]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/power/snapshot.c
tracing/hwlat: Report total time spent in all NMIs during the sample
[mirror_ubuntu-bionic-kernel.git] / kernel / power / snapshot.c
1 /*
2 * linux/kernel/power/snapshot.c
3 *
4 * This file provides system snapshot/restore functionality for swsusp.
5 *
6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8 *
9 * This file is released under the GPLv2.
10 *
11 */
12
13 #define pr_fmt(fmt) "PM: " fmt
14
15 #include <linux/version.h>
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/bitops.h>
21 #include <linux/spinlock.h>
22 #include <linux/kernel.h>
23 #include <linux/pm.h>
24 #include <linux/device.h>
25 #include <linux/init.h>
26 #include <linux/bootmem.h>
27 #include <linux/nmi.h>
28 #include <linux/syscalls.h>
29 #include <linux/console.h>
30 #include <linux/highmem.h>
31 #include <linux/list.h>
32 #include <linux/slab.h>
33 #include <linux/compiler.h>
34 #include <linux/ktime.h>
35 #include <linux/set_memory.h>
36
37 #include <linux/uaccess.h>
38 #include <asm/mmu_context.h>
39 #include <asm/pgtable.h>
40 #include <asm/tlbflush.h>
41 #include <asm/io.h>
42
43 #include "power.h"
44
45 #if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY)
46 static bool hibernate_restore_protection;
47 static bool hibernate_restore_protection_active;
48
49 void enable_restore_image_protection(void)
50 {
51 hibernate_restore_protection = true;
52 }
53
54 static inline void hibernate_restore_protection_begin(void)
55 {
56 hibernate_restore_protection_active = hibernate_restore_protection;
57 }
58
59 static inline void hibernate_restore_protection_end(void)
60 {
61 hibernate_restore_protection_active = false;
62 }
63
64 static inline void hibernate_restore_protect_page(void *page_address)
65 {
66 if (hibernate_restore_protection_active)
67 set_memory_ro((unsigned long)page_address, 1);
68 }
69
70 static inline void hibernate_restore_unprotect_page(void *page_address)
71 {
72 if (hibernate_restore_protection_active)
73 set_memory_rw((unsigned long)page_address, 1);
74 }
75 #else
76 static inline void hibernate_restore_protection_begin(void) {}
77 static inline void hibernate_restore_protection_end(void) {}
78 static inline void hibernate_restore_protect_page(void *page_address) {}
79 static inline void hibernate_restore_unprotect_page(void *page_address) {}
80 #endif /* CONFIG_STRICT_KERNEL_RWX && CONFIG_ARCH_HAS_SET_MEMORY */
81
82 static int swsusp_page_is_free(struct page *);
83 static void swsusp_set_page_forbidden(struct page *);
84 static void swsusp_unset_page_forbidden(struct page *);
85
86 /*
87 * Number of bytes to reserve for memory allocations made by device drivers
88 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
89 * cause image creation to fail (tunable via /sys/power/reserved_size).
90 */
91 unsigned long reserved_size;
92
93 void __init hibernate_reserved_size_init(void)
94 {
95 reserved_size = SPARE_PAGES * PAGE_SIZE;
96 }
97
98 /*
99 * Preferred image size in bytes (tunable via /sys/power/image_size).
100 * When it is set to N, swsusp will do its best to ensure the image
101 * size will not exceed N bytes, but if that is impossible, it will
102 * try to create the smallest image possible.
103 */
104 unsigned long image_size;
105
106 void __init hibernate_image_size_init(void)
107 {
108 image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
109 }
110
111 /*
112 * List of PBEs needed for restoring the pages that were allocated before
113 * the suspend and included in the suspend image, but have also been
114 * allocated by the "resume" kernel, so their contents cannot be written
115 * directly to their "original" page frames.
116 */
117 struct pbe *restore_pblist;
118
119 /* struct linked_page is used to build chains of pages */
120
121 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
122
123 struct linked_page {
124 struct linked_page *next;
125 char data[LINKED_PAGE_DATA_SIZE];
126 } __packed;
127
128 /*
129 * List of "safe" pages (ie. pages that were not used by the image kernel
130 * before hibernation) that may be used as temporary storage for image kernel
131 * memory contents.
132 */
133 static struct linked_page *safe_pages_list;
134
135 /* Pointer to an auxiliary buffer (1 page) */
136 static void *buffer;
137
138 #define PG_ANY 0
139 #define PG_SAFE 1
140 #define PG_UNSAFE_CLEAR 1
141 #define PG_UNSAFE_KEEP 0
142
143 static unsigned int allocated_unsafe_pages;
144
145 /**
146 * get_image_page - Allocate a page for a hibernation image.
147 * @gfp_mask: GFP mask for the allocation.
148 * @safe_needed: Get pages that were not used before hibernation (restore only)
149 *
150 * During image restoration, for storing the PBE list and the image data, we can
151 * only use memory pages that do not conflict with the pages used before
152 * hibernation. The "unsafe" pages have PageNosaveFree set and we count them
153 * using allocated_unsafe_pages.
154 *
155 * Each allocated image page is marked as PageNosave and PageNosaveFree so that
156 * swsusp_free() can release it.
157 */
158 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
159 {
160 void *res;
161
162 res = (void *)get_zeroed_page(gfp_mask);
163 if (safe_needed)
164 while (res && swsusp_page_is_free(virt_to_page(res))) {
165 /* The page is unsafe, mark it for swsusp_free() */
166 swsusp_set_page_forbidden(virt_to_page(res));
167 allocated_unsafe_pages++;
168 res = (void *)get_zeroed_page(gfp_mask);
169 }
170 if (res) {
171 swsusp_set_page_forbidden(virt_to_page(res));
172 swsusp_set_page_free(virt_to_page(res));
173 }
174 return res;
175 }
176
177 static void *__get_safe_page(gfp_t gfp_mask)
178 {
179 if (safe_pages_list) {
180 void *ret = safe_pages_list;
181
182 safe_pages_list = safe_pages_list->next;
183 memset(ret, 0, PAGE_SIZE);
184 return ret;
185 }
186 return get_image_page(gfp_mask, PG_SAFE);
187 }
188
189 unsigned long get_safe_page(gfp_t gfp_mask)
190 {
191 return (unsigned long)__get_safe_page(gfp_mask);
192 }
193
194 static struct page *alloc_image_page(gfp_t gfp_mask)
195 {
196 struct page *page;
197
198 page = alloc_page(gfp_mask);
199 if (page) {
200 swsusp_set_page_forbidden(page);
201 swsusp_set_page_free(page);
202 }
203 return page;
204 }
205
206 static void recycle_safe_page(void *page_address)
207 {
208 struct linked_page *lp = page_address;
209
210 lp->next = safe_pages_list;
211 safe_pages_list = lp;
212 }
213
214 /**
215 * free_image_page - Free a page allocated for hibernation image.
216 * @addr: Address of the page to free.
217 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
218 *
219 * The page to free should have been allocated by get_image_page() (page flags
220 * set by it are affected).
221 */
222 static inline void free_image_page(void *addr, int clear_nosave_free)
223 {
224 struct page *page;
225
226 BUG_ON(!virt_addr_valid(addr));
227
228 page = virt_to_page(addr);
229
230 swsusp_unset_page_forbidden(page);
231 if (clear_nosave_free)
232 swsusp_unset_page_free(page);
233
234 __free_page(page);
235 }
236
237 static inline void free_list_of_pages(struct linked_page *list,
238 int clear_page_nosave)
239 {
240 while (list) {
241 struct linked_page *lp = list->next;
242
243 free_image_page(list, clear_page_nosave);
244 list = lp;
245 }
246 }
247
248 /*
249 * struct chain_allocator is used for allocating small objects out of
250 * a linked list of pages called 'the chain'.
251 *
252 * The chain grows each time when there is no room for a new object in
253 * the current page. The allocated objects cannot be freed individually.
254 * It is only possible to free them all at once, by freeing the entire
255 * chain.
256 *
257 * NOTE: The chain allocator may be inefficient if the allocated objects
258 * are not much smaller than PAGE_SIZE.
259 */
260 struct chain_allocator {
261 struct linked_page *chain; /* the chain */
262 unsigned int used_space; /* total size of objects allocated out
263 of the current page */
264 gfp_t gfp_mask; /* mask for allocating pages */
265 int safe_needed; /* if set, only "safe" pages are allocated */
266 };
267
268 static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
269 int safe_needed)
270 {
271 ca->chain = NULL;
272 ca->used_space = LINKED_PAGE_DATA_SIZE;
273 ca->gfp_mask = gfp_mask;
274 ca->safe_needed = safe_needed;
275 }
276
277 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
278 {
279 void *ret;
280
281 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
282 struct linked_page *lp;
283
284 lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
285 get_image_page(ca->gfp_mask, PG_ANY);
286 if (!lp)
287 return NULL;
288
289 lp->next = ca->chain;
290 ca->chain = lp;
291 ca->used_space = 0;
292 }
293 ret = ca->chain->data + ca->used_space;
294 ca->used_space += size;
295 return ret;
296 }
297
298 /**
299 * Data types related to memory bitmaps.
300 *
301 * Memory bitmap is a structure consiting of many linked lists of
302 * objects. The main list's elements are of type struct zone_bitmap
303 * and each of them corresonds to one zone. For each zone bitmap
304 * object there is a list of objects of type struct bm_block that
305 * represent each blocks of bitmap in which information is stored.
306 *
307 * struct memory_bitmap contains a pointer to the main list of zone
308 * bitmap objects, a struct bm_position used for browsing the bitmap,
309 * and a pointer to the list of pages used for allocating all of the
310 * zone bitmap objects and bitmap block objects.
311 *
312 * NOTE: It has to be possible to lay out the bitmap in memory
313 * using only allocations of order 0. Additionally, the bitmap is
314 * designed to work with arbitrary number of zones (this is over the
315 * top for now, but let's avoid making unnecessary assumptions ;-).
316 *
317 * struct zone_bitmap contains a pointer to a list of bitmap block
318 * objects and a pointer to the bitmap block object that has been
319 * most recently used for setting bits. Additionally, it contains the
320 * PFNs that correspond to the start and end of the represented zone.
321 *
322 * struct bm_block contains a pointer to the memory page in which
323 * information is stored (in the form of a block of bitmap)
324 * It also contains the pfns that correspond to the start and end of
325 * the represented memory area.
