]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/pid.c
pid namespaces: allow cloning of new namespace
[mirror_ubuntu-artful-kernel.git] / kernel / pid.c
1 /*
2 * Generic pidhash and scalable, time-bounded PID allocator
3 *
4 * (C) 2002-2003 William Irwin, IBM
5 * (C) 2004 William Irwin, Oracle
6 * (C) 2002-2004 Ingo Molnar, Red Hat
7 *
8 * pid-structures are backing objects for tasks sharing a given ID to chain
9 * against. There is very little to them aside from hashing them and
10 * parking tasks using given ID's on a list.
11 *
12 * The hash is always changed with the tasklist_lock write-acquired,
13 * and the hash is only accessed with the tasklist_lock at least
14 * read-acquired, so there's no additional SMP locking needed here.
15 *
16 * We have a list of bitmap pages, which bitmaps represent the PID space.
17 * Allocating and freeing PIDs is completely lockless. The worst-case
18 * allocation scenario when all but one out of 1 million PIDs possible are
19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
21 *
22 * Pid namespaces:
23 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
24 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
25 * Many thanks to Oleg Nesterov for comments and help
26 *
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/bootmem.h>
34 #include <linux/hash.h>
35 #include <linux/pid_namespace.h>
36 #include <linux/init_task.h>
37
38 #define pid_hashfn(nr, ns) \
39 hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
40 static struct hlist_head *pid_hash;
41 static int pidhash_shift;
42 struct pid init_struct_pid = INIT_STRUCT_PID;
43
44 int pid_max = PID_MAX_DEFAULT;
45
46 #define RESERVED_PIDS 300
47
48 int pid_max_min = RESERVED_PIDS + 1;
49 int pid_max_max = PID_MAX_LIMIT;
50
51 #define BITS_PER_PAGE (PAGE_SIZE*8)
52 #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
53
54 static inline int mk_pid(struct pid_namespace *pid_ns,
55 struct pidmap *map, int off)
56 {
57 return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
58 }
59
60 #define find_next_offset(map, off) \
61 find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
62
63 /*
64 * PID-map pages start out as NULL, they get allocated upon
65 * first use and are never deallocated. This way a low pid_max
66 * value does not cause lots of bitmaps to be allocated, but
67 * the scheme scales to up to 4 million PIDs, runtime.
68 */
69 struct pid_namespace init_pid_ns = {
70 .kref = {
71 .refcount = ATOMIC_INIT(2),
72 },
73 .pidmap = {
74 [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
75 },
76 .last_pid = 0,
77 .level = 0,
78 .child_reaper = &init_task,
79 };
80 EXPORT_SYMBOL_GPL(init_pid_ns);
81
82 int is_container_init(struct task_struct *tsk)
83 {
84 int ret = 0;
85 struct pid *pid;
86
87 rcu_read_lock();
88 pid = task_pid(tsk);
89 if (pid != NULL && pid->numbers[pid->level].nr == 1)
90 ret = 1;
91 rcu_read_unlock();
92
93 return ret;
94 }
95 EXPORT_SYMBOL(is_container_init);
96
97 /*
98 * Note: disable interrupts while the pidmap_lock is held as an
99 * interrupt might come in and do read_lock(&tasklist_lock).
100 *
101 * If we don't disable interrupts there is a nasty deadlock between
102 * detach_pid()->free_pid() and another cpu that does
103 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
104 * read_lock(&tasklist_lock);
105 *
106 * After we clean up the tasklist_lock and know there are no
107 * irq handlers that take it we can leave the interrupts enabled.
108 * For now it is easier to be safe than to prove it can't happen.
109 */
110
111 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
112
113 static fastcall void free_pidmap(struct pid_namespace *pid_ns, int pid)
114 {
115 struct pidmap *map = pid_ns->pidmap + pid / BITS_PER_PAGE;
116 int offset = pid & BITS_PER_PAGE_MASK;
117
118 clear_bit(offset, map->page);
119 atomic_inc(&map->nr_free);
120 }
121
122 static int alloc_pidmap(struct pid_namespace *pid_ns)
123 {
124 int i, offset, max_scan, pid, last = pid_ns->last_pid;
125 struct pidmap *map;
126
127 pid = last + 1;
128 if (pid >= pid_max)
129 pid = RESERVED_PIDS;
130 offset = pid & BITS_PER_PAGE_MASK;
131 map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
132 max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset;
133 for (i = 0; i <= max_scan; ++i) {
134 if (unlikely(!map->page)) {
135 void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
136 /*
137 * Free the page if someone raced with us
138 * installing it:
139 */
140 spin_lock_irq(&pidmap_lock);
141 if (map->page)
142 kfree(page);
143 else
144 map->page = page;
145 spin_unlock_irq(&pidmap_lock);
146 if (unlikely(!map->page))
147 break;
148 }
149 if (likely(atomic_read(&map->nr_free))) {
150 do {
151 if (!test_and_set_bit(offset, map->page)) {
152 atomic_dec(&map->nr_free);
153 pid_ns->last_pid = pid;
154 return pid;
155 }
156 offset = find_next_offset(map, offset);
157 pid = mk_pid(pid_ns, map, offset);
158 /*
159 * find_next_offset() found a bit, the pid from it
160 * is in-bounds, and if we fell back to the last
161 * bitmap block and the final block was the same
162 * as the starting point, pid is before last_pid.
