]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/posix-timers.c
Merge branch 'devel'
[mirror_ubuntu-artful-kernel.git] / kernel / posix-timers.c
1 /*
2 * linux/kernel/posix-timers.c
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30 /* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/slab.h>
36 #include <linux/time.h>
37 #include <linux/mutex.h>
38
39 #include <asm/uaccess.h>
40 #include <linux/list.h>
41 #include <linux/init.h>
42 #include <linux/compiler.h>
43 #include <linux/idr.h>
44 #include <linux/posix-timers.h>
45 #include <linux/syscalls.h>
46 #include <linux/wait.h>
47 #include <linux/workqueue.h>
48 #include <linux/module.h>
49
50 /*
51 * Management arrays for POSIX timers. Timers are kept in slab memory
52 * Timer ids are allocated by an external routine that keeps track of the
53 * id and the timer. The external interface is:
54 *
55 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
56 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
57 * related it to <ptr>
58 * void idr_remove(struct idr *idp, int id); to release <id>
59 * void idr_init(struct idr *idp); to initialize <idp>
60 * which we supply.
61 * The idr_get_new *may* call slab for more memory so it must not be
62 * called under a spin lock. Likewise idr_remore may release memory
63 * (but it may be ok to do this under a lock...).
64 * idr_find is just a memory look up and is quite fast. A -1 return
65 * indicates that the requested id does not exist.
66 */
67
68 /*
69 * Lets keep our timers in a slab cache :-)
70 */
71 static struct kmem_cache *posix_timers_cache;
72 static struct idr posix_timers_id;
73 static DEFINE_SPINLOCK(idr_lock);
74
75 /*
76 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
77 * SIGEV values. Here we put out an error if this assumption fails.
78 */
79 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
80 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
81 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
82 #endif
83
84
85 /*
86 * The timer ID is turned into a timer address by idr_find().
87 * Verifying a valid ID consists of:
88 *
89 * a) checking that idr_find() returns other than -1.
90 * b) checking that the timer id matches the one in the timer itself.
91 * c) that the timer owner is in the callers thread group.
92 */
93
94 /*
95 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
96 * to implement others. This structure defines the various
97 * clocks and allows the possibility of adding others. We
98 * provide an interface to add clocks to the table and expect
99 * the "arch" code to add at least one clock that is high
100 * resolution. Here we define the standard CLOCK_REALTIME as a
101 * 1/HZ resolution clock.
102 *
103 * RESOLUTION: Clock resolution is used to round up timer and interval
104 * times, NOT to report clock times, which are reported with as
105 * much resolution as the system can muster. In some cases this
106 * resolution may depend on the underlying clock hardware and
107 * may not be quantifiable until run time, and only then is the
108 * necessary code is written. The standard says we should say
109 * something about this issue in the documentation...
110 *
111 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
112 * various clock functions. For clocks that use the standard
113 * system timer code these entries should be NULL. This will
114 * allow dispatch without the overhead of indirect function
115 * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
116 * must supply functions here, even if the function just returns
117 * ENOSYS. The standard POSIX timer management code assumes the
118 * following: 1.) The k_itimer struct (sched.h) is used for the
119 * timer. 2.) The list, it_lock, it_clock, it_id and it_process
120 * fields are not modified by timer code.
121 *
122 * At this time all functions EXCEPT clock_nanosleep can be
123 * redirected by the CLOCKS structure. Clock_nanosleep is in
124 * there, but the code ignores it.
125 *
126 * Permissions: It is assumed that the clock_settime() function defined
127 * for each clock will take care of permission checks. Some
128 * clocks may be set able by any user (i.e. local process
129 * clocks) others not. Currently the only set able clock we
130 * have is CLOCK_REALTIME and its high res counter part, both of
131 * which we beg off on and pass to do_sys_settimeofday().
132 */
133
134 static struct k_clock posix_clocks[MAX_CLOCKS];
135
136 /*
137 * These ones are defined below.