326 *
327 * The memory bitmap is organized as a radix tree to guarantee fast random
328 * access to the bits. There is one radix tree for each zone (as returned
329 * from create_mem_extents).
330 *
331 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
332 * two linked lists for the nodes of the tree, one for the inner nodes and
333 * one for the leave nodes. The linked leave nodes are used for fast linear
334 * access of the memory bitmap.
335 *
336 * The struct rtree_node represents one node of the radix tree.
337 */
338
339 #define BM_END_OF_MAP (~0UL)
340
341 #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
342 #define BM_BLOCK_SHIFT (PAGE_SHIFT + 3)
343 #define BM_BLOCK_MASK ((1UL << BM_BLOCK_SHIFT) - 1)
344
345 /*
346 * struct rtree_node is a wrapper struct to link the nodes
347 * of the rtree together for easy linear iteration over
348 * bits and easy freeing
349 */
350 struct rtree_node {
351 struct list_head list;
352 unsigned long *data;
353 };
354
355 /*
356 * struct mem_zone_bm_rtree represents a bitmap used for one
357 * populated memory zone.
358 */
359 struct mem_zone_bm_rtree {
360 struct list_head list; /* Link Zones together */
361 struct list_head nodes; /* Radix Tree inner nodes */
362 struct list_head leaves; /* Radix Tree leaves */
363 unsigned long start_pfn; /* Zone start page frame */
364 unsigned long end_pfn; /* Zone end page frame + 1 */
365 struct rtree_node *rtree; /* Radix Tree Root */
366 int levels; /* Number of Radix Tree Levels */
367 unsigned int blocks; /* Number of Bitmap Blocks */
368 };
369
370 /* strcut bm_position is used for browsing memory bitmaps */
371
372 struct bm_position {
373 struct mem_zone_bm_rtree *zone;
374 struct rtree_node *node;
375 unsigned long node_pfn;
376 int node_bit;
377 };
378
379 struct memory_bitmap {
380 struct list_head zones;
381 struct linked_page *p_list; /* list of pages used to store zone
382 bitmap objects and bitmap block
383 objects */
384 struct bm_position cur; /* most recently used bit position */
385 };
386
387 /* Functions that operate on memory bitmaps */
388
389 #define BM_ENTRIES_PER_LEVEL (PAGE_SIZE / sizeof(unsigned long))
390 #if BITS_PER_LONG == 32
391 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 2)
392 #else
393 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 3)
394 #endif
395 #define BM_RTREE_LEVEL_MASK ((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
396
397 /**
398 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
399 *
400 * This function is used to allocate inner nodes as well as the
401 * leave nodes of the radix tree. It also adds the node to the
402 * corresponding linked list passed in by the *list parameter.
403 */
404 static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
405 struct chain_allocator *ca,
406 struct list_head *list)
407 {
408 struct rtree_node *node;
409
410 node = chain_alloc(ca, sizeof(struct rtree_node));
411 if (!node)
412 return NULL;
413
414 node->data = get_image_page(gfp_mask, safe_needed);
415 if (!node->data)
416 return NULL;
417
418 list_add_tail(&node->list, list);
419
420 return node;
421 }
422
423 /**
424 * add_rtree_block - Add a new leave node to the radix tree.
425 *
426 * The leave nodes need to be allocated in order to keep the leaves
427 * linked list in order. This is guaranteed by the zone->blocks
428 * counter.
429 */
430 static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
431 int safe_needed, struct chain_allocator *ca)
432 {
433 struct rtree_node *node, *block, **dst;
434 unsigned int levels_needed, block_nr;
435 int i;
436
437 block_nr = zone->blocks;
438 levels_needed = 0;
439
440 /* How many levels do we need for this block nr? */
441 while (block_nr) {
442 levels_needed += 1;
443 block_nr >>= BM_RTREE_LEVEL_SHIFT;
444 }
445
446 /* Make sure the rtree has enough levels */
447 for (i = zone->levels; i < levels_needed; i++) {
448 node = alloc_rtree_node(gfp_mask, safe_needed, ca,
449 &zone->nodes);
450 if (!node)
451 return -ENOMEM;
452
453 node->data[0] = (unsigned long)zone->rtree;
454 zone->rtree = node;
455 zone->levels += 1;
456 }
457
458 /* Allocate new block */
459 block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
460 if (!block)
461 return -ENOMEM;
462
463 /* Now walk the rtree to insert the block */
464 node = zone->rtree;
465 dst = &zone->rtree;
466 block_nr = zone->blocks;
467 for (i = zone->levels; i > 0; i--) {
468 int index;
469
470 if (!node) {
471 node = alloc_rtree_node(gfp_mask, safe_needed, ca,
472 &zone->nodes);
473 if (!node)
474 return -ENOMEM;
475 *dst = node;
476 }
477
478 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
479 index &= BM_RTREE_LEVEL_MASK;
480 dst = (struct rtree_node **)&((*dst)->data[index]);
481 node = *dst;
482 }
483
484 zone->blocks += 1;
485 *dst = block;
486
487 return 0;
488 }
489
490 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
491 int clear_nosave_free);
492
493 /**
494 * create_zone_bm_rtree - Create a radix tree for one zone.
495 *
496 * Allocated the mem_zone_bm_rtree structure and initializes it.
497 * This function also allocated and builds the radix tree for the
498 * zone.
499 */
500 static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
501 int safe_needed,
502 struct chain_allocator *ca,
503 unsigned long start,
504 unsigned long end)
505 {
506 struct mem_zone_bm_rtree *zone;
507 unsigned int i, nr_blocks;
508 unsigned long pages;
509
510 pages = end - start;
511 zone = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
512 if (!zone)
513 return NULL;
514
515 INIT_LIST_HEAD(&zone->nodes);
516 INIT_LIST_HEAD(&zone->leaves);
517 zone->start_pfn = start;
518 zone->end_pfn = end;
519 nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
520
521 for (i = 0; i < nr_blocks; i++) {
522 if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
523 free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
524 return NULL;
525 }
526 }
527
528 return zone;
529 }
530
531 /**
532 * free_zone_bm_rtree - Free the memory of the radix tree.
533 *
534 * Free all node pages of the radix tree. The mem_zone_bm_rtree
535 * structure itself is not freed here nor are the rtree_node
536 * structs.
537 */
538 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
539 int clear_nosave_free)
540 {
541 struct rtree_node *node;
542
543 list_for_each_entry(node, &zone->nodes, list)
544 free_image_page(node->data, clear_nosave_free);
545
546 list_for_each_entry(node, &zone->leaves, list)
547 free_image_page(node->data, clear_nosave_free);
548 }
549
550 static void memory_bm_position_reset(struct memory_bitmap *bm)
551 {
552 bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
553 list);
554 bm->cur.node = list_entry(bm->cur.zone->leaves.next,
555 struct rtree_node, list);
556 bm->cur.node_pfn = 0;
557 bm->cur.node_bit = 0;
558 }
559
560 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
561
562 struct mem_extent {
563 struct list_head hook;
564 unsigned long start;
565 unsigned long end;
566 };
567
568 /**
569 * free_mem_extents - Free a list of memory extents.
570 * @list: List of extents to free.
571 */
572 static void free_mem_extents(struct list_head *list)
573 {
574 struct mem_extent *ext, *aux;
575
576 list_for_each_entry_safe(ext, aux, list, hook) {
577 list_del(&ext->hook);
578 kfree(ext);
579 }
580 }
581
582 /**
583 * create_mem_extents - Create a list of memory extents.
584 * @list: List to put the extents into.
585 * @gfp_mask: Mask to use for memory allocations.
586 *
587 * The extents represent contiguous ranges of PFNs.
588 */
589 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
590 {
591 struct zone *zone;
592
593 INIT_LIST_HEAD(list);
594
595 for_each_populated_zone(zone) {
596 unsigned long zone_start, zone_end;
597 struct mem_extent *ext, *cur, *aux;
598
599 zone_start = zone->zone_start_pfn;
600 zone_end = zone_end_pfn(zone);
601
602 list_for_each_entry(ext, list, hook)
603 if (zone_start <= ext->end)
604 break;
605
606 if (&ext->hook == list || zone_end < ext->start) {
607 /* New extent is necessary */
608 struct mem_extent *new_ext;
609
610 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
611 if (!new_ext) {
612 free_mem_extents(list);
613 return -ENOMEM;
614 }
615 new_ext->start = zone_start;
616 new_ext->end = zone_end;
617 list_add_tail(&new_ext->hook, &ext->hook);
618 continue;
619 }
620
621 /* Merge this zone's range of PFNs with the existing one */
622 if (zone_start < ext->start)
623 ext->start = zone_start;
624 if (zone_end > ext->end)
625 ext->end = zone_end;
626
627 /* More merging may be possible */
628 cur = ext;
629 list_for_each_entry_safe_continue(cur, aux, list, hook) {
630 if (zone_end < cur->start)
631 break;
632 if (zone_end < cur->end)
633 ext->end = cur->end;
634 list_del(&cur->hook);
635 kfree(cur);
636 }
637 }
638
639 return 0;
640 }
641
642 /**
643 * memory_bm_create - Allocate memory for a memory bitmap.
644 */
645 static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
646 int safe_needed)
647 {
648 struct chain_allocator ca;
649 struct list_head mem_extents;
650 struct mem_extent *ext;
651 int error;
652
653 chain_init(&ca, gfp_mask, safe_needed);
654 INIT_LIST_HEAD(&bm->zones);
655
656 error = create_mem_extents(&mem_extents, gfp_mask);
657 if (error)
658 return error;
659
660 list_for_each_entry(ext, &mem_extents, hook) {
661 struct mem_zone_bm_rtree *zone;
662
663 zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
664 ext->start, ext->end);
665 if (!zone) {
666 error = -ENOMEM;
667 goto Error;
668 }
669 list_add_tail(&zone->list, &bm->zones);
670 }
671
672 bm->p_list = ca.chain;
673 memory_bm_position_reset(bm);
674 Exit:
675 free_mem_extents(&mem_extents);
676 return error;
677
678 Error:
679 bm->p_list = ca.chain;
680 memory_bm_free(bm, PG_UNSAFE_CLEAR);
681 goto Exit;
682 }
683
684 /**
685 * memory_bm_free - Free memory occupied by the memory bitmap.
686 * @bm: Memory bitmap.
