]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/pid.c
Merge branch 'akpm' (patches from Andrew)
[mirror_ubuntu-jammy-kernel.git] / kernel / pid.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic pidhash and scalable, time-bounded PID allocator
4 *
5 * (C) 2002-2003 Nadia Yvette Chambers, IBM
6 * (C) 2004 Nadia Yvette Chambers, Oracle
7 * (C) 2002-2004 Ingo Molnar, Red Hat
8 *
9 * pid-structures are backing objects for tasks sharing a given ID to chain
10 * against. There is very little to them aside from hashing them and
11 * parking tasks using given ID's on a list.
12 *
13 * The hash is always changed with the tasklist_lock write-acquired,
14 * and the hash is only accessed with the tasklist_lock at least
15 * read-acquired, so there's no additional SMP locking needed here.
16 *
17 * We have a list of bitmap pages, which bitmaps represent the PID space.
18 * Allocating and freeing PIDs is completely lockless. The worst-case
19 * allocation scenario when all but one out of 1 million PIDs possible are
20 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
21 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
22 *
23 * Pid namespaces:
24 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
25 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
26 * Many thanks to Oleg Nesterov for comments and help
27 *
28 */
29
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/rculist.h>
35 #include <linux/memblock.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
39 #include <linux/proc_ns.h>
40 #include <linux/refcount.h>
41 #include <linux/anon_inodes.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/idr.h>
45
46 struct pid init_struct_pid = {
47 .count = REFCOUNT_INIT(1),
48 .tasks = {
49 { .first = NULL },
50 { .first = NULL },
51 { .first = NULL },
52 },
53 .level = 0,
54 .numbers = { {
55 .nr = 0,
56 .ns = &init_pid_ns,
57 }, }
58 };
59
60 int pid_max = PID_MAX_DEFAULT;
61
62 #define RESERVED_PIDS 300
63
64 int pid_max_min = RESERVED_PIDS + 1;
65 int pid_max_max = PID_MAX_LIMIT;
66
67 /*
68 * PID-map pages start out as NULL, they get allocated upon
69 * first use and are never deallocated. This way a low pid_max
70 * value does not cause lots of bitmaps to be allocated, but
71 * the scheme scales to up to 4 million PIDs, runtime.
72 */
73 struct pid_namespace init_pid_ns = {
74 .kref = KREF_INIT(2),
75 .idr = IDR_INIT(init_pid_ns.idr),
76 .pid_allocated = PIDNS_ADDING,
77 .level = 0,
78 .child_reaper = &init_task,
79 .user_ns = &init_user_ns,
80 .ns.inum = PROC_PID_INIT_INO,
81 #ifdef CONFIG_PID_NS
82 .ns.ops = &pidns_operations,
83 #endif
84 };
85 EXPORT_SYMBOL_GPL(init_pid_ns);
86
87 /*
88 * Note: disable interrupts while the pidmap_lock is held as an
89 * interrupt might come in and do read_lock(&tasklist_lock).
90 *
91 * If we don't disable interrupts there is a nasty deadlock between
92 * detach_pid()->free_pid() and another cpu that does
93 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
94 * read_lock(&tasklist_lock);
95 *
96 * After we clean up the tasklist_lock and know there are no
97 * irq handlers that take it we can leave the interrupts enabled.
98 * For now it is easier to be safe than to prove it can't happen.
99 */
100
101 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
102
103 void put_pid(struct pid *pid)
104 {
105 struct pid_namespace *ns;
106
107 if (!pid)
108 return;
109
110 ns = pid->numbers[pid->level].ns;
111 if (refcount_dec_and_test(&pid->count)) {
112 kmem_cache_free(ns->pid_cachep, pid);
113 put_pid_ns(ns);
114 }
115 }
116 EXPORT_SYMBOL_GPL(put_pid);
117
118 static void delayed_put_pid(struct rcu_head *rhp)
119 {
120 struct pid *pid = container_of(rhp, struct pid, rcu);
121 put_pid(pid);
122 }
123
124 void free_pid(struct pid *pid)
125 {
126 /* We can be called with write_lock_irq(&tasklist_lock) held */
127 int i;
128 unsigned long flags;
129
130 spin_lock_irqsave(&pidmap_lock, flags);
131 for (i = 0; i <= pid->level; i++) {
132 struct upid *upid = pid->numbers + i;
133 struct pid_namespace *ns = upid->ns;
134 switch (--ns->pid_allocated) {
135 case 2:
136 case 1:
137 /* When all that is left in the pid namespace
138 * is the reaper wake up the reaper. The reaper
139 * may be sleeping in zap_pid_ns_processes().
