]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/perf_event.c
Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw/async_tx
[mirror_ubuntu-bionic-kernel.git] / kernel / perf_event.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34 #include <linux/hw_breakpoint.h>
35
36 #include <asm/irq_regs.h>
37
38 /*
39 * Each CPU has a list of per CPU events:
40 */
41 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
42
43 int perf_max_events __read_mostly = 1;
44 static int perf_reserved_percpu __read_mostly;
45 static int perf_overcommit __read_mostly = 1;
46
47 static atomic_t nr_events __read_mostly;
48 static atomic_t nr_mmap_events __read_mostly;
49 static atomic_t nr_comm_events __read_mostly;
50 static atomic_t nr_task_events __read_mostly;
51
52 /*
53 * perf event paranoia level:
54 * -1 - not paranoid at all
55 * 0 - disallow raw tracepoint access for unpriv
56 * 1 - disallow cpu events for unpriv
57 * 2 - disallow kernel profiling for unpriv
58 */
59 int sysctl_perf_event_paranoid __read_mostly = 1;
60
61 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
62
63 /*
64 * max perf event sample rate
65 */
66 int sysctl_perf_event_sample_rate __read_mostly = 100000;
67
68 static atomic64_t perf_event_id;
69
70 /*
71 * Lock for (sysadmin-configurable) event reservations:
72 */
73 static DEFINE_SPINLOCK(perf_resource_lock);
74
75 /*
76 * Architecture provided APIs - weak aliases:
77 */
78 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
79 {
80 return NULL;
81 }
82
83 void __weak hw_perf_disable(void) { barrier(); }
84 void __weak hw_perf_enable(void) { barrier(); }
85
86 void __weak perf_event_print_debug(void) { }
87
88 static DEFINE_PER_CPU(int, perf_disable_count);
89
90 void perf_disable(void)
91 {
92 if (!__get_cpu_var(perf_disable_count)++)
93 hw_perf_disable();
94 }
95
96 void perf_enable(void)
97 {
98 if (!--__get_cpu_var(perf_disable_count))
99 hw_perf_enable();
100 }
101
102 static void get_ctx(struct perf_event_context *ctx)
103 {
104 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
105 }
106
107 static void free_ctx(struct rcu_head *head)
108 {
109 struct perf_event_context *ctx;
110
111 ctx = container_of(head, struct perf_event_context, rcu_head);
112 kfree(ctx);
113 }
114
115 static void put_ctx(struct perf_event_context *ctx)
116 {
117 if (atomic_dec_and_test(&ctx->refcount)) {
118 if (ctx->parent_ctx)
119 put_ctx(ctx->parent_ctx);
120 if (ctx->task)
121 put_task_struct(ctx->task);
122 call_rcu(&ctx->rcu_head, free_ctx);
123 }
124 }
125
126 static void unclone_ctx(struct perf_event_context *ctx)
127 {
128 if (ctx->parent_ctx) {
129 put_ctx(ctx->parent_ctx);
130 ctx->parent_ctx = NULL;
131 }
132 }
133
134 /*
135 * If we inherit events we want to return the parent event id
136 * to userspace.
137 */
138 static u64 primary_event_id(struct perf_event *event)
139 {
140 u64 id = event->id;
141
142 if (event->parent)
143 id = event->parent->id;
144
145 return id;
146 }
147
148 /*
149 * Get the perf_event_context for a task and lock it.
150 * This has to cope with with the fact that until it is locked,
151 * the context could get moved to another task.
152 */
153 static struct perf_event_context *
154 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
155 {
156 struct perf_event_context *ctx;
157
158 rcu_read_lock();
159 retry:
160 ctx = rcu_dereference(task->perf_event_ctxp);
161 if (ctx) {
162 /*
163 * If this context is a clone of another, it might
164 * get swapped for another underneath us by
165 * perf_event_task_sched_out, though the
166 * rcu_read_lock() protects us from any context
167 * getting freed. Lock the context and check if it
168 * got swapped before we could get the lock, and retry
169 * if so. If we locked the right context, then it
170 * can't get swapped on us any more.
171 */
172 raw_spin_lock_irqsave(&ctx->lock, *flags);
173 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
174 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
175 goto retry;
176 }
177
178 if (!atomic_inc_not_zero(&ctx->refcount)) {
179 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
180 ctx = NULL;
181 }
182 }
183 rcu_read_unlock();
184 return ctx;
185 }
186
187 /*
188 * Get the context for a task and increment its pin_count so it
189 * can't get swapped to another task. This also increments its
190 * reference count so that the context can't get freed.
191 */
192 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
193 {
194 struct perf_event_context *ctx;
195 unsigned long flags;
196
197 ctx = perf_lock_task_context(task, &flags);
198 if (ctx) {
199 ++ctx->pin_count;
200 raw_spin_unlock_irqrestore(&ctx->lock, flags);
201 }
202 return ctx;
203 }
204
205 static void perf_unpin_context(struct perf_event_context *ctx)
206 {
207 unsigned long flags;
208
209 raw_spin_lock_irqsave(&ctx->lock, flags);
210 --ctx->pin_count;
211 raw_spin_unlock_irqrestore(&ctx->lock, flags);
212 put_ctx(ctx);
213 }
214
215 static inline u64 perf_clock(void)
216 {
217 return cpu_clock(raw_smp_processor_id());
218 }
219
220 /*
221 * Update the record of the current time in a context.
222 */
223 static void update_context_time(struct perf_event_context *ctx)
224 {
225 u64 now = perf_clock();
226
227 ctx->time += now - ctx->timestamp;
228 ctx->timestamp = now;
229 }
230
231 /*
232 * Update the total_time_enabled and total_time_running fields for a event.
233 */
234 static void update_event_times(struct perf_event *event)
235 {
236 struct perf_event_context *ctx = event->ctx;
237 u64 run_end;
238
239 if (event->state < PERF_EVENT_STATE_INACTIVE ||
240 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
241 return;
242
243 if (ctx->is_active)
244 run_end = ctx->time;
245 else
246 run_end = event->tstamp_stopped;
247
248 event->total_time_enabled = run_end - event->tstamp_enabled;
249
250 if (event->state == PERF_EVENT_STATE_INACTIVE)
251 run_end = event->tstamp_stopped;
252 else
253 run_end = ctx->time;
254
255 event->total_time_running = run_end - event->tstamp_running;
256 }
257
258 /*
259 * Update total_time_enabled and total_time_running for all events in a group.
260 */
261 static void update_group_times(struct perf_event *leader)
262 {
263 struct perf_event *event;
264
265 update_event_times(leader);
266 list_for_each_entry(event, &leader->sibling_list, group_entry)
267 update_event_times(event);
268 }
269
270 static struct list_head *
271 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
272 {
273 if (event->attr.pinned)
274 return &ctx->pinned_groups;
275 else
276 return &ctx->flexible_groups;
277 }
278
279 /*
280 * Add a event from the lists for its context.
281 * Must be called with ctx->mutex and ctx->lock held.
282 */
283 static void
284 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
285 {
286 struct perf_event *group_leader = event->group_leader;
287
288 /*
289 * Depending on whether it is a standalone or sibling event,
290 * add it straight to the context's event list, or to the group
291 * leader's sibling list:
292 */
293 if (group_leader == event) {
294 struct list_head *list;
295
296 if (is_software_event(event))
297 event->group_flags |= PERF_GROUP_SOFTWARE;
298
299 list = ctx_group_list(event, ctx);
300 list_add_tail(&event->group_entry, list);
301 } else {
302 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
303 !is_software_event(event))
304 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
305
306 list_add_tail(&event->group_entry, &group_leader->sibling_list);
307 group_leader->nr_siblings++;
308 }
309
310 list_add_rcu(&event->event_entry, &ctx->event_list);
311 ctx->nr_events++;
312 if (event->attr.inherit_stat)
313 ctx->nr_stat++;
314 }
315
316 /*
317 * Remove a event from the lists for its context.
318 * Must be called with ctx->mutex and ctx->lock held.
319 */
320 static void
321 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
322 {
323 if (list_empty(&event->group_entry))
324 return;
325 ctx->nr_events--;
326 if (event->attr.inherit_stat)
327 ctx->nr_stat--;
328
329 list_del_init(&event->group_entry);
330 list_del_rcu(&event->event_entry);
331
332 if (event->group_leader != event)
333 event->group_leader->nr_siblings--;
334
335 update_group_times(event);
336
337 /*
338 * If event was in error state, then keep it
339 * that way, otherwise bogus counts will be
340 * returned on read(). The only way to get out
341 * of error state is by explicit re-enabling
342 * of the event
343 */
344 if (event->state > PERF_EVENT_STATE_OFF)
345 event->state = PERF_EVENT_STATE_OFF;
346 }
347
348 static void
349 perf_destroy_group(struct perf_event *event, struct perf_event_context *ctx)
350 {
351 struct perf_event *sibling, *tmp;
352
353 /*
354 * If this was a group event with sibling events then
355 * upgrade the siblings to singleton events by adding them
356 * to the context list directly:
357 */
358 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
359 struct list_head *list;
360
361 list = ctx_group_list(event, ctx);
362 list_move_tail(&sibling->group_entry, list);
363 sibling->group_leader = sibling;
364
365 /* Inherit group flags from the previous leader */
366 sibling->group_flags = event->group_flags;
367 }
368 }
369
370 static void
371 event_sched_out(struct perf_event *event,
372 struct perf_cpu_context *cpuctx,
373 struct perf_event_context *ctx)
374 {
375 if (event->state != PERF_EVENT_STATE_ACTIVE)
376 return;
377
378 event->state = PERF_EVENT_STATE_INACTIVE;
379 if (event->pending_disable) {
380 event->pending_disable = 0;
381 event->state = PERF_EVENT_STATE_OFF;
382 }
383 event->tstamp_stopped = ctx->time;
384 event->pmu->disable(event);
385 event->oncpu = -1;
386
387 if (!is_software_event(event))
388 cpuctx->active_oncpu--;
389 ctx->nr_active--;
390 if (event->attr.exclusive || !cpuctx->active_oncpu)
391 cpuctx->exclusive = 0;
392 }
393
394 static void
395 group_sched_out(struct perf_event *group_event,
396 struct perf_cpu_context *cpuctx,
397 struct perf_event_context *ctx)
398 {
399 struct perf_event *event;
400
401 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
402 return;
403
404 event_sched_out(group_event, cpuctx, ctx);
405
406 /*
407 * Schedule out siblings (if any):
408 */
409 list_for_each_entry(event, &group_event->sibling_list, group_entry)
410 event_sched_out(event, cpuctx, ctx);
411
412 if (group_event->attr.exclusive)
413 cpuctx->exclusive = 0;
414 }
415
416 /*
417 * Cross CPU call to remove a performance event
418 *
419 * We disable the event on the hardware level first. After that we
420 * remove it from the context list.
421 */
422 static void __perf_event_remove_from_context(void *info)
423 {
424 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
425 struct perf_event *event = info;
426 struct perf_event_context *ctx = event->ctx;
427
428 /*
429 * If this is a task context, we need to check whether it is
430 * the current task context of this cpu. If not it has been
431 * scheduled out before the smp call arrived.
432 */
433 if (ctx->task && cpuctx->task_ctx != ctx)
434 return;
435
436 raw_spin_lock(&ctx->lock);
437 /*
438 * Protect the list operation against NMI by disabling the
439 * events on a global level.
440 */
441 perf_disable();
442
443 event_sched_out(event, cpuctx, ctx);
444
445 list_del_event(event, ctx);
446
447 if (!ctx->task) {
448 /*
449 * Allow more per task events with respect to the
450 * reservation:
451 */
452 cpuctx->max_pertask =
453 min(perf_max_events - ctx->nr_events,
454 perf_max_events - perf_reserved_percpu);
455 }
456
457 perf_enable();
458 raw_spin_unlock(&ctx->lock);
459 }
460
461
462 /*
463 * Remove the event from a task's (or a CPU's) list of events.
464 *
465 * Must be called with ctx->mutex held.
466 *
467 * CPU events are removed with a smp call. For task events we only
468 * call when the task is on a CPU.
469 *
470 * If event->ctx is a cloned context, callers must make sure that
471 * every task struct that event->ctx->task could possibly point to
472 * remains valid. This is OK when called from perf_release since
473 * that only calls us on the top-level context, which can't be a clone.
474 * When called from perf_event_exit_task, it's OK because the
475 * context has been detached from its task.
476 */
477 static void perf_event_remove_from_context(struct perf_event *event)
478 {
479 struct perf_event_context *ctx = event->ctx;
480 struct task_struct *task = ctx->task;
481
482 if (!task) {
483 /*
484 * Per cpu events are removed via an smp call and
485 * the removal is always successful.
486 */
487 smp_call_function_single(event->cpu,
488 __perf_event_remove_from_context,
489 event, 1);
490 return;
491 }
492
493 retry:
494 task_oncpu_function_call(task, __perf_event_remove_from_context,
495 event);
496
497 raw_spin_lock_irq(&ctx->lock);
498 /*
499 * If the context is active we need to retry the smp call.
500 */
501 if (ctx->nr_active && !list_empty(&event->group_entry)) {
502 raw_spin_unlock_irq(&ctx->lock);
503 goto retry;
504 }
505
506 /*
507 * The lock prevents that this context is scheduled in so we
508 * can remove the event safely, if the call above did not
509 * succeed.
510 */
511 if (!list_empty(&event->group_entry))
512 list_del_event(event, ctx);
513 raw_spin_unlock_irq(&ctx->lock);
514 }
515
516 /*
517 * Cross CPU call to disable a performance event
518 */
519 static void __perf_event_disable(void *info)
520 {
521 struct perf_event *event = info;
522 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
523 struct perf_event_context *ctx = event->ctx;
524
525 /*
526 * If this is a per-task event, need to check whether this
527 * event's task is the current task on this cpu.
528 */
529 if (ctx->task && cpuctx->task_ctx != ctx)
530 return;
531
532 raw_spin_lock(&ctx->lock);
533
534 /*
535 * If the event is on, turn it off.
536 * If it is in error state, leave it in error state.
537 */
538 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
539 update_context_time(ctx);
540 update_group_times(event);
541 if (event == event->group_leader)
542 group_sched_out(event, cpuctx, ctx);
543 else
544 event_sched_out(event, cpuctx, ctx);
545 event->state = PERF_EVENT_STATE_OFF;
546 }
547
548 raw_spin_unlock(&ctx->lock);
549 }
550
551 /*
552 * Disable a event.
553 *
554 * If event->ctx is a cloned context, callers must make sure that
555 * every task struct that event->ctx->task could possibly point to
556 * remains valid. This condition is satisifed when called through
557 * perf_event_for_each_child or perf_event_for_each because they
558 * hold the top-level event's child_mutex, so any descendant that
559 * goes to exit will block in sync_child_event.
560 * When called from perf_pending_event it's OK because event->ctx
561 * is the current context on this CPU and preemption is disabled,
562 * hence we can't get into perf_event_task_sched_out for this context.
563 */
564 void perf_event_disable(struct perf_event *event)
565 {
566 struct perf_event_context *ctx = event->ctx;
567 struct task_struct *task = ctx->task;
568
569 if (!task) {
570 /*
571 * Disable the event on the cpu that it's on
572 */
573 smp_call_function_single(event->cpu, __perf_event_disable,
574 event, 1);
575 return;
576 }
577
578 retry:
579 task_oncpu_function_call(task, __perf_event_disable, event);
580
581 raw_spin_lock_irq(&ctx->lock);
582 /*
583 * If the event is still active, we need to retry the cross-call.
584 */
585 if (event->state == PERF_EVENT_STATE_ACTIVE) {
586 raw_spin_unlock_irq(&ctx->lock);
587 goto retry;
588 }
589
590 /*
591 * Since we have the lock this context can't be scheduled
592 * in, so we can change the state safely.
593 */
594 if (event->state == PERF_EVENT_STATE_INACTIVE) {
595 update_group_times(event);
596 event->state = PERF_EVENT_STATE_OFF;
597 }
598
599 raw_spin_unlock_irq(&ctx->lock);
600 }
601
602 static int
603 event_sched_in(struct perf_event *event,
604 struct perf_cpu_context *cpuctx,
605 struct perf_event_context *ctx)
606 {
607 if (event->state <= PERF_EVENT_STATE_OFF)
608 return 0;
609
610 event->state = PERF_EVENT_STATE_ACTIVE;
611 event->oncpu = smp_processor_id();
612 /*
613 * The new state must be visible before we turn it on in the hardware:
614 */
615 smp_wmb();
616
617 if (event->pmu->enable(event)) {
618 event->state = PERF_EVENT_STATE_INACTIVE;
619 event->oncpu = -1;
620 return -EAGAIN;
621 }
622
623 event->tstamp_running += ctx->time - event->tstamp_stopped;
624
625 if (!is_software_event(event))
626 cpuctx->active_oncpu++;
627 ctx->nr_active++;
628
629 if (event->attr.exclusive)
630 cpuctx->exclusive = 1;
631
632 return 0;
633 }
634
635 static int
636 group_sched_in(struct perf_event *group_event,
637 struct perf_cpu_context *cpuctx,
638 struct perf_event_context *ctx)
639 {
640 struct perf_event *event, *partial_group = NULL;
641 const struct pmu *pmu = group_event->pmu;
642 bool txn = false;
643 int ret;
644
645 if (group_event->state == PERF_EVENT_STATE_OFF)
646 return 0;
647
648 /* Check if group transaction availabe */
649 if (pmu->start_txn)
650 txn = true;
651
652 if (txn)
653 pmu->start_txn(pmu);
654
655 if (event_sched_in(group_event, cpuctx, ctx))
656 return -EAGAIN;
657
658 /*
659 * Schedule in siblings as one group (if any):
660 */
661 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
662 if (event_sched_in(event, cpuctx, ctx)) {
663 partial_group = event;
664 goto group_error;
665 }
666 }
667
668 if (!txn)
669 return 0;
670
671 ret = pmu->commit_txn(pmu);
672 if (!ret) {
673 pmu->cancel_txn(pmu);
674 return 0;
675 }
676
677 group_error:
678 if (txn)
679 pmu->cancel_txn(pmu);
680
681 /*
682 * Groups can be scheduled in as one unit only, so undo any
683 * partial group before returning:
684 */
685 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
686 if (event == partial_group)
687 break;
688 event_sched_out(event, cpuctx, ctx);
689 }
690 event_sched_out(group_event, cpuctx, ctx);
691
692 return -EAGAIN;
693 }
694
695 /*
696 * Work out whether we can put this event group on the CPU now.
697 */
698 static int group_can_go_on(struct perf_event *event,
699 struct perf_cpu_context *cpuctx,
700 int can_add_hw)
701 {
702 /*
703 * Groups consisting entirely of software events can always go on.
704 */
705 if (event->group_flags & PERF_GROUP_SOFTWARE)
706 return 1;
707 /*
708 * If an exclusive group is already on, no other hardware
709 * events can go on.
710 */
711 if (cpuctx->exclusive)
712 return 0;
713 /*
714 * If this group is exclusive and there are already
715 * events on the CPU, it can't go on.
716 */
717 if (event->attr.exclusive && cpuctx->active_oncpu)
718 return 0;
719 /*
720 * Otherwise, try to add it if all previous groups were able
721 * to go on.
722 */
723 return can_add_hw;
724 }
725
726 static void add_event_to_ctx(struct perf_event *event,
727 struct perf_event_context *ctx)
728 {
729 list_add_event(event, ctx);
730 event->tstamp_enabled = ctx->time;
731 event->tstamp_running = ctx->time;
732 event->tstamp_stopped = ctx->time;
733 }
734
735 /*
736 * Cross CPU call to install and enable a performance event
737 *
738 * Must be called with ctx->mutex held
739 */
740 static void __perf_install_in_context(void *info)
741 {
742 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
743 struct perf_event *event = info;
744 struct perf_event_context *ctx = event->ctx;
745 struct perf_event *leader = event->group_leader;
746 int err;
747
748 /*
749 * If this is a task context, we need to check whether it is
750 * the current task context of this cpu. If not it has been
751 * scheduled out before the smp call arrived.
752 * Or possibly this is the right context but it isn't
753 * on this cpu because it had no events.
754 */
755 if (ctx->task && cpuctx->task_ctx != ctx) {
756 if (cpuctx->task_ctx || ctx->task != current)
757 return;
758 cpuctx->task_ctx = ctx;
759 }
760
761 raw_spin_lock(&ctx->lock);
762 ctx->is_active = 1;
763 update_context_time(ctx);
764
765 /*
766 * Protect the list operation against NMI by disabling the
767 * events on a global level. NOP for non NMI based events.