687 */
688 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
689 {
690 struct mem_zone_bm_rtree *zone;
691
692 list_for_each_entry(zone, &bm->zones, list)
693 free_zone_bm_rtree(zone, clear_nosave_free);
694
695 free_list_of_pages(bm->p_list, clear_nosave_free);
696
697 INIT_LIST_HEAD(&bm->zones);
698 }
699
700 /**
701 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
702 *
703 * Find the bit in memory bitmap @bm that corresponds to the given PFN.
704 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
705 *
706 * Walk the radix tree to find the page containing the bit that represents @pfn
707 * and return the position of the bit in @addr and @bit_nr.
708 */
709 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
710 void **addr, unsigned int *bit_nr)
711 {
712 struct mem_zone_bm_rtree *curr, *zone;
713 struct rtree_node *node;
714 int i, block_nr;
715
716 zone = bm->cur.zone;
717
718 if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
719 goto zone_found;
720
721 zone = NULL;
722
723 /* Find the right zone */
724 list_for_each_entry(curr, &bm->zones, list) {
725 if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
726 zone = curr;
727 break;
728 }
729 }
730
731 if (!zone)
732 return -EFAULT;
733
734 zone_found:
735 /*
736 * We have found the zone. Now walk the radix tree to find the leaf node
737 * for our PFN.
738 */
739
740 /*
741 * If the zone we wish to scan is the the current zone and the
742 * pfn falls into the current node then we do not need to walk
743 * the tree.
744 */
745 node = bm->cur.node;
746 if (zone == bm->cur.zone &&
747 ((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
748 goto node_found;
749
750 node = zone->rtree;
751 block_nr = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
752
753 for (i = zone->levels; i > 0; i--) {
754 int index;
755
756 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
757 index &= BM_RTREE_LEVEL_MASK;
758 BUG_ON(node->data[index] == 0);
759 node = (struct rtree_node *)node->data[index];
760 }
761
762 node_found:
763 /* Update last position */
764 bm->cur.zone = zone;
765 bm->cur.node = node;
766 bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
767
768 /* Set return values */
769 *addr = node->data;
770 *bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
771
772 return 0;
773 }
774
775 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
776 {
777 void *addr;
778 unsigned int bit;
779 int error;
780
781 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
782 BUG_ON(error);
783 set_bit(bit, addr);
784 }
785
786 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
787 {
788 void *addr;
789 unsigned int bit;
790 int error;
791
792 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
793 if (!error)
794 set_bit(bit, addr);
795
796 return error;
797 }
798
799 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
800 {
801 void *addr;
802 unsigned int bit;
803 int error;
804
805 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
806 BUG_ON(error);
807 clear_bit(bit, addr);
808 }
809
810 static void memory_bm_clear_current(struct memory_bitmap *bm)
811 {
812 int bit;
813
814 bit = max(bm->cur.node_bit - 1, 0);
815 clear_bit(bit, bm->cur.node->data);
816 }
817
818 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
819 {
820 void *addr;
821 unsigned int bit;
822 int error;
823
824 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
825 BUG_ON(error);
826 return test_bit(bit, addr);
827 }
828
829 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
830 {
831 void *addr;
832 unsigned int bit;
833
834 return !memory_bm_find_bit(bm, pfn, &addr, &bit);
835 }
836
837 /*
838 * rtree_next_node - Jump to the next leaf node.
839 *
840 * Set the position to the beginning of the next node in the
841 * memory bitmap. This is either the next node in the current
842 * zone's radix tree or the first node in the radix tree of the
843 * next zone.
844 *
845 * Return true if there is a next node, false otherwise.
846 */
847 static bool rtree_next_node(struct memory_bitmap *bm)
848 {
849 if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
850 bm->cur.node = list_entry(bm->cur.node->list.next,
851 struct rtree_node, list);
852 bm->cur.node_pfn += BM_BITS_PER_BLOCK;
853 bm->cur.node_bit = 0;
854 touch_softlockup_watchdog();
855 return true;
856 }
857
858 /* No more nodes, goto next zone */
859 if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
860 bm->cur.zone = list_entry(bm->cur.zone->list.next,
861 struct mem_zone_bm_rtree, list);
862 bm->cur.node = list_entry(bm->cur.zone->leaves.next,
863 struct rtree_node, list);
864 bm->cur.node_pfn = 0;
865 bm->cur.node_bit = 0;
866 return true;
867 }
868
869 /* No more zones */
870 return false;
871 }
872
873 /**
874 * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap.
875 * @bm: Memory bitmap.
876 *
877 * Starting from the last returned position this function searches for the next
878 * set bit in @bm and returns the PFN represented by it. If no more bits are
879 * set, BM_END_OF_MAP is returned.
880 *
881 * It is required to run memory_bm_position_reset() before the first call to
882 * this function for the given memory bitmap.
883 */
884 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
885 {
886 unsigned long bits, pfn, pages;
887 int bit;
888
889 do {
890 pages = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
891 bits = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
892 bit = find_next_bit(bm->cur.node->data, bits,
893 bm->cur.node_bit);
894 if (bit < bits) {
895 pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
896 bm->cur.node_bit = bit + 1;
897 return pfn;
898 }
899 } while (rtree_next_node(bm));
900
901 return BM_END_OF_MAP;
902 }
903
904 /*
905 * This structure represents a range of page frames the contents of which
906 * should not be saved during hibernation.
907 */
908 struct nosave_region {
909 struct list_head list;
910 unsigned long start_pfn;
911 unsigned long end_pfn;
912 };
913
914 static LIST_HEAD(nosave_regions);
915
916 static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
917 {
918 struct rtree_node *node;
919
920 list_for_each_entry(node, &zone->nodes, list)
921 recycle_safe_page(node->data);
922
923 list_for_each_entry(node, &zone->leaves, list)
924 recycle_safe_page(node->data);
925 }
926
927 static void memory_bm_recycle(struct memory_bitmap *bm)
928 {
929 struct mem_zone_bm_rtree *zone;
930 struct linked_page *p_list;
931
932 list_for_each_entry(zone, &bm->zones, list)
933 recycle_zone_bm_rtree(zone);
934
935 p_list = bm->p_list;
936 while (p_list) {
937 struct linked_page *lp = p_list;
938
939 p_list = lp->next;
940 recycle_safe_page(lp);
941 }
942 }
943
944 /**
945 * register_nosave_region - Register a region of unsaveable memory.
946 *
947 * Register a range of page frames the contents of which should not be saved
948 * during hibernation (to be used in the early initialization code).
949 */
950 void __init __register_nosave_region(unsigned long start_pfn,
951 unsigned long end_pfn, int use_kmalloc)
952 {
953 struct nosave_region *region;
954
955 if (start_pfn >= end_pfn)
956 return;
957
958 if (!list_empty(&nosave_regions)) {
959 /* Try to extend the previous region (they should be sorted) */
960 region = list_entry(nosave_regions.prev,
961 struct nosave_region, list);
962 if (region->end_pfn == start_pfn) {
963 region->end_pfn = end_pfn;
964 goto Report;
965 }
966 }
967 if (use_kmalloc) {
968 /* During init, this shouldn't fail */
969 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
970 BUG_ON(!region);
971 } else {
972 /* This allocation cannot fail */
973 region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
974 }
975 region->start_pfn = start_pfn;
976 region->end_pfn = end_pfn;
977 list_add_tail(&region->list, &nosave_regions);
978 Report:
979 pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n",
980 (unsigned long long) start_pfn << PAGE_SHIFT,
981 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
982 }
983
984 /*
985 * Set bits in this map correspond to the page frames the contents of which
986 * should not be saved during the suspend.
987 */
988 static struct memory_bitmap *forbidden_pages_map;
989
990 /* Set bits in this map correspond to free page frames. */
991 static struct memory_bitmap *free_pages_map;
992
993 /*
994 * Each page frame allocated for creating the image is marked by setting the
995 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
996 */
997
998 void swsusp_set_page_free(struct page *page)
999 {
1000 if (free_pages_map)
1001 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
1002 }
1003
1004 static int swsusp_page_is_free(struct page *page)
1005 {
1006 return free_pages_map ?
1007 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
1008 }
1009
1010 void swsusp_unset_page_free(struct page *page)
1011 {
1012 if (free_pages_map)
1013 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1014 }
1015
1016 static void swsusp_set_page_forbidden(struct page *page)
1017 {
1018 if (forbidden_pages_map)
1019 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1020 }
1021
1022 int swsusp_page_is_forbidden(struct page *page)
1023 {
1024 return forbidden_pages_map ?
1025 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1026 }
1027
1028 static void swsusp_unset_page_forbidden(struct page *page)
1029 {
1030 if (forbidden_pages_map)
1031 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1032 }
1033
1034 /**
1035 * mark_nosave_pages - Mark pages that should not be saved.
1036 * @bm: Memory bitmap.
1037 *
1038 * Set the bits in @bm that correspond to the page frames the contents of which
1039 * should not be saved.
1040 */
1041 static void mark_nosave_pages(struct memory_bitmap *bm)
1042 {
1043 struct nosave_region *region;
1044
1045 if (list_empty(&nosave_regions))
1046 return;
1047
1048 list_for_each_entry(region, &nosave_regions, list) {
1049 unsigned long pfn;
1050
1051 pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n",
1052 (unsigned long long) region->start_pfn << PAGE_SHIFT,
1053 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1054 - 1);
1055
1056 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1057 if (pfn_valid(pfn)) {
1058 /*
1059 * It is safe to ignore the result of
1060 * mem_bm_set_bit_check() here, since we won't
1061 * touch the PFNs for which the error is
1062 * returned anyway.
1063 */
1064 mem_bm_set_bit_check(bm, pfn);
1065 }
1066 }
1067 }
1068
1069 /**
1070 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1071 *
1072 * Create bitmaps needed for marking page frames that should not be saved and
1073 * free page frames. The forbidden_pages_map and free_pages_map pointers are
1074 * only modified if everything goes well, because we don't want the bits to be
1075 * touched before both bitmaps are set up.