140 */
141 wake_up_process(ns->child_reaper);
142 break;
143 case PIDNS_ADDING:
144 /* Handle a fork failure of the first process */
145 WARN_ON(ns->child_reaper);
146 ns->pid_allocated = 0;
147 break;
148 }
149
150 idr_remove(&ns->idr, upid->nr);
151 }
152 spin_unlock_irqrestore(&pidmap_lock, flags);
153
154 call_rcu(&pid->rcu, delayed_put_pid);
155 }
156
157 struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
158 size_t set_tid_size)
159 {
160 struct pid *pid;
161 enum pid_type type;
162 int i, nr;
163 struct pid_namespace *tmp;
164 struct upid *upid;
165 int retval = -ENOMEM;
166
167 /*
168 * set_tid_size contains the size of the set_tid array. Starting at
169 * the most nested currently active PID namespace it tells alloc_pid()
170 * which PID to set for a process in that most nested PID namespace
171 * up to set_tid_size PID namespaces. It does not have to set the PID
172 * for a process in all nested PID namespaces but set_tid_size must
173 * never be greater than the current ns->level + 1.
174 */
175 if (set_tid_size > ns->level + 1)
176 return ERR_PTR(-EINVAL);
177
178 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
179 if (!pid)
180 return ERR_PTR(retval);
181
182 tmp = ns;
183 pid->level = ns->level;
184
185 for (i = ns->level; i >= 0; i--) {
186 int tid = 0;
187
188 if (set_tid_size) {
189 tid = set_tid[ns->level - i];
190
191 retval = -EINVAL;
192 if (tid < 1 || tid >= pid_max)
193 goto out_free;
194 /*
195 * Also fail if a PID != 1 is requested and
196 * no PID 1 exists.
197 */
198 if (tid != 1 && !tmp->child_reaper)
199 goto out_free;
200 retval = -EPERM;
201 if (!ns_capable(tmp->user_ns, CAP_SYS_ADMIN))
202 goto out_free;
203 set_tid_size--;
204 }
205
206 idr_preload(GFP_KERNEL);
207 spin_lock_irq(&pidmap_lock);
208
209 if (tid) {
210 nr = idr_alloc(&tmp->idr, NULL, tid,
211 tid + 1, GFP_ATOMIC);
212 /*
213 * If ENOSPC is returned it means that the PID is
214 * alreay in use. Return EEXIST in that case.
215 */
216 if (nr == -ENOSPC)
217 nr = -EEXIST;
218 } else {
219 int pid_min = 1;
220 /*
221 * init really needs pid 1, but after reaching the
222 * maximum wrap back to RESERVED_PIDS
223 */
224 if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
225 pid_min = RESERVED_PIDS;
226
227 /*
228 * Store a null pointer so find_pid_ns does not find
229 * a partially initialized PID (see below).
230 */
231 nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
232 pid_max, GFP_ATOMIC);
233 }
234 spin_unlock_irq(&pidmap_lock);
235 idr_preload_end();
236
237 if (nr < 0) {
238 retval = (nr == -ENOSPC) ? -EAGAIN : nr;
239 goto out_free;
240 }
241
242 pid->numbers[i].nr = nr;
243 pid->numbers[i].ns = tmp;
244 tmp = tmp->parent;
245 }
246
247 /*
248 * ENOMEM is not the most obvious choice especially for the case
249 * where the child subreaper has already exited and the pid
250 * namespace denies the creation of any new processes. But ENOMEM
251 * is what we have exposed to userspace for a long time and it is
252 * documented behavior for pid namespaces. So we can't easily
253 * change it even if there were an error code better suited.
