]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/power/snapshot.c
ntb: ntb_test: ensure the link is up before trying to configure the mws
[mirror_ubuntu-artful-kernel.git] / kernel / power / snapshot.c
1 /*
2 * linux/kernel/power/snapshot.c
3 *
4 * This file provides system snapshot/restore functionality for swsusp.
5 *
6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8 *
9 * This file is released under the GPLv2.
10 *
11 */
12
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/nmi.h>
26 #include <linux/syscalls.h>
27 #include <linux/console.h>
28 #include <linux/highmem.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31 #include <linux/compiler.h>
32 #include <linux/ktime.h>
33 #include <linux/set_memory.h>
34
35 #include <linux/uaccess.h>
36 #include <asm/mmu_context.h>
37 #include <asm/pgtable.h>
38 #include <asm/tlbflush.h>
39 #include <asm/io.h>
40
41 #include "power.h"
42
43 #if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY)
44 static bool hibernate_restore_protection;
45 static bool hibernate_restore_protection_active;
46
47 void enable_restore_image_protection(void)
48 {
49 hibernate_restore_protection = true;
50 }
51
52 static inline void hibernate_restore_protection_begin(void)
53 {
54 hibernate_restore_protection_active = hibernate_restore_protection;
55 }
56
57 static inline void hibernate_restore_protection_end(void)
58 {
59 hibernate_restore_protection_active = false;
60 }
61
62 static inline void hibernate_restore_protect_page(void *page_address)
63 {
64 if (hibernate_restore_protection_active)
65 set_memory_ro((unsigned long)page_address, 1);
66 }
67
68 static inline void hibernate_restore_unprotect_page(void *page_address)
69 {
70 if (hibernate_restore_protection_active)
71 set_memory_rw((unsigned long)page_address, 1);
72 }
73 #else
74 static inline void hibernate_restore_protection_begin(void) {}
75 static inline void hibernate_restore_protection_end(void) {}
76 static inline void hibernate_restore_protect_page(void *page_address) {}
77 static inline void hibernate_restore_unprotect_page(void *page_address) {}
78 #endif /* CONFIG_STRICT_KERNEL_RWX && CONFIG_ARCH_HAS_SET_MEMORY */
79
80 static int swsusp_page_is_free(struct page *);
81 static void swsusp_set_page_forbidden(struct page *);
82 static void swsusp_unset_page_forbidden(struct page *);
83
84 /*
85 * Number of bytes to reserve for memory allocations made by device drivers
86 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
87 * cause image creation to fail (tunable via /sys/power/reserved_size).
88 */
89 unsigned long reserved_size;
90
91 void __init hibernate_reserved_size_init(void)
92 {
93 reserved_size = SPARE_PAGES * PAGE_SIZE;
94 }
95
96 /*
97 * Preferred image size in bytes (tunable via /sys/power/image_size).
98 * When it is set to N, swsusp will do its best to ensure the image
99 * size will not exceed N bytes, but if that is impossible, it will
100 * try to create the smallest image possible.
101 */
102 unsigned long image_size;
103
104 void __init hibernate_image_size_init(void)
105 {
106 image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
107 }
108
109 /*
110 * List of PBEs needed for restoring the pages that were allocated before
111 * the suspend and included in the suspend image, but have also been
112 * allocated by the "resume" kernel, so their contents cannot be written
113 * directly to their "original" page frames.
114 */
115 struct pbe *restore_pblist;
116
117 /* struct linked_page is used to build chains of pages */
118
119 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
120
121 struct linked_page {
122 struct linked_page *next;
123 char data[LINKED_PAGE_DATA_SIZE];
124 } __packed;
125
126 /*
127 * List of "safe" pages (ie. pages that were not used by the image kernel
128 * before hibernation) that may be used as temporary storage for image kernel
129 * memory contents.
130 */
131 static struct linked_page *safe_pages_list;
132
133 /* Pointer to an auxiliary buffer (1 page) */
134 static void *buffer;
135
136 #define PG_ANY 0
137 #define PG_SAFE 1
138 #define PG_UNSAFE_CLEAR 1
139 #define PG_UNSAFE_KEEP 0
140
141 static unsigned int allocated_unsafe_pages;
142
143 /**
144 * get_image_page - Allocate a page for a hibernation image.
145 * @gfp_mask: GFP mask for the allocation.
146 * @safe_needed: Get pages that were not used before hibernation (restore only)
147 *
148 * During image restoration, for storing the PBE list and the image data, we can
149 * only use memory pages that do not conflict with the pages used before
150 * hibernation. The "unsafe" pages have PageNosaveFree set and we count them
151 * using allocated_unsafe_pages.
152 *
153 * Each allocated image page is marked as PageNosave and PageNosaveFree so that
154 * swsusp_free() can release it.
155 */
156 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
157 {
158 void *res;
159
160 res = (void *)get_zeroed_page(gfp_mask);
161 if (safe_needed)
162 while (res && swsusp_page_is_free(virt_to_page(res))) {
163 /* The page is unsafe, mark it for swsusp_free() */
164 swsusp_set_page_forbidden(virt_to_page(res));
165 allocated_unsafe_pages++;
166 res = (void *)get_zeroed_page(gfp_mask);
167 }
168 if (res) {
169 swsusp_set_page_forbidden(virt_to_page(res));
170 swsusp_set_page_free(virt_to_page(res));
171 }
172 return res;
173 }
174
175 static void *__get_safe_page(gfp_t gfp_mask)
176 {
177 if (safe_pages_list) {
178 void *ret = safe_pages_list;
179
180 safe_pages_list = safe_pages_list->next;
181 memset(ret, 0, PAGE_SIZE);
182 return ret;
183 }
184 return get_image_page(gfp_mask, PG_SAFE);
185 }
186
187 unsigned long get_safe_page(gfp_t gfp_mask)
188 {
189 return (unsigned long)__get_safe_page(gfp_mask);
190 }
191
192 static struct page *alloc_image_page(gfp_t gfp_mask)
193 {
194 struct page *page;
195
196 page = alloc_page(gfp_mask);
197 if (page) {
198 swsusp_set_page_forbidden(page);
199 swsusp_set_page_free(page);
200 }
201 return page;
202 }
203
204 static void recycle_safe_page(void *page_address)
205 {
206 struct linked_page *lp = page_address;
207
208 lp->next = safe_pages_list;
209 safe_pages_list = lp;
210 }
211
212 /**
213 * free_image_page - Free a page allocated for hibernation image.
214 * @addr: Address of the page to free.
215 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
216 *
217 * The page to free should have been allocated by get_image_page() (page flags
218 * set by it are affected).
219 */
220 static inline void free_image_page(void *addr, int clear_nosave_free)
221 {
222 struct page *page;
223
224 BUG_ON(!virt_addr_valid(addr));
225
226 page = virt_to_page(addr);
227
228 swsusp_unset_page_forbidden(page);
229 if (clear_nosave_free)
230 swsusp_unset_page_free(page);
231
232 __free_page(page);
233 }
234
235 static inline void free_list_of_pages(struct linked_page *list,
236 int clear_page_nosave)
237 {
238 while (list) {
239 struct linked_page *lp = list->next;
240
241 free_image_page(list, clear_page_nosave);
242 list = lp;
243 }
244 }
245
246 /*
247 * struct chain_allocator is used for allocating small objects out of
248 * a linked list of pages called 'the chain'.
249 *
250 * The chain grows each time when there is no room for a new object in
251 * the current page. The allocated objects cannot be freed individually.
252 * It is only possible to free them all at once, by freeing the entire
253 * chain.
254 *
255 * NOTE: The chain allocator may be inefficient if the allocated objects
256 * are not much smaller than PAGE_SIZE.
257 */
258 struct chain_allocator {
259 struct linked_page *chain; /* the chain */
260 unsigned int used_space; /* total size of objects allocated out
261 of the current page */
262 gfp_t gfp_mask; /* mask for allocating pages */
263 int safe_needed; /* if set, only "safe" pages are allocated */
264 };
265
266 static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
267 int safe_needed)
268 {
269 ca->chain = NULL;
270 ca->used_space = LINKED_PAGE_DATA_SIZE;
271 ca->gfp_mask = gfp_mask;
272 ca->safe_needed = safe_needed;
273 }
274
275 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
276 {
277 void *ret;
278
279 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
280 struct linked_page *lp;
281
282 lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
283 get_image_page(ca->gfp_mask, PG_ANY);
284 if (!lp)
285 return NULL;
286
287 lp->next = ca->chain;
288 ca->chain = lp;
289 ca->used_space = 0;
290 }
291 ret = ca->chain->data + ca->used_space;
292 ca->used_space += size;
293 return ret;
294 }
295
296 /**
297 * Data types related to memory bitmaps.
298 *
299 * Memory bitmap is a structure consiting of many linked lists of
300 * objects. The main list's elements are of type struct zone_bitmap
301 * and each of them corresonds to one zone. For each zone bitmap
302 * object there is a list of objects of type struct bm_block that
303 * represent each blocks of bitmap in which information is stored.
304 *
305 * struct memory_bitmap contains a pointer to the main list of zone
306 * bitmap objects, a struct bm_position used for browsing the bitmap,
307 * and a pointer to the list of pages used for allocating all of the
308 * zone bitmap objects and bitmap block objects.
309 *
310 * NOTE: It has to be possible to lay out the bitmap in memory
311 * using only allocations of order 0. Additionally, the bitmap is
312 * designed to work with arbitrary number of zones (this is over the
313 * top for now, but let's avoid making unnecessary assumptions ;-).
314 *
315 * struct zone_bitmap contains a pointer to a list of bitmap block
316 * objects and a pointer to the bitmap block object that has been
317 * most recently used for setting bits. Additionally, it contains the
318 * PFNs that correspond to the start and end of the represented zone.
319 *
320 * struct bm_block contains a pointer to the memory page in which
321 * information is stored (in the form of a block of bitmap)
322 * It also contains the pfns that correspond to the start and end of
323 * the represented memory area.
324 *
325 * The memory bitmap is organized as a radix tree to guarantee fast random
326 * access to the bits. There is one radix tree for each zone (as returned
327 * from create_mem_extents).
328 *
329 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
330 * two linked lists for the nodes of the tree, one for the inner nodes and
331 * one for the leave nodes. The linked leave nodes are used for fast linear
332 * access of the memory bitmap.