1076 */
1077 int create_basic_memory_bitmaps(void)
1078 {
1079 struct memory_bitmap *bm1, *bm2;
1080 int error = 0;
1081
1082 if (forbidden_pages_map && free_pages_map)
1083 return 0;
1084 else
1085 BUG_ON(forbidden_pages_map || free_pages_map);
1086
1087 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1088 if (!bm1)
1089 return -ENOMEM;
1090
1091 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1092 if (error)
1093 goto Free_first_object;
1094
1095 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1096 if (!bm2)
1097 goto Free_first_bitmap;
1098
1099 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1100 if (error)
1101 goto Free_second_object;
1102
1103 forbidden_pages_map = bm1;
1104 free_pages_map = bm2;
1105 mark_nosave_pages(forbidden_pages_map);
1106
1107 pr_debug("Basic memory bitmaps created\n");
1108
1109 return 0;
1110
1111 Free_second_object:
1112 kfree(bm2);
1113 Free_first_bitmap:
1114 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1115 Free_first_object:
1116 kfree(bm1);
1117 return -ENOMEM;
1118 }
1119
1120 /**
1121 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1122 *
1123 * Free memory bitmaps allocated by create_basic_memory_bitmaps(). The
1124 * auxiliary pointers are necessary so that the bitmaps themselves are not
1125 * referred to while they are being freed.
1126 */
1127 void free_basic_memory_bitmaps(void)
1128 {
1129 struct memory_bitmap *bm1, *bm2;
1130
1131 if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1132 return;
1133
1134 bm1 = forbidden_pages_map;
1135 bm2 = free_pages_map;
1136 forbidden_pages_map = NULL;
1137 free_pages_map = NULL;
1138 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1139 kfree(bm1);
1140 memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1141 kfree(bm2);
1142
1143 pr_debug("Basic memory bitmaps freed\n");
1144 }
1145
1146 void clear_free_pages(void)
1147 {
1148 #ifdef CONFIG_PAGE_POISONING_ZERO
1149 struct memory_bitmap *bm = free_pages_map;
1150 unsigned long pfn;
1151
1152 if (WARN_ON(!(free_pages_map)))
1153 return;
1154
1155 memory_bm_position_reset(bm);
1156 pfn = memory_bm_next_pfn(bm);
1157 while (pfn != BM_END_OF_MAP) {
1158 if (pfn_valid(pfn))
1159 clear_highpage(pfn_to_page(pfn));
1160
1161 pfn = memory_bm_next_pfn(bm);
1162 }
1163 memory_bm_position_reset(bm);
1164 pr_info("free pages cleared after restore\n");
1165 #endif /* PAGE_POISONING_ZERO */
1166 }
1167
1168 /**
1169 * snapshot_additional_pages - Estimate the number of extra pages needed.
1170 * @zone: Memory zone to carry out the computation for.
1171 *
1172 * Estimate the number of additional pages needed for setting up a hibernation
1173 * image data structures for @zone (usually, the returned value is greater than
1174 * the exact number).
1175 */
1176 unsigned int snapshot_additional_pages(struct zone *zone)
1177 {
1178 unsigned int rtree, nodes;
1179
1180 rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1181 rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1182 LINKED_PAGE_DATA_SIZE);
1183 while (nodes > 1) {
1184 nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1185 rtree += nodes;
1186 }
1187
1188 return 2 * rtree;
1189 }
1190
1191 #ifdef CONFIG_HIGHMEM
1192 /**
1193 * count_free_highmem_pages - Compute the total number of free highmem pages.
1194 *
1195 * The returned number is system-wide.
1196 */
1197 static unsigned int count_free_highmem_pages(void)
1198 {
1199 struct zone *zone;
1200 unsigned int cnt = 0;
1201
1202 for_each_populated_zone(zone)
1203 if (is_highmem(zone))
1204 cnt += zone_page_state(zone, NR_FREE_PAGES);
1205
1206 return cnt;
1207 }
1208
1209 /**
1210 * saveable_highmem_page - Check if a highmem page is saveable.
1211 *
1212 * Determine whether a highmem page should be included in a hibernation image.
1213 *
1214 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1215 * and it isn't part of a free chunk of pages.
1216 */
1217 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1218 {
1219 struct page *page;
1220
1221 if (!pfn_valid(pfn))
1222 return NULL;
1223
1224 page = pfn_to_page(pfn);
1225 if (page_zone(page) != zone)
1226 return NULL;
1227
1228 BUG_ON(!PageHighMem(page));
1229
1230 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) ||
1231 PageReserved(page))
1232 return NULL;
1233
1234 if (page_is_guard(page))
1235 return NULL;
1236
1237 return page;
1238 }
1239
1240 /**
1241 * count_highmem_pages - Compute the total number of saveable highmem pages.
1242 */
1243 static unsigned int count_highmem_pages(void)
1244 {
1245 struct zone *zone;
1246 unsigned int n = 0;
1247
1248 for_each_populated_zone(zone) {
1249 unsigned long pfn, max_zone_pfn;
1250
1251 if (!is_highmem(zone))
1252 continue;
1253
1254 mark_free_pages(zone);
1255 max_zone_pfn = zone_end_pfn(zone);
1256 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1257 if (saveable_highmem_page(zone, pfn))
1258 n++;
1259 }
1260 return n;
1261 }
1262 #else
1263 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1264 {
1265 return NULL;
1266 }
1267 #endif /* CONFIG_HIGHMEM */
1268
1269 /**
1270 * saveable_page - Check if the given page is saveable.
1271 *
1272 * Determine whether a non-highmem page should be included in a hibernation
1273 * image.
1274 *
1275 * We should save the page if it isn't Nosave, and is not in the range
1276 * of pages statically defined as 'unsaveable', and it isn't part of
1277 * a free chunk of pages.
1278 */
1279 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1280 {
1281 struct page *page;
1282
1283 if (!pfn_valid(pfn))
1284 return NULL;
1285
1286 page = pfn_to_page(pfn);
1287 if (page_zone(page) != zone)
1288 return NULL;
1289
1290 BUG_ON(PageHighMem(page));
1291
1292 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1293 return NULL;
1294
1295 if (PageReserved(page)
1296 && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1297 return NULL;
1298
1299 if (page_is_guard(page))
1300 return NULL;
1301
1302 return page;
1303 }
1304
1305 /**
1306 * count_data_pages - Compute the total number of saveable non-highmem pages.
1307 */
1308 static unsigned int count_data_pages(void)
1309 {
1310 struct zone *zone;
1311 unsigned long pfn, max_zone_pfn;
1312 unsigned int n = 0;
1313
1314 for_each_populated_zone(zone) {
1315 if (is_highmem(zone))
1316 continue;
1317
1318 mark_free_pages(zone);
1319 max_zone_pfn = zone_end_pfn(zone);
1320 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1321 if (saveable_page(zone, pfn))
1322 n++;
1323 }
1324 return n;
1325 }
1326
1327 /*
1328 * This is needed, because copy_page and memcpy are not usable for copying
1329 * task structs.
1330 */
1331 static inline void do_copy_page(long *dst, long *src)
1332 {
1333 int n;
1334
1335 for (n = PAGE_SIZE / sizeof(long); n; n--)
1336 *dst++ = *src++;
1337 }
1338
1339 /**
1340 * safe_copy_page - Copy a page in a safe way.
1341 *
1342 * Check if the page we are going to copy is marked as present in the kernel
1343 * page tables (this always is the case if CONFIG_DEBUG_PAGEALLOC is not set
1344 * and in that case kernel_page_present() always returns 'true').
1345 */
1346 static void safe_copy_page(void *dst, struct page *s_page)
1347 {
1348 if (kernel_page_present(s_page)) {
1349 do_copy_page(dst, page_address(s_page));
1350 } else {
1351 kernel_map_pages(s_page, 1, 1);
1352 do_copy_page(dst, page_address(s_page));
1353 kernel_map_pages(s_page, 1, 0);
1354 }
1355 }
1356
1357 #ifdef CONFIG_HIGHMEM
1358 static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
1359 {
1360 return is_highmem(zone) ?
1361 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1362 }
1363
1364 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1365 {
1366 struct page *s_page, *d_page;
1367 void *src, *dst;
1368
1369 s_page = pfn_to_page(src_pfn);
1370 d_page = pfn_to_page(dst_pfn);
1371 if (PageHighMem(s_page)) {
1372 src = kmap_atomic(s_page);
1373 dst = kmap_atomic(d_page);
1374 do_copy_page(dst, src);
1375 kunmap_atomic(dst);
1376 kunmap_atomic(src);
1377 } else {
1378 if (PageHighMem(d_page)) {
1379 /*
1380 * The page pointed to by src may contain some kernel
1381 * data modified by kmap_atomic()
1382 */
1383 safe_copy_page(buffer, s_page);
1384 dst = kmap_atomic(d_page);
1385 copy_page(dst, buffer);
1386 kunmap_atomic(dst);
1387 } else {
1388 safe_copy_page(page_address(d_page), s_page);
1389 }
1390 }
1391 }
1392 #else
1393 #define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
1394
1395 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1396 {
1397 safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1398 pfn_to_page(src_pfn));
1399 }
1400 #endif /* CONFIG_HIGHMEM */
1401
1402 static void copy_data_pages(struct memory_bitmap *copy_bm,
1403 struct memory_bitmap *orig_bm)
1404 {
1405 struct zone *zone;
1406 unsigned long pfn;
1407
1408 for_each_populated_zone(zone) {
1409 unsigned long max_zone_pfn;
1410
1411 mark_free_pages(zone);
1412 max_zone_pfn = zone_end_pfn(zone);
1413 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1414 if (page_is_saveable(zone, pfn))
1415 memory_bm_set_bit(orig_bm, pfn);
1416 }
1417 memory_bm_position_reset(orig_bm);
1418 memory_bm_position_reset(copy_bm);
1419 for(;;) {
1420 pfn = memory_bm_next_pfn(orig_bm);
1421 if (unlikely(pfn == BM_END_OF_MAP))
1422 break;
1423 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1424 }
1425 }
1426
1427 /* Total number of image pages */
1428 static unsigned int nr_copy_pages;
1429 /* Number of pages needed for saving the original pfns of the image pages */
1430 static unsigned int nr_meta_pages;
1431 /*
1432 * Numbers of normal and highmem page frames allocated for hibernation image
1433 * before suspending devices.
1434 */
1435 static unsigned int alloc_normal, alloc_highmem;
1436 /*
1437 * Memory bitmap used for marking saveable pages (during hibernation) or
1438 * hibernation image pages (during restore)
1439 */
1440 static struct memory_bitmap orig_bm;
1441 /*
1442 * Memory bitmap used during hibernation for marking allocated page frames that
1443 * will contain copies of saveable pages. During restore it is initially used
1444 * for marking hibernation image pages, but then the set bits from it are
1445 * duplicated in @orig_bm and it is released. On highmem systems it is next
1446 * used for marking "safe" highmem pages, but it has to be reinitialized for
1447 * this purpose.
