]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/power/swap.c
block/fs/drivers: remove rw argument from submit_bio
[mirror_ubuntu-artful-kernel.git] / kernel / power / swap.c
1 /*
2 * linux/kernel/power/swap.c
3 *
4 * This file provides functions for reading the suspend image from
5 * and writing it to a swap partition.
6 *
7 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
10 *
11 * This file is released under the GPLv2.
12 *
13 */
14
15 #include <linux/module.h>
16 #include <linux/file.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/genhd.h>
20 #include <linux/device.h>
21 #include <linux/bio.h>
22 #include <linux/blkdev.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/pm.h>
26 #include <linux/slab.h>
27 #include <linux/lzo.h>
28 #include <linux/vmalloc.h>
29 #include <linux/cpumask.h>
30 #include <linux/atomic.h>
31 #include <linux/kthread.h>
32 #include <linux/crc32.h>
33 #include <linux/ktime.h>
34
35 #include "power.h"
36
37 #define HIBERNATE_SIG "S1SUSPEND"
38
39 /*
40 * When reading an {un,}compressed image, we may restore pages in place,
41 * in which case some architectures need these pages cleaning before they
42 * can be executed. We don't know which pages these may be, so clean the lot.
43 */
44 static bool clean_pages_on_read;
45 static bool clean_pages_on_decompress;
46
47 /*
48 * The swap map is a data structure used for keeping track of each page
49 * written to a swap partition. It consists of many swap_map_page
50 * structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
51 * These structures are stored on the swap and linked together with the
52 * help of the .next_swap member.
53 *
54 * The swap map is created during suspend. The swap map pages are
55 * allocated and populated one at a time, so we only need one memory
56 * page to set up the entire structure.
57 *
58 * During resume we pick up all swap_map_page structures into a list.
59 */
60
61 #define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(sector_t) - 1)
62
63 /*
64 * Number of free pages that are not high.
65 */
66 static inline unsigned long low_free_pages(void)
67 {
68 return nr_free_pages() - nr_free_highpages();
69 }
70
71 /*
72 * Number of pages required to be kept free while writing the image. Always
73 * half of all available low pages before the writing starts.
74 */
75 static inline unsigned long reqd_free_pages(void)
76 {
77 return low_free_pages() / 2;
78 }
79
80 struct swap_map_page {
81 sector_t entries[MAP_PAGE_ENTRIES];
82 sector_t next_swap;
83 };
84
85 struct swap_map_page_list {
86 struct swap_map_page *map;
87 struct swap_map_page_list *next;
88 };
89
90 /**
91 * The swap_map_handle structure is used for handling swap in
92 * a file-alike way
93 */
94
95 struct swap_map_handle {
96 struct swap_map_page *cur;
97 struct swap_map_page_list *maps;
98 sector_t cur_swap;
99 sector_t first_sector;
100 unsigned int k;
101 unsigned long reqd_free_pages;
102 u32 crc32;
103 };
104
105 struct swsusp_header {
106 char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
107 sizeof(u32)];
108 u32 crc32;
109 sector_t image;
110 unsigned int flags; /* Flags to pass to the "boot" kernel */
111 char orig_sig[10];
112 char sig[10];
113 } __packed;
114
115 static struct swsusp_header *swsusp_header;
116
117 /**
118 * The following functions are used for tracing the allocated
119 * swap pages, so that they can be freed in case of an error.
120 */
121
122 struct swsusp_extent {
123 struct rb_node node;
124 unsigned long start;
125 unsigned long end;
126 };
127
128 static struct rb_root swsusp_extents = RB_ROOT;
129
130 static int swsusp_extents_insert(unsigned long swap_offset)
131 {
132 struct rb_node **new = &(swsusp_extents.rb_node);
133 struct rb_node *parent = NULL;
134 struct swsusp_extent *ext;
135
136 /* Figure out where to put the new node */
137 while (*new) {
138 ext = rb_entry(*new, struct swsusp_extent, node);
139 parent = *new;
140 if (swap_offset < ext->start) {
141 /* Try to merge */
142 if (swap_offset == ext->start - 1) {
143 ext->start--;
144 return 0;
145 }
146 new = &((*new)->rb_left);
147 } else if (swap_offset > ext->end) {
148 /* Try to merge */
149 if (swap_offset == ext->end + 1) {
150 ext->end++;
151 return 0;
152 }
153 new = &((*new)->rb_right);
154 } else {
155 /* It already is in the tree */
156 return -EINVAL;
157 }
158 }
159 /* Add the new node and rebalance the tree. */
160 ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
161 if (!ext)
162 return -ENOMEM;
163
164 ext->start = swap_offset;
165 ext->end = swap_offset;
166 rb_link_node(&ext->node, parent, new);
167 rb_insert_color(&ext->node, &swsusp_extents);
168 return 0;
169 }
170
171 /**
172 * alloc_swapdev_block - allocate a swap page and register that it has
173 * been allocated, so that it can be freed in case of an error.
