]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/power/snapshot.c
x86/speculation/mds: Conditionally clear CPU buffers on idle entry
[mirror_ubuntu-bionic-kernel.git] / kernel / power / snapshot.c
1 /*
2 * linux/kernel/power/snapshot.c
3 *
4 * This file provides system snapshot/restore functionality for swsusp.
5 *
6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8 *
9 * This file is released under the GPLv2.
10 *
11 */
12
13 #define pr_fmt(fmt) "PM: " fmt
14
15 #include <linux/version.h>
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/bitops.h>
21 #include <linux/spinlock.h>
22 #include <linux/kernel.h>
23 #include <linux/pm.h>
24 #include <linux/device.h>
25 #include <linux/init.h>
26 #include <linux/bootmem.h>
27 #include <linux/nmi.h>
28 #include <linux/syscalls.h>
29 #include <linux/console.h>
30 #include <linux/highmem.h>
31 #include <linux/list.h>
32 #include <linux/slab.h>
33 #include <linux/compiler.h>
34 #include <linux/ktime.h>
35 #include <linux/set_memory.h>
36
37 #include <linux/uaccess.h>
38 #include <asm/mmu_context.h>
39 #include <asm/pgtable.h>
40 #include <asm/tlbflush.h>
41 #include <asm/io.h>
42
43 #include "power.h"
44
45 #if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY)
46 static bool hibernate_restore_protection;
47 static bool hibernate_restore_protection_active;
48
49 void enable_restore_image_protection(void)
50 {
51 hibernate_restore_protection = true;
52 }
53
54 static inline void hibernate_restore_protection_begin(void)
55 {
56 hibernate_restore_protection_active = hibernate_restore_protection;
57 }
58
59 static inline void hibernate_restore_protection_end(void)
60 {
61 hibernate_restore_protection_active = false;
62 }
63
64 static inline void hibernate_restore_protect_page(void *page_address)
65 {
66 if (hibernate_restore_protection_active)
67 set_memory_ro((unsigned long)page_address, 1);
68 }
69
70 static inline void hibernate_restore_unprotect_page(void *page_address)
71 {
72 if (hibernate_restore_protection_active)
73 set_memory_rw((unsigned long)page_address, 1);
74 }
75 #else
76 static inline void hibernate_restore_protection_begin(void) {}
77 static inline void hibernate_restore_protection_end(void) {}
78 static inline void hibernate_restore_protect_page(void *page_address) {}
79 static inline void hibernate_restore_unprotect_page(void *page_address) {}
80 #endif /* CONFIG_STRICT_KERNEL_RWX && CONFIG_ARCH_HAS_SET_MEMORY */
81
82 static int swsusp_page_is_free(struct page *);
83 static void swsusp_set_page_forbidden(struct page *);
84 static void swsusp_unset_page_forbidden(struct page *);
85
86 /*
87 * Number of bytes to reserve for memory allocations made by device drivers
88 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
89 * cause image creation to fail (tunable via /sys/power/reserved_size).
90 */
91 unsigned long reserved_size;
92
93 void __init hibernate_reserved_size_init(void)
94 {
95 reserved_size = SPARE_PAGES * PAGE_SIZE;
96 }
97
98 /*
99 * Preferred image size in bytes (tunable via /sys/power/image_size).
100 * When it is set to N, swsusp will do its best to ensure the image
101 * size will not exceed N bytes, but if that is impossible, it will
102 * try to create the smallest image possible.
103 */
104 unsigned long image_size;
105
106 void __init hibernate_image_size_init(void)
107 {
108 image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
109 }
110
111 /*
112 * List of PBEs needed for restoring the pages that were allocated before
113 * the suspend and included in the suspend image, but have also been
114 * allocated by the "resume" kernel, so their contents cannot be written
115 * directly to their "original" page frames.
116 */
117 struct pbe *restore_pblist;
118
119 /* struct linked_page is used to build chains of pages */
120
121 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
122
123 struct linked_page {
124 struct linked_page *next;
125 char data[LINKED_PAGE_DATA_SIZE];
126 } __packed;
127
128 /*
129 * List of "safe" pages (ie. pages that were not used by the image kernel
130 * before hibernation) that may be used as temporary storage for image kernel
131 * memory contents.
132 */
133 static struct linked_page *safe_pages_list;
134
135 /* Pointer to an auxiliary buffer (1 page) */
136 static void *buffer;
137
138 #define PG_ANY 0
139 #define PG_SAFE 1
140 #define PG_UNSAFE_CLEAR 1
141 #define PG_UNSAFE_KEEP 0
142
143 static unsigned int allocated_unsafe_pages;
144
145 /**
146 * get_image_page - Allocate a page for a hibernation image.
147 * @gfp_mask: GFP mask for the allocation.
148 * @safe_needed: Get pages that were not used before hibernation (restore only)
149 *
150 * During image restoration, for storing the PBE list and the image data, we can
151 * only use memory pages that do not conflict with the pages used before
152 * hibernation. The "unsafe" pages have PageNosaveFree set and we count them
153 * using allocated_unsafe_pages.
154 *
155 * Each allocated image page is marked as PageNosave and PageNosaveFree so that
156 * swsusp_free() can release it.
157 */
158 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
159 {
160 void *res;
161
162 res = (void *)get_zeroed_page(gfp_mask);
163 if (safe_needed)
164 while (res && swsusp_page_is_free(virt_to_page(res))) {
165 /* The page is unsafe, mark it for swsusp_free() */
166 swsusp_set_page_forbidden(virt_to_page(res));
167 allocated_unsafe_pages++;
168 res = (void *)get_zeroed_page(gfp_mask);
169 }
170 if (res) {
171 swsusp_set_page_forbidden(virt_to_page(res));
172 swsusp_set_page_free(virt_to_page(res));
173 }
174 return res;
175 }
176
177 static void *__get_safe_page(gfp_t gfp_mask)
178 {
179 if (safe_pages_list) {
180 void *ret = safe_pages_list;
181
182 safe_pages_list = safe_pages_list->next;
183 memset(ret, 0, PAGE_SIZE);
184 return ret;
185 }
186 return get_image_page(gfp_mask, PG_SAFE);
187 }
188
189 unsigned long get_safe_page(gfp_t gfp_mask)
190 {
191 return (unsigned long)__get_safe_page(gfp_mask);
192 }
193
194 static struct page *alloc_image_page(gfp_t gfp_mask)
195 {
196 struct page *page;
197
198 page = alloc_page(gfp_mask);
199 if (page) {
200 swsusp_set_page_forbidden(page);
201 swsusp_set_page_free(page);
202 }
203 return page;
204 }
205
206 static void recycle_safe_page(void *page_address)
207 {
208 struct linked_page *lp = page_address;
209
210 lp->next = safe_pages_list;
211 safe_pages_list = lp;
212 }
213
214 /**
215 * free_image_page - Free a page allocated for hibernation image.
216 * @addr: Address of the page to free.
217 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
218 *
219 * The page to free should have been allocated by get_image_page() (page flags
220 * set by it are affected).
221 */
222 static inline void free_image_page(void *addr, int clear_nosave_free)
223 {
224 struct page *page;
225
226 BUG_ON(!virt_addr_valid(addr));
227
228 page = virt_to_page(addr);
229
230 swsusp_unset_page_forbidden(page);
231 if (clear_nosave_free)
232 swsusp_unset_page_free(page);
233
234 __free_page(page);
235 }
236
237 static inline void free_list_of_pages(struct linked_page *list,
238 int clear_page_nosave)
239 {
240 while (list) {
241 struct linked_page *lp = list->next;
242
243 free_image_page(list, clear_page_nosave);
244 list = lp;
245 }
246 }
247
248 /*
249 * struct chain_allocator is used for allocating small objects out of
250 * a linked list of pages called 'the chain'.
251 *
252 * The chain grows each time when there is no room for a new object in
253 * the current page. The allocated objects cannot be freed individually.
254 * It is only possible to free them all at once, by freeing the entire
255 * chain.
256 *
257 * NOTE: The chain allocator may be inefficient if the allocated objects
258 * are not much smaller than PAGE_SIZE.
259 */
260 struct chain_allocator {
261 struct linked_page *chain; /* the chain */
262 unsigned int used_space; /* total size of objects allocated out
263 of the current page */
264 gfp_t gfp_mask; /* mask for allocating pages */
265 int safe_needed; /* if set, only "safe" pages are allocated */
266 };
267
268 static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
269 int safe_needed)
270 {
271 ca->chain = NULL;
272 ca->used_space = LINKED_PAGE_DATA_SIZE;
273 ca->gfp_mask = gfp_mask;
274 ca->safe_needed = safe_needed;
275 }
276
277 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
278 {
279 void *ret;
280
281 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
282 struct linked_page *lp;
283
284 lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
285 get_image_page(ca->gfp_mask, PG_ANY);
286 if (!lp)
287 return NULL;
288
289 lp->next = ca->chain;
290 ca->chain = lp;
291 ca->used_space = 0;
292 }
293 ret = ca->chain->data + ca->used_space;
294 ca->used_space += size;
295 return ret;
296 }
297
298 /**
299 * Data types related to memory bitmaps.
300 *
301 * Memory bitmap is a structure consiting of many linked lists of
302 * objects. The main list's elements are of type struct zone_bitmap
303 * and each of them corresonds to one zone. For each zone bitmap
304 * object there is a list of objects of type struct bm_block that
305 * represent each blocks of bitmap in which information is stored.
306 *
307 * struct memory_bitmap contains a pointer to the main list of zone
308 * bitmap objects, a struct bm_position used for browsing the bitmap,
309 * and a pointer to the list of pages used for allocating all of the
310 * zone bitmap objects and bitmap block objects.
311 *
312 * NOTE: It has to be possible to lay out the bitmap in memory
313 * using only allocations of order 0. Additionally, the bitmap is
314 * designed to work with arbitrary number of zones (this is over the
315 * top for now, but let's avoid making unnecessary assumptions ;-).
316 *
317 * struct zone_bitmap contains a pointer to a list of bitmap block
318 * objects and a pointer to the bitmap block object that has been
319 * most recently used for setting bits. Additionally, it contains the
320 * PFNs that correspond to the start and end of the represented zone.
321 *
322 * struct bm_block contains a pointer to the memory page in which
323 * information is stored (in the form of a block of bitmap)
324 * It also contains the pfns that correspond to the start and end of
325 * the represented memory area.
