op != &perf_fops)
4616 goto out;
4617
4618 output_event = output_file->private_data;
4619
4620 /* Don't chain output fds */
4621 if (output_event->output)
4622 goto out;
4623
4624 /* Don't set an output fd when we already have an output channel */
4625 if (event->data)
4626 goto out;
4627
4628 atomic_long_inc(&output_file->f_count);
4629
4630 set:
4631 mutex_lock(&event->mmap_mutex);
4632 old_output = event->output;
4633 rcu_assign_pointer(event->output, output_event);
4634 mutex_unlock(&event->mmap_mutex);
4635
4636 if (old_output) {
4637 /*
4638 * we need to make sure no existing perf_output_*()
4639 * is still referencing this event.
4640 */
4641 synchronize_rcu();
4642 fput(old_output->filp);
4643 }
4644
4645 ret = 0;
4646 out:
4647 fput_light(output_file, fput_needed);
4648 return ret;
4649 }
4650
4651 /**
4652 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4653 *
4654 * @attr_uptr: event_id type attributes for monitoring/sampling
4655 * @pid: target pid
4656 * @cpu: target cpu
4657 * @group_fd: group leader event fd
4658 */
4659 SYSCALL_DEFINE5(perf_event_open,
4660 struct perf_event_attr __user *, attr_uptr,
4661 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4662 {
4663 struct perf_event *event, *group_leader;
4664 struct perf_event_attr attr;
4665 struct perf_event_context *ctx;
4666 struct file *event_file = NULL;
4667 struct file *group_file = NULL;
4668 int fput_needed = 0;
4669 int fput_needed2 = 0;
4670 int err;
4671
4672 /* for future expandability... */
4673 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4674 return -EINVAL;
4675
4676 err = perf_copy_attr(attr_uptr, &attr);
4677 if (err)
4678 return err;
4679
4680 if (!attr.exclude_kernel) {
4681 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4682 return -EACCES;
4683 }
4684
4685 if (attr.freq) {
4686 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4687 return -EINVAL;
4688 }
4689
4690 /*
4691 * Get the target context (task or percpu):
4692 */
4693 ctx = find_get_context(pid, cpu);
4694 if (IS_ERR(ctx))
4695 return PTR_ERR(ctx);
4696
4697 /*
4698 * Look up the group leader (we will attach this event to it):
4699 */
4700 group_leader = NULL;
4701 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4702 err = -EINVAL;
4703 group_file = fget_light(group_fd, &fput_needed);
4704 if (!group_file)
4705 goto err_put_context;
4706 if (group_file->f_op != &perf_fops)
4707 goto err_put_context;
4708
4709 group_leader = group_file->private_data;
4710 /*
4711 * Do not allow a recursive hierarchy (this new sibling
4712 * becoming part of another group-sibling):
4713 */
4714 if (group_leader->group_leader != group_leader)
4715 goto err_put_context;
4716 /*
4717 * Do not allow to attach to a group in a different
4718 * task or CPU context:
4719 */
4720 if (group_leader->ctx != ctx)
4721 goto err_put_context;
4722 /*
4723 * Only a group leader can be exclusive or pinned
4724 */
4725 if (attr.exclusive || attr.pinned)
4726 goto err_put_context;
4727 }
4728
4729 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4730 NULL, NULL, GFP_KERNEL);
4731 err = PTR_ERR(event);
4732 if (IS_ERR(event))
4733 goto err_put_context;
4734
4735 err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
4736 if (err < 0)
4737 goto err_free_put_context;
4738
4739 event_file = fget_light(err, &fput_needed2);
4740 if (!event_file)
4741 goto err_free_put_context;
4742