1448 */
1449 static struct memory_bitmap copy_bm;
1450
1451 /**
1452 * swsusp_free - Free pages allocated for hibernation image.
1453 *
1454 * Image pages are alocated before snapshot creation, so they need to be
1455 * released after resume.
1456 */
1457 void swsusp_free(void)
1458 {
1459 unsigned long fb_pfn, fr_pfn;
1460
1461 if (!forbidden_pages_map || !free_pages_map)
1462 goto out;
1463
1464 memory_bm_position_reset(forbidden_pages_map);
1465 memory_bm_position_reset(free_pages_map);
1466
1467 loop:
1468 fr_pfn = memory_bm_next_pfn(free_pages_map);
1469 fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1470
1471 /*
1472 * Find the next bit set in both bitmaps. This is guaranteed to
1473 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1474 */
1475 do {
1476 if (fb_pfn < fr_pfn)
1477 fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1478 if (fr_pfn < fb_pfn)
1479 fr_pfn = memory_bm_next_pfn(free_pages_map);
1480 } while (fb_pfn != fr_pfn);
1481
1482 if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1483 struct page *page = pfn_to_page(fr_pfn);
1484
1485 memory_bm_clear_current(forbidden_pages_map);
1486 memory_bm_clear_current(free_pages_map);
1487 hibernate_restore_unprotect_page(page_address(page));
1488 __free_page(page);
1489 goto loop;
1490 }
1491
1492 out:
1493 nr_copy_pages = 0;
1494 nr_meta_pages = 0;
1495 restore_pblist = NULL;
1496 buffer = NULL;
1497 alloc_normal = 0;
1498 alloc_highmem = 0;
1499 hibernate_restore_protection_end();
1500 }
1501
1502 /* Helper functions used for the shrinking of memory. */
1503
1504 #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
1505
1506 /**
1507 * preallocate_image_pages - Allocate a number of pages for hibernation image.
1508 * @nr_pages: Number of page frames to allocate.
1509 * @mask: GFP flags to use for the allocation.
1510 *
1511 * Return value: Number of page frames actually allocated
1512 */
1513 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1514 {
1515 unsigned long nr_alloc = 0;
1516
1517 while (nr_pages > 0) {
1518 struct page *page;
1519
1520 page = alloc_image_page(mask);
1521 if (!page)
1522 break;
1523 memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1524 if (PageHighMem(page))
1525 alloc_highmem++;
1526 else
1527 alloc_normal++;
1528 nr_pages--;
1529 nr_alloc++;
1530 }
1531
1532 return nr_alloc;
1533 }
1534
1535 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1536 unsigned long avail_normal)
1537 {
1538 unsigned long alloc;
1539
1540 if (avail_normal <= alloc_normal)
1541 return 0;
1542
1543 alloc = avail_normal - alloc_normal;
1544 if (nr_pages < alloc)
1545 alloc = nr_pages;
1546
1547 return preallocate_image_pages(alloc, GFP_IMAGE);
1548 }
1549
1550 #ifdef CONFIG_HIGHMEM
1551 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1552 {
1553 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1554 }
1555
1556 /**
1557 * __fraction - Compute (an approximation of) x * (multiplier / base).
1558 */
1559 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1560 {
1561 x *= multiplier;
1562 do_div(x, base);
1563 return (unsigned long)x;
1564 }
1565
1566 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1567 unsigned long highmem,
1568 unsigned long total)
1569 {
1570 unsigned long alloc = __fraction(nr_pages, highmem, total);
1571
1572 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1573 }
1574 #else /* CONFIG_HIGHMEM */
1575 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1576 {
1577 return 0;
1578 }
1579
1580 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1581 unsigned long highmem,
1582 unsigned long total)
1583 {
1584 return 0;
1585 }
1586 #endif /* CONFIG_HIGHMEM */
1587
1588 /**
1589 * free_unnecessary_pages - Release preallocated pages not needed for the image.
1590 */
1591 static unsigned long free_unnecessary_pages(void)
1592 {
1593 unsigned long save, to_free_normal, to_free_highmem, free;
1594
1595 save = count_data_pages();
1596 if (alloc_normal >= save) {
1597 to_free_normal = alloc_normal - save;
1598 save = 0;
1599 } else {
1600 to_free_normal = 0;
1601 save -= alloc_normal;
1602 }
1603 save += count_highmem_pages();
1604 if (alloc_highmem >= save) {
1605 to_free_highmem = alloc_highmem - save;
1606 } else {
1607 to_free_highmem = 0;
1608 save -= alloc_highmem;
1609 if (to_free_normal > save)
1610 to_free_normal -= save;
1611 else
1612 to_free_normal = 0;
1613 }
1614 free = to_free_normal + to_free_highmem;
1615
1616 memory_bm_position_reset(&copy_bm);
1617
1618 while (to_free_normal > 0 || to_free_highmem > 0) {
1619 unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1620 struct page *page = pfn_to_page(pfn);
1621
1622 if (PageHighMem(page)) {
1623 if (!to_free_highmem)
1624 continue;
1625 to_free_highmem--;
1626 alloc_highmem--;
1627 } else {
1628 if (!to_free_normal)
1629 continue;
1630 to_free_normal--;
1631 alloc_normal--;
1632 }
1633 memory_bm_clear_bit(&copy_bm, pfn);
1634 swsusp_unset_page_forbidden(page);
1635 swsusp_unset_page_free(page);
1636 __free_page(page);
1637 }
1638
1639 return free;
1640 }
1641
1642 /**
1643 * minimum_image_size - Estimate the minimum acceptable size of an image.
1644 * @saveable: Number of saveable pages in the system.
1645 *
1646 * We want to avoid attempting to free too much memory too hard, so estimate the
1647 * minimum acceptable size of a hibernation image to use as the lower limit for
1648 * preallocating memory.
1649 *
1650 * We assume that the minimum image size should be proportional to
1651 *
1652 * [number of saveable pages] - [number of pages that can be freed in theory]
1653 *
1654 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1655 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
1656 * minus mapped file pages.
1657 */
1658 static unsigned long minimum_image_size(unsigned long saveable)
1659 {
1660 unsigned long size;
1661
1662 size = global_node_page_state(NR_SLAB_RECLAIMABLE)
1663 + global_node_page_state(NR_ACTIVE_ANON)
1664 + global_node_page_state(NR_INACTIVE_ANON)
1665 + global_node_page_state(NR_ACTIVE_FILE)
1666 + global_node_page_state(NR_INACTIVE_FILE)
1667 - global_node_page_state(NR_FILE_MAPPED);
1668
1669 return saveable <= size ? 0 : saveable - size;
1670 }
1671
1672 /**
1673 * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1674 *
1675 * To create a hibernation image it is necessary to make a copy of every page
1676 * frame in use. We also need a number of page frames to be free during
1677 * hibernation for allocations made while saving the image and for device
1678 * drivers, in case they need to allocate memory from their hibernation
1679 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1680 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1681 * /sys/power/reserved_size, respectively). To make this happen, we compute the
1682 * total number of available page frames and allocate at least
1683 *
1684 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1685 * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1686 *
1687 * of them, which corresponds to the maximum size of a hibernation image.
1688 *
1689 * If image_size is set below the number following from the above formula,
1690 * the preallocation of memory is continued until the total number of saveable
1691 * pages in the system is below the requested image size or the minimum
1692 * acceptable image size returned by minimum_image_size(), whichever is greater.
1693 */
1694 int hibernate_preallocate_memory(void)
1695 {
1696 struct zone *zone;
1697 unsigned long saveable, size, max_size, count, highmem, pages = 0;
1698 unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1699 ktime_t start, stop;
1700 int error;
1701
1702 pr_info("Preallocating image memory... ");
1703 start = ktime_get();
1704
1705 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1706 if (error)
1707 goto err_out;
1708
1709 error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1710 if (error)
1711 goto err_out;
1712
1713 alloc_normal = 0;
1714 alloc_highmem = 0;
1715
1716 /* Count the number of saveable data pages. */
1717 save_highmem = count_highmem_pages();
1718 saveable = count_data_pages();
1719
1720 /*
1721 * Compute the total number of page frames we can use (count) and the
1722 * number of pages needed for image metadata (size).
1723 */
1724 count = saveable;
1725 saveable += save_highmem;
1726 highmem = save_highmem;
1727 size = 0;
1728 for_each_populated_zone(zone) {
1729 size += snapshot_additional_pages(zone);
1730 if (is_highmem(zone))
1731 highmem += zone_page_state(zone, NR_FREE_PAGES);
1732 else
1733 count += zone_page_state(zone, NR_FREE_PAGES);
1734 }
1735 avail_normal = count;
1736 count += highmem;
1737 count -= totalreserve_pages;
1738
1739 /* Add number of pages required for page keys (s390 only). */
1740 size += page_key_additional_pages(saveable);
1741
1742 /* Compute the maximum number of saveable pages to leave in memory. */
1743 max_size = (count - (size + PAGES_FOR_IO)) / 2
1744 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1745 /* Compute the desired number of image pages specified by image_size. */
1746 size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1747 if (size > max_size)
1748 size = max_size;
1749 /*
1750 * If the desired number of image pages is at least as large as the
1751 * current number of saveable pages in memory, allocate page frames for
1752 * the image and we're done.
1753 */
1754 if (size >= saveable) {
1755 pages = preallocate_image_highmem(save_highmem);
1756 pages += preallocate_image_memory(saveable - pages, avail_normal);
1757 goto out;
1758 }
1759
1760 /* Estimate the minimum size of the image. */
1761 pages = minimum_image_size(saveable);
1762 /*
1763 * To avoid excessive pressure on the normal zone, leave room in it to
1764 * accommodate an image of the minimum size (unless it's already too
1765 * small, in which case don't preallocate pages from it at all).
1766 */
1767 if (avail_normal > pages)
1768 avail_normal -= pages;
1769 else
1770 avail_normal = 0;
1771 if (size < pages)
1772 size = min_t(unsigned long, pages, max_size);
1773
1774 /*
1775 * Let the memory management subsystem know that we're going to need a
1776 * large number of page frames to allocate and make it free some memory.
1777 * NOTE: If this is not done, performance will be hurt badly in some
1778 * test cases.
1779 */
1780 shrink_all_memory(saveable - size);
1781
1782 /*
1783 * The number of saveable pages in memory was too high, so apply some
1784 * pressure to decrease it. First, make room for the largest possible
1785 * image and fail if that doesn't work. Next, try to decrease the size
1786 * of the image as much as indicated by 'size' using allocations from
1787 * highmem and non-highmem zones separately.