333 *
334 * The struct rtree_node represents one node of the radix tree.
335 */
336
337 #define BM_END_OF_MAP (~0UL)
338
339 #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
340 #define BM_BLOCK_SHIFT (PAGE_SHIFT + 3)
341 #define BM_BLOCK_MASK ((1UL << BM_BLOCK_SHIFT) - 1)
342
343 /*
344 * struct rtree_node is a wrapper struct to link the nodes
345 * of the rtree together for easy linear iteration over
346 * bits and easy freeing
347 */
348 struct rtree_node {
349 struct list_head list;
350 unsigned long *data;
351 };
352
353 /*
354 * struct mem_zone_bm_rtree represents a bitmap used for one
355 * populated memory zone.
356 */
357 struct mem_zone_bm_rtree {
358 struct list_head list; /* Link Zones together */
359 struct list_head nodes; /* Radix Tree inner nodes */
360 struct list_head leaves; /* Radix Tree leaves */
361 unsigned long start_pfn; /* Zone start page frame */
362 unsigned long end_pfn; /* Zone end page frame + 1 */
363 struct rtree_node *rtree; /* Radix Tree Root */
364 int levels; /* Number of Radix Tree Levels */
365 unsigned int blocks; /* Number of Bitmap Blocks */
366 };
367
368 /* strcut bm_position is used for browsing memory bitmaps */
369
370 struct bm_position {
371 struct mem_zone_bm_rtree *zone;
372 struct rtree_node *node;
373 unsigned long node_pfn;
374 int node_bit;
375 };
376
377 struct memory_bitmap {
378 struct list_head zones;
379 struct linked_page *p_list; /* list of pages used to store zone
380 bitmap objects and bitmap block
381 objects */
382 struct bm_position cur; /* most recently used bit position */
383 };
384
385 /* Functions that operate on memory bitmaps */
386
387 #define BM_ENTRIES_PER_LEVEL (PAGE_SIZE / sizeof(unsigned long))
388 #if BITS_PER_LONG == 32
389 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 2)
390 #else
391 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 3)
392 #endif
393 #define BM_RTREE_LEVEL_MASK ((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
394
395 /**
396 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
397 *
398 * This function is used to allocate inner nodes as well as the
399 * leave nodes of the radix tree. It also adds the node to the
400 * corresponding linked list passed in by the *list parameter.
401 */
402 static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
403 struct chain_allocator *ca,
404 struct list_head *list)
405 {
406 struct rtree_node *node;
407
408 node = chain_alloc(ca, sizeof(struct rtree_node));
409 if (!node)
410 return NULL;
411
412 node->data = get_image_page(gfp_mask, safe_needed);
413 if (!node->data)
414 return NULL;
415
416 list_add_tail(&node->list, list);
417
418 return node;
419 }
420
421 /**
422 * add_rtree_block - Add a new leave node to the radix tree.
423 *
424 * The leave nodes need to be allocated in order to keep the leaves
425 * linked list in order. This is guaranteed by the zone->blocks
426 * counter.
427 */
428 static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
429 int safe_needed, struct chain_allocator *ca)
430 {
431 struct rtree_node *node, *block, **dst;
432 unsigned int levels_needed, block_nr;
433 int i;
434
435 block_nr = zone->blocks;
436 levels_needed = 0;
437
438 /* How many levels do we need for this block nr? */
439 while (block_nr) {
440 levels_needed += 1;
441 block_nr >>= BM_RTREE_LEVEL_SHIFT;
442 }
443
444 /* Make sure the rtree has enough levels */
445 for (i = zone->levels; i < levels_needed; i++) {
446 node = alloc_rtree_node(gfp_mask, safe_needed, ca,
447 &zone->nodes);
448 if (!node)
449 return -ENOMEM;
450
451 node->data[0] = (unsigned long)zone->rtree;
452 zone->rtree = node;
453 zone->levels += 1;
454 }
455
456 /* Allocate new block */
457 block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
458 if (!block)
459 return -ENOMEM;
460
461 /* Now walk the rtree to insert the block */
462 node = zone->rtree;
463 dst = &zone->rtree;
464 block_nr = zone->blocks;
465 for (i = zone->levels; i > 0; i--) {
466 int index;
467
468 if (!node) {
469 node = alloc_rtree_node(gfp_mask, safe_needed, ca,
470 &zone->nodes);
471 if (!node)
472 return -ENOMEM;
473 *dst = node;
474 }
475
476 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
477 index &= BM_RTREE_LEVEL_MASK;
478 dst = (struct rtree_node **)&((*dst)->data[index]);
479 node = *dst;
480 }
481
482 zone->blocks += 1;
483 *dst = block;
484
485 return 0;
486 }
487
488 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
489 int clear_nosave_free);
490
491 /**
492 * create_zone_bm_rtree - Create a radix tree for one zone.
493 *
494 * Allocated the mem_zone_bm_rtree structure and initializes it.
495 * This function also allocated and builds the radix tree for the
496 * zone.
497 */
498 static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
499 int safe_needed,
500 struct chain_allocator *ca,
501 unsigned long start,
502 unsigned long end)
503 {
504 struct mem_zone_bm_rtree *zone;
505 unsigned int i, nr_blocks;
506 unsigned long pages;
507
508 pages = end - start;
509 zone = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
510 if (!zone)
511 return NULL;
512
513 INIT_LIST_HEAD(&zone->nodes);
514 INIT_LIST_HEAD(&zone->leaves);
515 zone->start_pfn = start;
516 zone->end_pfn = end;
517 nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
518
519 for (i = 0; i < nr_blocks; i++) {
520 if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
521 free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
522 return NULL;
523 }
524 }
525
526 return zone;
527 }
528
529 /**
530 * free_zone_bm_rtree - Free the memory of the radix tree.
531 *
532 * Free all node pages of the radix tree. The mem_zone_bm_rtree
533 * structure itself is not freed here nor are the rtree_node
534 * structs.
535 */
536 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
537 int clear_nosave_free)
538 {
539 struct rtree_node *node;
540
541 list_for_each_entry(node, &zone->nodes, list)
542 free_image_page(node->data, clear_nosave_free);
543
544 list_for_each_entry(node, &zone->leaves, list)
545 free_image_page(node->data, clear_nosave_free);
546 }
547
548 static void memory_bm_position_reset(struct memory_bitmap *bm)
549 {
550 bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
551 list);
552 bm->cur.node = list_entry(bm->cur.zone->leaves.next,
553 struct rtree_node, list);
554 bm->cur.node_pfn = 0;
555 bm->cur.node_bit = 0;
556 }
557
558 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
559
560 struct mem_extent {
561 struct list_head hook;
562 unsigned long start;
563 unsigned long end;
564 };
565
566 /**
567 * free_mem_extents - Free a list of memory extents.
568 * @list: List of extents to free.
569 */
570 static void free_mem_extents(struct list_head *list)
571 {
572 struct mem_extent *ext, *aux;
573
574 list_for_each_entry_safe(ext, aux, list, hook) {
575 list_del(&ext->hook);
576 kfree(ext);
577 }
578 }
579
580 /**
581 * create_mem_extents - Create a list of memory extents.
582 * @list: List to put the extents into.
583 * @gfp_mask: Mask to use for memory allocations.
584 *
585 * The extents represent contiguous ranges of PFNs.
586 */
587 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
588 {
589 struct zone *zone;
590
591 INIT_LIST_HEAD(list);
592
593 for_each_populated_zone(zone) {
594 unsigned long zone_start, zone_end;
595 struct mem_extent *ext, *cur, *aux;
596
597 zone_start = zone->zone_start_pfn;
598 zone_end = zone_end_pfn(zone);
599
600 list_for_each_entry(ext, list, hook)
601 if (zone_start <= ext->end)
602 break;
603
604 if (&ext->hook == list || zone_end < ext->start) {
605 /* New extent is necessary */
606 struct mem_extent *new_ext;
607
608 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
609 if (!new_ext) {
610 free_mem_extents(list);
611 return -ENOMEM;
612 }
613 new_ext->start = zone_start;
614 new_ext->end = zone_end;
615 list_add_tail(&new_ext->hook, &ext->hook);
616 continue;
617 }
618
619 /* Merge this zone's range of PFNs with the existing one */
620 if (zone_start < ext->start)
621 ext->start = zone_start;
622 if (zone_end > ext->end)
623 ext->end = zone_end;
624
625 /* More merging may be possible */
626 cur = ext;
627 list_for_each_entry_safe_continue(cur, aux, list, hook) {
628 if (zone_end < cur->start)
629 break;
630 if (zone_end < cur->end)
631 ext->end = cur->end;
632 list_del(&cur->hook);
633 kfree(cur);
634 }
635 }
636
637 return 0;
638 }
639
640 /**
641 * memory_bm_create - Allocate memory for a memory bitmap.
642 */
643 static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
644 int safe_needed)
645 {
646 struct chain_allocator ca;
647 struct list_head mem_extents;
648 struct mem_extent *ext;
649 int error;
650
651 chain_init(&ca, gfp_mask, safe_needed);
652 INIT_LIST_HEAD(&bm->zones);
653
654 error = create_mem_extents(&mem_extents, gfp_mask);
655 if (error)
656 return error;
657
658 list_for_each_entry(ext, &mem_extents, hook) {
659 struct mem_zone_bm_rtree *zone;
660
661 zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
662 ext->start, ext->end);
663 if (!zone) {
664 error = -ENOMEM;
665 goto Error;
666 }
667 list_add_tail(&zone->list, &bm->zones);
668 }
669
670 bm->p_list = ca.chain;
671 memory_bm_position_reset(bm);
672 Exit:
673 free_mem_extents(&mem_extents);
674 return error;
675
676 Error:
677 bm->p_list = ca.chain;
678 memory_bm_free(bm, PG_UNSAFE_CLEAR);
679 goto Exit;
680 }
681
682 /**
683 * memory_bm_free - Free memory occupied by the memory bitmap.
684 * @bm: Memory bitmap.
685 */
686 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
687 {
688 struct mem_zone_bm_rtree *zone;
689
690 list_for_each_entry(zone, &bm->zones, list)
691 free_zone_bm_rtree(zone, clear_nosave_free);
692
693 free_list_of_pages(bm->p_list, clear_nosave_free);
694
695 INIT_LIST_HEAD(&bm->zones);
696 }
697
698 /**
699 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
700 *
701 * Find the bit in memory bitmap @bm that corresponds to the given PFN.