4743 if (flags & PERF_FLAG_FD_OUTPUT) {
4744 err = perf_event_set_output(event, group_fd);
4745 if (err)
4746 goto err_fput_free_put_context;
4747 }
4748
4749 event->filp = event_file;
4750 WARN_ON_ONCE(ctx->parent_ctx);
4751 mutex_lock(&ctx->mutex);
4752 perf_install_in_context(ctx, event, cpu);
4753 ++ctx->generation;
4754 mutex_unlock(&ctx->mutex);
4755
4756 event->owner = current;
4757 get_task_struct(current);
4758 mutex_lock(&current->perf_event_mutex);
4759 list_add_tail(&event->owner_entry, &current->perf_event_list);
4760 mutex_unlock(&current->perf_event_mutex);
4761
4762 err_fput_free_put_context:
4763 fput_light(event_file, fput_needed2);
4764
4765 err_free_put_context:
4766 if (err < 0)
4767 kfree(event);
4768
4769 err_put_context:
4770 if (err < 0)
4771 put_ctx(ctx);
4772
4773 fput_light(group_file, fput_needed);
4774
4775 return err;
4776 }
4777
4778 /**
4779 * perf_event_create_kernel_counter
4780 *
4781 * @attr: attributes of the counter to create
4782 * @cpu: cpu in which the counter is bound
4783 * @pid: task to profile
4784 */
4785 struct perf_event *
4786 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4787 pid_t pid,
4788 perf_overflow_handler_t overflow_handler)
4789 {
4790 struct perf_event *event;
4791 struct perf_event_context *ctx;
4792 int err;
4793
4794 /*
4795 * Get the target context (task or percpu):
4796 */
4797
4798 ctx = find_get_context(pid, cpu);
4799 if (IS_ERR(ctx)) {
4800 err = PTR_ERR(ctx);
4801 goto err_exit;
4802 }
4803
4804 event = perf_event_alloc(attr, cpu, ctx, NULL,
4805 NULL, overflow_handler, GFP_KERNEL);
4806 if (IS_ERR(event)) {
4807 err = PTR_ERR(event);
4808 goto err_put_context;
4809 }
4810
4811 event->filp = NULL;
4812 WARN_ON_ONCE(ctx->parent_ctx);
4813 mutex_lock(&ctx->mutex);
4814 perf_install_in_context(ctx, event, cpu);
4815 ++ctx->generation;
4816 mutex_unlock(&ctx->mutex);
4817
4818 event->owner = current;
4819 get_task_struct(current);
4820 mutex_lock(&current->perf_event_mutex);
4821 list_add_tail(&event->owner_entry, &current->perf_event_list);
4822 mutex_unlock(&current->perf_event_mutex);
4823
4824 return event;
4825
4826 err_put_context:
4827 put_ctx(ctx);
4828 err_exit:
4829 return ERR_PTR(err);
4830 }
4831 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4832
4833 /*
4834 * inherit a event from parent task to child task:
4835 */
4836 static struct perf_event *
4837 inherit_event(struct perf_event *parent_event,
4838 struct task_struct *parent,
4839 struct perf_event_context *parent_ctx,
4840 struct task_struct *child,
4841 struct perf_event *group_leader,
4842 struct perf_event_context *child_ctx)
4843 {
4844 struct perf_event *child_event;
4845
4846 /*
4847 * Instead of creating recursive hierarchies of events,
4848 * we link inherited events back to the original parent,
4849 * which has a filp for sure, which we use as the reference
4850 * count:
4851 */
4852 if (parent_event->parent)
4853 parent_event = parent_event->parent;
4854
4855 child_event = perf_event_alloc(&parent_event->attr,
4856 parent_event->cpu, child_ctx,
4857 group_leader, parent_event,
4858 NULL, GFP_KERNEL);
4859 if (IS_ERR(child_event))
4860 return child_event;
4861 get_ctx(child_ctx);
4862
4863 /*
4864 * Make the child state follow the state of the parent event,
4865 * not its attr.disabled bit. We hold the parent's mutex,
4866 * so we won't race with perf_event_{en, dis}able_family.