163 */
164 } while (offset < BITS_PER_PAGE && pid < pid_max &&
165 (i != max_scan || pid < last ||
166 !((last+1) & BITS_PER_PAGE_MASK)));
167 }
168 if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
169 ++map;
170 offset = 0;
171 } else {
172 map = &pid_ns->pidmap[0];
173 offset = RESERVED_PIDS;
174 if (unlikely(last == offset))
175 break;
176 }
177 pid = mk_pid(pid_ns, map, offset);
178 }
179 return -1;
180 }
181
182 static int next_pidmap(struct pid_namespace *pid_ns, int last)
183 {
184 int offset;
185 struct pidmap *map, *end;
186
187 offset = (last + 1) & BITS_PER_PAGE_MASK;
188 map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
189 end = &pid_ns->pidmap[PIDMAP_ENTRIES];
190 for (; map < end; map++, offset = 0) {
191 if (unlikely(!map->page))
192 continue;
193 offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
194 if (offset < BITS_PER_PAGE)
195 return mk_pid(pid_ns, map, offset);
196 }
197 return -1;
198 }
199
200 fastcall void put_pid(struct pid *pid)
201 {
202 struct pid_namespace *ns;
203
204 if (!pid)
205 return;
206
207 ns = pid->numbers[pid->level].ns;
208 if ((atomic_read(&pid->count) == 1) ||
209 atomic_dec_and_test(&pid->count)) {
210 kmem_cache_free(ns->pid_cachep, pid);
211 put_pid_ns(ns);
212 }
213 }
214 EXPORT_SYMBOL_GPL(put_pid);
215
216 static void delayed_put_pid(struct rcu_head *rhp)
217 {
218 struct pid *pid = container_of(rhp, struct pid, rcu);
219 put_pid(pid);
220 }
221
222 fastcall void free_pid(struct pid *pid)
223 {
224 /* We can be called with write_lock_irq(&tasklist_lock) held */
225 int i;
226 unsigned long flags;
227
228 spin_lock_irqsave(&pidmap_lock, flags);
229 for (i = 0; i <= pid->level; i++)
230 hlist_del_rcu(&pid->numbers[i].pid_chain);
231 spin_unlock_irqrestore(&pidmap_lock, flags);
232
233 for (i = 0; i <= pid->level; i++)
234 free_pidmap(pid->numbers[i].ns, pid->numbers[i].nr);
235
236 call_rcu(&pid->rcu, delayed_put_pid);
237 }
238
239 struct pid *alloc_pid(struct pid_namespace *ns)
240 {
241 struct pid *pid;
242 enum pid_type type;
243 int i, nr;
244 struct pid_namespace *tmp;
245 struct upid *upid;
246
247 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
248 if (!pid)
249 goto out;
250
251 tmp = ns;
252 for (i = ns->level; i >= 0; i--) {
253 nr = alloc_pidmap(tmp);
254 if (nr < 0)
255 goto out_free;
256
257 pid->numbers[i].nr = nr;
258 pid->numbers[i].ns = tmp;
259 tmp = tmp->parent;
260 }
261
262 get_pid_ns(ns);
263 pid->level = ns->level;
264 pid->nr = pid->numbers[0].nr;
265 atomic_set(&pid->count, 1);
266 for (type = 0; type < PIDTYPE_MAX; ++type)
267 INIT_HLIST_HEAD(&pid->tasks[type]);
268
269 spin_lock_irq(&pidmap_lock);
270 for (i = ns->level; i >= 0; i--) {
271 upid = &pid->numbers[i];
272 hlist_add_head_rcu(&upid->pid_chain,
273 &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
274 }
275 spin_unlock_irq(&pidmap_lock);
276
277 out:
278 return pid;
279
280 out_free:
281 for (i++; i <= ns->level; i++)
282 free_pidmap(pid->numbers[i].ns, pid->numbers[i].nr);
283
284 kmem_cache_free(ns->pid_cachep, pid);
285 pid = NULL;
286 goto out;
287 }
288
289 struct pid * fastcall find_pid_ns(int nr, struct pid_namespace *ns)
290 {
291 struct hlist_node *elem;
292 struct upid *pnr;
293
294 hlist_for_each_entry_rcu(pnr, elem,
295 &pid_hash[pid_hashfn(nr, ns)], pid_chain)
296 if (pnr->nr == nr && pnr->ns == ns)
297 return container_of(pnr, struct pid,
298 numbers[ns->level]);
299
300 return NULL;
301 }
302 EXPORT_SYMBOL_GPL(find_pid_ns);
303
304 /*
305 * attach_pid() must be called with the tasklist_lock write-held.
