]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/power/main.c
Merge branches 'acpi-tools' and 'pm-tools'
[mirror_ubuntu-artful-kernel.git] / kernel / power / main.c
1 /*
2 * kernel/power/main.c - PM subsystem core functionality.
3 *
4 * Copyright (c) 2003 Patrick Mochel
5 * Copyright (c) 2003 Open Source Development Lab
6 *
7 * This file is released under the GPLv2
8 *
9 */
10
11 #include <linux/export.h>
12 #include <linux/kobject.h>
13 #include <linux/string.h>
14 #include <linux/resume-trace.h>
15 #include <linux/workqueue.h>
16 #include <linux/debugfs.h>
17 #include <linux/seq_file.h>
18
19 #include "power.h"
20
21 DEFINE_MUTEX(pm_mutex);
22
23 #ifdef CONFIG_PM_SLEEP
24
25 /* Routines for PM-transition notifications */
26
27 static BLOCKING_NOTIFIER_HEAD(pm_chain_head);
28
29 int register_pm_notifier(struct notifier_block *nb)
30 {
31 return blocking_notifier_chain_register(&pm_chain_head, nb);
32 }
33 EXPORT_SYMBOL_GPL(register_pm_notifier);
34
35 int unregister_pm_notifier(struct notifier_block *nb)
36 {
37 return blocking_notifier_chain_unregister(&pm_chain_head, nb);
38 }
39 EXPORT_SYMBOL_GPL(unregister_pm_notifier);
40
41 int pm_notifier_call_chain(unsigned long val)
42 {
43 int ret = blocking_notifier_call_chain(&pm_chain_head, val, NULL);
44
45 return notifier_to_errno(ret);
46 }
47
48 /* If set, devices may be suspended and resumed asynchronously. */
49 int pm_async_enabled = 1;
50
51 static ssize_t pm_async_show(struct kobject *kobj, struct kobj_attribute *attr,
52 char *buf)
53 {
54 return sprintf(buf, "%d\n", pm_async_enabled);
55 }
56
57 static ssize_t pm_async_store(struct kobject *kobj, struct kobj_attribute *attr,
58 const char *buf, size_t n)
59 {
60 unsigned long val;
61
62 if (kstrtoul(buf, 10, &val))
63 return -EINVAL;
64
65 if (val > 1)
66 return -EINVAL;
67
68 pm_async_enabled = val;
69 return n;
70 }
71
72 power_attr(pm_async);
73
74 #ifdef CONFIG_PM_DEBUG
75 int pm_test_level = TEST_NONE;
76
77 static const char * const pm_tests[__TEST_AFTER_LAST] = {
78 [TEST_NONE] = "none",
79 [TEST_CORE] = "core",
80 [TEST_CPUS] = "processors",
81 [TEST_PLATFORM] = "platform",
82 [TEST_DEVICES] = "devices",
83 [TEST_FREEZER] = "freezer",
84 };
85
86 static ssize_t pm_test_show(struct kobject *kobj, struct kobj_attribute *attr,
87 char *buf)
88 {
89 char *s = buf;
90 int level;
91
92 for (level = TEST_FIRST; level <= TEST_MAX; level++)
93 if (pm_tests[level]) {
94 if (level == pm_test_level)
95 s += sprintf(s, "[%s] ", pm_tests[level]);
96 else
97 s += sprintf(s, "%s ", pm_tests[level]);
98 }
99
100 if (s != buf)
101 /* convert the last space to a newline */
102 *(s-1) = '\n';
103
104 return (s - buf);
105 }
106
107 static ssize_t pm_test_store(struct kobject *kobj, struct kobj_attribute *attr,
108 const char *buf, size_t n)
109 {
110 const char * const *s;
111 int level;
112 char *p;
113 int len;
114 int error = -EINVAL;
115
116 p = memchr(buf, '\n', n);
117 len = p ? p - buf : n;
118
119 lock_system_sleep();
120
121 level = TEST_FIRST;
122 for (s = &pm_tests[level]; level <= TEST_MAX; s++, level++)
123 if (*s && len == strlen(*s) && !strncmp(buf, *s, len)) {
124 pm_test_level = level;
125 error = 0;
126 break;
127 }
128
129 unlock_system_sleep();
130
131 return error ? error : n;
132 }
133
134 power_attr(pm_test);
135 #endif /* CONFIG_PM_DEBUG */
136
137 #ifdef CONFIG_DEBUG_FS