4867 */
4868 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
4869 child_event->state = PERF_EVENT_STATE_INACTIVE;
4870 else
4871 child_event->state = PERF_EVENT_STATE_OFF;
4872
4873 if (parent_event->attr.freq)
4874 child_event->hw.sample_period = parent_event->hw.sample_period;
4875
4876 child_event->overflow_handler = parent_event->overflow_handler;
4877
4878 /*
4879 * Link it up in the child's context:
4880 */
4881 add_event_to_ctx(child_event, child_ctx);
4882
4883 /*
4884 * Get a reference to the parent filp - we will fput it
4885 * when the child event exits. This is safe to do because
4886 * we are in the parent and we know that the filp still
4887 * exists and has a nonzero count:
4888 */
4889 atomic_long_inc(&parent_event->filp->f_count);
4890
4891 /*
4892 * Link this into the parent event's child list
4893 */
4894 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4895 mutex_lock(&parent_event->child_mutex);
4896 list_add_tail(&child_event->child_list, &parent_event->child_list);
4897 mutex_unlock(&parent_event->child_mutex);
4898
4899 return child_event;
4900 }
4901
4902 static int inherit_group(struct perf_event *parent_event,
4903 struct task_struct *parent,
4904 struct perf_event_context *parent_ctx,
4905 struct task_struct *child,
4906 struct perf_event_context *child_ctx)
4907 {
4908 struct perf_event *leader;
4909 struct perf_event *sub;
4910 struct perf_event *child_ctr;
4911
4912 leader = inherit_event(parent_event, parent, parent_ctx,
4913 child, NULL, child_ctx);
4914 if (IS_ERR(leader))
4915 return PTR_ERR(leader);
4916 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
4917 child_ctr = inherit_event(sub, parent, parent_ctx,
4918 child, leader, child_ctx);
4919 if (IS_ERR(child_ctr))
4920 return PTR_ERR(child_ctr);
4921 }
4922 return 0;
4923 }
4924
4925 static void sync_child_event(struct perf_event *child_event,
4926 struct task_struct *child)
4927 {
4928 struct perf_event *parent_event = child_event->parent;
4929 u64 child_val;
4930
4931 if (child_event->attr.inherit_stat)
4932 perf_event_read_event(child_event, child);
4933
4934 child_val = atomic64_read(&child_event->count);
4935
4936 /*
4937 * Add back the child's count to the parent's count:
4938 */
4939 atomic64_add(child_val, &parent_event->count);
4940 atomic64_add(child_event->total_time_enabled,
4941 &parent_event->child_total_time_enabled);
4942 atomic64_add(child_event->total_time_running,
4943 &parent_event->child_total_time_running);
4944
4945 /*
4946 * Remove this event from the parent's list
4947 */
4948 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4949 mutex_lock(&parent_event->child_mutex);
4950 list_del_init(&child_event->child_list);
4951 mutex_unlock(&parent_event->child_mutex);
4952
4953 /*
4954 * Release the parent event, if this was the last
4955 * reference to it.
4956 */
4957 fput(parent_event->filp);
4958 }
4959
4960 static void
4961 __perf_event_exit_task(struct perf_event *child_event,
4962 struct perf_event_context *child_ctx,
4963 struct task_struct *child)
4964 {
4965 struct perf_event *parent_event;
4966
4967 perf_event_remove_from_context(child_event);
4968
4969 parent_event = child_event->parent;
4970 /*
4971 * It can happen that parent exits first, and has events
4972 * that are still around due to the child reference. These
4973 * events need to be zapped - but otherwise linger.
4974 */
4975 if (parent_event) {
4976 sync_child_event(child_event, child);
4977 free_event(child_event);
4978 }
4979 }
4980
4981 /*
4982 * When a child task exits, feed back event values to parent events.
