]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - kernel/pid_namespace.c
proc: Fix the namespace inode permission checks.
[mirror_ubuntu-eoan-kernel.git] / kernel / pid_namespace.c
1 /*
2 * Pid namespaces
3 *
4 * Authors:
5 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
6 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
7 * Many thanks to Oleg Nesterov for comments and help
8 *
9 */
10
11 #include <linux/pid.h>
12 #include <linux/pid_namespace.h>
13 #include <linux/user_namespace.h>
14 #include <linux/syscalls.h>
15 #include <linux/err.h>
16 #include <linux/acct.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/reboot.h>
20 #include <linux/export.h>
21
22 #define BITS_PER_PAGE (PAGE_SIZE*8)
23
24 struct pid_cache {
25 int nr_ids;
26 char name[16];
27 struct kmem_cache *cachep;
28 struct list_head list;
29 };
30
31 static LIST_HEAD(pid_caches_lh);
32 static DEFINE_MUTEX(pid_caches_mutex);
33 static struct kmem_cache *pid_ns_cachep;
34
35 /*
36 * creates the kmem cache to allocate pids from.
37 * @nr_ids: the number of numerical ids this pid will have to carry
38 */
39
40 static struct kmem_cache *create_pid_cachep(int nr_ids)
41 {
42 struct pid_cache *pcache;
43 struct kmem_cache *cachep;
44
45 mutex_lock(&pid_caches_mutex);
46 list_for_each_entry(pcache, &pid_caches_lh, list)
47 if (pcache->nr_ids == nr_ids)
48 goto out;
49
50 pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
51 if (pcache == NULL)
52 goto err_alloc;
53
54 snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
55 cachep = kmem_cache_create(pcache->name,
56 sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
57 0, SLAB_HWCACHE_ALIGN, NULL);
58 if (cachep == NULL)
59 goto err_cachep;
60
61 pcache->nr_ids = nr_ids;
62 pcache->cachep = cachep;
63 list_add(&pcache->list, &pid_caches_lh);
64 out:
65 mutex_unlock(&pid_caches_mutex);
66 return pcache->cachep;
67
68 err_cachep:
69 kfree(pcache);
70 err_alloc:
71 mutex_unlock(&pid_caches_mutex);
72 return NULL;
73 }
74
75 static void proc_cleanup_work(struct work_struct *work)
76 {
77 struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
78 pid_ns_release_proc(ns);
79 }
80
81 /* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
82 #define MAX_PID_NS_LEVEL 32
83
84 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
85 struct pid_namespace *parent_pid_ns)
86 {
87 struct pid_namespace *ns;
88 unsigned int level = parent_pid_ns->level + 1;
89 int i;
90 int err;
91
92 if (level > MAX_PID_NS_LEVEL) {
93 err = -EINVAL;
94 goto out;
95 }
96
97 err = -ENOMEM;
98 ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
99 if (ns == NULL)
100 goto out;
101
102 ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
103 if (!ns->pidmap[0].page)
104 goto out_free;
105
106 ns->pid_cachep = create_pid_cachep(level + 1);
107 if (ns->pid_cachep == NULL)
108 goto out_free_map;
109
110 kref_init(&ns->kref);
111 ns->level = level;
112 ns->parent = get_pid_ns(parent_pid_ns);
113 ns->user_ns = get_user_ns(user_ns);
114 INIT_WORK(&ns->proc_work, proc_cleanup_work);
115
116 set_bit(0, ns->pidmap[0].page);
117 atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
118
119 for (i = 1; i < PIDMAP_ENTRIES; i++)
120 atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
121
122 return ns;
123
124 out_free_map:
125 kfree(ns->pidmap[0].page);
126 out_free:
127 kmem_cache_free(pid_ns_cachep, ns);
128 out:
129 return ERR_PTR(err);
130 }
131
132 static void destroy_pid_namespace(struct pid_namespace *ns)
133 {
134 int i;
135
136 for (i = 0; i < PIDMAP_ENTRIES; i++)
137 kfree(ns->pidmap[i].page);
138 put_user_ns(ns->user_ns);
139 kmem_cache_free(pid_ns_cachep, ns);
140 }
141
142 struct pid_namespace *copy_pid_ns(unsigned long flags,
143 struct user_namespace *user_ns, struct pid_namespace *old_ns)
144 {
145 if (!(flags & CLONE_NEWPID))
146 return get_pid_ns(old_ns);
147 if (task_active_pid_ns(current) != old_ns)
148 return ERR_PTR(-EINVAL);
149 return create_pid_namespace(user_ns, old_ns);
150 }
151
152 static void free_pid_ns(struct kref *kref)
153 {
154 struct pid_namespace *ns;
155
156 ns = container_of(kref, struct pid_namespace, kref);
157 destroy_pid_namespace(ns);
158 }
159
160 void put_pid_ns(struct pid_namespace *ns)
161 {
162 struct pid_namespace *parent;
163
164 while (ns != &init_pid_ns) {
165 parent = ns->parent;
166 if (!kref_put(&ns->kref, free_pid_ns))
167 break;
168 ns = parent;
169 }
170 }
171 EXPORT_SYMBOL_GPL(put_pid_ns);
172
173 void zap_pid_ns_processes(struct pid_namespace *pid_ns)
174 {
175 int nr;
176 int rc;
177 struct task_struct *task, *me = current;
178
179 /* Ignore SIGCHLD causing any terminated children to autoreap */
180 spin_lock_irq(&me->sighand->siglock);
181 me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
182 spin_unlock_irq(&me->sighand->siglock);
183
184 /*
185 * The last thread in the cgroup-init thread group is terminating.