138 */
139 static int common_nsleep(const clockid_t, int flags, struct timespec *t,
140 struct timespec __user *rmtp);
141 static void common_timer_get(struct k_itimer *, struct itimerspec *);
142 static int common_timer_set(struct k_itimer *, int,
143 struct itimerspec *, struct itimerspec *);
144 static int common_timer_del(struct k_itimer *timer);
145
146 static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
147
148 static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
149
150 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
151 {
152 spin_unlock_irqrestore(&timr->it_lock, flags);
153 }
154
155 /*
156 * Call the k_clock hook function if non-null, or the default function.
157 */
158 #define CLOCK_DISPATCH(clock, call, arglist) \
159 ((clock) < 0 ? posix_cpu_##call arglist : \
160 (posix_clocks[clock].call != NULL \
161 ? (*posix_clocks[clock].call) arglist : common_##call arglist))
162
163 /*
164 * Default clock hook functions when the struct k_clock passed
165 * to register_posix_clock leaves a function pointer null.
166 *
167 * The function common_CALL is the default implementation for
168 * the function pointer CALL in struct k_clock.
169 */
170
171 static inline int common_clock_getres(const clockid_t which_clock,
172 struct timespec *tp)
173 {
174 tp->tv_sec = 0;
175 tp->tv_nsec = posix_clocks[which_clock].res;
176 return 0;
177 }
178
179 /*
180 * Get real time for posix timers
181 */
182 static int common_clock_get(clockid_t which_clock, struct timespec *tp)
183 {
184 ktime_get_real_ts(tp);
185 return 0;
186 }
187
188 static inline int common_clock_set(const clockid_t which_clock,
189 struct timespec *tp)
190 {
191 return do_sys_settimeofday(tp, NULL);
192 }
193
194 static int common_timer_create(struct k_itimer *new_timer)
195 {
196 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
197 return 0;
198 }
199
200 /*
201 * Return nonzero if we know a priori this clockid_t value is bogus.
202 */
203 static inline int invalid_clockid(const clockid_t which_clock)
204 {
205 if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */
206 return 0;
207 if ((unsigned) which_clock >= MAX_CLOCKS)
208 return 1;
209 if (posix_clocks[which_clock].clock_getres != NULL)
210 return 0;
211 if (posix_clocks[which_clock].res != 0)
212 return 0;
213 return 1;
214 }
215
216 /*
217 * Get monotonic time for posix timers
218 */
219 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
220 {
221 ktime_get_ts(tp);
222 return 0;
223 }
224
225 /*
226 * Initialize everything, well, just everything in Posix clocks/timers ;)
227 */
228 static __init int init_posix_timers(void)
229 {
230 struct k_clock clock_realtime = {
231 .clock_getres = hrtimer_get_res,
232 };
233 struct k_clock clock_monotonic = {
234 .clock_getres = hrtimer_get_res,
235 .clock_get = posix_ktime_get_ts,
236 .clock_set = do_posix_clock_nosettime,
237 };
238
239 register_posix_clock(CLOCK_REALTIME, &clock_realtime);
240 register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
241
242 posix_timers_cache = kmem_cache_create("posix_timers_cache",
243 sizeof (struct k_itimer), 0, SLAB_PANIC,
244 NULL);
245 idr_init(&posix_timers_id);
246 return 0;
247 }
248
249 __initcall(init_posix_timers);
250
251 static void schedule_next_timer(struct k_itimer *timr)
252 {
253 struct hrtimer *timer = &timr->it.real.timer;
254
255 if (timr->it.real.interval.tv64 == 0)
256 return;
257
258 timr->it_overrun += (unsigned int) hrtimer_forward(timer,
259 timer->base->get_time(),
260 timr->it.real.interval);
261
262 timr->it_overrun_last = timr->it_overrun;
263 timr->it_overrun = -1;
264 ++timr->it_requeue_pending;
265 hrtimer_restart(timer);
266 }
267
268 /*
269 * This function is exported for use by the signal deliver code. It is
270 * called just prior to the info block being released and passes that
271 * block to us. It's function is to update the overrun entry AND to
272 * restart the timer. It should only be called if the timer is to be
273 * restarted (i.e. we have flagged this in the sys_private entry of the
274 * info block).