306 */
307 int fastcall attach_pid(struct task_struct *task, enum pid_type type,
308 struct pid *pid)
309 {
310 struct pid_link *link;
311
312 link = &task->pids[type];
313 link->pid = pid;
314 hlist_add_head_rcu(&link->node, &pid->tasks[type]);
315
316 return 0;
317 }
318
319 void fastcall detach_pid(struct task_struct *task, enum pid_type type)
320 {
321 struct pid_link *link;
322 struct pid *pid;
323 int tmp;
324
325 link = &task->pids[type];
326 pid = link->pid;
327
328 hlist_del_rcu(&link->node);
329 link->pid = NULL;
330
331 for (tmp = PIDTYPE_MAX; --tmp >= 0; )
332 if (!hlist_empty(&pid->tasks[tmp]))
333 return;
334
335 free_pid(pid);
336 }
337
338 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
339 void fastcall transfer_pid(struct task_struct *old, struct task_struct *new,
340 enum pid_type type)
341 {
342 new->pids[type].pid = old->pids[type].pid;
343 hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
344 old->pids[type].pid = NULL;
345 }
346
347 struct task_struct * fastcall pid_task(struct pid *pid, enum pid_type type)
348 {
349 struct task_struct *result = NULL;
350 if (pid) {
351 struct hlist_node *first;
352 first = rcu_dereference(pid->tasks[type].first);
353 if (first)
354 result = hlist_entry(first, struct task_struct, pids[(type)].node);
355 }
356 return result;
357 }
358
359 /*
360 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
361 */
362 struct task_struct *find_task_by_pid_type_ns(int type, int nr,
363 struct pid_namespace *ns)
364 {
365 return pid_task(find_pid_ns(nr, ns), type);
366 }
367
368 EXPORT_SYMBOL(find_task_by_pid_type_ns);
369
370 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
371 {
372 struct pid *pid;
373 rcu_read_lock();
374 pid = get_pid(task->pids[type].pid);
375 rcu_read_unlock();
376 return pid;
377 }
378
379 struct task_struct *fastcall get_pid_task(struct pid *pid, enum pid_type type)
380 {
381 struct task_struct *result;
382 rcu_read_lock();
383 result = pid_task(pid, type);
384 if (result)
385 get_task_struct(result);
386 rcu_read_unlock();
387 return result;
388 }
389
390 struct pid *find_get_pid(pid_t nr)
391 {
392 struct pid *pid;
393
394 rcu_read_lock();
395 pid = get_pid(find_vpid(nr));
396 rcu_read_unlock();
397
398 return pid;
399 }
400
401 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
402 {
403 struct upid *upid;
404 pid_t nr = 0;
405
406 if (pid && ns->level <= pid->level) {
407 upid = &pid->numbers[ns->level];
408 if (upid->ns == ns)
409 nr = upid->nr;
410 }
411 return nr;
412 }
413
414 /*
415 * Used by proc to find the first pid that is greater then or equal to nr.
416 *
417 * If there is a pid at nr this function is exactly the same as find_pid.
418 */
419 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
420 {
421 struct pid *pid;
422
423 do {
424 pid = find_pid_ns(nr, ns);
425 if (pid)
426 break;
427 nr = next_pidmap(ns, nr);
428 } while (nr > 0);
429
430 return pid;
431 }
432 EXPORT_SYMBOL_GPL(find_get_pid);
433
434 struct pid_cache {
435 int nr_ids;
436 char name[16];
437 struct kmem_cache *cachep;
438 struct list_head list;
439 };
440
441 static LIST_HEAD(pid_caches_lh);
442 static DEFINE_MUTEX(pid_caches_mutex);
443
444 /*
445 * creates the kmem cache to allocate pids from.
