]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/pid.c
Merge tag 'leds-5.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/pavel/linux...
[mirror_ubuntu-jammy-kernel.git] / kernel / pid.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic pidhash and scalable, time-bounded PID allocator
4 *
5 * (C) 2002-2003 Nadia Yvette Chambers, IBM
6 * (C) 2004 Nadia Yvette Chambers, Oracle
7 * (C) 2002-2004 Ingo Molnar, Red Hat
8 *
9 * pid-structures are backing objects for tasks sharing a given ID to chain
10 * against. There is very little to them aside from hashing them and
11 * parking tasks using given ID's on a list.
12 *
13 * The hash is always changed with the tasklist_lock write-acquired,
14 * and the hash is only accessed with the tasklist_lock at least
15 * read-acquired, so there's no additional SMP locking needed here.
16 *
17 * We have a list of bitmap pages, which bitmaps represent the PID space.
18 * Allocating and freeing PIDs is completely lockless. The worst-case
19 * allocation scenario when all but one out of 1 million PIDs possible are
20 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
21 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
22 *
23 * Pid namespaces:
24 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
25 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
26 * Many thanks to Oleg Nesterov for comments and help
27 *
28 */
29
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/rculist.h>
35 #include <linux/memblock.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
39 #include <linux/proc_ns.h>
40 #include <linux/refcount.h>
41 #include <linux/anon_inodes.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/idr.h>
45
46 struct pid init_struct_pid = {
47 .count = REFCOUNT_INIT(1),
48 .tasks = {
49 { .first = NULL },
50 { .first = NULL },
51 { .first = NULL },
52 },
53 .level = 0,
54 .numbers = { {
55 .nr = 0,
56 .ns = &init_pid_ns,
57 }, }
58 };
59
60 int pid_max = PID_MAX_DEFAULT;
61
62 #define RESERVED_PIDS 300
63
64 int pid_max_min = RESERVED_PIDS + 1;
65 int pid_max_max = PID_MAX_LIMIT;
66
67 /*
68 * PID-map pages start out as NULL, they get allocated upon
69 * first use and are never deallocated. This way a low pid_max
70 * value does not cause lots of bitmaps to be allocated, but
71 * the scheme scales to up to 4 million PIDs, runtime.
72 */
73 struct pid_namespace init_pid_ns = {
74 .kref = KREF_INIT(2),
75 .idr = IDR_INIT(init_pid_ns.idr),
76 .pid_allocated = PIDNS_ADDING,
77 .level = 0,
78 .child_reaper = &init_task,
79 .user_ns = &init_user_ns,
80 .ns.inum = PROC_PID_INIT_INO,
81 #ifdef CONFIG_PID_NS
82 .ns.ops = &pidns_operations,
83 #endif
84 };
85 EXPORT_SYMBOL_GPL(init_pid_ns);
86
87 /*
88 * Note: disable interrupts while the pidmap_lock is held as an
89 * interrupt might come in and do read_lock(&tasklist_lock).
90 *
91 * If we don't disable interrupts there is a nasty deadlock between
92 * detach_pid()->free_pid() and another cpu that does
93 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
94 * read_lock(&tasklist_lock);
95 *
96 * After we clean up the tasklist_lock and know there are no
97 * irq handlers that take it we can leave the interrupts enabled.
98 * For now it is easier to be safe than to prove it can't happen.
99 */
100
101 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
102
103 void put_pid(struct pid *pid)
104 {
105 struct pid_namespace *ns;
106
107 if (!pid)
108 return;
109
110 ns = pid->numbers[pid->level].ns;
111 if (refcount_dec_and_test(&pid->count)) {
112 kmem_cache_free(ns->pid_cachep, pid);
113 put_pid_ns(ns);
114 }
115 }
116 EXPORT_SYMBOL_GPL(put_pid);
117
118 static void delayed_put_pid(struct rcu_head *rhp)
119 {
120 struct pid *pid = container_of(rhp, struct pid, rcu);
121 put_pid(pid);
122 }
123
124 void free_pid(struct pid *pid)
125 {
126 /* We can be called with write_lock_irq(&tasklist_lock) held */
127 int i;
128 unsigned long flags;
129
130 spin_lock_irqsave(&pidmap_lock, flags);
131 for (i = 0; i <= pid->level; i++) {
132 struct upid *upid = pid->numbers + i;
133 struct pid_namespace *ns = upid->ns;
134 switch (--ns->pid_allocated) {
135 case 2:
136 case 1:
137 /* When all that is left in the pid namespace
138 * is the reaper wake up the reaper. The reaper
139 * may be sleeping in zap_pid_ns_processes().
