]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - kernel/power/snapshot.c
Hibernation: Move function prototypes to header
[mirror_ubuntu-kernels.git] / kernel / power / snapshot.c
1 /*
2 * linux/kernel/power/snapshot.c
3 *
4 * This file provides system snapshot/restore functionality for swsusp.
5 *
6 * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz>
7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8 *
9 * This file is released under the GPLv2.
10 *
11 */
12
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28
29 #include <asm/uaccess.h>
30 #include <asm/mmu_context.h>
31 #include <asm/pgtable.h>
32 #include <asm/tlbflush.h>
33 #include <asm/io.h>
34
35 #include "power.h"
36
37 static int swsusp_page_is_free(struct page *);
38 static void swsusp_set_page_forbidden(struct page *);
39 static void swsusp_unset_page_forbidden(struct page *);
40
41 /* List of PBEs needed for restoring the pages that were allocated before
42 * the suspend and included in the suspend image, but have also been
43 * allocated by the "resume" kernel, so their contents cannot be written
44 * directly to their "original" page frames.
45 */
46 struct pbe *restore_pblist;
47
48 /* Pointer to an auxiliary buffer (1 page) */
49 static void *buffer;
50
51 /**
52 * @safe_needed - on resume, for storing the PBE list and the image,
53 * we can only use memory pages that do not conflict with the pages
54 * used before suspend. The unsafe pages have PageNosaveFree set
55 * and we count them using unsafe_pages.
56 *
57 * Each allocated image page is marked as PageNosave and PageNosaveFree
58 * so that swsusp_free() can release it.
59 */
60
61 #define PG_ANY 0
62 #define PG_SAFE 1
63 #define PG_UNSAFE_CLEAR 1
64 #define PG_UNSAFE_KEEP 0
65
66 static unsigned int allocated_unsafe_pages;
67
68 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
69 {
70 void *res;
71
72 res = (void *)get_zeroed_page(gfp_mask);
73 if (safe_needed)
74 while (res && swsusp_page_is_free(virt_to_page(res))) {
75 /* The page is unsafe, mark it for swsusp_free() */
76 swsusp_set_page_forbidden(virt_to_page(res));
77 allocated_unsafe_pages++;
78 res = (void *)get_zeroed_page(gfp_mask);
79 }
80 if (res) {
81 swsusp_set_page_forbidden(virt_to_page(res));
82 swsusp_set_page_free(virt_to_page(res));
83 }
84 return res;
85 }
86
87 unsigned long get_safe_page(gfp_t gfp_mask)
88 {
89 return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
90 }
91
92 static struct page *alloc_image_page(gfp_t gfp_mask)
93 {
94 struct page *page;
95
96 page = alloc_page(gfp_mask);
97 if (page) {
98 swsusp_set_page_forbidden(page);
99 swsusp_set_page_free(page);
100 }
101 return page;
102 }
103
104 /**
105 * free_image_page - free page represented by @addr, allocated with
106 * get_image_page (page flags set by it must be cleared)
107 */
108
109 static inline void free_image_page(void *addr, int clear_nosave_free)
110 {
111 struct page *page;
112
113 BUG_ON(!virt_addr_valid(addr));
114
115 page = virt_to_page(addr);
116
117 swsusp_unset_page_forbidden(page);
118 if (clear_nosave_free)
119 swsusp_unset_page_free(page);
120
121 __free_page(page);
122 }
123
124 /* struct linked_page is used to build chains of pages */
125
126 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
127
128 struct linked_page {
129 struct linked_page *next;
130 char data[LINKED_PAGE_DATA_SIZE];
131 } __attribute__((packed));
132
133 static inline void
134 free_list_of_pages(struct linked_page *list, int clear_page_nosave)
135 {
136 while (list) {
137 struct linked_page *lp = list->next;
138
139 free_image_page(list, clear_page_nosave);
140 list = lp;
141 }
142 }
143
144 /**
145 * struct chain_allocator is used for allocating small objects out of
146 * a linked list of pages called 'the chain'.
147 *
148 * The chain grows each time when there is no room for a new object in
149 * the current page. The allocated objects cannot be freed individually.
150 * It is only possible to free them all at once, by freeing the entire
151 * chain.
152 *
153 * NOTE: The chain allocator may be inefficient if the allocated objects
154 * are not much smaller than PAGE_SIZE.
155 */
156
157 struct chain_allocator {
158 struct linked_page *chain; /* the chain */
159 unsigned int used_space; /* total size of objects allocated out
160 * of the current page
161 */
162 gfp_t gfp_mask; /* mask for allocating pages */
163 int safe_needed; /* if set, only "safe" pages are allocated */
164 };
165
166 static void
167 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
168 {
169 ca->chain = NULL;
170 ca->used_space = LINKED_PAGE_DATA_SIZE;
171 ca->gfp_mask = gfp_mask;
172 ca->safe_needed = safe_needed;
173 }
174
175 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
176 {
177 void *ret;
178
179 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
180 struct linked_page *lp;
181
182 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
183 if (!lp)
184 return NULL;
185
186 lp->next = ca->chain;
187 ca->chain = lp;
188 ca->used_space = 0;
189 }
190 ret = ca->chain->data + ca->used_space;
191 ca->used_space += size;
192 return ret;
193 }
194
195 static void chain_free(struct chain_allocator *ca, int clear_page_nosave)
196 {
197 free_list_of_pages(ca->chain, clear_page_nosave);
198 memset(ca, 0, sizeof(struct chain_allocator));
199 }
200
201 /**
202 * Data types related to memory bitmaps.
203 *
204 * Memory bitmap is a structure consiting of many linked lists of
205 * objects. The main list's elements are of type struct zone_bitmap
206 * and each of them corresonds to one zone. For each zone bitmap
207 * object there is a list of objects of type struct bm_block that
208 * represent each blocks of bit chunks in which information is
209 * stored.
210 *
211 * struct memory_bitmap contains a pointer to the main list of zone
212 * bitmap objects, a struct bm_position used for browsing the bitmap,
213 * and a pointer to the list of pages used for allocating all of the
214 * zone bitmap objects and bitmap block objects.
215 *
216 * NOTE: It has to be possible to lay out the bitmap in memory
217 * using only allocations of order 0. Additionally, the bitmap is
218 * designed to work with arbitrary number of zones (this is over the
219 * top for now, but let's avoid making unnecessary assumptions ;-).
220 *
221 * struct zone_bitmap contains a pointer to a list of bitmap block
222 * objects and a pointer to the bitmap block object that has been
223 * most recently used for setting bits. Additionally, it contains the
224 * pfns that correspond to the start and end of the represented zone.
225 *
226 * struct bm_block contains a pointer to the memory page in which
227 * information is stored (in the form of a block of bit chunks
228 * of type unsigned long each). It also contains the pfns that
229 * correspond to the start and end of the represented memory area and
230 * the number of bit chunks in the block.