4983 */
4984 void perf_event_exit_task(struct task_struct *child)
4985 {
4986 struct perf_event *child_event, *tmp;
4987 struct perf_event_context *child_ctx;
4988 unsigned long flags;
4989
4990 if (likely(!child->perf_event_ctxp)) {
4991 perf_event_task(child, NULL, 0);
4992 return;
4993 }
4994
4995 local_irq_save(flags);
4996 /*
4997 * We can't reschedule here because interrupts are disabled,
4998 * and either child is current or it is a task that can't be
4999 * scheduled, so we are now safe from rescheduling changing
5000 * our context.
5001 */
5002 child_ctx = child->perf_event_ctxp;
5003 __perf_event_task_sched_out(child_ctx);
5004
5005 /*
5006 * Take the context lock here so that if find_get_context is
5007 * reading child->perf_event_ctxp, we wait until it has
5008 * incremented the context's refcount before we do put_ctx below.
5009 */
5010 raw_spin_lock(&child_ctx->lock);
5011 child->perf_event_ctxp = NULL;
5012 /*
5013 * If this context is a clone; unclone it so it can't get
5014 * swapped to another process while we're removing all
5015 * the events from it.
5016 */
5017 unclone_ctx(child_ctx);
5018 update_context_time(child_ctx);
5019 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5020
5021 /*
5022 * Report the task dead after unscheduling the events so that we
5023 * won't get any samples after PERF_RECORD_EXIT. We can however still
5024 * get a few PERF_RECORD_READ events.
5025 */
5026 perf_event_task(child, child_ctx, 0);
5027
5028 /*
5029 * We can recurse on the same lock type through:
5030 *
5031 * __perf_event_exit_task()
5032 * sync_child_event()
5033 * fput(parent_event->filp)
5034 * perf_release()
5035 * mutex_lock(&ctx->mutex)
5036 *
5037 * But since its the parent context it won't be the same instance.
5038 */
5039 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5040
5041 again:
5042 list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
5043 group_entry)
5044 __perf_event_exit_task(child_event, child_ctx, child);
5045
5046 /*
5047 * If the last event was a group event, it will have appended all
5048 * its siblings to the list, but we obtained 'tmp' before that which
5049 * will still point to the list head terminating the iteration.
5050 */
5051 if (!list_empty(&child_ctx->group_list))
5052 goto again;
5053
5054 mutex_unlock(&child_ctx->mutex);
5055
5056 put_ctx(child_ctx);
5057 }
5058
5059 /*
5060 * free an unexposed, unused context as created by inheritance by
5061 * init_task below, used by fork() in case of fail.
5062 */
5063 void perf_event_free_task(struct task_struct *task)
5064 {
5065 struct perf_event_context *ctx = task->perf_event_ctxp;
5066 struct perf_event *event, *tmp;
5067
5068 if (!ctx)
5069 return;
5070
5071 mutex_lock(&ctx->mutex);
5072 again:
5073 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
5074 struct perf_event *parent = event->parent;
5075
5076 if (WARN_ON_ONCE(!parent))
5077 continue;
5078
5079 mutex_lock(&parent->child_mutex);
5080 list_del_init(&event->child_list);
5081 mutex_unlock(&parent->child_mutex);
5082
5083 fput(parent->filp);
5084
5085 list_del_event(event, ctx);
5086 free_event(event);
5087 }
5088
5089 if (!list_empty(&ctx->group_list))
5090 goto again;
5091
5092 mutex_unlock(&ctx->mutex);
5093
5094 put_ctx(ctx);
5095 }
5096
5097 /*
5098 * Initialize the perf_event context in task_struct
5099 */
5100 int perf_event_init_task(struct task_struct *child)
5101 {
5102 struct perf_event_context *child_ctx = NULL, *parent_ctx;
5103 struct perf_event_context *cloned_ctx;
5104 struct perf_event *event;
5105 struct task_struct *parent = current;
5106 int inherited_all = 1;
5107 int ret = 0;
5108
5109 child->perf_event_ctxp = NULL;
5110
5111 mutex_init(&child->perf_event_mutex);
5112 INIT_LIST_HEAD(&child->perf_event_list);
5113
5114 if (likely(!parent->perf_event_ctxp))
5115 return 0;
5116
5117 /*
5118 * If the parent's context is a clone, pin it so it won't get
5119 * swapped under us.