768 */
769 perf_disable();
770
771 add_event_to_ctx(event, ctx);
772
773 if (event->cpu != -1 && event->cpu != smp_processor_id())
774 goto unlock;
775
776 /*
777 * Don't put the event on if it is disabled or if
778 * it is in a group and the group isn't on.
779 */
780 if (event->state != PERF_EVENT_STATE_INACTIVE ||
781 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
782 goto unlock;
783
784 /*
785 * An exclusive event can't go on if there are already active
786 * hardware events, and no hardware event can go on if there
787 * is already an exclusive event on.
788 */
789 if (!group_can_go_on(event, cpuctx, 1))
790 err = -EEXIST;
791 else
792 err = event_sched_in(event, cpuctx, ctx);
793
794 if (err) {
795 /*
796 * This event couldn't go on. If it is in a group
797 * then we have to pull the whole group off.
798 * If the event group is pinned then put it in error state.
799 */
800 if (leader != event)
801 group_sched_out(leader, cpuctx, ctx);
802 if (leader->attr.pinned) {
803 update_group_times(leader);
804 leader->state = PERF_EVENT_STATE_ERROR;
805 }
806 }
807
808 if (!err && !ctx->task && cpuctx->max_pertask)
809 cpuctx->max_pertask--;
810
811 unlock:
812 perf_enable();
813
814 raw_spin_unlock(&ctx->lock);
815 }
816
817 /*
818 * Attach a performance event to a context
819 *
820 * First we add the event to the list with the hardware enable bit
821 * in event->hw_config cleared.
822 *
823 * If the event is attached to a task which is on a CPU we use a smp
824 * call to enable it in the task context. The task might have been
825 * scheduled away, but we check this in the smp call again.
826 *
827 * Must be called with ctx->mutex held.
828 */
829 static void
830 perf_install_in_context(struct perf_event_context *ctx,
831 struct perf_event *event,
832 int cpu)
833 {
834 struct task_struct *task = ctx->task;
835
836 if (!task) {
837 /*
838 * Per cpu events are installed via an smp call and
839 * the install is always successful.
840 */
841 smp_call_function_single(cpu, __perf_install_in_context,
842 event, 1);
843 return;
844 }
845
846 retry:
847 task_oncpu_function_call(task, __perf_install_in_context,
848 event);
849
850 raw_spin_lock_irq(&ctx->lock);
851 /*
852 * we need to retry the smp call.
853 */
854 if (ctx->is_active && list_empty(&event->group_entry)) {
855 raw_spin_unlock_irq(&ctx->lock);
856 goto retry;
857 }
858
859 /*
860 * The lock prevents that this context is scheduled in so we
861 * can add the event safely, if it the call above did not
862 * succeed.
863 */
864 if (list_empty(&event->group_entry))
865 add_event_to_ctx(event, ctx);
866 raw_spin_unlock_irq(&ctx->lock);
867 }
868
869 /*
870 * Put a event into inactive state and update time fields.
871 * Enabling the leader of a group effectively enables all
872 * the group members that aren't explicitly disabled, so we
873 * have to update their ->tstamp_enabled also.
874 * Note: this works for group members as well as group leaders
875 * since the non-leader members' sibling_lists will be empty.
876 */
877 static void __perf_event_mark_enabled(struct perf_event *event,
878 struct perf_event_context *ctx)
879 {
880 struct perf_event *sub;
881
882 event->state = PERF_EVENT_STATE_INACTIVE;
883 event->tstamp_enabled = ctx->time - event->total_time_enabled;
884 list_for_each_entry(sub, &event->sibling_list, group_entry)
885 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
886 sub->tstamp_enabled =
887 ctx->time - sub->total_time_enabled;
888 }
889
890 /*
891 * Cross CPU call to enable a performance event
892 */
893 static void __perf_event_enable(void *info)
894 {
895 struct perf_event *event = info;
896 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
897 struct perf_event_context *ctx = event->ctx;
898 struct perf_event *leader = event->group_leader;
899 int err;
900
901 /*
902 * If this is a per-task event, need to check whether this
903 * event's task is the current task on this cpu.
904 */
905 if (ctx->task && cpuctx->task_ctx != ctx) {
906 if (cpuctx->task_ctx || ctx->task != current)
907 return;
908 cpuctx->task_ctx = ctx;
909 }
910
911 raw_spin_lock(&ctx->lock);
912 ctx->is_active = 1;
913 update_context_time(ctx);
914
915 if (event->state >= PERF_EVENT_STATE_INACTIVE)
916 goto unlock;
917 __perf_event_mark_enabled(event, ctx);
918
919 if (event->cpu != -1 && event->cpu != smp_processor_id())
920 goto unlock;
921
922 /*
923 * If the event is in a group and isn't the group leader,
924 * then don't put it on unless the group is on.
925 */
926 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
927 goto unlock;
928
929 if (!group_can_go_on(event, cpuctx, 1)) {
930 err = -EEXIST;
931 } else {
932 perf_disable();
933 if (event == leader)
934 err = group_sched_in(event, cpuctx, ctx);
935 else
936 err = event_sched_in(event, cpuctx, ctx);
937 perf_enable();
938 }
939
940 if (err) {
941 /*
942 * If this event can't go on and it's part of a
943 * group, then the whole group has to come off.
944 */
945 if (leader != event)
946 group_sched_out(leader, cpuctx, ctx);
947 if (leader->attr.pinned) {
948 update_group_times(leader);
949 leader->state = PERF_EVENT_STATE_ERROR;
950 }
951 }
952
953 unlock:
954 raw_spin_unlock(&ctx->lock);
955 }
956
957 /*
958 * Enable a event.
959 *
960 * If event->ctx is a cloned context, callers must make sure that
961 * every task struct that event->ctx->task could possibly point to
962 * remains valid. This condition is satisfied when called through
963 * perf_event_for_each_child or perf_event_for_each as described
964 * for perf_event_disable.
965 */
966 void perf_event_enable(struct perf_event *event)
967 {
968 struct perf_event_context *ctx = event->ctx;
969 struct task_struct *task = ctx->task;
970
971 if (!task) {
972 /*
973 * Enable the event on the cpu that it's on
974 */
975 smp_call_function_single(event->cpu, __perf_event_enable,
976 event, 1);
977 return;
978 }
979
980 raw_spin_lock_irq(&ctx->lock);
981 if (event->state >= PERF_EVENT_STATE_INACTIVE)
982 goto out;
983
984 /*
985 * If the event is in error state, clear that first.
986 * That way, if we see the event in error state below, we
987 * know that it has gone back into error state, as distinct
988 * from the task having been scheduled away before the
989 * cross-call arrived.
990 */
991 if (event->state == PERF_EVENT_STATE_ERROR)
992 event->state = PERF_EVENT_STATE_OFF;
993
994 retry:
995 raw_spin_unlock_irq(&ctx->lock);
996 task_oncpu_function_call(task, __perf_event_enable, event);
997
998 raw_spin_lock_irq(&ctx->lock);
999
1000 /*
1001 * If the context is active and the event is still off,
1002 * we need to retry the cross-call.
1003 */
1004 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1005 goto retry;
1006
1007 /*
1008 * Since we have the lock this context can't be scheduled
1009 * in, so we can change the state safely.
1010 */
1011 if (event->state == PERF_EVENT_STATE_OFF)
1012 __perf_event_mark_enabled(event, ctx);
1013
1014 out:
1015 raw_spin_unlock_irq(&ctx->lock);
1016 }
1017
1018 static int perf_event_refresh(struct perf_event *event, int refresh)
1019 {
1020 /*
1021 * not supported on inherited events
1022 */
1023 if (event->attr.inherit)
1024 return -EINVAL;
1025
1026 atomic_add(refresh, &event->event_limit);
1027 perf_event_enable(event);
1028
1029 return 0;
1030 }
1031
1032 enum event_type_t {
1033 EVENT_FLEXIBLE = 0x1,
1034 EVENT_PINNED = 0x2,
1035 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1036 };
1037
1038 static void ctx_sched_out(struct perf_event_context *ctx,
1039 struct perf_cpu_context *cpuctx,
1040 enum event_type_t event_type)
1041 {
1042 struct perf_event *event;
1043
1044 raw_spin_lock(&ctx->lock);
1045 ctx->is_active = 0;
1046 if (likely(!ctx->nr_events))
1047 goto out;
1048 update_context_time(ctx);
1049
1050 perf_disable();
1051 if (!ctx->nr_active)
1052 goto out_enable;
1053
1054 if (event_type & EVENT_PINNED)
1055 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1056 group_sched_out(event, cpuctx, ctx);
1057
1058 if (event_type & EVENT_FLEXIBLE)
1059 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1060 group_sched_out(event, cpuctx, ctx);
1061
1062 out_enable:
1063 perf_enable();
1064 out:
1065 raw_spin_unlock(&ctx->lock);
1066 }
1067
1068 /*
1069 * Test whether two contexts are equivalent, i.e. whether they
1070 * have both been cloned from the same version of the same context
1071 * and they both have the same number of enabled events.
1072 * If the number of enabled events is the same, then the set
1073 * of enabled events should be the same, because these are both
1074 * inherited contexts, therefore we can't access individual events
1075 * in them directly with an fd; we can only enable/disable all
1076 * events via prctl, or enable/disable all events in a family
1077 * via ioctl, which will have the same effect on both contexts.
1078 */
1079 static int context_equiv(struct perf_event_context *ctx1,
1080 struct perf_event_context *ctx2)
1081 {
1082 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1083 && ctx1->parent_gen == ctx2->parent_gen
1084 && !ctx1->pin_count && !ctx2->pin_count;
1085 }
1086
1087 static void __perf_event_sync_stat(struct perf_event *event,
1088 struct perf_event *next_event)
1089 {
1090 u64 value;
1091
1092 if (!event->attr.inherit_stat)
1093 return;
1094
1095 /*
1096 * Update the event value, we cannot use perf_event_read()
1097 * because we're in the middle of a context switch and have IRQs
1098 * disabled, which upsets smp_call_function_single(), however
1099 * we know the event must be on the current CPU, therefore we
1100 * don't need to use it.
1101 */
1102 switch (event->state) {
1103 case PERF_EVENT_STATE_ACTIVE:
1104 event->pmu->read(event);
1105 /* fall-through */
1106
1107 case PERF_EVENT_STATE_INACTIVE:
1108 update_event_times(event);
1109 break;
1110
1111 default:
1112 break;
1113 }
1114
1115 /*
1116 * In order to keep per-task stats reliable we need to flip the event
1117 * values when we flip the contexts.
1118 */
1119 value = atomic64_read(&next_event->count);
1120 value = atomic64_xchg(&event->count, value);
1121 atomic64_set(&next_event->count, value);
1122
1123 swap(event->total_time_enabled, next_event->total_time_enabled);
1124 swap(event->total_time_running, next_event->total_time_running);
1125
1126 /*
1127 * Since we swizzled the values, update the user visible data too.
1128 */
1129 perf_event_update_userpage(event);
1130 perf_event_update_userpage(next_event);
1131 }
1132
1133 #define list_next_entry(pos, member) \
1134 list_entry(pos->member.next, typeof(*pos), member)
1135
1136 static void perf_event_sync_stat(struct perf_event_context *ctx,
1137 struct perf_event_context *next_ctx)
1138 {
1139 struct perf_event *event, *next_event;
1140
1141 if (!ctx->nr_stat)
1142 return;
1143
1144 update_context_time(ctx);
1145
1146 event = list_first_entry(&ctx->event_list,
1147 struct perf_event, event_entry);
1148
1149 next_event = list_first_entry(&next_ctx->event_list,
1150 struct perf_event, event_entry);
1151
1152 while (&event->event_entry != &ctx->event_list &&
1153 &next_event->event_entry != &next_ctx->event_list) {
1154
1155 __perf_event_sync_stat(event, next_event);
1156
1157 event = list_next_entry(event, event_entry);
1158 next_event = list_next_entry(next_event, event_entry);
1159 }
1160 }
1161
1162 /*
1163 * Called from scheduler to remove the events of the current task,
1164 * with interrupts disabled.
1165 *
1166 * We stop each event and update the event value in event->count.
1167 *
1168 * This does not protect us against NMI, but disable()
1169 * sets the disabled bit in the control field of event _before_
1170 * accessing the event control register. If a NMI hits, then it will
1171 * not restart the event.
1172 */
1173 void perf_event_task_sched_out(struct task_struct *task,
1174 struct task_struct *next)
1175 {
1176 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1177 struct perf_event_context *ctx = task->perf_event_ctxp;
1178 struct perf_event_context *next_ctx;
1179 struct perf_event_context *parent;
1180 int do_switch = 1;
1181
1182 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1183
1184 if (likely(!ctx || !cpuctx->task_ctx))
1185 return;
1186
1187 rcu_read_lock();
1188 parent = rcu_dereference(ctx->parent_ctx);
1189 next_ctx = next->perf_event_ctxp;
1190 if (parent && next_ctx &&
1191 rcu_dereference(next_ctx->parent_ctx) == parent) {
1192 /*
1193 * Looks like the two contexts are clones, so we might be
1194 * able to optimize the context switch. We lock both
1195 * contexts and check that they are clones under the
1196 * lock (including re-checking that neither has been
1197 * uncloned in the meantime). It doesn't matter which
1198 * order we take the locks because no other cpu could
1199 * be trying to lock both of these tasks.
1200 */
1201 raw_spin_lock(&ctx->lock);
1202 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1203 if (context_equiv(ctx, next_ctx)) {
1204 /*
1205 * XXX do we need a memory barrier of sorts
1206 * wrt to rcu_dereference() of perf_event_ctxp
1207 */
1208 task->perf_event_ctxp = next_ctx;
1209 next->perf_event_ctxp = ctx;
1210 ctx->task = next;
1211 next_ctx->task = task;
1212 do_switch = 0;
1213
1214 perf_event_sync_stat(ctx, next_ctx);
1215 }
1216 raw_spin_unlock(&next_ctx->lock);
1217 raw_spin_unlock(&ctx->lock);
1218 }
1219 rcu_read_unlock();
1220
1221 if (do_switch) {
1222 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1223 cpuctx->task_ctx = NULL;
1224 }
1225 }
1226
1227 static void task_ctx_sched_out(struct perf_event_context *ctx,
1228 enum event_type_t event_type)
1229 {
1230 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1231
1232 if (!cpuctx->task_ctx)
1233 return;
1234
1235 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1236 return;
1237
1238 ctx_sched_out(ctx, cpuctx, event_type);
1239 cpuctx->task_ctx = NULL;
1240 }
1241
1242 /*
1243 * Called with IRQs disabled
1244 */
1245 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1246 {
1247 task_ctx_sched_out(ctx, EVENT_ALL);
1248 }
1249
1250 /*
1251 * Called with IRQs disabled
1252 */
1253 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1254 enum event_type_t event_type)
1255 {
1256 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1257 }
1258
1259 static void
1260 ctx_pinned_sched_in(struct perf_event_context *ctx,
1261 struct perf_cpu_context *cpuctx)
1262 {
1263 struct perf_event *event;
1264
1265 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1266 if (event->state <= PERF_EVENT_STATE_OFF)
1267 continue;
1268 if (event->cpu != -1 && event->cpu != smp_processor_id())
1269 continue;
1270
1271 if (group_can_go_on(event, cpuctx, 1))
1272 group_sched_in(event, cpuctx, ctx);
1273
1274 /*
1275 * If this pinned group hasn't been scheduled,
1276 * put it in error state.
1277 */
1278 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1279 update_group_times(event);
1280 event->state = PERF_EVENT_STATE_ERROR;
1281 }
1282 }
1283 }
1284
1285 static void
1286 ctx_flexible_sched_in(struct perf_event_context *ctx,
1287 struct perf_cpu_context *cpuctx)
1288 {
1289 struct perf_event *event;
1290 int can_add_hw = 1;
1291
1292 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1293 /* Ignore events in OFF or ERROR state */
1294 if (event->state <= PERF_EVENT_STATE_OFF)
1295 continue;
1296 /*
1297 * Listen to the 'cpu' scheduling filter constraint
1298 * of events:
1299 */
1300 if (event->cpu != -1 && event->cpu != smp_processor_id())
1301 continue;
1302
1303 if (group_can_go_on(event, cpuctx, can_add_hw))
1304 if (group_sched_in(event, cpuctx, ctx))
1305 can_add_hw = 0;
1306 }
1307 }
1308
1309 static void
1310 ctx_sched_in(struct perf_event_context *ctx,
1311 struct perf_cpu_context *cpuctx,
1312 enum event_type_t event_type)
1313 {
1314 raw_spin_lock(&ctx->lock);
1315 ctx->is_active = 1;
1316 if (likely(!ctx->nr_events))
1317 goto out;
1318
1319 ctx->timestamp = perf_clock();
1320
1321 perf_disable();
1322
1323 /*
1324 * First go through the list and put on any pinned groups
1325 * in order to give them the best chance of going on.
1326 */
1327 if (event_type & EVENT_PINNED)
1328 ctx_pinned_sched_in(ctx, cpuctx);
1329
1330 /* Then walk through the lower prio flexible groups */
1331 if (event_type & EVENT_FLEXIBLE)
1332 ctx_flexible_sched_in(ctx, cpuctx);
1333
1334 perf_enable();
1335 out:
1336 raw_spin_unlock(&ctx->lock);
1337 }
1338
1339 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1340 enum event_type_t event_type)
1341 {
1342 struct perf_event_context *ctx = &cpuctx->ctx;
1343
1344 ctx_sched_in(ctx, cpuctx, event_type);
1345 }
1346
1347 static void task_ctx_sched_in(struct task_struct *task,
1348 enum event_type_t event_type)
1349 {
1350 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1351 struct perf_event_context *ctx = task->perf_event_ctxp;
1352
1353 if (likely(!ctx))
1354 return;
1355 if (cpuctx->task_ctx == ctx)
1356 return;
1357 ctx_sched_in(ctx, cpuctx, event_type);
1358 cpuctx->task_ctx = ctx;
1359 }
1360 /*
1361 * Called from scheduler to add the events of the current task
1362 * with interrupts disabled.
1363 *
1364 * We restore the event value and then enable it.
1365 *
1366 * This does not protect us against NMI, but enable()
1367 * sets the enabled bit in the control field of event _before_
1368 * accessing the event control register. If a NMI hits, then it will
1369 * keep the event running.
1370 */
1371 void perf_event_task_sched_in(struct task_struct *task)
1372 {
1373 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1374 struct perf_event_context *ctx = task->perf_event_ctxp;
1375
1376 if (likely(!ctx))
1377 return;
1378
1379 if (cpuctx->task_ctx == ctx)
1380 return;
1381
1382 perf_disable();
1383
1384 /*
1385 * We want to keep the following priority order:
1386 * cpu pinned (that don't need to move), task pinned,
1387 * cpu flexible, task flexible.
1388 */
1389 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1390
1391 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1392 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1393 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1394
1395 cpuctx->task_ctx = ctx;
1396
1397 perf_enable();
1398 }
1399
1400 #define MAX_INTERRUPTS (~0ULL)
1401
1402 static void perf_log_throttle(struct perf_event *event, int enable);
1403
1404 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1405 {
1406 u64 frequency = event->attr.sample_freq;
1407 u64 sec = NSEC_PER_SEC;
1408 u64 divisor, dividend;
1409
1410 int count_fls, nsec_fls, frequency_fls, sec_fls;
1411
1412 count_fls = fls64(count);
1413 nsec_fls = fls64(nsec);
1414 frequency_fls = fls64(frequency);
1415 sec_fls = 30;
1416
1417 /*
1418 * We got @count in @nsec, with a target of sample_freq HZ
1419 * the target period becomes:
1420 *
1421 * @count * 10^9
1422 * period = -------------------
1423 * @nsec * sample_freq
1424 *
1425 */
1426
1427 /*
1428 * Reduce accuracy by one bit such that @a and @b converge
1429 * to a similar magnitude.
1430 */
1431 #define REDUCE_FLS(a, b) \
1432 do { \
1433 if (a##_fls > b##_fls) { \
1434 a >>= 1; \
1435 a##_fls--; \
1436 } else { \
1437 b >>= 1; \
1438 b##_fls--; \
1439 } \
1440 } while (0)
1441
1442 /*
1443 * Reduce accuracy until either term fits in a u64, then proceed with
1444 * the other, so that finally we can do a u64/u64 division.