702 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
703 *
704 * Walk the radix tree to find the page containing the bit that represents @pfn
705 * and return the position of the bit in @addr and @bit_nr.
706 */
707 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
708 void **addr, unsigned int *bit_nr)
709 {
710 struct mem_zone_bm_rtree *curr, *zone;
711 struct rtree_node *node;
712 int i, block_nr;
713
714 zone = bm->cur.zone;
715
716 if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
717 goto zone_found;
718
719 zone = NULL;
720
721 /* Find the right zone */
722 list_for_each_entry(curr, &bm->zones, list) {
723 if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
724 zone = curr;
725 break;
726 }
727 }
728
729 if (!zone)
730 return -EFAULT;
731
732 zone_found:
733 /*
734 * We have found the zone. Now walk the radix tree to find the leaf node
735 * for our PFN.
736 */
737 node = bm->cur.node;
738 if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
739 goto node_found;
740
741 node = zone->rtree;
742 block_nr = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
743
744 for (i = zone->levels; i > 0; i--) {
745 int index;
746
747 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
748 index &= BM_RTREE_LEVEL_MASK;
749 BUG_ON(node->data[index] == 0);
750 node = (struct rtree_node *)node->data[index];
751 }
752
753 node_found:
754 /* Update last position */
755 bm->cur.zone = zone;
756 bm->cur.node = node;
757 bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
758
759 /* Set return values */
760 *addr = node->data;
761 *bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
762
763 return 0;
764 }
765
766 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
767 {
768 void *addr;
769 unsigned int bit;
770 int error;
771
772 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
773 BUG_ON(error);
774 set_bit(bit, addr);
775 }
776
777 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
778 {
779 void *addr;
780 unsigned int bit;
781 int error;
782
783 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
784 if (!error)
785 set_bit(bit, addr);
786
787 return error;
788 }
789
790 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
791 {
792 void *addr;
793 unsigned int bit;
794 int error;
795
796 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
797 BUG_ON(error);
798 clear_bit(bit, addr);
799 }
800
801 static void memory_bm_clear_current(struct memory_bitmap *bm)
802 {
803 int bit;
804
805 bit = max(bm->cur.node_bit - 1, 0);
806 clear_bit(bit, bm->cur.node->data);
807 }
808
809 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
810 {
811 void *addr;
812 unsigned int bit;
813 int error;
814
815 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
816 BUG_ON(error);
817 return test_bit(bit, addr);
818 }
819
820 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
821 {
822 void *addr;
823 unsigned int bit;
824
825 return !memory_bm_find_bit(bm, pfn, &addr, &bit);
826 }
827
828 /*
829 * rtree_next_node - Jump to the next leaf node.
830 *
831 * Set the position to the beginning of the next node in the
832 * memory bitmap. This is either the next node in the current
833 * zone's radix tree or the first node in the radix tree of the
834 * next zone.
835 *
836 * Return true if there is a next node, false otherwise.
837 */
838 static bool rtree_next_node(struct memory_bitmap *bm)
839 {
840 if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
841 bm->cur.node = list_entry(bm->cur.node->list.next,
842 struct rtree_node, list);
843 bm->cur.node_pfn += BM_BITS_PER_BLOCK;
844 bm->cur.node_bit = 0;
845 touch_softlockup_watchdog();
846 return true;
847 }
848
849 /* No more nodes, goto next zone */
850 if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
851 bm->cur.zone = list_entry(bm->cur.zone->list.next,
852 struct mem_zone_bm_rtree, list);
853 bm->cur.node = list_entry(bm->cur.zone->leaves.next,
854 struct rtree_node, list);
855 bm->cur.node_pfn = 0;
856 bm->cur.node_bit = 0;
857 return true;
858 }
859
860 /* No more zones */
861 return false;
862 }
863
864 /**
865 * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap.
866 * @bm: Memory bitmap.
867 *
868 * Starting from the last returned position this function searches for the next
869 * set bit in @bm and returns the PFN represented by it. If no more bits are
870 * set, BM_END_OF_MAP is returned.
871 *
872 * It is required to run memory_bm_position_reset() before the first call to
873 * this function for the given memory bitmap.
874 */
875 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
876 {
877 unsigned long bits, pfn, pages;
878 int bit;
879
880 do {
881 pages = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
882 bits = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
883 bit = find_next_bit(bm->cur.node->data, bits,
884 bm->cur.node_bit);
885 if (bit < bits) {
886 pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
887 bm->cur.node_bit = bit + 1;
888 return pfn;
889 }
890 } while (rtree_next_node(bm));
891
892 return BM_END_OF_MAP;
893 }
894
895 /*
896 * This structure represents a range of page frames the contents of which
897 * should not be saved during hibernation.
898 */
899 struct nosave_region {
900 struct list_head list;
901 unsigned long start_pfn;
902 unsigned long end_pfn;
903 };
904
905 static LIST_HEAD(nosave_regions);
906
907 static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
908 {
909 struct rtree_node *node;
910
911 list_for_each_entry(node, &zone->nodes, list)
912 recycle_safe_page(node->data);
913
914 list_for_each_entry(node, &zone->leaves, list)
915 recycle_safe_page(node->data);
916 }
917
918 static void memory_bm_recycle(struct memory_bitmap *bm)
919 {
920 struct mem_zone_bm_rtree *zone;
921 struct linked_page *p_list;
922
923 list_for_each_entry(zone, &bm->zones, list)
924 recycle_zone_bm_rtree(zone);
925
926 p_list = bm->p_list;
927 while (p_list) {
928 struct linked_page *lp = p_list;
929
930 p_list = lp->next;
931 recycle_safe_page(lp);
932 }
933 }
934
935 /**
936 * register_nosave_region - Register a region of unsaveable memory.
937 *
938 * Register a range of page frames the contents of which should not be saved
939 * during hibernation (to be used in the early initialization code).
940 */
941 void __init __register_nosave_region(unsigned long start_pfn,
942 unsigned long end_pfn, int use_kmalloc)
943 {
944 struct nosave_region *region;
945
946 if (start_pfn >= end_pfn)
947 return;
948
949 if (!list_empty(&nosave_regions)) {
950 /* Try to extend the previous region (they should be sorted) */
951 region = list_entry(nosave_regions.prev,
952 struct nosave_region, list);
953 if (region->end_pfn == start_pfn) {
954 region->end_pfn = end_pfn;
955 goto Report;
956 }
957 }
958 if (use_kmalloc) {
959 /* During init, this shouldn't fail */
960 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
961 BUG_ON(!region);
962 } else {
963 /* This allocation cannot fail */
964 region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
965 }
966 region->start_pfn = start_pfn;
967 region->end_pfn = end_pfn;
968 list_add_tail(&region->list, &nosave_regions);
969 Report:
970 printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
971 (unsigned long long) start_pfn << PAGE_SHIFT,
972 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
973 }
974
975 /*
976 * Set bits in this map correspond to the page frames the contents of which
977 * should not be saved during the suspend.
978 */
979 static struct memory_bitmap *forbidden_pages_map;
980
981 /* Set bits in this map correspond to free page frames. */
982 static struct memory_bitmap *free_pages_map;
983
984 /*
985 * Each page frame allocated for creating the image is marked by setting the
986 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
987 */
988
989 void swsusp_set_page_free(struct page *page)
990 {
991 if (free_pages_map)
992 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
993 }
994
995 static int swsusp_page_is_free(struct page *page)
996 {
997 return free_pages_map ?
998 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
999 }
1000
1001 void swsusp_unset_page_free(struct page *page)
1002 {
1003 if (free_pages_map)
1004 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1005 }
1006
1007 static void swsusp_set_page_forbidden(struct page *page)
1008 {
1009 if (forbidden_pages_map)
1010 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1011 }
1012
1013 int swsusp_page_is_forbidden(struct page *page)
1014 {
1015 return forbidden_pages_map ?
1016 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1017 }
1018
1019 static void swsusp_unset_page_forbidden(struct page *page)
1020 {
1021 if (forbidden_pages_map)
1022 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1023 }
1024
1025 /**
1026 * mark_nosave_pages - Mark pages that should not be saved.
1027 * @bm: Memory bitmap.
1028 *
1029 * Set the bits in @bm that correspond to the page frames the contents of which
1030 * should not be saved.
1031 */
1032 static void mark_nosave_pages(struct memory_bitmap *bm)
1033 {
1034 struct nosave_region *region;
1035
1036 if (list_empty(&nosave_regions))
1037 return;
1038
1039 list_for_each_entry(region, &nosave_regions, list) {
1040 unsigned long pfn;
1041
1042 pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
1043 (unsigned long long) region->start_pfn << PAGE_SHIFT,
1044 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1045 - 1);
1046
1047 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1048 if (pfn_valid(pfn)) {
1049 /*
1050 * It is safe to ignore the result of
1051 * mem_bm_set_bit_check() here, since we won't
1052 * touch the PFNs for which the error is
1053 * returned anyway.
1054 */
1055 mem_bm_set_bit_check(bm, pfn);
1056 }
1057 }
1058 }
1059
1060 /**
1061 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1062 *
1063 * Create bitmaps needed for marking page frames that should not be saved and
1064 * free page frames. The forbidden_pages_map and free_pages_map pointers are
1065 * only modified if everything goes well, because we don't want the bits to be
1066 * touched before both bitmaps are set up.
1067 */
1068 int create_basic_memory_bitmaps(void)
1069 {
1070 struct memory_bitmap *bm1, *bm2;
1071 int error = 0;
1072
1073 if (forbidden_pages_map && free_pages_map)
1074 return 0;
1075 else
1076 BUG_ON(forbidden_pages_map || free_pages_map);
1077
1078 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1079 if (!bm1)
1080 return -ENOMEM;
1081
1082 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1083 if (error)
1084 goto Free_first_object;
1085
1086 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1087 if (!bm2)
1088 goto Free_first_bitmap;
1089
1090 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1091 if (error)
1092 goto Free_second_object;
1093
1094 forbidden_pages_map = bm1;
1095 free_pages_map = bm2;
1096 mark_nosave_pages(forbidden_pages_map);
1097
1098 pr_debug("PM: Basic memory bitmaps created\n");
1099
1100 return 0;
1101
1102 Free_second_object:
1103 kfree(bm2);
1104 Free_first_bitmap:
1105 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1106 Free_first_object:
1107 kfree(bm1);
1108 return -ENOMEM;
1109 }
1110
1111 /**
1112 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1113 *
1114 * Free memory bitmaps allocated by create_basic_memory_bitmaps(). The
1115 * auxiliary pointers are necessary so that the bitmaps themselves are not
1116 * referred to while they are being freed.