138 static char *suspend_step_name(enum suspend_stat_step step)
139 {
140 switch (step) {
141 case SUSPEND_FREEZE:
142 return "freeze";
143 case SUSPEND_PREPARE:
144 return "prepare";
145 case SUSPEND_SUSPEND:
146 return "suspend";
147 case SUSPEND_SUSPEND_NOIRQ:
148 return "suspend_noirq";
149 case SUSPEND_RESUME_NOIRQ:
150 return "resume_noirq";
151 case SUSPEND_RESUME:
152 return "resume";
153 default:
154 return "";
155 }
156 }
157
158 static int suspend_stats_show(struct seq_file *s, void *unused)
159 {
160 int i, index, last_dev, last_errno, last_step;
161
162 last_dev = suspend_stats.last_failed_dev + REC_FAILED_NUM - 1;
163 last_dev %= REC_FAILED_NUM;
164 last_errno = suspend_stats.last_failed_errno + REC_FAILED_NUM - 1;
165 last_errno %= REC_FAILED_NUM;
166 last_step = suspend_stats.last_failed_step + REC_FAILED_NUM - 1;
167 last_step %= REC_FAILED_NUM;
168 seq_printf(s, "%s: %d\n%s: %d\n%s: %d\n%s: %d\n%s: %d\n"
169 "%s: %d\n%s: %d\n%s: %d\n%s: %d\n%s: %d\n",
170 "success", suspend_stats.success,
171 "fail", suspend_stats.fail,
172 "failed_freeze", suspend_stats.failed_freeze,
173 "failed_prepare", suspend_stats.failed_prepare,
174 "failed_suspend", suspend_stats.failed_suspend,
175 "failed_suspend_late",
176 suspend_stats.failed_suspend_late,
177 "failed_suspend_noirq",
178 suspend_stats.failed_suspend_noirq,
179 "failed_resume", suspend_stats.failed_resume,
180 "failed_resume_early",
181 suspend_stats.failed_resume_early,
182 "failed_resume_noirq",
183 suspend_stats.failed_resume_noirq);
184 seq_printf(s, "failures:\n last_failed_dev:\t%-s\n",
185 suspend_stats.failed_devs[last_dev]);
186 for (i = 1; i < REC_FAILED_NUM; i++) {
187 index = last_dev + REC_FAILED_NUM - i;
188 index %= REC_FAILED_NUM;
189 seq_printf(s, "\t\t\t%-s\n",
190 suspend_stats.failed_devs[index]);
191 }
192 seq_printf(s, " last_failed_errno:\t%-d\n",
193 suspend_stats.errno[last_errno]);
194 for (i = 1; i < REC_FAILED_NUM; i++) {
195 index = last_errno + REC_FAILED_NUM - i;
196 index %= REC_FAILED_NUM;
197 seq_printf(s, "\t\t\t%-d\n",
198 suspend_stats.errno[index]);
199 }
200 seq_printf(s, " last_failed_step:\t%-s\n",
201 suspend_step_name(
202 suspend_stats.failed_steps[last_step]));
203 for (i = 1; i < REC_FAILED_NUM; i++) {
204 index = last_step + REC_FAILED_NUM - i;
205 index %= REC_FAILED_NUM;
206 seq_printf(s, "\t\t\t%-s\n",
207 suspend_step_name(
208 suspend_stats.failed_steps[index]));
209 }
210
211 return 0;
212 }
213
214 static int suspend_stats_open(struct inode *inode, struct file *file)
215 {
216 return single_open(file, suspend_stats_show, NULL);
217 }
218
219 static const struct file_operations suspend_stats_operations = {
220 .open = suspend_stats_open,
221 .read = seq_read,
222 .llseek = seq_lseek,
223 .release = single_release,
224 };
225
226 static int __init pm_debugfs_init(void)
227 {
228 debugfs_create_file("suspend_stats", S_IFREG | S_IRUGO,
229 NULL, NULL, &suspend_stats_operations);
230 return 0;
231 }
232
233 late_initcall(pm_debugfs_init);
234 #endif /* CONFIG_DEBUG_FS */
235
236 #endif /* CONFIG_PM_SLEEP */
237
238 #ifdef CONFIG_PM_SLEEP_DEBUG
239 /*
240 * pm_print_times: print time taken by devices to suspend and resume.
241 *
242 * show() returns whether printing of suspend and resume times is enabled.
243 * store() accepts 0 or 1. 0 disables printing and 1 enables it.