174 */
175
176 sector_t alloc_swapdev_block(int swap)
177 {
178 unsigned long offset;
179
180 offset = swp_offset(get_swap_page_of_type(swap));
181 if (offset) {
182 if (swsusp_extents_insert(offset))
183 swap_free(swp_entry(swap, offset));
184 else
185 return swapdev_block(swap, offset);
186 }
187 return 0;
188 }
189
190 /**
191 * free_all_swap_pages - free swap pages allocated for saving image data.
192 * It also frees the extents used to register which swap entries had been
193 * allocated.
194 */
195
196 void free_all_swap_pages(int swap)
197 {
198 struct rb_node *node;
199
200 while ((node = swsusp_extents.rb_node)) {
201 struct swsusp_extent *ext;
202 unsigned long offset;
203
204 ext = container_of(node, struct swsusp_extent, node);
205 rb_erase(node, &swsusp_extents);
206 for (offset = ext->start; offset <= ext->end; offset++)
207 swap_free(swp_entry(swap, offset));
208
209 kfree(ext);
210 }
211 }
212
213 int swsusp_swap_in_use(void)
214 {
215 return (swsusp_extents.rb_node != NULL);
216 }
217
218 /*
219 * General things
220 */
221
222 static unsigned short root_swap = 0xffff;
223 static struct block_device *hib_resume_bdev;
224
225 struct hib_bio_batch {
226 atomic_t count;
227 wait_queue_head_t wait;
228 int error;
229 };
230
231 static void hib_init_batch(struct hib_bio_batch *hb)
232 {
233 atomic_set(&hb->count, 0);
234 init_waitqueue_head(&hb->wait);
235 hb->error = 0;
236 }
237
238 static void hib_end_io(struct bio *bio)
239 {
240 struct hib_bio_batch *hb = bio->bi_private;
241 struct page *page = bio->bi_io_vec[0].bv_page;
242
243 if (bio->bi_error) {
244 printk(KERN_ALERT "Read-error on swap-device (%u:%u:%Lu)\n",
245 imajor(bio->bi_bdev->bd_inode),
246 iminor(bio->bi_bdev->bd_inode),
247 (unsigned long long)bio->bi_iter.bi_sector);
248 }
249
250 if (bio_data_dir(bio) == WRITE)
251 put_page(page);
252 else if (clean_pages_on_read)
253 flush_icache_range((unsigned long)page_address(page),
254 (unsigned long)page_address(page) + PAGE_SIZE);
255
256 if (bio->bi_error && !hb->error)
257 hb->error = bio->bi_error;
258 if (atomic_dec_and_test(&hb->count))
259 wake_up(&hb->wait);
260
261 bio_put(bio);
262 }
263
264 static int hib_submit_io(int rw, pgoff_t page_off, void *addr,
265 struct hib_bio_batch *hb)
266 {
267 struct page *page = virt_to_page(addr);
268 struct bio *bio;
269 int error = 0;
270
271 bio = bio_alloc(__GFP_RECLAIM | __GFP_HIGH, 1);
272 bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
273 bio->bi_bdev = hib_resume_bdev;
274 bio->bi_rw = rw;
275
276 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
277 printk(KERN_ERR "PM: Adding page to bio failed at %llu\n",
278 (unsigned long long)bio->bi_iter.bi_sector);
279 bio_put(bio);
280 return -EFAULT;
281 }
282
283 if (hb) {
284 bio->bi_end_io = hib_end_io;
285 bio->bi_private = hb;
286 atomic_inc(&hb->count);
287 submit_bio(bio);
288 } else {
289 error = submit_bio_wait(bio);
290 bio_put(bio);
291 }
292
293 return error;
294 }
295
296 static int hib_wait_io(struct hib_bio_batch *hb)
297 {
298 wait_event(hb->wait, atomic_read(&hb->count) == 0);
299 return hb->error;
300 }
301
302 /*
303 * Saving part
304 */
305
306 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
307 {
308 int error;
309
310 hib_submit_io(READ_SYNC, swsusp_resume_block, swsusp_header, NULL);
311 if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
312 !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
313 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
314 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
315 swsusp_header->image = handle->first_sector;
316 swsusp_header->flags = flags;
317 if (flags & SF_CRC32_MODE)
318 swsusp_header->crc32 = handle->crc32;
319 error = hib_submit_io(WRITE_SYNC, swsusp_resume_block,
320 swsusp_header, NULL);
321 } else {
322 printk(KERN_ERR "PM: Swap header not found!\n");
323 error = -ENODEV;
324 }
325 return error;
326 }
327
328 /**
329 * swsusp_swap_check - check if the resume device is a swap device
330 * and get its index (if so)
331 *
332 * This is called before saving image
333 */
334 static int swsusp_swap_check(void)
335 {
336 int res;
337
338 res = swap_type_of(swsusp_resume_device, swsusp_resume_block,
339 &hib_resume_bdev);
340 if (res < 0)
341 return res;
342
343 root_swap = res;
344 res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL);
345 if (res)
346 return res;
347
348 res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
349 if (res < 0)
350 blkdev_put(hib_resume_bdev, FMODE_WRITE);
351
352 return res;
353 }
354
355 /**
356 * write_page - Write one page to given swap location.