1117 */
1118 void free_basic_memory_bitmaps(void)
1119 {
1120 struct memory_bitmap *bm1, *bm2;
1121
1122 if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1123 return;
1124
1125 bm1 = forbidden_pages_map;
1126 bm2 = free_pages_map;
1127 forbidden_pages_map = NULL;
1128 free_pages_map = NULL;
1129 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1130 kfree(bm1);
1131 memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1132 kfree(bm2);
1133
1134 pr_debug("PM: Basic memory bitmaps freed\n");
1135 }
1136
1137 void clear_free_pages(void)
1138 {
1139 #ifdef CONFIG_PAGE_POISONING_ZERO
1140 struct memory_bitmap *bm = free_pages_map;
1141 unsigned long pfn;
1142
1143 if (WARN_ON(!(free_pages_map)))
1144 return;
1145
1146 memory_bm_position_reset(bm);
1147 pfn = memory_bm_next_pfn(bm);
1148 while (pfn != BM_END_OF_MAP) {
1149 if (pfn_valid(pfn))
1150 clear_highpage(pfn_to_page(pfn));
1151
1152 pfn = memory_bm_next_pfn(bm);
1153 }
1154 memory_bm_position_reset(bm);
1155 pr_info("PM: free pages cleared after restore\n");
1156 #endif /* PAGE_POISONING_ZERO */
1157 }
1158
1159 /**
1160 * snapshot_additional_pages - Estimate the number of extra pages needed.
1161 * @zone: Memory zone to carry out the computation for.
1162 *
1163 * Estimate the number of additional pages needed for setting up a hibernation
1164 * image data structures for @zone (usually, the returned value is greater than
1165 * the exact number).
1166 */
1167 unsigned int snapshot_additional_pages(struct zone *zone)
1168 {
1169 unsigned int rtree, nodes;
1170
1171 rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1172 rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1173 LINKED_PAGE_DATA_SIZE);
1174 while (nodes > 1) {
1175 nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1176 rtree += nodes;
1177 }
1178
1179 return 2 * rtree;
1180 }
1181
1182 #ifdef CONFIG_HIGHMEM
1183 /**
1184 * count_free_highmem_pages - Compute the total number of free highmem pages.
1185 *
1186 * The returned number is system-wide.
1187 */
1188 static unsigned int count_free_highmem_pages(void)
1189 {
1190 struct zone *zone;
1191 unsigned int cnt = 0;
1192
1193 for_each_populated_zone(zone)
1194 if (is_highmem(zone))
1195 cnt += zone_page_state(zone, NR_FREE_PAGES);
1196
1197 return cnt;
1198 }
1199
1200 /**
1201 * saveable_highmem_page - Check if a highmem page is saveable.
1202 *
1203 * Determine whether a highmem page should be included in a hibernation image.
1204 *
1205 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1206 * and it isn't part of a free chunk of pages.
1207 */
1208 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1209 {
1210 struct page *page;
1211
1212 if (!pfn_valid(pfn))
1213 return NULL;
1214
1215 page = pfn_to_page(pfn);
1216 if (page_zone(page) != zone)
1217 return NULL;
1218
1219 BUG_ON(!PageHighMem(page));
1220
1221 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) ||
1222 PageReserved(page))
1223 return NULL;
1224
1225 if (page_is_guard(page))
1226 return NULL;
1227
1228 return page;
1229 }
1230
1231 /**
1232 * count_highmem_pages - Compute the total number of saveable highmem pages.
1233 */
1234 static unsigned int count_highmem_pages(void)
1235 {
1236 struct zone *zone;
1237 unsigned int n = 0;
1238
1239 for_each_populated_zone(zone) {
1240 unsigned long pfn, max_zone_pfn;
1241
1242 if (!is_highmem(zone))
1243 continue;
1244
1245 mark_free_pages(zone);
1246 max_zone_pfn = zone_end_pfn(zone);
1247 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1248 if (saveable_highmem_page(zone, pfn))
1249 n++;
1250 }
1251 return n;
1252 }
1253 #else
1254 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1255 {
1256 return NULL;
1257 }
1258 #endif /* CONFIG_HIGHMEM */
1259
1260 /**
1261 * saveable_page - Check if the given page is saveable.
1262 *
1263 * Determine whether a non-highmem page should be included in a hibernation
1264 * image.
1265 *
1266 * We should save the page if it isn't Nosave, and is not in the range
1267 * of pages statically defined as 'unsaveable', and it isn't part of
1268 * a free chunk of pages.
1269 */
1270 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1271 {
1272 struct page *page;
1273
1274 if (!pfn_valid(pfn))
1275 return NULL;
1276
1277 page = pfn_to_page(pfn);
1278 if (page_zone(page) != zone)
1279 return NULL;
1280
1281 BUG_ON(PageHighMem(page));
1282
1283 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1284 return NULL;
1285
1286 if (PageReserved(page)
1287 && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1288 return NULL;
1289
1290 if (page_is_guard(page))
1291 return NULL;
1292
1293 return page;
1294 }
1295
1296 /**
1297 * count_data_pages - Compute the total number of saveable non-highmem pages.
1298 */
1299 static unsigned int count_data_pages(void)
1300 {
1301 struct zone *zone;
1302 unsigned long pfn, max_zone_pfn;
1303 unsigned int n = 0;
1304
1305 for_each_populated_zone(zone) {
1306 if (is_highmem(zone))
1307 continue;
1308
1309 mark_free_pages(zone);
1310 max_zone_pfn = zone_end_pfn(zone);
1311 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1312 if (saveable_page(zone, pfn))
1313 n++;
1314 }
1315 return n;
1316 }
1317
1318 /*
1319 * This is needed, because copy_page and memcpy are not usable for copying
1320 * task structs.
1321 */
1322 static inline void do_copy_page(long *dst, long *src)
1323 {
1324 int n;
1325
1326 for (n = PAGE_SIZE / sizeof(long); n; n--)
1327 *dst++ = *src++;
1328 }
1329
1330 /**
1331 * safe_copy_page - Copy a page in a safe way.
1332 *
1333 * Check if the page we are going to copy is marked as present in the kernel
1334 * page tables (this always is the case if CONFIG_DEBUG_PAGEALLOC is not set
1335 * and in that case kernel_page_present() always returns 'true').
1336 */
1337 static void safe_copy_page(void *dst, struct page *s_page)
1338 {
1339 if (kernel_page_present(s_page)) {
1340 do_copy_page(dst, page_address(s_page));
1341 } else {
1342 kernel_map_pages(s_page, 1, 1);
1343 do_copy_page(dst, page_address(s_page));
1344 kernel_map_pages(s_page, 1, 0);
1345 }
1346 }
1347
1348 #ifdef CONFIG_HIGHMEM
1349 static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
1350 {
1351 return is_highmem(zone) ?
1352 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1353 }
1354
1355 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1356 {
1357 struct page *s_page, *d_page;
1358 void *src, *dst;
1359
1360 s_page = pfn_to_page(src_pfn);
1361 d_page = pfn_to_page(dst_pfn);
1362 if (PageHighMem(s_page)) {
1363 src = kmap_atomic(s_page);
1364 dst = kmap_atomic(d_page);
1365 do_copy_page(dst, src);
1366 kunmap_atomic(dst);
1367 kunmap_atomic(src);
1368 } else {
1369 if (PageHighMem(d_page)) {
1370 /*
1371 * The page pointed to by src may contain some kernel
1372 * data modified by kmap_atomic()
1373 */
1374 safe_copy_page(buffer, s_page);
1375 dst = kmap_atomic(d_page);
1376 copy_page(dst, buffer);
1377 kunmap_atomic(dst);
1378 } else {
1379 safe_copy_page(page_address(d_page), s_page);
1380 }
1381 }
1382 }
1383 #else
1384 #define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
1385
1386 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1387 {
1388 safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1389 pfn_to_page(src_pfn));
1390 }
1391 #endif /* CONFIG_HIGHMEM */
1392
1393 static void copy_data_pages(struct memory_bitmap *copy_bm,
1394 struct memory_bitmap *orig_bm)
1395 {
1396 struct zone *zone;
1397 unsigned long pfn;
1398
1399 for_each_populated_zone(zone) {
1400 unsigned long max_zone_pfn;
1401
1402 mark_free_pages(zone);
1403 max_zone_pfn = zone_end_pfn(zone);
1404 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1405 if (page_is_saveable(zone, pfn))
1406 memory_bm_set_bit(orig_bm, pfn);
1407 }
1408 memory_bm_position_reset(orig_bm);
1409 memory_bm_position_reset(copy_bm);
1410 for(;;) {
1411 pfn = memory_bm_next_pfn(orig_bm);
1412 if (unlikely(pfn == BM_END_OF_MAP))
1413 break;
1414 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1415 }
1416 }
1417
1418 /* Total number of image pages */
1419 static unsigned int nr_copy_pages;
1420 /* Number of pages needed for saving the original pfns of the image pages */
1421 static unsigned int nr_meta_pages;
1422 /*
1423 * Numbers of normal and highmem page frames allocated for hibernation image
1424 * before suspending devices.
1425 */
1426 static unsigned int alloc_normal, alloc_highmem;
1427 /*
1428 * Memory bitmap used for marking saveable pages (during hibernation) or
1429 * hibernation image pages (during restore)
1430 */
1431 static struct memory_bitmap orig_bm;
1432 /*
1433 * Memory bitmap used during hibernation for marking allocated page frames that
1434 * will contain copies of saveable pages. During restore it is initially used
1435 * for marking hibernation image pages, but then the set bits from it are
1436 * duplicated in @orig_bm and it is released. On highmem systems it is next
1437 * used for marking "safe" highmem pages, but it has to be reinitialized for
1438 * this purpose.
1439 */
1440 static struct memory_bitmap copy_bm;
1441
1442 /**
1443 * swsusp_free - Free pages allocated for hibernation image.
1444 *
1445 * Image pages are alocated before snapshot creation, so they need to be
1446 * released after resume.