1788 */
1789 pages_highmem = preallocate_image_highmem(highmem / 2);
1790 alloc = count - max_size;
1791 if (alloc > pages_highmem)
1792 alloc -= pages_highmem;
1793 else
1794 alloc = 0;
1795 pages = preallocate_image_memory(alloc, avail_normal);
1796 if (pages < alloc) {
1797 /* We have exhausted non-highmem pages, try highmem. */
1798 alloc -= pages;
1799 pages += pages_highmem;
1800 pages_highmem = preallocate_image_highmem(alloc);
1801 if (pages_highmem < alloc)
1802 goto err_out;
1803 pages += pages_highmem;
1804 /*
1805 * size is the desired number of saveable pages to leave in
1806 * memory, so try to preallocate (all memory - size) pages.
1807 */
1808 alloc = (count - pages) - size;
1809 pages += preallocate_image_highmem(alloc);
1810 } else {
1811 /*
1812 * There are approximately max_size saveable pages at this point
1813 * and we want to reduce this number down to size.
1814 */
1815 alloc = max_size - size;
1816 size = preallocate_highmem_fraction(alloc, highmem, count);
1817 pages_highmem += size;
1818 alloc -= size;
1819 size = preallocate_image_memory(alloc, avail_normal);
1820 pages_highmem += preallocate_image_highmem(alloc - size);
1821 pages += pages_highmem + size;
1822 }
1823
1824 /*
1825 * We only need as many page frames for the image as there are saveable
1826 * pages in memory, but we have allocated more. Release the excessive
1827 * ones now.
1828 */
1829 pages -= free_unnecessary_pages();
1830
1831 out:
1832 stop = ktime_get();
1833 pr_cont("done (allocated %lu pages)\n", pages);
1834 swsusp_show_speed(start, stop, pages, "Allocated");
1835
1836 return 0;
1837
1838 err_out:
1839 pr_cont("\n");
1840 swsusp_free();
1841 return -ENOMEM;
1842 }
1843
1844 #ifdef CONFIG_HIGHMEM
1845 /**
1846 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1847 *
1848 * Compute the number of non-highmem pages that will be necessary for creating
1849 * copies of highmem pages.
1850 */
1851 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1852 {
1853 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1854
1855 if (free_highmem >= nr_highmem)
1856 nr_highmem = 0;
1857 else
1858 nr_highmem -= free_highmem;
1859
1860 return nr_highmem;
1861 }
1862 #else
1863 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1864 #endif /* CONFIG_HIGHMEM */
1865
1866 /**
1867 * enough_free_mem - Check if there is enough free memory for the image.
1868 */
1869 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1870 {
1871 struct zone *zone;
1872 unsigned int free = alloc_normal;
1873
1874 for_each_populated_zone(zone)
1875 if (!is_highmem(zone))
1876 free += zone_page_state(zone, NR_FREE_PAGES);
1877
1878 nr_pages += count_pages_for_highmem(nr_highmem);
1879 pr_debug("Normal pages needed: %u + %u, available pages: %u\n",
1880 nr_pages, PAGES_FOR_IO, free);
1881
1882 return free > nr_pages + PAGES_FOR_IO;
1883 }
1884
1885 #ifdef CONFIG_HIGHMEM
1886 /**
1887 * get_highmem_buffer - Allocate a buffer for highmem pages.
1888 *
1889 * If there are some highmem pages in the hibernation image, we may need a
1890 * buffer to copy them and/or load their data.
1891 */
1892 static inline int get_highmem_buffer(int safe_needed)
1893 {
1894 buffer = get_image_page(GFP_ATOMIC, safe_needed);
1895 return buffer ? 0 : -ENOMEM;
1896 }
1897
1898 /**
1899 * alloc_highmem_image_pages - Allocate some highmem pages for the image.
1900 *
1901 * Try to allocate as many pages as needed, but if the number of free highmem
1902 * pages is less than that, allocate them all.
1903 */
1904 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1905 unsigned int nr_highmem)
1906 {
1907 unsigned int to_alloc = count_free_highmem_pages();
1908
1909 if (to_alloc > nr_highmem)
1910 to_alloc = nr_highmem;
1911
1912 nr_highmem -= to_alloc;
1913 while (to_alloc-- > 0) {
1914 struct page *page;
1915
1916 page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1917 memory_bm_set_bit(bm, page_to_pfn(page));
1918 }
1919 return nr_highmem;
1920 }
1921 #else
1922 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1923
1924 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1925 unsigned int n) { return 0; }
1926 #endif /* CONFIG_HIGHMEM */
1927
1928 /**
1929 * swsusp_alloc - Allocate memory for hibernation image.
1930 *
1931 * We first try to allocate as many highmem pages as there are
1932 * saveable highmem pages in the system. If that fails, we allocate
1933 * non-highmem pages for the copies of the remaining highmem ones.
1934 *
1935 * In this approach it is likely that the copies of highmem pages will
1936 * also be located in the high memory, because of the way in which
1937 * copy_data_pages() works.
1938 */
1939 static int swsusp_alloc(struct memory_bitmap *copy_bm,
1940 unsigned int nr_pages, unsigned int nr_highmem)
1941 {
1942 if (nr_highmem > 0) {
1943 if (get_highmem_buffer(PG_ANY))
1944 goto err_out;
1945 if (nr_highmem > alloc_highmem) {
1946 nr_highmem -= alloc_highmem;
1947 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1948 }
1949 }
1950 if (nr_pages > alloc_normal) {
1951 nr_pages -= alloc_normal;
1952 while (nr_pages-- > 0) {
1953 struct page *page;
1954
1955 page = alloc_image_page(GFP_ATOMIC);
1956 if (!page)
1957 goto err_out;
1958 memory_bm_set_bit(copy_bm, page_to_pfn(page));
1959 }
1960 }
1961
1962 return 0;
1963
1964 err_out:
1965 swsusp_free();
1966 return -ENOMEM;
1967 }
1968
1969 asmlinkage __visible int swsusp_save(void)
1970 {
1971 unsigned int nr_pages, nr_highmem;
1972
1973 pr_info("Creating hibernation image:\n");
1974
1975 drain_local_pages(NULL);
1976 nr_pages = count_data_pages();
1977 nr_highmem = count_highmem_pages();
1978 pr_info("Need to copy %u pages\n", nr_pages + nr_highmem);
1979
1980 if (!enough_free_mem(nr_pages, nr_highmem)) {
1981 pr_err("Not enough free memory\n");
1982 return -ENOMEM;
1983 }
1984
1985 if (swsusp_alloc(&copy_bm, nr_pages, nr_highmem)) {
1986 pr_err("Memory allocation failed\n");
1987 return -ENOMEM;
1988 }
1989
1990 /*
1991 * During allocating of suspend pagedir, new cold pages may appear.
1992 * Kill them.
1993 */
1994 drain_local_pages(NULL);
1995 copy_data_pages(&copy_bm, &orig_bm);
1996
1997 /*
1998 * End of critical section. From now on, we can write to memory,
1999 * but we should not touch disk. This specially means we must _not_
2000 * touch swap space! Except we must write out our image of course.
2001 */
2002
2003 nr_pages += nr_highmem;
2004 nr_copy_pages = nr_pages;
2005 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
2006
2007 pr_info("Hibernation image created (%d pages copied)\n", nr_pages);
2008
2009 return 0;
2010 }
2011
2012 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
2013 static int init_header_complete(struct swsusp_info *info)
2014 {
2015 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
2016 info->version_code = LINUX_VERSION_CODE;
2017 return 0;
2018 }
2019
2020 static char *check_image_kernel(struct swsusp_info *info)
2021 {
2022 if (info->version_code != LINUX_VERSION_CODE)
2023 return "kernel version";
2024 if (strcmp(info->uts.sysname,init_utsname()->sysname))
2025 return "system type";
2026 if (strcmp(info->uts.release,init_utsname()->release))
2027 return "kernel release";
2028 if (strcmp(info->uts.version,init_utsname()->version))
2029 return "version";
2030 if (strcmp(info->uts.machine,init_utsname()->machine))
2031 return "machine";
2032 return NULL;
2033 }
2034 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2035
2036 unsigned long snapshot_get_image_size(void)
2037 {
2038 return nr_copy_pages + nr_meta_pages + 1;
2039 }
2040
2041 static int init_header(struct swsusp_info *info)
2042 {
2043 memset(info, 0, sizeof(struct swsusp_info));
2044 info->num_physpages = get_num_physpages();
2045 info->image_pages = nr_copy_pages;
2046 info->pages = snapshot_get_image_size();
2047 info->size = info->pages;
2048 info->size <<= PAGE_SHIFT;
2049 return init_header_complete(info);
2050 }
2051
2052 /**
2053 * pack_pfns - Prepare PFNs for saving.
2054 * @bm: Memory bitmap.
2055 * @buf: Memory buffer to store the PFNs in.
2056 *
2057 * PFNs corresponding to set bits in @bm are stored in the area of memory
2058 * pointed to by @buf (1 page at a time).
2059 */
2060 static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
2061 {
2062 int j;
2063
2064 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2065 buf[j] = memory_bm_next_pfn(bm);
2066 if (unlikely(buf[j] == BM_END_OF_MAP))
2067 break;
2068 /* Save page key for data page (s390 only). */
2069 page_key_read(buf + j);
2070 }
2071 }
2072
2073 /**
2074 * snapshot_read_next - Get the address to read the next image page from.
2075 * @handle: Snapshot handle to be used for the reading.
2076 *
2077 * On the first call, @handle should point to a zeroed snapshot_handle
2078 * structure. The structure gets populated then and a pointer to it should be
2079 * passed to this function every next time.
2080 *
2081 * On success, the function returns a positive number. Then, the caller
2082 * is allowed to read up to the returned number of bytes from the memory
2083 * location computed by the data_of() macro.
2084 *
2085 * The function returns 0 to indicate the end of the data stream condition,
2086 * and negative numbers are returned on errors. If that happens, the structure
2087 * pointed to by @handle is not updated and should not be used any more.
