]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - kernel/pid_namespace.c
UBUNTU: Ubuntu-5.4.0-117.132
[mirror_ubuntu-focal-kernel.git] / kernel / pid_namespace.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Pid namespaces
4 *
5 * Authors:
6 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
7 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
8 * Many thanks to Oleg Nesterov for comments and help
9 *
10 */
11
12 #include <linux/pid.h>
13 #include <linux/pid_namespace.h>
14 #include <linux/user_namespace.h>
15 #include <linux/syscalls.h>
16 #include <linux/cred.h>
17 #include <linux/err.h>
18 #include <linux/acct.h>
19 #include <linux/slab.h>
20 #include <linux/proc_ns.h>
21 #include <linux/reboot.h>
22 #include <linux/export.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/signal.h>
25 #include <linux/idr.h>
26
27 static DEFINE_MUTEX(pid_caches_mutex);
28 static struct kmem_cache *pid_ns_cachep;
29 /* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
30 #define MAX_PID_NS_LEVEL 32
31 /* Write once array, filled from the beginning. */
32 static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL];
33
34 /*
35 * creates the kmem cache to allocate pids from.
36 * @level: pid namespace level
37 */
38
39 static struct kmem_cache *create_pid_cachep(unsigned int level)
40 {
41 /* Level 0 is init_pid_ns.pid_cachep */
42 struct kmem_cache **pkc = &pid_cache[level - 1];
43 struct kmem_cache *kc;
44 char name[4 + 10 + 1];
45 unsigned int len;
46
47 kc = READ_ONCE(*pkc);
48 if (kc)
49 return kc;
50
51 snprintf(name, sizeof(name), "pid_%u", level + 1);
52 len = sizeof(struct pid) + level * sizeof(struct upid);
53 mutex_lock(&pid_caches_mutex);
54 /* Name collision forces to do allocation under mutex. */
55 if (!*pkc)
56 *pkc = kmem_cache_create(name, len, 0,
57 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT, 0);
58 mutex_unlock(&pid_caches_mutex);
59 /* current can fail, but someone else can succeed. */
60 return READ_ONCE(*pkc);
61 }
62
63 static void proc_cleanup_work(struct work_struct *work)
64 {
65 struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
66 pid_ns_release_proc(ns);
67 }
68
69 static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
70 {
71 return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
72 }
73
74 static void dec_pid_namespaces(struct ucounts *ucounts)
75 {
76 dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
77 }
78
79 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
80 struct pid_namespace *parent_pid_ns)
81 {
82 struct pid_namespace *ns;
83 unsigned int level = parent_pid_ns->level + 1;
84 struct ucounts *ucounts;
85 int err;
86
87 err = -EINVAL;
88 if (!in_userns(parent_pid_ns->user_ns, user_ns))
89 goto out;
90
91 err = -ENOSPC;
92 if (level > MAX_PID_NS_LEVEL)
93 goto out;
94 ucounts = inc_pid_namespaces(user_ns);
95 if (!ucounts)
96 goto out;
97
98 err = -ENOMEM;
99 ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
100 if (ns == NULL)
101 goto out_dec;
102
103 idr_init(&ns->idr);
104
105 ns->pid_cachep = create_pid_cachep(level);
106 if (ns->pid_cachep == NULL)
107 goto out_free_idr;
108
109 err = ns_alloc_inum(&ns->ns);
110 if (err)
111 goto out_free_idr;
112 ns->ns.ops = &pidns_operations;
113
114 kref_init(&ns->kref);
115 ns->level = level;
116 ns->parent = get_pid_ns(parent_pid_ns);
117 ns->user_ns = get_user_ns(user_ns);
118 ns->ucounts = ucounts;
119 ns->pid_allocated = PIDNS_ADDING;
120 INIT_WORK(&ns->proc_work, proc_cleanup_work);
121
122 return ns;
123
124 out_free_idr:
125 idr_destroy(&ns->idr);
126 kmem_cache_free(pid_ns_cachep, ns);
127 out_dec:
128 dec_pid_namespaces(ucounts);
129 out:
130 return ERR_PTR(err);
131 }
132
133 static void delayed_free_pidns(struct rcu_head *p)
134 {
135 struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
136
137 dec_pid_namespaces(ns->ucounts);
138 put_user_ns(ns->user_ns);
139
140 kmem_cache_free(pid_ns_cachep, ns);
141 }
142
143 static void destroy_pid_namespace(struct pid_namespace *ns)
144 {
145 ns_free_inum(&ns->ns);
146
147 idr_destroy(&ns->idr);
148 call_rcu(&ns->rcu, delayed_free_pidns);
149 }
150
151 struct pid_namespace *copy_pid_ns(unsigned long flags,
152 struct user_namespace *user_ns, struct pid_namespace *old_ns)
153 {
154 if (!(flags & CLONE_NEWPID))
155 return get_pid_ns(old_ns);
156 if (task_active_pid_ns(current) != old_ns)
157 return ERR_PTR(-EINVAL);
158 return create_pid_namespace(user_ns, old_ns);
159 }
160
161 static void free_pid_ns(struct kref *kref)
162 {
163 struct pid_namespace *ns;
164
165 ns = container_of(kref, struct pid_namespace, kref);
166 destroy_pid_namespace(ns);
167 }
168
169 void put_pid_ns(struct pid_namespace *ns)
170 {
171 struct pid_namespace *parent;
172
173 while (ns != &init_pid_ns) {
174 parent = ns->parent;
175 if (!kref_put(&ns->kref, free_pid_ns))
176 break;
177 ns = parent;
178 }
179 }
180 EXPORT_SYMBOL_GPL(put_pid_ns);
181
182 void zap_pid_ns_processes(struct pid_namespace *pid_ns)
183 {
184 int nr;
185 int rc;
186 struct task_struct *task, *me = current;
187 int init_pids = thread_group_leader(me) ? 1 : 2;
188 struct pid *pid;
189
190 /* Don't allow any more processes into the pid namespace */
191 disable_pid_allocation(pid_ns);
192
193 /*
194 * Ignore SIGCHLD causing any terminated children to autoreap.