275 *
276 * To protect aginst the timer going away while the interrupt is queued,
277 * we require that the it_requeue_pending flag be set.
278 */
279 void do_schedule_next_timer(struct siginfo *info)
280 {
281 struct k_itimer *timr;
282 unsigned long flags;
283
284 timr = lock_timer(info->si_tid, &flags);
285
286 if (timr && timr->it_requeue_pending == info->si_sys_private) {
287 if (timr->it_clock < 0)
288 posix_cpu_timer_schedule(timr);
289 else
290 schedule_next_timer(timr);
291
292 info->si_overrun = timr->it_overrun_last;
293 }
294
295 if (timr)
296 unlock_timer(timr, flags);
297 }
298
299 int posix_timer_event(struct k_itimer *timr,int si_private)
300 {
301 memset(&timr->sigq->info, 0, sizeof(siginfo_t));
302 timr->sigq->info.si_sys_private = si_private;
303 /* Send signal to the process that owns this timer.*/
304
305 timr->sigq->info.si_signo = timr->it_sigev_signo;
306 timr->sigq->info.si_errno = 0;
307 timr->sigq->info.si_code = SI_TIMER;
308 timr->sigq->info.si_tid = timr->it_id;
309 timr->sigq->info.si_value = timr->it_sigev_value;
310
311 if (timr->it_sigev_notify & SIGEV_THREAD_ID) {
312 struct task_struct *leader;
313 int ret = send_sigqueue(timr->it_sigev_signo, timr->sigq,
314 timr->it_process);
315
316 if (likely(ret >= 0))
317 return ret;
318
319 timr->it_sigev_notify = SIGEV_SIGNAL;
320 leader = timr->it_process->group_leader;
321 put_task_struct(timr->it_process);
322 timr->it_process = leader;
323 }
324
325 return send_group_sigqueue(timr->it_sigev_signo, timr->sigq,
326 timr->it_process);
327 }
328 EXPORT_SYMBOL_GPL(posix_timer_event);
329
330 /*
331 * This function gets called when a POSIX.1b interval timer expires. It
332 * is used as a callback from the kernel internal timer. The
333 * run_timer_list code ALWAYS calls with interrupts on.
334
335 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
336 */
337 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
338 {
339 struct k_itimer *timr;
340 unsigned long flags;
341 int si_private = 0;
342 enum hrtimer_restart ret = HRTIMER_NORESTART;
343
344 timr = container_of(timer, struct k_itimer, it.real.timer);
345 spin_lock_irqsave(&timr->it_lock, flags);
346
347 if (timr->it.real.interval.tv64 != 0)
348 si_private = ++timr->it_requeue_pending;
349
350 if (posix_timer_event(timr, si_private)) {
351 /*
352 * signal was not sent because of sig_ignor
353 * we will not get a call back to restart it AND
354 * it should be restarted.
355 */
356 if (timr->it.real.interval.tv64 != 0) {
357 ktime_t now = hrtimer_cb_get_time(timer);
358
359 /*
360 * FIXME: What we really want, is to stop this
361 * timer completely and restart it in case the
362 * SIG_IGN is removed. This is a non trivial
363 * change which involves sighand locking
364 * (sigh !), which we don't want to do late in
365 * the release cycle.
366 *
367 * For now we just let timers with an interval
368 * less than a jiffie expire every jiffie to
369 * avoid softirq starvation in case of SIG_IGN
370 * and a very small interval, which would put
371 * the timer right back on the softirq pending
372 * list. By moving now ahead of time we trick
373 * hrtimer_forward() to expire the timer
374 * later, while we still maintain the overrun
375 * accuracy, but have some inconsistency in
376 * the timer_gettime() case. This is at least
377 * better than a starved softirq. A more
378 * complex fix which solves also another related
379 * inconsistency is already in the pipeline.