446 * @nr_ids: the number of numerical ids this pid will have to carry
447 */
448
449 static struct kmem_cache *create_pid_cachep(int nr_ids)
450 {
451 struct pid_cache *pcache;
452 struct kmem_cache *cachep;
453
454 mutex_lock(&pid_caches_mutex);
455 list_for_each_entry (pcache, &pid_caches_lh, list)
456 if (pcache->nr_ids == nr_ids)
457 goto out;
458
459 pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
460 if (pcache == NULL)
461 goto err_alloc;
462
463 snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
464 cachep = kmem_cache_create(pcache->name,
465 sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
466 0, SLAB_HWCACHE_ALIGN, NULL);
467 if (cachep == NULL)
468 goto err_cachep;
469
470 pcache->nr_ids = nr_ids;
471 pcache->cachep = cachep;
472 list_add(&pcache->list, &pid_caches_lh);
473 out:
474 mutex_unlock(&pid_caches_mutex);
475 return pcache->cachep;
476
477 err_cachep:
478 kfree(pcache);
479 err_alloc:
480 mutex_unlock(&pid_caches_mutex);
481 return NULL;
482 }
483
484 static struct pid_namespace *create_pid_namespace(int level)
485 {
486 struct pid_namespace *ns;
487 int i;
488
489 ns = kmalloc(sizeof(struct pid_namespace), GFP_KERNEL);
490 if (ns == NULL)
491 goto out;
492
493 ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
494 if (!ns->pidmap[0].page)
495 goto out_free;
496
497 ns->pid_cachep = create_pid_cachep(level + 1);
498 if (ns->pid_cachep == NULL)
499 goto out_free_map;
500
501 kref_init(&ns->kref);
502 ns->last_pid = 0;
503 ns->child_reaper = NULL;
504 ns->level = level;
505
506 set_bit(0, ns->pidmap[0].page);
507 atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
508
509 for (i = 1; i < PIDMAP_ENTRIES; i++) {
510 ns->pidmap[i].page = 0;
511 atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
512 }
513
514 return ns;
515
516 out_free_map:
517 kfree(ns->pidmap[0].page);
518 out_free:
519 kfree(ns);
520 out:
521 return ERR_PTR(-ENOMEM);
522 }
523
524 static void destroy_pid_namespace(struct pid_namespace *ns)
525 {
526 int i;
527
528 for (i = 0; i < PIDMAP_ENTRIES; i++)
529 kfree(ns->pidmap[i].page);
530 kfree(ns);
531 }
532
533 struct pid_namespace *copy_pid_ns(unsigned long flags, struct pid_namespace *old_ns)
534 {
535 struct pid_namespace *new_ns;
536
537 BUG_ON(!old_ns);
538 new_ns = get_pid_ns(old_ns);
539 if (!(flags & CLONE_NEWPID))
540 goto out;
541
542 new_ns = ERR_PTR(-EINVAL);
543 if (flags & CLONE_THREAD)
544 goto out_put;
545
546 new_ns = create_pid_namespace(old_ns->level + 1);
547 if (!IS_ERR(new_ns))
548 new_ns->parent = get_pid_ns(old_ns);
549
550 out_put:
551 put_pid_ns(old_ns);
552 out:
553 return new_ns;
554 }
555
556 void free_pid_ns(struct kref *kref)
557 {
558 struct pid_namespace *ns, *parent;
559
560 ns = container_of(kref, struct pid_namespace, kref);
561
562 parent = ns->parent;
563 destroy_pid_namespace(ns);
564
565 if (parent != NULL)
566 put_pid_ns(parent);
567 }
568
569 /*
570 * The pid hash table is scaled according to the amount of memory in the
571 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
572 * more.
573 */
574 void __init pidhash_init(void)
575 {
576 int i, pidhash_size;
577 unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT);
578
579 pidhash_shift = max(4, fls(megabytes * 4));
580 pidhash_shift = min(12, pidhash_shift);
581 pidhash_size = 1 << pidhash_shift;
582
583 printk("PID hash table entries: %d (order: %d, %Zd bytes)\n",
584 pidhash_size, pidhash_shift,
585 pidhash_size * sizeof(struct hlist_head));
586
587 pid_hash = alloc_bootmem(pidhash_size * sizeof(*(pid_hash)));
588 if (!pid_hash)
589 panic("Could not alloc pidhash!\n");
590 for (i = 0; i < pidhash_size; i++)
591 INIT_HLIST_HEAD(&pid_hash[i]);
592 }
593
594 void __init pidmap_init(void)
595 {
596 init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
597 /* Reserve PID 0. We never call free_pidmap(0) */
598 set_bit(0, init_pid_ns.pidmap[0].page);
599 atomic_dec(&init_pid_ns.pidmap[0].nr_free);
600
601 init_pid_ns.pid_cachep = create_pid_cachep(1);
602 if (init_pid_ns.pid_cachep == NULL)
603 panic("Can't create pid_1 cachep\n");
604 }