231 */
232
233 #define BM_END_OF_MAP (~0UL)
234
235 #define BM_CHUNKS_PER_BLOCK (PAGE_SIZE / sizeof(long))
236 #define BM_BITS_PER_CHUNK (sizeof(long) << 3)
237 #define BM_BITS_PER_BLOCK (PAGE_SIZE << 3)
238
239 struct bm_block {
240 struct bm_block *next; /* next element of the list */
241 unsigned long start_pfn; /* pfn represented by the first bit */
242 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */
243 unsigned int size; /* number of bit chunks */
244 unsigned long *data; /* chunks of bits representing pages */
245 };
246
247 struct zone_bitmap {
248 struct zone_bitmap *next; /* next element of the list */
249 unsigned long start_pfn; /* minimal pfn in this zone */
250 unsigned long end_pfn; /* maximal pfn in this zone plus 1 */
251 struct bm_block *bm_blocks; /* list of bitmap blocks */
252 struct bm_block *cur_block; /* recently used bitmap block */
253 };
254
255 /* strcut bm_position is used for browsing memory bitmaps */
256
257 struct bm_position {
258 struct zone_bitmap *zone_bm;
259 struct bm_block *block;
260 int chunk;
261 int bit;
262 };
263
264 struct memory_bitmap {
265 struct zone_bitmap *zone_bm_list; /* list of zone bitmaps */
266 struct linked_page *p_list; /* list of pages used to store zone
267 * bitmap objects and bitmap block
268 * objects
269 */
270 struct bm_position cur; /* most recently used bit position */
271 };
272
273 /* Functions that operate on memory bitmaps */
274
275 static inline void memory_bm_reset_chunk(struct memory_bitmap *bm)
276 {
277 bm->cur.chunk = 0;
278 bm->cur.bit = -1;
279 }
280
281 static void memory_bm_position_reset(struct memory_bitmap *bm)
282 {
283 struct zone_bitmap *zone_bm;
284
285 zone_bm = bm->zone_bm_list;
286 bm->cur.zone_bm = zone_bm;
287 bm->cur.block = zone_bm->bm_blocks;
288 memory_bm_reset_chunk(bm);
289 }
290
291 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
292
293 /**
294 * create_bm_block_list - create a list of block bitmap objects
295 */
296
297 static inline struct bm_block *
298 create_bm_block_list(unsigned int nr_blocks, struct chain_allocator *ca)
299 {
300 struct bm_block *bblist = NULL;
301
302 while (nr_blocks-- > 0) {
303 struct bm_block *bb;
304
305 bb = chain_alloc(ca, sizeof(struct bm_block));
306 if (!bb)
307 return NULL;
308
309 bb->next = bblist;
310 bblist = bb;
311 }
312 return bblist;
313 }
314
315 /**
316 * create_zone_bm_list - create a list of zone bitmap objects
317 */
318
319 static inline struct zone_bitmap *
320 create_zone_bm_list(unsigned int nr_zones, struct chain_allocator *ca)
321 {
322 struct zone_bitmap *zbmlist = NULL;
323
324 while (nr_zones-- > 0) {
325 struct zone_bitmap *zbm;
326
327 zbm = chain_alloc(ca, sizeof(struct zone_bitmap));
328 if (!zbm)
329 return NULL;
330
331 zbm->next = zbmlist;
332 zbmlist = zbm;
333 }
334 return zbmlist;
335 }
336
337 /**
338 * memory_bm_create - allocate memory for a memory bitmap
339 */
340
341 static int
342 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
343 {
344 struct chain_allocator ca;
345 struct zone *zone;
346 struct zone_bitmap *zone_bm;
347 struct bm_block *bb;
348 unsigned int nr;
349
350 chain_init(&ca, gfp_mask, safe_needed);
351
352 /* Compute the number of zones */
353 nr = 0;
354 for_each_zone(zone)
355 if (populated_zone(zone))
356 nr++;
357
358 /* Allocate the list of zones bitmap objects */
359 zone_bm = create_zone_bm_list(nr, &ca);
360 bm->zone_bm_list = zone_bm;
361 if (!zone_bm) {
362 chain_free(&ca, PG_UNSAFE_CLEAR);
363 return -ENOMEM;
364 }
365
366 /* Initialize the zone bitmap objects */
367 for_each_zone(zone) {
368 unsigned long pfn;
369
370 if (!populated_zone(zone))
371 continue;
372
373 zone_bm->start_pfn = zone->zone_start_pfn;
374 zone_bm->end_pfn = zone->zone_start_pfn + zone->spanned_pages;
375 /* Allocate the list of bitmap block objects */
376 nr = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
377 bb = create_bm_block_list(nr, &ca);
378 zone_bm->bm_blocks = bb;
379 zone_bm->cur_block = bb;
380 if (!bb)
381 goto Free;
382
383 nr = zone->spanned_pages;
384 pfn = zone->zone_start_pfn;
385 /* Initialize the bitmap block objects */
386 while (bb) {
387 unsigned long *ptr;
388
389 ptr = get_image_page(gfp_mask, safe_needed);
390 bb->data = ptr;
391 if (!ptr)
392 goto Free;
393
394 bb->start_pfn = pfn;
395 if (nr >= BM_BITS_PER_BLOCK) {
396 pfn += BM_BITS_PER_BLOCK;
397 bb->size = BM_CHUNKS_PER_BLOCK;
398 nr -= BM_BITS_PER_BLOCK;
399 } else {
400 /* This is executed only once in the loop */
401 pfn += nr;
402 bb->size = DIV_ROUND_UP(nr, BM_BITS_PER_CHUNK);
403 }
404 bb->end_pfn = pfn;
405 bb = bb->next;
406 }
407 zone_bm = zone_bm->next;
408 }
409 bm->p_list = ca.chain;
410 memory_bm_position_reset(bm);
411 return 0;
412
413 Free:
414 bm->p_list = ca.chain;
415 memory_bm_free(bm, PG_UNSAFE_CLEAR);
416 return -ENOMEM;
417 }
418
419 /**
420 * memory_bm_free - free memory occupied by the memory bitmap @bm
421 */
422
423 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
424 {
425 struct zone_bitmap *zone_bm;
426
427 /* Free the list of bit blocks for each zone_bitmap object */
428 zone_bm = bm->zone_bm_list;
429 while (zone_bm) {
430 struct bm_block *bb;
431
432 bb = zone_bm->bm_blocks;
433 while (bb) {
434 if (bb->data)
435 free_image_page(bb->data, clear_nosave_free);
436 bb = bb->next;
437 }
438 zone_bm = zone_bm->next;
439 }
440 free_list_of_pages(bm->p_list, clear_nosave_free);
441 bm->zone_bm_list = NULL;
442 }
443
444 /**
445 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
446 * to given pfn. The cur_zone_bm member of @bm and the cur_block member
447 * of @bm->cur_zone_bm are updated.
448 */
449
450 static void memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
451 void **addr, unsigned int *bit_nr)
452 {
453 struct zone_bitmap *zone_bm;
454 struct bm_block *bb;
455
456 /* Check if the pfn is from the current zone */
457 zone_bm = bm->cur.zone_bm;
458 if (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
459 zone_bm = bm->zone_bm_list;
460 /* We don't assume that the zones are sorted by pfns */
461 while (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
462 zone_bm = zone_bm->next;
463
464 BUG_ON(!zone_bm);
465 }
466 bm->cur.zone_bm = zone_bm;
467 }
468 /* Check if the pfn corresponds to the current bitmap block */
469 bb = zone_bm->cur_block;
470 if (pfn < bb->start_pfn)
471 bb = zone_bm->bm_blocks;
472
473 while (pfn >= bb->end_pfn) {
474 bb = bb->next;
475
476 BUG_ON(!bb);
477 }
478 zone_bm->cur_block = bb;
479 pfn -= bb->start_pfn;
480 *bit_nr = pfn % BM_BITS_PER_CHUNK;
481 *addr = bb->data + pfn / BM_BITS_PER_CHUNK;
482 }
483
484 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
485 {
486 void *addr;
487 unsigned int bit;
488
489 memory_bm_find_bit(bm, pfn, &addr, &bit);
490 set_bit(bit, addr);
491 }
492
493 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
494 {
495 void *addr;
496 unsigned int bit;
497
498 memory_bm_find_bit(bm, pfn, &addr, &bit);
499 clear_bit(bit, addr);
500 }
501
502 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
503 {
504 void *addr;
505 unsigned int bit;
506
507 memory_bm_find_bit(bm, pfn, &addr, &bit);
508 return test_bit(bit, addr);
509 }
510
511 /* Two auxiliary functions for memory_bm_next_pfn */
512
513 /* Find the first set bit in the given chunk, if there is one */
514
515 static inline int next_bit_in_chunk(int bit, unsigned long *chunk_p)
516 {
517 bit++;
518 while (bit < BM_BITS_PER_CHUNK) {
519 if (test_bit(bit, chunk_p))
520 return bit;
521
522 bit++;
523 }
524 return -1;
525 }
526
527 /* Find a chunk containing some bits set in given block of bits */
528
529 static inline int next_chunk_in_block(int n, struct bm_block *bb)
530 {
531 n++;
532 while (n < bb->size) {
533 if (bb->data[n])
534 return n;
535
536 n++;
537 }
538 return -1;
539 }
540
541 /**
542 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit
543 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is
544 * returned.