1445 */
1446 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1447 REDUCE_FLS(nsec, frequency);
1448 REDUCE_FLS(sec, count);
1449 }
1450
1451 if (count_fls + sec_fls > 64) {
1452 divisor = nsec * frequency;
1453
1454 while (count_fls + sec_fls > 64) {
1455 REDUCE_FLS(count, sec);
1456 divisor >>= 1;
1457 }
1458
1459 dividend = count * sec;
1460 } else {
1461 dividend = count * sec;
1462
1463 while (nsec_fls + frequency_fls > 64) {
1464 REDUCE_FLS(nsec, frequency);
1465 dividend >>= 1;
1466 }
1467
1468 divisor = nsec * frequency;
1469 }
1470
1471 return div64_u64(dividend, divisor);
1472 }
1473
1474 static void perf_event_stop(struct perf_event *event)
1475 {
1476 if (!event->pmu->stop)
1477 return event->pmu->disable(event);
1478
1479 return event->pmu->stop(event);
1480 }
1481
1482 static int perf_event_start(struct perf_event *event)
1483 {
1484 if (!event->pmu->start)
1485 return event->pmu->enable(event);
1486
1487 return event->pmu->start(event);
1488 }
1489
1490 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1491 {
1492 struct hw_perf_event *hwc = &event->hw;
1493 u64 period, sample_period;
1494 s64 delta;
1495
1496 period = perf_calculate_period(event, nsec, count);
1497
1498 delta = (s64)(period - hwc->sample_period);
1499 delta = (delta + 7) / 8; /* low pass filter */
1500
1501 sample_period = hwc->sample_period + delta;
1502
1503 if (!sample_period)
1504 sample_period = 1;
1505
1506 hwc->sample_period = sample_period;
1507
1508 if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1509 perf_disable();
1510 perf_event_stop(event);
1511 atomic64_set(&hwc->period_left, 0);
1512 perf_event_start(event);
1513 perf_enable();
1514 }
1515 }
1516
1517 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1518 {
1519 struct perf_event *event;
1520 struct hw_perf_event *hwc;
1521 u64 interrupts, now;
1522 s64 delta;
1523
1524 raw_spin_lock(&ctx->lock);
1525 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1526 if (event->state != PERF_EVENT_STATE_ACTIVE)
1527 continue;
1528
1529 if (event->cpu != -1 && event->cpu != smp_processor_id())
1530 continue;
1531
1532 hwc = &event->hw;
1533
1534 interrupts = hwc->interrupts;
1535 hwc->interrupts = 0;
1536
1537 /*
1538 * unthrottle events on the tick
1539 */
1540 if (interrupts == MAX_INTERRUPTS) {
1541 perf_log_throttle(event, 1);
1542 perf_disable();
1543 event->pmu->unthrottle(event);
1544 perf_enable();
1545 }
1546
1547 if (!event->attr.freq || !event->attr.sample_freq)
1548 continue;
1549
1550 perf_disable();
1551 event->pmu->read(event);
1552 now = atomic64_read(&event->count);
1553 delta = now - hwc->freq_count_stamp;
1554 hwc->freq_count_stamp = now;
1555
1556 if (delta > 0)
1557 perf_adjust_period(event, TICK_NSEC, delta);
1558 perf_enable();
1559 }
1560 raw_spin_unlock(&ctx->lock);
1561 }
1562
1563 /*
1564 * Round-robin a context's events:
1565 */
1566 static void rotate_ctx(struct perf_event_context *ctx)
1567 {
1568 raw_spin_lock(&ctx->lock);
1569
1570 /* Rotate the first entry last of non-pinned groups */
1571 list_rotate_left(&ctx->flexible_groups);
1572
1573 raw_spin_unlock(&ctx->lock);
1574 }
1575
1576 void perf_event_task_tick(struct task_struct *curr)
1577 {
1578 struct perf_cpu_context *cpuctx;
1579 struct perf_event_context *ctx;
1580 int rotate = 0;
1581
1582 if (!atomic_read(&nr_events))
1583 return;
1584
1585 cpuctx = &__get_cpu_var(perf_cpu_context);
1586 if (cpuctx->ctx.nr_events &&
1587 cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1588 rotate = 1;
1589
1590 ctx = curr->perf_event_ctxp;
1591 if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1592 rotate = 1;
1593
1594 perf_ctx_adjust_freq(&cpuctx->ctx);
1595 if (ctx)
1596 perf_ctx_adjust_freq(ctx);
1597
1598 if (!rotate)
1599 return;
1600
1601 perf_disable();
1602 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1603 if (ctx)
1604 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1605
1606 rotate_ctx(&cpuctx->ctx);
1607 if (ctx)
1608 rotate_ctx(ctx);
1609
1610 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1611 if (ctx)
1612 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1613 perf_enable();
1614 }
1615
1616 static int event_enable_on_exec(struct perf_event *event,
1617 struct perf_event_context *ctx)
1618 {
1619 if (!event->attr.enable_on_exec)
1620 return 0;
1621
1622 event->attr.enable_on_exec = 0;
1623 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1624 return 0;
1625
1626 __perf_event_mark_enabled(event, ctx);
1627
1628 return 1;
1629 }
1630
1631 /*
1632 * Enable all of a task's events that have been marked enable-on-exec.
1633 * This expects task == current.
1634 */
1635 static void perf_event_enable_on_exec(struct task_struct *task)
1636 {
1637 struct perf_event_context *ctx;
1638 struct perf_event *event;
1639 unsigned long flags;
1640 int enabled = 0;
1641 int ret;
1642
1643 local_irq_save(flags);
1644 ctx = task->perf_event_ctxp;
1645 if (!ctx || !ctx->nr_events)
1646 goto out;
1647
1648 __perf_event_task_sched_out(ctx);
1649
1650 raw_spin_lock(&ctx->lock);
1651
1652 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1653 ret = event_enable_on_exec(event, ctx);
1654 if (ret)
1655 enabled = 1;
1656 }
1657
1658 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1659 ret = event_enable_on_exec(event, ctx);
1660 if (ret)
1661 enabled = 1;
1662 }
1663
1664 /*
1665 * Unclone this context if we enabled any event.
1666 */
1667 if (enabled)
1668 unclone_ctx(ctx);
1669
1670 raw_spin_unlock(&ctx->lock);
1671
1672 perf_event_task_sched_in(task);
1673 out:
1674 local_irq_restore(flags);
1675 }
1676
1677 /*
1678 * Cross CPU call to read the hardware event
1679 */
1680 static void __perf_event_read(void *info)
1681 {
1682 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1683 struct perf_event *event = info;
1684 struct perf_event_context *ctx = event->ctx;
1685
1686 /*
1687 * If this is a task context, we need to check whether it is
1688 * the current task context of this cpu. If not it has been
1689 * scheduled out before the smp call arrived. In that case
1690 * event->count would have been updated to a recent sample
1691 * when the event was scheduled out.
1692 */
1693 if (ctx->task && cpuctx->task_ctx != ctx)
1694 return;
1695
1696 raw_spin_lock(&ctx->lock);
1697 update_context_time(ctx);
1698 update_event_times(event);
1699 raw_spin_unlock(&ctx->lock);
1700
1701 event->pmu->read(event);
1702 }
1703
1704 static u64 perf_event_read(struct perf_event *event)
1705 {
1706 /*
1707 * If event is enabled and currently active on a CPU, update the
1708 * value in the event structure:
1709 */
1710 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1711 smp_call_function_single(event->oncpu,
1712 __perf_event_read, event, 1);
1713 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1714 struct perf_event_context *ctx = event->ctx;
1715 unsigned long flags;
1716
1717 raw_spin_lock_irqsave(&ctx->lock, flags);
1718 update_context_time(ctx);
1719 update_event_times(event);
1720 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1721 }
1722
1723 return atomic64_read(&event->count);
1724 }
1725
1726 /*
1727 * Initialize the perf_event context in a task_struct:
1728 */
1729 static void
1730 __perf_event_init_context(struct perf_event_context *ctx,
1731 struct task_struct *task)
1732 {
1733 raw_spin_lock_init(&ctx->lock);
1734 mutex_init(&ctx->mutex);
1735 INIT_LIST_HEAD(&ctx->pinned_groups);
1736 INIT_LIST_HEAD(&ctx->flexible_groups);
1737 INIT_LIST_HEAD(&ctx->event_list);
1738 atomic_set(&ctx->refcount, 1);
1739 ctx->task = task;
1740 }
1741
1742 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1743 {
1744 struct perf_event_context *ctx;
1745 struct perf_cpu_context *cpuctx;
1746 struct task_struct *task;
1747 unsigned long flags;
1748 int err;
1749
1750 if (pid == -1 && cpu != -1) {
1751 /* Must be root to operate on a CPU event: */
1752 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1753 return ERR_PTR(-EACCES);
1754
1755 if (cpu < 0 || cpu >= nr_cpumask_bits)
1756 return ERR_PTR(-EINVAL);
1757
1758 /*
1759 * We could be clever and allow to attach a event to an
1760 * offline CPU and activate it when the CPU comes up, but
1761 * that's for later.
1762 */
1763 if (!cpu_online(cpu))
1764 return ERR_PTR(-ENODEV);
1765
1766 cpuctx = &per_cpu(perf_cpu_context, cpu);
1767 ctx = &cpuctx->ctx;
1768 get_ctx(ctx);
1769
1770 return ctx;
1771 }
1772
1773 rcu_read_lock();
1774 if (!pid)
1775 task = current;
1776 else
1777 task = find_task_by_vpid(pid);
1778 if (task)
1779 get_task_struct(task);
1780 rcu_read_unlock();
1781
1782 if (!task)
1783 return ERR_PTR(-ESRCH);
1784
1785 /*
1786 * Can't attach events to a dying task.
1787 */
1788 err = -ESRCH;
1789 if (task->flags & PF_EXITING)
1790 goto errout;
1791
1792 /* Reuse ptrace permission checks for now. */
1793 err = -EACCES;
1794 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1795 goto errout;
1796
1797 retry:
1798 ctx = perf_lock_task_context(task, &flags);
1799 if (ctx) {
1800 unclone_ctx(ctx);
1801 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1802 }
1803
1804 if (!ctx) {
1805 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1806 err = -ENOMEM;
1807 if (!ctx)
1808 goto errout;
1809 __perf_event_init_context(ctx, task);
1810 get_ctx(ctx);
1811 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1812 /*
1813 * We raced with some other task; use
1814 * the context they set.
1815 */
1816 kfree(ctx);
1817 goto retry;
1818 }
1819 get_task_struct(task);
1820 }
1821
1822 put_task_struct(task);
1823 return ctx;
1824
1825 errout:
1826 put_task_struct(task);
1827 return ERR_PTR(err);
1828 }
1829
1830 static void perf_event_free_filter(struct perf_event *event);
1831
1832 static void free_event_rcu(struct rcu_head *head)
1833 {
1834 struct perf_event *event;
1835
1836 event = container_of(head, struct perf_event, rcu_head);
1837 if (event->ns)
1838 put_pid_ns(event->ns);
1839 perf_event_free_filter(event);
1840 kfree(event);
1841 }
1842
1843 static void perf_pending_sync(struct perf_event *event);
1844
1845 static void free_event(struct perf_event *event)
1846 {
1847 perf_pending_sync(event);
1848
1849 if (!event->parent) {
1850 atomic_dec(&nr_events);
1851 if (event->attr.mmap)
1852 atomic_dec(&nr_mmap_events);
1853 if (event->attr.comm)
1854 atomic_dec(&nr_comm_events);
1855 if (event->attr.task)
1856 atomic_dec(&nr_task_events);
1857 }
1858
1859 if (event->output) {
1860 fput(event->output->filp);
1861 event->output = NULL;
1862 }
1863
1864 if (event->destroy)
1865 event->destroy(event);
1866
1867 put_ctx(event->ctx);
1868 call_rcu(&event->rcu_head, free_event_rcu);
1869 }
1870
1871 int perf_event_release_kernel(struct perf_event *event)
1872 {
1873 struct perf_event_context *ctx = event->ctx;
1874
1875 /*
1876 * Remove from the PMU, can't get re-enabled since we got
1877 * here because the last ref went.
1878 */
1879 perf_event_disable(event);
1880
1881 WARN_ON_ONCE(ctx->parent_ctx);
1882 /*
1883 * There are two ways this annotation is useful:
1884 *
1885 * 1) there is a lock recursion from perf_event_exit_task
1886 * see the comment there.
1887 *
1888 * 2) there is a lock-inversion with mmap_sem through
1889 * perf_event_read_group(), which takes faults while
1890 * holding ctx->mutex, however this is called after
1891 * the last filedesc died, so there is no possibility
1892 * to trigger the AB-BA case.
1893 */
1894 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
1895 raw_spin_lock_irq(&ctx->lock);
1896 list_del_event(event, ctx);
1897 perf_destroy_group(event, ctx);
1898 raw_spin_unlock_irq(&ctx->lock);
1899 mutex_unlock(&ctx->mutex);
1900
1901 mutex_lock(&event->owner->perf_event_mutex);
1902 list_del_init(&event->owner_entry);
1903 mutex_unlock(&event->owner->perf_event_mutex);
1904 put_task_struct(event->owner);
1905
1906 free_event(event);
1907
1908 return 0;
1909 }
1910 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1911
1912 /*
1913 * Called when the last reference to the file is gone.
1914 */
1915 static int perf_release(struct inode *inode, struct file *file)
1916 {
1917 struct perf_event *event = file->private_data;
1918
1919 file->private_data = NULL;
1920
1921 return perf_event_release_kernel(event);
1922 }
1923
1924 static int perf_event_read_size(struct perf_event *event)
1925 {
1926 int entry = sizeof(u64); /* value */
1927 int size = 0;
1928 int nr = 1;
1929
1930 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1931 size += sizeof(u64);
1932
1933 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1934 size += sizeof(u64);
1935
1936 if (event->attr.read_format & PERF_FORMAT_ID)
1937 entry += sizeof(u64);
1938
1939 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1940 nr += event->group_leader->nr_siblings;
1941 size += sizeof(u64);
1942 }
1943
1944 size += entry * nr;
1945
1946 return size;
1947 }
1948
1949 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1950 {
1951 struct perf_event *child;
1952 u64 total = 0;
1953
1954 *enabled = 0;
1955 *running = 0;
1956
1957 mutex_lock(&event->child_mutex);
1958 total += perf_event_read(event);
1959 *enabled += event->total_time_enabled +
1960 atomic64_read(&event->child_total_time_enabled);
1961 *running += event->total_time_running +
1962 atomic64_read(&event->child_total_time_running);
1963
1964 list_for_each_entry(child, &event->child_list, child_list) {
1965 total += perf_event_read(child);
1966 *enabled += child->total_time_enabled;
1967 *running += child->total_time_running;
1968 }
1969 mutex_unlock(&event->child_mutex);
1970
1971 return total;
1972 }
1973 EXPORT_SYMBOL_GPL(perf_event_read_value);
1974
1975 static int perf_event_read_group(struct perf_event *event,
1976 u64 read_format, char __user *buf)
1977 {
1978 struct perf_event *leader = event->group_leader, *sub;
1979 int n = 0, size = 0, ret = -EFAULT;
1980 struct perf_event_context *ctx = leader->ctx;
1981 u64 values[5];
1982 u64 count, enabled, running;
1983
1984 mutex_lock(&ctx->mutex);
1985 count = perf_event_read_value(leader, &enabled, &running);
1986
1987 values[n++] = 1 + leader->nr_siblings;
1988 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1989 values[n++] = enabled;
1990 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1991 values[n++] = running;
1992 values[n++] = count;
1993 if (read_format & PERF_FORMAT_ID)
1994 values[n++] = primary_event_id(leader);
1995
1996 size = n * sizeof(u64);
1997
1998 if (copy_to_user(buf, values, size))
1999 goto unlock;
2000
2001 ret = size;
2002
2003 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2004 n = 0;
2005
2006 values[n++] = perf_event_read_value(sub, &enabled, &running);
2007 if (read_format & PERF_FORMAT_ID)
2008 values[n++] = primary_event_id(sub);
2009
2010 size = n * sizeof(u64);
2011
2012 if (copy_to_user(buf + ret, values, size)) {
2013 ret = -EFAULT;
2014 goto unlock;
2015 }
2016
2017 ret += size;
2018 }
2019 unlock:
2020 mutex_unlock(&ctx->mutex);
2021
2022 return ret;
2023 }
2024
2025 static int perf_event_read_one(struct perf_event *event,
2026 u64 read_format, char __user *buf)
2027 {
2028 u64 enabled, running;
2029 u64 values[4];
2030 int n = 0;
2031
2032 values[n++] = perf_event_read_value(event, &enabled, &running);
2033 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2034 values[n++] = enabled;
2035 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2036 values[n++] = running;
2037 if (read_format & PERF_FORMAT_ID)
2038 values[n++] = primary_event_id(event);
2039
2040 if (copy_to_user(buf, values, n * sizeof(u64)))
2041 return -EFAULT;
2042
2043 return n * sizeof(u64);
2044 }
2045
2046 /*
2047 * Read the performance event - simple non blocking version for now
2048 */
2049 static ssize_t
2050 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2051 {
2052 u64 read_format = event->attr.read_format;
2053 int ret;
2054
2055 /*
2056 * Return end-of-file for a read on a event that is in
2057 * error state (i.e. because it was pinned but it couldn't be
2058 * scheduled on to the CPU at some point).
2059 */
2060 if (event->state == PERF_EVENT_STATE_ERROR)
2061 return 0;
2062
2063 if (count < perf_event_read_size(event))
2064 return -ENOSPC;
2065
2066 WARN_ON_ONCE(event->ctx->parent_ctx);
2067 if (read_format & PERF_FORMAT_GROUP)
2068 ret = perf_event_read_group(event, read_format, buf);
2069 else
2070 ret = perf_event_read_one(event, read_format, buf);
2071
2072 return ret;
2073 }
2074
2075 static ssize_t
2076 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2077 {
2078 struct perf_event *event = file->private_data;
2079
2080 return perf_read_hw(event, buf, count);
2081 }
2082
2083 static unsigned int perf_poll(struct file *file, poll_table *wait)
2084 {
2085 struct perf_event *event = file->private_data;
2086 struct perf_mmap_data *data;
2087 unsigned int events = POLL_HUP;
2088
2089 rcu_read_lock();
2090 data = rcu_dereference(event->data);
2091 if (data)
2092 events = atomic_xchg(&data->poll, 0);
2093 rcu_read_unlock();
2094
2095 poll_wait(file, &event->waitq, wait);
2096
2097 return events;
2098 }
2099
2100 static void perf_event_reset(struct perf_event *event)
2101 {
2102 (void)perf_event_read(event);
2103 atomic64_set(&event->count, 0);
2104 perf_event_update_userpage(event);
2105 }
2106
2107 /*
2108 * Holding the top-level event's child_mutex means that any
2109 * descendant process that has inherited this event will block
2110 * in sync_child_event if it goes to exit, thus satisfying the
2111 * task existence requirements of perf_event_enable/disable.