254 */
255 retval = -ENOMEM;
256
257 get_pid_ns(ns);
258 refcount_set(&pid->count, 1);
259 for (type = 0; type < PIDTYPE_MAX; ++type)
260 INIT_HLIST_HEAD(&pid->tasks[type]);
261
262 init_waitqueue_head(&pid->wait_pidfd);
263 INIT_HLIST_HEAD(&pid->inodes);
264
265 upid = pid->numbers + ns->level;
266 spin_lock_irq(&pidmap_lock);
267 if (!(ns->pid_allocated & PIDNS_ADDING))
268 goto out_unlock;
269 for ( ; upid >= pid->numbers; --upid) {
270 /* Make the PID visible to find_pid_ns. */
271 idr_replace(&upid->ns->idr, pid, upid->nr);
272 upid->ns->pid_allocated++;
273 }
274 spin_unlock_irq(&pidmap_lock);
275
276 return pid;
277
278 out_unlock:
279 spin_unlock_irq(&pidmap_lock);
280 put_pid_ns(ns);
281
282 out_free:
283 spin_lock_irq(&pidmap_lock);
284 while (++i <= ns->level) {
285 upid = pid->numbers + i;
286 idr_remove(&upid->ns->idr, upid->nr);
287 }
288
289 /* On failure to allocate the first pid, reset the state */
290 if (ns->pid_allocated == PIDNS_ADDING)
291 idr_set_cursor(&ns->idr, 0);
292
293 spin_unlock_irq(&pidmap_lock);
294
295 kmem_cache_free(ns->pid_cachep, pid);
296 return ERR_PTR(retval);
297 }
298
299 void disable_pid_allocation(struct pid_namespace *ns)
300 {
301 spin_lock_irq(&pidmap_lock);
302 ns->pid_allocated &= ~PIDNS_ADDING;
303 spin_unlock_irq(&pidmap_lock);
304 }
305
306 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
307 {
308 return idr_find(&ns->idr, nr);
309 }
310 EXPORT_SYMBOL_GPL(find_pid_ns);
311
312 struct pid *find_vpid(int nr)
313 {
314 return find_pid_ns(nr, task_active_pid_ns(current));
315 }
316 EXPORT_SYMBOL_GPL(find_vpid);
317
318 static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type)
319 {
320 return (type == PIDTYPE_PID) ?
321 &task->thread_pid :
322 &task->signal->pids[type];
323 }
324
325 /*
326 * attach_pid() must be called with the tasklist_lock write-held.
327 */
328 void attach_pid(struct task_struct *task, enum pid_type type)
329 {
330 struct pid *pid = *task_pid_ptr(task, type);
331 hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]);
332 }
333
334 static void __change_pid(struct task_struct *task, enum pid_type type,
335 struct pid *new)
336 {
337 struct pid **pid_ptr = task_pid_ptr(task, type);
338 struct pid *pid;
339 int tmp;
340
341 pid = *pid_ptr;
342
343 hlist_del_rcu(&task->pid_links[type]);
344 *pid_ptr = new;
345
346 for (tmp = PIDTYPE_MAX; --tmp >= 0; )
347 if (pid_has_task(pid, tmp))
348 return;
349
350 free_pid(pid);
351 }
352
353 void detach_pid(struct task_struct *task, enum pid_type type)
354 {
355 __change_pid(task, type, NULL);
356 }
357
358 void change_pid(struct task_struct *task, enum pid_type type,
359 struct pid *pid)
360 {
361 __change_pid(task, type, pid);
362 attach_pid(task, type);
363 }
364
365 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
366 void transfer_pid(struct task_struct *old, struct task_struct *new,
367 enum pid_type type)
368 {
369 if (type == PIDTYPE_PID)
370 new->thread_pid = old->thread_pid;
371 hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]);
372 }
373
374 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
375 {
376 struct task_struct *result = NULL;
377 if (pid) {
378 struct hlist_node *first;
379 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
380 lockdep_tasklist_lock_is_held());
381 if (first)
382 result = hlist_entry(first, struct task_struct, pid_links[(type)]);
383 }
384 return result;
385 }
386 EXPORT_SYMBOL(pid_task);
387
388 /*
389 * Must be called under rcu_read_lock().