140 */
141 wake_up_process(ns->child_reaper);
142 break;
143 case PIDNS_ADDING:
144 /* Handle a fork failure of the first process */
145 WARN_ON(ns->child_reaper);
146 ns->pid_allocated = 0;
147 /* fall through */
148 case 0:
149 schedule_work(&ns->proc_work);
150 break;
151 }
152
153 idr_remove(&ns->idr, upid->nr);
154 }
155 spin_unlock_irqrestore(&pidmap_lock, flags);
156
157 call_rcu(&pid->rcu, delayed_put_pid);
158 }
159
160 struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
161 size_t set_tid_size)
162 {
163 struct pid *pid;
164 enum pid_type type;
165 int i, nr;
166 struct pid_namespace *tmp;
167 struct upid *upid;
168 int retval = -ENOMEM;
169
170 /*
171 * set_tid_size contains the size of the set_tid array. Starting at
172 * the most nested currently active PID namespace it tells alloc_pid()
173 * which PID to set for a process in that most nested PID namespace
174 * up to set_tid_size PID namespaces. It does not have to set the PID
175 * for a process in all nested PID namespaces but set_tid_size must
176 * never be greater than the current ns->level + 1.
177 */
178 if (set_tid_size > ns->level + 1)
179 return ERR_PTR(-EINVAL);
180
181 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
182 if (!pid)
183 return ERR_PTR(retval);
184
185 tmp = ns;
186 pid->level = ns->level;
187
188 for (i = ns->level; i >= 0; i--) {
189 int tid = 0;
190
191 if (set_tid_size) {
192 tid = set_tid[ns->level - i];
193
194 retval = -EINVAL;
195 if (tid < 1 || tid >= pid_max)
196 goto out_free;
197 /*
198 * Also fail if a PID != 1 is requested and
199 * no PID 1 exists.
200 */
201 if (tid != 1 && !tmp->child_reaper)
202 goto out_free;
203 retval = -EPERM;
204 if (!ns_capable(tmp->user_ns, CAP_SYS_ADMIN))
205 goto out_free;
206 set_tid_size--;
207 }
208
209 idr_preload(GFP_KERNEL);
210 spin_lock_irq(&pidmap_lock);
211
212 if (tid) {
213 nr = idr_alloc(&tmp->idr, NULL, tid,
214 tid + 1, GFP_ATOMIC);
215 /*
216 * If ENOSPC is returned it means that the PID is
217 * alreay in use. Return EEXIST in that case.
218 */
219 if (nr == -ENOSPC)
220 nr = -EEXIST;
221 } else {
222 int pid_min = 1;
223 /*
224 * init really needs pid 1, but after reaching the
225 * maximum wrap back to RESERVED_PIDS
226 */
227 if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
228 pid_min = RESERVED_PIDS;
229
230 /*
231 * Store a null pointer so find_pid_ns does not find
232 * a partially initialized PID (see below).
