]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/pid.c
Merge tag 'for-linus-5.8b-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-jammy-kernel.git] / kernel / pid.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic pidhash and scalable, time-bounded PID allocator
4 *
5 * (C) 2002-2003 Nadia Yvette Chambers, IBM
6 * (C) 2004 Nadia Yvette Chambers, Oracle
7 * (C) 2002-2004 Ingo Molnar, Red Hat
8 *
9 * pid-structures are backing objects for tasks sharing a given ID to chain
10 * against. There is very little to them aside from hashing them and
11 * parking tasks using given ID's on a list.
12 *
13 * The hash is always changed with the tasklist_lock write-acquired,
14 * and the hash is only accessed with the tasklist_lock at least
15 * read-acquired, so there's no additional SMP locking needed here.
16 *
17 * We have a list of bitmap pages, which bitmaps represent the PID space.
18 * Allocating and freeing PIDs is completely lockless. The worst-case
19 * allocation scenario when all but one out of 1 million PIDs possible are
20 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
21 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
22 *
23 * Pid namespaces:
24 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
25 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
26 * Many thanks to Oleg Nesterov for comments and help
27 *
28 */
29
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/rculist.h>
35 #include <linux/memblock.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
39 #include <linux/proc_ns.h>
40 #include <linux/refcount.h>
41 #include <linux/anon_inodes.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/idr.h>
45
46 struct pid init_struct_pid = {
47 .count = REFCOUNT_INIT(1),
48 .tasks = {
49 { .first = NULL },
50 { .first = NULL },
51 { .first = NULL },
52 },
53 .level = 0,
54 .numbers = { {
55 .nr = 0,
56 .ns = &init_pid_ns,
57 }, }
58 };
59
60 int pid_max = PID_MAX_DEFAULT;
61
62 #define RESERVED_PIDS 300
63
64 int pid_max_min = RESERVED_PIDS + 1;
65 int pid_max_max = PID_MAX_LIMIT;
66
67 /*
68 * PID-map pages start out as NULL, they get allocated upon
69 * first use and are never deallocated. This way a low pid_max
70 * value does not cause lots of bitmaps to be allocated, but
71 * the scheme scales to up to 4 million PIDs, runtime.
72 */
73 struct pid_namespace init_pid_ns = {
74 .kref = KREF_INIT(2),
75 .idr = IDR_INIT(init_pid_ns.idr),
76 .pid_allocated = PIDNS_ADDING,
77 .level = 0,
78 .child_reaper = &init_task,
79 .user_ns = &init_user_ns,
80 .ns.inum = PROC_PID_INIT_INO,
81 #ifdef CONFIG_PID_NS
82 .ns.ops = &pidns_operations,
83 #endif
84 };
85 EXPORT_SYMBOL_GPL(init_pid_ns);
86
87 /*
88 * Note: disable interrupts while the pidmap_lock is held as an
89 * interrupt might come in and do read_lock(&tasklist_lock).
90 *
91 * If we don't disable interrupts there is a nasty deadlock between
92 * detach_pid()->free_pid() and another cpu that does
93 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
94 * read_lock(&tasklist_lock);
95 *
96 * After we clean up the tasklist_lock and know there are no
97 * irq handlers that take it we can leave the interrupts enabled.
98 * For now it is easier to be safe than to prove it can't happen.
99 */
100
101 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
102
103 void put_pid(struct pid *pid)
104 {
105 struct pid_namespace *ns;
106
107 if (!pid)
108 return;
109
110 ns = pid->numbers[pid->level].ns;
111 if (refcount_dec_and_test(&pid->count)) {
112 kmem_cache_free(ns->pid_cachep, pid);
113 put_pid_ns(ns);
114 }
115 }
116 EXPORT_SYMBOL_GPL(put_pid);
117
118 static void delayed_put_pid(struct rcu_head *rhp)
119 {
120 struct pid *pid = container_of(rhp, struct pid, rcu);
121 put_pid(pid);
122 }
123
124 void free_pid(struct pid *pid)
125 {
126 /* We can be called with write_lock_irq(&tasklist_lock) held */
127 int i;
128 unsigned long flags;
129
130 spin_lock_irqsave(&pidmap_lock, flags);
131 for (i = 0; i <= pid->level; i++) {
132 struct upid *upid = pid->numbers + i;
133 struct pid_namespace *ns = upid->ns;
134 switch (--ns->pid_allocated) {
135 case 2:
136 case 1:
137 /* When all that is left in the pid namespace
138 * is the reaper wake up the reaper. The reaper
139 * may be sleeping in zap_pid_ns_processes().