244 */
245 bool pm_print_times_enabled;
246
247 static ssize_t pm_print_times_show(struct kobject *kobj,
248 struct kobj_attribute *attr, char *buf)
249 {
250 return sprintf(buf, "%d\n", pm_print_times_enabled);
251 }
252
253 static ssize_t pm_print_times_store(struct kobject *kobj,
254 struct kobj_attribute *attr,
255 const char *buf, size_t n)
256 {
257 unsigned long val;
258
259 if (kstrtoul(buf, 10, &val))
260 return -EINVAL;
261
262 if (val > 1)
263 return -EINVAL;
264
265 pm_print_times_enabled = !!val;
266 return n;
267 }
268
269 power_attr(pm_print_times);
270
271 static inline void pm_print_times_init(void)
272 {
273 pm_print_times_enabled = !!initcall_debug;
274 }
275 #else /* !CONFIG_PP_SLEEP_DEBUG */
276 static inline void pm_print_times_init(void) {}
277 #endif /* CONFIG_PM_SLEEP_DEBUG */
278
279 struct kobject *power_kobj;
280
281 /**
282 * state - control system sleep states.
283 *
284 * show() returns available sleep state labels, which may be "mem", "standby",
285 * "freeze" and "disk" (hibernation). See Documentation/power/states.txt for a
286 * description of what they mean.
287 *
288 * store() accepts one of those strings, translates it into the proper
289 * enumerated value, and initiates a suspend transition.
290 */
291 static ssize_t state_show(struct kobject *kobj, struct kobj_attribute *attr,
292 char *buf)
293 {
294 char *s = buf;
295 #ifdef CONFIG_SUSPEND
296 suspend_state_t i;
297
298 for (i = PM_SUSPEND_MIN; i < PM_SUSPEND_MAX; i++)
299 if (pm_states[i].state)
300 s += sprintf(s,"%s ", pm_states[i].label);
301
302 #endif
303 #ifdef CONFIG_HIBERNATION
304 s += sprintf(s, "%s\n", "disk");
305 #else
306 if (s != buf)
307 /* convert the last space to a newline */
308 *(s-1) = '\n';
309 #endif
310 return (s - buf);
311 }
312
313 static suspend_state_t decode_state(const char *buf, size_t n)
314 {
315 #ifdef CONFIG_SUSPEND
316 suspend_state_t state = PM_SUSPEND_MIN;
317 struct pm_sleep_state *s;
318 #endif
319 char *p;
320 int len;
321
322 p = memchr(buf, '\n', n);
323 len = p ? p - buf : n;
324
325 /* Check hibernation first. */
326 if (len == 4 && !strncmp(buf, "disk", len))
327 return PM_SUSPEND_MAX;
328
329 #ifdef CONFIG_SUSPEND
330 for (s = &pm_states[state]; state < PM_SUSPEND_MAX; s++, state++)
331 if (s->state && len == strlen(s->label)
332 && !strncmp(buf, s->label, len))
333 return s->state;
334 #endif
335
336 return PM_SUSPEND_ON;
337 }
338
339 static ssize_t state_store(struct kobject *kobj, struct kobj_attribute *attr,
340 const char *buf, size_t n)
341 {
342 suspend_state_t state;
343 int error;
344
345 error = pm_autosleep_lock();
346 if (error)
347 return error;
348
349 if (pm_autosleep_state() > PM_SUSPEND_ON) {
350 error = -EBUSY;
351 goto out;
352 }
353
354 state = decode_state(buf, n);
355 if (state < PM_SUSPEND_MAX)
356 error = pm_suspend(state);
357 else if (state == PM_SUSPEND_MAX)
358 error = hibernate();
359 else
360 error = -EINVAL;
361
362 out:
363 pm_autosleep_unlock();
364 return error ? error : n;
365 }
366
367 power_attr(state);
368
369 #ifdef CONFIG_PM_SLEEP
370 /*
371 * The 'wakeup_count' attribute, along with the functions defined in
372 * drivers/base/power/wakeup.c, provides a means by which wakeup events can be
373 * handled in a non-racy way.
374 *
375 * If a wakeup event occurs when the system is in a sleep state, it simply is
376 * woken up. In turn, if an event that would wake the system up from a sleep
377 * state occurs when it is undergoing a transition to that sleep state, the
378 * transition should be aborted. Moreover, if such an event occurs when the
379 * system is in the working state, an attempt to start a transition to the
380 * given sleep state should fail during certain period after the detection of
381 * the event. Using the 'state' attribute alone is not sufficient to satisfy
382 * these requirements, because a wakeup event may occur exactly when 'state'
383 * is being written to and may be delivered to user space right before it is
384 * frozen, so the event will remain only partially processed until the system is
385 * woken up by another event. In particular, it won't cause the transition to
386 * a sleep state to be aborted.