326 *
327 * The memory bitmap is organized as a radix tree to guarantee fast random
328 * access to the bits. There is one radix tree for each zone (as returned
329 * from create_mem_extents).
330 *
331 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
332 * two linked lists for the nodes of the tree, one for the inner nodes and
333 * one for the leave nodes. The linked leave nodes are used for fast linear
334 * access of the memory bitmap.
335 *
336 * The struct rtree_node represents one node of the radix tree.
337 */
338
339 #define BM_END_OF_MAP (~0UL)
340
341 #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
342 #define BM_BLOCK_SHIFT (PAGE_SHIFT + 3)
343 #define BM_BLOCK_MASK ((1UL << BM_BLOCK_SHIFT) - 1)
344
345 /*
346 * struct rtree_node is a wrapper struct to link the nodes
347 * of the rtree together for easy linear iteration over
348 * bits and easy freeing
349 */
350 struct rtree_node {
351 struct list_head list;
352 unsigned long *data;
353 };
354
355 /*
356 * struct mem_zone_bm_rtree represents a bitmap used for one
357 * populated memory zone.
358 */
359 struct mem_zone_bm_rtree {
360 struct list_head list; /* Link Zones together */
361 struct list_head nodes; /* Radix Tree inner nodes */
362 struct list_head leaves; /* Radix Tree leaves */
363 unsigned long start_pfn; /* Zone start page frame */
364 unsigned long end_pfn; /* Zone end page frame + 1 */
365 struct rtree_node *rtree; /* Radix Tree Root */
366 int levels; /* Number of Radix Tree Levels */
367 unsigned int blocks; /* Number of Bitmap Blocks */
368 };
369
370 /* strcut bm_position is used for browsing memory bitmaps */
371
372 struct bm_position {
373 struct mem_zone_bm_rtree *zone;
374 struct rtree_node *node;
375 unsigned long node_pfn;
376 int node_bit;
377 };
378
379 struct memory_bitmap {
380 struct list_head zones;
381 struct linked_page *p_list; /* list of pages used to store zone
382 bitmap objects and bitmap block
383 objects */
384 struct bm_position cur; /* most recently used bit position */
385 };
386
387 /* Functions that operate on memory bitmaps */
388
389 #define BM_ENTRIES_PER_LEVEL (PAGE_SIZE / sizeof(unsigned long))
390 #if BITS_PER_LONG == 32
391 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 2)
392 #else
393 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 3)
394 #endif
395 #define BM_RTREE_LEVEL_MASK ((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
396
397 /**
398 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
399 *
400 * This function is used to allocate inner nodes as well as the
401 * leave nodes of the radix tree. It also adds the node to the
402 * corresponding linked list passed in by the *list parameter.
403 */
404 static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
405 struct chain_allocator *ca,
406 struct list_head *list)
407 {
408 struct rtree_node *node;
409
410 node = chain_alloc(ca, sizeof(struct rtree_node));
411 if (!node)
412 return NULL;
413
414 node->data = get_image_page(gfp_mask, safe_needed);
415 if (!node->data)
416 return NULL;
417
418 list_add_tail(&node->list, list);
419
420 return node;
421 }
422
423 /**
424 * add_rtree_block - Add a new leave node to the radix tree.
425 *
426 * The leave nodes need to be allocated in order to keep the leaves
427 * linked list in order. This is guaranteed by the zone->blocks
428 * counter.
429 */
430 static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
431 int safe_needed, struct chain_allocator *ca)
432 {
433 struct rtree_node *node, *block, **dst;
434 unsigned int levels_needed, block_nr;
435 int i;
436
437 block_nr = zone->blocks;
438 levels_needed = 0;
439
440 /* How many levels do we need for this block nr? */
441 while (block_nr) {
442 levels_needed += 1;
443 block_nr >>= BM_RTREE_LEVEL_SHIFT;
444 }
445
446 /* Make sure the rtree has enough levels */
447 for (i = zone->levels; i < levels_needed; i++) {
448 node = alloc_rtree_node(gfp_mask, safe_needed, ca,
449 &zone->nodes);
450 if (!node)
451 return -ENOMEM;
452
453 node->data[0] = (unsigned long)zone->rtree;
454 zone->rtree = node;
455 zone->levels += 1;
456 }
457
458 /* Allocate new block */
459 block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
460 if (!block)
461 return -ENOMEM;
462
463 /* Now walk the rtree to insert the block */
464 node = zone->rtree;
465 dst = &zone->rtree;
466 block_nr = zone->blocks;
467 for (i = zone->levels; i > 0; i--) {
468 int index;
469
470 if (!node) {
471 node = alloc_rtree_node(gfp_mask, safe_needed, ca,
472 &zone->nodes);
473 if (!node)
474 return -ENOMEM;
475 *dst = node;
476 }
477
478 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
479 index &= BM_RTREE_LEVEL_MASK;
480 dst = (struct rtree_node **)&((*dst)->data[index]);
481 node = *dst;
482 }
483
484 zone->blocks += 1;
485 *dst = block;
486
487 return 0;
488 }
489
490 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
491 int clear_nosave_free);
492
493 /**
494 * create_zone_bm_rtree - Create a radix tree for one zone.
495 *
496 * Allocated the mem_zone_bm_rtree structure and initializes it.
497 * This function also allocated and builds the radix tree for the
498 * zone.
499 */
500 static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
501 int safe_needed,
502 struct chain_allocator *ca,
503 unsigned long start,
504 unsigned long end)
505 {
506 struct mem_zone_bm_rtree *zone;
507 unsigned int i, nr_blocks;
508 unsigned long pages;
509
510 pages = end - start;
511 zone = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
512 if (!zone)
513 return NULL;
514
515 INIT_LIST_HEAD(&zone->nodes);
516 INIT_LIST_HEAD(&zone->leaves);
517 zone->start_pfn = start;
518 zone->end_pfn = end;
519 nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
520
521 for (i = 0; i < nr_blocks; i++) {
522 if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
523 free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
524 return NULL;
525 }
526 }
527
528 return zone;
529 }
530
531 /**
532 * free_zone_bm_rtree - Free the memory of the radix tree.
533 *
534 * Free all node pages of the radix tree. The mem_zone_bm_rtree
535 * structure itself is not freed here nor are the rtree_node
536 * structs.
537 */
538 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
539 int clear_nosave_free)
540 {
541 struct rtree_node *node;
542
543 list_for_each_entry(node, &zone->nodes, list)
544 free_image_page(node->data, clear_nosave_free);
545
546 list_for_each_entry(node, &zone->leaves, list)
547 free_image_page(node->data, clear_nosave_free);
548 }
549
550 static void memory_bm_position_reset(struct memory_bitmap *bm)
551 {
552 bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
553 list);
554 bm->cur.node = list_entry(bm->cur.zone->leaves.next,
555 struct rtree_node, list);
556 bm->cur.node_pfn = 0;
557 bm->cur.node_bit = 0;
558 }
559
560 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
561
562 struct mem_extent {
563 struct list_head hook;
564 unsigned long start;
565 unsigned long end;
566 };
567
568 /**
569 * free_mem_extents - Free a list of memory extents.
570 * @list: List of extents to free.
571 */
572 static void free_mem_extents(struct list_head *list)
573 {
574 struct mem_extent *ext, *aux;
575
576 list_for_each_entry_safe(ext, aux, list, hook) {
577 list_del(&ext->hook);
578 kfree(ext);
579 }
580 }
581
582 /**
583 * create_mem_extents - Create a list of memory extents.
584 * @list: List to put the extents into.
585 * @gfp_mask: Mask to use for memory allocations.
586 *
587 * The extents represent contiguous ranges of PFNs.
588 */
589 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
590 {
591 struct zone *zone;
592
593 INIT_LIST_HEAD(list);
594
595 for_each_populated_zone(zone) {
596 unsigned long zone_start, zone_end;
597 struct mem_extent *ext, *cur, *aux;
598
599 zone_start = zone->zone_start_pfn;
600 zone_end = zone_end_pfn(zone);
601
602 list_for_each_entry(ext, list, hook)
603 if (zone_start <= ext->end)
604 break;
605
606 if (&ext->hook == list || zone_end < ext->start) {
607 /* New extent is necessary */
608 struct mem_extent *new_ext;
609
610 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
611 if (!new_ext) {
612 free_mem_extents(list);
613 return -ENOMEM;
614 }
615 new_ext->start = zone_start;
616 new_ext->end = zone_end;
617 list_add_tail(&new_ext->hook, &ext->hook);
618 continue;
619 }
620
621 /* Merge this zone's range of PFNs with the existing one */
622 if (zone_start < ext->start)
623 ext->start = zone_start;
624 if (zone_end > ext->end)
625 ext->end = zone_end;
626
627 /* More merging may be possible */
628 cur = ext;
629 list_for_each_entry_safe_continue(cur, aux, list, hook) {
630 if (zone_end < cur->start)
631 break;
632 if (zone_end < cur->end)
633 ext->end = cur->end;
634 list_del(&cur->hook);
635 kfree(cur);
636 }
637 }
638
639 return 0;
640 }
641
642 /**
643 * memory_bm_create - Allocate memory for a memory bitmap.
644 */
645 static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
646 int safe_needed)
647 {
648 struct chain_allocator ca;
649 struct list_head mem_extents;
650 struct mem_extent *ext;
651 int error;
652
653 chain_init(&ca, gfp_mask, safe_needed);
654 INIT_LIST_HEAD(&bm->zones);
655
656 error = create_mem_extents(&mem_extents, gfp_mask);
657 if (error)
658 return error;
659
660 list_for_each_entry(ext, &mem_extents, hook) {
661 struct mem_zone_bm_rtree *zone;
662
663 zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
664 ext->start, ext->end);
665 if (!zone) {
666 error = -ENOMEM;
667 goto Error;
668 }
669 list_add_tail(&zone->list, &bm->zones);
670 }
671
672 bm->p_list = ca.chain;
673 memory_bm_position_reset(bm);
674 Exit:
675 free_mem_extents(&mem_extents);
676 return error;
677
678 Error:
679 bm->p_list = ca.chain;
680 memory_bm_free(bm, PG_UNSAFE_CLEAR);
681 goto Exit;
682 }
683
684 /**
685 * memory_bm_free - Free memory occupied by the memory bitmap.
686 * @bm: Memory bitmap.