195 * This speeds up the namespace shutdown, plus see the comment
196 * below.
197 */
198 spin_lock_irq(&me->sighand->siglock);
199 me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
200 spin_unlock_irq(&me->sighand->siglock);
201
202 /*
203 * The last thread in the cgroup-init thread group is terminating.
204 * Find remaining pid_ts in the namespace, signal and wait for them
205 * to exit.
206 *
207 * Note: This signals each threads in the namespace - even those that
208 * belong to the same thread group, To avoid this, we would have
209 * to walk the entire tasklist looking a processes in this
210 * namespace, but that could be unnecessarily expensive if the
211 * pid namespace has just a few processes. Or we need to
212 * maintain a tasklist for each pid namespace.
213 *
214 */
215 rcu_read_lock();
216 read_lock(&tasklist_lock);
217 nr = 2;
218 idr_for_each_entry_continue(&pid_ns->idr, pid, nr) {
219 task = pid_task(pid, PIDTYPE_PID);
220 if (task && !__fatal_signal_pending(task))
221 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, task, PIDTYPE_MAX);
222 }
223 read_unlock(&tasklist_lock);
224 rcu_read_unlock();
225
226 /*
227 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
228 * kernel_wait4() will also block until our children traced from the
229 * parent namespace are detached and become EXIT_DEAD.
230 */
231 do {
232 clear_thread_flag(TIF_SIGPENDING);
233 rc = kernel_wait4(-1, NULL, __WALL, NULL);
234 } while (rc != -ECHILD);
235
236 /*
237 * kernel_wait4() above can't reap the EXIT_DEAD children but we do not
238 * really care, we could reparent them to the global init. We could
239 * exit and reap ->child_reaper even if it is not the last thread in
240 * this pid_ns, free_pid(pid_allocated == 0) calls proc_cleanup_work(),
241 * pid_ns can not go away until proc_kill_sb() drops the reference.
242 *
243 * But this ns can also have other tasks injected by setns()+fork().
244 * Again, ignoring the user visible semantics we do not really need
245 * to wait until they are all reaped, but they can be reparented to
246 * us and thus we need to ensure that pid->child_reaper stays valid
247 * until they all go away. See free_pid()->wake_up_process().
248 *
249 * We rely on ignored SIGCHLD, an injected zombie must be autoreaped
250 * if reparented.
251 */
252 for (;;) {
253 set_current_state(TASK_INTERRUPTIBLE);
254 if (pid_ns->pid_allocated == init_pids)
255 break;
256 schedule();
257 }
258 __set_current_state(TASK_RUNNING);
259
260 if (pid_ns->reboot)
261 current->signal->group_exit_code = pid_ns->reboot;
262
263 acct_exit_ns(pid_ns);
264 return;
265 }
266
267 #ifdef CONFIG_CHECKPOINT_RESTORE
268 static int pid_ns_ctl_handler(struct ctl_table *table, int write,
269 void __user *buffer, size_t *lenp, loff_t *ppos)
270 {
271 struct pid_namespace *pid_ns = task_active_pid_ns(current);
272 struct ctl_table tmp = *table;
273 int ret, next;
274
275 if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
276 return -EPERM;
277
278 /*
279 * Writing directly to ns' last_pid field is OK, since this field
280 * is volatile in a living namespace anyway and a code writing to
281 * it should synchronize its usage with external means.