390 */
391 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
392 {
393 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
394 "find_task_by_pid_ns() needs rcu_read_lock() protection");
395 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
396 }
397
398 struct task_struct *find_task_by_vpid(pid_t vnr)
399 {
400 return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
401 }
402
403 struct task_struct *find_get_task_by_vpid(pid_t nr)
404 {
405 struct task_struct *task;
406
407 rcu_read_lock();
408 task = find_task_by_vpid(nr);
409 if (task)
410 get_task_struct(task);
411 rcu_read_unlock();
412
413 return task;
414 }
415
416 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
417 {
418 struct pid *pid;
419 rcu_read_lock();
420 pid = get_pid(rcu_dereference(*task_pid_ptr(task, type)));
421 rcu_read_unlock();
422 return pid;
423 }
424 EXPORT_SYMBOL_GPL(get_task_pid);
425
426 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
427 {
428 struct task_struct *result;
429 rcu_read_lock();
430 result = pid_task(pid, type);
431 if (result)
432 get_task_struct(result);
433 rcu_read_unlock();
434 return result;
435 }
436 EXPORT_SYMBOL_GPL(get_pid_task);
437
438 struct pid *find_get_pid(pid_t nr)
439 {
440 struct pid *pid;
441
442 rcu_read_lock();
443 pid = get_pid(find_vpid(nr));
444 rcu_read_unlock();
445
446 return pid;
447 }
448 EXPORT_SYMBOL_GPL(find_get_pid);
449
450 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
451 {
452 struct upid *upid;
453 pid_t nr = 0;
454
455 if (pid && ns->level <= pid->level) {
456 upid = &pid->numbers[ns->level];
457 if (upid->ns == ns)
458 nr = upid->nr;
459 }
460 return nr;
461 }
462 EXPORT_SYMBOL_GPL(pid_nr_ns);
463
464 pid_t pid_vnr(struct pid *pid)
465 {
466 return pid_nr_ns(pid, task_active_pid_ns(current));
467 }
468 EXPORT_SYMBOL_GPL(pid_vnr);
469
470 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
471 struct pid_namespace *ns)
472 {
473 pid_t nr = 0;
474
475 rcu_read_lock();
476 if (!ns)
477 ns = task_active_pid_ns(current);
478 if (likely(pid_alive(task)))
479 nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);
480 rcu_read_unlock();
481
482 return nr;
483 }
484 EXPORT_SYMBOL(__task_pid_nr_ns);
485
486 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
487 {
488 return ns_of_pid(task_pid(tsk));
489 }
490 EXPORT_SYMBOL_GPL(task_active_pid_ns);
491
492 /*
493 * Used by proc to find the first pid that is greater than or equal to nr.
494 *
495 * If there is a pid at nr this function is exactly the same as find_pid_ns.
496 */
497 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
498 {
499 return idr_get_next(&ns->idr, &nr);
500 }
501
502 /**
503 * pidfd_create() - Create a new pid file descriptor.
504 *
505 * @pid: struct pid that the pidfd will reference
506 *
507 * This creates a new pid file descriptor with the O_CLOEXEC flag set.
508 *
509 * Note, that this function can only be called after the fd table has
510 * been unshared to avoid leaking the pidfd to the new process.
511 *
512 * Return: On success, a cloexec pidfd is returned.
513 * On error, a negative errno number will be returned.
514 */
515 static int pidfd_create(struct pid *pid)
516 {
517 int fd;
518
519 fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid),
520 O_RDWR | O_CLOEXEC);
521 if (fd < 0)
522 put_pid(pid);
523
524 return fd;
525 }
526
527 /**
528 * pidfd_open() - Open new pid file descriptor.