1447 */
1448 void swsusp_free(void)
1449 {
1450 unsigned long fb_pfn, fr_pfn;
1451
1452 if (!forbidden_pages_map || !free_pages_map)
1453 goto out;
1454
1455 memory_bm_position_reset(forbidden_pages_map);
1456 memory_bm_position_reset(free_pages_map);
1457
1458 loop:
1459 fr_pfn = memory_bm_next_pfn(free_pages_map);
1460 fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1461
1462 /*
1463 * Find the next bit set in both bitmaps. This is guaranteed to
1464 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1465 */
1466 do {
1467 if (fb_pfn < fr_pfn)
1468 fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1469 if (fr_pfn < fb_pfn)
1470 fr_pfn = memory_bm_next_pfn(free_pages_map);
1471 } while (fb_pfn != fr_pfn);
1472
1473 if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1474 struct page *page = pfn_to_page(fr_pfn);
1475
1476 memory_bm_clear_current(forbidden_pages_map);
1477 memory_bm_clear_current(free_pages_map);
1478 hibernate_restore_unprotect_page(page_address(page));
1479 __free_page(page);
1480 goto loop;
1481 }
1482
1483 out:
1484 nr_copy_pages = 0;
1485 nr_meta_pages = 0;
1486 restore_pblist = NULL;
1487 buffer = NULL;
1488 alloc_normal = 0;
1489 alloc_highmem = 0;
1490 hibernate_restore_protection_end();
1491 }
1492
1493 /* Helper functions used for the shrinking of memory. */
1494
1495 #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
1496
1497 /**
1498 * preallocate_image_pages - Allocate a number of pages for hibernation image.
1499 * @nr_pages: Number of page frames to allocate.
1500 * @mask: GFP flags to use for the allocation.
1501 *
1502 * Return value: Number of page frames actually allocated
1503 */
1504 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1505 {
1506 unsigned long nr_alloc = 0;
1507
1508 while (nr_pages > 0) {
1509 struct page *page;
1510
1511 page = alloc_image_page(mask);
1512 if (!page)
1513 break;
1514 memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1515 if (PageHighMem(page))
1516 alloc_highmem++;
1517 else
1518 alloc_normal++;
1519 nr_pages--;
1520 nr_alloc++;
1521 }
1522
1523 return nr_alloc;
1524 }
1525
1526 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1527 unsigned long avail_normal)
1528 {
1529 unsigned long alloc;
1530
1531 if (avail_normal <= alloc_normal)
1532 return 0;
1533
1534 alloc = avail_normal - alloc_normal;
1535 if (nr_pages < alloc)
1536 alloc = nr_pages;
1537
1538 return preallocate_image_pages(alloc, GFP_IMAGE);
1539 }
1540
1541 #ifdef CONFIG_HIGHMEM
1542 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1543 {
1544 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1545 }
1546
1547 /**
1548 * __fraction - Compute (an approximation of) x * (multiplier / base).
1549 */
1550 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1551 {
1552 x *= multiplier;
1553 do_div(x, base);
1554 return (unsigned long)x;
1555 }
1556
1557 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1558 unsigned long highmem,
1559 unsigned long total)
1560 {
1561 unsigned long alloc = __fraction(nr_pages, highmem, total);
1562
1563 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1564 }
1565 #else /* CONFIG_HIGHMEM */
1566 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1567 {
1568 return 0;
1569 }
1570
1571 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1572 unsigned long highmem,
1573 unsigned long total)
1574 {
1575 return 0;
1576 }
1577 #endif /* CONFIG_HIGHMEM */
1578
1579 /**
1580 * free_unnecessary_pages - Release preallocated pages not needed for the image.
1581 */
1582 static unsigned long free_unnecessary_pages(void)
1583 {
1584 unsigned long save, to_free_normal, to_free_highmem, free;
1585
1586 save = count_data_pages();
1587 if (alloc_normal >= save) {
1588 to_free_normal = alloc_normal - save;
1589 save = 0;
1590 } else {
1591 to_free_normal = 0;
1592 save -= alloc_normal;
1593 }
1594 save += count_highmem_pages();
1595 if (alloc_highmem >= save) {
1596 to_free_highmem = alloc_highmem - save;
1597 } else {
1598 to_free_highmem = 0;
1599 save -= alloc_highmem;
1600 if (to_free_normal > save)
1601 to_free_normal -= save;
1602 else
1603 to_free_normal = 0;
1604 }
1605 free = to_free_normal + to_free_highmem;
1606
1607 memory_bm_position_reset(&copy_bm);
1608
1609 while (to_free_normal > 0 || to_free_highmem > 0) {
1610 unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1611 struct page *page = pfn_to_page(pfn);
1612
1613 if (PageHighMem(page)) {
1614 if (!to_free_highmem)
1615 continue;
1616 to_free_highmem--;
1617 alloc_highmem--;
1618 } else {
1619 if (!to_free_normal)
1620 continue;
1621 to_free_normal--;
1622 alloc_normal--;
1623 }
1624 memory_bm_clear_bit(&copy_bm, pfn);
1625 swsusp_unset_page_forbidden(page);
1626 swsusp_unset_page_free(page);
1627 __free_page(page);
1628 }
1629
1630 return free;
1631 }
1632
1633 /**
1634 * minimum_image_size - Estimate the minimum acceptable size of an image.
1635 * @saveable: Number of saveable pages in the system.
1636 *
1637 * We want to avoid attempting to free too much memory too hard, so estimate the
1638 * minimum acceptable size of a hibernation image to use as the lower limit for
1639 * preallocating memory.
1640 *
1641 * We assume that the minimum image size should be proportional to
1642 *
1643 * [number of saveable pages] - [number of pages that can be freed in theory]
1644 *
1645 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1646 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
1647 * minus mapped file pages.
1648 */
1649 static unsigned long minimum_image_size(unsigned long saveable)
1650 {
1651 unsigned long size;
1652
1653 size = global_page_state(NR_SLAB_RECLAIMABLE)
1654 + global_node_page_state(NR_ACTIVE_ANON)
1655 + global_node_page_state(NR_INACTIVE_ANON)
1656 + global_node_page_state(NR_ACTIVE_FILE)
1657 + global_node_page_state(NR_INACTIVE_FILE)
1658 - global_node_page_state(NR_FILE_MAPPED);
1659
1660 return saveable <= size ? 0 : saveable - size;
1661 }
1662
1663 /**
1664 * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1665 *
1666 * To create a hibernation image it is necessary to make a copy of every page
1667 * frame in use. We also need a number of page frames to be free during
1668 * hibernation for allocations made while saving the image and for device
1669 * drivers, in case they need to allocate memory from their hibernation
1670 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1671 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1672 * /sys/power/reserved_size, respectively). To make this happen, we compute the
1673 * total number of available page frames and allocate at least
1674 *
1675 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1676 * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1677 *
1678 * of them, which corresponds to the maximum size of a hibernation image.
1679 *
1680 * If image_size is set below the number following from the above formula,
1681 * the preallocation of memory is continued until the total number of saveable
1682 * pages in the system is below the requested image size or the minimum
1683 * acceptable image size returned by minimum_image_size(), whichever is greater.
1684 */
1685 int hibernate_preallocate_memory(void)
1686 {
1687 struct zone *zone;
1688 unsigned long saveable, size, max_size, count, highmem, pages = 0;
1689 unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1690 ktime_t start, stop;
1691 int error;
1692
1693 printk(KERN_INFO "PM: Preallocating image memory... ");
1694 start = ktime_get();
1695
1696 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1697 if (error)
1698 goto err_out;
1699
1700 error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1701 if (error)
1702 goto err_out;
1703
1704 alloc_normal = 0;
1705 alloc_highmem = 0;
1706
1707 /* Count the number of saveable data pages. */
1708 save_highmem = count_highmem_pages();
1709 saveable = count_data_pages();
1710
1711 /*
1712 * Compute the total number of page frames we can use (count) and the
1713 * number of pages needed for image metadata (size).
1714 */
1715 count = saveable;
1716 saveable += save_highmem;
1717 highmem = save_highmem;
1718 size = 0;
1719 for_each_populated_zone(zone) {
1720 size += snapshot_additional_pages(zone);
1721 if (is_highmem(zone))
1722 highmem += zone_page_state(zone, NR_FREE_PAGES);
1723 else
1724 count += zone_page_state(zone, NR_FREE_PAGES);
1725 }
1726 avail_normal = count;
1727 count += highmem;
1728 count -= totalreserve_pages;
1729
1730 /* Add number of pages required for page keys (s390 only). */
1731 size += page_key_additional_pages(saveable);
1732
1733 /* Compute the maximum number of saveable pages to leave in memory. */
1734 max_size = (count - (size + PAGES_FOR_IO)) / 2
1735 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1736 /* Compute the desired number of image pages specified by image_size. */
1737 size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1738 if (size > max_size)
1739 size = max_size;
1740 /*
1741 * If the desired number of image pages is at least as large as the
1742 * current number of saveable pages in memory, allocate page frames for
1743 * the image and we're done.
1744 */
1745 if (size >= saveable) {
1746 pages = preallocate_image_highmem(save_highmem);
1747 pages += preallocate_image_memory(saveable - pages, avail_normal);
1748 goto out;
1749 }
1750
1751 /* Estimate the minimum size of the image. */
1752 pages = minimum_image_size(saveable);
1753 /*
1754 * To avoid excessive pressure on the normal zone, leave room in it to
1755 * accommodate an image of the minimum size (unless it's already too
1756 * small, in which case don't preallocate pages from it at all).
1757 */
1758 if (avail_normal > pages)
1759 avail_normal -= pages;
1760 else
1761 avail_normal = 0;
1762 if (size < pages)
1763 size = min_t(unsigned long, pages, max_size);
1764
1765 /*
1766 * Let the memory management subsystem know that we're going to need a
1767 * large number of page frames to allocate and make it free some memory.
1768 * NOTE: If this is not done, performance will be hurt badly in some
1769 * test cases.
1770 */
1771 shrink_all_memory(saveable - size);
1772
1773 /*
1774 * The number of saveable pages in memory was too high, so apply some
1775 * pressure to decrease it. First, make room for the largest possible
1776 * image and fail if that doesn't work. Next, try to decrease the size
1777 * of the image as much as indicated by 'size' using allocations from
1778 * highmem and non-highmem zones separately.