357 * @buf: Address we're writing.
358 * @offset: Offset of the swap page we're writing to.
359 * @hb: bio completion batch
360 */
361
362 static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
363 {
364 void *src;
365 int ret;
366
367 if (!offset)
368 return -ENOSPC;
369
370 if (hb) {
371 src = (void *)__get_free_page(__GFP_RECLAIM | __GFP_NOWARN |
372 __GFP_NORETRY);
373 if (src) {
374 copy_page(src, buf);
375 } else {
376 ret = hib_wait_io(hb); /* Free pages */
377 if (ret)
378 return ret;
379 src = (void *)__get_free_page(__GFP_RECLAIM |
380 __GFP_NOWARN |
381 __GFP_NORETRY);
382 if (src) {
383 copy_page(src, buf);
384 } else {
385 WARN_ON_ONCE(1);
386 hb = NULL; /* Go synchronous */
387 src = buf;
388 }
389 }
390 } else {
391 src = buf;
392 }
393 return hib_submit_io(WRITE_SYNC, offset, src, hb);
394 }
395
396 static void release_swap_writer(struct swap_map_handle *handle)
397 {
398 if (handle->cur)
399 free_page((unsigned long)handle->cur);
400 handle->cur = NULL;
401 }
402
403 static int get_swap_writer(struct swap_map_handle *handle)
404 {
405 int ret;
406
407 ret = swsusp_swap_check();
408 if (ret) {
409 if (ret != -ENOSPC)
410 printk(KERN_ERR "PM: Cannot find swap device, try "
411 "swapon -a.\n");
412 return ret;
413 }
414 handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
415 if (!handle->cur) {
416 ret = -ENOMEM;
417 goto err_close;
418 }
419 handle->cur_swap = alloc_swapdev_block(root_swap);
420 if (!handle->cur_swap) {
421 ret = -ENOSPC;
422 goto err_rel;
423 }
424 handle->k = 0;
425 handle->reqd_free_pages = reqd_free_pages();
426 handle->first_sector = handle->cur_swap;
427 return 0;
428 err_rel:
429 release_swap_writer(handle);
430 err_close:
431 swsusp_close(FMODE_WRITE);
432 return ret;
433 }
434
435 static int swap_write_page(struct swap_map_handle *handle, void *buf,
436 struct hib_bio_batch *hb)
437 {
438 int error = 0;
439 sector_t offset;
440
441 if (!handle->cur)
442 return -EINVAL;
443 offset = alloc_swapdev_block(root_swap);
444 error = write_page(buf, offset, hb);
445 if (error)
446 return error;
447 handle->cur->entries[handle->k++] = offset;
448 if (handle->k >= MAP_PAGE_ENTRIES) {
449 offset = alloc_swapdev_block(root_swap);
450 if (!offset)
451 return -ENOSPC;
452 handle->cur->next_swap = offset;
453 error = write_page(handle->cur, handle->cur_swap, hb);
454 if (error)
455 goto out;
456 clear_page(handle->cur);
457 handle->cur_swap = offset;
458 handle->k = 0;
459
460 if (hb && low_free_pages() <= handle->reqd_free_pages) {
461 error = hib_wait_io(hb);
462 if (error)
463 goto out;
464 /*
465 * Recalculate the number of required free pages, to
466 * make sure we never take more than half.