387 *
388 * This difficulty may be overcome if user space uses 'wakeup_count' before
389 * writing to 'state'. It first should read from 'wakeup_count' and store
390 * the read value. Then, after carrying out its own preparations for the system
391 * transition to a sleep state, it should write the stored value to
392 * 'wakeup_count'. If that fails, at least one wakeup event has occurred since
393 * 'wakeup_count' was read and 'state' should not be written to. Otherwise, it
394 * is allowed to write to 'state', but the transition will be aborted if there
395 * are any wakeup events detected after 'wakeup_count' was written to.
396 */
397
398 static ssize_t wakeup_count_show(struct kobject *kobj,
399 struct kobj_attribute *attr,
400 char *buf)
401 {
402 unsigned int val;
403
404 return pm_get_wakeup_count(&val, true) ?
405 sprintf(buf, "%u\n", val) : -EINTR;
406 }
407
408 static ssize_t wakeup_count_store(struct kobject *kobj,
409 struct kobj_attribute *attr,
410 const char *buf, size_t n)
411 {
412 unsigned int val;
413 int error;
414
415 error = pm_autosleep_lock();
416 if (error)
417 return error;
418
419 if (pm_autosleep_state() > PM_SUSPEND_ON) {
420 error = -EBUSY;
421 goto out;
422 }
423
424 error = -EINVAL;
425 if (sscanf(buf, "%u", &val) == 1) {
426 if (pm_save_wakeup_count(val))
427 error = n;
428 else
429 pm_print_active_wakeup_sources();
430 }
431
432 out:
433 pm_autosleep_unlock();
434 return error;
435 }
436
437 power_attr(wakeup_count);
438
439 #ifdef CONFIG_PM_AUTOSLEEP
440 static ssize_t autosleep_show(struct kobject *kobj,
441 struct kobj_attribute *attr,
442 char *buf)
443 {
444 suspend_state_t state = pm_autosleep_state();
445
446 if (state == PM_SUSPEND_ON)
447 return sprintf(buf, "off\n");
448
449 #ifdef CONFIG_SUSPEND
450 if (state < PM_SUSPEND_MAX)
451 return sprintf(buf, "%s\n", pm_states[state].state ?
452 pm_states[state].label : "error");
453 #endif
454 #ifdef CONFIG_HIBERNATION
455 return sprintf(buf, "disk\n");
456 #else
457 return sprintf(buf, "error");
458 #endif
459 }
460
461 static ssize_t autosleep_store(struct kobject *kobj,
462 struct kobj_attribute *attr,
463 const char *buf, size_t n)
464 {
465 suspend_state_t state = decode_state(buf, n);
466 int error;
467
468 if (state == PM_SUSPEND_ON
469 && strcmp(buf, "off") && strcmp(buf, "off\n"))
470 return -EINVAL;
471
472 error = pm_autosleep_set_state(state);
473 return error ? error : n;
474 }
475
476 power_attr(autosleep);
477 #endif /* CONFIG_PM_AUTOSLEEP */
478
479 #ifdef CONFIG_PM_WAKELOCKS
480 static ssize_t wake_lock_show(struct kobject *kobj,
481 struct kobj_attribute *attr,
482 char *buf)
483 {
484 return pm_show_wakelocks(buf, true);
485 }
486
487 static ssize_t wake_lock_store(struct kobject *kobj,
488 struct kobj_attribute *attr,
489 const char *buf, size_t n)
490 {
491 int error = pm_wake_lock(buf);
492 return error ? error : n;
493 }
494
495 power_attr(wake_lock);
496
497 static ssize_t wake_unlock_show(struct kobject *kobj,
498 struct kobj_attribute *attr,
499 char *buf)
500 {
501 return pm_show_wakelocks(buf, false);
502 }
503
504 static ssize_t wake_unlock_store(struct kobject *kobj,
505 struct kobj_attribute *attr,
506 const char *buf, size_t n)
507 {
508 int error = pm_wake_unlock(buf);
509 return error ? error : n;
510 }
511