2088 */
2089 int snapshot_read_next(struct snapshot_handle *handle)
2090 {
2091 if (handle->cur > nr_meta_pages + nr_copy_pages)
2092 return 0;
2093
2094 if (!buffer) {
2095 /* This makes the buffer be freed by swsusp_free() */
2096 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2097 if (!buffer)
2098 return -ENOMEM;
2099 }
2100 if (!handle->cur) {
2101 int error;
2102
2103 error = init_header((struct swsusp_info *)buffer);
2104 if (error)
2105 return error;
2106 handle->buffer = buffer;
2107 memory_bm_position_reset(&orig_bm);
2108 memory_bm_position_reset(&copy_bm);
2109 } else if (handle->cur <= nr_meta_pages) {
2110 clear_page(buffer);
2111 pack_pfns(buffer, &orig_bm);
2112 } else {
2113 struct page *page;
2114
2115 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2116 if (PageHighMem(page)) {
2117 /*
2118 * Highmem pages are copied to the buffer,
2119 * because we can't return with a kmapped
2120 * highmem page (we may not be called again).
2121 */
2122 void *kaddr;
2123
2124 kaddr = kmap_atomic(page);
2125 copy_page(buffer, kaddr);
2126 kunmap_atomic(kaddr);
2127 handle->buffer = buffer;
2128 } else {
2129 handle->buffer = page_address(page);
2130 }
2131 }
2132 handle->cur++;
2133 return PAGE_SIZE;
2134 }
2135
2136 static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2137 struct memory_bitmap *src)
2138 {
2139 unsigned long pfn;
2140
2141 memory_bm_position_reset(src);
2142 pfn = memory_bm_next_pfn(src);
2143 while (pfn != BM_END_OF_MAP) {
2144 memory_bm_set_bit(dst, pfn);
2145 pfn = memory_bm_next_pfn(src);
2146 }
2147 }
2148
2149 /**
2150 * mark_unsafe_pages - Mark pages that were used before hibernation.
2151 *
2152 * Mark the pages that cannot be used for storing the image during restoration,
2153 * because they conflict with the pages that had been used before hibernation.
2154 */
2155 static void mark_unsafe_pages(struct memory_bitmap *bm)
2156 {
2157 unsigned long pfn;
2158
2159 /* Clear the "free"/"unsafe" bit for all PFNs */
2160 memory_bm_position_reset(free_pages_map);
2161 pfn = memory_bm_next_pfn(free_pages_map);
2162 while (pfn != BM_END_OF_MAP) {
2163 memory_bm_clear_current(free_pages_map);
2164 pfn = memory_bm_next_pfn(free_pages_map);
2165 }
2166
2167 /* Mark pages that correspond to the "original" PFNs as "unsafe" */
2168 duplicate_memory_bitmap(free_pages_map, bm);
2169
2170 allocated_unsafe_pages = 0;
2171 }
2172
2173 static int check_header(struct swsusp_info *info)
2174 {
2175 char *reason;
2176
2177 reason = check_image_kernel(info);
2178 if (!reason && info->num_physpages != get_num_physpages())
2179 reason = "memory size";
2180 if (reason) {
2181 pr_err("Image mismatch: %s\n", reason);
2182 return -EPERM;
2183 }
2184 return 0;
2185 }
2186
2187 /**
2188 * load header - Check the image header and copy the data from it.
2189 */
2190 static int load_header(struct swsusp_info *info)
2191 {
2192 int error;
2193
2194 restore_pblist = NULL;
2195 error = check_header(info);
2196 if (!error) {
2197 nr_copy_pages = info->image_pages;
2198 nr_meta_pages = info->pages - info->image_pages - 1;
2199 }
2200 return error;
2201 }
2202
2203 /**
2204 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2205 * @bm: Memory bitmap.
2206 * @buf: Area of memory containing the PFNs.
2207 *
2208 * For each element of the array pointed to by @buf (1 page at a time), set the
2209 * corresponding bit in @bm.
2210 */
2211 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2212 {
2213 int j;
2214
2215 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2216 if (unlikely(buf[j] == BM_END_OF_MAP))
2217 break;
2218
2219 /* Extract and buffer page key for data page (s390 only). */
2220 page_key_memorize(buf + j);
2221
2222 if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j]))
2223 memory_bm_set_bit(bm, buf[j]);
2224 else
2225 return -EFAULT;
2226 }
2227
2228 return 0;
2229 }
2230
2231 #ifdef CONFIG_HIGHMEM
2232 /*
2233 * struct highmem_pbe is used for creating the list of highmem pages that
2234 * should be restored atomically during the resume from disk, because the page
2235 * frames they have occupied before the suspend are in use.
2236 */
2237 struct highmem_pbe {
2238 struct page *copy_page; /* data is here now */
2239 struct page *orig_page; /* data was here before the suspend */
2240 struct highmem_pbe *next;
2241 };
2242
2243 /*
2244 * List of highmem PBEs needed for restoring the highmem pages that were
2245 * allocated before the suspend and included in the suspend image, but have
2246 * also been allocated by the "resume" kernel, so their contents cannot be
2247 * written directly to their "original" page frames.
2248 */
2249 static struct highmem_pbe *highmem_pblist;
2250
2251 /**
2252 * count_highmem_image_pages - Compute the number of highmem pages in the image.
2253 * @bm: Memory bitmap.
2254 *
2255 * The bits in @bm that correspond to image pages are assumed to be set.
2256 */
2257 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2258 {
2259 unsigned long pfn;
2260 unsigned int cnt = 0;
2261
2262 memory_bm_position_reset(bm);
2263 pfn = memory_bm_next_pfn(bm);
2264 while (pfn != BM_END_OF_MAP) {
2265 if (PageHighMem(pfn_to_page(pfn)))
2266 cnt++;
2267
2268 pfn = memory_bm_next_pfn(bm);
2269 }
2270 return cnt;
2271 }
2272
2273 static unsigned int safe_highmem_pages;
2274
2275 static struct memory_bitmap *safe_highmem_bm;
2276
2277 /**
2278 * prepare_highmem_image - Allocate memory for loading highmem data from image.
2279 * @bm: Pointer to an uninitialized memory bitmap structure.
2280 * @nr_highmem_p: Pointer to the number of highmem image pages.
2281 *
2282 * Try to allocate as many highmem pages as there are highmem image pages
2283 * (@nr_highmem_p points to the variable containing the number of highmem image
2284 * pages). The pages that are "safe" (ie. will not be overwritten when the
2285 * hibernation image is restored entirely) have the corresponding bits set in
2286 * @bm (it must be unitialized).
2287 *
2288 * NOTE: This function should not be called if there are no highmem image pages.
2289 */
2290 static int prepare_highmem_image(struct memory_bitmap *bm,
2291 unsigned int *nr_highmem_p)
2292 {
2293 unsigned int to_alloc;
2294
2295 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2296 return -ENOMEM;
2297
2298 if (get_highmem_buffer(PG_SAFE))
2299 return -ENOMEM;
2300
2301 to_alloc = count_free_highmem_pages();
2302 if (to_alloc > *nr_highmem_p)
2303 to_alloc = *nr_highmem_p;
2304 else
2305 *nr_highmem_p = to_alloc;
2306
2307 safe_highmem_pages = 0;
2308 while (to_alloc-- > 0) {
2309 struct page *page;
2310
2311 page = alloc_page(__GFP_HIGHMEM);
2312 if (!swsusp_page_is_free(page)) {
2313 /* The page is "safe", set its bit the bitmap */
2314 memory_bm_set_bit(bm, page_to_pfn(page));
2315 safe_highmem_pages++;
2316 }
2317 /* Mark the page as allocated */
2318 swsusp_set_page_forbidden(page);
2319 swsusp_set_page_free(page);
2320 }
2321 memory_bm_position_reset(bm);
2322 safe_highmem_bm = bm;
2323 return 0;
2324 }
2325
2326 static struct page *last_highmem_page;
2327
2328 /**
2329 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2330 *
2331 * For a given highmem image page get a buffer that suspend_write_next() should
2332 * return to its caller to write to.
2333 *
2334 * If the page is to be saved to its "original" page frame or a copy of
2335 * the page is to be made in the highmem, @buffer is returned. Otherwise,
2336 * the copy of the page is to be made in normal memory, so the address of
2337 * the copy is returned.
2338 *
2339 * If @buffer is returned, the caller of suspend_write_next() will write
2340 * the page's contents to @buffer, so they will have to be copied to the
2341 * right location on the next call to suspend_write_next() and it is done
2342 * with the help of copy_last_highmem_page(). For this purpose, if
2343 * @buffer is returned, @last_highmem_page is set to the page to which
2344 * the data will have to be copied from @buffer.
2345 */
2346 static void *get_highmem_page_buffer(struct page *page,
2347 struct chain_allocator *ca)
2348 {
2349 struct highmem_pbe *pbe;
2350 void *kaddr;
2351
2352 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2353 /*
2354 * We have allocated the "original" page frame and we can
2355 * use it directly to store the loaded page.
2356 */
2357 last_highmem_page = page;
2358 return buffer;
2359 }
2360 /*
2361 * The "original" page frame has not been allocated and we have to
2362 * use a "safe" page frame to store the loaded page.
2363 */
2364 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2365 if (!pbe) {
2366 swsusp_free();
2367 return ERR_PTR(-ENOMEM);
2368 }
2369 pbe->orig_page = page;
2370 if (safe_highmem_pages > 0) {
2371 struct page *tmp;
2372
2373 /* Copy of the page will be stored in high memory */
2374 kaddr = buffer;
2375 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2376 safe_highmem_pages--;
2377 last_highmem_page = tmp;
2378 pbe->copy_page = tmp;
2379 } else {
2380 /* Copy of the page will be stored in normal memory */
2381 kaddr = safe_pages_list;
2382 safe_pages_list = safe_pages_list->next;
2383 pbe->copy_page = virt_to_page(kaddr);
2384 }
2385 pbe->next = highmem_pblist;
2386 highmem_pblist = pbe;
2387 return kaddr;
2388 }
2389
2390 /**
2391 * copy_last_highmem_page - Copy most the most recent highmem image page.
2392 *
2393 * Copy the contents of a highmem image from @buffer, where the caller of
2394 * snapshot_write_next() has stored them, to the right location represented by
2395 * @last_highmem_page .