467 */
468 handle->reqd_free_pages = reqd_free_pages();
469 }
470 }
471 out:
472 return error;
473 }
474
475 static int flush_swap_writer(struct swap_map_handle *handle)
476 {
477 if (handle->cur && handle->cur_swap)
478 return write_page(handle->cur, handle->cur_swap, NULL);
479 else
480 return -EINVAL;
481 }
482
483 static int swap_writer_finish(struct swap_map_handle *handle,
484 unsigned int flags, int error)
485 {
486 if (!error) {
487 flush_swap_writer(handle);
488 printk(KERN_INFO "PM: S");
489 error = mark_swapfiles(handle, flags);
490 printk("|\n");
491 }
492
493 if (error)
494 free_all_swap_pages(root_swap);
495 release_swap_writer(handle);
496 swsusp_close(FMODE_WRITE);
497
498 return error;
499 }
500
501 /* We need to remember how much compressed data we need to read. */
502 #define LZO_HEADER sizeof(size_t)
503
504 /* Number of pages/bytes we'll compress at one time. */
505 #define LZO_UNC_PAGES 32
506 #define LZO_UNC_SIZE (LZO_UNC_PAGES * PAGE_SIZE)
507
508 /* Number of pages/bytes we need for compressed data (worst case). */
509 #define LZO_CMP_PAGES DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
510 LZO_HEADER, PAGE_SIZE)
511 #define LZO_CMP_SIZE (LZO_CMP_PAGES * PAGE_SIZE)
512
513 /* Maximum number of threads for compression/decompression. */
514 #define LZO_THREADS 3
515
516 /* Minimum/maximum number of pages for read buffering. */
517 #define LZO_MIN_RD_PAGES 1024
518 #define LZO_MAX_RD_PAGES 8192
519
520
521 /**
522 * save_image - save the suspend image data
523 */
524
525 static int save_image(struct swap_map_handle *handle,
526 struct snapshot_handle *snapshot,
527 unsigned int nr_to_write)
528 {
529 unsigned int m;
530 int ret;
531 int nr_pages;
532 int err2;
533 struct hib_bio_batch hb;
534 ktime_t start;
535 ktime_t stop;
536
537 hib_init_batch(&hb);
538
539 printk(KERN_INFO "PM: Saving image data pages (%u pages)...\n",
540 nr_to_write);
541 m = nr_to_write / 10;
542 if (!m)
543 m = 1;
544 nr_pages = 0;
545 start = ktime_get();
546 while (1) {
547 ret = snapshot_read_next(snapshot);
548 if (ret <= 0)
549 break;
550 ret = swap_write_page(handle, data_of(*snapshot), &hb);
551 if (ret)
552 break;
553 if (!(nr_pages % m))
554 printk(KERN_INFO "PM: Image saving progress: %3d%%\n",
555 nr_pages / m * 10);
556 nr_pages++;
557 }
558 err2 = hib_wait_io(&hb);
559 stop = ktime_get();
560 if (!ret)
561 ret = err2;
562 if (!ret)
563 printk(KERN_INFO "PM: Image saving done.\n");
564 swsusp_show_speed(start, stop, nr_to_write, "Wrote");
565 return ret;
566 }
567
568 /**
569 * Structure used for CRC32.
570 */
571 struct crc_data {
572 struct task_struct *thr; /* thread */
573 atomic_t ready; /* ready to start flag */
574 atomic_t stop; /* ready to stop flag */
575 unsigned run_threads; /* nr current threads */
576 wait_queue_head_t go; /* start crc update */
577 wait_queue_head_t done; /* crc update done */
578 u32 *crc32; /* points to handle's crc32 */
579 size_t *unc_len[LZO_THREADS]; /* uncompressed lengths */
580 unsigned char *unc[LZO_THREADS]; /* uncompressed data */
581 };
582
583 /**
584 * CRC32 update function that runs in its own thread.
585 */
586 static int crc32_threadfn(void *data)
587 {
588 struct crc_data *d = data;
589 unsigned i;
590
591 while (1) {
592 wait_event(d->go, atomic_read(&d->ready) ||
593 kthread_should_stop());
594 if (kthread_should_stop()) {
595 d->thr = NULL;
596 atomic_set(&d->stop, 1);
597 wake_up(&d->done);
598 break;
599 }
600 atomic_set(&d->ready, 0);
601
602 for (i = 0; i < d->run_threads; i++)
603 *d->crc32 = crc32_le(*d->crc32,
604 d->unc[i], *d->unc_len[i]);
605 atomic_set(&d->stop, 1);
606 wake_up(&d->done);
607 }
608 return 0;
609 }
610 /**
611 * Structure used for LZO data compression.