140 */
141 wake_up_process(ns->child_reaper);
142 break;
143 case PIDNS_ADDING:
144 /* Handle a fork failure of the first process */
145 WARN_ON(ns->child_reaper);
146 ns->pid_allocated = 0;
147 break;
148 }
149
150 idr_remove(&ns->idr, upid->nr);
151 }
152 spin_unlock_irqrestore(&pidmap_lock, flags);
153
154 call_rcu(&pid->rcu, delayed_put_pid);
155 }
156
157 struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
158 size_t set_tid_size)
159 {
160 struct pid *pid;
161 enum pid_type type;
162 int i, nr;
163 struct pid_namespace *tmp;
164 struct upid *upid;
165 int retval = -ENOMEM;
166
167 /*
168 * set_tid_size contains the size of the set_tid array. Starting at
169 * the most nested currently active PID namespace it tells alloc_pid()
170 * which PID to set for a process in that most nested PID namespace
171 * up to set_tid_size PID namespaces. It does not have to set the PID
172 * for a process in all nested PID namespaces but set_tid_size must
173 * never be greater than the current ns->level + 1.
174 */
175 if (set_tid_size > ns->level + 1)
176 return ERR_PTR(-EINVAL);
177
178 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
179 if (!pid)
180 return ERR_PTR(retval);
181
182 tmp = ns;
183 pid->level = ns->level;
184
185 for (i = ns->level; i >= 0; i--) {
186 int tid = 0;
187
188 if (set_tid_size) {
189 tid = set_tid[ns->level - i];
190
191 retval = -EINVAL;
192 if (tid < 1 || tid >= pid_max)
193 goto out_free;
194 /*
195 * Also fail if a PID != 1 is requested and
196 * no PID 1 exists.
197 */
198 if (tid != 1 && !tmp->child_reaper)
199 goto out_free;
200 retval = -EPERM;
201 if (!ns_capable(tmp->user_ns, CAP_SYS_ADMIN))
202 goto out_free;
203 set_tid_size--;
204 }
205
206 idr_preload(GFP_KERNEL);
207 spin_lock_irq(&pidmap_lock);
208
209 if (tid) {
210 nr = idr_alloc(&tmp->idr, NULL, tid,
211 tid + 1, GFP_ATOMIC);
212 /*
213 * If ENOSPC is returned it means that the PID is
214 * alreay in use. Return EEXIST in that case.
215 */
216 if (nr == -ENOSPC)
217 nr = -EEXIST;
218 } else {
219 int pid_min = 1;
220 /*
221 * init really needs pid 1, but after reaching the
222 * maximum wrap back to RESERVED_PIDS
223 */
224 if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
225 pid_min = RESERVED_PIDS;
226
227 /*
228 * Store a null pointer so find_pid_ns does not find
229 * a partially initialized PID (see below).
230 */
231 nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
232 pid_max, GFP_ATOMIC);
233 }
234 spin_unlock_irq(&pidmap_lock);
235 idr_preload_end();
236
237 if (nr < 0) {
238 retval = (nr == -ENOSPC) ? -EAGAIN : nr;
239 goto out_free;
240 }
241
242 pid->numbers[i].nr = nr;
243 pid->numbers[i].ns = tmp;
244 tmp = tmp->parent;
245 }
246
247 /*
248 * ENOMEM is not the most obvious choice especially for the case
249 * where the child subreaper has already exited and the pid
250 * namespace denies the creation of any new processes. But ENOMEM
251 * is what we have exposed to userspace for a long time and it is
252 * documented behavior for pid namespaces. So we can't easily
253 * change it even if there were an error code better suited.