2112 */
2113 static void perf_event_for_each_child(struct perf_event *event,
2114 void (*func)(struct perf_event *))
2115 {
2116 struct perf_event *child;
2117
2118 WARN_ON_ONCE(event->ctx->parent_ctx);
2119 mutex_lock(&event->child_mutex);
2120 func(event);
2121 list_for_each_entry(child, &event->child_list, child_list)
2122 func(child);
2123 mutex_unlock(&event->child_mutex);
2124 }
2125
2126 static void perf_event_for_each(struct perf_event *event,
2127 void (*func)(struct perf_event *))
2128 {
2129 struct perf_event_context *ctx = event->ctx;
2130 struct perf_event *sibling;
2131
2132 WARN_ON_ONCE(ctx->parent_ctx);
2133 mutex_lock(&ctx->mutex);
2134 event = event->group_leader;
2135
2136 perf_event_for_each_child(event, func);
2137 func(event);
2138 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2139 perf_event_for_each_child(event, func);
2140 mutex_unlock(&ctx->mutex);
2141 }
2142
2143 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2144 {
2145 struct perf_event_context *ctx = event->ctx;
2146 unsigned long size;
2147 int ret = 0;
2148 u64 value;
2149
2150 if (!event->attr.sample_period)
2151 return -EINVAL;
2152
2153 size = copy_from_user(&value, arg, sizeof(value));
2154 if (size != sizeof(value))
2155 return -EFAULT;
2156
2157 if (!value)
2158 return -EINVAL;
2159
2160 raw_spin_lock_irq(&ctx->lock);
2161 if (event->attr.freq) {
2162 if (value > sysctl_perf_event_sample_rate) {
2163 ret = -EINVAL;
2164 goto unlock;
2165 }
2166
2167 event->attr.sample_freq = value;
2168 } else {
2169 event->attr.sample_period = value;
2170 event->hw.sample_period = value;
2171 }
2172 unlock:
2173 raw_spin_unlock_irq(&ctx->lock);
2174
2175 return ret;
2176 }
2177
2178 static int perf_event_set_output(struct perf_event *event, int output_fd);
2179 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2180
2181 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2182 {
2183 struct perf_event *event = file->private_data;
2184 void (*func)(struct perf_event *);
2185 u32 flags = arg;
2186
2187 switch (cmd) {
2188 case PERF_EVENT_IOC_ENABLE:
2189 func = perf_event_enable;
2190 break;
2191 case PERF_EVENT_IOC_DISABLE:
2192 func = perf_event_disable;
2193 break;
2194 case PERF_EVENT_IOC_RESET:
2195 func = perf_event_reset;
2196 break;
2197
2198 case PERF_EVENT_IOC_REFRESH:
2199 return perf_event_refresh(event, arg);
2200
2201 case PERF_EVENT_IOC_PERIOD:
2202 return perf_event_period(event, (u64 __user *)arg);
2203
2204 case PERF_EVENT_IOC_SET_OUTPUT:
2205 return perf_event_set_output(event, arg);
2206
2207 case PERF_EVENT_IOC_SET_FILTER:
2208 return perf_event_set_filter(event, (void __user *)arg);
2209
2210 default:
2211 return -ENOTTY;
2212 }
2213
2214 if (flags & PERF_IOC_FLAG_GROUP)
2215 perf_event_for_each(event, func);
2216 else
2217 perf_event_for_each_child(event, func);
2218
2219 return 0;
2220 }
2221
2222 int perf_event_task_enable(void)
2223 {
2224 struct perf_event *event;
2225
2226 mutex_lock(&current->perf_event_mutex);
2227 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2228 perf_event_for_each_child(event, perf_event_enable);
2229 mutex_unlock(&current->perf_event_mutex);
2230
2231 return 0;
2232 }
2233
2234 int perf_event_task_disable(void)
2235 {
2236 struct perf_event *event;
2237
2238 mutex_lock(&current->perf_event_mutex);
2239 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2240 perf_event_for_each_child(event, perf_event_disable);
2241 mutex_unlock(&current->perf_event_mutex);
2242
2243 return 0;
2244 }
2245
2246 #ifndef PERF_EVENT_INDEX_OFFSET
2247 # define PERF_EVENT_INDEX_OFFSET 0
2248 #endif
2249
2250 static int perf_event_index(struct perf_event *event)
2251 {
2252 if (event->state != PERF_EVENT_STATE_ACTIVE)
2253 return 0;
2254
2255 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2256 }
2257
2258 /*
2259 * Callers need to ensure there can be no nesting of this function, otherwise
2260 * the seqlock logic goes bad. We can not serialize this because the arch
2261 * code calls this from NMI context.
2262 */
2263 void perf_event_update_userpage(struct perf_event *event)
2264 {
2265 struct perf_event_mmap_page *userpg;
2266 struct perf_mmap_data *data;
2267
2268 rcu_read_lock();
2269 data = rcu_dereference(event->data);
2270 if (!data)
2271 goto unlock;
2272
2273 userpg = data->user_page;
2274
2275 /*
2276 * Disable preemption so as to not let the corresponding user-space
2277 * spin too long if we get preempted.
2278 */
2279 preempt_disable();
2280 ++userpg->lock;
2281 barrier();
2282 userpg->index = perf_event_index(event);
2283 userpg->offset = atomic64_read(&event->count);
2284 if (event->state == PERF_EVENT_STATE_ACTIVE)
2285 userpg->offset -= atomic64_read(&event->hw.prev_count);
2286
2287 userpg->time_enabled = event->total_time_enabled +
2288 atomic64_read(&event->child_total_time_enabled);
2289
2290 userpg->time_running = event->total_time_running +
2291 atomic64_read(&event->child_total_time_running);
2292
2293 barrier();
2294 ++userpg->lock;
2295 preempt_enable();
2296 unlock:
2297 rcu_read_unlock();
2298 }
2299
2300 #ifndef CONFIG_PERF_USE_VMALLOC
2301
2302 /*
2303 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2304 */
2305
2306 static struct page *
2307 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2308 {
2309 if (pgoff > data->nr_pages)
2310 return NULL;
2311
2312 if (pgoff == 0)
2313 return virt_to_page(data->user_page);
2314
2315 return virt_to_page(data->data_pages[pgoff - 1]);
2316 }
2317
2318 static void *perf_mmap_alloc_page(int cpu)
2319 {
2320 struct page *page;
2321 int node;
2322
2323 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2324 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2325 if (!page)
2326 return NULL;
2327
2328 return page_address(page);
2329 }
2330
2331 static struct perf_mmap_data *
2332 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2333 {
2334 struct perf_mmap_data *data;
2335 unsigned long size;
2336 int i;
2337
2338 WARN_ON(atomic_read(&event->mmap_count));
2339
2340 size = sizeof(struct perf_mmap_data);
2341 size += nr_pages * sizeof(void *);
2342
2343 data = kzalloc(size, GFP_KERNEL);
2344 if (!data)
2345 goto fail;
2346
2347 data->user_page = perf_mmap_alloc_page(event->cpu);
2348 if (!data->user_page)
2349 goto fail_user_page;
2350
2351 for (i = 0; i < nr_pages; i++) {
2352 data->data_pages[i] = perf_mmap_alloc_page(event->cpu);
2353 if (!data->data_pages[i])
2354 goto fail_data_pages;
2355 }
2356
2357 data->nr_pages = nr_pages;
2358
2359 return data;
2360
2361 fail_data_pages:
2362 for (i--; i >= 0; i--)
2363 free_page((unsigned long)data->data_pages[i]);
2364
2365 free_page((unsigned long)data->user_page);
2366
2367 fail_user_page:
2368 kfree(data);
2369
2370 fail:
2371 return NULL;
2372 }
2373
2374 static void perf_mmap_free_page(unsigned long addr)
2375 {
2376 struct page *page = virt_to_page((void *)addr);
2377
2378 page->mapping = NULL;
2379 __free_page(page);
2380 }
2381
2382 static void perf_mmap_data_free(struct perf_mmap_data *data)
2383 {
2384 int i;
2385
2386 perf_mmap_free_page((unsigned long)data->user_page);
2387 for (i = 0; i < data->nr_pages; i++)
2388 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2389 kfree(data);
2390 }
2391
2392 static inline int page_order(struct perf_mmap_data *data)
2393 {
2394 return 0;
2395 }
2396
2397 #else
2398
2399 /*
2400 * Back perf_mmap() with vmalloc memory.
2401 *
2402 * Required for architectures that have d-cache aliasing issues.
2403 */
2404
2405 static inline int page_order(struct perf_mmap_data *data)
2406 {
2407 return data->page_order;
2408 }
2409
2410 static struct page *
2411 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2412 {
2413 if (pgoff > (1UL << page_order(data)))
2414 return NULL;
2415
2416 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2417 }
2418
2419 static void perf_mmap_unmark_page(void *addr)
2420 {
2421 struct page *page = vmalloc_to_page(addr);
2422
2423 page->mapping = NULL;
2424 }
2425
2426 static void perf_mmap_data_free_work(struct work_struct *work)
2427 {
2428 struct perf_mmap_data *data;
2429 void *base;
2430 int i, nr;
2431
2432 data = container_of(work, struct perf_mmap_data, work);
2433 nr = 1 << page_order(data);
2434
2435 base = data->user_page;
2436 for (i = 0; i < nr + 1; i++)
2437 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2438
2439 vfree(base);
2440 kfree(data);
2441 }
2442
2443 static void perf_mmap_data_free(struct perf_mmap_data *data)
2444 {
2445 schedule_work(&data->work);
2446 }
2447
2448 static struct perf_mmap_data *
2449 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2450 {
2451 struct perf_mmap_data *data;
2452 unsigned long size;
2453 void *all_buf;
2454
2455 WARN_ON(atomic_read(&event->mmap_count));
2456
2457 size = sizeof(struct perf_mmap_data);
2458 size += sizeof(void *);
2459
2460 data = kzalloc(size, GFP_KERNEL);
2461 if (!data)
2462 goto fail;
2463
2464 INIT_WORK(&data->work, perf_mmap_data_free_work);
2465
2466 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2467 if (!all_buf)
2468 goto fail_all_buf;
2469
2470 data->user_page = all_buf;
2471 data->data_pages[0] = all_buf + PAGE_SIZE;
2472 data->page_order = ilog2(nr_pages);
2473 data->nr_pages = 1;
2474
2475 return data;
2476
2477 fail_all_buf:
2478 kfree(data);
2479
2480 fail:
2481 return NULL;
2482 }
2483
2484 #endif
2485
2486 static unsigned long perf_data_size(struct perf_mmap_data *data)
2487 {
2488 return data->nr_pages << (PAGE_SHIFT + page_order(data));
2489 }
2490
2491 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2492 {
2493 struct perf_event *event = vma->vm_file->private_data;
2494 struct perf_mmap_data *data;
2495 int ret = VM_FAULT_SIGBUS;
2496
2497 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2498 if (vmf->pgoff == 0)
2499 ret = 0;
2500 return ret;
2501 }
2502
2503 rcu_read_lock();
2504 data = rcu_dereference(event->data);
2505 if (!data)
2506 goto unlock;
2507
2508 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2509 goto unlock;
2510
2511 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2512 if (!vmf->page)
2513 goto unlock;
2514
2515 get_page(vmf->page);
2516 vmf->page->mapping = vma->vm_file->f_mapping;
2517 vmf->page->index = vmf->pgoff;
2518
2519 ret = 0;
2520 unlock:
2521 rcu_read_unlock();
2522
2523 return ret;
2524 }
2525
2526 static void
2527 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2528 {
2529 long max_size = perf_data_size(data);
2530
2531 if (event->attr.watermark) {
2532 data->watermark = min_t(long, max_size,
2533 event->attr.wakeup_watermark);
2534 }
2535
2536 if (!data->watermark)
2537 data->watermark = max_size / 2;
2538
2539
2540 rcu_assign_pointer(event->data, data);
2541 }
2542
2543 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2544 {
2545 struct perf_mmap_data *data;
2546
2547 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2548 perf_mmap_data_free(data);
2549 }
2550
2551 static void perf_mmap_data_release(struct perf_event *event)
2552 {
2553 struct perf_mmap_data *data = event->data;
2554
2555 WARN_ON(atomic_read(&event->mmap_count));
2556
2557 rcu_assign_pointer(event->data, NULL);
2558 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2559 }
2560
2561 static void perf_mmap_open(struct vm_area_struct *vma)
2562 {
2563 struct perf_event *event = vma->vm_file->private_data;
2564
2565 atomic_inc(&event->mmap_count);
2566 }
2567
2568 static void perf_mmap_close(struct vm_area_struct *vma)
2569 {
2570 struct perf_event *event = vma->vm_file->private_data;
2571
2572 WARN_ON_ONCE(event->ctx->parent_ctx);
2573 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2574 unsigned long size = perf_data_size(event->data);
2575 struct user_struct *user = current_user();
2576
2577 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2578 vma->vm_mm->locked_vm -= event->data->nr_locked;
2579 perf_mmap_data_release(event);
2580 mutex_unlock(&event->mmap_mutex);
2581 }
2582 }
2583
2584 static const struct vm_operations_struct perf_mmap_vmops = {
2585 .open = perf_mmap_open,
2586 .close = perf_mmap_close,
2587 .fault = perf_mmap_fault,
2588 .page_mkwrite = perf_mmap_fault,
2589 };
2590
2591 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2592 {
2593 struct perf_event *event = file->private_data;
2594 unsigned long user_locked, user_lock_limit;
2595 struct user_struct *user = current_user();
2596 unsigned long locked, lock_limit;
2597 struct perf_mmap_data *data;
2598 unsigned long vma_size;
2599 unsigned long nr_pages;
2600 long user_extra, extra;
2601 int ret = 0;
2602
2603 /*
2604 * Don't allow mmap() of inherited per-task counters. This would
2605 * create a performance issue due to all children writing to the
2606 * same buffer.
2607 */
2608 if (event->cpu == -1 && event->attr.inherit)
2609 return -EINVAL;
2610
2611 if (!(vma->vm_flags & VM_SHARED))
2612 return -EINVAL;
2613
2614 vma_size = vma->vm_end - vma->vm_start;
2615 nr_pages = (vma_size / PAGE_SIZE) - 1;
2616
2617 /*
2618 * If we have data pages ensure they're a power-of-two number, so we
2619 * can do bitmasks instead of modulo.
2620 */
2621 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2622 return -EINVAL;
2623
2624 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2625 return -EINVAL;
2626
2627 if (vma->vm_pgoff != 0)
2628 return -EINVAL;
2629
2630 WARN_ON_ONCE(event->ctx->parent_ctx);
2631 mutex_lock(&event->mmap_mutex);
2632 if (event->output) {
2633 ret = -EINVAL;
2634 goto unlock;
2635 }
2636
2637 if (atomic_inc_not_zero(&event->mmap_count)) {
2638 if (nr_pages != event->data->nr_pages)
2639 ret = -EINVAL;
2640 goto unlock;
2641 }
2642
2643 user_extra = nr_pages + 1;
2644 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2645
2646 /*
2647 * Increase the limit linearly with more CPUs:
2648 */
2649 user_lock_limit *= num_online_cpus();
2650
2651 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2652
2653 extra = 0;
2654 if (user_locked > user_lock_limit)
2655 extra = user_locked - user_lock_limit;
2656
2657 lock_limit = rlimit(RLIMIT_MEMLOCK);
2658 lock_limit >>= PAGE_SHIFT;
2659 locked = vma->vm_mm->locked_vm + extra;
2660
2661 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2662 !capable(CAP_IPC_LOCK)) {
2663 ret = -EPERM;
2664 goto unlock;
2665 }
2666
2667 WARN_ON(event->data);
2668
2669 data = perf_mmap_data_alloc(event, nr_pages);
2670 ret = -ENOMEM;
2671 if (!data)
2672 goto unlock;
2673
2674 ret = 0;
2675 perf_mmap_data_init(event, data);
2676
2677 atomic_set(&event->mmap_count, 1);
2678 atomic_long_add(user_extra, &user->locked_vm);
2679 vma->vm_mm->locked_vm += extra;
2680 event->data->nr_locked = extra;
2681 if (vma->vm_flags & VM_WRITE)
2682 event->data->writable = 1;
2683
2684 unlock:
2685 mutex_unlock(&event->mmap_mutex);
2686
2687 vma->vm_flags |= VM_RESERVED;
2688 vma->vm_ops = &perf_mmap_vmops;
2689
2690 return ret;
2691 }
2692
2693 static int perf_fasync(int fd, struct file *filp, int on)
2694 {
2695 struct inode *inode = filp->f_path.dentry->d_inode;
2696 struct perf_event *event = filp->private_data;
2697 int retval;
2698
2699 mutex_lock(&inode->i_mutex);
2700 retval = fasync_helper(fd, filp, on, &event->fasync);
2701 mutex_unlock(&inode->i_mutex);
2702
2703 if (retval < 0)
2704 return retval;
2705
2706 return 0;
2707 }
2708
2709 static const struct file_operations perf_fops = {
2710 .llseek = no_llseek,
2711 .release = perf_release,
2712 .read = perf_read,
2713 .poll = perf_poll,
2714 .unlocked_ioctl = perf_ioctl,
2715 .compat_ioctl = perf_ioctl,
2716 .mmap = perf_mmap,
2717 .fasync = perf_fasync,
2718 };
2719
2720 /*
2721 * Perf event wakeup
2722 *
2723 * If there's data, ensure we set the poll() state and publish everything
2724 * to user-space before waking everybody up.
2725 */
2726
2727 void perf_event_wakeup(struct perf_event *event)
2728 {
2729 wake_up_all(&event->waitq);
2730
2731 if (event->pending_kill) {
2732 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2733 event->pending_kill = 0;
2734 }
2735 }
2736
2737 /*
2738 * Pending wakeups
2739 *
2740 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2741 *
2742 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2743 * single linked list and use cmpxchg() to add entries lockless.
2744 */
2745
2746 static void perf_pending_event(struct perf_pending_entry *entry)
2747 {
2748 struct perf_event *event = container_of(entry,
2749 struct perf_event, pending);
2750
2751 if (event->pending_disable) {
2752 event->pending_disable = 0;
2753 __perf_event_disable(event);
2754 }
2755
2756 if (event->pending_wakeup) {
2757 event->pending_wakeup = 0;
2758 perf_event_wakeup(event);
2759 }
2760 }
2761
2762 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2763
2764 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2765 PENDING_TAIL,
2766 };
2767
2768 static void perf_pending_queue(struct perf_pending_entry *entry,
2769 void (*func)(struct perf_pending_entry *))
2770 {
2771 struct perf_pending_entry **head;
2772
2773 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2774 return;
2775
2776 entry->func = func;
2777
2778 head = &get_cpu_var(perf_pending_head);
2779
2780 do {
2781 entry->next = *head;
2782 } while (cmpxchg(head, entry->next, entry) != entry->next);
2783
2784 set_perf_event_pending();
2785
2786 put_cpu_var(perf_pending_head);
2787 }
2788
2789 static int __perf_pending_run(void)
2790 {
2791 struct perf_pending_entry *list;
2792 int nr = 0;
2793
2794 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2795 while (list != PENDING_TAIL) {
2796 void (*func)(struct perf_pending_entry *);
2797 struct perf_pending_entry *entry = list;
2798
2799 list = list->next;
2800
2801 func = entry->func;
2802 entry->next = NULL;
2803 /*
2804 * Ensure we observe the unqueue before we issue the wakeup,
2805 * so that we won't be waiting forever.
2806 * -- see perf_not_pending().
2807 */
2808 smp_wmb();
2809
2810 func(entry);
2811 nr++;
2812 }
2813
2814 return nr;
2815 }
2816
2817 static inline int perf_not_pending(struct perf_event *event)
2818 {
2819 /*
2820 * If we flush on whatever cpu we run, there is a chance we don't
2821 * need to wait.
2822 */
2823 get_cpu();
2824 __perf_pending_run();
2825 put_cpu();
2826
2827 /*
2828 * Ensure we see the proper queue state before going to sleep
2829 * so that we do not miss the wakeup. -- see perf_pending_handle()
2830 */
2831 smp_rmb();
2832 return event->pending.next == NULL;
2833 }
2834
2835 static void perf_pending_sync(struct perf_event *event)
2836 {
2837 wait_event(event->waitq, perf_not_pending(event));
2838 }
2839
2840 void perf_event_do_pending(void)
2841 {
2842 __perf_pending_run();
2843 }
2844
2845 /*
2846 * Callchain support -- arch specific
2847 */
2848
2849 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2850 {
2851 return NULL;
2852 }
2853
2854 __weak
2855 void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
2856 {
2857 }
2858
2859
2860 /*
2861 * We assume there is only KVM supporting the callbacks.
2862 * Later on, we might change it to a list if there is
2863 * another virtualization implementation supporting the callbacks.
2864 */
2865 struct perf_guest_info_callbacks *perf_guest_cbs;
2866
2867 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2868 {
2869 perf_guest_cbs = cbs;
2870 return 0;
2871 }
2872 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
2873
2874 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2875 {
2876 perf_guest_cbs = NULL;
2877 return 0;
2878 }
2879 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
2880
2881 /*
2882 * Output
2883 */
2884 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2885 unsigned long offset, unsigned long head)
2886 {
2887 unsigned long mask;
2888
2889 if (!data->writable)
2890 return true;
2891
2892 mask = perf_data_size(data) - 1;
2893
2894 offset = (offset - tail) & mask;
2895 head = (head - tail) & mask;
2896
2897 if ((int)(head - offset) < 0)
2898 return false;
2899
2900 return true;
2901 }
2902
2903 static void perf_output_wakeup(struct perf_output_handle *handle)
2904 {
2905 atomic_set(&handle->data->poll, POLL_IN);
2906
2907 if (handle->nmi) {
2908 handle->event->pending_wakeup = 1;
2909 perf_pending_queue(&handle->event->pending,
2910 perf_pending_event);
2911 } else
2912 perf_event_wakeup(handle->event);
2913 }
2914
2915 /*
2916 * We need to ensure a later event_id doesn't publish a head when a former
2917 * event isn't done writing. However since we need to deal with NMIs we
2918 * cannot fully serialize things.
2919 *
2920 * We only publish the head (and generate a wakeup) when the outer-most
2921 * event completes.
2922 */
2923 static void perf_output_get_handle(struct perf_output_handle *handle)
2924 {
2925 struct perf_mmap_data *data = handle->data;
2926
2927 preempt_disable();
2928 local_inc(&data->nest);
2929 handle->wakeup = local_read(&data->wakeup);
2930 }
2931
2932 static void perf_output_put_handle(struct perf_output_handle *handle)
2933 {
2934 struct perf_mmap_data *data = handle->data;
2935 unsigned long head;
2936
2937 again:
2938 head = local_read(&data->head);
2939
2940 /*
2941 * IRQ/NMI can happen here, which means we can miss a head update.