612 */
613 struct cmp_data {
614 struct task_struct *thr; /* thread */
615 atomic_t ready; /* ready to start flag */
616 atomic_t stop; /* ready to stop flag */
617 int ret; /* return code */
618 wait_queue_head_t go; /* start compression */
619 wait_queue_head_t done; /* compression done */
620 size_t unc_len; /* uncompressed length */
621 size_t cmp_len; /* compressed length */
622 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */
623 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */
624 unsigned char wrk[LZO1X_1_MEM_COMPRESS]; /* compression workspace */
625 };
626
627 /**
628 * Compression function that runs in its own thread.
629 */
630 static int lzo_compress_threadfn(void *data)
631 {
632 struct cmp_data *d = data;
633
634 while (1) {
635 wait_event(d->go, atomic_read(&d->ready) ||
636 kthread_should_stop());
637 if (kthread_should_stop()) {
638 d->thr = NULL;
639 d->ret = -1;
640 atomic_set(&d->stop, 1);
641 wake_up(&d->done);
642 break;
643 }
644 atomic_set(&d->ready, 0);
645
646 d->ret = lzo1x_1_compress(d->unc, d->unc_len,
647 d->cmp + LZO_HEADER, &d->cmp_len,
648 d->wrk);
649 atomic_set(&d->stop, 1);
650 wake_up(&d->done);
651 }
652 return 0;
653 }
654
655 /**
656 * save_image_lzo - Save the suspend image data compressed with LZO.
657 * @handle: Swap map handle to use for saving the image.
658 * @snapshot: Image to read data from.
659 * @nr_to_write: Number of pages to save.
660 */
661 static int save_image_lzo(struct swap_map_handle *handle,
662 struct snapshot_handle *snapshot,
663 unsigned int nr_to_write)
664 {
665 unsigned int m;
666 int ret = 0;
667 int nr_pages;
668 int err2;
669 struct hib_bio_batch hb;
670 ktime_t start;
671 ktime_t stop;
672 size_t off;
673 unsigned thr, run_threads, nr_threads;
674 unsigned char *page = NULL;
675 struct cmp_data *data = NULL;
676 struct crc_data *crc = NULL;
677
678 hib_init_batch(&hb);
679
680 /*
681 * We'll limit the number of threads for compression to limit memory
682 * footprint.
683 */
684 nr_threads = num_online_cpus() - 1;
685 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
686
687 page = (void *)__get_free_page(__GFP_RECLAIM | __GFP_HIGH);
688 if (!page) {
689 printk(KERN_ERR "PM: Failed to allocate LZO page\n");
690 ret = -ENOMEM;
691 goto out_clean;
692 }
693
694 data = vmalloc(sizeof(*data) * nr_threads);
695 if (!data) {
696 printk(KERN_ERR "PM: Failed to allocate LZO data\n");
697 ret = -ENOMEM;
698 goto out_clean;
699 }
700 for (thr = 0; thr < nr_threads; thr++)
701 memset(&data[thr], 0, offsetof(struct cmp_data, go));
702
703 crc = kmalloc(sizeof(*crc), GFP_KERNEL);
704 if (!crc) {
705 printk(KERN_ERR "PM: Failed to allocate crc\n");
706 ret = -ENOMEM;
707 goto out_clean;
708 }
709 memset(crc, 0, offsetof(struct crc_data, go));
710
711 /*
712 * Start the compression threads.
713 */
714 for (thr = 0; thr < nr_threads; thr++) {
715 init_waitqueue_head(&data[thr].go);
716 init_waitqueue_head(&data[thr].done);
717
718 data[thr].thr = kthread_run(lzo_compress_threadfn,
719 &data[thr],
720 "image_compress/%u", thr);
721 if (IS_ERR(data[thr].thr)) {
722 data[thr].thr = NULL;
723 printk(KERN_ERR
724 "PM: Cannot start compression threads\n");
725 ret = -ENOMEM;
726 goto out_clean;
727 }
728 }
729
730 /*
731 * Start the CRC32 thread.
732 */
733 init_waitqueue_head(&crc->go);
734 init_waitqueue_head(&crc->done);
735
736 handle->crc32 = 0;
737 crc->crc32 = &handle->crc32;
738 for (thr = 0; thr < nr_threads; thr++) {
739 crc->unc[thr] = data[thr].unc;
740 crc->unc_len[thr] = &data[thr].unc_len;
741 }
742
743 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
744 if (IS_ERR(crc->thr)) {
745 crc->thr = NULL;
746 printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
747 ret = -ENOMEM;
748 goto out_clean;
749 }
750
751 /*
752 * Adjust the number of required free pages after all allocations have
753 * been done. We don't want to run out of pages when writing.