687 */
688 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
689 {
690 struct mem_zone_bm_rtree *zone;
691
692 list_for_each_entry(zone, &bm->zones, list)
693 free_zone_bm_rtree(zone, clear_nosave_free);
694
695 free_list_of_pages(bm->p_list, clear_nosave_free);
696
697 INIT_LIST_HEAD(&bm->zones);
698 }
699
700 /**
701 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
702 *
703 * Find the bit in memory bitmap @bm that corresponds to the given PFN.
704 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
705 *
706 * Walk the radix tree to find the page containing the bit that represents @pfn
707 * and return the position of the bit in @addr and @bit_nr.
708 */
709 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
710 void **addr, unsigned int *bit_nr)
711 {
712 struct mem_zone_bm_rtree *curr, *zone;
713 struct rtree_node *node;
714 int i, block_nr;
715
716 zone = bm->cur.zone;
717
718 if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
719 goto zone_found;
720
721 zone = NULL;
722
723 /* Find the right zone */
724 list_for_each_entry(curr, &bm->zones, list) {
725 if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
726 zone = curr;
727 break;
728 }
729 }
730
731 if (!zone)
732 return -EFAULT;
733
734 zone_found:
735 /*
736 * We have found the zone. Now walk the radix tree to find the leaf node
737 * for our PFN.
738 */
739 node = bm->cur.node;
740 if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
741 goto node_found;
742
743 node = zone->rtree;
744 block_nr = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
745
746 for (i = zone->levels; i > 0; i--) {
747 int index;
748
749 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
750 index &= BM_RTREE_LEVEL_MASK;
751 BUG_ON(node->data[index] == 0);
752 node = (struct rtree_node *)node->data[index];
753 }
754
755 node_found:
756 /* Update last position */
757 bm->cur.zone = zone;
758 bm->cur.node = node;
759 bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
760
761 /* Set return values */
762 *addr = node->data;
763 *bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
764
765 return 0;
766 }
767
768 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
769 {
770 void *addr;
771 unsigned int bit;
772 int error;
773
774 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
775 BUG_ON(error);
776 set_bit(bit, addr);
777 }
778
779 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
780 {
781 void *addr;
782 unsigned int bit;
783 int error;
784
785 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
786 if (!error)
787 set_bit(bit, addr);
788
789 return error;
790 }
791
792 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
793 {
794 void *addr;
795 unsigned int bit;
796 int error;
797
798 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
799 BUG_ON(error);
800 clear_bit(bit, addr);
801 }
802
803 static void memory_bm_clear_current(struct memory_bitmap *bm)
804 {
805 int bit;
806
807 bit = max(bm->cur.node_bit - 1, 0);
808 clear_bit(bit, bm->cur.node->data);
809 }
810
811 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
812 {
813 void *addr;
814 unsigned int bit;
815 int error;
816
817 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
818 BUG_ON(error);
819 return test_bit(bit, addr);
820 }
821
822 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
823 {
824 void *addr;
825 unsigned int bit;
826
827 return !memory_bm_find_bit(bm, pfn, &addr, &bit);
828 }
829
830 /*
831 * rtree_next_node - Jump to the next leaf node.
832 *
833 * Set the position to the beginning of the next node in the
834 * memory bitmap. This is either the next node in the current
835 * zone's radix tree or the first node in the radix tree of the
836 * next zone.
837 *
838 * Return true if there is a next node, false otherwise.
839 */
840 static bool rtree_next_node(struct memory_bitmap *bm)
841 {
842 if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
843 bm->cur.node = list_entry(bm->cur.node->list.next,
844 struct rtree_node, list);
845 bm->cur.node_pfn += BM_BITS_PER_BLOCK;
846 bm->cur.node_bit = 0;
847 touch_softlockup_watchdog();
848 return true;
849 }
850
851 /* No more nodes, goto next zone */
852 if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
853 bm->cur.zone = list_entry(bm->cur.zone->list.next,
854 struct mem_zone_bm_rtree, list);
855 bm->cur.node = list_entry(bm->cur.zone->leaves.next,
856 struct rtree_node, list);
857 bm->cur.node_pfn = 0;
858 bm->cur.node_bit = 0;
859 return true;
860 }
861
862 /* No more zones */
863 return false;
864 }
865
866 /**
867 * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap.
868 * @bm: Memory bitmap.
869 *
870 * Starting from the last returned position this function searches for the next
871 * set bit in @bm and returns the PFN represented by it. If no more bits are
872 * set, BM_END_OF_MAP is returned.
873 *
874 * It is required to run memory_bm_position_reset() before the first call to
875 * this function for the given memory bitmap.
876 */
877 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
878 {
879 unsigned long bits, pfn, pages;
880 int bit;
881
882 do {
883 pages = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
884 bits = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
885 bit = find_next_bit(bm->cur.node->data, bits,
886 bm->cur.node_bit);
887 if (bit < bits) {
888 pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
889 bm->cur.node_bit = bit + 1;
890 return pfn;
891 }
892 } while (rtree_next_node(bm));
893
894 return BM_END_OF_MAP;
895 }
896
897 /*
898 * This structure represents a range of page frames the contents of which
899 * should not be saved during hibernation.
900 */
901 struct nosave_region {
902 struct list_head list;
903 unsigned long start_pfn;
904 unsigned long end_pfn;
905 };
906
907 static LIST_HEAD(nosave_regions);
908
909 static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
910 {
911 struct rtree_node *node;
912
913 list_for_each_entry(node, &zone->nodes, list)
914 recycle_safe_page(node->data);
915
916 list_for_each_entry(node, &zone->leaves, list)
917 recycle_safe_page(node->data);
918 }
919
920 static void memory_bm_recycle(struct memory_bitmap *bm)
921 {
922 struct mem_zone_bm_rtree *zone;
923 struct linked_page *p_list;
924
925 list_for_each_entry(zone, &bm->zones, list)
926 recycle_zone_bm_rtree(zone);
927
928 p_list = bm->p_list;
929 while (p_list) {
930 struct linked_page *lp = p_list;
931
932 p_list = lp->next;
933 recycle_safe_page(lp);
934 }
935 }
936
937 /**
938 * register_nosave_region - Register a region of unsaveable memory.
939 *
940 * Register a range of page frames the contents of which should not be saved
941 * during hibernation (to be used in the early initialization code).
942 */
943 void __init __register_nosave_region(unsigned long start_pfn,
944 unsigned long end_pfn, int use_kmalloc)
945 {
946 struct nosave_region *region;
947
948 if (start_pfn >= end_pfn)
949 return;
950
951 if (!list_empty(&nosave_regions)) {
952 /* Try to extend the previous region (they should be sorted) */
953 region = list_entry(nosave_regions.prev,
954 struct nosave_region, list);
955 if (region->end_pfn == start_pfn) {
956 region->end_pfn = end_pfn;
957 goto Report;
958 }
959 }
960 if (use_kmalloc) {
961 /* During init, this shouldn't fail */
962 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
963 BUG_ON(!region);
964 } else {
965 /* This allocation cannot fail */
966 region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
967 }
968 region->start_pfn = start_pfn;
969 region->end_pfn = end_pfn;
970 list_add_tail(&region->list, &nosave_regions);
971 Report:
972 pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n",
973 (unsigned long long) start_pfn << PAGE_SHIFT,
974 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
975 }
976
977 /*
978 * Set bits in this map correspond to the page frames the contents of which
979 * should not be saved during the suspend.
980 */
981 static struct memory_bitmap *forbidden_pages_map;
982
983 /* Set bits in this map correspond to free page frames. */
984 static struct memory_bitmap *free_pages_map;
985
986 /*
987 * Each page frame allocated for creating the image is marked by setting the
988 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
989 */
990
991 void swsusp_set_page_free(struct page *page)
992 {
993 if (free_pages_map)
994 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
995 }
996
997 static int swsusp_page_is_free(struct page *page)
998 {
999 return free_pages_map ?
1000 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
1001 }
1002
1003 void swsusp_unset_page_free(struct page *page)
1004 {
1005 if (free_pages_map)
1006 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1007 }
1008
1009 static void swsusp_set_page_forbidden(struct page *page)
1010 {
1011 if (forbidden_pages_map)
1012 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1013 }
1014
1015 int swsusp_page_is_forbidden(struct page *page)
1016 {
1017 return forbidden_pages_map ?
1018 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1019 }
1020
1021 static void swsusp_unset_page_forbidden(struct page *page)
1022 {
1023 if (forbidden_pages_map)
1024 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1025 }
1026
1027 /**
1028 * mark_nosave_pages - Mark pages that should not be saved.
1029 * @bm: Memory bitmap.
1030 *
1031 * Set the bits in @bm that correspond to the page frames the contents of which
1032 * should not be saved.
1033 */
1034 static void mark_nosave_pages(struct memory_bitmap *bm)
1035 {
1036 struct nosave_region *region;
1037
1038 if (list_empty(&nosave_regions))
1039 return;
1040
1041 list_for_each_entry(region, &nosave_regions, list) {
1042 unsigned long pfn;
1043
1044 pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n",
1045 (unsigned long long) region->start_pfn << PAGE_SHIFT,
1046 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1047 - 1);
1048
1049 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1050 if (pfn_valid(pfn)) {
1051 /*
1052 * It is safe to ignore the result of
1053 * mem_bm_set_bit_check() here, since we won't
1054 * touch the PFNs for which the error is
1055 * returned anyway.
1056 */
1057 mem_bm_set_bit_check(bm, pfn);
1058 }
1059 }
1060 }
1061
1062 /**
1063 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1064 *
1065 * Create bitmaps needed for marking page frames that should not be saved and
1066 * free page frames. The forbidden_pages_map and free_pages_map pointers are
1067 * only modified if everything goes well, because we don't want the bits to be
1068 * touched before both bitmaps are set up.
1069 */
1070 int create_basic_memory_bitmaps(void)
1071 {
1072 struct memory_bitmap *bm1, *bm2;
1073 int error = 0;
1074
1075 if (forbidden_pages_map && free_pages_map)
1076 return 0;
1077 else
1078 BUG_ON(forbidden_pages_map || free_pages_map);
1079
1080 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1081 if (!bm1)
1082 return -ENOMEM;
1083
1084 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1085 if (error)
1086 goto Free_first_object;
1087
1088 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1089 if (!bm2)
1090 goto Free_first_bitmap;
1091
1092 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1093 if (error)
1094 goto Free_second_object;
1095
1096 forbidden_pages_map = bm1;
1097 free_pages_map = bm2;
1098 mark_nosave_pages(forbidden_pages_map);
1099
1100 pr_debug("Basic memory bitmaps created\n");
1101
1102 return 0;
1103
1104 Free_second_object:
1105 kfree(bm2);
1106 Free_first_bitmap:
1107 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1108 Free_first_object:
1109 kfree(bm1);
1110 return -ENOMEM;
1111 }
1112
1113 /**
1114 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1115 *
1116 * Free memory bitmaps allocated by create_basic_memory_bitmaps(). The
1117 * auxiliary pointers are necessary so that the bitmaps themselves are not
1118 * referred to while they are being freed.