233 */
234 nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
235 pid_max, GFP_ATOMIC);
236 }
237 spin_unlock_irq(&pidmap_lock);
238 idr_preload_end();
239
240 if (nr < 0) {
241 retval = (nr == -ENOSPC) ? -EAGAIN : nr;
242 goto out_free;
243 }
244
245 pid->numbers[i].nr = nr;
246 pid->numbers[i].ns = tmp;
247 tmp = tmp->parent;
248 }
249
250 if (unlikely(is_child_reaper(pid))) {
251 if (pid_ns_prepare_proc(ns))
252 goto out_free;
253 }
254
255 get_pid_ns(ns);
256 refcount_set(&pid->count, 1);
257 for (type = 0; type < PIDTYPE_MAX; ++type)
258 INIT_HLIST_HEAD(&pid->tasks[type]);
259
260 init_waitqueue_head(&pid->wait_pidfd);
261
262 upid = pid->numbers + ns->level;
263 spin_lock_irq(&pidmap_lock);
264 if (!(ns->pid_allocated & PIDNS_ADDING))
265 goto out_unlock;
266 for ( ; upid >= pid->numbers; --upid) {
267 /* Make the PID visible to find_pid_ns. */
268 idr_replace(&upid->ns->idr, pid, upid->nr);
269 upid->ns->pid_allocated++;
270 }
271 spin_unlock_irq(&pidmap_lock);
272
273 return pid;
274
275 out_unlock:
276 spin_unlock_irq(&pidmap_lock);
277 put_pid_ns(ns);
278
279 out_free:
280 spin_lock_irq(&pidmap_lock);
281 while (++i <= ns->level) {
282 upid = pid->numbers + i;
283 idr_remove(&upid->ns->idr, upid->nr);
284 }
285
286 /* On failure to allocate the first pid, reset the state */
287 if (ns->pid_allocated == PIDNS_ADDING)
288 idr_set_cursor(&ns->idr, 0);
289
290 spin_unlock_irq(&pidmap_lock);
291
292 kmem_cache_free(ns->pid_cachep, pid);
293 return ERR_PTR(retval);
294 }
295
296 void disable_pid_allocation(struct pid_namespace *ns)
297 {
298 spin_lock_irq(&pidmap_lock);
299 ns->pid_allocated &= ~PIDNS_ADDING;
300 spin_unlock_irq(&pidmap_lock);
301 }
302
303 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
304 {
305 return idr_find(&ns->idr, nr);
306 }
307 EXPORT_SYMBOL_GPL(find_pid_ns);
308
309 struct pid *find_vpid(int nr)
310 {
311 return find_pid_ns(nr, task_active_pid_ns(current));
312 }
313 EXPORT_SYMBOL_GPL(find_vpid);
314
315 static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type)
316 {
317 return (type == PIDTYPE_PID) ?
318 &task->thread_pid :
319 &task->signal->pids[type];
320 }
321
322 /*
323 * attach_pid() must be called with the tasklist_lock write-held.
324 */
325 void attach_pid(struct task_struct *task, enum pid_type type)
326 {
327 struct pid *pid = *task_pid_ptr(task, type);
328 hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]);
329 }
330
331 static void __change_pid(struct task_struct *task, enum pid_type type,
332 struct pid *new)
333 {
334 struct pid **pid_ptr = task_pid_ptr(task, type);
335 struct pid *pid;
336 int tmp;
337
338 pid = *pid_ptr;
339
340 hlist_del_rcu(&task->pid_links[type]);
341 *pid_ptr = new;
342
343 for (tmp = PIDTYPE_MAX; --tmp >= 0; )
344 if (pid_has_task(pid, tmp))
345 return;
346
347 free_pid(pid);
348 }
349
350 void detach_pid(struct task_struct *task, enum pid_type type)
351 {
352 __change_pid(task, type, NULL);
353 }
354
355 void change_pid(struct task_struct *task, enum pid_type type,
356 struct pid *pid)
357 {
358 __change_pid(task, type, pid);
359 attach_pid(task, type);
360 }
361
362 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
363 void transfer_pid(struct task_struct *old, struct task_struct *new,
364 enum pid_type type)
365 {
366 if (type == PIDTYPE_PID)
367 new->thread_pid = old->thread_pid;
368 hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]);
369 }
370
371 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
372 {
373 struct task_struct *result = NULL;
374 if (pid) {
375 struct hlist_node *first;
376 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
377 lockdep_tasklist_lock_is_held());
378 if (first)
379 result = hlist_entry(first, struct task_struct, pid_links[(type)]);
380 }
381 return result;
382 }
383 EXPORT_SYMBOL(pid_task);
384
385 /*
386 * Must be called under rcu_read_lock().