2942 */
2943
2944 if (!local_dec_and_test(&data->nest))
2945 goto out;
2946
2947 /*
2948 * Publish the known good head. Rely on the full barrier implied
2949 * by atomic_dec_and_test() order the data->head read and this
2950 * write.
2951 */
2952 data->user_page->data_head = head;
2953
2954 /*
2955 * Now check if we missed an update, rely on the (compiler)
2956 * barrier in atomic_dec_and_test() to re-read data->head.
2957 */
2958 if (unlikely(head != local_read(&data->head))) {
2959 local_inc(&data->nest);
2960 goto again;
2961 }
2962
2963 if (handle->wakeup != local_read(&data->wakeup))
2964 perf_output_wakeup(handle);
2965
2966 out:
2967 preempt_enable();
2968 }
2969
2970 __always_inline void perf_output_copy(struct perf_output_handle *handle,
2971 const void *buf, unsigned int len)
2972 {
2973 do {
2974 unsigned long size = min_t(unsigned long, handle->size, len);
2975
2976 memcpy(handle->addr, buf, size);
2977
2978 len -= size;
2979 handle->addr += size;
2980 handle->size -= size;
2981 if (!handle->size) {
2982 struct perf_mmap_data *data = handle->data;
2983
2984 handle->page++;
2985 handle->page &= data->nr_pages - 1;
2986 handle->addr = data->data_pages[handle->page];
2987 handle->size = PAGE_SIZE << page_order(data);
2988 }
2989 } while (len);
2990 }
2991
2992 int perf_output_begin(struct perf_output_handle *handle,
2993 struct perf_event *event, unsigned int size,
2994 int nmi, int sample)
2995 {
2996 struct perf_event *output_event;
2997 struct perf_mmap_data *data;
2998 unsigned long tail, offset, head;
2999 int have_lost;
3000 struct {
3001 struct perf_event_header header;
3002 u64 id;
3003 u64 lost;
3004 } lost_event;
3005
3006 rcu_read_lock();
3007 /*
3008 * For inherited events we send all the output towards the parent.
3009 */
3010 if (event->parent)
3011 event = event->parent;
3012
3013 output_event = rcu_dereference(event->output);
3014 if (output_event)
3015 event = output_event;
3016
3017 data = rcu_dereference(event->data);
3018 if (!data)
3019 goto out;
3020
3021 handle->data = data;
3022 handle->event = event;
3023 handle->nmi = nmi;
3024 handle->sample = sample;
3025
3026 if (!data->nr_pages)
3027 goto out;
3028
3029 have_lost = local_read(&data->lost);
3030 if (have_lost)
3031 size += sizeof(lost_event);
3032
3033 perf_output_get_handle(handle);
3034
3035 do {
3036 /*
3037 * Userspace could choose to issue a mb() before updating the
3038 * tail pointer. So that all reads will be completed before the
3039 * write is issued.
3040 */
3041 tail = ACCESS_ONCE(data->user_page->data_tail);
3042 smp_rmb();
3043 offset = head = local_read(&data->head);
3044 head += size;
3045 if (unlikely(!perf_output_space(data, tail, offset, head)))
3046 goto fail;
3047 } while (local_cmpxchg(&data->head, offset, head) != offset);
3048
3049 if (head - local_read(&data->wakeup) > data->watermark)
3050 local_add(data->watermark, &data->wakeup);
3051
3052 handle->page = offset >> (PAGE_SHIFT + page_order(data));
3053 handle->page &= data->nr_pages - 1;
3054 handle->size = offset & ((PAGE_SIZE << page_order(data)) - 1);
3055 handle->addr = data->data_pages[handle->page];
3056 handle->addr += handle->size;
3057 handle->size = (PAGE_SIZE << page_order(data)) - handle->size;
3058
3059 if (have_lost) {
3060 lost_event.header.type = PERF_RECORD_LOST;
3061 lost_event.header.misc = 0;
3062 lost_event.header.size = sizeof(lost_event);
3063 lost_event.id = event->id;
3064 lost_event.lost = local_xchg(&data->lost, 0);
3065
3066 perf_output_put(handle, lost_event);
3067 }
3068
3069 return 0;
3070
3071 fail:
3072 local_inc(&data->lost);
3073 perf_output_put_handle(handle);
3074 out:
3075 rcu_read_unlock();
3076
3077 return -ENOSPC;
3078 }
3079
3080 void perf_output_end(struct perf_output_handle *handle)
3081 {
3082 struct perf_event *event = handle->event;
3083 struct perf_mmap_data *data = handle->data;
3084
3085 int wakeup_events = event->attr.wakeup_events;
3086
3087 if (handle->sample && wakeup_events) {
3088 int events = local_inc_return(&data->events);
3089 if (events >= wakeup_events) {
3090 local_sub(wakeup_events, &data->events);
3091 local_inc(&data->wakeup);
3092 }
3093 }
3094
3095 perf_output_put_handle(handle);
3096 rcu_read_unlock();
3097 }
3098
3099 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3100 {
3101 /*
3102 * only top level events have the pid namespace they were created in
3103 */
3104 if (event->parent)
3105 event = event->parent;
3106
3107 return task_tgid_nr_ns(p, event->ns);
3108 }
3109
3110 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3111 {
3112 /*
3113 * only top level events have the pid namespace they were created in
3114 */
3115 if (event->parent)
3116 event = event->parent;
3117
3118 return task_pid_nr_ns(p, event->ns);
3119 }
3120
3121 static void perf_output_read_one(struct perf_output_handle *handle,
3122 struct perf_event *event)
3123 {
3124 u64 read_format = event->attr.read_format;
3125 u64 values[4];
3126 int n = 0;
3127
3128 values[n++] = atomic64_read(&event->count);
3129 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3130 values[n++] = event->total_time_enabled +
3131 atomic64_read(&event->child_total_time_enabled);
3132 }
3133 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3134 values[n++] = event->total_time_running +
3135 atomic64_read(&event->child_total_time_running);
3136 }
3137 if (read_format & PERF_FORMAT_ID)
3138 values[n++] = primary_event_id(event);
3139
3140 perf_output_copy(handle, values, n * sizeof(u64));
3141 }
3142
3143 /*
3144 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3145 */
3146 static void perf_output_read_group(struct perf_output_handle *handle,
3147 struct perf_event *event)
3148 {
3149 struct perf_event *leader = event->group_leader, *sub;
3150 u64 read_format = event->attr.read_format;
3151 u64 values[5];
3152 int n = 0;
3153
3154 values[n++] = 1 + leader->nr_siblings;
3155
3156 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3157 values[n++] = leader->total_time_enabled;
3158
3159 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3160 values[n++] = leader->total_time_running;
3161
3162 if (leader != event)
3163 leader->pmu->read(leader);
3164
3165 values[n++] = atomic64_read(&leader->count);
3166 if (read_format & PERF_FORMAT_ID)
3167 values[n++] = primary_event_id(leader);
3168
3169 perf_output_copy(handle, values, n * sizeof(u64));
3170
3171 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3172 n = 0;
3173
3174 if (sub != event)
3175 sub->pmu->read(sub);
3176
3177 values[n++] = atomic64_read(&sub->count);
3178 if (read_format & PERF_FORMAT_ID)
3179 values[n++] = primary_event_id(sub);
3180
3181 perf_output_copy(handle, values, n * sizeof(u64));
3182 }
3183 }
3184
3185 static void perf_output_read(struct perf_output_handle *handle,
3186 struct perf_event *event)
3187 {
3188 if (event->attr.read_format & PERF_FORMAT_GROUP)
3189 perf_output_read_group(handle, event);
3190 else
3191 perf_output_read_one(handle, event);
3192 }
3193
3194 void perf_output_sample(struct perf_output_handle *handle,
3195 struct perf_event_header *header,
3196 struct perf_sample_data *data,
3197 struct perf_event *event)
3198 {
3199 u64 sample_type = data->type;
3200
3201 perf_output_put(handle, *header);
3202
3203 if (sample_type & PERF_SAMPLE_IP)
3204 perf_output_put(handle, data->ip);
3205
3206 if (sample_type & PERF_SAMPLE_TID)
3207 perf_output_put(handle, data->tid_entry);
3208
3209 if (sample_type & PERF_SAMPLE_TIME)
3210 perf_output_put(handle, data->time);
3211
3212 if (sample_type & PERF_SAMPLE_ADDR)
3213 perf_output_put(handle, data->addr);
3214
3215 if (sample_type & PERF_SAMPLE_ID)
3216 perf_output_put(handle, data->id);
3217
3218 if (sample_type & PERF_SAMPLE_STREAM_ID)
3219 perf_output_put(handle, data->stream_id);
3220
3221 if (sample_type & PERF_SAMPLE_CPU)
3222 perf_output_put(handle, data->cpu_entry);
3223
3224 if (sample_type & PERF_SAMPLE_PERIOD)
3225 perf_output_put(handle, data->period);
3226
3227 if (sample_type & PERF_SAMPLE_READ)
3228 perf_output_read(handle, event);
3229
3230 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3231 if (data->callchain) {
3232 int size = 1;
3233
3234 if (data->callchain)
3235 size += data->callchain->nr;
3236
3237 size *= sizeof(u64);
3238
3239 perf_output_copy(handle, data->callchain, size);
3240 } else {
3241 u64 nr = 0;
3242 perf_output_put(handle, nr);
3243 }
3244 }
3245
3246 if (sample_type & PERF_SAMPLE_RAW) {
3247 if (data->raw) {
3248 perf_output_put(handle, data->raw->size);
3249 perf_output_copy(handle, data->raw->data,
3250 data->raw->size);
3251 } else {
3252 struct {
3253 u32 size;
3254 u32 data;
3255 } raw = {
3256 .size = sizeof(u32),
3257 .data = 0,
3258 };
3259 perf_output_put(handle, raw);
3260 }
3261 }
3262 }
3263
3264 void perf_prepare_sample(struct perf_event_header *header,
3265 struct perf_sample_data *data,
3266 struct perf_event *event,
3267 struct pt_regs *regs)
3268 {
3269 u64 sample_type = event->attr.sample_type;
3270
3271 data->type = sample_type;
3272
3273 header->type = PERF_RECORD_SAMPLE;
3274 header->size = sizeof(*header);
3275
3276 header->misc = 0;
3277 header->misc |= perf_misc_flags(regs);
3278
3279 if (sample_type & PERF_SAMPLE_IP) {
3280 data->ip = perf_instruction_pointer(regs);
3281
3282 header->size += sizeof(data->ip);
3283 }
3284
3285 if (sample_type & PERF_SAMPLE_TID) {
3286 /* namespace issues */
3287 data->tid_entry.pid = perf_event_pid(event, current);
3288 data->tid_entry.tid = perf_event_tid(event, current);
3289
3290 header->size += sizeof(data->tid_entry);
3291 }
3292
3293 if (sample_type & PERF_SAMPLE_TIME) {
3294 data->time = perf_clock();
3295
3296 header->size += sizeof(data->time);
3297 }
3298
3299 if (sample_type & PERF_SAMPLE_ADDR)
3300 header->size += sizeof(data->addr);
3301
3302 if (sample_type & PERF_SAMPLE_ID) {
3303 data->id = primary_event_id(event);
3304
3305 header->size += sizeof(data->id);
3306 }
3307
3308 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3309 data->stream_id = event->id;
3310
3311 header->size += sizeof(data->stream_id);
3312 }
3313
3314 if (sample_type & PERF_SAMPLE_CPU) {
3315 data->cpu_entry.cpu = raw_smp_processor_id();
3316 data->cpu_entry.reserved = 0;
3317
3318 header->size += sizeof(data->cpu_entry);
3319 }
3320
3321 if (sample_type & PERF_SAMPLE_PERIOD)
3322 header->size += sizeof(data->period);
3323
3324 if (sample_type & PERF_SAMPLE_READ)
3325 header->size += perf_event_read_size(event);
3326
3327 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3328 int size = 1;
3329
3330 data->callchain = perf_callchain(regs);
3331
3332 if (data->callchain)
3333 size += data->callchain->nr;
3334
3335 header->size += size * sizeof(u64);
3336 }
3337
3338 if (sample_type & PERF_SAMPLE_RAW) {
3339 int size = sizeof(u32);
3340
3341 if (data->raw)
3342 size += data->raw->size;
3343 else
3344 size += sizeof(u32);
3345
3346 WARN_ON_ONCE(size & (sizeof(u64)-1));
3347 header->size += size;
3348 }
3349 }
3350
3351 static void perf_event_output(struct perf_event *event, int nmi,
3352 struct perf_sample_data *data,
3353 struct pt_regs *regs)
3354 {
3355 struct perf_output_handle handle;
3356 struct perf_event_header header;
3357
3358 perf_prepare_sample(&header, data, event, regs);
3359
3360 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3361 return;
3362
3363 perf_output_sample(&handle, &header, data, event);
3364
3365 perf_output_end(&handle);
3366 }
3367
3368 /*
3369 * read event_id
3370 */
3371
3372 struct perf_read_event {
3373 struct perf_event_header header;
3374
3375 u32 pid;
3376 u32 tid;
3377 };
3378
3379 static void
3380 perf_event_read_event(struct perf_event *event,
3381 struct task_struct *task)
3382 {
3383 struct perf_output_handle handle;
3384 struct perf_read_event read_event = {
3385 .header = {
3386 .type = PERF_RECORD_READ,
3387 .misc = 0,
3388 .size = sizeof(read_event) + perf_event_read_size(event),
3389 },
3390 .pid = perf_event_pid(event, task),
3391 .tid = perf_event_tid(event, task),
3392 };
3393 int ret;
3394
3395 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3396 if (ret)
3397 return;
3398
3399 perf_output_put(&handle, read_event);
3400 perf_output_read(&handle, event);
3401
3402 perf_output_end(&handle);
3403 }
3404
3405 /*
3406 * task tracking -- fork/exit
3407 *
3408 * enabled by: attr.comm | attr.mmap | attr.task
3409 */
3410
3411 struct perf_task_event {
3412 struct task_struct *task;
3413 struct perf_event_context *task_ctx;
3414
3415 struct {
3416 struct perf_event_header header;
3417
3418 u32 pid;
3419 u32 ppid;
3420 u32 tid;
3421 u32 ptid;
3422 u64 time;
3423 } event_id;
3424 };
3425
3426 static void perf_event_task_output(struct perf_event *event,
3427 struct perf_task_event *task_event)
3428 {
3429 struct perf_output_handle handle;
3430 struct task_struct *task = task_event->task;
3431 int size, ret;
3432
3433 size = task_event->event_id.header.size;
3434 ret = perf_output_begin(&handle, event, size, 0, 0);
3435
3436 if (ret)
3437 return;
3438
3439 task_event->event_id.pid = perf_event_pid(event, task);
3440 task_event->event_id.ppid = perf_event_pid(event, current);
3441
3442 task_event->event_id.tid = perf_event_tid(event, task);
3443 task_event->event_id.ptid = perf_event_tid(event, current);
3444
3445 perf_output_put(&handle, task_event->event_id);
3446
3447 perf_output_end(&handle);
3448 }
3449
3450 static int perf_event_task_match(struct perf_event *event)
3451 {
3452 if (event->state < PERF_EVENT_STATE_INACTIVE)
3453 return 0;
3454
3455 if (event->cpu != -1 && event->cpu != smp_processor_id())
3456 return 0;
3457
3458 if (event->attr.comm || event->attr.mmap || event->attr.task)
3459 return 1;
3460
3461 return 0;
3462 }
3463
3464 static void perf_event_task_ctx(struct perf_event_context *ctx,
3465 struct perf_task_event *task_event)
3466 {
3467 struct perf_event *event;
3468
3469 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3470 if (perf_event_task_match(event))
3471 perf_event_task_output(event, task_event);
3472 }
3473 }
3474
3475 static void perf_event_task_event(struct perf_task_event *task_event)
3476 {
3477 struct perf_cpu_context *cpuctx;
3478 struct perf_event_context *ctx = task_event->task_ctx;
3479
3480 rcu_read_lock();
3481 cpuctx = &get_cpu_var(perf_cpu_context);
3482 perf_event_task_ctx(&cpuctx->ctx, task_event);
3483 if (!ctx)
3484 ctx = rcu_dereference(current->perf_event_ctxp);
3485 if (ctx)
3486 perf_event_task_ctx(ctx, task_event);
3487 put_cpu_var(perf_cpu_context);
3488 rcu_read_unlock();
3489 }
3490
3491 static void perf_event_task(struct task_struct *task,
3492 struct perf_event_context *task_ctx,
3493 int new)
3494 {
3495 struct perf_task_event task_event;
3496
3497 if (!atomic_read(&nr_comm_events) &&
3498 !atomic_read(&nr_mmap_events) &&
3499 !atomic_read(&nr_task_events))
3500 return;
3501
3502 task_event = (struct perf_task_event){
3503 .task = task,
3504 .task_ctx = task_ctx,
3505 .event_id = {
3506 .header = {
3507 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3508 .misc = 0,
3509 .size = sizeof(task_event.event_id),
3510 },
3511 /* .pid */
3512 /* .ppid */
3513 /* .tid */
3514 /* .ptid */
3515 .time = perf_clock(),
3516 },
3517 };
3518
3519 perf_event_task_event(&task_event);
3520 }
3521
3522 void perf_event_fork(struct task_struct *task)
3523 {
3524 perf_event_task(task, NULL, 1);
3525 }
3526
3527 /*
3528 * comm tracking
3529 */
3530
3531 struct perf_comm_event {
3532 struct task_struct *task;
3533 char *comm;
3534 int comm_size;
3535
3536 struct {
3537 struct perf_event_header header;
3538
3539 u32 pid;
3540 u32 tid;
3541 } event_id;
3542 };
3543
3544 static void perf_event_comm_output(struct perf_event *event,
3545 struct perf_comm_event *comm_event)
3546 {
3547 struct perf_output_handle handle;
3548 int size = comm_event->event_id.header.size;
3549 int ret = perf_output_begin(&handle, event, size, 0, 0);
3550
3551 if (ret)
3552 return;
3553
3554 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3555 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3556
3557 perf_output_put(&handle, comm_event->event_id);
3558 perf_output_copy(&handle, comm_event->comm,
3559 comm_event->comm_size);
3560 perf_output_end(&handle);
3561 }
3562
3563 static int perf_event_comm_match(struct perf_event *event)
3564 {
3565 if (event->state < PERF_EVENT_STATE_INACTIVE)
3566 return 0;
3567
3568 if (event->cpu != -1 && event->cpu != smp_processor_id())
3569 return 0;
3570
3571 if (event->attr.comm)
3572 return 1;
3573
3574 return 0;
3575 }
3576
3577 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3578 struct perf_comm_event *comm_event)
3579 {
3580 struct perf_event *event;
3581
3582 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3583 if (perf_event_comm_match(event))
3584 perf_event_comm_output(event, comm_event);
3585 }
3586 }
3587
3588 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3589 {
3590 struct perf_cpu_context *cpuctx;
3591 struct perf_event_context *ctx;
3592 unsigned int size;
3593 char comm[TASK_COMM_LEN];
3594
3595 memset(comm, 0, sizeof(comm));
3596 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3597 size = ALIGN(strlen(comm)+1, sizeof(u64));
3598
3599 comm_event->comm = comm;
3600 comm_event->comm_size = size;
3601
3602 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3603
3604 rcu_read_lock();
3605 cpuctx = &get_cpu_var(perf_cpu_context);
3606 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3607 ctx = rcu_dereference(current->perf_event_ctxp);
3608 if (ctx)
3609 perf_event_comm_ctx(ctx, comm_event);
3610 put_cpu_var(perf_cpu_context);
3611 rcu_read_unlock();
3612 }
3613
3614 void perf_event_comm(struct task_struct *task)
3615 {
3616 struct perf_comm_event comm_event;
3617
3618 if (task->perf_event_ctxp)
3619 perf_event_enable_on_exec(task);
3620
3621 if (!atomic_read(&nr_comm_events))
3622 return;
3623
3624 comm_event = (struct perf_comm_event){
3625 .task = task,
3626 /* .comm */
3627 /* .comm_size */
3628 .event_id = {
3629 .header = {
3630 .type = PERF_RECORD_COMM,
3631 .misc = 0,
3632 /* .size */
3633 },
3634 /* .pid */
3635 /* .tid */
3636 },
3637 };
3638
3639 perf_event_comm_event(&comm_event);
3640 }
3641
3642 /*
3643 * mmap tracking
3644 */
3645
3646 struct perf_mmap_event {
3647 struct vm_area_struct *vma;
3648
3649 const char *file_name;
3650 int file_size;
3651
3652 struct {
3653 struct perf_event_header header;
3654
3655 u32 pid;
3656 u32 tid;
3657 u64 start;
3658 u64 len;
3659 u64 pgoff;
3660 } event_id;
3661 };
3662
3663 static void perf_event_mmap_output(struct perf_event *event,
3664 struct perf_mmap_event *mmap_event)
3665 {
3666 struct perf_output_handle handle;
3667 int size = mmap_event->event_id.header.size;
3668 int ret = perf_output_begin(&handle, event, size, 0, 0);
3669
3670 if (ret)
3671 return;
3672
3673 mmap_event->event_id.pid = perf_event_pid(event, current);
3674 mmap_event->event_id.tid = perf_event_tid(event, current);
3675
3676 perf_output_put(&handle, mmap_event->event_id);
3677 perf_output_copy(&handle, mmap_event->file_name,
3678 mmap_event->file_size);
3679 perf_output_end(&handle);
3680 }
3681
3682 static int perf_event_mmap_match(struct perf_event *event,
3683 struct perf_mmap_event *mmap_event)
3684 {
3685 if (event->state < PERF_EVENT_STATE_INACTIVE)
3686 return 0;
3687
3688 if (event->cpu != -1 && event->cpu != smp_processor_id())
3689 return 0;
3690
3691 if (event->attr.mmap)
3692 return 1;
3693
3694 return 0;
3695 }
3696
3697 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3698 struct perf_mmap_event *mmap_event)
3699 {
3700 struct perf_event *event;
3701
3702 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3703 if (perf_event_mmap_match(event, mmap_event))
3704 perf_event_mmap_output(event, mmap_event);
3705 }
3706 }
3707
3708 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3709 {
3710 struct perf_cpu_context *cpuctx;
3711 struct perf_event_context *ctx;
3712 struct vm_area_struct *vma = mmap_event->vma;
3713 struct file *file = vma->vm_file;
3714 unsigned int size;
3715 char tmp[16];
3716 char *buf = NULL;
3717 const char *name;
3718
3719 memset(tmp, 0, sizeof(tmp));
3720
3721 if (file) {
3722 /*
3723 * d_path works from the end of the buffer backwards, so we
3724 * need to add enough zero bytes after the string to handle
3725 * the 64bit alignment we do later.
