]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/pid_namespace.c
mm/vmscan.c: clean code by removing unnecessary assignment
[mirror_ubuntu-hirsute-kernel.git] / kernel / pid_namespace.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Pid namespaces
4 *
5 * Authors:
6 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
7 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
8 * Many thanks to Oleg Nesterov for comments and help
9 *
10 */
11
12 #include <linux/pid.h>
13 #include <linux/pid_namespace.h>
14 #include <linux/user_namespace.h>
15 #include <linux/syscalls.h>
16 #include <linux/cred.h>
17 #include <linux/err.h>
18 #include <linux/acct.h>
19 #include <linux/slab.h>
20 #include <linux/proc_ns.h>
21 #include <linux/reboot.h>
22 #include <linux/export.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/signal.h>
25 #include <linux/idr.h>
26
27 static DEFINE_MUTEX(pid_caches_mutex);
28 static struct kmem_cache *pid_ns_cachep;
29 /* Write once array, filled from the beginning. */
30 static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL];
31
32 /*
33 * creates the kmem cache to allocate pids from.
34 * @level: pid namespace level
35 */
36
37 static struct kmem_cache *create_pid_cachep(unsigned int level)
38 {
39 /* Level 0 is init_pid_ns.pid_cachep */
40 struct kmem_cache **pkc = &pid_cache[level - 1];
41 struct kmem_cache *kc;
42 char name[4 + 10 + 1];
43 unsigned int len;
44
45 kc = READ_ONCE(*pkc);
46 if (kc)
47 return kc;
48
49 snprintf(name, sizeof(name), "pid_%u", level + 1);
50 len = sizeof(struct pid) + level * sizeof(struct upid);
51 mutex_lock(&pid_caches_mutex);
52 /* Name collision forces to do allocation under mutex. */
53 if (!*pkc)
54 *pkc = kmem_cache_create(name, len, 0, SLAB_HWCACHE_ALIGN, 0);
55 mutex_unlock(&pid_caches_mutex);
56 /* current can fail, but someone else can succeed. */
57 return READ_ONCE(*pkc);
58 }
59
60 static void proc_cleanup_work(struct work_struct *work)
61 {
62 struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
63 pid_ns_release_proc(ns);
64 }
65
66 static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
67 {
68 return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
69 }
70
71 static void dec_pid_namespaces(struct ucounts *ucounts)
72 {
73 dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
74 }
75
76 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
77 struct pid_namespace *parent_pid_ns)
78 {
79 struct pid_namespace *ns;
80 unsigned int level = parent_pid_ns->level + 1;
81 struct ucounts *ucounts;
82 int err;
83
84 err = -EINVAL;
85 if (!in_userns(parent_pid_ns->user_ns, user_ns))
86 goto out;
87
88 err = -ENOSPC;
89 if (level > MAX_PID_NS_LEVEL)
90 goto out;
91 ucounts = inc_pid_namespaces(user_ns);
92 if (!ucounts)
93 goto out;
94
95 err = -ENOMEM;
96 ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
97 if (ns == NULL)
98 goto out_dec;
99
100 idr_init(&ns->idr);
101
102 ns->pid_cachep = create_pid_cachep(level);
103 if (ns->pid_cachep == NULL)
104 goto out_free_idr;
105
106 err = ns_alloc_inum(&ns->ns);
107 if (err)
108 goto out_free_idr;
109 ns->ns.ops = &pidns_operations;
110
111 kref_init(&ns->kref);
112 ns->level = level;
113 ns->parent = get_pid_ns(parent_pid_ns);
114 ns->user_ns = get_user_ns(user_ns);
115 ns->ucounts = ucounts;
116 ns->pid_allocated = PIDNS_ADDING;
117 INIT_WORK(&ns->proc_work, proc_cleanup_work);
118
119 return ns;
120
121 out_free_idr:
122 idr_destroy(&ns->idr);
123 kmem_cache_free(pid_ns_cachep, ns);
124 out_dec:
125 dec_pid_namespaces(ucounts);
126 out:
127 return ERR_PTR(err);
128 }
129
130 static void delayed_free_pidns(struct rcu_head *p)
131 {
132 struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
133
134 dec_pid_namespaces(ns->ucounts);
135 put_user_ns(ns->user_ns);
136
137 kmem_cache_free(pid_ns_cachep, ns);
138 }
139
140 static void destroy_pid_namespace(struct pid_namespace *ns)
141 {
142 ns_free_inum(&ns->ns);
143
144 idr_destroy(&ns->idr);
145 call_rcu(&ns->rcu, delayed_free_pidns);
146 }
147
148 struct pid_namespace *copy_pid_ns(unsigned long flags,
149 struct user_namespace *user_ns, struct pid_namespace *old_ns)
150 {
151 if (!(flags & CLONE_NEWPID))
152 return get_pid_ns(old_ns);
153 if (task_active_pid_ns(current) != old_ns)
154 return ERR_PTR(-EINVAL);
155 return create_pid_namespace(user_ns, old_ns);
156 }
157
158 static void free_pid_ns(struct kref *kref)
159 {
160 struct pid_namespace *ns;
161
162 ns = container_of(kref, struct pid_namespace, kref);
163 destroy_pid_namespace(ns);
164 }
165
166 void put_pid_ns(struct pid_namespace *ns)
167 {
168 struct pid_namespace *parent;
169
170 while (ns != &init_pid_ns) {
171 parent = ns->parent;
172 if (!kref_put(&ns->kref, free_pid_ns))
173 break;
174 ns = parent;
175 }
176 }
177 EXPORT_SYMBOL_GPL(put_pid_ns);
178
179 void zap_pid_ns_processes(struct pid_namespace *pid_ns)
180 {
181 int nr;
182 int rc;
183 struct task_struct *task, *me = current;
184 int init_pids = thread_group_leader(me) ? 1 : 2;
185 struct pid *pid;
186
187 /* Don't allow any more processes into the pid namespace */
188 disable_pid_allocation(pid_ns);
189
190 /*
191 * Ignore SIGCHLD causing any terminated children to autoreap.