5120 */
5121 parent_ctx = perf_pin_task_context(parent);
5122
5123 /*
5124 * No need to check if parent_ctx != NULL here; since we saw
5125 * it non-NULL earlier, the only reason for it to become NULL
5126 * is if we exit, and since we're currently in the middle of
5127 * a fork we can't be exiting at the same time.
5128 */
5129
5130 /*
5131 * Lock the parent list. No need to lock the child - not PID
5132 * hashed yet and not running, so nobody can access it.
5133 */
5134 mutex_lock(&parent_ctx->mutex);
5135
5136 /*
5137 * We dont have to disable NMIs - we are only looking at
5138 * the list, not manipulating it:
5139 */
5140 list_for_each_entry(event, &parent_ctx->group_list, group_entry) {
5141
5142 if (!event->attr.inherit) {
5143 inherited_all = 0;
5144 continue;
5145 }
5146
5147 if (!child->perf_event_ctxp) {
5148 /*
5149 * This is executed from the parent task context, so
5150 * inherit events that have been marked for cloning.
5151 * First allocate and initialize a context for the
5152 * child.
5153 */
5154
5155 child_ctx = kzalloc(sizeof(struct perf_event_context),
5156 GFP_KERNEL);
5157 if (!child_ctx) {
5158 ret = -ENOMEM;
5159 break;
5160 }
5161
5162 __perf_event_init_context(child_ctx, child);
5163 child->perf_event_ctxp = child_ctx;
5164 get_task_struct(child);
5165 }
5166
5167 ret = inherit_group(event, parent, parent_ctx,
5168 child, child_ctx);
5169 if (ret) {
5170 inherited_all = 0;
5171 break;
5172 }
5173 }
5174
5175 if (child_ctx && inherited_all) {
5176 /*
5177 * Mark the child context as a clone of the parent
5178 * context, or of whatever the parent is a clone of.
5179 * Note that if the parent is a clone, it could get
5180 * uncloned at any point, but that doesn't matter
5181 * because the list of events and the generation
5182 * count can't have changed since we took the mutex.
5183 */
5184 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5185 if (cloned_ctx) {
5186 child_ctx->parent_ctx = cloned_ctx;
5187 child_ctx->parent_gen = parent_ctx->parent_gen;
5188 } else {
5189 child_ctx->parent_ctx = parent_ctx;
5190 child_ctx->parent_gen = parent_ctx->generation;
5191 }
5192 get_ctx(child_ctx->parent_ctx);
5193 }
5194
5195 mutex_unlock(&parent_ctx->mutex);
5196
5197 perf_unpin_context(parent_ctx);
5198
5199 return ret;
5200 }
5201
5202 static void __cpuinit perf_event_init_cpu(int cpu)
5203 {
5204 struct perf_cpu_context *cpuctx;
5205
5206 cpuctx = &per_cpu(perf_cpu_context, cpu);
5207 __perf_event_init_context(&cpuctx->ctx, NULL);
5208
5209 spin_lock(&perf_resource_lock);
5210 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5211 spin_unlock(&perf_resource_lock);
5212
5213 hw_perf_event_setup(cpu);
5214 }
5215
5216 #ifdef CONFIG_HOTPLUG_CPU
5217 static void __perf_event_exit_cpu(void *info)
5218 {
5219 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5220 struct perf_event_context *ctx = &cpuctx->ctx;
5221 struct perf_event *event, *tmp;
5222
5223 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
5224 __perf_event_remove_from_context(event);
5225 }
5226 static void perf_event_exit_cpu(int cpu)
5227 {
5228 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5229 struct perf_event_context *ctx = &cpuctx->ctx;
5230
5231 mutex_lock(&ctx->mutex);
5232 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5233 mutex_unlock(&ctx->mutex);
5234 }
5235 #else
5236 static inline void perf_event_exit_cpu(int cpu) { }
5237 #endif
5238
5239 static int __cpuinit
5240 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5241 {
5242 unsigned int cpu = (long)hcpu;
5243
5244 switch (action) {
5245
5246 case CPU_UP_PREPARE:
5247 case CPU_UP_PREPARE_FROZEN:
5248 perf_event_init_cpu(cpu);
5249 break;
5250
5251 case CPU_ONLINE:
5252 case CPU_ONLINE_FROZEN:
5253 hw_perf_event_setup_online(cpu);
5254 break;
5255
5256 case CPU_DOWN_PREPARE:
5257 case CPU_DOWN_PREPARE_FROZEN:
5258 perf_event_exit_cpu(cpu);
5259 break;
5260
5261 default:
5262 break;
5263 }
5264
5265 return NOTIFY_OK;
5266 }
5267
5268 /*
5269 * This has to have a higher priority than migration_notifier in sched.c.