1779 */
1780 pages_highmem = preallocate_image_highmem(highmem / 2);
1781 alloc = count - max_size;
1782 if (alloc > pages_highmem)
1783 alloc -= pages_highmem;
1784 else
1785 alloc = 0;
1786 pages = preallocate_image_memory(alloc, avail_normal);
1787 if (pages < alloc) {
1788 /* We have exhausted non-highmem pages, try highmem. */
1789 alloc -= pages;
1790 pages += pages_highmem;
1791 pages_highmem = preallocate_image_highmem(alloc);
1792 if (pages_highmem < alloc)
1793 goto err_out;
1794 pages += pages_highmem;
1795 /*
1796 * size is the desired number of saveable pages to leave in
1797 * memory, so try to preallocate (all memory - size) pages.
1798 */
1799 alloc = (count - pages) - size;
1800 pages += preallocate_image_highmem(alloc);
1801 } else {
1802 /*
1803 * There are approximately max_size saveable pages at this point
1804 * and we want to reduce this number down to size.
1805 */
1806 alloc = max_size - size;
1807 size = preallocate_highmem_fraction(alloc, highmem, count);
1808 pages_highmem += size;
1809 alloc -= size;
1810 size = preallocate_image_memory(alloc, avail_normal);
1811 pages_highmem += preallocate_image_highmem(alloc - size);
1812 pages += pages_highmem + size;
1813 }
1814
1815 /*
1816 * We only need as many page frames for the image as there are saveable
1817 * pages in memory, but we have allocated more. Release the excessive
1818 * ones now.
1819 */
1820 pages -= free_unnecessary_pages();
1821
1822 out:
1823 stop = ktime_get();
1824 printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1825 swsusp_show_speed(start, stop, pages, "Allocated");
1826
1827 return 0;
1828
1829 err_out:
1830 printk(KERN_CONT "\n");
1831 swsusp_free();
1832 return -ENOMEM;
1833 }
1834
1835 #ifdef CONFIG_HIGHMEM
1836 /**
1837 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1838 *
1839 * Compute the number of non-highmem pages that will be necessary for creating
1840 * copies of highmem pages.
1841 */
1842 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1843 {
1844 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1845
1846 if (free_highmem >= nr_highmem)
1847 nr_highmem = 0;
1848 else
1849 nr_highmem -= free_highmem;
1850
1851 return nr_highmem;
1852 }
1853 #else
1854 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1855 #endif /* CONFIG_HIGHMEM */
1856
1857 /**
1858 * enough_free_mem - Check if there is enough free memory for the image.
1859 */
1860 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1861 {
1862 struct zone *zone;
1863 unsigned int free = alloc_normal;
1864
1865 for_each_populated_zone(zone)
1866 if (!is_highmem(zone))
1867 free += zone_page_state(zone, NR_FREE_PAGES);
1868
1869 nr_pages += count_pages_for_highmem(nr_highmem);
1870 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1871 nr_pages, PAGES_FOR_IO, free);
1872
1873 return free > nr_pages + PAGES_FOR_IO;
1874 }
1875
1876 #ifdef CONFIG_HIGHMEM
1877 /**
1878 * get_highmem_buffer - Allocate a buffer for highmem pages.
1879 *
1880 * If there are some highmem pages in the hibernation image, we may need a
1881 * buffer to copy them and/or load their data.
1882 */
1883 static inline int get_highmem_buffer(int safe_needed)
1884 {
1885 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1886 return buffer ? 0 : -ENOMEM;
1887 }
1888
1889 /**
1890 * alloc_highmem_image_pages - Allocate some highmem pages for the image.
1891 *
1892 * Try to allocate as many pages as needed, but if the number of free highmem
1893 * pages is less than that, allocate them all.
1894 */
1895 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1896 unsigned int nr_highmem)
1897 {
1898 unsigned int to_alloc = count_free_highmem_pages();
1899
1900 if (to_alloc > nr_highmem)
1901 to_alloc = nr_highmem;
1902
1903 nr_highmem -= to_alloc;
1904 while (to_alloc-- > 0) {
1905 struct page *page;
1906
1907 page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1908 memory_bm_set_bit(bm, page_to_pfn(page));
1909 }
1910 return nr_highmem;
1911 }
1912 #else
1913 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1914
1915 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1916 unsigned int n) { return 0; }
1917 #endif /* CONFIG_HIGHMEM */
1918
1919 /**
1920 * swsusp_alloc - Allocate memory for hibernation image.
1921 *
1922 * We first try to allocate as many highmem pages as there are
1923 * saveable highmem pages in the system. If that fails, we allocate
1924 * non-highmem pages for the copies of the remaining highmem ones.
1925 *
1926 * In this approach it is likely that the copies of highmem pages will
1927 * also be located in the high memory, because of the way in which
1928 * copy_data_pages() works.
1929 */
1930 static int swsusp_alloc(struct memory_bitmap *copy_bm,
1931 unsigned int nr_pages, unsigned int nr_highmem)
1932 {
1933 if (nr_highmem > 0) {
1934 if (get_highmem_buffer(PG_ANY))
1935 goto err_out;
1936 if (nr_highmem > alloc_highmem) {
1937 nr_highmem -= alloc_highmem;
1938 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1939 }
1940 }
1941 if (nr_pages > alloc_normal) {
1942 nr_pages -= alloc_normal;
1943 while (nr_pages-- > 0) {
1944 struct page *page;
1945
1946 page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1947 if (!page)
1948 goto err_out;
1949 memory_bm_set_bit(copy_bm, page_to_pfn(page));
1950 }
1951 }
1952
1953 return 0;
1954
1955 err_out:
1956 swsusp_free();
1957 return -ENOMEM;
1958 }
1959
1960 asmlinkage __visible int swsusp_save(void)
1961 {
1962 unsigned int nr_pages, nr_highmem;
1963
1964 printk(KERN_INFO "PM: Creating hibernation image:\n");
1965
1966 drain_local_pages(NULL);
1967 nr_pages = count_data_pages();
1968 nr_highmem = count_highmem_pages();
1969 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1970
1971 if (!enough_free_mem(nr_pages, nr_highmem)) {
1972 printk(KERN_ERR "PM: Not enough free memory\n");
1973 return -ENOMEM;
1974 }
1975
1976 if (swsusp_alloc(&copy_bm, nr_pages, nr_highmem)) {
1977 printk(KERN_ERR "PM: Memory allocation failed\n");
1978 return -ENOMEM;
1979 }
1980
1981 /*
1982 * During allocating of suspend pagedir, new cold pages may appear.
1983 * Kill them.
1984 */
1985 drain_local_pages(NULL);
1986 copy_data_pages(&copy_bm, &orig_bm);
1987
1988 /*
1989 * End of critical section. From now on, we can write to memory,
1990 * but we should not touch disk. This specially means we must _not_
1991 * touch swap space! Except we must write out our image of course.
1992 */
1993
1994 nr_pages += nr_highmem;
1995 nr_copy_pages = nr_pages;
1996 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1997
1998 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1999 nr_pages);
2000
2001 return 0;
2002 }
2003
2004 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
2005 static int init_header_complete(struct swsusp_info *info)
2006 {
2007 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
2008 info->version_code = LINUX_VERSION_CODE;
2009 return 0;
2010 }
2011
2012 static char *check_image_kernel(struct swsusp_info *info)
2013 {
2014 if (info->version_code != LINUX_VERSION_CODE)
2015 return "kernel version";
2016 if (strcmp(info->uts.sysname,init_utsname()->sysname))
2017 return "system type";
2018 if (strcmp(info->uts.release,init_utsname()->release))
2019 return "kernel release";
2020 if (strcmp(info->uts.version,init_utsname()->version))
2021 return "version";
2022 if (strcmp(info->uts.machine,init_utsname()->machine))
2023 return "machine";
2024 return NULL;
2025 }
2026 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2027
2028 unsigned long snapshot_get_image_size(void)
2029 {
2030 return nr_copy_pages + nr_meta_pages + 1;
2031 }
2032
2033 static int init_header(struct swsusp_info *info)
2034 {
2035 memset(info, 0, sizeof(struct swsusp_info));
2036 info->num_physpages = get_num_physpages();
2037 info->image_pages = nr_copy_pages;
2038 info->pages = snapshot_get_image_size();
2039 info->size = info->pages;
2040 info->size <<= PAGE_SHIFT;
2041 return init_header_complete(info);
2042 }
2043
2044 /**
2045 * pack_pfns - Prepare PFNs for saving.
2046 * @bm: Memory bitmap.
2047 * @buf: Memory buffer to store the PFNs in.
2048 *
2049 * PFNs corresponding to set bits in @bm are stored in the area of memory
2050 * pointed to by @buf (1 page at a time).
2051 */
2052 static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
2053 {
2054 int j;
2055
2056 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2057 buf[j] = memory_bm_next_pfn(bm);
2058 if (unlikely(buf[j] == BM_END_OF_MAP))
2059 break;
2060 /* Save page key for data page (s390 only). */
2061 page_key_read(buf + j);
2062 }
2063 }
2064
2065 /**
2066 * snapshot_read_next - Get the address to read the next image page from.
2067 * @handle: Snapshot handle to be used for the reading.
2068 *
2069 * On the first call, @handle should point to a zeroed snapshot_handle
2070 * structure. The structure gets populated then and a pointer to it should be
2071 * passed to this function every next time.
2072 *
2073 * On success, the function returns a positive number. Then, the caller
2074 * is allowed to read up to the returned number of bytes from the memory
2075 * location computed by the data_of() macro.
2076 *
2077 * The function returns 0 to indicate the end of the data stream condition,
2078 * and negative numbers are returned on errors. If that happens, the structure
2079 * pointed to by @handle is not updated and should not be used any more.
2080 */
2081 int snapshot_read_next(struct snapshot_handle *handle)
2082 {
2083 if (handle->cur > nr_meta_pages + nr_copy_pages)
2084 return 0;
2085
2086 if (!buffer) {
2087 /* This makes the buffer be freed by swsusp_free() */
2088 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2089 if (!buffer)
2090 return -ENOMEM;
2091 }
2092 if (!handle->cur) {
2093 int error;
2094
2095 error = init_header((struct swsusp_info *)buffer);
2096 if (error)
2097 return error;
2098 handle->buffer = buffer;
2099 memory_bm_position_reset(&orig_bm);
2100 memory_bm_position_reset(&copy_bm);
2101 } else if (handle->cur <= nr_meta_pages) {
2102 clear_page(buffer);
2103 pack_pfns(buffer, &orig_bm);
2104 } else {
2105 struct page *page;
2106
2107 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2108 if (PageHighMem(page)) {
2109 /*
2110 * Highmem pages are copied to the buffer,
2111 * because we can't return with a kmapped
2112 * highmem page (we may not be called again).