387 */
388 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
389 {
390 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
391 "find_task_by_pid_ns() needs rcu_read_lock() protection");
392 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
393 }
394
395 struct task_struct *find_task_by_vpid(pid_t vnr)
396 {
397 return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
398 }
399
400 struct task_struct *find_get_task_by_vpid(pid_t nr)
401 {
402 struct task_struct *task;
403
404 rcu_read_lock();
405 task = find_task_by_vpid(nr);
406 if (task)
407 get_task_struct(task);
408 rcu_read_unlock();
409
410 return task;
411 }
412
413 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
414 {
415 struct pid *pid;
416 rcu_read_lock();
417 pid = get_pid(rcu_dereference(*task_pid_ptr(task, type)));
418 rcu_read_unlock();
419 return pid;
420 }
421 EXPORT_SYMBOL_GPL(get_task_pid);
422
423 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
424 {
425 struct task_struct *result;
426 rcu_read_lock();
427 result = pid_task(pid, type);
428 if (result)
429 get_task_struct(result);
430 rcu_read_unlock();
431 return result;
432 }
433 EXPORT_SYMBOL_GPL(get_pid_task);
434
435 struct pid *find_get_pid(pid_t nr)
436 {
437 struct pid *pid;
438
439 rcu_read_lock();
440 pid = get_pid(find_vpid(nr));
441 rcu_read_unlock();
442
443 return pid;
444 }
445 EXPORT_SYMBOL_GPL(find_get_pid);
446
447 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
448 {
449 struct upid *upid;
450 pid_t nr = 0;
451
452 if (pid && ns->level <= pid->level) {
453 upid = &pid->numbers[ns->level];
454 if (upid->ns == ns)
455 nr = upid->nr;
456 }
457 return nr;
458 }
459 EXPORT_SYMBOL_GPL(pid_nr_ns);
460
461 pid_t pid_vnr(struct pid *pid)
462 {
463 return pid_nr_ns(pid, task_active_pid_ns(current));
464 }
465 EXPORT_SYMBOL_GPL(pid_vnr);
466
467 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
468 struct pid_namespace *ns)
469 {
470 pid_t nr = 0;
471
472 rcu_read_lock();
473 if (!ns)
474 ns = task_active_pid_ns(current);
475 if (likely(pid_alive(task)))
476 nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);
477 rcu_read_unlock();
478
479 return nr;
480 }
481 EXPORT_SYMBOL(__task_pid_nr_ns);
482
483 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
484 {
485 return ns_of_pid(task_pid(tsk));
486 }
487 EXPORT_SYMBOL_GPL(task_active_pid_ns);
488
489 /*
490 * Used by proc to find the first pid that is greater than or equal to nr.
491 *
492 * If there is a pid at nr this function is exactly the same as find_pid_ns.
493 */
494 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
495 {
496 return idr_get_next(&ns->idr, &nr);
497 }
498
499 /**
500 * pidfd_create() - Create a new pid file descriptor.
501 *
502 * @pid: struct pid that the pidfd will reference
503 *
504 * This creates a new pid file descriptor with the O_CLOEXEC flag set.
505 *
506 * Note, that this function can only be called after the fd table has
507 * been unshared to avoid leaking the pidfd to the new process.
508 *
509 * Return: On success, a cloexec pidfd is returned.
510 * On error, a negative errno number will be returned.
511 */
512 static int pidfd_create(struct pid *pid)
513 {
514 int fd;
515
516 fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid),
517 O_RDWR | O_CLOEXEC);
518 if (fd < 0)
519 put_pid(pid);
520
521 return fd;
522 }
523
524 /**
525 * pidfd_open() - Open new pid file descriptor.