254 */
255 retval = -ENOMEM;
256
257 get_pid_ns(ns);
258 refcount_set(&pid->count, 1);
259 spin_lock_init(&pid->lock);
260 for (type = 0; type < PIDTYPE_MAX; ++type)
261 INIT_HLIST_HEAD(&pid->tasks[type]);
262
263 init_waitqueue_head(&pid->wait_pidfd);
264 INIT_HLIST_HEAD(&pid->inodes);
265
266 upid = pid->numbers + ns->level;
267 spin_lock_irq(&pidmap_lock);
268 if (!(ns->pid_allocated & PIDNS_ADDING))
269 goto out_unlock;
270 for ( ; upid >= pid->numbers; --upid) {
271 /* Make the PID visible to find_pid_ns. */
272 idr_replace(&upid->ns->idr, pid, upid->nr);
273 upid->ns->pid_allocated++;
274 }
275 spin_unlock_irq(&pidmap_lock);
276
277 return pid;
278
279 out_unlock:
280 spin_unlock_irq(&pidmap_lock);
281 put_pid_ns(ns);
282
283 out_free:
284 spin_lock_irq(&pidmap_lock);
285 while (++i <= ns->level) {
286 upid = pid->numbers + i;
287 idr_remove(&upid->ns->idr, upid->nr);
288 }
289
290 /* On failure to allocate the first pid, reset the state */
291 if (ns->pid_allocated == PIDNS_ADDING)
292 idr_set_cursor(&ns->idr, 0);
293
294 spin_unlock_irq(&pidmap_lock);
295
296 kmem_cache_free(ns->pid_cachep, pid);
297 return ERR_PTR(retval);
298 }
299
300 void disable_pid_allocation(struct pid_namespace *ns)
301 {
302 spin_lock_irq(&pidmap_lock);
303 ns->pid_allocated &= ~PIDNS_ADDING;
304 spin_unlock_irq(&pidmap_lock);
305 }
306
307 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
308 {
309 return idr_find(&ns->idr, nr);
310 }
311 EXPORT_SYMBOL_GPL(find_pid_ns);
312
313 struct pid *find_vpid(int nr)
314 {
315 return find_pid_ns(nr, task_active_pid_ns(current));
316 }
317 EXPORT_SYMBOL_GPL(find_vpid);
318
319 static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type)
320 {
321 return (type == PIDTYPE_PID) ?
322 &task->thread_pid :
323 &task->signal->pids[type];
324 }
325
326 /*
327 * attach_pid() must be called with the tasklist_lock write-held.
328 */
329 void attach_pid(struct task_struct *task, enum pid_type type)
330 {
331 struct pid *pid = *task_pid_ptr(task, type);
332 hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]);
333 }
334
335 static void __change_pid(struct task_struct *task, enum pid_type type,
336 struct pid *new)
337 {
338 struct pid **pid_ptr = task_pid_ptr(task, type);
339 struct pid *pid;
340 int tmp;
341
342 pid = *pid_ptr;
343
344 hlist_del_rcu(&task->pid_links[type]);
345 *pid_ptr = new;
346
347 for (tmp = PIDTYPE_MAX; --tmp >= 0; )
348 if (pid_has_task(pid, tmp))
349 return;
350
351 free_pid(pid);
352 }
353
354 void detach_pid(struct task_struct *task, enum pid_type type)
355 {
356 __change_pid(task, type, NULL);
357 }
358
359 void change_pid(struct task_struct *task, enum pid_type type,
360 struct pid *pid)
361 {
362 __change_pid(task, type, pid);
363 attach_pid(task, type);
364 }
365
366 void exchange_tids(struct task_struct *left, struct task_struct *right)
367 {
368 struct pid *pid1 = left->thread_pid;
369 struct pid *pid2 = right->thread_pid;
370 struct hlist_head *head1 = &pid1->tasks[PIDTYPE_PID];
371 struct hlist_head *head2 = &pid2->tasks[PIDTYPE_PID];
372
373 /* Swap the single entry tid lists */
374 hlists_swap_heads_rcu(head1, head2);
375
376 /* Swap the per task_struct pid */
377 rcu_assign_pointer(left->thread_pid, pid2);
378 rcu_assign_pointer(right->thread_pid, pid1);
379
380 /* Swap the cached value */
381 WRITE_ONCE(left->pid, pid_nr(pid2));
382 WRITE_ONCE(right->pid, pid_nr(pid1));
383 }
384
385 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
386 void transfer_pid(struct task_struct *old, struct task_struct *new,
387 enum pid_type type)
388 {
389 if (type == PIDTYPE_PID)
390 new->thread_pid = old->thread_pid;
391 hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]);
392 }
393
394 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
395 {
396 struct task_struct *result = NULL;
397 if (pid) {
398 struct hlist_node *first;
399 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
400 lockdep_tasklist_lock_is_held());
401 if (first)
402 result = hlist_entry(first, struct task_struct, pid_links[(type)]);
403 }
404 return result;
405 }
406 EXPORT_SYMBOL(pid_task);
407
408 /*
409 * Must be called under rcu_read_lock().