282 */
283
284 next = idr_get_cursor(&pid_ns->idr) - 1;
285
286 tmp.data = &next;
287 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
288 if (!ret && write)
289 idr_set_cursor(&pid_ns->idr, next + 1);
290
291 return ret;
292 }
293
294 extern int pid_max;
295 static struct ctl_table pid_ns_ctl_table[] = {
296 {
297 .procname = "ns_last_pid",
298 .maxlen = sizeof(int),
299 .mode = 0666, /* permissions are checked in the handler */
300 .proc_handler = pid_ns_ctl_handler,
301 .extra1 = SYSCTL_ZERO,
302 .extra2 = &pid_max,
303 },
304 { }
305 };
306 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
307 #endif /* CONFIG_CHECKPOINT_RESTORE */
308
309 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
310 {
311 if (pid_ns == &init_pid_ns)
312 return 0;
313
314 switch (cmd) {
315 case LINUX_REBOOT_CMD_RESTART2:
316 case LINUX_REBOOT_CMD_RESTART:
317 pid_ns->reboot = SIGHUP;
318 break;
319
320 case LINUX_REBOOT_CMD_POWER_OFF:
321 case LINUX_REBOOT_CMD_HALT:
322 pid_ns->reboot = SIGINT;
323 break;
324 default:
325 return -EINVAL;
326 }
327
328 read_lock(&tasklist_lock);
329 send_sig(SIGKILL, pid_ns->child_reaper, 1);
330 read_unlock(&tasklist_lock);
331
332 do_exit(0);
333
334 /* Not reached */
335 return 0;
336 }
337
338 static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
339 {
340 return container_of(ns, struct pid_namespace, ns);
341 }
342
343 static struct ns_common *pidns_get(struct task_struct *task)
344 {
345 struct pid_namespace *ns;
346
347 rcu_read_lock();
348 ns = task_active_pid_ns(task);
349 if (ns)
350 get_pid_ns(ns);
351 rcu_read_unlock();
352
353 return ns ? &ns->ns : NULL;
354 }
355
356 static struct ns_common *pidns_for_children_get(struct task_struct *task)
357 {
358 struct pid_namespace *ns = NULL;
359
360 task_lock(task);
361 if (task->nsproxy) {
362 ns = task->nsproxy->pid_ns_for_children;
363 get_pid_ns(ns);
364 }
365 task_unlock(task);
366
367 if (ns) {
368 read_lock(&tasklist_lock);
369 if (!ns->child_reaper) {
370 put_pid_ns(ns);
371 ns = NULL;
372 }
373 read_unlock(&tasklist_lock);
374 }
375
376 return ns ? &ns->ns : NULL;
377 }
378
379 static void pidns_put(struct ns_common *ns)
380 {
381 put_pid_ns(to_pid_ns(ns));
382 }
383
384 static int pidns_install(struct nsproxy *nsproxy, struct ns_common *ns)
385 {
386 struct pid_namespace *active = task_active_pid_ns(current);
387 struct pid_namespace *ancestor, *new = to_pid_ns(ns);
388
389 if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
390 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
391 return -EPERM;
392
393 /*
394 * Only allow entering the current active pid namespace
395 * or a child of the current active pid namespace.
396 *
397 * This is required for fork to return a usable pid value and
398 * this maintains the property that processes and their
399 * children can not escape their current pid namespace.
400 */
401 if (new->level < active->level)
402 return -EINVAL;
403
404 ancestor = new;
405 while (ancestor->level > active->level)
406 ancestor = ancestor->parent;
407 if (ancestor != active)
408 return -EINVAL;
409
410 put_pid_ns(nsproxy->pid_ns_for_children);
411 nsproxy->pid_ns_for_children = get_pid_ns(new);
412 return 0;
413 }
414
415 static struct ns_common *pidns_get_parent(struct ns_common *ns)
416 {
417 struct pid_namespace *active = task_active_pid_ns(current);
418 struct pid_namespace *pid_ns, *p;
419
420 /* See if the parent is in the current namespace */
421 pid_ns = p = to_pid_ns(ns)->parent;
422 for (;;) {
423 if (!p)
424 return ERR_PTR(-EPERM);
425 if (p == active)
426 break;
427 p = p->parent;
428 }
429
430 return &get_pid_ns(pid_ns)->ns;
431 }
432
433 static struct user_namespace *pidns_owner(struct ns_common *ns)
434 {
435 return to_pid_ns(ns)->user_ns;
436 }
437
438 const struct proc_ns_operations pidns_operations = {
439 .name = "pid",
440 .type = CLONE_NEWPID,
441 .get = pidns_get,
442 .put = pidns_put,
443 .install = pidns_install,
444 .owner = pidns_owner,
445 .get_parent = pidns_get_parent,
446 };
447
448 const struct proc_ns_operations pidns_for_children_operations = {
449 .name = "pid_for_children",
450 .real_ns_name = "pid",
451 .type = CLONE_NEWPID,
452 .get = pidns_for_children_get,
453 .put = pidns_put,
454 .install = pidns_install,
455 .owner = pidns_owner,
456 .get_parent = pidns_get_parent,
457 };
458
459 static __init int pid_namespaces_init(void)
460 {
461 pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
462
463 #ifdef CONFIG_CHECKPOINT_RESTORE
464 register_sysctl_paths(kern_path, pid_ns_ctl_table);
465 #endif
466 return 0;
467 }
468
469 __initcall(pid_namespaces_init);