1119 */
1120 void free_basic_memory_bitmaps(void)
1121 {
1122 struct memory_bitmap *bm1, *bm2;
1123
1124 if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1125 return;
1126
1127 bm1 = forbidden_pages_map;
1128 bm2 = free_pages_map;
1129 forbidden_pages_map = NULL;
1130 free_pages_map = NULL;
1131 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1132 kfree(bm1);
1133 memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1134 kfree(bm2);
1135
1136 pr_debug("Basic memory bitmaps freed\n");
1137 }
1138
1139 void clear_free_pages(void)
1140 {
1141 #ifdef CONFIG_PAGE_POISONING_ZERO
1142 struct memory_bitmap *bm = free_pages_map;
1143 unsigned long pfn;
1144
1145 if (WARN_ON(!(free_pages_map)))
1146 return;
1147
1148 memory_bm_position_reset(bm);
1149 pfn = memory_bm_next_pfn(bm);
1150 while (pfn != BM_END_OF_MAP) {
1151 if (pfn_valid(pfn))
1152 clear_highpage(pfn_to_page(pfn));
1153
1154 pfn = memory_bm_next_pfn(bm);
1155 }
1156 memory_bm_position_reset(bm);
1157 pr_info("free pages cleared after restore\n");
1158 #endif /* PAGE_POISONING_ZERO */
1159 }
1160
1161 /**
1162 * snapshot_additional_pages - Estimate the number of extra pages needed.
1163 * @zone: Memory zone to carry out the computation for.
1164 *
1165 * Estimate the number of additional pages needed for setting up a hibernation
1166 * image data structures for @zone (usually, the returned value is greater than
1167 * the exact number).
1168 */
1169 unsigned int snapshot_additional_pages(struct zone *zone)
1170 {
1171 unsigned int rtree, nodes;
1172
1173 rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1174 rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1175 LINKED_PAGE_DATA_SIZE);
1176 while (nodes > 1) {
1177 nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1178 rtree += nodes;
1179 }
1180
1181 return 2 * rtree;
1182 }
1183
1184 #ifdef CONFIG_HIGHMEM
1185 /**
1186 * count_free_highmem_pages - Compute the total number of free highmem pages.
1187 *
1188 * The returned number is system-wide.
1189 */
1190 static unsigned int count_free_highmem_pages(void)
1191 {
1192 struct zone *zone;
1193 unsigned int cnt = 0;
1194
1195 for_each_populated_zone(zone)
1196 if (is_highmem(zone))
1197 cnt += zone_page_state(zone, NR_FREE_PAGES);
1198
1199 return cnt;
1200 }
1201
1202 /**
1203 * saveable_highmem_page - Check if a highmem page is saveable.
1204 *
1205 * Determine whether a highmem page should be included in a hibernation image.
1206 *
1207 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1208 * and it isn't part of a free chunk of pages.
1209 */
1210 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1211 {
1212 struct page *page;
1213
1214 if (!pfn_valid(pfn))
1215 return NULL;
1216
1217 page = pfn_to_page(pfn);
1218 if (page_zone(page) != zone)
1219 return NULL;
1220
1221 BUG_ON(!PageHighMem(page));
1222
1223 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) ||
1224 PageReserved(page))
1225 return NULL;
1226
1227 if (page_is_guard(page))
1228 return NULL;
1229
1230 return page;
1231 }
1232
1233 /**
1234 * count_highmem_pages - Compute the total number of saveable highmem pages.
1235 */
1236 static unsigned int count_highmem_pages(void)
1237 {
1238 struct zone *zone;
1239 unsigned int n = 0;
1240
1241 for_each_populated_zone(zone) {
1242 unsigned long pfn, max_zone_pfn;
1243
1244 if (!is_highmem(zone))
1245 continue;
1246
1247 mark_free_pages(zone);
1248 max_zone_pfn = zone_end_pfn(zone);
1249 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1250 if (saveable_highmem_page(zone, pfn))
1251 n++;
1252 }
1253 return n;
1254 }
1255 #else
1256 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1257 {
1258 return NULL;
1259 }
1260 #endif /* CONFIG_HIGHMEM */
1261
1262 /**
1263 * saveable_page - Check if the given page is saveable.
1264 *
1265 * Determine whether a non-highmem page should be included in a hibernation
1266 * image.
1267 *
1268 * We should save the page if it isn't Nosave, and is not in the range
1269 * of pages statically defined as 'unsaveable', and it isn't part of
1270 * a free chunk of pages.
1271 */
1272 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1273 {
1274 struct page *page;
1275
1276 if (!pfn_valid(pfn))
1277 return NULL;
1278
1279 page = pfn_to_page(pfn);
1280 if (page_zone(page) != zone)
1281 return NULL;
1282
1283 BUG_ON(PageHighMem(page));
1284
1285 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1286 return NULL;
1287
1288 if (PageReserved(page)
1289 && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1290 return NULL;
1291
1292 if (page_is_guard(page))
1293 return NULL;
1294
1295 return page;
1296 }
1297
1298 /**
1299 * count_data_pages - Compute the total number of saveable non-highmem pages.
1300 */
1301 static unsigned int count_data_pages(void)
1302 {
1303 struct zone *zone;
1304 unsigned long pfn, max_zone_pfn;
1305 unsigned int n = 0;
1306
1307 for_each_populated_zone(zone) {
1308 if (is_highmem(zone))
1309 continue;
1310
1311 mark_free_pages(zone);
1312 max_zone_pfn = zone_end_pfn(zone);
1313 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1314 if (saveable_page(zone, pfn))
1315 n++;
1316 }
1317 return n;
1318 }
1319
1320 /*
1321 * This is needed, because copy_page and memcpy are not usable for copying
1322 * task structs.
1323 */
1324 static inline void do_copy_page(long *dst, long *src)
1325 {
1326 int n;
1327
1328 for (n = PAGE_SIZE / sizeof(long); n; n--)
1329 *dst++ = *src++;
1330 }
1331
1332 /**
1333 * safe_copy_page - Copy a page in a safe way.
1334 *
1335 * Check if the page we are going to copy is marked as present in the kernel
1336 * page tables (this always is the case if CONFIG_DEBUG_PAGEALLOC is not set
1337 * and in that case kernel_page_present() always returns 'true').
1338 */
1339 static void safe_copy_page(void *dst, struct page *s_page)
1340 {
1341 if (kernel_page_present(s_page)) {
1342 do_copy_page(dst, page_address(s_page));
1343 } else {
1344 kernel_map_pages(s_page, 1, 1);
1345 do_copy_page(dst, page_address(s_page));
1346 kernel_map_pages(s_page, 1, 0);
1347 }
1348 }
1349
1350 #ifdef CONFIG_HIGHMEM
1351 static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
1352 {
1353 return is_highmem(zone) ?
1354 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1355 }
1356
1357 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1358 {
1359 struct page *s_page, *d_page;
1360 void *src, *dst;
1361
1362 s_page = pfn_to_page(src_pfn);
1363 d_page = pfn_to_page(dst_pfn);
1364 if (PageHighMem(s_page)) {
1365 src = kmap_atomic(s_page);
1366 dst = kmap_atomic(d_page);
1367 do_copy_page(dst, src);
1368 kunmap_atomic(dst);
1369 kunmap_atomic(src);
1370 } else {
1371 if (PageHighMem(d_page)) {
1372 /*
1373 * The page pointed to by src may contain some kernel
1374 * data modified by kmap_atomic()
1375 */
1376 safe_copy_page(buffer, s_page);
1377 dst = kmap_atomic(d_page);
1378 copy_page(dst, buffer);
1379 kunmap_atomic(dst);
1380 } else {
1381 safe_copy_page(page_address(d_page), s_page);
1382 }
1383 }
1384 }
1385 #else
1386 #define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
1387
1388 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1389 {
1390 safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1391 pfn_to_page(src_pfn));
1392 }
1393 #endif /* CONFIG_HIGHMEM */
1394
1395 static void copy_data_pages(struct memory_bitmap *copy_bm,
1396 struct memory_bitmap *orig_bm)
1397 {
1398 struct zone *zone;
1399 unsigned long pfn;
1400
1401 for_each_populated_zone(zone) {
1402 unsigned long max_zone_pfn;
1403
1404 mark_free_pages(zone);
1405 max_zone_pfn = zone_end_pfn(zone);
1406 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1407 if (page_is_saveable(zone, pfn))
1408 memory_bm_set_bit(orig_bm, pfn);
1409 }
1410 memory_bm_position_reset(orig_bm);
1411 memory_bm_position_reset(copy_bm);
1412 for(;;) {
1413 pfn = memory_bm_next_pfn(orig_bm);
1414 if (unlikely(pfn == BM_END_OF_MAP))
1415 break;
1416 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1417 }
1418 }
1419
1420 /* Total number of image pages */
1421 static unsigned int nr_copy_pages;
1422 /* Number of pages needed for saving the original pfns of the image pages */
1423 static unsigned int nr_meta_pages;
1424 /*
1425 * Numbers of normal and highmem page frames allocated for hibernation image
1426 * before suspending devices.
1427 */
1428 static unsigned int alloc_normal, alloc_highmem;
1429 /*
1430 * Memory bitmap used for marking saveable pages (during hibernation) or
1431 * hibernation image pages (during restore)
1432 */
1433 static struct memory_bitmap orig_bm;
1434 /*
1435 * Memory bitmap used during hibernation for marking allocated page frames that
1436 * will contain copies of saveable pages. During restore it is initially used
1437 * for marking hibernation image pages, but then the set bits from it are
1438 * duplicated in @orig_bm and it is released. On highmem systems it is next
1439 * used for marking "safe" highmem pages, but it has to be reinitialized for
1440 * this purpose.
1441 */
1442 static struct memory_bitmap copy_bm;
1443
1444 /**
1445 * swsusp_free - Free pages allocated for hibernation image.