3726 */
3727 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3728 if (!buf) {
3729 name = strncpy(tmp, "//enomem", sizeof(tmp));
3730 goto got_name;
3731 }
3732 name = d_path(&file->f_path, buf, PATH_MAX);
3733 if (IS_ERR(name)) {
3734 name = strncpy(tmp, "//toolong", sizeof(tmp));
3735 goto got_name;
3736 }
3737 } else {
3738 if (arch_vma_name(mmap_event->vma)) {
3739 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3740 sizeof(tmp));
3741 goto got_name;
3742 }
3743
3744 if (!vma->vm_mm) {
3745 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3746 goto got_name;
3747 }
3748
3749 name = strncpy(tmp, "//anon", sizeof(tmp));
3750 goto got_name;
3751 }
3752
3753 got_name:
3754 size = ALIGN(strlen(name)+1, sizeof(u64));
3755
3756 mmap_event->file_name = name;
3757 mmap_event->file_size = size;
3758
3759 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3760
3761 rcu_read_lock();
3762 cpuctx = &get_cpu_var(perf_cpu_context);
3763 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3764 ctx = rcu_dereference(current->perf_event_ctxp);
3765 if (ctx)
3766 perf_event_mmap_ctx(ctx, mmap_event);
3767 put_cpu_var(perf_cpu_context);
3768 rcu_read_unlock();
3769
3770 kfree(buf);
3771 }
3772
3773 void __perf_event_mmap(struct vm_area_struct *vma)
3774 {
3775 struct perf_mmap_event mmap_event;
3776
3777 if (!atomic_read(&nr_mmap_events))
3778 return;
3779
3780 mmap_event = (struct perf_mmap_event){
3781 .vma = vma,
3782 /* .file_name */
3783 /* .file_size */
3784 .event_id = {
3785 .header = {
3786 .type = PERF_RECORD_MMAP,
3787 .misc = PERF_RECORD_MISC_USER,
3788 /* .size */
3789 },
3790 /* .pid */
3791 /* .tid */
3792 .start = vma->vm_start,
3793 .len = vma->vm_end - vma->vm_start,
3794 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
3795 },
3796 };
3797
3798 perf_event_mmap_event(&mmap_event);
3799 }
3800
3801 /*
3802 * IRQ throttle logging
3803 */
3804
3805 static void perf_log_throttle(struct perf_event *event, int enable)
3806 {
3807 struct perf_output_handle handle;
3808 int ret;
3809
3810 struct {
3811 struct perf_event_header header;
3812 u64 time;
3813 u64 id;
3814 u64 stream_id;
3815 } throttle_event = {
3816 .header = {
3817 .type = PERF_RECORD_THROTTLE,
3818 .misc = 0,
3819 .size = sizeof(throttle_event),
3820 },
3821 .time = perf_clock(),
3822 .id = primary_event_id(event),
3823 .stream_id = event->id,
3824 };
3825
3826 if (enable)
3827 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3828
3829 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3830 if (ret)
3831 return;
3832
3833 perf_output_put(&handle, throttle_event);
3834 perf_output_end(&handle);
3835 }
3836
3837 /*
3838 * Generic event overflow handling, sampling.
3839 */
3840
3841 static int __perf_event_overflow(struct perf_event *event, int nmi,
3842 int throttle, struct perf_sample_data *data,
3843 struct pt_regs *regs)
3844 {
3845 int events = atomic_read(&event->event_limit);
3846 struct hw_perf_event *hwc = &event->hw;
3847 int ret = 0;
3848
3849 throttle = (throttle && event->pmu->unthrottle != NULL);
3850
3851 if (!throttle) {
3852 hwc->interrupts++;
3853 } else {
3854 if (hwc->interrupts != MAX_INTERRUPTS) {
3855 hwc->interrupts++;
3856 if (HZ * hwc->interrupts >
3857 (u64)sysctl_perf_event_sample_rate) {
3858 hwc->interrupts = MAX_INTERRUPTS;
3859 perf_log_throttle(event, 0);
3860 ret = 1;
3861 }
3862 } else {
3863 /*
3864 * Keep re-disabling events even though on the previous
3865 * pass we disabled it - just in case we raced with a
3866 * sched-in and the event got enabled again:
3867 */
3868 ret = 1;
3869 }
3870 }
3871
3872 if (event->attr.freq) {
3873 u64 now = perf_clock();
3874 s64 delta = now - hwc->freq_time_stamp;
3875
3876 hwc->freq_time_stamp = now;
3877
3878 if (delta > 0 && delta < 2*TICK_NSEC)
3879 perf_adjust_period(event, delta, hwc->last_period);
3880 }
3881
3882 /*
3883 * XXX event_limit might not quite work as expected on inherited
3884 * events
3885 */
3886
3887 event->pending_kill = POLL_IN;
3888 if (events && atomic_dec_and_test(&event->event_limit)) {
3889 ret = 1;
3890 event->pending_kill = POLL_HUP;
3891 if (nmi) {
3892 event->pending_disable = 1;
3893 perf_pending_queue(&event->pending,
3894 perf_pending_event);
3895 } else
3896 perf_event_disable(event);
3897 }
3898
3899 if (event->overflow_handler)
3900 event->overflow_handler(event, nmi, data, regs);
3901 else
3902 perf_event_output(event, nmi, data, regs);
3903
3904 return ret;
3905 }
3906
3907 int perf_event_overflow(struct perf_event *event, int nmi,
3908 struct perf_sample_data *data,
3909 struct pt_regs *regs)
3910 {
3911 return __perf_event_overflow(event, nmi, 1, data, regs);
3912 }
3913
3914 /*
3915 * Generic software event infrastructure
3916 */
3917
3918 /*
3919 * We directly increment event->count and keep a second value in
3920 * event->hw.period_left to count intervals. This period event
3921 * is kept in the range [-sample_period, 0] so that we can use the
3922 * sign as trigger.
3923 */
3924
3925 static u64 perf_swevent_set_period(struct perf_event *event)
3926 {
3927 struct hw_perf_event *hwc = &event->hw;
3928 u64 period = hwc->last_period;
3929 u64 nr, offset;
3930 s64 old, val;
3931
3932 hwc->last_period = hwc->sample_period;
3933
3934 again:
3935 old = val = atomic64_read(&hwc->period_left);
3936 if (val < 0)
3937 return 0;
3938
3939 nr = div64_u64(period + val, period);
3940 offset = nr * period;
3941 val -= offset;
3942 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3943 goto again;
3944
3945 return nr;
3946 }
3947
3948 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3949 int nmi, struct perf_sample_data *data,
3950 struct pt_regs *regs)
3951 {
3952 struct hw_perf_event *hwc = &event->hw;
3953 int throttle = 0;
3954
3955 data->period = event->hw.last_period;
3956 if (!overflow)
3957 overflow = perf_swevent_set_period(event);
3958
3959 if (hwc->interrupts == MAX_INTERRUPTS)
3960 return;
3961
3962 for (; overflow; overflow--) {
3963 if (__perf_event_overflow(event, nmi, throttle,
3964 data, regs)) {
3965 /*
3966 * We inhibit the overflow from happening when
3967 * hwc->interrupts == MAX_INTERRUPTS.
3968 */
3969 break;
3970 }
3971 throttle = 1;
3972 }
3973 }
3974
3975 static void perf_swevent_unthrottle(struct perf_event *event)
3976 {
3977 /*
3978 * Nothing to do, we already reset hwc->interrupts.
3979 */
3980 }
3981
3982 static void perf_swevent_add(struct perf_event *event, u64 nr,
3983 int nmi, struct perf_sample_data *data,
3984 struct pt_regs *regs)
3985 {
3986 struct hw_perf_event *hwc = &event->hw;
3987
3988 atomic64_add(nr, &event->count);
3989
3990 if (!regs)
3991 return;
3992
3993 if (!hwc->sample_period)
3994 return;
3995
3996 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3997 return perf_swevent_overflow(event, 1, nmi, data, regs);
3998
3999 if (atomic64_add_negative(nr, &hwc->period_left))
4000 return;
4001
4002 perf_swevent_overflow(event, 0, nmi, data, regs);
4003 }
4004
4005 static int perf_exclude_event(struct perf_event *event,
4006 struct pt_regs *regs)
4007 {
4008 if (regs) {
4009 if (event->attr.exclude_user && user_mode(regs))
4010 return 1;
4011
4012 if (event->attr.exclude_kernel && !user_mode(regs))
4013 return 1;
4014 }
4015
4016 return 0;
4017 }
4018
4019 static int perf_swevent_match(struct perf_event *event,
4020 enum perf_type_id type,
4021 u32 event_id,
4022 struct perf_sample_data *data,
4023 struct pt_regs *regs)
4024 {
4025 if (event->attr.type != type)
4026 return 0;
4027
4028 if (event->attr.config != event_id)
4029 return 0;
4030
4031 if (perf_exclude_event(event, regs))
4032 return 0;
4033
4034 return 1;
4035 }
4036
4037 static inline u64 swevent_hash(u64 type, u32 event_id)
4038 {
4039 u64 val = event_id | (type << 32);
4040
4041 return hash_64(val, SWEVENT_HLIST_BITS);
4042 }
4043
4044 static inline struct hlist_head *
4045 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4046 {
4047 u64 hash = swevent_hash(type, event_id);
4048
4049 return &hlist->heads[hash];
4050 }
4051
4052 /* For the read side: events when they trigger */
4053 static inline struct hlist_head *
4054 find_swevent_head_rcu(struct perf_cpu_context *ctx, u64 type, u32 event_id)
4055 {
4056 struct swevent_hlist *hlist;
4057
4058 hlist = rcu_dereference(ctx->swevent_hlist);
4059 if (!hlist)
4060 return NULL;
4061
4062 return __find_swevent_head(hlist, type, event_id);
4063 }
4064
4065 /* For the event head insertion and removal in the hlist */
4066 static inline struct hlist_head *
4067 find_swevent_head(struct perf_cpu_context *ctx, struct perf_event *event)
4068 {
4069 struct swevent_hlist *hlist;
4070 u32 event_id = event->attr.config;
4071 u64 type = event->attr.type;
4072
4073 /*
4074 * Event scheduling is always serialized against hlist allocation
4075 * and release. Which makes the protected version suitable here.
4076 * The context lock guarantees that.
4077 */
4078 hlist = rcu_dereference_protected(ctx->swevent_hlist,
4079 lockdep_is_held(&event->ctx->lock));
4080 if (!hlist)
4081 return NULL;
4082
4083 return __find_swevent_head(hlist, type, event_id);
4084 }
4085
4086 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4087 u64 nr, int nmi,
4088 struct perf_sample_data *data,
4089 struct pt_regs *regs)
4090 {
4091 struct perf_cpu_context *cpuctx;
4092 struct perf_event *event;
4093 struct hlist_node *node;
4094 struct hlist_head *head;
4095
4096 cpuctx = &__get_cpu_var(perf_cpu_context);
4097
4098 rcu_read_lock();
4099
4100 head = find_swevent_head_rcu(cpuctx, type, event_id);
4101
4102 if (!head)
4103 goto end;
4104
4105 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4106 if (perf_swevent_match(event, type, event_id, data, regs))
4107 perf_swevent_add(event, nr, nmi, data, regs);
4108 }
4109 end:
4110 rcu_read_unlock();
4111 }
4112
4113 int perf_swevent_get_recursion_context(void)
4114 {
4115 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4116 int rctx;
4117
4118 if (in_nmi())
4119 rctx = 3;
4120 else if (in_irq())
4121 rctx = 2;
4122 else if (in_softirq())
4123 rctx = 1;
4124 else
4125 rctx = 0;
4126
4127 if (cpuctx->recursion[rctx])
4128 return -1;
4129
4130 cpuctx->recursion[rctx]++;
4131 barrier();
4132
4133 return rctx;
4134 }
4135 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4136
4137 void perf_swevent_put_recursion_context(int rctx)
4138 {
4139 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4140 barrier();
4141 cpuctx->recursion[rctx]--;
4142 }
4143 EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
4144
4145
4146 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4147 struct pt_regs *regs, u64 addr)
4148 {
4149 struct perf_sample_data data;
4150 int rctx;
4151
4152 preempt_disable_notrace();
4153 rctx = perf_swevent_get_recursion_context();
4154 if (rctx < 0)
4155 return;
4156
4157 perf_sample_data_init(&data, addr);
4158
4159 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4160
4161 perf_swevent_put_recursion_context(rctx);
4162 preempt_enable_notrace();
4163 }
4164
4165 static void perf_swevent_read(struct perf_event *event)
4166 {
4167 }
4168
4169 static int perf_swevent_enable(struct perf_event *event)
4170 {
4171 struct hw_perf_event *hwc = &event->hw;
4172 struct perf_cpu_context *cpuctx;
4173 struct hlist_head *head;
4174
4175 cpuctx = &__get_cpu_var(perf_cpu_context);
4176
4177 if (hwc->sample_period) {
4178 hwc->last_period = hwc->sample_period;
4179 perf_swevent_set_period(event);
4180 }
4181
4182 head = find_swevent_head(cpuctx, event);
4183 if (WARN_ON_ONCE(!head))
4184 return -EINVAL;
4185
4186 hlist_add_head_rcu(&event->hlist_entry, head);
4187
4188 return 0;
4189 }
4190
4191 static void perf_swevent_disable(struct perf_event *event)
4192 {
4193 hlist_del_rcu(&event->hlist_entry);
4194 }
4195
4196 static const struct pmu perf_ops_generic = {
4197 .enable = perf_swevent_enable,
4198 .disable = perf_swevent_disable,
4199 .read = perf_swevent_read,
4200 .unthrottle = perf_swevent_unthrottle,
4201 };
4202
4203 /*
4204 * hrtimer based swevent callback
4205 */
4206
4207 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4208 {
4209 enum hrtimer_restart ret = HRTIMER_RESTART;
4210 struct perf_sample_data data;
4211 struct pt_regs *regs;
4212 struct perf_event *event;
4213 u64 period;
4214
4215 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4216 event->pmu->read(event);
4217
4218 perf_sample_data_init(&data, 0);
4219 data.period = event->hw.last_period;
4220 regs = get_irq_regs();
4221
4222 if (regs && !perf_exclude_event(event, regs)) {
4223 if (!(event->attr.exclude_idle && current->pid == 0))
4224 if (perf_event_overflow(event, 0, &data, regs))
4225 ret = HRTIMER_NORESTART;
4226 }
4227
4228 period = max_t(u64, 10000, event->hw.sample_period);
4229 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4230
4231 return ret;
4232 }
4233
4234 static void perf_swevent_start_hrtimer(struct perf_event *event)
4235 {
4236 struct hw_perf_event *hwc = &event->hw;
4237
4238 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4239 hwc->hrtimer.function = perf_swevent_hrtimer;
4240 if (hwc->sample_period) {
4241 u64 period;
4242
4243 if (hwc->remaining) {
4244 if (hwc->remaining < 0)
4245 period = 10000;
4246 else
4247 period = hwc->remaining;
4248 hwc->remaining = 0;
4249 } else {
4250 period = max_t(u64, 10000, hwc->sample_period);
4251 }
4252 __hrtimer_start_range_ns(&hwc->hrtimer,
4253 ns_to_ktime(period), 0,
4254 HRTIMER_MODE_REL, 0);
4255 }
4256 }
4257
4258 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4259 {
4260 struct hw_perf_event *hwc = &event->hw;
4261
4262 if (hwc->sample_period) {
4263 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4264 hwc->remaining = ktime_to_ns(remaining);
4265
4266 hrtimer_cancel(&hwc->hrtimer);
4267 }
4268 }
4269
4270 /*
4271 * Software event: cpu wall time clock
4272 */
4273
4274 static void cpu_clock_perf_event_update(struct perf_event *event)
4275 {
4276 int cpu = raw_smp_processor_id();
4277 s64 prev;
4278 u64 now;
4279
4280 now = cpu_clock(cpu);
4281 prev = atomic64_xchg(&event->hw.prev_count, now);
4282 atomic64_add(now - prev, &event->count);
4283 }
4284
4285 static int cpu_clock_perf_event_enable(struct perf_event *event)
4286 {
4287 struct hw_perf_event *hwc = &event->hw;
4288 int cpu = raw_smp_processor_id();
4289
4290 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4291 perf_swevent_start_hrtimer(event);
4292
4293 return 0;
4294 }
4295
4296 static void cpu_clock_perf_event_disable(struct perf_event *event)
4297 {
4298 perf_swevent_cancel_hrtimer(event);
4299 cpu_clock_perf_event_update(event);
4300 }
4301
4302 static void cpu_clock_perf_event_read(struct perf_event *event)
4303 {
4304 cpu_clock_perf_event_update(event);
4305 }
4306
4307 static const struct pmu perf_ops_cpu_clock = {
4308 .enable = cpu_clock_perf_event_enable,
4309 .disable = cpu_clock_perf_event_disable,
4310 .read = cpu_clock_perf_event_read,
4311 };
4312
4313 /*
4314 * Software event: task time clock
4315 */
4316
4317 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4318 {
4319 u64 prev;
4320 s64 delta;
4321
4322 prev = atomic64_xchg(&event->hw.prev_count, now);
4323 delta = now - prev;
4324 atomic64_add(delta, &event->count);
4325 }
4326
4327 static int task_clock_perf_event_enable(struct perf_event *event)
4328 {
4329 struct hw_perf_event *hwc = &event->hw;
4330 u64 now;
4331
4332 now = event->ctx->time;
4333
4334 atomic64_set(&hwc->prev_count, now);
4335
4336 perf_swevent_start_hrtimer(event);
4337
4338 return 0;
4339 }
4340
4341 static void task_clock_perf_event_disable(struct perf_event *event)
4342 {
4343 perf_swevent_cancel_hrtimer(event);
4344 task_clock_perf_event_update(event, event->ctx->time);
4345
4346 }
4347
4348 static void task_clock_perf_event_read(struct perf_event *event)
4349 {
4350 u64 time;
4351
4352 if (!in_nmi()) {
4353 update_context_time(event->ctx);
4354 time = event->ctx->time;
4355 } else {
4356 u64 now = perf_clock();
4357 u64 delta = now - event->ctx->timestamp;
4358 time = event->ctx->time + delta;
4359 }
4360
4361 task_clock_perf_event_update(event, time);
4362 }
4363
4364 static const struct pmu perf_ops_task_clock = {
4365 .enable = task_clock_perf_event_enable,
4366 .disable = task_clock_perf_event_disable,
4367 .read = task_clock_perf_event_read,
4368 };
4369
4370 /* Deref the hlist from the update side */
4371 static inline struct swevent_hlist *
4372 swevent_hlist_deref(struct perf_cpu_context *cpuctx)
4373 {
4374 return rcu_dereference_protected(cpuctx->swevent_hlist,
4375 lockdep_is_held(&cpuctx->hlist_mutex));
4376 }
4377
4378 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4379 {
4380 struct swevent_hlist *hlist;
4381
4382 hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4383 kfree(hlist);
4384 }
4385
4386 static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
4387 {
4388 struct swevent_hlist *hlist = swevent_hlist_deref(cpuctx);
4389
4390 if (!hlist)
4391 return;
4392
4393 rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
4394 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4395 }
4396
4397 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4398 {
4399 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4400
4401 mutex_lock(&cpuctx->hlist_mutex);
4402
4403 if (!--cpuctx->hlist_refcount)
4404 swevent_hlist_release(cpuctx);
4405
4406 mutex_unlock(&cpuctx->hlist_mutex);
4407 }
4408
4409 static void swevent_hlist_put(struct perf_event *event)
4410 {
4411 int cpu;
4412
4413 if (event->cpu != -1) {
4414 swevent_hlist_put_cpu(event, event->cpu);
4415 return;
4416 }
4417
4418 for_each_possible_cpu(cpu)
4419 swevent_hlist_put_cpu(event, cpu);
4420 }
4421
4422 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4423 {
4424 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4425 int err = 0;
4426
4427 mutex_lock(&cpuctx->hlist_mutex);
4428
4429 if (!swevent_hlist_deref(cpuctx) && cpu_online(cpu)) {
4430 struct swevent_hlist *hlist;
4431
4432 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4433 if (!hlist) {
4434 err = -ENOMEM;
4435 goto exit;
4436 }
4437 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
4438 }
4439 cpuctx->hlist_refcount++;
4440 exit:
4441 mutex_unlock(&cpuctx->hlist_mutex);
4442
4443 return err;
4444 }
4445
4446 static int swevent_hlist_get(struct perf_event *event)
4447 {
4448 int err;
4449 int cpu, failed_cpu;
4450
4451 if (event->cpu != -1)
4452 return swevent_hlist_get_cpu(event, event->cpu);
4453
4454 get_online_cpus();
4455 for_each_possible_cpu(cpu) {
4456 err = swevent_hlist_get_cpu(event, cpu);
4457 if (err) {
4458 failed_cpu = cpu;
4459 goto fail;
4460 }
4461 }
4462 put_online_cpus();
4463
4464 return 0;
4465 fail:
4466 for_each_possible_cpu(cpu) {
4467 if (cpu == failed_cpu)
4468 break;
4469 swevent_hlist_put_cpu(event, cpu);
4470 }
4471
4472 put_online_cpus();
4473 return err;
4474 }
4475
4476 #ifdef CONFIG_EVENT_TRACING
4477
4478 static const struct pmu perf_ops_tracepoint = {
4479 .enable = perf_trace_enable,
4480 .disable = perf_trace_disable,
4481 .read = perf_swevent_read,
4482 .unthrottle = perf_swevent_unthrottle,
4483 };
4484
4485 static int perf_tp_filter_match(struct perf_event *event,
4486 struct perf_sample_data *data)
4487 {
4488 void *record = data->raw->data;
4489
4490 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4491 return 1;
4492 return 0;
4493 }
4494
4495 static int perf_tp_event_match(struct perf_event *event,
4496 struct perf_sample_data *data,
4497 struct pt_regs *regs)
4498 {
4499 /*
4500 * All tracepoints are from kernel-space.