380 */
381 #ifdef CONFIG_HIGH_RES_TIMERS
382 {
383 ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
384
385 if (timr->it.real.interval.tv64 < kj.tv64)
386 now = ktime_add(now, kj);
387 }
388 #endif
389 timr->it_overrun += (unsigned int)
390 hrtimer_forward(timer, now,
391 timr->it.real.interval);
392 ret = HRTIMER_RESTART;
393 ++timr->it_requeue_pending;
394 }
395 }
396
397 unlock_timer(timr, flags);
398 return ret;
399 }
400
401 static struct task_struct * good_sigevent(sigevent_t * event)
402 {
403 struct task_struct *rtn = current->group_leader;
404
405 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
406 (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
407 !same_thread_group(rtn, current) ||
408 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
409 return NULL;
410
411 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
412 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
413 return NULL;
414
415 return rtn;
416 }
417
418 void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
419 {
420 if ((unsigned) clock_id >= MAX_CLOCKS) {
421 printk("POSIX clock register failed for clock_id %d\n",
422 clock_id);
423 return;
424 }
425
426 posix_clocks[clock_id] = *new_clock;
427 }
428 EXPORT_SYMBOL_GPL(register_posix_clock);
429
430 static struct k_itimer * alloc_posix_timer(void)
431 {
432 struct k_itimer *tmr;
433 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
434 if (!tmr)
435 return tmr;
436 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
437 kmem_cache_free(posix_timers_cache, tmr);
438 tmr = NULL;
439 }
440 return tmr;
441 }
442
443 #define IT_ID_SET 1
444 #define IT_ID_NOT_SET 0
445 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
446 {
447 if (it_id_set) {
448 unsigned long flags;
449 spin_lock_irqsave(&idr_lock, flags);
450 idr_remove(&posix_timers_id, tmr->it_id);
451 spin_unlock_irqrestore(&idr_lock, flags);
452 }
453 sigqueue_free(tmr->sigq);
454 if (unlikely(tmr->it_process) &&
455 tmr->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
456 put_task_struct(tmr->it_process);
457 kmem_cache_free(posix_timers_cache, tmr);
458 }
459
460 /* Create a POSIX.1b interval timer. */
461
462 asmlinkage long
463 sys_timer_create(const clockid_t which_clock,
464 struct sigevent __user *timer_event_spec,
465 timer_t __user * created_timer_id)
466 {
467 int error = 0;
468 struct k_itimer *new_timer = NULL;
469 int new_timer_id;
470 struct task_struct *process = NULL;
471 unsigned long flags;
472 sigevent_t event;
473 int it_id_set = IT_ID_NOT_SET;
474
475 if (invalid_clockid(which_clock))
476 return -EINVAL;
477
478 new_timer = alloc_posix_timer();
479 if (unlikely(!new_timer))
480 return -EAGAIN;
481
482 spin_lock_init(&new_timer->it_lock);
483 retry:
484 if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
485 error = -EAGAIN;
486 goto out;
487 }
488 spin_lock_irq(&idr_lock);
489 error = idr_get_new(&posix_timers_id, (void *) new_timer,
490 &new_timer_id);
491 spin_unlock_irq(&idr_lock);
492 if (error == -EAGAIN)
493 goto retry;
494 else if (error) {
495 /*
496 * Weird looking, but we return EAGAIN if the IDR is
497 * full (proper POSIX return value for this)
498 */
499 error = -EAGAIN;
500 goto out;
501 }
502
503 it_id_set = IT_ID_SET;
504 new_timer->it_id = (timer_t) new_timer_id;
505 new_timer->it_clock = which_clock;
506 new_timer->it_overrun = -1;
507 error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
508 if (error)
509 goto out;
510
511 /*
512 * return the timer_id now. The next step is hard to
513 * back out if there is an error.