1446 *
1447 * Image pages are alocated before snapshot creation, so they need to be
1448 * released after resume.
1449 */
1450 void swsusp_free(void)
1451 {
1452 unsigned long fb_pfn, fr_pfn;
1453
1454 if (!forbidden_pages_map || !free_pages_map)
1455 goto out;
1456
1457 memory_bm_position_reset(forbidden_pages_map);
1458 memory_bm_position_reset(free_pages_map);
1459
1460 loop:
1461 fr_pfn = memory_bm_next_pfn(free_pages_map);
1462 fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1463
1464 /*
1465 * Find the next bit set in both bitmaps. This is guaranteed to
1466 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1467 */
1468 do {
1469 if (fb_pfn < fr_pfn)
1470 fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1471 if (fr_pfn < fb_pfn)
1472 fr_pfn = memory_bm_next_pfn(free_pages_map);
1473 } while (fb_pfn != fr_pfn);
1474
1475 if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1476 struct page *page = pfn_to_page(fr_pfn);
1477
1478 memory_bm_clear_current(forbidden_pages_map);
1479 memory_bm_clear_current(free_pages_map);
1480 hibernate_restore_unprotect_page(page_address(page));
1481 __free_page(page);
1482 goto loop;
1483 }
1484
1485 out:
1486 nr_copy_pages = 0;
1487 nr_meta_pages = 0;
1488 restore_pblist = NULL;
1489 buffer = NULL;
1490 alloc_normal = 0;
1491 alloc_highmem = 0;
1492 hibernate_restore_protection_end();
1493 }
1494
1495 /* Helper functions used for the shrinking of memory. */
1496
1497 #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
1498
1499 /**
1500 * preallocate_image_pages - Allocate a number of pages for hibernation image.
1501 * @nr_pages: Number of page frames to allocate.
1502 * @mask: GFP flags to use for the allocation.
1503 *
1504 * Return value: Number of page frames actually allocated
1505 */
1506 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1507 {
1508 unsigned long nr_alloc = 0;
1509
1510 while (nr_pages > 0) {
1511 struct page *page;
1512
1513 page = alloc_image_page(mask);
1514 if (!page)
1515 break;
1516 memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1517 if (PageHighMem(page))
1518 alloc_highmem++;
1519 else
1520 alloc_normal++;
1521 nr_pages--;
1522 nr_alloc++;
1523 }
1524
1525 return nr_alloc;
1526 }
1527
1528 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1529 unsigned long avail_normal)
1530 {
1531 unsigned long alloc;
1532
1533 if (avail_normal <= alloc_normal)
1534 return 0;
1535
1536 alloc = avail_normal - alloc_normal;
1537 if (nr_pages < alloc)
1538 alloc = nr_pages;
1539
1540 return preallocate_image_pages(alloc, GFP_IMAGE);
1541 }
1542
1543 #ifdef CONFIG_HIGHMEM
1544 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1545 {
1546 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1547 }
1548
1549 /**
1550 * __fraction - Compute (an approximation of) x * (multiplier / base).
1551 */
1552 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1553 {
1554 x *= multiplier;
1555 do_div(x, base);
1556 return (unsigned long)x;
1557 }
1558
1559 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1560 unsigned long highmem,
1561 unsigned long total)
1562 {
1563 unsigned long alloc = __fraction(nr_pages, highmem, total);
1564
1565 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1566 }
1567 #else /* CONFIG_HIGHMEM */
1568 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1569 {
1570 return 0;
1571 }
1572
1573 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1574 unsigned long highmem,
1575 unsigned long total)
1576 {
1577 return 0;
1578 }
1579 #endif /* CONFIG_HIGHMEM */
1580
1581 /**
1582 * free_unnecessary_pages - Release preallocated pages not needed for the image.
1583 */
1584 static unsigned long free_unnecessary_pages(void)
1585 {
1586 unsigned long save, to_free_normal, to_free_highmem, free;
1587
1588 save = count_data_pages();
1589 if (alloc_normal >= save) {
1590 to_free_normal = alloc_normal - save;
1591 save = 0;
1592 } else {
1593 to_free_normal = 0;
1594 save -= alloc_normal;
1595 }
1596 save += count_highmem_pages();
1597 if (alloc_highmem >= save) {
1598 to_free_highmem = alloc_highmem - save;
1599 } else {
1600 to_free_highmem = 0;
1601 save -= alloc_highmem;
1602 if (to_free_normal > save)
1603 to_free_normal -= save;
1604 else
1605 to_free_normal = 0;
1606 }
1607 free = to_free_normal + to_free_highmem;
1608
1609 memory_bm_position_reset(&copy_bm);
1610
1611 while (to_free_normal > 0 || to_free_highmem > 0) {
1612 unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1613 struct page *page = pfn_to_page(pfn);
1614
1615 if (PageHighMem(page)) {
1616 if (!to_free_highmem)
1617 continue;
1618 to_free_highmem--;
1619 alloc_highmem--;
1620 } else {
1621 if (!to_free_normal)
1622 continue;
1623 to_free_normal--;
1624 alloc_normal--;
1625 }
1626 memory_bm_clear_bit(&copy_bm, pfn);
1627 swsusp_unset_page_forbidden(page);
1628 swsusp_unset_page_free(page);
1629 __free_page(page);
1630 }
1631
1632 return free;
1633 }
1634
1635 /**
1636 * minimum_image_size - Estimate the minimum acceptable size of an image.
1637 * @saveable: Number of saveable pages in the system.
1638 *
1639 * We want to avoid attempting to free too much memory too hard, so estimate the
1640 * minimum acceptable size of a hibernation image to use as the lower limit for
1641 * preallocating memory.
1642 *
1643 * We assume that the minimum image size should be proportional to
1644 *
1645 * [number of saveable pages] - [number of pages that can be freed in theory]
1646 *
1647 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1648 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
1649 * minus mapped file pages.
1650 */
1651 static unsigned long minimum_image_size(unsigned long saveable)
1652 {
1653 unsigned long size;
1654
1655 size = global_node_page_state(NR_SLAB_RECLAIMABLE)
1656 + global_node_page_state(NR_ACTIVE_ANON)
1657 + global_node_page_state(NR_INACTIVE_ANON)
1658 + global_node_page_state(NR_ACTIVE_FILE)
1659 + global_node_page_state(NR_INACTIVE_FILE)
1660 - global_node_page_state(NR_FILE_MAPPED);
1661
1662 return saveable <= size ? 0 : saveable - size;
1663 }
1664
1665 /**
1666 * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1667 *
1668 * To create a hibernation image it is necessary to make a copy of every page
1669 * frame in use. We also need a number of page frames to be free during
1670 * hibernation for allocations made while saving the image and for device
1671 * drivers, in case they need to allocate memory from their hibernation
1672 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1673 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1674 * /sys/power/reserved_size, respectively). To make this happen, we compute the
1675 * total number of available page frames and allocate at least
1676 *
1677 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1678 * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1679 *
1680 * of them, which corresponds to the maximum size of a hibernation image.
1681 *
1682 * If image_size is set below the number following from the above formula,
1683 * the preallocation of memory is continued until the total number of saveable
1684 * pages in the system is below the requested image size or the minimum
1685 * acceptable image size returned by minimum_image_size(), whichever is greater.
1686 */
1687 int hibernate_preallocate_memory(void)
1688 {
1689 struct zone *zone;
1690 unsigned long saveable, size, max_size, count, highmem, pages = 0;
1691 unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1692 ktime_t start, stop;
1693 int error;
1694
1695 pr_info("Preallocating image memory... ");
1696 start = ktime_get();
1697
1698 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1699 if (error)
1700 goto err_out;
1701
1702 error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1703 if (error)
1704 goto err_out;
1705
1706 alloc_normal = 0;
1707 alloc_highmem = 0;
1708
1709 /* Count the number of saveable data pages. */
1710 save_highmem = count_highmem_pages();
1711 saveable = count_data_pages();
1712
1713 /*
1714 * Compute the total number of page frames we can use (count) and the
1715 * number of pages needed for image metadata (size).
1716 */
1717 count = saveable;
1718 saveable += save_highmem;
1719 highmem = save_highmem;
1720 size = 0;
1721 for_each_populated_zone(zone) {
1722 size += snapshot_additional_pages(zone);
1723 if (is_highmem(zone))
1724 highmem += zone_page_state(zone, NR_FREE_PAGES);
1725 else
1726 count += zone_page_state(zone, NR_FREE_PAGES);
1727 }
1728 avail_normal = count;
1729 count += highmem;
1730 count -= totalreserve_pages;
1731
1732 /* Add number of pages required for page keys (s390 only). */
1733 size += page_key_additional_pages(saveable);
1734
1735 /* Compute the maximum number of saveable pages to leave in memory. */
1736 max_size = (count - (size + PAGES_FOR_IO)) / 2
1737 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1738 /* Compute the desired number of image pages specified by image_size. */
1739 size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1740 if (size > max_size)
1741 size = max_size;
1742 /*
1743 * If the desired number of image pages is at least as large as the
1744 * current number of saveable pages in memory, allocate page frames for
1745 * the image and we're done.
1746 */
1747 if (size >= saveable) {
1748 pages = preallocate_image_highmem(save_highmem);
1749 pages += preallocate_image_memory(saveable - pages, avail_normal);
1750 goto out;
1751 }
1752
1753 /* Estimate the minimum size of the image. */
1754 pages = minimum_image_size(saveable);
1755 /*
1756 * To avoid excessive pressure on the normal zone, leave room in it to
1757 * accommodate an image of the minimum size (unless it's already too
1758 * small, in which case don't preallocate pages from it at all).
1759 */
1760 if (avail_normal > pages)
1761 avail_normal -= pages;
1762 else
1763 avail_normal = 0;
1764 if (size < pages)
1765 size = min_t(unsigned long, pages, max_size);
1766
1767 /*
1768 * Let the memory management subsystem know that we're going to need a
1769 * large number of page frames to allocate and make it free some memory.
1770 * NOTE: If this is not done, performance will be hurt badly in some
1771 * test cases.
1772 */
1773 shrink_all_memory(saveable - size);
1774
1775 /*
1776 * The number of saveable pages in memory was too high, so apply some
1777 * pressure to decrease it. First, make room for the largest possible
1778 * image and fail if that doesn't work. Next, try to decrease the size
1779 * of the image as much as indicated by 'size' using allocations from
1780 * highmem and non-highmem zones separately.