2396 */
2397 static void copy_last_highmem_page(void)
2398 {
2399 if (last_highmem_page) {
2400 void *dst;
2401
2402 dst = kmap_atomic(last_highmem_page);
2403 copy_page(dst, buffer);
2404 kunmap_atomic(dst);
2405 last_highmem_page = NULL;
2406 }
2407 }
2408
2409 static inline int last_highmem_page_copied(void)
2410 {
2411 return !last_highmem_page;
2412 }
2413
2414 static inline void free_highmem_data(void)
2415 {
2416 if (safe_highmem_bm)
2417 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2418
2419 if (buffer)
2420 free_image_page(buffer, PG_UNSAFE_CLEAR);
2421 }
2422 #else
2423 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2424
2425 static inline int prepare_highmem_image(struct memory_bitmap *bm,
2426 unsigned int *nr_highmem_p) { return 0; }
2427
2428 static inline void *get_highmem_page_buffer(struct page *page,
2429 struct chain_allocator *ca)
2430 {
2431 return ERR_PTR(-EINVAL);
2432 }
2433
2434 static inline void copy_last_highmem_page(void) {}
2435 static inline int last_highmem_page_copied(void) { return 1; }
2436 static inline void free_highmem_data(void) {}
2437 #endif /* CONFIG_HIGHMEM */
2438
2439 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2440
2441 /**
2442 * prepare_image - Make room for loading hibernation image.
2443 * @new_bm: Unitialized memory bitmap structure.
2444 * @bm: Memory bitmap with unsafe pages marked.
2445 *
2446 * Use @bm to mark the pages that will be overwritten in the process of
2447 * restoring the system memory state from the suspend image ("unsafe" pages)
2448 * and allocate memory for the image.
2449 *
2450 * The idea is to allocate a new memory bitmap first and then allocate
2451 * as many pages as needed for image data, but without specifying what those
2452 * pages will be used for just yet. Instead, we mark them all as allocated and
2453 * create a lists of "safe" pages to be used later. On systems with high
2454 * memory a list of "safe" highmem pages is created too.
2455 */
2456 static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2457 {
2458 unsigned int nr_pages, nr_highmem;
2459 struct linked_page *lp;
2460 int error;
2461
2462 /* If there is no highmem, the buffer will not be necessary */
2463 free_image_page(buffer, PG_UNSAFE_CLEAR);
2464 buffer = NULL;
2465
2466 nr_highmem = count_highmem_image_pages(bm);
2467 mark_unsafe_pages(bm);
2468
2469 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2470 if (error)
2471 goto Free;
2472
2473 duplicate_memory_bitmap(new_bm, bm);
2474 memory_bm_free(bm, PG_UNSAFE_KEEP);
2475 if (nr_highmem > 0) {
2476 error = prepare_highmem_image(bm, &nr_highmem);
2477 if (error)
2478 goto Free;
2479 }
2480 /*
2481 * Reserve some safe pages for potential later use.
2482 *
2483 * NOTE: This way we make sure there will be enough safe pages for the
2484 * chain_alloc() in get_buffer(). It is a bit wasteful, but
2485 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2486 *
2487 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2488 */
2489 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2490 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2491 while (nr_pages > 0) {
2492 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2493 if (!lp) {
2494 error = -ENOMEM;
2495 goto Free;
2496 }
2497 lp->next = safe_pages_list;
2498 safe_pages_list = lp;
2499 nr_pages--;
2500 }
2501 /* Preallocate memory for the image */
2502 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2503 while (nr_pages > 0) {
2504 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2505 if (!lp) {
2506 error = -ENOMEM;
2507 goto Free;
2508 }
2509 if (!swsusp_page_is_free(virt_to_page(lp))) {
2510 /* The page is "safe", add it to the list */
2511 lp->next = safe_pages_list;
2512 safe_pages_list = lp;
2513 }
2514 /* Mark the page as allocated */
2515 swsusp_set_page_forbidden(virt_to_page(lp));
2516 swsusp_set_page_free(virt_to_page(lp));
2517 nr_pages--;
2518 }
2519 return 0;
2520
2521 Free:
2522 swsusp_free();
2523 return error;
2524 }
2525
2526 /**
2527 * get_buffer - Get the address to store the next image data page.
2528 *
2529 * Get the address that snapshot_write_next() should return to its caller to
2530 * write to.
2531 */
2532 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2533 {
2534 struct pbe *pbe;
2535 struct page *page;
2536 unsigned long pfn = memory_bm_next_pfn(bm);
2537
2538 if (pfn == BM_END_OF_MAP)
2539 return ERR_PTR(-EFAULT);
2540
2541 page = pfn_to_page(pfn);
2542 if (PageHighMem(page))
2543 return get_highmem_page_buffer(page, ca);
2544
2545 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2546 /*
2547 * We have allocated the "original" page frame and we can
2548 * use it directly to store the loaded page.
2549 */
2550 return page_address(page);
2551
2552 /*
2553 * The "original" page frame has not been allocated and we have to
2554 * use a "safe" page frame to store the loaded page.
2555 */
2556 pbe = chain_alloc(ca, sizeof(struct pbe));
2557 if (!pbe) {
2558 swsusp_free();
2559 return ERR_PTR(-ENOMEM);
2560 }
2561 pbe->orig_address = page_address(page);
2562 pbe->address = safe_pages_list;
2563 safe_pages_list = safe_pages_list->next;
2564 pbe->next = restore_pblist;
2565 restore_pblist = pbe;
2566 return pbe->address;
2567 }
2568
2569 /**
2570 * snapshot_write_next - Get the address to store the next image page.
2571 * @handle: Snapshot handle structure to guide the writing.
2572 *
2573 * On the first call, @handle should point to a zeroed snapshot_handle
2574 * structure. The structure gets populated then and a pointer to it should be
2575 * passed to this function every next time.
2576 *
2577 * On success, the function returns a positive number. Then, the caller
2578 * is allowed to write up to the returned number of bytes to the memory
2579 * location computed by the data_of() macro.
2580 *
2581 * The function returns 0 to indicate the "end of file" condition. Negative
2582 * numbers are returned on errors, in which cases the structure pointed to by
2583 * @handle is not updated and should not be used any more.
2584 */
2585 int snapshot_write_next(struct snapshot_handle *handle)
2586 {
2587 static struct chain_allocator ca;
2588 int error = 0;
2589
2590 /* Check if we have already loaded the entire image */
2591 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2592 return 0;
2593
2594 handle->sync_read = 1;
2595
2596 if (!handle->cur) {
2597 if (!buffer)
2598 /* This makes the buffer be freed by swsusp_free() */
2599 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2600
2601 if (!buffer)
2602 return -ENOMEM;
2603
2604 handle->buffer = buffer;
2605 } else if (handle->cur == 1) {
2606 error = load_header(buffer);
2607 if (error)
2608 return error;
2609
2610 safe_pages_list = NULL;
2611
2612 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2613 if (error)
2614 return error;
2615
2616 /* Allocate buffer for page keys. */
2617 error = page_key_alloc(nr_copy_pages);
2618 if (error)
2619 return error;
2620
2621 hibernate_restore_protection_begin();
2622 } else if (handle->cur <= nr_meta_pages + 1) {
2623 error = unpack_orig_pfns(buffer, &copy_bm);
2624 if (error)
2625 return error;
2626
2627 if (handle->cur == nr_meta_pages + 1) {
2628 error = prepare_image(&orig_bm, &copy_bm);
2629 if (error)
2630 return error;
2631
2632 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2633 memory_bm_position_reset(&orig_bm);
2634 restore_pblist = NULL;
2635 handle->buffer = get_buffer(&orig_bm, &ca);
2636 handle->sync_read = 0;
2637 if (IS_ERR(handle->buffer))
2638 return PTR_ERR(handle->buffer);
2639 }
2640 } else {
2641 copy_last_highmem_page();
2642 /* Restore page key for data page (s390 only). */
2643 page_key_write(handle->buffer);
2644 hibernate_restore_protect_page(handle->buffer);
2645 handle->buffer = get_buffer(&orig_bm, &ca);
2646 if (IS_ERR(handle->buffer))
2647 return PTR_ERR(handle->buffer);
2648 if (handle->buffer != buffer)
2649 handle->sync_read = 0;
2650 }
2651 handle->cur++;
2652 return PAGE_SIZE;
2653 }
2654
2655 /**
2656 * snapshot_write_finalize - Complete the loading of a hibernation image.
2657 *
2658 * Must be called after the last call to snapshot_write_next() in case the last
2659 * page in the image happens to be a highmem page and its contents should be
2660 * stored in highmem. Additionally, it recycles bitmap memory that's not
2661 * necessary any more.
2662 */
2663 void snapshot_write_finalize(struct snapshot_handle *handle)
2664 {
2665 copy_last_highmem_page();
2666 /* Restore page key for data page (s390 only). */
2667 page_key_write(handle->buffer);
2668 page_key_free();
2669 hibernate_restore_protect_page(handle->buffer);
2670 /* Do that only if we have loaded the image entirely */
2671 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2672 memory_bm_recycle(&orig_bm);
2673 free_highmem_data();
2674 }
2675 }
2676
2677 int snapshot_image_loaded(struct snapshot_handle *handle)
2678 {
2679 return !(!nr_copy_pages || !last_highmem_page_copied() ||
2680 handle->cur <= nr_meta_pages + nr_copy_pages);
2681 }
2682
2683 #ifdef CONFIG_HIGHMEM
2684 /* Assumes that @buf is ready and points to a "safe" page */
2685 static inline void swap_two_pages_data(struct page *p1, struct page *p2,
2686 void *buf)
2687 {
2688 void *kaddr1, *kaddr2;
2689
2690 kaddr1 = kmap_atomic(p1);
2691 kaddr2 = kmap_atomic(p2);
2692 copy_page(buf, kaddr1);
2693 copy_page(kaddr1, kaddr2);
2694 copy_page(kaddr2, buf);
2695 kunmap_atomic(kaddr2);
2696 kunmap_atomic(kaddr1);
2697 }
2698
2699 /**
2700 * restore_highmem - Put highmem image pages into their original locations.
2701 *
2702 * For each highmem page that was in use before hibernation and is included in
2703 * the image, and also has been allocated by the "restore" kernel, swap its
2704 * current contents with the previous (ie. "before hibernation") ones.
2705 *
2706 * If the restore eventually fails, we can call this function once again and
2707 * restore the highmem state as seen by the restore kernel.
2708 */
2709 int restore_highmem(void)
2710 {
2711 struct highmem_pbe *pbe = highmem_pblist;
2712 void *buf;
2713
2714 if (!pbe)
2715 return 0;
2716
2717 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2718 if (!buf)
2719 return -ENOMEM;
2720
2721 while (pbe) {
2722 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2723 pbe = pbe->next;
2724 }
2725 free_image_page(buf, PG_UNSAFE_CLEAR);
2726 return 0;
2727 }
2728 #endif /* CONFIG_HIGHMEM */