4501 */
4502 if (event->attr.exclude_kernel)
4503 return 0;
4504
4505 if (!perf_tp_filter_match(event, data))
4506 return 0;
4507
4508 return 1;
4509 }
4510
4511 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4512 struct pt_regs *regs, struct hlist_head *head)
4513 {
4514 struct perf_sample_data data;
4515 struct perf_event *event;
4516 struct hlist_node *node;
4517
4518 struct perf_raw_record raw = {
4519 .size = entry_size,
4520 .data = record,
4521 };
4522
4523 perf_sample_data_init(&data, addr);
4524 data.raw = &raw;
4525
4526 rcu_read_lock();
4527 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4528 if (perf_tp_event_match(event, &data, regs))
4529 perf_swevent_add(event, count, 1, &data, regs);
4530 }
4531 rcu_read_unlock();
4532 }
4533 EXPORT_SYMBOL_GPL(perf_tp_event);
4534
4535 static void tp_perf_event_destroy(struct perf_event *event)
4536 {
4537 perf_trace_destroy(event);
4538 }
4539
4540 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4541 {
4542 int err;
4543
4544 /*
4545 * Raw tracepoint data is a severe data leak, only allow root to
4546 * have these.
4547 */
4548 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4549 perf_paranoid_tracepoint_raw() &&
4550 !capable(CAP_SYS_ADMIN))
4551 return ERR_PTR(-EPERM);
4552
4553 err = perf_trace_init(event);
4554 if (err)
4555 return NULL;
4556
4557 event->destroy = tp_perf_event_destroy;
4558
4559 return &perf_ops_tracepoint;
4560 }
4561
4562 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4563 {
4564 char *filter_str;
4565 int ret;
4566
4567 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4568 return -EINVAL;
4569
4570 filter_str = strndup_user(arg, PAGE_SIZE);
4571 if (IS_ERR(filter_str))
4572 return PTR_ERR(filter_str);
4573
4574 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4575
4576 kfree(filter_str);
4577 return ret;
4578 }
4579
4580 static void perf_event_free_filter(struct perf_event *event)
4581 {
4582 ftrace_profile_free_filter(event);
4583 }
4584
4585 #else
4586
4587 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4588 {
4589 return NULL;
4590 }
4591
4592 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4593 {
4594 return -ENOENT;
4595 }
4596
4597 static void perf_event_free_filter(struct perf_event *event)
4598 {
4599 }
4600
4601 #endif /* CONFIG_EVENT_TRACING */
4602
4603 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4604 static void bp_perf_event_destroy(struct perf_event *event)
4605 {
4606 release_bp_slot(event);
4607 }
4608
4609 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4610 {
4611 int err;
4612
4613 err = register_perf_hw_breakpoint(bp);
4614 if (err)
4615 return ERR_PTR(err);
4616
4617 bp->destroy = bp_perf_event_destroy;
4618
4619 return &perf_ops_bp;
4620 }
4621
4622 void perf_bp_event(struct perf_event *bp, void *data)
4623 {
4624 struct perf_sample_data sample;
4625 struct pt_regs *regs = data;
4626
4627 perf_sample_data_init(&sample, bp->attr.bp_addr);
4628
4629 if (!perf_exclude_event(bp, regs))
4630 perf_swevent_add(bp, 1, 1, &sample, regs);
4631 }
4632 #else
4633 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4634 {
4635 return NULL;
4636 }
4637
4638 void perf_bp_event(struct perf_event *bp, void *regs)
4639 {
4640 }
4641 #endif
4642
4643 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4644
4645 static void sw_perf_event_destroy(struct perf_event *event)
4646 {
4647 u64 event_id = event->attr.config;
4648
4649 WARN_ON(event->parent);
4650
4651 atomic_dec(&perf_swevent_enabled[event_id]);
4652 swevent_hlist_put(event);
4653 }
4654
4655 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4656 {
4657 const struct pmu *pmu = NULL;
4658 u64 event_id = event->attr.config;
4659
4660 /*
4661 * Software events (currently) can't in general distinguish
4662 * between user, kernel and hypervisor events.
4663 * However, context switches and cpu migrations are considered
4664 * to be kernel events, and page faults are never hypervisor
4665 * events.
4666 */
4667 switch (event_id) {
4668 case PERF_COUNT_SW_CPU_CLOCK:
4669 pmu = &perf_ops_cpu_clock;
4670
4671 break;
4672 case PERF_COUNT_SW_TASK_CLOCK:
4673 /*
4674 * If the user instantiates this as a per-cpu event,
4675 * use the cpu_clock event instead.
4676 */
4677 if (event->ctx->task)
4678 pmu = &perf_ops_task_clock;
4679 else
4680 pmu = &perf_ops_cpu_clock;
4681
4682 break;
4683 case PERF_COUNT_SW_PAGE_FAULTS:
4684 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4685 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4686 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4687 case PERF_COUNT_SW_CPU_MIGRATIONS:
4688 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4689 case PERF_COUNT_SW_EMULATION_FAULTS:
4690 if (!event->parent) {
4691 int err;
4692
4693 err = swevent_hlist_get(event);
4694 if (err)
4695 return ERR_PTR(err);
4696
4697 atomic_inc(&perf_swevent_enabled[event_id]);
4698 event->destroy = sw_perf_event_destroy;
4699 }
4700 pmu = &perf_ops_generic;
4701 break;
4702 }
4703
4704 return pmu;
4705 }
4706
4707 /*
4708 * Allocate and initialize a event structure
4709 */
4710 static struct perf_event *
4711 perf_event_alloc(struct perf_event_attr *attr,
4712 int cpu,
4713 struct perf_event_context *ctx,
4714 struct perf_event *group_leader,
4715 struct perf_event *parent_event,
4716 perf_overflow_handler_t overflow_handler,
4717 gfp_t gfpflags)
4718 {
4719 const struct pmu *pmu;
4720 struct perf_event *event;
4721 struct hw_perf_event *hwc;
4722 long err;
4723
4724 event = kzalloc(sizeof(*event), gfpflags);
4725 if (!event)
4726 return ERR_PTR(-ENOMEM);
4727
4728 /*
4729 * Single events are their own group leaders, with an
4730 * empty sibling list:
4731 */
4732 if (!group_leader)
4733 group_leader = event;
4734
4735 mutex_init(&event->child_mutex);
4736 INIT_LIST_HEAD(&event->child_list);
4737
4738 INIT_LIST_HEAD(&event->group_entry);
4739 INIT_LIST_HEAD(&event->event_entry);
4740 INIT_LIST_HEAD(&event->sibling_list);
4741 init_waitqueue_head(&event->waitq);
4742
4743 mutex_init(&event->mmap_mutex);
4744
4745 event->cpu = cpu;
4746 event->attr = *attr;
4747 event->group_leader = group_leader;
4748 event->pmu = NULL;
4749 event->ctx = ctx;
4750 event->oncpu = -1;
4751
4752 event->parent = parent_event;
4753
4754 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4755 event->id = atomic64_inc_return(&perf_event_id);
4756
4757 event->state = PERF_EVENT_STATE_INACTIVE;
4758
4759 if (!overflow_handler && parent_event)
4760 overflow_handler = parent_event->overflow_handler;
4761
4762 event->overflow_handler = overflow_handler;
4763
4764 if (attr->disabled)
4765 event->state = PERF_EVENT_STATE_OFF;
4766
4767 pmu = NULL;
4768
4769 hwc = &event->hw;
4770 hwc->sample_period = attr->sample_period;
4771 if (attr->freq && attr->sample_freq)
4772 hwc->sample_period = 1;
4773 hwc->last_period = hwc->sample_period;
4774
4775 atomic64_set(&hwc->period_left, hwc->sample_period);
4776
4777 /*
4778 * we currently do not support PERF_FORMAT_GROUP on inherited events
4779 */
4780 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4781 goto done;
4782
4783 switch (attr->type) {
4784 case PERF_TYPE_RAW:
4785 case PERF_TYPE_HARDWARE:
4786 case PERF_TYPE_HW_CACHE:
4787 pmu = hw_perf_event_init(event);
4788 break;
4789
4790 case PERF_TYPE_SOFTWARE:
4791 pmu = sw_perf_event_init(event);
4792 break;
4793
4794 case PERF_TYPE_TRACEPOINT:
4795 pmu = tp_perf_event_init(event);
4796 break;
4797
4798 case PERF_TYPE_BREAKPOINT:
4799 pmu = bp_perf_event_init(event);
4800 break;
4801
4802
4803 default:
4804 break;
4805 }
4806 done:
4807 err = 0;
4808 if (!pmu)
4809 err = -EINVAL;
4810 else if (IS_ERR(pmu))
4811 err = PTR_ERR(pmu);
4812
4813 if (err) {
4814 if (event->ns)
4815 put_pid_ns(event->ns);
4816 kfree(event);
4817 return ERR_PTR(err);
4818 }
4819
4820 event->pmu = pmu;
4821
4822 if (!event->parent) {
4823 atomic_inc(&nr_events);
4824 if (event->attr.mmap)
4825 atomic_inc(&nr_mmap_events);
4826 if (event->attr.comm)
4827 atomic_inc(&nr_comm_events);
4828 if (event->attr.task)
4829 atomic_inc(&nr_task_events);
4830 }
4831
4832 return event;
4833 }
4834
4835 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4836 struct perf_event_attr *attr)
4837 {
4838 u32 size;
4839 int ret;
4840
4841 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4842 return -EFAULT;
4843
4844 /*
4845 * zero the full structure, so that a short copy will be nice.
4846 */
4847 memset(attr, 0, sizeof(*attr));
4848
4849 ret = get_user(size, &uattr->size);
4850 if (ret)
4851 return ret;
4852
4853 if (size > PAGE_SIZE) /* silly large */
4854 goto err_size;
4855
4856 if (!size) /* abi compat */
4857 size = PERF_ATTR_SIZE_VER0;
4858
4859 if (size < PERF_ATTR_SIZE_VER0)
4860 goto err_size;
4861
4862 /*
4863 * If we're handed a bigger struct than we know of,
4864 * ensure all the unknown bits are 0 - i.e. new
4865 * user-space does not rely on any kernel feature
4866 * extensions we dont know about yet.
4867 */
4868 if (size > sizeof(*attr)) {
4869 unsigned char __user *addr;
4870 unsigned char __user *end;
4871 unsigned char val;
4872
4873 addr = (void __user *)uattr + sizeof(*attr);
4874 end = (void __user *)uattr + size;
4875
4876 for (; addr < end; addr++) {
4877 ret = get_user(val, addr);
4878 if (ret)
4879 return ret;
4880 if (val)
4881 goto err_size;
4882 }
4883 size = sizeof(*attr);
4884 }
4885
4886 ret = copy_from_user(attr, uattr, size);
4887 if (ret)
4888 return -EFAULT;
4889
4890 /*
4891 * If the type exists, the corresponding creation will verify
4892 * the attr->config.
4893 */
4894 if (attr->type >= PERF_TYPE_MAX)
4895 return -EINVAL;
4896
4897 if (attr->__reserved_1)
4898 return -EINVAL;
4899
4900 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4901 return -EINVAL;
4902
4903 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4904 return -EINVAL;
4905
4906 out:
4907 return ret;
4908
4909 err_size:
4910 put_user(sizeof(*attr), &uattr->size);
4911 ret = -E2BIG;
4912 goto out;
4913 }
4914
4915 static int perf_event_set_output(struct perf_event *event, int output_fd)
4916 {
4917 struct perf_event *output_event = NULL;
4918 struct file *output_file = NULL;
4919 struct perf_event *old_output;
4920 int fput_needed = 0;
4921 int ret = -EINVAL;
4922
4923 /*
4924 * Don't allow output of inherited per-task events. This would
4925 * create performance issues due to cross cpu access.
4926 */
4927 if (event->cpu == -1 && event->attr.inherit)
4928 return -EINVAL;
4929
4930 if (!output_fd)
4931 goto set;
4932
4933 output_file = fget_light(output_fd, &fput_needed);
4934 if (!output_file)
4935 return -EBADF;
4936
4937 if (output_file->f_op != &perf_fops)
4938 goto out;
4939
4940 output_event = output_file->private_data;
4941
4942 /* Don't chain output fds */
4943 if (output_event->output)
4944 goto out;
4945
4946 /* Don't set an output fd when we already have an output channel */
4947 if (event->data)
4948 goto out;
4949
4950 /*
4951 * Don't allow cross-cpu buffers
4952 */
4953 if (output_event->cpu != event->cpu)
4954 goto out;
4955
4956 /*
4957 * If its not a per-cpu buffer, it must be the same task.
4958 */
4959 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
4960 goto out;
4961
4962 atomic_long_inc(&output_file->f_count);
4963
4964 set:
4965 mutex_lock(&event->mmap_mutex);
4966 old_output = event->output;
4967 rcu_assign_pointer(event->output, output_event);
4968 mutex_unlock(&event->mmap_mutex);
4969
4970 if (old_output) {
4971 /*
4972 * we need to make sure no existing perf_output_*()
4973 * is still referencing this event.
4974 */
4975 synchronize_rcu();
4976 fput(old_output->filp);
4977 }
4978
4979 ret = 0;
4980 out:
4981 fput_light(output_file, fput_needed);
4982 return ret;
4983 }
4984
4985 /**
4986 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4987 *
4988 * @attr_uptr: event_id type attributes for monitoring/sampling
4989 * @pid: target pid
4990 * @cpu: target cpu
4991 * @group_fd: group leader event fd
4992 */
4993 SYSCALL_DEFINE5(perf_event_open,
4994 struct perf_event_attr __user *, attr_uptr,
4995 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4996 {
4997 struct perf_event *event, *group_leader;
4998 struct perf_event_attr attr;
4999 struct perf_event_context *ctx;
5000 struct file *event_file = NULL;
5001 struct file *group_file = NULL;
5002 int event_fd;
5003 int fput_needed = 0;
5004 int err;
5005
5006 /* for future expandability... */
5007 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5008 return -EINVAL;
5009
5010 err = perf_copy_attr(attr_uptr, &attr);
5011 if (err)
5012 return err;
5013
5014 if (!attr.exclude_kernel) {
5015 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5016 return -EACCES;
5017 }
5018
5019 if (attr.freq) {
5020 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5021 return -EINVAL;
5022 }
5023
5024 event_fd = get_unused_fd_flags(O_RDWR);
5025 if (event_fd < 0)
5026 return event_fd;
5027
5028 /*
5029 * Get the target context (task or percpu):
5030 */
5031 ctx = find_get_context(pid, cpu);
5032 if (IS_ERR(ctx)) {
5033 err = PTR_ERR(ctx);
5034 goto err_fd;
5035 }
5036
5037 /*
5038 * Look up the group leader (we will attach this event to it):
5039 */
5040 group_leader = NULL;
5041 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
5042 err = -EINVAL;
5043 group_file = fget_light(group_fd, &fput_needed);
5044 if (!group_file)
5045 goto err_put_context;
5046 if (group_file->f_op != &perf_fops)
5047 goto err_put_context;
5048
5049 group_leader = group_file->private_data;
5050 /*
5051 * Do not allow a recursive hierarchy (this new sibling
5052 * becoming part of another group-sibling):
5053 */
5054 if (group_leader->group_leader != group_leader)
5055 goto err_put_context;
5056 /*
5057 * Do not allow to attach to a group in a different
5058 * task or CPU context:
5059 */
5060 if (group_leader->ctx != ctx)
5061 goto err_put_context;
5062 /*
5063 * Only a group leader can be exclusive or pinned
5064 */
5065 if (attr.exclusive || attr.pinned)
5066 goto err_put_context;
5067 }
5068
5069 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
5070 NULL, NULL, GFP_KERNEL);
5071 err = PTR_ERR(event);
5072 if (IS_ERR(event))
5073 goto err_put_context;
5074
5075 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5076 if (IS_ERR(event_file)) {
5077 err = PTR_ERR(event_file);
5078 goto err_free_put_context;
5079 }
5080
5081 if (flags & PERF_FLAG_FD_OUTPUT) {
5082 err = perf_event_set_output(event, group_fd);
5083 if (err)
5084 goto err_fput_free_put_context;
5085 }
5086
5087 event->filp = event_file;
5088 WARN_ON_ONCE(ctx->parent_ctx);
5089 mutex_lock(&ctx->mutex);
5090 perf_install_in_context(ctx, event, cpu);
5091 ++ctx->generation;
5092 mutex_unlock(&ctx->mutex);
5093
5094 event->owner = current;
5095 get_task_struct(current);
5096 mutex_lock(&current->perf_event_mutex);
5097 list_add_tail(&event->owner_entry, &current->perf_event_list);
5098 mutex_unlock(&current->perf_event_mutex);
5099
5100 fput_light(group_file, fput_needed);
5101 fd_install(event_fd, event_file);
5102 return event_fd;
5103
5104 err_fput_free_put_context:
5105 fput(event_file);
5106 err_free_put_context:
5107 free_event(event);
5108 err_put_context:
5109 fput_light(group_file, fput_needed);
5110 put_ctx(ctx);
5111 err_fd:
5112 put_unused_fd(event_fd);
5113 return err;
5114 }
5115
5116 /**
5117 * perf_event_create_kernel_counter
5118 *
5119 * @attr: attributes of the counter to create
5120 * @cpu: cpu in which the counter is bound
5121 * @pid: task to profile
5122 */
5123 struct perf_event *
5124 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5125 pid_t pid,
5126 perf_overflow_handler_t overflow_handler)
5127 {
5128 struct perf_event *event;
5129 struct perf_event_context *ctx;
5130 int err;
5131
5132 /*
5133 * Get the target context (task or percpu):
5134 */
5135
5136 ctx = find_get_context(pid, cpu);
5137 if (IS_ERR(ctx)) {
5138 err = PTR_ERR(ctx);
5139 goto err_exit;
5140 }
5141
5142 event = perf_event_alloc(attr, cpu, ctx, NULL,
5143 NULL, overflow_handler, GFP_KERNEL);
5144 if (IS_ERR(event)) {
5145 err = PTR_ERR(event);
5146 goto err_put_context;
5147 }
5148
5149 event->filp = NULL;
5150 WARN_ON_ONCE(ctx->parent_ctx);
5151 mutex_lock(&ctx->mutex);
5152 perf_install_in_context(ctx, event, cpu);
5153 ++ctx->generation;
5154 mutex_unlock(&ctx->mutex);
5155
5156 event->owner = current;
5157 get_task_struct(current);
5158 mutex_lock(&current->perf_event_mutex);
5159 list_add_tail(&event->owner_entry, &current->perf_event_list);
5160 mutex_unlock(&current->perf_event_mutex);
5161
5162 return event;
5163
5164 err_put_context:
5165 put_ctx(ctx);
5166 err_exit:
5167 return ERR_PTR(err);
5168 }
5169 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5170
5171 /*
5172 * inherit a event from parent task to child task:
5173 */
5174 static struct perf_event *
5175 inherit_event(struct perf_event *parent_event,
5176 struct task_struct *parent,
5177 struct perf_event_context *parent_ctx,
5178 struct task_struct *child,
5179 struct perf_event *group_leader,
5180 struct perf_event_context *child_ctx)
5181 {
5182 struct perf_event *child_event;
5183
5184 /*
5185 * Instead of creating recursive hierarchies of events,
5186 * we link inherited events back to the original parent,
5187 * which has a filp for sure, which we use as the reference
5188 * count:
5189 */
5190 if (parent_event->parent)
5191 parent_event = parent_event->parent;
5192
5193 child_event = perf_event_alloc(&parent_event->attr,
5194 parent_event->cpu, child_ctx,
5195 group_leader, parent_event,
5196 NULL, GFP_KERNEL);
5197 if (IS_ERR(child_event))
5198 return child_event;
5199 get_ctx(child_ctx);
5200
5201 /*
5202 * Make the child state follow the state of the parent event,
5203 * not its attr.disabled bit. We hold the parent's mutex,
5204 * so we won't race with perf_event_{en, dis}able_family.