545 *
546 * It is required to run memory_bm_position_reset() before the first call to
547 * this function.
548 */
549
550 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
551 {
552 struct zone_bitmap *zone_bm;
553 struct bm_block *bb;
554 int chunk;
555 int bit;
556
557 do {
558 bb = bm->cur.block;
559 do {
560 chunk = bm->cur.chunk;
561 bit = bm->cur.bit;
562 do {
563 bit = next_bit_in_chunk(bit, bb->data + chunk);
564 if (bit >= 0)
565 goto Return_pfn;
566
567 chunk = next_chunk_in_block(chunk, bb);
568 bit = -1;
569 } while (chunk >= 0);
570 bb = bb->next;
571 bm->cur.block = bb;
572 memory_bm_reset_chunk(bm);
573 } while (bb);
574 zone_bm = bm->cur.zone_bm->next;
575 if (zone_bm) {
576 bm->cur.zone_bm = zone_bm;
577 bm->cur.block = zone_bm->bm_blocks;
578 memory_bm_reset_chunk(bm);
579 }
580 } while (zone_bm);
581 memory_bm_position_reset(bm);
582 return BM_END_OF_MAP;
583
584 Return_pfn:
585 bm->cur.chunk = chunk;
586 bm->cur.bit = bit;
587 return bb->start_pfn + chunk * BM_BITS_PER_CHUNK + bit;
588 }
589
590 /**
591 * This structure represents a range of page frames the contents of which
592 * should not be saved during the suspend.
593 */
594
595 struct nosave_region {
596 struct list_head list;
597 unsigned long start_pfn;
598 unsigned long end_pfn;
599 };
600
601 static LIST_HEAD(nosave_regions);
602
603 /**
604 * register_nosave_region - register a range of page frames the contents
605 * of which should not be saved during the suspend (to be used in the early
606 * initialization code)
607 */
608
609 void __init
610 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
611 int use_kmalloc)
612 {
613 struct nosave_region *region;
614
615 if (start_pfn >= end_pfn)
616 return;
617
618 if (!list_empty(&nosave_regions)) {
619 /* Try to extend the previous region (they should be sorted) */
620 region = list_entry(nosave_regions.prev,
621 struct nosave_region, list);
622 if (region->end_pfn == start_pfn) {
623 region->end_pfn = end_pfn;
624 goto Report;
625 }
626 }
627 if (use_kmalloc) {
628 /* during init, this shouldn't fail */
629 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
630 BUG_ON(!region);
631 } else
632 /* This allocation cannot fail */
633 region = alloc_bootmem_low(sizeof(struct nosave_region));
634 region->start_pfn = start_pfn;
635 region->end_pfn = end_pfn;
636 list_add_tail(&region->list, &nosave_regions);
637 Report:
638 printk("swsusp: Registered nosave memory region: %016lx - %016lx\n",
639 start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
640 }
641
642 /*
643 * Set bits in this map correspond to the page frames the contents of which
644 * should not be saved during the suspend.
645 */
646 static struct memory_bitmap *forbidden_pages_map;
647
648 /* Set bits in this map correspond to free page frames. */
649 static struct memory_bitmap *free_pages_map;
650
651 /*
652 * Each page frame allocated for creating the image is marked by setting the
653 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
654 */
655
656 void swsusp_set_page_free(struct page *page)
657 {
658 if (free_pages_map)
659 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
660 }
661
662 static int swsusp_page_is_free(struct page *page)
663 {
664 return free_pages_map ?
665 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
666 }
667
668 void swsusp_unset_page_free(struct page *page)
669 {
670 if (free_pages_map)
671 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
672 }
673
674 static void swsusp_set_page_forbidden(struct page *page)
675 {
676 if (forbidden_pages_map)
677 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
678 }
679
680 int swsusp_page_is_forbidden(struct page *page)
681 {
682 return forbidden_pages_map ?
683 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
684 }
685
686 static void swsusp_unset_page_forbidden(struct page *page)
687 {
688 if (forbidden_pages_map)
689 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
690 }
691
692 /**
693 * mark_nosave_pages - set bits corresponding to the page frames the
694 * contents of which should not be saved in a given bitmap.
695 */
696
697 static void mark_nosave_pages(struct memory_bitmap *bm)
698 {
699 struct nosave_region *region;
700
701 if (list_empty(&nosave_regions))
702 return;
703
704 list_for_each_entry(region, &nosave_regions, list) {
705 unsigned long pfn;
706
707 printk("swsusp: Marking nosave pages: %016lx - %016lx\n",
708 region->start_pfn << PAGE_SHIFT,
709 region->end_pfn << PAGE_SHIFT);
710
711 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
712 if (pfn_valid(pfn))
713 memory_bm_set_bit(bm, pfn);
714 }
715 }
716
717 /**
718 * create_basic_memory_bitmaps - create bitmaps needed for marking page
719 * frames that should not be saved and free page frames. The pointers
720 * forbidden_pages_map and free_pages_map are only modified if everything
721 * goes well, because we don't want the bits to be used before both bitmaps
722 * are set up.
723 */
724
725 int create_basic_memory_bitmaps(void)
726 {
727 struct memory_bitmap *bm1, *bm2;
728 int error = 0;
729
730 BUG_ON(forbidden_pages_map || free_pages_map);
731
732 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
733 if (!bm1)
734 return -ENOMEM;
735
736 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
737 if (error)
738 goto Free_first_object;
739
740 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
741 if (!bm2)
742 goto Free_first_bitmap;
743
744 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
745 if (error)
746 goto Free_second_object;
747
748 forbidden_pages_map = bm1;
749 free_pages_map = bm2;
750 mark_nosave_pages(forbidden_pages_map);
751
752 printk("swsusp: Basic memory bitmaps created\n");
753
754 return 0;
755
756 Free_second_object:
757 kfree(bm2);
758 Free_first_bitmap:
759 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
760 Free_first_object:
761 kfree(bm1);
762 return -ENOMEM;
763 }
764
765 /**
766 * free_basic_memory_bitmaps - free memory bitmaps allocated by
767 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
768 * so that the bitmaps themselves are not referred to while they are being
769 * freed.