529 *
530 * @pid: pid for which to retrieve a pidfd
531 * @flags: flags to pass
532 *
533 * This creates a new pid file descriptor with the O_CLOEXEC flag set for
534 * the process identified by @pid. Currently, the process identified by
535 * @pid must be a thread-group leader. This restriction currently exists
536 * for all aspects of pidfds including pidfd creation (CLONE_PIDFD cannot
537 * be used with CLONE_THREAD) and pidfd polling (only supports thread group
538 * leaders).
539 *
540 * Return: On success, a cloexec pidfd is returned.
541 * On error, a negative errno number will be returned.
542 */
543 SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
544 {
545 int fd;
546 struct pid *p;
547
548 if (flags)
549 return -EINVAL;
550
551 if (pid <= 0)
552 return -EINVAL;
553
554 p = find_get_pid(pid);
555 if (!p)
556 return -ESRCH;
557
558 if (pid_has_task(p, PIDTYPE_TGID))
559 fd = pidfd_create(p);
560 else
561 fd = -EINVAL;
562
563 put_pid(p);
564 return fd;
565 }
566
567 void __init pid_idr_init(void)
568 {
569 /* Verify no one has done anything silly: */
570 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
571
572 /* bump default and minimum pid_max based on number of cpus */
573 pid_max = min(pid_max_max, max_t(int, pid_max,
574 PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
575 pid_max_min = max_t(int, pid_max_min,
576 PIDS_PER_CPU_MIN * num_possible_cpus());
577 pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
578
579 idr_init(&init_pid_ns.idr);
580
581 init_pid_ns.pid_cachep = KMEM_CACHE(pid,
582 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
583 }
584
585 static struct file *__pidfd_fget(struct task_struct *task, int fd)
586 {
587 struct file *file;
588 int ret;
589
590 ret = mutex_lock_killable(&task->signal->exec_update_mutex);
591 if (ret)
592 return ERR_PTR(ret);
593
594 if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS))
595 file = fget_task(task, fd);
596 else
597 file = ERR_PTR(-EPERM);
598
599 mutex_unlock(&task->signal->exec_update_mutex);
600
601 return file ?: ERR_PTR(-EBADF);
602 }
603
604 static int pidfd_getfd(struct pid *pid, int fd)
605 {
606 struct task_struct *task;
607 struct file *file;
608 int ret;
609
610 task = get_pid_task(pid, PIDTYPE_PID);
611 if (!task)
612 return -ESRCH;
613
614 file = __pidfd_fget(task, fd);
615 put_task_struct(task);
616 if (IS_ERR(file))
617 return PTR_ERR(file);
618
619 ret = security_file_receive(file);
620 if (ret) {
621 fput(file);
622 return ret;
623 }
624
625 ret = get_unused_fd_flags(O_CLOEXEC);
626 if (ret < 0)
627 fput(file);
628 else
629 fd_install(ret, file);
630
631 return ret;
632 }
633
634 /**
635 * sys_pidfd_getfd() - Get a file descriptor from another process
636 *
637 * @pidfd: the pidfd file descriptor of the process
638 * @fd: the file descriptor number to get
639 * @flags: flags on how to get the fd (reserved)
640 *
641 * This syscall gets a copy of a file descriptor from another process
642 * based on the pidfd, and file descriptor number. It requires that
643 * the calling process has the ability to ptrace the process represented
644 * by the pidfd. The process which is having its file descriptor copied
645 * is otherwise unaffected.
646 *
647 * Return: On success, a cloexec file descriptor is returned.
648 * On error, a negative errno number will be returned.
649 */
650 SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd,
651 unsigned int, flags)
652 {
653 struct pid *pid;
654 struct fd f;
655 int ret;
656
657 /* flags is currently unused - make sure it's unset */
658 if (flags)
659 return -EINVAL;
660
661 f = fdget(pidfd);
662 if (!f.file)
663 return -EBADF;
664
665 pid = pidfd_pid(f.file);
666 if (IS_ERR(pid))
667 ret = PTR_ERR(pid);
668 else
669 ret = pidfd_getfd(pid, fd);
670
671 fdput(f);
672 return ret;
673 }