512 power_attr(wake_unlock);
513
514 #endif /* CONFIG_PM_WAKELOCKS */
515 #endif /* CONFIG_PM_SLEEP */
516
517 #ifdef CONFIG_PM_TRACE
518 int pm_trace_enabled;
519
520 static ssize_t pm_trace_show(struct kobject *kobj, struct kobj_attribute *attr,
521 char *buf)
522 {
523 return sprintf(buf, "%d\n", pm_trace_enabled);
524 }
525
526 static ssize_t
527 pm_trace_store(struct kobject *kobj, struct kobj_attribute *attr,
528 const char *buf, size_t n)
529 {
530 int val;
531
532 if (sscanf(buf, "%d", &val) == 1) {
533 pm_trace_enabled = !!val;
534 if (pm_trace_enabled) {
535 pr_warn("PM: Enabling pm_trace changes system date and time during resume.\n"
536 "PM: Correct system time has to be restored manually after resume.\n");
537 }
538 return n;
539 }
540 return -EINVAL;
541 }
542
543 power_attr(pm_trace);
544
545 static ssize_t pm_trace_dev_match_show(struct kobject *kobj,
546 struct kobj_attribute *attr,
547 char *buf)
548 {
549 return show_trace_dev_match(buf, PAGE_SIZE);
550 }
551
552 static ssize_t
553 pm_trace_dev_match_store(struct kobject *kobj, struct kobj_attribute *attr,
554 const char *buf, size_t n)
555 {
556 return -EINVAL;
557 }
558
559 power_attr(pm_trace_dev_match);
560
561 #endif /* CONFIG_PM_TRACE */
562
563 #ifdef CONFIG_FREEZER
564 static ssize_t pm_freeze_timeout_show(struct kobject *kobj,
565 struct kobj_attribute *attr, char *buf)
566 {
567 return sprintf(buf, "%u\n", freeze_timeout_msecs);
568 }
569
570 static ssize_t pm_freeze_timeout_store(struct kobject *kobj,
571 struct kobj_attribute *attr,
572 const char *buf, size_t n)
573 {
574 unsigned long val;
575
576 if (kstrtoul(buf, 10, &val))
577 return -EINVAL;
578
579 freeze_timeout_msecs = val;
580 return n;
581 }
582
583 power_attr(pm_freeze_timeout);
584
585 #endif /* CONFIG_FREEZER*/
586
587 static struct attribute * g[] = {
588 &state_attr.attr,
589 #ifdef CONFIG_PM_TRACE
590 &pm_trace_attr.attr,
591 &pm_trace_dev_match_attr.attr,
592 #endif
593 #ifdef CONFIG_PM_SLEEP
594 &pm_async_attr.attr,
595 &wakeup_count_attr.attr,
596 #ifdef CONFIG_PM_AUTOSLEEP
597 &autosleep_attr.attr,
598 #endif
599 #ifdef CONFIG_PM_WAKELOCKS
600 &wake_lock_attr.attr,
601 &wake_unlock_attr.attr,
602 #endif
603 #ifdef CONFIG_PM_DEBUG
604 &pm_test_attr.attr,
605 #endif
606 #ifdef CONFIG_PM_SLEEP_DEBUG
607 &pm_print_times_attr.attr,
608 #endif
609 #endif
610 #ifdef CONFIG_FREEZER
611 &pm_freeze_timeout_attr.attr,
612 #endif
613 NULL,
614 };
615
616 static struct attribute_group attr_group = {
617 .attrs = g,
618 };
619
620 #ifdef CONFIG_PM_RUNTIME
621 struct workqueue_struct *pm_wq;
622 EXPORT_SYMBOL_GPL(pm_wq);
623
624 static int __init pm_start_workqueue(void)
625 {
626 pm_wq = alloc_workqueue("pm", WQ_FREEZABLE, 0);
627
628 return pm_wq ? 0 : -ENOMEM;
629 }
630 #else
631 static inline int pm_start_workqueue(void) { return 0; }
632 #endif
633
634 static int __init pm_init(void)
635 {
636 int error = pm_start_workqueue();
637 if (error)
638 return error;
639 hibernate_image_size_init();
640 hibernate_reserved_size_init();
641 power_kobj = kobject_create_and_add("power", NULL);
642 if (!power_kobj)
643 return -ENOMEM;
644 error = sysfs_create_group(power_kobj, &attr_group);
645 if (error)
646 return error;
647 pm_print_times_init();
648 return pm_autosleep_init();
649 }
650
651 core_initcall(pm_init);