770 */
771
772 void free_basic_memory_bitmaps(void)
773 {
774 struct memory_bitmap *bm1, *bm2;
775
776 BUG_ON(!(forbidden_pages_map && free_pages_map));
777
778 bm1 = forbidden_pages_map;
779 bm2 = free_pages_map;
780 forbidden_pages_map = NULL;
781 free_pages_map = NULL;
782 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
783 kfree(bm1);
784 memory_bm_free(bm2, PG_UNSAFE_CLEAR);
785 kfree(bm2);
786
787 printk("swsusp: Basic memory bitmaps freed\n");
788 }
789
790 /**
791 * snapshot_additional_pages - estimate the number of additional pages
792 * be needed for setting up the suspend image data structures for given
793 * zone (usually the returned value is greater than the exact number)
794 */
795
796 unsigned int snapshot_additional_pages(struct zone *zone)
797 {
798 unsigned int res;
799
800 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
801 res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
802 return 2 * res;
803 }
804
805 #ifdef CONFIG_HIGHMEM
806 /**
807 * count_free_highmem_pages - compute the total number of free highmem
808 * pages, system-wide.
809 */
810
811 static unsigned int count_free_highmem_pages(void)
812 {
813 struct zone *zone;
814 unsigned int cnt = 0;
815
816 for_each_zone(zone)
817 if (populated_zone(zone) && is_highmem(zone))
818 cnt += zone_page_state(zone, NR_FREE_PAGES);
819
820 return cnt;
821 }
822
823 /**
824 * saveable_highmem_page - Determine whether a highmem page should be
825 * included in the suspend image.
826 *
827 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
828 * and it isn't a part of a free chunk of pages.
829 */
830
831 static struct page *saveable_highmem_page(unsigned long pfn)
832 {
833 struct page *page;
834
835 if (!pfn_valid(pfn))
836 return NULL;
837
838 page = pfn_to_page(pfn);
839
840 BUG_ON(!PageHighMem(page));
841
842 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) ||
843 PageReserved(page))
844 return NULL;
845
846 return page;
847 }
848
849 /**
850 * count_highmem_pages - compute the total number of saveable highmem
851 * pages.
852 */
853
854 unsigned int count_highmem_pages(void)
855 {
856 struct zone *zone;
857 unsigned int n = 0;
858
859 for_each_zone(zone) {
860 unsigned long pfn, max_zone_pfn;
861
862 if (!is_highmem(zone))
863 continue;
864
865 mark_free_pages(zone);
866 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
867 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
868 if (saveable_highmem_page(pfn))
869 n++;
870 }
871 return n;
872 }
873 #else
874 static inline void *saveable_highmem_page(unsigned long pfn) { return NULL; }
875 #endif /* CONFIG_HIGHMEM */
876
877 /**
878 * saveable - Determine whether a non-highmem page should be included in
879 * the suspend image.
880 *
881 * We should save the page if it isn't Nosave, and is not in the range
882 * of pages statically defined as 'unsaveable', and it isn't a part of
883 * a free chunk of pages.
884 */
885
886 static struct page *saveable_page(unsigned long pfn)
887 {
888 struct page *page;
889
890 if (!pfn_valid(pfn))
891 return NULL;
892
893 page = pfn_to_page(pfn);
894
895 BUG_ON(PageHighMem(page));
896
897 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
898 return NULL;
899
900 if (PageReserved(page) && pfn_is_nosave(pfn))
901 return NULL;
902
903 return page;
904 }
905
906 /**
907 * count_data_pages - compute the total number of saveable non-highmem
908 * pages.
909 */
910
911 unsigned int count_data_pages(void)
912 {
913 struct zone *zone;
914 unsigned long pfn, max_zone_pfn;
915 unsigned int n = 0;
916
917 for_each_zone(zone) {
918 if (is_highmem(zone))
919 continue;
920
921 mark_free_pages(zone);
922 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
923 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
924 if(saveable_page(pfn))
925 n++;
926 }
927 return n;
928 }
929
930 /* This is needed, because copy_page and memcpy are not usable for copying
931 * task structs.
932 */
933 static inline void do_copy_page(long *dst, long *src)
934 {
935 int n;
936
937 for (n = PAGE_SIZE / sizeof(long); n; n--)
938 *dst++ = *src++;
939 }
940
941 #ifdef CONFIG_HIGHMEM
942 static inline struct page *
943 page_is_saveable(struct zone *zone, unsigned long pfn)
944 {
945 return is_highmem(zone) ?
946 saveable_highmem_page(pfn) : saveable_page(pfn);
947 }
948
949 static inline void
950 copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
951 {
952 struct page *s_page, *d_page;
953 void *src, *dst;
954
955 s_page = pfn_to_page(src_pfn);
956 d_page = pfn_to_page(dst_pfn);
957 if (PageHighMem(s_page)) {
958 src = kmap_atomic(s_page, KM_USER0);
959 dst = kmap_atomic(d_page, KM_USER1);
960 do_copy_page(dst, src);
961 kunmap_atomic(src, KM_USER0);
962 kunmap_atomic(dst, KM_USER1);
963 } else {
964 src = page_address(s_page);
965 if (PageHighMem(d_page)) {
966 /* Page pointed to by src may contain some kernel
967 * data modified by kmap_atomic()
968 */
969 do_copy_page(buffer, src);
970 dst = kmap_atomic(pfn_to_page(dst_pfn), KM_USER0);
971 memcpy(dst, buffer, PAGE_SIZE);
972 kunmap_atomic(dst, KM_USER0);
973 } else {
974 dst = page_address(d_page);
975 do_copy_page(dst, src);
976 }
977 }
978 }
979 #else
980 #define page_is_saveable(zone, pfn) saveable_page(pfn)
981
982 static inline void
983 copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
984 {
985 do_copy_page(page_address(pfn_to_page(dst_pfn)),
986 page_address(pfn_to_page(src_pfn)));
987 }
988 #endif /* CONFIG_HIGHMEM */
989
990 static void
991 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
992 {
993 struct zone *zone;
994 unsigned long pfn;
995
996 for_each_zone(zone) {
997 unsigned long max_zone_pfn;
998
999 mark_free_pages(zone);
1000 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1001 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1002 if (page_is_saveable(zone, pfn))
1003 memory_bm_set_bit(orig_bm, pfn);
1004 }
1005 memory_bm_position_reset(orig_bm);
1006 memory_bm_position_reset(copy_bm);
1007 for(;;) {
1008 pfn = memory_bm_next_pfn(orig_bm);
1009 if (unlikely(pfn == BM_END_OF_MAP))
1010 break;
1011 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1012 }
1013 }
1014
1015 /* Total number of image pages */
1016 static unsigned int nr_copy_pages;
1017 /* Number of pages needed for saving the original pfns of the image pages */
1018 static unsigned int nr_meta_pages;
1019
1020 /**
1021 * swsusp_free - free pages allocated for the suspend.
1022 *
1023 * Suspend pages are alocated before the atomic copy is made, so we
1024 * need to release them after the resume.
1025 */
1026
1027 void swsusp_free(void)
1028 {
1029 struct zone *zone;
1030 unsigned long pfn, max_zone_pfn;
1031
1032 for_each_zone(zone) {
1033 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1034 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1035 if (pfn_valid(pfn)) {
1036 struct page *page = pfn_to_page(pfn);
1037
1038 if (swsusp_page_is_forbidden(page) &&
1039 swsusp_page_is_free(page)) {
1040 swsusp_unset_page_forbidden(page);
1041 swsusp_unset_page_free(page);
1042 __free_page(page);
1043 }
1044 }
1045 }
1046 nr_copy_pages = 0;
1047 nr_meta_pages = 0;
1048 restore_pblist = NULL;
1049 buffer = NULL;
1050 }
1051
1052 #ifdef CONFIG_HIGHMEM
1053 /**
1054 * count_pages_for_highmem - compute the number of non-highmem pages
1055 * that will be necessary for creating copies of highmem pages.