526 *
527 * @pid: pid for which to retrieve a pidfd
528 * @flags: flags to pass
529 *
530 * This creates a new pid file descriptor with the O_CLOEXEC flag set for
531 * the process identified by @pid. Currently, the process identified by
532 * @pid must be a thread-group leader. This restriction currently exists
533 * for all aspects of pidfds including pidfd creation (CLONE_PIDFD cannot
534 * be used with CLONE_THREAD) and pidfd polling (only supports thread group
535 * leaders).
536 *
537 * Return: On success, a cloexec pidfd is returned.
538 * On error, a negative errno number will be returned.
539 */
540 SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
541 {
542 int fd;
543 struct pid *p;
544
545 if (flags)
546 return -EINVAL;
547
548 if (pid <= 0)
549 return -EINVAL;
550
551 p = find_get_pid(pid);
552 if (!p)
553 return -ESRCH;
554
555 if (pid_has_task(p, PIDTYPE_TGID))
556 fd = pidfd_create(p);
557 else
558 fd = -EINVAL;
559
560 put_pid(p);
561 return fd;
562 }
563
564 void __init pid_idr_init(void)
565 {
566 /* Verify no one has done anything silly: */
567 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
568
569 /* bump default and minimum pid_max based on number of cpus */
570 pid_max = min(pid_max_max, max_t(int, pid_max,
571 PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
572 pid_max_min = max_t(int, pid_max_min,
573 PIDS_PER_CPU_MIN * num_possible_cpus());
574 pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
575
576 idr_init(&init_pid_ns.idr);
577
578 init_pid_ns.pid_cachep = KMEM_CACHE(pid,
579 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
580 }
581
582 static struct file *__pidfd_fget(struct task_struct *task, int fd)
583 {
584 struct file *file;
585 int ret;
586
587 ret = mutex_lock_killable(&task->signal->cred_guard_mutex);
588 if (ret)
589 return ERR_PTR(ret);
590
591 if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS))
592 file = fget_task(task, fd);
593 else
594 file = ERR_PTR(-EPERM);
595
596 mutex_unlock(&task->signal->cred_guard_mutex);
597
598 return file ?: ERR_PTR(-EBADF);
599 }
600
601 static int pidfd_getfd(struct pid *pid, int fd)
602 {
603 struct task_struct *task;
604 struct file *file;
605 int ret;
606
607 task = get_pid_task(pid, PIDTYPE_PID);
608 if (!task)
609 return -ESRCH;
610
611 file = __pidfd_fget(task, fd);
612 put_task_struct(task);
613 if (IS_ERR(file))
614 return PTR_ERR(file);
615
616 ret = security_file_receive(file);
617 if (ret) {
618 fput(file);
619 return ret;
620 }
621
622 ret = get_unused_fd_flags(O_CLOEXEC);
623 if (ret < 0)
624 fput(file);
625 else
626 fd_install(ret, file);
627
628 return ret;
629 }
630
631 /**
632 * sys_pidfd_getfd() - Get a file descriptor from another process
633 *
634 * @pidfd: the pidfd file descriptor of the process
635 * @fd: the file descriptor number to get
636 * @flags: flags on how to get the fd (reserved)
637 *
638 * This syscall gets a copy of a file descriptor from another process
639 * based on the pidfd, and file descriptor number. It requires that
640 * the calling process has the ability to ptrace the process represented
641 * by the pidfd. The process which is having its file descriptor copied
642 * is otherwise unaffected.
643 *
644 * Return: On success, a cloexec file descriptor is returned.
645 * On error, a negative errno number will be returned.
646 */
647 SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd,
648 unsigned int, flags)
649 {
650 struct pid *pid;
651 struct fd f;
652 int ret;
653
654 /* flags is currently unused - make sure it's unset */
655 if (flags)
656 return -EINVAL;
657
658 f = fdget(pidfd);
659 if (!f.file)
660 return -EBADF;
661
662 pid = pidfd_pid(f.file);
663 if (IS_ERR(pid))
664 ret = PTR_ERR(pid);
665 else
666 ret = pidfd_getfd(pid, fd);
667
668 fdput(f);
669 return ret;
670 }