186 * Find remaining pid_ts in the namespace, signal and wait for them
187 * to exit.
188 *
189 * Note: This signals each threads in the namespace - even those that
190 * belong to the same thread group, To avoid this, we would have
191 * to walk the entire tasklist looking a processes in this
192 * namespace, but that could be unnecessarily expensive if the
193 * pid namespace has just a few processes. Or we need to
194 * maintain a tasklist for each pid namespace.
195 *
196 */
197 read_lock(&tasklist_lock);
198 nr = next_pidmap(pid_ns, 1);
199 while (nr > 0) {
200 rcu_read_lock();
201
202 task = pid_task(find_vpid(nr), PIDTYPE_PID);
203 if (task && !__fatal_signal_pending(task))
204 send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
205
206 rcu_read_unlock();
207
208 nr = next_pidmap(pid_ns, nr);
209 }
210 read_unlock(&tasklist_lock);
211
212 /* Firstly reap the EXIT_ZOMBIE children we may have. */
213 do {
214 clear_thread_flag(TIF_SIGPENDING);
215 rc = sys_wait4(-1, NULL, __WALL, NULL);
216 } while (rc != -ECHILD);
217
218 /*
219 * sys_wait4() above can't reap the TASK_DEAD children.
220 * Make sure they all go away, see free_pid().
221 */
222 for (;;) {
223 set_current_state(TASK_UNINTERRUPTIBLE);
224 if (pid_ns->nr_hashed == 1)
225 break;
226 schedule();
227 }
228 __set_current_state(TASK_RUNNING);
229
230 if (pid_ns->reboot)
231 current->signal->group_exit_code = pid_ns->reboot;
232
233 acct_exit_ns(pid_ns);
234 return;
235 }
236
237 #ifdef CONFIG_CHECKPOINT_RESTORE
238 static int pid_ns_ctl_handler(struct ctl_table *table, int write,
239 void __user *buffer, size_t *lenp, loff_t *ppos)
240 {
241 struct pid_namespace *pid_ns = task_active_pid_ns(current);
242 struct ctl_table tmp = *table;
243
244 if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
245 return -EPERM;
246
247 /*
248 * Writing directly to ns' last_pid field is OK, since this field
249 * is volatile in a living namespace anyway and a code writing to
250 * it should synchronize its usage with external means.
251 */
252
253 tmp.data = &pid_ns->last_pid;
254 return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
255 }
256
257 extern int pid_max;
258 static int zero = 0;
259 static struct ctl_table pid_ns_ctl_table[] = {
260 {
261 .procname = "ns_last_pid",
262 .maxlen = sizeof(int),
263 .mode = 0666, /* permissions are checked in the handler */
264 .proc_handler = pid_ns_ctl_handler,
265 .extra1 = &zero,
266 .extra2 = &pid_max,
267 },
268 { }
269 };
270 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
271 #endif /* CONFIG_CHECKPOINT_RESTORE */
272
273 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
274 {
275 if (pid_ns == &init_pid_ns)
276 return 0;
277
278 switch (cmd) {
279 case LINUX_REBOOT_CMD_RESTART2:
280 case LINUX_REBOOT_CMD_RESTART:
281 pid_ns->reboot = SIGHUP;
282 break;
283
284 case LINUX_REBOOT_CMD_POWER_OFF:
285 case LINUX_REBOOT_CMD_HALT:
286 pid_ns->reboot = SIGINT;
287 break;
288 default:
289 return -EINVAL;
290 }
291
292 read_lock(&tasklist_lock);
293 force_sig(SIGKILL, pid_ns->child_reaper);
294 read_unlock(&tasklist_lock);
295
296 do_exit(0);
297
298 /* Not reached */
299 return 0;
300 }
301
302 static void *pidns_get(struct task_struct *task)
303 {
304 struct pid_namespace *ns;
305
306 rcu_read_lock();
307 ns = get_pid_ns(task_active_pid_ns(task));
308 rcu_read_unlock();
309
310 return ns;
311 }
312
313 static void pidns_put(void *ns)
314 {
315 put_pid_ns(ns);
316 }
317
318 static int pidns_install(struct nsproxy *nsproxy, void *ns)
319 {
320 struct pid_namespace *active = task_active_pid_ns(current);
321 struct pid_namespace *ancestor, *new = ns;
322
323 if (!ns_capable(new->user_ns, CAP_SYS_ADMIN))
324 return -EPERM;
325
326 /*
327 * Only allow entering the current active pid namespace
328 * or a child of the current active pid namespace.
329 *
330 * This is required for fork to return a usable pid value and
331 * this maintains the property that processes and their
332 * children can not escape their current pid namespace.
333 */
334 if (new->level < active->level)
335 return -EINVAL;
336
337 ancestor = new;
338 while (ancestor->level > active->level)
339 ancestor = ancestor->parent;
340 if (ancestor != active)
341 return -EINVAL;
342
343 put_pid_ns(nsproxy->pid_ns);
344 nsproxy->pid_ns = get_pid_ns(new);
345 return 0;
346 }
347
348 const struct proc_ns_operations pidns_operations = {
349 .name = "pid",
350 .type = CLONE_NEWPID,
351 .get = pidns_get,
352 .put = pidns_put,
353 .install = pidns_install,
354 };
355
356 static __init int pid_namespaces_init(void)
357 {
358 pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
359
360 #ifdef CONFIG_CHECKPOINT_RESTORE
361 register_sysctl_paths(kern_path, pid_ns_ctl_table);
362 #endif
363 return 0;
364 }
365
366 __initcall(pid_namespaces_init);