1056 */
1057
1058 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1059 {
1060 unsigned int free_highmem = count_free_highmem_pages();
1061
1062 if (free_highmem >= nr_highmem)
1063 nr_highmem = 0;
1064 else
1065 nr_highmem -= free_highmem;
1066
1067 return nr_highmem;
1068 }
1069 #else
1070 static unsigned int
1071 count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1072 #endif /* CONFIG_HIGHMEM */
1073
1074 /**
1075 * enough_free_mem - Make sure we have enough free memory for the
1076 * snapshot image.
1077 */
1078
1079 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1080 {
1081 struct zone *zone;
1082 unsigned int free = 0, meta = 0;
1083
1084 for_each_zone(zone) {
1085 meta += snapshot_additional_pages(zone);
1086 if (!is_highmem(zone))
1087 free += zone_page_state(zone, NR_FREE_PAGES);
1088 }
1089
1090 nr_pages += count_pages_for_highmem(nr_highmem);
1091 pr_debug("swsusp: Normal pages needed: %u + %u + %u, available pages: %u\n",
1092 nr_pages, PAGES_FOR_IO, meta, free);
1093
1094 return free > nr_pages + PAGES_FOR_IO + meta;
1095 }
1096
1097 #ifdef CONFIG_HIGHMEM
1098 /**
1099 * get_highmem_buffer - if there are some highmem pages in the suspend
1100 * image, we may need the buffer to copy them and/or load their data.
1101 */
1102
1103 static inline int get_highmem_buffer(int safe_needed)
1104 {
1105 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1106 return buffer ? 0 : -ENOMEM;
1107 }
1108
1109 /**
1110 * alloc_highmem_image_pages - allocate some highmem pages for the image.
1111 * Try to allocate as many pages as needed, but if the number of free
1112 * highmem pages is lesser than that, allocate them all.
1113 */
1114
1115 static inline unsigned int
1116 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1117 {
1118 unsigned int to_alloc = count_free_highmem_pages();
1119
1120 if (to_alloc > nr_highmem)
1121 to_alloc = nr_highmem;
1122
1123 nr_highmem -= to_alloc;
1124 while (to_alloc-- > 0) {
1125 struct page *page;
1126
1127 page = alloc_image_page(__GFP_HIGHMEM);
1128 memory_bm_set_bit(bm, page_to_pfn(page));
1129 }
1130 return nr_highmem;
1131 }
1132 #else
1133 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1134
1135 static inline unsigned int
1136 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1137 #endif /* CONFIG_HIGHMEM */
1138
1139 /**
1140 * swsusp_alloc - allocate memory for the suspend image
1141 *
1142 * We first try to allocate as many highmem pages as there are
1143 * saveable highmem pages in the system. If that fails, we allocate
1144 * non-highmem pages for the copies of the remaining highmem ones.
1145 *
1146 * In this approach it is likely that the copies of highmem pages will
1147 * also be located in the high memory, because of the way in which
1148 * copy_data_pages() works.
1149 */
1150
1151 static int
1152 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1153 unsigned int nr_pages, unsigned int nr_highmem)
1154 {
1155 int error;
1156
1157 error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
1158 if (error)
1159 goto Free;
1160
1161 error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
1162 if (error)
1163 goto Free;
1164
1165 if (nr_highmem > 0) {
1166 error = get_highmem_buffer(PG_ANY);
1167 if (error)
1168 goto Free;
1169
1170 nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem);
1171 }
1172 while (nr_pages-- > 0) {
1173 struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1174
1175 if (!page)
1176 goto Free;
1177
1178 memory_bm_set_bit(copy_bm, page_to_pfn(page));
1179 }
1180 return 0;
1181
1182 Free:
1183 swsusp_free();
1184 return -ENOMEM;
1185 }
1186
1187 /* Memory bitmap used for marking saveable pages (during suspend) or the
1188 * suspend image pages (during resume)
1189 */
1190 static struct memory_bitmap orig_bm;
1191 /* Memory bitmap used on suspend for marking allocated pages that will contain
1192 * the copies of saveable pages. During resume it is initially used for
1193 * marking the suspend image pages, but then its set bits are duplicated in
1194 * @orig_bm and it is released. Next, on systems with high memory, it may be
1195 * used for marking "safe" highmem pages, but it has to be reinitialized for
1196 * this purpose.
1197 */
1198 static struct memory_bitmap copy_bm;
1199
1200 asmlinkage int swsusp_save(void)
1201 {
1202 unsigned int nr_pages, nr_highmem;
1203
1204 printk("swsusp: critical section: \n");
1205
1206 drain_local_pages();
1207 nr_pages = count_data_pages();
1208 nr_highmem = count_highmem_pages();
1209 printk("swsusp: Need to copy %u pages\n", nr_pages + nr_highmem);
1210
1211 if (!enough_free_mem(nr_pages, nr_highmem)) {
1212 printk(KERN_ERR "swsusp: Not enough free memory\n");
1213 return -ENOMEM;
1214 }
1215
1216 if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1217 printk(KERN_ERR "swsusp: Memory allocation failed\n");
1218 return -ENOMEM;
1219 }
1220
1221 /* During allocating of suspend pagedir, new cold pages may appear.
1222 * Kill them.
1223 */
1224 drain_local_pages();
1225 copy_data_pages(&copy_bm, &orig_bm);
1226
1227 /*
1228 * End of critical section. From now on, we can write to memory,
1229 * but we should not touch disk. This specially means we must _not_
1230 * touch swap space! Except we must write out our image of course.
1231 */
1232
1233 nr_pages += nr_highmem;
1234 nr_copy_pages = nr_pages;
1235 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1236
1237 printk("swsusp: critical section: done (%d pages copied)\n", nr_pages);
1238
1239 return 0;
1240 }
1241
1242 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
1243 static int init_header_complete(struct swsusp_info *info)
1244 {
1245 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1246 info->version_code = LINUX_VERSION_CODE;
1247 return 0;
1248 }
1249
1250 static char *check_image_kernel(struct swsusp_info *info)
1251 {
1252 if (info->version_code != LINUX_VERSION_CODE)
1253 return "kernel version";
1254 if (strcmp(info->uts.sysname,init_utsname()->sysname))
1255 return "system type";
1256 if (strcmp(info->uts.release,init_utsname()->release))
1257 return "kernel release";
1258 if (strcmp(info->uts.version,init_utsname()->version))
1259 return "version";
1260 if (strcmp(info->uts.machine,init_utsname()->machine))
1261 return "machine";
1262 return NULL;
1263 }
1264 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1265
1266 unsigned long snapshot_get_image_size(void)
1267 {
1268 return nr_copy_pages + nr_meta_pages + 1;
1269 }
1270
1271 static int init_header(struct swsusp_info *info)
1272 {
1273 memset(info, 0, sizeof(struct swsusp_info));
1274 info->num_physpages = num_physpages;
1275 info->image_pages = nr_copy_pages;
1276 info->pages = snapshot_get_image_size();
1277 info->size = info->pages;
1278 info->size <<= PAGE_SHIFT;
1279 return init_header_complete(info);
1280 }
1281
1282 /**
1283 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1284 * are stored in the array @buf[] (1 page at a time)
1285 */
1286
1287 static inline void
1288 pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1289 {
1290 int j;
1291
1292 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1293 buf[j] = memory_bm_next_pfn(bm);
1294 if (unlikely(buf[j] == BM_END_OF_MAP))
1295 break;
1296 }
1297 }
1298
1299 /**
1300 * snapshot_read_next - used for reading the system memory snapshot.