1781 */
1782 pages_highmem = preallocate_image_highmem(highmem / 2);
1783 alloc = count - max_size;
1784 if (alloc > pages_highmem)
1785 alloc -= pages_highmem;
1786 else
1787 alloc = 0;
1788 pages = preallocate_image_memory(alloc, avail_normal);
1789 if (pages < alloc) {
1790 /* We have exhausted non-highmem pages, try highmem. */
1791 alloc -= pages;
1792 pages += pages_highmem;
1793 pages_highmem = preallocate_image_highmem(alloc);
1794 if (pages_highmem < alloc)
1795 goto err_out;
1796 pages += pages_highmem;
1797 /*
1798 * size is the desired number of saveable pages to leave in
1799 * memory, so try to preallocate (all memory - size) pages.
1800 */
1801 alloc = (count - pages) - size;
1802 pages += preallocate_image_highmem(alloc);
1803 } else {
1804 /*
1805 * There are approximately max_size saveable pages at this point
1806 * and we want to reduce this number down to size.
1807 */
1808 alloc = max_size - size;
1809 size = preallocate_highmem_fraction(alloc, highmem, count);
1810 pages_highmem += size;
1811 alloc -= size;
1812 size = preallocate_image_memory(alloc, avail_normal);
1813 pages_highmem += preallocate_image_highmem(alloc - size);
1814 pages += pages_highmem + size;
1815 }
1816
1817 /*
1818 * We only need as many page frames for the image as there are saveable
1819 * pages in memory, but we have allocated more. Release the excessive
1820 * ones now.
1821 */
1822 pages -= free_unnecessary_pages();
1823
1824 out:
1825 stop = ktime_get();
1826 pr_cont("done (allocated %lu pages)\n", pages);
1827 swsusp_show_speed(start, stop, pages, "Allocated");
1828
1829 return 0;
1830
1831 err_out:
1832 pr_cont("\n");
1833 swsusp_free();
1834 return -ENOMEM;
1835 }
1836
1837 #ifdef CONFIG_HIGHMEM
1838 /**
1839 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1840 *
1841 * Compute the number of non-highmem pages that will be necessary for creating
1842 * copies of highmem pages.
1843 */
1844 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1845 {
1846 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1847
1848 if (free_highmem >= nr_highmem)
1849 nr_highmem = 0;
1850 else
1851 nr_highmem -= free_highmem;
1852
1853 return nr_highmem;
1854 }
1855 #else
1856 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1857 #endif /* CONFIG_HIGHMEM */
1858
1859 /**
1860 * enough_free_mem - Check if there is enough free memory for the image.
1861 */
1862 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1863 {
1864 struct zone *zone;
1865 unsigned int free = alloc_normal;
1866
1867 for_each_populated_zone(zone)
1868 if (!is_highmem(zone))
1869 free += zone_page_state(zone, NR_FREE_PAGES);
1870
1871 nr_pages += count_pages_for_highmem(nr_highmem);
1872 pr_debug("Normal pages needed: %u + %u, available pages: %u\n",
1873 nr_pages, PAGES_FOR_IO, free);
1874
1875 return free > nr_pages + PAGES_FOR_IO;
1876 }
1877
1878 #ifdef CONFIG_HIGHMEM
1879 /**
1880 * get_highmem_buffer - Allocate a buffer for highmem pages.
1881 *
1882 * If there are some highmem pages in the hibernation image, we may need a
1883 * buffer to copy them and/or load their data.
1884 */
1885 static inline int get_highmem_buffer(int safe_needed)
1886 {
1887 buffer = get_image_page(GFP_ATOMIC, safe_needed);
1888 return buffer ? 0 : -ENOMEM;
1889 }
1890
1891 /**
1892 * alloc_highmem_image_pages - Allocate some highmem pages for the image.
1893 *
1894 * Try to allocate as many pages as needed, but if the number of free highmem
1895 * pages is less than that, allocate them all.
1896 */
1897 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1898 unsigned int nr_highmem)
1899 {
1900 unsigned int to_alloc = count_free_highmem_pages();
1901
1902 if (to_alloc > nr_highmem)
1903 to_alloc = nr_highmem;
1904
1905 nr_highmem -= to_alloc;
1906 while (to_alloc-- > 0) {
1907 struct page *page;
1908
1909 page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1910 memory_bm_set_bit(bm, page_to_pfn(page));
1911 }
1912 return nr_highmem;
1913 }
1914 #else
1915 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1916
1917 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1918 unsigned int n) { return 0; }
1919 #endif /* CONFIG_HIGHMEM */
1920
1921 /**
1922 * swsusp_alloc - Allocate memory for hibernation image.
1923 *
1924 * We first try to allocate as many highmem pages as there are
1925 * saveable highmem pages in the system. If that fails, we allocate
1926 * non-highmem pages for the copies of the remaining highmem ones.
1927 *
1928 * In this approach it is likely that the copies of highmem pages will
1929 * also be located in the high memory, because of the way in which
1930 * copy_data_pages() works.
1931 */
1932 static int swsusp_alloc(struct memory_bitmap *copy_bm,
1933 unsigned int nr_pages, unsigned int nr_highmem)
1934 {
1935 if (nr_highmem > 0) {
1936 if (get_highmem_buffer(PG_ANY))
1937 goto err_out;
1938 if (nr_highmem > alloc_highmem) {
1939 nr_highmem -= alloc_highmem;
1940 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1941 }
1942 }
1943 if (nr_pages > alloc_normal) {
1944 nr_pages -= alloc_normal;
1945 while (nr_pages-- > 0) {
1946 struct page *page;
1947
1948 page = alloc_image_page(GFP_ATOMIC);
1949 if (!page)
1950 goto err_out;
1951 memory_bm_set_bit(copy_bm, page_to_pfn(page));
1952 }
1953 }
1954
1955 return 0;
1956
1957 err_out:
1958 swsusp_free();
1959 return -ENOMEM;
1960 }
1961
1962 asmlinkage __visible int swsusp_save(void)
1963 {
1964 unsigned int nr_pages, nr_highmem;
1965
1966 pr_info("Creating hibernation image:\n");
1967
1968 drain_local_pages(NULL);
1969 nr_pages = count_data_pages();
1970 nr_highmem = count_highmem_pages();
1971 pr_info("Need to copy %u pages\n", nr_pages + nr_highmem);
1972
1973 if (!enough_free_mem(nr_pages, nr_highmem)) {
1974 pr_err("Not enough free memory\n");
1975 return -ENOMEM;
1976 }
1977
1978 if (swsusp_alloc(&copy_bm, nr_pages, nr_highmem)) {
1979 pr_err("Memory allocation failed\n");
1980 return -ENOMEM;
1981 }
1982
1983 /*
1984 * During allocating of suspend pagedir, new cold pages may appear.
1985 * Kill them.
1986 */
1987 drain_local_pages(NULL);
1988 copy_data_pages(&copy_bm, &orig_bm);
1989
1990 /*
1991 * End of critical section. From now on, we can write to memory,
1992 * but we should not touch disk. This specially means we must _not_
1993 * touch swap space! Except we must write out our image of course.
1994 */
1995
1996 nr_pages += nr_highmem;
1997 nr_copy_pages = nr_pages;
1998 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1999
2000 pr_info("Hibernation image created (%d pages copied)\n", nr_pages);
2001
2002 return 0;
2003 }
2004
2005 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
2006 static int init_header_complete(struct swsusp_info *info)
2007 {
2008 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
2009 info->version_code = LINUX_VERSION_CODE;
2010 return 0;
2011 }
2012
2013 static char *check_image_kernel(struct swsusp_info *info)
2014 {
2015 if (info->version_code != LINUX_VERSION_CODE)
2016 return "kernel version";
2017 if (strcmp(info->uts.sysname,init_utsname()->sysname))
2018 return "system type";
2019 if (strcmp(info->uts.release,init_utsname()->release))
2020 return "kernel release";
2021 if (strcmp(info->uts.version,init_utsname()->version))
2022 return "version";
2023 if (strcmp(info->uts.machine,init_utsname()->machine))
2024 return "machine";
2025 return NULL;
2026 }
2027 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2028
2029 unsigned long snapshot_get_image_size(void)
2030 {
2031 return nr_copy_pages + nr_meta_pages + 1;
2032 }
2033
2034 static int init_header(struct swsusp_info *info)
2035 {
2036 memset(info, 0, sizeof(struct swsusp_info));
2037 info->num_physpages = get_num_physpages();
2038 info->image_pages = nr_copy_pages;
2039 info->pages = snapshot_get_image_size();
2040 info->size = info->pages;
2041 info->size <<= PAGE_SHIFT;
2042 return init_header_complete(info);
2043 }
2044
2045 /**
2046 * pack_pfns - Prepare PFNs for saving.
2047 * @bm: Memory bitmap.
2048 * @buf: Memory buffer to store the PFNs in.
2049 *
2050 * PFNs corresponding to set bits in @bm are stored in the area of memory
2051 * pointed to by @buf (1 page at a time).
2052 */
2053 static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
2054 {
2055 int j;
2056
2057 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2058 buf[j] = memory_bm_next_pfn(bm);
2059 if (unlikely(buf[j] == BM_END_OF_MAP))
2060 break;
2061 /* Save page key for data page (s390 only). */
2062 page_key_read(buf + j);
2063 }
2064 }
2065
2066 /**
2067 * snapshot_read_next - Get the address to read the next image page from.
2068 * @handle: Snapshot handle to be used for the reading.
2069 *
2070 * On the first call, @handle should point to a zeroed snapshot_handle
2071 * structure. The structure gets populated then and a pointer to it should be
2072 * passed to this function every next time.
2073 *
2074 * On success, the function returns a positive number. Then, the caller
2075 * is allowed to read up to the returned number of bytes from the memory
2076 * location computed by the data_of() macro.
2077 *
2078 * The function returns 0 to indicate the end of the data stream condition,
2079 * and negative numbers are returned on errors. If that happens, the structure
2080 * pointed to by @handle is not updated and should not be used any more.