514 */
515 if (copy_to_user(created_timer_id,
516 &new_timer_id, sizeof (new_timer_id))) {
517 error = -EFAULT;
518 goto out;
519 }
520 if (timer_event_spec) {
521 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
522 error = -EFAULT;
523 goto out;
524 }
525 new_timer->it_sigev_notify = event.sigev_notify;
526 new_timer->it_sigev_signo = event.sigev_signo;
527 new_timer->it_sigev_value = event.sigev_value;
528
529 read_lock(&tasklist_lock);
530 if ((process = good_sigevent(&event))) {
531 /*
532 * We may be setting up this process for another
533 * thread. It may be exiting. To catch this
534 * case the we check the PF_EXITING flag. If
535 * the flag is not set, the siglock will catch
536 * him before it is too late (in exit_itimers).
537 *
538 * The exec case is a bit more invloved but easy
539 * to code. If the process is in our thread
540 * group (and it must be or we would not allow
541 * it here) and is doing an exec, it will cause
542 * us to be killed. In this case it will wait
543 * for us to die which means we can finish this
544 * linkage with our last gasp. I.e. no code :)
545 */
546 spin_lock_irqsave(&process->sighand->siglock, flags);
547 if (!(process->flags & PF_EXITING)) {
548 new_timer->it_process = process;
549 list_add(&new_timer->list,
550 &process->signal->posix_timers);
551 if (new_timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
552 get_task_struct(process);
553 spin_unlock_irqrestore(&process->sighand->siglock, flags);
554 } else {
555 spin_unlock_irqrestore(&process->sighand->siglock, flags);
556 process = NULL;
557 }
558 }
559 read_unlock(&tasklist_lock);
560 if (!process) {
561 error = -EINVAL;
562 goto out;
563 }
564 } else {
565 new_timer->it_sigev_notify = SIGEV_SIGNAL;
566 new_timer->it_sigev_signo = SIGALRM;
567 new_timer->it_sigev_value.sival_int = new_timer->it_id;
568 process = current->group_leader;
569 spin_lock_irqsave(&process->sighand->siglock, flags);
570 new_timer->it_process = process;
571 list_add(&new_timer->list, &process->signal->posix_timers);
572 spin_unlock_irqrestore(&process->sighand->siglock, flags);
573 }
574
575 /*
576 * In the case of the timer belonging to another task, after
577 * the task is unlocked, the timer is owned by the other task
578 * and may cease to exist at any time. Don't use or modify
579 * new_timer after the unlock call.
580 */
581
582 out:
583 if (error)
584 release_posix_timer(new_timer, it_id_set);
585
586 return error;
587 }
588
589 /*
590 * Locking issues: We need to protect the result of the id look up until
591 * we get the timer locked down so it is not deleted under us. The
592 * removal is done under the idr spinlock so we use that here to bridge
593 * the find to the timer lock. To avoid a dead lock, the timer id MUST
594 * be release with out holding the timer lock.
595 */
596 static struct k_itimer * lock_timer(timer_t timer_id, unsigned long *flags)
597 {
598 struct k_itimer *timr;
599 /*
600 * Watch out here. We do a irqsave on the idr_lock and pass the
601 * flags part over to the timer lock. Must not let interrupts in
602 * while we are moving the lock.
603 */
604
605 spin_lock_irqsave(&idr_lock, *flags);
606 timr = (struct k_itimer *) idr_find(&posix_timers_id, (int) timer_id);
607 if (timr) {
608 spin_lock(&timr->it_lock);
609
610 if ((timr->it_id != timer_id) || !(timr->it_process) ||
611 !same_thread_group(timr->it_process, current)) {
612 spin_unlock(&timr->it_lock);
613 spin_unlock_irqrestore(&idr_lock, *flags);
614 timr = NULL;
615 } else
616 spin_unlock(&idr_lock);
617 } else
618 spin_unlock_irqrestore(&idr_lock, *flags);
619
620 return timr;
621 }
622
623 /*
624 * Get the time remaining on a POSIX.1b interval timer. This function
625 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
626 * mess with irq.