1301 *
1302 * On the first call to it @handle should point to a zeroed
1303 * snapshot_handle structure. The structure gets updated and a pointer
1304 * to it should be passed to this function every next time.
1305 *
1306 * The @count parameter should contain the number of bytes the caller
1307 * wants to read from the snapshot. It must not be zero.
1308 *
1309 * On success the function returns a positive number. Then, the caller
1310 * is allowed to read up to the returned number of bytes from the memory
1311 * location computed by the data_of() macro. The number returned
1312 * may be smaller than @count, but this only happens if the read would
1313 * cross a page boundary otherwise.
1314 *
1315 * The function returns 0 to indicate the end of data stream condition,
1316 * and a negative number is returned on error. In such cases the
1317 * structure pointed to by @handle is not updated and should not be used
1318 * any more.
1319 */
1320
1321 int snapshot_read_next(struct snapshot_handle *handle, size_t count)
1322 {
1323 if (handle->cur > nr_meta_pages + nr_copy_pages)
1324 return 0;
1325
1326 if (!buffer) {
1327 /* This makes the buffer be freed by swsusp_free() */
1328 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1329 if (!buffer)
1330 return -ENOMEM;
1331 }
1332 if (!handle->offset) {
1333 int error;
1334
1335 error = init_header((struct swsusp_info *)buffer);
1336 if (error)
1337 return error;
1338 handle->buffer = buffer;
1339 memory_bm_position_reset(&orig_bm);
1340 memory_bm_position_reset(&copy_bm);
1341 }
1342 if (handle->prev < handle->cur) {
1343 if (handle->cur <= nr_meta_pages) {
1344 memset(buffer, 0, PAGE_SIZE);
1345 pack_pfns(buffer, &orig_bm);
1346 } else {
1347 struct page *page;
1348
1349 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1350 if (PageHighMem(page)) {
1351 /* Highmem pages are copied to the buffer,
1352 * because we can't return with a kmapped
1353 * highmem page (we may not be called again).
1354 */
1355 void *kaddr;
1356
1357 kaddr = kmap_atomic(page, KM_USER0);
1358 memcpy(buffer, kaddr, PAGE_SIZE);
1359 kunmap_atomic(kaddr, KM_USER0);
1360 handle->buffer = buffer;
1361 } else {
1362 handle->buffer = page_address(page);
1363 }
1364 }
1365 handle->prev = handle->cur;
1366 }
1367 handle->buf_offset = handle->cur_offset;
1368 if (handle->cur_offset + count >= PAGE_SIZE) {
1369 count = PAGE_SIZE - handle->cur_offset;
1370 handle->cur_offset = 0;
1371 handle->cur++;
1372 } else {
1373 handle->cur_offset += count;
1374 }
1375 handle->offset += count;
1376 return count;
1377 }
1378
1379 /**
1380 * mark_unsafe_pages - mark the pages that cannot be used for storing
1381 * the image during resume, because they conflict with the pages that
1382 * had been used before suspend
1383 */
1384
1385 static int mark_unsafe_pages(struct memory_bitmap *bm)
1386 {
1387 struct zone *zone;
1388 unsigned long pfn, max_zone_pfn;
1389
1390 /* Clear page flags */
1391 for_each_zone(zone) {
1392 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1393 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1394 if (pfn_valid(pfn))
1395 swsusp_unset_page_free(pfn_to_page(pfn));
1396 }
1397
1398 /* Mark pages that correspond to the "original" pfns as "unsafe" */
1399 memory_bm_position_reset(bm);
1400 do {
1401 pfn = memory_bm_next_pfn(bm);
1402 if (likely(pfn != BM_END_OF_MAP)) {
1403 if (likely(pfn_valid(pfn)))
1404 swsusp_set_page_free(pfn_to_page(pfn));
1405 else
1406 return -EFAULT;
1407 }
1408 } while (pfn != BM_END_OF_MAP);
1409
1410 allocated_unsafe_pages = 0;
1411
1412 return 0;
1413 }
1414
1415 static void
1416 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1417 {
1418 unsigned long pfn;
1419
1420 memory_bm_position_reset(src);
1421 pfn = memory_bm_next_pfn(src);
1422 while (pfn != BM_END_OF_MAP) {
1423 memory_bm_set_bit(dst, pfn);
1424 pfn = memory_bm_next_pfn(src);
1425 }
1426 }
1427
1428 static int check_header(struct swsusp_info *info)
1429 {
1430 char *reason;
1431
1432 reason = check_image_kernel(info);
1433 if (!reason && info->num_physpages != num_physpages)
1434 reason = "memory size";
1435 if (reason) {
1436 printk(KERN_ERR "swsusp: Resume mismatch: %s\n", reason);
1437 return -EPERM;
1438 }
1439 return 0;
1440 }
1441
1442 /**
1443 * load header - check the image header and copy data from it
1444 */
1445
1446 static int
1447 load_header(struct swsusp_info *info)
1448 {
1449 int error;
1450
1451 restore_pblist = NULL;
1452 error = check_header(info);
1453 if (!error) {
1454 nr_copy_pages = info->image_pages;
1455 nr_meta_pages = info->pages - info->image_pages - 1;
1456 }
1457 return error;
1458 }
1459
1460 /**
1461 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1462 * the corresponding bit in the memory bitmap @bm
1463 */
1464
1465 static inline void
1466 unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1467 {
1468 int j;
1469
1470 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1471 if (unlikely(buf[j] == BM_END_OF_MAP))
1472 break;
1473
1474 memory_bm_set_bit(bm, buf[j]);
1475 }
1476 }
1477
1478 /* List of "safe" pages that may be used to store data loaded from the suspend
1479 * image
1480 */
1481 static struct linked_page *safe_pages_list;
1482
1483 #ifdef CONFIG_HIGHMEM
1484 /* struct highmem_pbe is used for creating the list of highmem pages that
1485 * should be restored atomically during the resume from disk, because the page
1486 * frames they have occupied before the suspend are in use.
1487 */
1488 struct highmem_pbe {
1489 struct page *copy_page; /* data is here now */
1490 struct page *orig_page; /* data was here before the suspend */
1491 struct highmem_pbe *next;
1492 };
1493
1494 /* List of highmem PBEs needed for restoring the highmem pages that were
1495 * allocated before the suspend and included in the suspend image, but have
1496 * also been allocated by the "resume" kernel, so their contents cannot be
1497 * written directly to their "original" page frames.
1498 */
1499 static struct highmem_pbe *highmem_pblist;
1500
1501 /**
1502 * count_highmem_image_pages - compute the number of highmem pages in the
1503 * suspend image. The bits in the memory bitmap @bm that correspond to the
1504 * image pages are assumed to be set.
1505 */
1506
1507 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1508 {
1509 unsigned long pfn;
1510 unsigned int cnt = 0;
1511
1512 memory_bm_position_reset(bm);
1513 pfn = memory_bm_next_pfn(bm);
1514 while (pfn != BM_END_OF_MAP) {
1515 if (PageHighMem(pfn_to_page(pfn)))
1516 cnt++;
1517
1518 pfn = memory_bm_next_pfn(bm);
1519 }
1520 return cnt;
1521 }
1522
1523 /**
1524 * prepare_highmem_image - try to allocate as many highmem pages as
1525 * there are highmem image pages (@nr_highmem_p points to the variable
1526 * containing the number of highmem image pages). The pages that are
1527 * "safe" (ie. will not be overwritten when the suspend image is
1528 * restored) have the corresponding bits set in @bm (it must be
1529 * unitialized).