5205 */
5206 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5207 child_event->state = PERF_EVENT_STATE_INACTIVE;
5208 else
5209 child_event->state = PERF_EVENT_STATE_OFF;
5210
5211 if (parent_event->attr.freq) {
5212 u64 sample_period = parent_event->hw.sample_period;
5213 struct hw_perf_event *hwc = &child_event->hw;
5214
5215 hwc->sample_period = sample_period;
5216 hwc->last_period = sample_period;
5217
5218 atomic64_set(&hwc->period_left, sample_period);
5219 }
5220
5221 child_event->overflow_handler = parent_event->overflow_handler;
5222
5223 /*
5224 * Link it up in the child's context:
5225 */
5226 add_event_to_ctx(child_event, child_ctx);
5227
5228 /*
5229 * Get a reference to the parent filp - we will fput it
5230 * when the child event exits. This is safe to do because
5231 * we are in the parent and we know that the filp still
5232 * exists and has a nonzero count:
5233 */
5234 atomic_long_inc(&parent_event->filp->f_count);
5235
5236 /*
5237 * Link this into the parent event's child list
5238 */
5239 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5240 mutex_lock(&parent_event->child_mutex);
5241 list_add_tail(&child_event->child_list, &parent_event->child_list);
5242 mutex_unlock(&parent_event->child_mutex);
5243
5244 return child_event;
5245 }
5246
5247 static int inherit_group(struct perf_event *parent_event,
5248 struct task_struct *parent,
5249 struct perf_event_context *parent_ctx,
5250 struct task_struct *child,
5251 struct perf_event_context *child_ctx)
5252 {
5253 struct perf_event *leader;
5254 struct perf_event *sub;
5255 struct perf_event *child_ctr;
5256
5257 leader = inherit_event(parent_event, parent, parent_ctx,
5258 child, NULL, child_ctx);
5259 if (IS_ERR(leader))
5260 return PTR_ERR(leader);
5261 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5262 child_ctr = inherit_event(sub, parent, parent_ctx,
5263 child, leader, child_ctx);
5264 if (IS_ERR(child_ctr))
5265 return PTR_ERR(child_ctr);
5266 }
5267 return 0;
5268 }
5269
5270 static void sync_child_event(struct perf_event *child_event,
5271 struct task_struct *child)
5272 {
5273 struct perf_event *parent_event = child_event->parent;
5274 u64 child_val;
5275
5276 if (child_event->attr.inherit_stat)
5277 perf_event_read_event(child_event, child);
5278
5279 child_val = atomic64_read(&child_event->count);
5280
5281 /*
5282 * Add back the child's count to the parent's count:
5283 */
5284 atomic64_add(child_val, &parent_event->count);
5285 atomic64_add(child_event->total_time_enabled,
5286 &parent_event->child_total_time_enabled);
5287 atomic64_add(child_event->total_time_running,
5288 &parent_event->child_total_time_running);
5289
5290 /*
5291 * Remove this event from the parent's list
5292 */
5293 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5294 mutex_lock(&parent_event->child_mutex);
5295 list_del_init(&child_event->child_list);
5296 mutex_unlock(&parent_event->child_mutex);
5297
5298 /*
5299 * Release the parent event, if this was the last
5300 * reference to it.
5301 */
5302 fput(parent_event->filp);
5303 }
5304
5305 static void
5306 __perf_event_exit_task(struct perf_event *child_event,
5307 struct perf_event_context *child_ctx,
5308 struct task_struct *child)
5309 {
5310 struct perf_event *parent_event;
5311
5312 perf_event_remove_from_context(child_event);
5313
5314 parent_event = child_event->parent;
5315 /*
5316 * It can happen that parent exits first, and has events
5317 * that are still around due to the child reference. These
5318 * events need to be zapped - but otherwise linger.
5319 */
5320 if (parent_event) {
5321 sync_child_event(child_event, child);
5322 free_event(child_event);
5323 }
5324 }
5325
5326 /*
5327 * When a child task exits, feed back event values to parent events.
5328 */
5329 void perf_event_exit_task(struct task_struct *child)
5330 {
5331 struct perf_event *child_event, *tmp;
5332 struct perf_event_context *child_ctx;
5333 unsigned long flags;
5334
5335 if (likely(!child->perf_event_ctxp)) {
5336 perf_event_task(child, NULL, 0);
5337 return;
5338 }
5339
5340 local_irq_save(flags);
5341 /*
5342 * We can't reschedule here because interrupts are disabled,
5343 * and either child is current or it is a task that can't be
5344 * scheduled, so we are now safe from rescheduling changing
5345 * our context.
5346 */
5347 child_ctx = child->perf_event_ctxp;
5348 __perf_event_task_sched_out(child_ctx);
5349
5350 /*
5351 * Take the context lock here so that if find_get_context is
5352 * reading child->perf_event_ctxp, we wait until it has
5353 * incremented the context's refcount before we do put_ctx below.
5354 */
5355 raw_spin_lock(&child_ctx->lock);
5356 child->perf_event_ctxp = NULL;
5357 /*
5358 * If this context is a clone; unclone it so it can't get
5359 * swapped to another process while we're removing all
5360 * the events from it.
5361 */
5362 unclone_ctx(child_ctx);
5363 update_context_time(child_ctx);
5364 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5365
5366 /*
5367 * Report the task dead after unscheduling the events so that we
5368 * won't get any samples after PERF_RECORD_EXIT. We can however still
5369 * get a few PERF_RECORD_READ events.
5370 */
5371 perf_event_task(child, child_ctx, 0);
5372
5373 /*
5374 * We can recurse on the same lock type through:
5375 *
5376 * __perf_event_exit_task()
5377 * sync_child_event()
5378 * fput(parent_event->filp)
5379 * perf_release()
5380 * mutex_lock(&ctx->mutex)
5381 *
5382 * But since its the parent context it won't be the same instance.
5383 */
5384 mutex_lock(&child_ctx->mutex);
5385
5386 again:
5387 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5388 group_entry)
5389 __perf_event_exit_task(child_event, child_ctx, child);
5390
5391 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5392 group_entry)
5393 __perf_event_exit_task(child_event, child_ctx, child);
5394
5395 /*
5396 * If the last event was a group event, it will have appended all
5397 * its siblings to the list, but we obtained 'tmp' before that which
5398 * will still point to the list head terminating the iteration.
5399 */
5400 if (!list_empty(&child_ctx->pinned_groups) ||
5401 !list_empty(&child_ctx->flexible_groups))
5402 goto again;
5403
5404 mutex_unlock(&child_ctx->mutex);
5405
5406 put_ctx(child_ctx);
5407 }
5408
5409 static void perf_free_event(struct perf_event *event,
5410 struct perf_event_context *ctx)
5411 {
5412 struct perf_event *parent = event->parent;
5413
5414 if (WARN_ON_ONCE(!parent))
5415 return;
5416
5417 mutex_lock(&parent->child_mutex);
5418 list_del_init(&event->child_list);
5419 mutex_unlock(&parent->child_mutex);
5420
5421 fput(parent->filp);
5422
5423 list_del_event(event, ctx);
5424 free_event(event);
5425 }
5426
5427 /*
5428 * free an unexposed, unused context as created by inheritance by
5429 * init_task below, used by fork() in case of fail.
5430 */
5431 void perf_event_free_task(struct task_struct *task)
5432 {
5433 struct perf_event_context *ctx = task->perf_event_ctxp;
5434 struct perf_event *event, *tmp;
5435
5436 if (!ctx)
5437 return;
5438
5439 mutex_lock(&ctx->mutex);
5440 again:
5441 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5442 perf_free_event(event, ctx);
5443
5444 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5445 group_entry)
5446 perf_free_event(event, ctx);
5447
5448 if (!list_empty(&ctx->pinned_groups) ||
5449 !list_empty(&ctx->flexible_groups))
5450 goto again;
5451
5452 mutex_unlock(&ctx->mutex);
5453
5454 put_ctx(ctx);
5455 }
5456
5457 static int
5458 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5459 struct perf_event_context *parent_ctx,
5460 struct task_struct *child,
5461 int *inherited_all)
5462 {
5463 int ret;
5464 struct perf_event_context *child_ctx = child->perf_event_ctxp;
5465
5466 if (!event->attr.inherit) {
5467 *inherited_all = 0;
5468 return 0;
5469 }
5470
5471 if (!child_ctx) {
5472 /*
5473 * This is executed from the parent task context, so
5474 * inherit events that have been marked for cloning.
5475 * First allocate and initialize a context for the
5476 * child.
5477 */
5478
5479 child_ctx = kzalloc(sizeof(struct perf_event_context),
5480 GFP_KERNEL);
5481 if (!child_ctx)
5482 return -ENOMEM;
5483
5484 __perf_event_init_context(child_ctx, child);
5485 child->perf_event_ctxp = child_ctx;
5486 get_task_struct(child);
5487 }
5488
5489 ret = inherit_group(event, parent, parent_ctx,
5490 child, child_ctx);
5491
5492 if (ret)
5493 *inherited_all = 0;
5494
5495 return ret;
5496 }
5497
5498
5499 /*
5500 * Initialize the perf_event context in task_struct
5501 */
5502 int perf_event_init_task(struct task_struct *child)
5503 {
5504 struct perf_event_context *child_ctx, *parent_ctx;
5505 struct perf_event_context *cloned_ctx;
5506 struct perf_event *event;
5507 struct task_struct *parent = current;
5508 int inherited_all = 1;
5509 int ret = 0;
5510
5511 child->perf_event_ctxp = NULL;
5512
5513 mutex_init(&child->perf_event_mutex);
5514 INIT_LIST_HEAD(&child->perf_event_list);
5515
5516 if (likely(!parent->perf_event_ctxp))
5517 return 0;
5518
5519 /*
5520 * If the parent's context is a clone, pin it so it won't get
5521 * swapped under us.
5522 */
5523 parent_ctx = perf_pin_task_context(parent);
5524
5525 /*
5526 * No need to check if parent_ctx != NULL here; since we saw
5527 * it non-NULL earlier, the only reason for it to become NULL
5528 * is if we exit, and since we're currently in the middle of
5529 * a fork we can't be exiting at the same time.
5530 */
5531
5532 /*
5533 * Lock the parent list. No need to lock the child - not PID
5534 * hashed yet and not running, so nobody can access it.
5535 */
5536 mutex_lock(&parent_ctx->mutex);
5537
5538 /*
5539 * We dont have to disable NMIs - we are only looking at
5540 * the list, not manipulating it:
5541 */
5542 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5543 ret = inherit_task_group(event, parent, parent_ctx, child,
5544 &inherited_all);
5545 if (ret)
5546 break;
5547 }
5548
5549 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5550 ret = inherit_task_group(event, parent, parent_ctx, child,
5551 &inherited_all);
5552 if (ret)
5553 break;
5554 }
5555
5556 child_ctx = child->perf_event_ctxp;
5557
5558 if (child_ctx && inherited_all) {
5559 /*
5560 * Mark the child context as a clone of the parent
5561 * context, or of whatever the parent is a clone of.
5562 * Note that if the parent is a clone, it could get
5563 * uncloned at any point, but that doesn't matter
5564 * because the list of events and the generation
5565 * count can't have changed since we took the mutex.
5566 */
5567 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5568 if (cloned_ctx) {
5569 child_ctx->parent_ctx = cloned_ctx;
5570 child_ctx->parent_gen = parent_ctx->parent_gen;
5571 } else {
5572 child_ctx->parent_ctx = parent_ctx;
5573 child_ctx->parent_gen = parent_ctx->generation;
5574 }
5575 get_ctx(child_ctx->parent_ctx);
5576 }
5577
5578 mutex_unlock(&parent_ctx->mutex);
5579
5580 perf_unpin_context(parent_ctx);
5581
5582 return ret;
5583 }
5584
5585 static void __init perf_event_init_all_cpus(void)
5586 {
5587 int cpu;
5588 struct perf_cpu_context *cpuctx;
5589
5590 for_each_possible_cpu(cpu) {
5591 cpuctx = &per_cpu(perf_cpu_context, cpu);
5592 mutex_init(&cpuctx->hlist_mutex);
5593 __perf_event_init_context(&cpuctx->ctx, NULL);
5594 }
5595 }
5596
5597 static void __cpuinit perf_event_init_cpu(int cpu)
5598 {
5599 struct perf_cpu_context *cpuctx;
5600
5601 cpuctx = &per_cpu(perf_cpu_context, cpu);
5602
5603 spin_lock(&perf_resource_lock);
5604 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5605 spin_unlock(&perf_resource_lock);
5606
5607 mutex_lock(&cpuctx->hlist_mutex);
5608 if (cpuctx->hlist_refcount > 0) {
5609 struct swevent_hlist *hlist;
5610
5611 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5612 WARN_ON_ONCE(!hlist);
5613 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
5614 }
5615 mutex_unlock(&cpuctx->hlist_mutex);
5616 }
5617
5618 #ifdef CONFIG_HOTPLUG_CPU
5619 static void __perf_event_exit_cpu(void *info)
5620 {
5621 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5622 struct perf_event_context *ctx = &cpuctx->ctx;
5623 struct perf_event *event, *tmp;
5624
5625 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5626 __perf_event_remove_from_context(event);
5627 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5628 __perf_event_remove_from_context(event);
5629 }
5630 static void perf_event_exit_cpu(int cpu)
5631 {
5632 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5633 struct perf_event_context *ctx = &cpuctx->ctx;
5634
5635 mutex_lock(&cpuctx->hlist_mutex);
5636 swevent_hlist_release(cpuctx);
5637 mutex_unlock(&cpuctx->hlist_mutex);
5638
5639 mutex_lock(&ctx->mutex);
5640 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5641 mutex_unlock(&ctx->mutex);
5642 }
5643 #else
5644 static inline void perf_event_exit_cpu(int cpu) { }
5645 #endif
5646
5647 static int __cpuinit
5648 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5649 {
5650 unsigned int cpu = (long)hcpu;
5651
5652 switch (action) {
5653
5654 case CPU_UP_PREPARE:
5655 case CPU_UP_PREPARE_FROZEN:
5656 perf_event_init_cpu(cpu);
5657 break;
5658
5659 case CPU_DOWN_PREPARE:
5660 case CPU_DOWN_PREPARE_FROZEN:
5661 perf_event_exit_cpu(cpu);
5662 break;
5663
5664 default:
5665 break;
5666 }
5667
5668 return NOTIFY_OK;
5669 }
5670
5671 /*
5672 * This has to have a higher priority than migration_notifier in sched.c.
5673 */
5674 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5675 .notifier_call = perf_cpu_notify,
5676 .priority = 20,
5677 };
5678
5679 void __init perf_event_init(void)
5680 {
5681 perf_event_init_all_cpus();
5682 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5683 (void *)(long)smp_processor_id());
5684 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5685 (void *)(long)smp_processor_id());
5686 register_cpu_notifier(&perf_cpu_nb);
5687 }
5688
5689 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5690 struct sysdev_class_attribute *attr,
5691 char *buf)
5692 {
5693 return sprintf(buf, "%d\n", perf_reserved_percpu);
5694 }
5695
5696 static ssize_t
5697 perf_set_reserve_percpu(struct sysdev_class *class,
5698 struct sysdev_class_attribute *attr,
5699 const char *buf,
5700 size_t count)
5701 {
5702 struct perf_cpu_context *cpuctx;
5703 unsigned long val;
5704 int err, cpu, mpt;
5705
5706 err = strict_strtoul(buf, 10, &val);
5707 if (err)
5708 return err;
5709 if (val > perf_max_events)
5710 return -EINVAL;
5711
5712 spin_lock(&perf_resource_lock);
5713 perf_reserved_percpu = val;
5714 for_each_online_cpu(cpu) {
5715 cpuctx = &per_cpu(perf_cpu_context, cpu);
5716 raw_spin_lock_irq(&cpuctx->ctx.lock);
5717 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5718 perf_max_events - perf_reserved_percpu);
5719 cpuctx->max_pertask = mpt;
5720 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5721 }
5722 spin_unlock(&perf_resource_lock);
5723
5724 return count;
5725 }
5726
5727 static ssize_t perf_show_overcommit(struct sysdev_class *class,
5728 struct sysdev_class_attribute *attr,
5729 char *buf)
5730 {
5731 return sprintf(buf, "%d\n", perf_overcommit);
5732 }
5733
5734 static ssize_t
5735 perf_set_overcommit(struct sysdev_class *class,
5736 struct sysdev_class_attribute *attr,
5737 const char *buf, size_t count)
5738 {
5739 unsigned long val;
5740 int err;
5741
5742 err = strict_strtoul(buf, 10, &val);
5743 if (err)
5744 return err;
5745 if (val > 1)
5746 return -EINVAL;
5747
5748 spin_lock(&perf_resource_lock);
5749 perf_overcommit = val;
5750 spin_unlock(&perf_resource_lock);
5751
5752 return count;
5753 }
5754
5755 static SYSDEV_CLASS_ATTR(
5756 reserve_percpu,
5757 0644,
5758 perf_show_reserve_percpu,
5759 perf_set_reserve_percpu
5760 );
5761
5762 static SYSDEV_CLASS_ATTR(
5763 overcommit,
5764 0644,
5765 perf_show_overcommit,
5766 perf_set_overcommit
5767 );
5768
5769 static struct attribute *perfclass_attrs[] = {
5770 &attr_reserve_percpu.attr,
5771 &attr_overcommit.attr,
5772 NULL
5773 };
5774
5775 static struct attribute_group perfclass_attr_group = {
5776 .attrs = perfclass_attrs,
5777 .name = "perf_events",
5778 };
5779
5780 static int __init perf_event_sysfs_init(void)
5781 {
5782 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5783 &perfclass_attr_group);
5784 }
5785 device_initcall(perf_event_sysfs_init);