410 */
411 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
412 {
413 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
414 "find_task_by_pid_ns() needs rcu_read_lock() protection");
415 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
416 }
417
418 struct task_struct *find_task_by_vpid(pid_t vnr)
419 {
420 return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
421 }
422
423 struct task_struct *find_get_task_by_vpid(pid_t nr)
424 {
425 struct task_struct *task;
426
427 rcu_read_lock();
428 task = find_task_by_vpid(nr);
429 if (task)
430 get_task_struct(task);
431 rcu_read_unlock();
432
433 return task;
434 }
435
436 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
437 {
438 struct pid *pid;
439 rcu_read_lock();
440 pid = get_pid(rcu_dereference(*task_pid_ptr(task, type)));
441 rcu_read_unlock();
442 return pid;
443 }
444 EXPORT_SYMBOL_GPL(get_task_pid);
445
446 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
447 {
448 struct task_struct *result;
449 rcu_read_lock();
450 result = pid_task(pid, type);
451 if (result)
452 get_task_struct(result);
453 rcu_read_unlock();
454 return result;
455 }
456 EXPORT_SYMBOL_GPL(get_pid_task);
457
458 struct pid *find_get_pid(pid_t nr)
459 {
460 struct pid *pid;
461
462 rcu_read_lock();
463 pid = get_pid(find_vpid(nr));
464 rcu_read_unlock();
465
466 return pid;
467 }
468 EXPORT_SYMBOL_GPL(find_get_pid);
469
470 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
471 {
472 struct upid *upid;
473 pid_t nr = 0;
474
475 if (pid && ns->level <= pid->level) {
476 upid = &pid->numbers[ns->level];
477 if (upid->ns == ns)
478 nr = upid->nr;
479 }
480 return nr;
481 }
482 EXPORT_SYMBOL_GPL(pid_nr_ns);
483
484 pid_t pid_vnr(struct pid *pid)
485 {
486 return pid_nr_ns(pid, task_active_pid_ns(current));
487 }
488 EXPORT_SYMBOL_GPL(pid_vnr);
489
490 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
491 struct pid_namespace *ns)
492 {
493 pid_t nr = 0;
494
495 rcu_read_lock();
496 if (!ns)
497 ns = task_active_pid_ns(current);
498 nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);
499 rcu_read_unlock();
500
501 return nr;
502 }
503 EXPORT_SYMBOL(__task_pid_nr_ns);
504
505 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
506 {
507 return ns_of_pid(task_pid(tsk));
508 }
509 EXPORT_SYMBOL_GPL(task_active_pid_ns);
510
511 /*
512 * Used by proc to find the first pid that is greater than or equal to nr.
513 *
514 * If there is a pid at nr this function is exactly the same as find_pid_ns.
515 */
516 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
517 {
518 return idr_get_next(&ns->idr, &nr);
519 }
520
521 /**
522 * pidfd_create() - Create a new pid file descriptor.
523 *
524 * @pid: struct pid that the pidfd will reference
525 *
526 * This creates a new pid file descriptor with the O_CLOEXEC flag set.
527 *
528 * Note, that this function can only be called after the fd table has
529 * been unshared to avoid leaking the pidfd to the new process.
530 *
531 * Return: On success, a cloexec pidfd is returned.
532 * On error, a negative errno number will be returned.
533 */
534 static int pidfd_create(struct pid *pid)
535 {
536 int fd;
537
538 fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid),
539 O_RDWR | O_CLOEXEC);
540 if (fd < 0)
541 put_pid(pid);
542
543 return fd;
544 }
545
546 /**
547 * pidfd_open() - Open new pid file descriptor.