627 *
628 * We have a couple of messes to clean up here. First there is the case
629 * of a timer that has a requeue pending. These timers should appear to
630 * be in the timer list with an expiry as if we were to requeue them
631 * now.
632 *
633 * The second issue is the SIGEV_NONE timer which may be active but is
634 * not really ever put in the timer list (to save system resources).
635 * This timer may be expired, and if so, we will do it here. Otherwise
636 * it is the same as a requeue pending timer WRT to what we should
637 * report.
638 */
639 static void
640 common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
641 {
642 ktime_t now, remaining, iv;
643 struct hrtimer *timer = &timr->it.real.timer;
644
645 memset(cur_setting, 0, sizeof(struct itimerspec));
646
647 iv = timr->it.real.interval;
648
649 /* interval timer ? */
650 if (iv.tv64)
651 cur_setting->it_interval = ktime_to_timespec(iv);
652 else if (!hrtimer_active(timer) &&
653 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
654 return;
655
656 now = timer->base->get_time();
657
658 /*
659 * When a requeue is pending or this is a SIGEV_NONE
660 * timer move the expiry time forward by intervals, so
661 * expiry is > now.
662 */
663 if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
664 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
665 timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
666
667 remaining = ktime_sub(timer->expires, now);
668 /* Return 0 only, when the timer is expired and not pending */
669 if (remaining.tv64 <= 0) {
670 /*
671 * A single shot SIGEV_NONE timer must return 0, when
672 * it is expired !
673 */
674 if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
675 cur_setting->it_value.tv_nsec = 1;
676 } else
677 cur_setting->it_value = ktime_to_timespec(remaining);
678 }
679
680 /* Get the time remaining on a POSIX.1b interval timer. */
681 asmlinkage long
682 sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting)
683 {
684 struct k_itimer *timr;
685 struct itimerspec cur_setting;
686 unsigned long flags;
687
688 timr = lock_timer(timer_id, &flags);
689 if (!timr)
690 return -EINVAL;
691
692 CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
693
694 unlock_timer(timr, flags);
695
696 if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
697 return -EFAULT;
698
699 return 0;
700 }
701
702 /*
703 * Get the number of overruns of a POSIX.1b interval timer. This is to
704 * be the overrun of the timer last delivered. At the same time we are
705 * accumulating overruns on the next timer. The overrun is frozen when
706 * the signal is delivered, either at the notify time (if the info block
707 * is not queued) or at the actual delivery time (as we are informed by
708 * the call back to do_schedule_next_timer(). So all we need to do is
709 * to pick up the frozen overrun.
710 */
711 asmlinkage long
712 sys_timer_getoverrun(timer_t timer_id)
713 {
714 struct k_itimer *timr;
715 int overrun;
716 unsigned long flags;
717
718 timr = lock_timer(timer_id, &flags);
719 if (!timr)
720 return -EINVAL;
721
722 overrun = timr->it_overrun_last;
723 unlock_timer(timr, flags);
724
725 return overrun;
726 }
727
728 /* Set a POSIX.1b interval timer. */
729 /* timr->it_lock is taken. */
730 static int
731 common_timer_set(struct k_itimer *timr, int flags,
732 struct itimerspec *new_setting, struct itimerspec *old_setting)
733 {
734 struct hrtimer *timer = &timr->it.real.timer;
735 enum hrtimer_mode mode;
736
737 if (old_setting)
738 common_timer_get(timr, old_setting);
739
740 /* disable the timer */
741 timr->it.real.interval.tv64 = 0;
742 /*
743 * careful here. If smp we could be in the "fire" routine which will
744 * be spinning as we hold the lock. But this is ONLY an SMP issue.