754 */
755 handle->reqd_free_pages = reqd_free_pages();
756
757 printk(KERN_INFO
758 "PM: Using %u thread(s) for compression.\n"
759 "PM: Compressing and saving image data (%u pages)...\n",
760 nr_threads, nr_to_write);
761 m = nr_to_write / 10;
762 if (!m)
763 m = 1;
764 nr_pages = 0;
765 start = ktime_get();
766 for (;;) {
767 for (thr = 0; thr < nr_threads; thr++) {
768 for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
769 ret = snapshot_read_next(snapshot);
770 if (ret < 0)
771 goto out_finish;
772
773 if (!ret)
774 break;
775
776 memcpy(data[thr].unc + off,
777 data_of(*snapshot), PAGE_SIZE);
778
779 if (!(nr_pages % m))
780 printk(KERN_INFO
781 "PM: Image saving progress: "
782 "%3d%%\n",
783 nr_pages / m * 10);
784 nr_pages++;
785 }
786 if (!off)
787 break;
788
789 data[thr].unc_len = off;
790
791 atomic_set(&data[thr].ready, 1);
792 wake_up(&data[thr].go);
793 }
794
795 if (!thr)
796 break;
797
798 crc->run_threads = thr;
799 atomic_set(&crc->ready, 1);
800 wake_up(&crc->go);
801
802 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
803 wait_event(data[thr].done,
804 atomic_read(&data[thr].stop));
805 atomic_set(&data[thr].stop, 0);
806
807 ret = data[thr].ret;
808
809 if (ret < 0) {
810 printk(KERN_ERR "PM: LZO compression failed\n");
811 goto out_finish;
812 }
813
814 if (unlikely(!data[thr].cmp_len ||
815 data[thr].cmp_len >
816 lzo1x_worst_compress(data[thr].unc_len))) {
817 printk(KERN_ERR
818 "PM: Invalid LZO compressed length\n");
819 ret = -1;
820 goto out_finish;
821 }
822
823 *(size_t *)data[thr].cmp = data[thr].cmp_len;
824
825 /*
826 * Given we are writing one page at a time to disk, we
827 * copy that much from the buffer, although the last
828 * bit will likely be smaller than full page. This is
829 * OK - we saved the length of the compressed data, so
830 * any garbage at the end will be discarded when we
831 * read it.
832 */
833 for (off = 0;
834 off < LZO_HEADER + data[thr].cmp_len;
835 off += PAGE_SIZE) {
836 memcpy(page, data[thr].cmp + off, PAGE_SIZE);
837
838 ret = swap_write_page(handle, page, &hb);
839 if (ret)
840 goto out_finish;
841 }
842 }
843
844 wait_event(crc->done, atomic_read(&crc->stop));
845 atomic_set(&crc->stop, 0);
846 }
847
848 out_finish:
849 err2 = hib_wait_io(&hb);
850 stop = ktime_get();
851 if (!ret)
852 ret = err2;
853 if (!ret)
854 printk(KERN_INFO "PM: Image saving done.\n");
855 swsusp_show_speed(start, stop, nr_to_write, "Wrote");
856 out_clean:
857 if (crc) {
858 if (crc->thr)
859 kthread_stop(crc->thr);
860 kfree(crc);
861 }
862 if (data) {
863 for (thr = 0; thr < nr_threads; thr++)
864 if (data[thr].thr)
865 kthread_stop(data[thr].thr);
866 vfree(data);
867 }
868 if (page) free_page((unsigned long)page);
869
870 return ret;
871 }
872
873 /**
874 * enough_swap - Make sure we have enough swap to save the image.
875 *
876 * Returns TRUE or FALSE after checking the total amount of swap
877 * space avaiable from the resume partition.
878 */
879
880 static int enough_swap(unsigned int nr_pages, unsigned int flags)
881 {
882 unsigned int free_swap = count_swap_pages(root_swap, 1);
883 unsigned int required;
884
885 pr_debug("PM: Free swap pages: %u\n", free_swap);
886
887 required = PAGES_FOR_IO + nr_pages;
888 return free_swap > required;
889 }
890
891 /**
892 * swsusp_write - Write entire image and metadata.
893 * @flags: flags to pass to the "boot" kernel in the image header
894 *
895 * It is important _NOT_ to umount filesystems at this point. We want
896 * them synced (in case something goes wrong) but we DO not want to mark
897 * filesystem clean: it is not. (And it does not matter, if we resume
898 * correctly, we'll mark system clean, anyway.)