548 *
549 * @pid: pid for which to retrieve a pidfd
550 * @flags: flags to pass
551 *
552 * This creates a new pid file descriptor with the O_CLOEXEC flag set for
553 * the process identified by @pid. Currently, the process identified by
554 * @pid must be a thread-group leader. This restriction currently exists
555 * for all aspects of pidfds including pidfd creation (CLONE_PIDFD cannot
556 * be used with CLONE_THREAD) and pidfd polling (only supports thread group
557 * leaders).
558 *
559 * Return: On success, a cloexec pidfd is returned.
560 * On error, a negative errno number will be returned.
561 */
562 SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
563 {
564 int fd;
565 struct pid *p;
566
567 if (flags)
568 return -EINVAL;
569
570 if (pid <= 0)
571 return -EINVAL;
572
573 p = find_get_pid(pid);
574 if (!p)
575 return -ESRCH;
576
577 if (pid_has_task(p, PIDTYPE_TGID))
578 fd = pidfd_create(p);
579 else
580 fd = -EINVAL;
581
582 put_pid(p);
583 return fd;
584 }
585
586 void __init pid_idr_init(void)
587 {
588 /* Verify no one has done anything silly: */
589 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
590
591 /* bump default and minimum pid_max based on number of cpus */
592 pid_max = min(pid_max_max, max_t(int, pid_max,
593 PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
594 pid_max_min = max_t(int, pid_max_min,
595 PIDS_PER_CPU_MIN * num_possible_cpus());
596 pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
597
598 idr_init(&init_pid_ns.idr);
599
600 init_pid_ns.pid_cachep = KMEM_CACHE(pid,
601 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
602 }
603
604 static struct file *__pidfd_fget(struct task_struct *task, int fd)
605 {
606 struct file *file;
607 int ret;
608
609 ret = mutex_lock_killable(&task->signal->exec_update_mutex);
610 if (ret)
611 return ERR_PTR(ret);
612
613 if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS))
614 file = fget_task(task, fd);
615 else
616 file = ERR_PTR(-EPERM);
617
618 mutex_unlock(&task->signal->exec_update_mutex);
619
620 return file ?: ERR_PTR(-EBADF);
621 }
622
623 static int pidfd_getfd(struct pid *pid, int fd)
624 {
625 struct task_struct *task;
626 struct file *file;
627 int ret;
628
629 task = get_pid_task(pid, PIDTYPE_PID);
630 if (!task)
631 return -ESRCH;
632
633 file = __pidfd_fget(task, fd);
634 put_task_struct(task);
635 if (IS_ERR(file))
636 return PTR_ERR(file);
637
638 ret = security_file_receive(file);
639 if (ret) {
640 fput(file);
641 return ret;
642 }
643
644 ret = get_unused_fd_flags(O_CLOEXEC);
645 if (ret < 0)
646 fput(file);
647 else
648 fd_install(ret, file);
649
650 return ret;
651 }
652
653 /**
654 * sys_pidfd_getfd() - Get a file descriptor from another process
655 *
656 * @pidfd: the pidfd file descriptor of the process
657 * @fd: the file descriptor number to get
658 * @flags: flags on how to get the fd (reserved)
659 *
660 * This syscall gets a copy of a file descriptor from another process
661 * based on the pidfd, and file descriptor number. It requires that
662 * the calling process has the ability to ptrace the process represented
663 * by the pidfd. The process which is having its file descriptor copied
664 * is otherwise unaffected.
665 *
666 * Return: On success, a cloexec file descriptor is returned.
667 * On error, a negative errno number will be returned.
668 */
669 SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd,
670 unsigned int, flags)
671 {
672 struct pid *pid;
673 struct fd f;
674 int ret;
675
676 /* flags is currently unused - make sure it's unset */
677 if (flags)
678 return -EINVAL;
679
680 f = fdget(pidfd);
681 if (!f.file)
682 return -EBADF;
683
684 pid = pidfd_pid(f.file);
685 if (IS_ERR(pid))
686 ret = PTR_ERR(pid);
687 else
688 ret = pidfd_getfd(pid, fd);
689
690 fdput(f);
691 return ret;
692 }