745 */
746 if (hrtimer_try_to_cancel(timer) < 0)
747 return TIMER_RETRY;
748
749 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
750 ~REQUEUE_PENDING;
751 timr->it_overrun_last = 0;
752
753 /* switch off the timer when it_value is zero */
754 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
755 return 0;
756
757 mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
758 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
759 timr->it.real.timer.function = posix_timer_fn;
760
761 timer->expires = timespec_to_ktime(new_setting->it_value);
762
763 /* Convert interval */
764 timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
765
766 /* SIGEV_NONE timers are not queued ! See common_timer_get */
767 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
768 /* Setup correct expiry time for relative timers */
769 if (mode == HRTIMER_MODE_REL) {
770 timer->expires =
771 ktime_add_safe(timer->expires,
772 timer->base->get_time());
773 }
774 return 0;
775 }
776
777 hrtimer_start(timer, timer->expires, mode);
778 return 0;
779 }
780
781 /* Set a POSIX.1b interval timer */
782 asmlinkage long
783 sys_timer_settime(timer_t timer_id, int flags,
784 const struct itimerspec __user *new_setting,
785 struct itimerspec __user *old_setting)
786 {
787 struct k_itimer *timr;
788 struct itimerspec new_spec, old_spec;
789 int error = 0;
790 unsigned long flag;
791 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
792
793 if (!new_setting)
794 return -EINVAL;
795
796 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
797 return -EFAULT;
798
799 if (!timespec_valid(&new_spec.it_interval) ||
800 !timespec_valid(&new_spec.it_value))
801 return -EINVAL;
802 retry:
803 timr = lock_timer(timer_id, &flag);
804 if (!timr)
805 return -EINVAL;
806
807 error = CLOCK_DISPATCH(timr->it_clock, timer_set,
808 (timr, flags, &new_spec, rtn));
809
810 unlock_timer(timr, flag);
811 if (error == TIMER_RETRY) {
812 rtn = NULL; // We already got the old time...
813 goto retry;
814 }
815
816 if (old_setting && !error &&
817 copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
818 error = -EFAULT;
819
820 return error;
821 }
822
823 static inline int common_timer_del(struct k_itimer *timer)
824 {
825 timer->it.real.interval.tv64 = 0;
826
827 if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
828 return TIMER_RETRY;
829 return 0;
830 }
831
832 static inline int timer_delete_hook(struct k_itimer *timer)
833 {
834 return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
835 }
836
837 /* Delete a POSIX.1b interval timer. */
838 asmlinkage long
839 sys_timer_delete(timer_t timer_id)
840 {
841 struct k_itimer *timer;
842 unsigned long flags;
843
844 retry_delete:
845 timer = lock_timer(timer_id, &flags);
846 if (!timer)
847 return -EINVAL;
848
849 if (timer_delete_hook(timer) == TIMER_RETRY) {
850 unlock_timer(timer, flags);
851 goto retry_delete;
852 }
853
854 spin_lock(&current->sighand->siglock);
855 list_del(&timer->list);
856 spin_unlock(&current->sighand->siglock);
857 /*
858 * This keeps any tasks waiting on the spin lock from thinking
859 * they got something (see the lock code above).
860 */
861 if (timer->it_process) {
862 if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
863 put_task_struct(timer->it_process);
864 timer->it_process = NULL;
865 }
866 unlock_timer(timer, flags);
867 release_posix_timer(timer, IT_ID_SET);
868 return 0;
869 }
870
871 /*
872 * return timer owned by the process, used by exit_itimers
873 */
874 static void itimer_delete(struct k_itimer *timer)
875 {
876 unsigned long flags;
877
878 retry_delete:
879 spin_lock_irqsave(&timer->it_lock, flags);
880
881 if (timer_delete_hook(timer) == TIMER_RETRY) {
882 unlock_timer(timer, flags);
883 goto retry_delete;
884 }
885 list_del(&timer->list);
886 /*
887 * This keeps any tasks waiting on the spin lock from thinking
888 * they got something (see the lock code above).