192 * This speeds up the namespace shutdown, plus see the comment
193 * below.
194 */
195 spin_lock_irq(&me->sighand->siglock);
196 me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
197 spin_unlock_irq(&me->sighand->siglock);
198
199 /*
200 * The last thread in the cgroup-init thread group is terminating.
201 * Find remaining pid_ts in the namespace, signal and wait for them
202 * to exit.
203 *
204 * Note: This signals each threads in the namespace - even those that
205 * belong to the same thread group, To avoid this, we would have
206 * to walk the entire tasklist looking a processes in this
207 * namespace, but that could be unnecessarily expensive if the
208 * pid namespace has just a few processes. Or we need to
209 * maintain a tasklist for each pid namespace.
210 *
211 */
212 rcu_read_lock();
213 read_lock(&tasklist_lock);
214 nr = 2;
215 idr_for_each_entry_continue(&pid_ns->idr, pid, nr) {
216 task = pid_task(pid, PIDTYPE_PID);
217 if (task && !__fatal_signal_pending(task))
218 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, task, PIDTYPE_MAX);
219 }
220 read_unlock(&tasklist_lock);
221 rcu_read_unlock();
222
223 /*
224 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
225 * kernel_wait4() will also block until our children traced from the
226 * parent namespace are detached and become EXIT_DEAD.
227 */
228 do {
229 clear_thread_flag(TIF_SIGPENDING);
230 rc = kernel_wait4(-1, NULL, __WALL, NULL);
231 } while (rc != -ECHILD);
232
233 /*
234 * kernel_wait4() above can't reap the EXIT_DEAD children but we do not
235 * really care, we could reparent them to the global init. We could
236 * exit and reap ->child_reaper even if it is not the last thread in
237 * this pid_ns, free_pid(pid_allocated == 0) calls proc_cleanup_work(),
238 * pid_ns can not go away until proc_kill_sb() drops the reference.
239 *
240 * But this ns can also have other tasks injected by setns()+fork().
241 * Again, ignoring the user visible semantics we do not really need
242 * to wait until they are all reaped, but they can be reparented to
243 * us and thus we need to ensure that pid->child_reaper stays valid
244 * until they all go away. See free_pid()->wake_up_process().
245 *
246 * We rely on ignored SIGCHLD, an injected zombie must be autoreaped
247 * if reparented.
248 */
249 for (;;) {
250 set_current_state(TASK_INTERRUPTIBLE);
251 if (pid_ns->pid_allocated == init_pids)
252 break;
253 schedule();
254 }
255 __set_current_state(TASK_RUNNING);
256
257 if (pid_ns->reboot)
258 current->signal->group_exit_code = pid_ns->reboot;
259
260 acct_exit_ns(pid_ns);
261 return;
262 }
263
264 #ifdef CONFIG_CHECKPOINT_RESTORE
265 static int pid_ns_ctl_handler(struct ctl_table *table, int write,
266 void __user *buffer, size_t *lenp, loff_t *ppos)
267 {
268 struct pid_namespace *pid_ns = task_active_pid_ns(current);
269 struct ctl_table tmp = *table;
270 int ret, next;
271
272 if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
273 return -EPERM;
274
275 /*
276 * Writing directly to ns' last_pid field is OK, since this field
277 * is volatile in a living namespace anyway and a code writing to
278 * it should synchronize its usage with external means.