2113 */
2114 void *kaddr;
2115
2116 kaddr = kmap_atomic(page);
2117 copy_page(buffer, kaddr);
2118 kunmap_atomic(kaddr);
2119 handle->buffer = buffer;
2120 } else {
2121 handle->buffer = page_address(page);
2122 }
2123 }
2124 handle->cur++;
2125 return PAGE_SIZE;
2126 }
2127
2128 static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2129 struct memory_bitmap *src)
2130 {
2131 unsigned long pfn;
2132
2133 memory_bm_position_reset(src);
2134 pfn = memory_bm_next_pfn(src);
2135 while (pfn != BM_END_OF_MAP) {
2136 memory_bm_set_bit(dst, pfn);
2137 pfn = memory_bm_next_pfn(src);
2138 }
2139 }
2140
2141 /**
2142 * mark_unsafe_pages - Mark pages that were used before hibernation.
2143 *
2144 * Mark the pages that cannot be used for storing the image during restoration,
2145 * because they conflict with the pages that had been used before hibernation.
2146 */
2147 static void mark_unsafe_pages(struct memory_bitmap *bm)
2148 {
2149 unsigned long pfn;
2150
2151 /* Clear the "free"/"unsafe" bit for all PFNs */
2152 memory_bm_position_reset(free_pages_map);
2153 pfn = memory_bm_next_pfn(free_pages_map);
2154 while (pfn != BM_END_OF_MAP) {
2155 memory_bm_clear_current(free_pages_map);
2156 pfn = memory_bm_next_pfn(free_pages_map);
2157 }
2158
2159 /* Mark pages that correspond to the "original" PFNs as "unsafe" */
2160 duplicate_memory_bitmap(free_pages_map, bm);
2161
2162 allocated_unsafe_pages = 0;
2163 }
2164
2165 static int check_header(struct swsusp_info *info)
2166 {
2167 char *reason;
2168
2169 reason = check_image_kernel(info);
2170 if (!reason && info->num_physpages != get_num_physpages())
2171 reason = "memory size";
2172 if (reason) {
2173 printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
2174 return -EPERM;
2175 }
2176 return 0;
2177 }
2178
2179 /**
2180 * load header - Check the image header and copy the data from it.
2181 */
2182 static int load_header(struct swsusp_info *info)
2183 {
2184 int error;
2185
2186 restore_pblist = NULL;
2187 error = check_header(info);
2188 if (!error) {
2189 nr_copy_pages = info->image_pages;
2190 nr_meta_pages = info->pages - info->image_pages - 1;
2191 }
2192 return error;
2193 }
2194
2195 /**
2196 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2197 * @bm: Memory bitmap.
2198 * @buf: Area of memory containing the PFNs.
2199 *
2200 * For each element of the array pointed to by @buf (1 page at a time), set the
2201 * corresponding bit in @bm.
2202 */
2203 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2204 {
2205 int j;
2206
2207 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2208 if (unlikely(buf[j] == BM_END_OF_MAP))
2209 break;
2210
2211 /* Extract and buffer page key for data page (s390 only). */
2212 page_key_memorize(buf + j);
2213
2214 if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j]))
2215 memory_bm_set_bit(bm, buf[j]);
2216 else
2217 return -EFAULT;
2218 }
2219
2220 return 0;
2221 }
2222
2223 #ifdef CONFIG_HIGHMEM
2224 /*
2225 * struct highmem_pbe is used for creating the list of highmem pages that
2226 * should be restored atomically during the resume from disk, because the page
2227 * frames they have occupied before the suspend are in use.
2228 */
2229 struct highmem_pbe {
2230 struct page *copy_page; /* data is here now */
2231 struct page *orig_page; /* data was here before the suspend */
2232 struct highmem_pbe *next;
2233 };
2234
2235 /*
2236 * List of highmem PBEs needed for restoring the highmem pages that were
2237 * allocated before the suspend and included in the suspend image, but have
2238 * also been allocated by the "resume" kernel, so their contents cannot be
2239 * written directly to their "original" page frames.
2240 */
2241 static struct highmem_pbe *highmem_pblist;
2242
2243 /**
2244 * count_highmem_image_pages - Compute the number of highmem pages in the image.
2245 * @bm: Memory bitmap.
2246 *
2247 * The bits in @bm that correspond to image pages are assumed to be set.
2248 */
2249 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2250 {
2251 unsigned long pfn;
2252 unsigned int cnt = 0;
2253
2254 memory_bm_position_reset(bm);
2255 pfn = memory_bm_next_pfn(bm);
2256 while (pfn != BM_END_OF_MAP) {
2257 if (PageHighMem(pfn_to_page(pfn)))
2258 cnt++;
2259
2260 pfn = memory_bm_next_pfn(bm);
2261 }
2262 return cnt;
2263 }
2264
2265 static unsigned int safe_highmem_pages;
2266
2267 static struct memory_bitmap *safe_highmem_bm;
2268
2269 /**
2270 * prepare_highmem_image - Allocate memory for loading highmem data from image.
2271 * @bm: Pointer to an uninitialized memory bitmap structure.
2272 * @nr_highmem_p: Pointer to the number of highmem image pages.
2273 *
2274 * Try to allocate as many highmem pages as there are highmem image pages
2275 * (@nr_highmem_p points to the variable containing the number of highmem image
2276 * pages). The pages that are "safe" (ie. will not be overwritten when the
2277 * hibernation image is restored entirely) have the corresponding bits set in
2278 * @bm (it must be unitialized).
2279 *
2280 * NOTE: This function should not be called if there are no highmem image pages.
2281 */
2282 static int prepare_highmem_image(struct memory_bitmap *bm,
2283 unsigned int *nr_highmem_p)
2284 {
2285 unsigned int to_alloc;
2286
2287 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2288 return -ENOMEM;
2289
2290 if (get_highmem_buffer(PG_SAFE))
2291 return -ENOMEM;
2292
2293 to_alloc = count_free_highmem_pages();
2294 if (to_alloc > *nr_highmem_p)
2295 to_alloc = *nr_highmem_p;
2296 else
2297 *nr_highmem_p = to_alloc;
2298
2299 safe_highmem_pages = 0;
2300 while (to_alloc-- > 0) {
2301 struct page *page;
2302
2303 page = alloc_page(__GFP_HIGHMEM);
2304 if (!swsusp_page_is_free(page)) {
2305 /* The page is "safe", set its bit the bitmap */
2306 memory_bm_set_bit(bm, page_to_pfn(page));
2307 safe_highmem_pages++;
2308 }
2309 /* Mark the page as allocated */
2310 swsusp_set_page_forbidden(page);
2311 swsusp_set_page_free(page);
2312 }
2313 memory_bm_position_reset(bm);
2314 safe_highmem_bm = bm;
2315 return 0;
2316 }
2317
2318 static struct page *last_highmem_page;
2319
2320 /**
2321 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2322 *
2323 * For a given highmem image page get a buffer that suspend_write_next() should
2324 * return to its caller to write to.
2325 *
2326 * If the page is to be saved to its "original" page frame or a copy of
2327 * the page is to be made in the highmem, @buffer is returned. Otherwise,
2328 * the copy of the page is to be made in normal memory, so the address of
2329 * the copy is returned.
2330 *
2331 * If @buffer is returned, the caller of suspend_write_next() will write
2332 * the page's contents to @buffer, so they will have to be copied to the
2333 * right location on the next call to suspend_write_next() and it is done
2334 * with the help of copy_last_highmem_page(). For this purpose, if
2335 * @buffer is returned, @last_highmem_page is set to the page to which
2336 * the data will have to be copied from @buffer.
2337 */
2338 static void *get_highmem_page_buffer(struct page *page,
2339 struct chain_allocator *ca)
2340 {
2341 struct highmem_pbe *pbe;
2342 void *kaddr;
2343
2344 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2345 /*
2346 * We have allocated the "original" page frame and we can
2347 * use it directly to store the loaded page.
2348 */
2349 last_highmem_page = page;
2350 return buffer;
2351 }
2352 /*
2353 * The "original" page frame has not been allocated and we have to
2354 * use a "safe" page frame to store the loaded page.
2355 */
2356 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2357 if (!pbe) {
2358 swsusp_free();
2359 return ERR_PTR(-ENOMEM);
2360 }
2361 pbe->orig_page = page;
2362 if (safe_highmem_pages > 0) {
2363 struct page *tmp;
2364
2365 /* Copy of the page will be stored in high memory */
2366 kaddr = buffer;
2367 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2368 safe_highmem_pages--;
2369 last_highmem_page = tmp;
2370 pbe->copy_page = tmp;
2371 } else {
2372 /* Copy of the page will be stored in normal memory */
2373 kaddr = safe_pages_list;
2374 safe_pages_list = safe_pages_list->next;
2375 pbe->copy_page = virt_to_page(kaddr);
2376 }
2377 pbe->next = highmem_pblist;
2378 highmem_pblist = pbe;
2379 return kaddr;
2380 }
2381
2382 /**
2383 * copy_last_highmem_page - Copy most the most recent highmem image page.
2384 *
2385 * Copy the contents of a highmem image from @buffer, where the caller of
2386 * snapshot_write_next() has stored them, to the right location represented by
2387 * @last_highmem_page .