2081 */
2082 int snapshot_read_next(struct snapshot_handle *handle)
2083 {
2084 if (handle->cur > nr_meta_pages + nr_copy_pages)
2085 return 0;
2086
2087 if (!buffer) {
2088 /* This makes the buffer be freed by swsusp_free() */
2089 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2090 if (!buffer)
2091 return -ENOMEM;
2092 }
2093 if (!handle->cur) {
2094 int error;
2095
2096 error = init_header((struct swsusp_info *)buffer);
2097 if (error)
2098 return error;
2099 handle->buffer = buffer;
2100 memory_bm_position_reset(&orig_bm);
2101 memory_bm_position_reset(&copy_bm);
2102 } else if (handle->cur <= nr_meta_pages) {
2103 clear_page(buffer);
2104 pack_pfns(buffer, &orig_bm);
2105 } else {
2106 struct page *page;
2107
2108 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2109 if (PageHighMem(page)) {
2110 /*
2111 * Highmem pages are copied to the buffer,
2112 * because we can't return with a kmapped
2113 * highmem page (we may not be called again).
2114 */
2115 void *kaddr;
2116
2117 kaddr = kmap_atomic(page);
2118 copy_page(buffer, kaddr);
2119 kunmap_atomic(kaddr);
2120 handle->buffer = buffer;
2121 } else {
2122 handle->buffer = page_address(page);
2123 }
2124 }
2125 handle->cur++;
2126 return PAGE_SIZE;
2127 }
2128
2129 static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2130 struct memory_bitmap *src)
2131 {
2132 unsigned long pfn;
2133
2134 memory_bm_position_reset(src);
2135 pfn = memory_bm_next_pfn(src);
2136 while (pfn != BM_END_OF_MAP) {
2137 memory_bm_set_bit(dst, pfn);
2138 pfn = memory_bm_next_pfn(src);
2139 }
2140 }
2141
2142 /**
2143 * mark_unsafe_pages - Mark pages that were used before hibernation.
2144 *
2145 * Mark the pages that cannot be used for storing the image during restoration,
2146 * because they conflict with the pages that had been used before hibernation.
2147 */
2148 static void mark_unsafe_pages(struct memory_bitmap *bm)
2149 {
2150 unsigned long pfn;
2151
2152 /* Clear the "free"/"unsafe" bit for all PFNs */
2153 memory_bm_position_reset(free_pages_map);
2154 pfn = memory_bm_next_pfn(free_pages_map);
2155 while (pfn != BM_END_OF_MAP) {
2156 memory_bm_clear_current(free_pages_map);
2157 pfn = memory_bm_next_pfn(free_pages_map);
2158 }
2159
2160 /* Mark pages that correspond to the "original" PFNs as "unsafe" */
2161 duplicate_memory_bitmap(free_pages_map, bm);
2162
2163 allocated_unsafe_pages = 0;
2164 }
2165
2166 static int check_header(struct swsusp_info *info)
2167 {
2168 char *reason;
2169
2170 reason = check_image_kernel(info);
2171 if (!reason && info->num_physpages != get_num_physpages())
2172 reason = "memory size";
2173 if (reason) {
2174 pr_err("Image mismatch: %s\n", reason);
2175 return -EPERM;
2176 }
2177 return 0;
2178 }
2179
2180 /**
2181 * load header - Check the image header and copy the data from it.
2182 */
2183 static int load_header(struct swsusp_info *info)
2184 {
2185 int error;
2186
2187 restore_pblist = NULL;
2188 error = check_header(info);
2189 if (!error) {
2190 nr_copy_pages = info->image_pages;
2191 nr_meta_pages = info->pages - info->image_pages - 1;
2192 }
2193 return error;
2194 }
2195
2196 /**
2197 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2198 * @bm: Memory bitmap.
2199 * @buf: Area of memory containing the PFNs.
2200 *
2201 * For each element of the array pointed to by @buf (1 page at a time), set the
2202 * corresponding bit in @bm.
2203 */
2204 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2205 {
2206 int j;
2207
2208 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2209 if (unlikely(buf[j] == BM_END_OF_MAP))
2210 break;
2211
2212 /* Extract and buffer page key for data page (s390 only). */
2213 page_key_memorize(buf + j);
2214
2215 if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j]))
2216 memory_bm_set_bit(bm, buf[j]);
2217 else
2218 return -EFAULT;
2219 }
2220
2221 return 0;
2222 }
2223
2224 #ifdef CONFIG_HIGHMEM
2225 /*
2226 * struct highmem_pbe is used for creating the list of highmem pages that
2227 * should be restored atomically during the resume from disk, because the page
2228 * frames they have occupied before the suspend are in use.
2229 */
2230 struct highmem_pbe {
2231 struct page *copy_page; /* data is here now */
2232 struct page *orig_page; /* data was here before the suspend */
2233 struct highmem_pbe *next;
2234 };
2235
2236 /*
2237 * List of highmem PBEs needed for restoring the highmem pages that were
2238 * allocated before the suspend and included in the suspend image, but have
2239 * also been allocated by the "resume" kernel, so their contents cannot be
2240 * written directly to their "original" page frames.
2241 */
2242 static struct highmem_pbe *highmem_pblist;
2243
2244 /**
2245 * count_highmem_image_pages - Compute the number of highmem pages in the image.
2246 * @bm: Memory bitmap.
2247 *
2248 * The bits in @bm that correspond to image pages are assumed to be set.
2249 */
2250 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2251 {
2252 unsigned long pfn;
2253 unsigned int cnt = 0;
2254
2255 memory_bm_position_reset(bm);
2256 pfn = memory_bm_next_pfn(bm);
2257 while (pfn != BM_END_OF_MAP) {
2258 if (PageHighMem(pfn_to_page(pfn)))
2259 cnt++;
2260
2261 pfn = memory_bm_next_pfn(bm);
2262 }
2263 return cnt;
2264 }
2265
2266 static unsigned int safe_highmem_pages;
2267
2268 static struct memory_bitmap *safe_highmem_bm;
2269
2270 /**
2271 * prepare_highmem_image - Allocate memory for loading highmem data from image.
2272 * @bm: Pointer to an uninitialized memory bitmap structure.
2273 * @nr_highmem_p: Pointer to the number of highmem image pages.
2274 *
2275 * Try to allocate as many highmem pages as there are highmem image pages
2276 * (@nr_highmem_p points to the variable containing the number of highmem image
2277 * pages). The pages that are "safe" (ie. will not be overwritten when the
2278 * hibernation image is restored entirely) have the corresponding bits set in
2279 * @bm (it must be unitialized).
2280 *
2281 * NOTE: This function should not be called if there are no highmem image pages.
2282 */
2283 static int prepare_highmem_image(struct memory_bitmap *bm,
2284 unsigned int *nr_highmem_p)
2285 {
2286 unsigned int to_alloc;
2287
2288 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2289 return -ENOMEM;
2290
2291 if (get_highmem_buffer(PG_SAFE))
2292 return -ENOMEM;
2293
2294 to_alloc = count_free_highmem_pages();
2295 if (to_alloc > *nr_highmem_p)
2296 to_alloc = *nr_highmem_p;
2297 else
2298 *nr_highmem_p = to_alloc;
2299
2300 safe_highmem_pages = 0;
2301 while (to_alloc-- > 0) {
2302 struct page *page;
2303
2304 page = alloc_page(__GFP_HIGHMEM);
2305 if (!swsusp_page_is_free(page)) {
2306 /* The page is "safe", set its bit the bitmap */
2307 memory_bm_set_bit(bm, page_to_pfn(page));
2308 safe_highmem_pages++;
2309 }
2310 /* Mark the page as allocated */
2311 swsusp_set_page_forbidden(page);
2312 swsusp_set_page_free(page);
2313 }
2314 memory_bm_position_reset(bm);
2315 safe_highmem_bm = bm;
2316 return 0;
2317 }
2318
2319 static struct page *last_highmem_page;
2320
2321 /**
2322 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2323 *
2324 * For a given highmem image page get a buffer that suspend_write_next() should
2325 * return to its caller to write to.
2326 *
2327 * If the page is to be saved to its "original" page frame or a copy of
2328 * the page is to be made in the highmem, @buffer is returned. Otherwise,
2329 * the copy of the page is to be made in normal memory, so the address of
2330 * the copy is returned.
2331 *
2332 * If @buffer is returned, the caller of suspend_write_next() will write
2333 * the page's contents to @buffer, so they will have to be copied to the
2334 * right location on the next call to suspend_write_next() and it is done
2335 * with the help of copy_last_highmem_page(). For this purpose, if
2336 * @buffer is returned, @last_highmem_page is set to the page to which
2337 * the data will have to be copied from @buffer.
2338 */
2339 static void *get_highmem_page_buffer(struct page *page,
2340 struct chain_allocator *ca)
2341 {
2342 struct highmem_pbe *pbe;
2343 void *kaddr;
2344
2345 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2346 /*
2347 * We have allocated the "original" page frame and we can
2348 * use it directly to store the loaded page.
2349 */
2350 last_highmem_page = page;
2351 return buffer;
2352 }
2353 /*
2354 * The "original" page frame has not been allocated and we have to
2355 * use a "safe" page frame to store the loaded page.
2356 */
2357 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2358 if (!pbe) {
2359 swsusp_free();
2360 return ERR_PTR(-ENOMEM);
2361 }
2362 pbe->orig_page = page;
2363 if (safe_highmem_pages > 0) {
2364 struct page *tmp;
2365
2366 /* Copy of the page will be stored in high memory */
2367 kaddr = buffer;
2368 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2369 safe_highmem_pages--;
2370 last_highmem_page = tmp;
2371 pbe->copy_page = tmp;
2372 } else {
2373 /* Copy of the page will be stored in normal memory */
2374 kaddr = safe_pages_list;
2375 safe_pages_list = safe_pages_list->next;
2376 pbe->copy_page = virt_to_page(kaddr);
2377 }
2378 pbe->next = highmem_pblist;
2379 highmem_pblist = pbe;
2380 return kaddr;
2381 }
2382
2383 /**
2384 * copy_last_highmem_page - Copy most the most recent highmem image page.
2385 *
2386 * Copy the contents of a highmem image from @buffer, where the caller of
2387 * snapshot_write_next() has stored them, to the right location represented by
2388 * @last_highmem_page .