279 */
280
281 next = idr_get_cursor(&pid_ns->idr) - 1;
282
283 tmp.data = &next;
284 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
285 if (!ret && write)
286 idr_set_cursor(&pid_ns->idr, next + 1);
287
288 return ret;
289 }
290
291 extern int pid_max;
292 static struct ctl_table pid_ns_ctl_table[] = {
293 {
294 .procname = "ns_last_pid",
295 .maxlen = sizeof(int),
296 .mode = 0666, /* permissions are checked in the handler */
297 .proc_handler = pid_ns_ctl_handler,
298 .extra1 = SYSCTL_ZERO,
299 .extra2 = &pid_max,
300 },
301 { }
302 };
303 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
304 #endif /* CONFIG_CHECKPOINT_RESTORE */
305
306 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
307 {
308 if (pid_ns == &init_pid_ns)
309 return 0;
310
311 switch (cmd) {
312 case LINUX_REBOOT_CMD_RESTART2:
313 case LINUX_REBOOT_CMD_RESTART:
314 pid_ns->reboot = SIGHUP;
315 break;
316
317 case LINUX_REBOOT_CMD_POWER_OFF:
318 case LINUX_REBOOT_CMD_HALT:
319 pid_ns->reboot = SIGINT;
320 break;
321 default:
322 return -EINVAL;
323 }
324
325 read_lock(&tasklist_lock);
326 send_sig(SIGKILL, pid_ns->child_reaper, 1);
327 read_unlock(&tasklist_lock);
328
329 do_exit(0);
330
331 /* Not reached */
332 return 0;
333 }
334
335 static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
336 {
337 return container_of(ns, struct pid_namespace, ns);
338 }
339
340 static struct ns_common *pidns_get(struct task_struct *task)
341 {
342 struct pid_namespace *ns;
343
344 rcu_read_lock();
345 ns = task_active_pid_ns(task);
346 if (ns)
347 get_pid_ns(ns);
348 rcu_read_unlock();
349
350 return ns ? &ns->ns : NULL;
351 }
352
353 static struct ns_common *pidns_for_children_get(struct task_struct *task)
354 {
355 struct pid_namespace *ns = NULL;
356
357 task_lock(task);
358 if (task->nsproxy) {
359 ns = task->nsproxy->pid_ns_for_children;
360 get_pid_ns(ns);
361 }
362 task_unlock(task);
363
364 if (ns) {
365 read_lock(&tasklist_lock);
366 if (!ns->child_reaper) {
367 put_pid_ns(ns);
368 ns = NULL;
369 }
370 read_unlock(&tasklist_lock);
371 }
372
373 return ns ? &ns->ns : NULL;
374 }
375
376 static void pidns_put(struct ns_common *ns)
377 {
378 put_pid_ns(to_pid_ns(ns));
379 }
380
381 static int pidns_install(struct nsproxy *nsproxy, struct ns_common *ns)
382 {
383 struct pid_namespace *active = task_active_pid_ns(current);
384 struct pid_namespace *ancestor, *new = to_pid_ns(ns);
385
386 if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
387 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
388 return -EPERM;
389
390 /*
391 * Only allow entering the current active pid namespace
392 * or a child of the current active pid namespace.
393 *
394 * This is required for fork to return a usable pid value and
395 * this maintains the property that processes and their
396 * children can not escape their current pid namespace.
397 */
398 if (new->level < active->level)
399 return -EINVAL;
400
401 ancestor = new;
402 while (ancestor->level > active->level)
403 ancestor = ancestor->parent;
404 if (ancestor != active)
405 return -EINVAL;
406
407 put_pid_ns(nsproxy->pid_ns_for_children);
408 nsproxy->pid_ns_for_children = get_pid_ns(new);
409 return 0;
410 }
411
412 static struct ns_common *pidns_get_parent(struct ns_common *ns)
413 {
414 struct pid_namespace *active = task_active_pid_ns(current);
415 struct pid_namespace *pid_ns, *p;
416
417 /* See if the parent is in the current namespace */
418 pid_ns = p = to_pid_ns(ns)->parent;
419 for (;;) {
420 if (!p)
421 return ERR_PTR(-EPERM);
422 if (p == active)
423 break;
424 p = p->parent;
425 }
426
427 return &get_pid_ns(pid_ns)->ns;
428 }
429
430 static struct user_namespace *pidns_owner(struct ns_common *ns)
431 {
432 return to_pid_ns(ns)->user_ns;
433 }
434
435 const struct proc_ns_operations pidns_operations = {
436 .name = "pid",
437 .type = CLONE_NEWPID,
438 .get = pidns_get,
439 .put = pidns_put,
440 .install = pidns_install,
441 .owner = pidns_owner,
442 .get_parent = pidns_get_parent,
443 };
444
445 const struct proc_ns_operations pidns_for_children_operations = {
446 .name = "pid_for_children",
447 .real_ns_name = "pid",
448 .type = CLONE_NEWPID,
449 .get = pidns_for_children_get,
450 .put = pidns_put,
451 .install = pidns_install,
452 .owner = pidns_owner,
453 .get_parent = pidns_get_parent,
454 };
455
456 static __init int pid_namespaces_init(void)
457 {
458 pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
459
460 #ifdef CONFIG_CHECKPOINT_RESTORE
461 register_sysctl_paths(kern_path, pid_ns_ctl_table);
462 #endif
463 return 0;
464 }
465
466 __initcall(pid_namespaces_init);