2388 */
2389 static void copy_last_highmem_page(void)
2390 {
2391 if (last_highmem_page) {
2392 void *dst;
2393
2394 dst = kmap_atomic(last_highmem_page);
2395 copy_page(dst, buffer);
2396 kunmap_atomic(dst);
2397 last_highmem_page = NULL;
2398 }
2399 }
2400
2401 static inline int last_highmem_page_copied(void)
2402 {
2403 return !last_highmem_page;
2404 }
2405
2406 static inline void free_highmem_data(void)
2407 {
2408 if (safe_highmem_bm)
2409 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2410
2411 if (buffer)
2412 free_image_page(buffer, PG_UNSAFE_CLEAR);
2413 }
2414 #else
2415 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2416
2417 static inline int prepare_highmem_image(struct memory_bitmap *bm,
2418 unsigned int *nr_highmem_p) { return 0; }
2419
2420 static inline void *get_highmem_page_buffer(struct page *page,
2421 struct chain_allocator *ca)
2422 {
2423 return ERR_PTR(-EINVAL);
2424 }
2425
2426 static inline void copy_last_highmem_page(void) {}
2427 static inline int last_highmem_page_copied(void) { return 1; }
2428 static inline void free_highmem_data(void) {}
2429 #endif /* CONFIG_HIGHMEM */
2430
2431 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2432
2433 /**
2434 * prepare_image - Make room for loading hibernation image.
2435 * @new_bm: Unitialized memory bitmap structure.
2436 * @bm: Memory bitmap with unsafe pages marked.
2437 *
2438 * Use @bm to mark the pages that will be overwritten in the process of
2439 * restoring the system memory state from the suspend image ("unsafe" pages)
2440 * and allocate memory for the image.
2441 *
2442 * The idea is to allocate a new memory bitmap first and then allocate
2443 * as many pages as needed for image data, but without specifying what those
2444 * pages will be used for just yet. Instead, we mark them all as allocated and
2445 * create a lists of "safe" pages to be used later. On systems with high
2446 * memory a list of "safe" highmem pages is created too.
2447 */
2448 static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2449 {
2450 unsigned int nr_pages, nr_highmem;
2451 struct linked_page *lp;
2452 int error;
2453
2454 /* If there is no highmem, the buffer will not be necessary */
2455 free_image_page(buffer, PG_UNSAFE_CLEAR);
2456 buffer = NULL;
2457
2458 nr_highmem = count_highmem_image_pages(bm);
2459 mark_unsafe_pages(bm);
2460
2461 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2462 if (error)
2463 goto Free;
2464
2465 duplicate_memory_bitmap(new_bm, bm);
2466 memory_bm_free(bm, PG_UNSAFE_KEEP);
2467 if (nr_highmem > 0) {
2468 error = prepare_highmem_image(bm, &nr_highmem);
2469 if (error)
2470 goto Free;
2471 }
2472 /*
2473 * Reserve some safe pages for potential later use.
2474 *
2475 * NOTE: This way we make sure there will be enough safe pages for the
2476 * chain_alloc() in get_buffer(). It is a bit wasteful, but
2477 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2478 *
2479 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2480 */
2481 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2482 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2483 while (nr_pages > 0) {
2484 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2485 if (!lp) {
2486 error = -ENOMEM;
2487 goto Free;
2488 }
2489 lp->next = safe_pages_list;
2490 safe_pages_list = lp;
2491 nr_pages--;
2492 }
2493 /* Preallocate memory for the image */
2494 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2495 while (nr_pages > 0) {
2496 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2497 if (!lp) {
2498 error = -ENOMEM;
2499 goto Free;
2500 }
2501 if (!swsusp_page_is_free(virt_to_page(lp))) {
2502 /* The page is "safe", add it to the list */
2503 lp->next = safe_pages_list;
2504 safe_pages_list = lp;
2505 }
2506 /* Mark the page as allocated */
2507 swsusp_set_page_forbidden(virt_to_page(lp));
2508 swsusp_set_page_free(virt_to_page(lp));
2509 nr_pages--;
2510 }
2511 return 0;
2512
2513 Free:
2514 swsusp_free();
2515 return error;
2516 }
2517
2518 /**
2519 * get_buffer - Get the address to store the next image data page.
2520 *
2521 * Get the address that snapshot_write_next() should return to its caller to
2522 * write to.
2523 */
2524 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2525 {
2526 struct pbe *pbe;
2527 struct page *page;
2528 unsigned long pfn = memory_bm_next_pfn(bm);
2529
2530 if (pfn == BM_END_OF_MAP)
2531 return ERR_PTR(-EFAULT);
2532
2533 page = pfn_to_page(pfn);
2534 if (PageHighMem(page))
2535 return get_highmem_page_buffer(page, ca);
2536
2537 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2538 /*
2539 * We have allocated the "original" page frame and we can
2540 * use it directly to store the loaded page.
2541 */
2542 return page_address(page);
2543
2544 /*
2545 * The "original" page frame has not been allocated and we have to
2546 * use a "safe" page frame to store the loaded page.
2547 */
2548 pbe = chain_alloc(ca, sizeof(struct pbe));
2549 if (!pbe) {
2550 swsusp_free();
2551 return ERR_PTR(-ENOMEM);
2552 }
2553 pbe->orig_address = page_address(page);
2554 pbe->address = safe_pages_list;
2555 safe_pages_list = safe_pages_list->next;
2556 pbe->next = restore_pblist;
2557 restore_pblist = pbe;
2558 return pbe->address;
2559 }
2560
2561 /**
2562 * snapshot_write_next - Get the address to store the next image page.
2563 * @handle: Snapshot handle structure to guide the writing.
2564 *
2565 * On the first call, @handle should point to a zeroed snapshot_handle
2566 * structure. The structure gets populated then and a pointer to it should be
2567 * passed to this function every next time.
2568 *
2569 * On success, the function returns a positive number. Then, the caller
2570 * is allowed to write up to the returned number of bytes to the memory
2571 * location computed by the data_of() macro.
2572 *
2573 * The function returns 0 to indicate the "end of file" condition. Negative
2574 * numbers are returned on errors, in which cases the structure pointed to by
2575 * @handle is not updated and should not be used any more.
2576 */
2577 int snapshot_write_next(struct snapshot_handle *handle)
2578 {
2579 static struct chain_allocator ca;
2580 int error = 0;
2581
2582 /* Check if we have already loaded the entire image */
2583 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2584 return 0;
2585
2586 handle->sync_read = 1;
2587
2588 if (!handle->cur) {
2589 if (!buffer)
2590 /* This makes the buffer be freed by swsusp_free() */
2591 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2592
2593 if (!buffer)
2594 return -ENOMEM;
2595
2596 handle->buffer = buffer;
2597 } else if (handle->cur == 1) {
2598 error = load_header(buffer);
2599 if (error)
2600 return error;
2601
2602 safe_pages_list = NULL;
2603
2604 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2605 if (error)
2606 return error;
2607
2608 /* Allocate buffer for page keys. */
2609 error = page_key_alloc(nr_copy_pages);
2610 if (error)
2611 return error;
2612
2613 hibernate_restore_protection_begin();
2614 } else if (handle->cur <= nr_meta_pages + 1) {
2615 error = unpack_orig_pfns(buffer, &copy_bm);
2616 if (error)
2617 return error;
2618
2619 if (handle->cur == nr_meta_pages + 1) {
2620 error = prepare_image(&orig_bm, &copy_bm);
2621 if (error)
2622 return error;
2623
2624 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2625 memory_bm_position_reset(&orig_bm);
2626 restore_pblist = NULL;
2627 handle->buffer = get_buffer(&orig_bm, &ca);
2628 handle->sync_read = 0;
2629 if (IS_ERR(handle->buffer))
2630 return PTR_ERR(handle->buffer);
2631 }
2632 } else {
2633 copy_last_highmem_page();
2634 /* Restore page key for data page (s390 only). */
2635 page_key_write(handle->buffer);
2636 hibernate_restore_protect_page(handle->buffer);
2637 handle->buffer = get_buffer(&orig_bm, &ca);
2638 if (IS_ERR(handle->buffer))
2639 return PTR_ERR(handle->buffer);
2640 if (handle->buffer != buffer)
2641 handle->sync_read = 0;
2642 }
2643 handle->cur++;
2644 return PAGE_SIZE;
2645 }
2646
2647 /**
2648 * snapshot_write_finalize - Complete the loading of a hibernation image.
2649 *
2650 * Must be called after the last call to snapshot_write_next() in case the last
2651 * page in the image happens to be a highmem page and its contents should be
2652 * stored in highmem. Additionally, it recycles bitmap memory that's not
2653 * necessary any more.
2654 */
2655 void snapshot_write_finalize(struct snapshot_handle *handle)
2656 {
2657 copy_last_highmem_page();
2658 /* Restore page key for data page (s390 only). */
2659 page_key_write(handle->buffer);
2660 page_key_free();
2661 hibernate_restore_protect_page(handle->buffer);
2662 /* Do that only if we have loaded the image entirely */
2663 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2664 memory_bm_recycle(&orig_bm);
2665 free_highmem_data();
2666 }
2667 }
2668
2669 int snapshot_image_loaded(struct snapshot_handle *handle)
2670 {
2671 return !(!nr_copy_pages || !last_highmem_page_copied() ||
2672 handle->cur <= nr_meta_pages + nr_copy_pages);
2673 }
2674
2675 #ifdef CONFIG_HIGHMEM
2676 /* Assumes that @buf is ready and points to a "safe" page */
2677 static inline void swap_two_pages_data(struct page *p1, struct page *p2,
2678 void *buf)
2679 {
2680 void *kaddr1, *kaddr2;
2681
2682 kaddr1 = kmap_atomic(p1);
2683 kaddr2 = kmap_atomic(p2);
2684 copy_page(buf, kaddr1);
2685 copy_page(kaddr1, kaddr2);
2686 copy_page(kaddr2, buf);
2687 kunmap_atomic(kaddr2);
2688 kunmap_atomic(kaddr1);
2689 }
2690
2691 /**
2692 * restore_highmem - Put highmem image pages into their original locations.
2693 *
2694 * For each highmem page that was in use before hibernation and is included in
2695 * the image, and also has been allocated by the "restore" kernel, swap its
2696 * current contents with the previous (ie. "before hibernation") ones.
2697 *
2698 * If the restore eventually fails, we can call this function once again and
2699 * restore the highmem state as seen by the restore kernel.
2700 */
2701 int restore_highmem(void)
2702 {
2703 struct highmem_pbe *pbe = highmem_pblist;
2704 void *buf;
2705
2706 if (!pbe)
2707 return 0;
2708
2709 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2710 if (!buf)
2711 return -ENOMEM;
2712
2713 while (pbe) {
2714 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2715 pbe = pbe->next;
2716 }
2717 free_image_page(buf, PG_UNSAFE_CLEAR);
2718 return 0;
2719 }
2720 #endif /* CONFIG_HIGHMEM */