2389 */
2390 static void copy_last_highmem_page(void)
2391 {
2392 if (last_highmem_page) {
2393 void *dst;
2394
2395 dst = kmap_atomic(last_highmem_page);
2396 copy_page(dst, buffer);
2397 kunmap_atomic(dst);
2398 last_highmem_page = NULL;
2399 }
2400 }
2401
2402 static inline int last_highmem_page_copied(void)
2403 {
2404 return !last_highmem_page;
2405 }
2406
2407 static inline void free_highmem_data(void)
2408 {
2409 if (safe_highmem_bm)
2410 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2411
2412 if (buffer)
2413 free_image_page(buffer, PG_UNSAFE_CLEAR);
2414 }
2415 #else
2416 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2417
2418 static inline int prepare_highmem_image(struct memory_bitmap *bm,
2419 unsigned int *nr_highmem_p) { return 0; }
2420
2421 static inline void *get_highmem_page_buffer(struct page *page,
2422 struct chain_allocator *ca)
2423 {
2424 return ERR_PTR(-EINVAL);
2425 }
2426
2427 static inline void copy_last_highmem_page(void) {}
2428 static inline int last_highmem_page_copied(void) { return 1; }
2429 static inline void free_highmem_data(void) {}
2430 #endif /* CONFIG_HIGHMEM */
2431
2432 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2433
2434 /**
2435 * prepare_image - Make room for loading hibernation image.
2436 * @new_bm: Unitialized memory bitmap structure.
2437 * @bm: Memory bitmap with unsafe pages marked.
2438 *
2439 * Use @bm to mark the pages that will be overwritten in the process of
2440 * restoring the system memory state from the suspend image ("unsafe" pages)
2441 * and allocate memory for the image.
2442 *
2443 * The idea is to allocate a new memory bitmap first and then allocate
2444 * as many pages as needed for image data, but without specifying what those
2445 * pages will be used for just yet. Instead, we mark them all as allocated and
2446 * create a lists of "safe" pages to be used later. On systems with high
2447 * memory a list of "safe" highmem pages is created too.
2448 */
2449 static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2450 {
2451 unsigned int nr_pages, nr_highmem;
2452 struct linked_page *lp;
2453 int error;
2454
2455 /* If there is no highmem, the buffer will not be necessary */
2456 free_image_page(buffer, PG_UNSAFE_CLEAR);
2457 buffer = NULL;
2458
2459 nr_highmem = count_highmem_image_pages(bm);
2460 mark_unsafe_pages(bm);
2461
2462 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2463 if (error)
2464 goto Free;
2465
2466 duplicate_memory_bitmap(new_bm, bm);
2467 memory_bm_free(bm, PG_UNSAFE_KEEP);
2468 if (nr_highmem > 0) {
2469 error = prepare_highmem_image(bm, &nr_highmem);
2470 if (error)
2471 goto Free;
2472 }
2473 /*
2474 * Reserve some safe pages for potential later use.
2475 *
2476 * NOTE: This way we make sure there will be enough safe pages for the
2477 * chain_alloc() in get_buffer(). It is a bit wasteful, but
2478 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2479 *
2480 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2481 */
2482 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2483 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2484 while (nr_pages > 0) {
2485 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2486 if (!lp) {
2487 error = -ENOMEM;
2488 goto Free;
2489 }
2490 lp->next = safe_pages_list;
2491 safe_pages_list = lp;
2492 nr_pages--;
2493 }
2494 /* Preallocate memory for the image */
2495 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2496 while (nr_pages > 0) {
2497 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2498 if (!lp) {
2499 error = -ENOMEM;
2500 goto Free;
2501 }
2502 if (!swsusp_page_is_free(virt_to_page(lp))) {
2503 /* The page is "safe", add it to the list */
2504 lp->next = safe_pages_list;
2505 safe_pages_list = lp;
2506 }
2507 /* Mark the page as allocated */
2508 swsusp_set_page_forbidden(virt_to_page(lp));
2509 swsusp_set_page_free(virt_to_page(lp));
2510 nr_pages--;
2511 }
2512 return 0;
2513
2514 Free:
2515 swsusp_free();
2516 return error;
2517 }
2518
2519 /**
2520 * get_buffer - Get the address to store the next image data page.
2521 *
2522 * Get the address that snapshot_write_next() should return to its caller to
2523 * write to.
2524 */
2525 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2526 {
2527 struct pbe *pbe;
2528 struct page *page;
2529 unsigned long pfn = memory_bm_next_pfn(bm);
2530
2531 if (pfn == BM_END_OF_MAP)
2532 return ERR_PTR(-EFAULT);
2533
2534 page = pfn_to_page(pfn);
2535 if (PageHighMem(page))
2536 return get_highmem_page_buffer(page, ca);
2537
2538 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2539 /*
2540 * We have allocated the "original" page frame and we can
2541 * use it directly to store the loaded page.
2542 */
2543 return page_address(page);
2544
2545 /*
2546 * The "original" page frame has not been allocated and we have to
2547 * use a "safe" page frame to store the loaded page.
2548 */
2549 pbe = chain_alloc(ca, sizeof(struct pbe));
2550 if (!pbe) {
2551 swsusp_free();
2552 return ERR_PTR(-ENOMEM);
2553 }
2554 pbe->orig_address = page_address(page);
2555 pbe->address = safe_pages_list;
2556 safe_pages_list = safe_pages_list->next;
2557 pbe->next = restore_pblist;
2558 restore_pblist = pbe;
2559 return pbe->address;
2560 }
2561
2562 /**
2563 * snapshot_write_next - Get the address to store the next image page.
2564 * @handle: Snapshot handle structure to guide the writing.
2565 *
2566 * On the first call, @handle should point to a zeroed snapshot_handle
2567 * structure. The structure gets populated then and a pointer to it should be
2568 * passed to this function every next time.
2569 *
2570 * On success, the function returns a positive number. Then, the caller
2571 * is allowed to write up to the returned number of bytes to the memory
2572 * location computed by the data_of() macro.
2573 *
2574 * The function returns 0 to indicate the "end of file" condition. Negative
2575 * numbers are returned on errors, in which cases the structure pointed to by
2576 * @handle is not updated and should not be used any more.
2577 */
2578 int snapshot_write_next(struct snapshot_handle *handle)
2579 {
2580 static struct chain_allocator ca;
2581 int error = 0;
2582
2583 /* Check if we have already loaded the entire image */
2584 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2585 return 0;
2586
2587 handle->sync_read = 1;
2588
2589 if (!handle->cur) {
2590 if (!buffer)
2591 /* This makes the buffer be freed by swsusp_free() */
2592 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2593
2594 if (!buffer)
2595 return -ENOMEM;
2596
2597 handle->buffer = buffer;
2598 } else if (handle->cur == 1) {
2599 error = load_header(buffer);
2600 if (error)
2601 return error;
2602
2603 safe_pages_list = NULL;
2604
2605 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2606 if (error)
2607 return error;
2608
2609 /* Allocate buffer for page keys. */
2610 error = page_key_alloc(nr_copy_pages);
2611 if (error)
2612 return error;
2613
2614 hibernate_restore_protection_begin();
2615 } else if (handle->cur <= nr_meta_pages + 1) {
2616 error = unpack_orig_pfns(buffer, &copy_bm);
2617 if (error)
2618 return error;
2619
2620 if (handle->cur == nr_meta_pages + 1) {
2621 error = prepare_image(&orig_bm, &copy_bm);
2622 if (error)
2623 return error;
2624
2625 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2626 memory_bm_position_reset(&orig_bm);
2627 restore_pblist = NULL;
2628 handle->buffer = get_buffer(&orig_bm, &ca);
2629 handle->sync_read = 0;
2630 if (IS_ERR(handle->buffer))
2631 return PTR_ERR(handle->buffer);
2632 }
2633 } else {
2634 copy_last_highmem_page();
2635 /* Restore page key for data page (s390 only). */
2636 page_key_write(handle->buffer);
2637 hibernate_restore_protect_page(handle->buffer);
2638 handle->buffer = get_buffer(&orig_bm, &ca);
2639 if (IS_ERR(handle->buffer))
2640 return PTR_ERR(handle->buffer);
2641 if (handle->buffer != buffer)
2642 handle->sync_read = 0;
2643 }
2644 handle->cur++;
2645 return PAGE_SIZE;
2646 }
2647
2648 /**
2649 * snapshot_write_finalize - Complete the loading of a hibernation image.
2650 *
2651 * Must be called after the last call to snapshot_write_next() in case the last
2652 * page in the image happens to be a highmem page and its contents should be
2653 * stored in highmem. Additionally, it recycles bitmap memory that's not
2654 * necessary any more.
2655 */
2656 void snapshot_write_finalize(struct snapshot_handle *handle)
2657 {
2658 copy_last_highmem_page();
2659 /* Restore page key for data page (s390 only). */
2660 page_key_write(handle->buffer);
2661 page_key_free();
2662 hibernate_restore_protect_page(handle->buffer);
2663 /* Do that only if we have loaded the image entirely */
2664 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2665 memory_bm_recycle(&orig_bm);
2666 free_highmem_data();
2667 }
2668 }
2669
2670 int snapshot_image_loaded(struct snapshot_handle *handle)
2671 {
2672 return !(!nr_copy_pages || !last_highmem_page_copied() ||
2673 handle->cur <= nr_meta_pages + nr_copy_pages);
2674 }
2675
2676 #ifdef CONFIG_HIGHMEM
2677 /* Assumes that @buf is ready and points to a "safe" page */
2678 static inline void swap_two_pages_data(struct page *p1, struct page *p2,
2679 void *buf)
2680 {
2681 void *kaddr1, *kaddr2;
2682
2683 kaddr1 = kmap_atomic(p1);
2684 kaddr2 = kmap_atomic(p2);
2685 copy_page(buf, kaddr1);
2686 copy_page(kaddr1, kaddr2);
2687 copy_page(kaddr2, buf);
2688 kunmap_atomic(kaddr2);
2689 kunmap_atomic(kaddr1);
2690 }
2691
2692 /**
2693 * restore_highmem - Put highmem image pages into their original locations.
2694 *
2695 * For each highmem page that was in use before hibernation and is included in
2696 * the image, and also has been allocated by the "restore" kernel, swap its
2697 * current contents with the previous (ie. "before hibernation") ones.
2698 *
2699 * If the restore eventually fails, we can call this function once again and
2700 * restore the highmem state as seen by the restore kernel.
2701 */
2702 int restore_highmem(void)
2703 {
2704 struct highmem_pbe *pbe = highmem_pblist;
2705 void *buf;
2706
2707 if (!pbe)
2708 return 0;
2709
2710 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2711 if (!buf)
2712 return -ENOMEM;
2713
2714 while (pbe) {
2715 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2716 pbe = pbe->next;
2717 }
2718 free_image_page(buf, PG_UNSAFE_CLEAR);
2719 return 0;
2720 }
2721 #endif /* CONFIG_HIGHMEM */