1530 *
1531 * NOTE: This function should not be called if there are no highmem
1532 * image pages.
1533 */
1534
1535 static unsigned int safe_highmem_pages;
1536
1537 static struct memory_bitmap *safe_highmem_bm;
1538
1539 static int
1540 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1541 {
1542 unsigned int to_alloc;
1543
1544 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1545 return -ENOMEM;
1546
1547 if (get_highmem_buffer(PG_SAFE))
1548 return -ENOMEM;
1549
1550 to_alloc = count_free_highmem_pages();
1551 if (to_alloc > *nr_highmem_p)
1552 to_alloc = *nr_highmem_p;
1553 else
1554 *nr_highmem_p = to_alloc;
1555
1556 safe_highmem_pages = 0;
1557 while (to_alloc-- > 0) {
1558 struct page *page;
1559
1560 page = alloc_page(__GFP_HIGHMEM);
1561 if (!swsusp_page_is_free(page)) {
1562 /* The page is "safe", set its bit the bitmap */
1563 memory_bm_set_bit(bm, page_to_pfn(page));
1564 safe_highmem_pages++;
1565 }
1566 /* Mark the page as allocated */
1567 swsusp_set_page_forbidden(page);
1568 swsusp_set_page_free(page);
1569 }
1570 memory_bm_position_reset(bm);
1571 safe_highmem_bm = bm;
1572 return 0;
1573 }
1574
1575 /**
1576 * get_highmem_page_buffer - for given highmem image page find the buffer
1577 * that suspend_write_next() should set for its caller to write to.
1578 *
1579 * If the page is to be saved to its "original" page frame or a copy of
1580 * the page is to be made in the highmem, @buffer is returned. Otherwise,
1581 * the copy of the page is to be made in normal memory, so the address of
1582 * the copy is returned.
1583 *
1584 * If @buffer is returned, the caller of suspend_write_next() will write
1585 * the page's contents to @buffer, so they will have to be copied to the
1586 * right location on the next call to suspend_write_next() and it is done
1587 * with the help of copy_last_highmem_page(). For this purpose, if
1588 * @buffer is returned, @last_highmem page is set to the page to which
1589 * the data will have to be copied from @buffer.
1590 */
1591
1592 static struct page *last_highmem_page;
1593
1594 static void *
1595 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1596 {
1597 struct highmem_pbe *pbe;
1598 void *kaddr;
1599
1600 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1601 /* We have allocated the "original" page frame and we can
1602 * use it directly to store the loaded page.
1603 */
1604 last_highmem_page = page;
1605 return buffer;
1606 }
1607 /* The "original" page frame has not been allocated and we have to
1608 * use a "safe" page frame to store the loaded page.
1609 */
1610 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1611 if (!pbe) {
1612 swsusp_free();
1613 return NULL;
1614 }
1615 pbe->orig_page = page;
1616 if (safe_highmem_pages > 0) {
1617 struct page *tmp;
1618
1619 /* Copy of the page will be stored in high memory */
1620 kaddr = buffer;
1621 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1622 safe_highmem_pages--;
1623 last_highmem_page = tmp;
1624 pbe->copy_page = tmp;
1625 } else {
1626 /* Copy of the page will be stored in normal memory */
1627 kaddr = safe_pages_list;
1628 safe_pages_list = safe_pages_list->next;
1629 pbe->copy_page = virt_to_page(kaddr);
1630 }
1631 pbe->next = highmem_pblist;
1632 highmem_pblist = pbe;
1633 return kaddr;
1634 }
1635
1636 /**
1637 * copy_last_highmem_page - copy the contents of a highmem image from
1638 * @buffer, where the caller of snapshot_write_next() has place them,
1639 * to the right location represented by @last_highmem_page .
1640 */
1641
1642 static void copy_last_highmem_page(void)
1643 {
1644 if (last_highmem_page) {
1645 void *dst;
1646
1647 dst = kmap_atomic(last_highmem_page, KM_USER0);
1648 memcpy(dst, buffer, PAGE_SIZE);
1649 kunmap_atomic(dst, KM_USER0);
1650 last_highmem_page = NULL;
1651 }
1652 }
1653
1654 static inline int last_highmem_page_copied(void)
1655 {
1656 return !last_highmem_page;
1657 }
1658
1659 static inline void free_highmem_data(void)
1660 {
1661 if (safe_highmem_bm)
1662 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
1663
1664 if (buffer)
1665 free_image_page(buffer, PG_UNSAFE_CLEAR);
1666 }
1667 #else
1668 static inline int get_safe_write_buffer(void) { return 0; }
1669
1670 static unsigned int
1671 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
1672
1673 static inline int
1674 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1675 {
1676 return 0;
1677 }
1678
1679 static inline void *
1680 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1681 {
1682 return NULL;
1683 }
1684
1685 static inline void copy_last_highmem_page(void) {}
1686 static inline int last_highmem_page_copied(void) { return 1; }
1687 static inline void free_highmem_data(void) {}
1688 #endif /* CONFIG_HIGHMEM */
1689
1690 /**
1691 * prepare_image - use the memory bitmap @bm to mark the pages that will
1692 * be overwritten in the process of restoring the system memory state
1693 * from the suspend image ("unsafe" pages) and allocate memory for the
1694 * image.
1695 *
1696 * The idea is to allocate a new memory bitmap first and then allocate
1697 * as many pages as needed for the image data, but not to assign these
1698 * pages to specific tasks initially. Instead, we just mark them as
1699 * allocated and create a lists of "safe" pages that will be used
1700 * later. On systems with high memory a list of "safe" highmem pages is
1701 * also created.
1702 */
1703
1704 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
1705
1706 static int
1707 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
1708 {
1709 unsigned int nr_pages, nr_highmem;
1710 struct linked_page *sp_list, *lp;
1711 int error;
1712
1713 /* If there is no highmem, the buffer will not be necessary */
1714 free_image_page(buffer, PG_UNSAFE_CLEAR);
1715 buffer = NULL;
1716
1717 nr_highmem = count_highmem_image_pages(bm);
1718 error = mark_unsafe_pages(bm);
1719 if (error)
1720 goto Free;
1721
1722 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
1723 if (error)
1724 goto Free;
1725
1726 duplicate_memory_bitmap(new_bm, bm);
1727 memory_bm_free(bm, PG_UNSAFE_KEEP);
1728 if (nr_highmem > 0) {
1729 error = prepare_highmem_image(bm, &nr_highmem);
1730 if (error)
1731 goto Free;
1732 }
1733 /* Reserve some safe pages for potential later use.
1734 *
1735 * NOTE: This way we make sure there will be enough safe pages for the
1736 * chain_alloc() in get_buffer(). It is a bit wasteful, but
1737 * nr_copy_pages cannot be greater than 50% of the memory anyway.