5270 */
5271 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5272 .notifier_call = perf_cpu_notify,
5273 .priority = 20,
5274 };
5275
5276 void __init perf_event_init(void)
5277 {
5278 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5279 (void *)(long)smp_processor_id());
5280 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5281 (void *)(long)smp_processor_id());
5282 register_cpu_notifier(&perf_cpu_nb);
5283 }
5284
5285 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
5286 {
5287 return sprintf(buf, "%d\n", perf_reserved_percpu);
5288 }
5289
5290 static ssize_t
5291 perf_set_reserve_percpu(struct sysdev_class *class,
5292 const char *buf,
5293 size_t count)
5294 {
5295 struct perf_cpu_context *cpuctx;
5296 unsigned long val;
5297 int err, cpu, mpt;
5298
5299 err = strict_strtoul(buf, 10, &val);
5300 if (err)
5301 return err;
5302 if (val > perf_max_events)
5303 return -EINVAL;
5304
5305 spin_lock(&perf_resource_lock);
5306 perf_reserved_percpu = val;
5307 for_each_online_cpu(cpu) {
5308 cpuctx = &per_cpu(perf_cpu_context, cpu);
5309 raw_spin_lock_irq(&cpuctx->ctx.lock);
5310 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5311 perf_max_events - perf_reserved_percpu);
5312 cpuctx->max_pertask = mpt;
5313 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5314 }
5315 spin_unlock(&perf_resource_lock);
5316
5317 return count;
5318 }
5319
5320 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
5321 {
5322 return sprintf(buf, "%d\n", perf_overcommit);
5323 }
5324
5325 static ssize_t
5326 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
5327 {
5328 unsigned long val;
5329 int err;
5330
5331 err = strict_strtoul(buf, 10, &val);
5332 if (err)
5333 return err;
5334 if (val > 1)
5335 return -EINVAL;
5336
5337 spin_lock(&perf_resource_lock);
5338 perf_overcommit = val;
5339 spin_unlock(&perf_resource_lock);
5340
5341 return count;
5342 }
5343
5344 static SYSDEV_CLASS_ATTR(
5345 reserve_percpu,
5346 0644,
5347 perf_show_reserve_percpu,
5348 perf_set_reserve_percpu
5349 );
5350
5351 static SYSDEV_CLASS_ATTR(
5352 overcommit,
5353 0644,
5354 perf_show_overcommit,
5355 perf_set_overcommit
5356 );
5357
5358 static struct attribute *perfclass_attrs[] = {
5359 &attr_reserve_percpu.attr,
5360 &attr_overcommit.attr,
5361 NULL
5362 };
5363
5364 static struct attribute_group perfclass_attr_group = {
5365 .attrs = perfclass_attrs,
5366 .name = "perf_events",
5367 };
5368
5369 static int __init perf_event_sysfs_init(void)
5370 {
5371 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5372 &perfclass_attr_group);
5373 }
5374 device_initcall(perf_event_sysfs_init);