899 */
900
901 int swsusp_write(unsigned int flags)
902 {
903 struct swap_map_handle handle;
904 struct snapshot_handle snapshot;
905 struct swsusp_info *header;
906 unsigned long pages;
907 int error;
908
909 pages = snapshot_get_image_size();
910 error = get_swap_writer(&handle);
911 if (error) {
912 printk(KERN_ERR "PM: Cannot get swap writer\n");
913 return error;
914 }
915 if (flags & SF_NOCOMPRESS_MODE) {
916 if (!enough_swap(pages, flags)) {
917 printk(KERN_ERR "PM: Not enough free swap\n");
918 error = -ENOSPC;
919 goto out_finish;
920 }
921 }
922 memset(&snapshot, 0, sizeof(struct snapshot_handle));
923 error = snapshot_read_next(&snapshot);
924 if (error < PAGE_SIZE) {
925 if (error >= 0)
926 error = -EFAULT;
927
928 goto out_finish;
929 }
930 header = (struct swsusp_info *)data_of(snapshot);
931 error = swap_write_page(&handle, header, NULL);
932 if (!error) {
933 error = (flags & SF_NOCOMPRESS_MODE) ?
934 save_image(&handle, &snapshot, pages - 1) :
935 save_image_lzo(&handle, &snapshot, pages - 1);
936 }
937 out_finish:
938 error = swap_writer_finish(&handle, flags, error);
939 return error;
940 }
941
942 /**
943 * The following functions allow us to read data using a swap map
944 * in a file-alike way
945 */
946
947 static void release_swap_reader(struct swap_map_handle *handle)
948 {
949 struct swap_map_page_list *tmp;
950
951 while (handle->maps) {
952 if (handle->maps->map)
953 free_page((unsigned long)handle->maps->map);
954 tmp = handle->maps;
955 handle->maps = handle->maps->next;
956 kfree(tmp);
957 }
958 handle->cur = NULL;
959 }
960
961 static int get_swap_reader(struct swap_map_handle *handle,
962 unsigned int *flags_p)
963 {
964 int error;
965 struct swap_map_page_list *tmp, *last;
966 sector_t offset;
967
968 *flags_p = swsusp_header->flags;
969
970 if (!swsusp_header->image) /* how can this happen? */
971 return -EINVAL;
972
973 handle->cur = NULL;
974 last = handle->maps = NULL;
975 offset = swsusp_header->image;
976 while (offset) {
977 tmp = kmalloc(sizeof(*handle->maps), GFP_KERNEL);
978 if (!tmp) {
979 release_swap_reader(handle);
980 return -ENOMEM;
981 }
982 memset(tmp, 0, sizeof(*tmp));
983 if (!handle->maps)
984 handle->maps = tmp;
985 if (last)
986 last->next = tmp;
987 last = tmp;
988
989 tmp->map = (struct swap_map_page *)
990 __get_free_page(__GFP_RECLAIM | __GFP_HIGH);
991 if (!tmp->map) {
992 release_swap_reader(handle);
993 return -ENOMEM;
994 }
995
996 error = hib_submit_io(READ_SYNC, offset, tmp->map, NULL);
997 if (error) {
998 release_swap_reader(handle);
999 return error;
1000 }
1001 offset = tmp->map->next_swap;
1002 }
1003 handle->k = 0;
1004 handle->cur = handle->maps->map;
1005 return 0;
1006 }
1007
1008 static int swap_read_page(struct swap_map_handle *handle, void *buf,
1009 struct hib_bio_batch *hb)
1010 {
1011 sector_t offset;
1012 int error;
1013 struct swap_map_page_list *tmp;
1014
1015 if (!handle->cur)
1016 return -EINVAL;
1017 offset = handle->cur->entries[handle->k];
1018 if (!offset)
1019 return -EFAULT;
1020 error = hib_submit_io(READ_SYNC, offset, buf, hb);
1021 if (error)
1022 return error;
1023 if (++handle->k >= MAP_PAGE_ENTRIES) {
1024 handle->k = 0;
1025 free_page((unsigned long)handle->maps->map);
1026 tmp = handle->maps;
1027 handle->maps = handle->maps->next;
1028 kfree(tmp);
1029 if (!handle->maps)
1030 release_swap_reader(handle);
1031 else
1032 handle->cur = handle->maps->map;
1033 }
1034 return error;
1035 }
1036
1037 static int swap_reader_finish(struct swap_map_handle *handle)
1038 {
1039 release_swap_reader(handle);
1040
1041 return 0;
1042 }