1738 */
1739 sp_list = NULL;
1740 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
1741 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
1742 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
1743 while (nr_pages > 0) {
1744 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
1745 if (!lp) {
1746 error = -ENOMEM;
1747 goto Free;
1748 }
1749 lp->next = sp_list;
1750 sp_list = lp;
1751 nr_pages--;
1752 }
1753 /* Preallocate memory for the image */
1754 safe_pages_list = NULL;
1755 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
1756 while (nr_pages > 0) {
1757 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
1758 if (!lp) {
1759 error = -ENOMEM;
1760 goto Free;
1761 }
1762 if (!swsusp_page_is_free(virt_to_page(lp))) {
1763 /* The page is "safe", add it to the list */
1764 lp->next = safe_pages_list;
1765 safe_pages_list = lp;
1766 }
1767 /* Mark the page as allocated */
1768 swsusp_set_page_forbidden(virt_to_page(lp));
1769 swsusp_set_page_free(virt_to_page(lp));
1770 nr_pages--;
1771 }
1772 /* Free the reserved safe pages so that chain_alloc() can use them */
1773 while (sp_list) {
1774 lp = sp_list->next;
1775 free_image_page(sp_list, PG_UNSAFE_CLEAR);
1776 sp_list = lp;
1777 }
1778 return 0;
1779
1780 Free:
1781 swsusp_free();
1782 return error;
1783 }
1784
1785 /**
1786 * get_buffer - compute the address that snapshot_write_next() should
1787 * set for its caller to write to.
1788 */
1789
1790 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
1791 {
1792 struct pbe *pbe;
1793 struct page *page = pfn_to_page(memory_bm_next_pfn(bm));
1794
1795 if (PageHighMem(page))
1796 return get_highmem_page_buffer(page, ca);
1797
1798 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
1799 /* We have allocated the "original" page frame and we can
1800 * use it directly to store the loaded page.
1801 */
1802 return page_address(page);
1803
1804 /* The "original" page frame has not been allocated and we have to
1805 * use a "safe" page frame to store the loaded page.
1806 */
1807 pbe = chain_alloc(ca, sizeof(struct pbe));
1808 if (!pbe) {
1809 swsusp_free();
1810 return NULL;
1811 }
1812 pbe->orig_address = page_address(page);
1813 pbe->address = safe_pages_list;
1814 safe_pages_list = safe_pages_list->next;
1815 pbe->next = restore_pblist;
1816 restore_pblist = pbe;
1817 return pbe->address;
1818 }
1819
1820 /**
1821 * snapshot_write_next - used for writing the system memory snapshot.
1822 *
1823 * On the first call to it @handle should point to a zeroed
1824 * snapshot_handle structure. The structure gets updated and a pointer
1825 * to it should be passed to this function every next time.
1826 *
1827 * The @count parameter should contain the number of bytes the caller
1828 * wants to write to the image. It must not be zero.
1829 *
1830 * On success the function returns a positive number. Then, the caller
1831 * is allowed to write up to the returned number of bytes to the memory
1832 * location computed by the data_of() macro. The number returned
1833 * may be smaller than @count, but this only happens if the write would
1834 * cross a page boundary otherwise.
1835 *
1836 * The function returns 0 to indicate the "end of file" condition,
1837 * and a negative number is returned on error. In such cases the
1838 * structure pointed to by @handle is not updated and should not be used
1839 * any more.
1840 */
1841
1842 int snapshot_write_next(struct snapshot_handle *handle, size_t count)
1843 {
1844 static struct chain_allocator ca;
1845 int error = 0;
1846
1847 /* Check if we have already loaded the entire image */
1848 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages)
1849 return 0;
1850
1851 if (handle->offset == 0) {
1852 if (!buffer)
1853 /* This makes the buffer be freed by swsusp_free() */
1854 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1855
1856 if (!buffer)
1857 return -ENOMEM;
1858
1859 handle->buffer = buffer;
1860 }
1861 handle->sync_read = 1;
1862 if (handle->prev < handle->cur) {
1863 if (handle->prev == 0) {
1864 error = load_header(buffer);
1865 if (error)
1866 return error;
1867
1868 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
1869 if (error)
1870 return error;
1871
1872 } else if (handle->prev <= nr_meta_pages) {
1873 unpack_orig_pfns(buffer, &copy_bm);
1874 if (handle->prev == nr_meta_pages) {
1875 error = prepare_image(&orig_bm, &copy_bm);
1876 if (error)
1877 return error;
1878
1879 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
1880 memory_bm_position_reset(&orig_bm);
1881 restore_pblist = NULL;
1882 handle->buffer = get_buffer(&orig_bm, &ca);
1883 handle->sync_read = 0;
1884 if (!handle->buffer)
1885 return -ENOMEM;
1886 }
1887 } else {
1888 copy_last_highmem_page();
1889 handle->buffer = get_buffer(&orig_bm, &ca);
1890 if (handle->buffer != buffer)
1891 handle->sync_read = 0;
1892 }
1893 handle->prev = handle->cur;
1894 }
1895 handle->buf_offset = handle->cur_offset;
1896 if (handle->cur_offset + count >= PAGE_SIZE) {
1897 count = PAGE_SIZE - handle->cur_offset;
1898 handle->cur_offset = 0;
1899 handle->cur++;
1900 } else {
1901 handle->cur_offset += count;
1902 }
1903 handle->offset += count;
1904 return count;
1905 }
1906
1907 /**
1908 * snapshot_write_finalize - must be called after the last call to
1909 * snapshot_write_next() in case the last page in the image happens
1910 * to be a highmem page and its contents should be stored in the
1911 * highmem. Additionally, it releases the memory that will not be
1912 * used any more.
1913 */
1914
1915 void snapshot_write_finalize(struct snapshot_handle *handle)
1916 {
1917 copy_last_highmem_page();
1918 /* Free only if we have loaded the image entirely */
1919 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) {
1920 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
1921 free_highmem_data();
1922 }
1923 }
1924
1925 int snapshot_image_loaded(struct snapshot_handle *handle)
1926 {
1927 return !(!nr_copy_pages || !last_highmem_page_copied() ||
1928 handle->cur <= nr_meta_pages + nr_copy_pages);
1929 }
1930
1931 #ifdef CONFIG_HIGHMEM
1932 /* Assumes that @buf is ready and points to a "safe" page */
1933 static inline void
1934 swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
1935 {
1936 void *kaddr1, *kaddr2;
1937
1938 kaddr1 = kmap_atomic(p1, KM_USER0);
1939 kaddr2 = kmap_atomic(p2, KM_USER1);
1940 memcpy(buf, kaddr1, PAGE_SIZE);
1941 memcpy(kaddr1, kaddr2, PAGE_SIZE);
1942 memcpy(kaddr2, buf, PAGE_SIZE);
1943 kunmap_atomic(kaddr1, KM_USER0);
1944 kunmap_atomic(kaddr2, KM_USER1);
1945 }
1946
1947 /**
1948 * restore_highmem - for each highmem page that was allocated before
1949 * the suspend and included in the suspend image, and also has been
1950 * allocated by the "resume" kernel swap its current (ie. "before
1951 * resume") contents with the previous (ie. "before suspend") one.
1952 *
1953 * If the resume eventually fails, we can call this function once
1954 * again and restore the "before resume" highmem state.
1955 */
1956
1957 int restore_highmem(void)
1958 {
1959 struct highmem_pbe *pbe = highmem_pblist;
1960 void *buf;
1961
1962 if (!pbe)
1963 return 0;
1964
1965 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
1966 if (!buf)
1967 return -ENOMEM;
1968
1969 while (pbe) {
1970 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
1971 pbe = pbe->next;
1972 }
1973 free_image_page(buf, PG_UNSAFE_CLEAR);
1974 return 0;
1975 }
1976 #endif /* CONFIG_HIGHMEM */