889 */
890 if (timer->it_process) {
891 if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
892 put_task_struct(timer->it_process);
893 timer->it_process = NULL;
894 }
895 unlock_timer(timer, flags);
896 release_posix_timer(timer, IT_ID_SET);
897 }
898
899 /*
900 * This is called by do_exit or de_thread, only when there are no more
901 * references to the shared signal_struct.
902 */
903 void exit_itimers(struct signal_struct *sig)
904 {
905 struct k_itimer *tmr;
906
907 while (!list_empty(&sig->posix_timers)) {
908 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
909 itimer_delete(tmr);
910 }
911 }
912
913 /* Not available / possible... functions */
914 int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp)
915 {
916 return -EINVAL;
917 }
918 EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);
919
920 int do_posix_clock_nonanosleep(const clockid_t clock, int flags,
921 struct timespec *t, struct timespec __user *r)
922 {
923 #ifndef ENOTSUP
924 return -EOPNOTSUPP; /* aka ENOTSUP in userland for POSIX */
925 #else /* parisc does define it separately. */
926 return -ENOTSUP;
927 #endif
928 }
929 EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep);
930
931 asmlinkage long sys_clock_settime(const clockid_t which_clock,
932 const struct timespec __user *tp)
933 {
934 struct timespec new_tp;
935
936 if (invalid_clockid(which_clock))
937 return -EINVAL;
938 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
939 return -EFAULT;
940
941 return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
942 }
943
944 asmlinkage long
945 sys_clock_gettime(const clockid_t which_clock, struct timespec __user *tp)
946 {
947 struct timespec kernel_tp;
948 int error;
949
950 if (invalid_clockid(which_clock))
951 return -EINVAL;
952 error = CLOCK_DISPATCH(which_clock, clock_get,
953 (which_clock, &kernel_tp));
954 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
955 error = -EFAULT;
956
957 return error;
958
959 }
960
961 asmlinkage long
962 sys_clock_getres(const clockid_t which_clock, struct timespec __user *tp)
963 {
964 struct timespec rtn_tp;
965 int error;
966
967 if (invalid_clockid(which_clock))
968 return -EINVAL;
969
970 error = CLOCK_DISPATCH(which_clock, clock_getres,
971 (which_clock, &rtn_tp));
972
973 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
974 error = -EFAULT;
975 }
976
977 return error;
978 }
979
980 /*
981 * nanosleep for monotonic and realtime clocks
982 */
983 static int common_nsleep(const clockid_t which_clock, int flags,
984 struct timespec *tsave, struct timespec __user *rmtp)
985 {
986 return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
987 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
988 which_clock);
989 }
990
991 asmlinkage long
992 sys_clock_nanosleep(const clockid_t which_clock, int flags,
993 const struct timespec __user *rqtp,
994 struct timespec __user *rmtp)
995 {
996 struct timespec t;
997
998 if (invalid_clockid(which_clock))
999 return -EINVAL;
1000
1001 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1002 return -EFAULT;
1003
1004 if (!timespec_valid(&t))
1005 return -EINVAL;
1006
1007 return CLOCK_DISPATCH(which_clock, nsleep,
1008 (which_clock, flags, &t, rmtp));
1009 }
1010
1011 /*
1012 * nanosleep_restart for monotonic and realtime clocks
1013 */
1014 static int common_nsleep_restart(struct restart_block *restart_block)
1015 {
1016 return hrtimer_nanosleep_restart(restart_block);
1017 }
1018
1019 /*
1020 * This will restart clock_nanosleep. This is required only by
1021 * compat_clock_nanosleep_restart for now.
1022 */
1023 long
1024 clock_nanosleep_restart(struct restart_block *restart_block)
1025 {
1026 clockid_t which_clock = restart_block->arg0;
1027
1028 return CLOCK_DISPATCH(which_clock, nsleep_restart,
1029 (restart_block));
1030 }