1043
1044 /**
1045 * load_image - load the image using the swap map handle
1046 * @handle and the snapshot handle @snapshot
1047 * (assume there are @nr_pages pages to load)
1048 */
1049
1050 static int load_image(struct swap_map_handle *handle,
1051 struct snapshot_handle *snapshot,
1052 unsigned int nr_to_read)
1053 {
1054 unsigned int m;
1055 int ret = 0;
1056 ktime_t start;
1057 ktime_t stop;
1058 struct hib_bio_batch hb;
1059 int err2;
1060 unsigned nr_pages;
1061
1062 hib_init_batch(&hb);
1063
1064 clean_pages_on_read = true;
1065 printk(KERN_INFO "PM: Loading image data pages (%u pages)...\n",
1066 nr_to_read);
1067 m = nr_to_read / 10;
1068 if (!m)
1069 m = 1;
1070 nr_pages = 0;
1071 start = ktime_get();
1072 for ( ; ; ) {
1073 ret = snapshot_write_next(snapshot);
1074 if (ret <= 0)
1075 break;
1076 ret = swap_read_page(handle, data_of(*snapshot), &hb);
1077 if (ret)
1078 break;
1079 if (snapshot->sync_read)
1080 ret = hib_wait_io(&hb);
1081 if (ret)
1082 break;
1083 if (!(nr_pages % m))
1084 printk(KERN_INFO "PM: Image loading progress: %3d%%\n",
1085 nr_pages / m * 10);
1086 nr_pages++;
1087 }
1088 err2 = hib_wait_io(&hb);
1089 stop = ktime_get();
1090 if (!ret)
1091 ret = err2;
1092 if (!ret) {
1093 printk(KERN_INFO "PM: Image loading done.\n");
1094 snapshot_write_finalize(snapshot);
1095 if (!snapshot_image_loaded(snapshot))
1096 ret = -ENODATA;
1097 }
1098 swsusp_show_speed(start, stop, nr_to_read, "Read");
1099 return ret;
1100 }
1101
1102 /**
1103 * Structure used for LZO data decompression.
1104 */
1105 struct dec_data {
1106 struct task_struct *thr; /* thread */
1107 atomic_t ready; /* ready to start flag */
1108 atomic_t stop; /* ready to stop flag */
1109 int ret; /* return code */
1110 wait_queue_head_t go; /* start decompression */
1111 wait_queue_head_t done; /* decompression done */
1112 size_t unc_len; /* uncompressed length */
1113 size_t cmp_len; /* compressed length */
1114 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */
1115 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */
1116 };
1117
1118 /**
1119 * Deompression function that runs in its own thread.
1120 */
1121 static int lzo_decompress_threadfn(void *data)
1122 {
1123 struct dec_data *d = data;
1124
1125 while (1) {
1126 wait_event(d->go, atomic_read(&d->ready) ||
1127 kthread_should_stop());
1128 if (kthread_should_stop()) {
1129 d->thr = NULL;
1130 d->ret = -1;
1131 atomic_set(&d->stop, 1);
1132 wake_up(&d->done);
1133 break;
1134 }
1135 atomic_set(&d->ready, 0);
1136
1137 d->unc_len = LZO_UNC_SIZE;
1138 d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1139 d->unc, &d->unc_len);
1140 if (clean_pages_on_decompress)
1141 flush_icache_range((unsigned long)d->unc,
1142 (unsigned long)d->unc + d->unc_len);
1143
1144 atomic_set(&d->stop, 1);
1145 wake_up(&d->done);
1146 }
1147 return 0;
1148 }
1149
1150 /**
1151 * load_image_lzo - Load compressed image data and decompress them with LZO.
1152 * @handle: Swap map handle to use for loading data.
1153 * @snapshot: Image to copy uncompressed data into.
1154 * @nr_to_read: Number of pages to load.
1155 */
1156 static int load_image_lzo(struct swap_map_handle *handle,
1157 struct snapshot_handle *snapshot,
1158 unsigned int nr_to_read)
1159 {
1160 unsigned int m;
1161 int ret = 0;
1162 int eof = 0;
1163 struct hib_bio_batch hb;
1164 ktime_t start;
1165 ktime_t stop;
1166 unsigned nr_pages;
1167 size_t off;
1168 unsigned i, thr, run_threads, nr_threads;
1169 unsigned ring = 0, pg = 0, ring_size = 0,
1170 have = 0, want, need, asked = 0;
1171 unsigned long read_pages = 0;
1172 unsigned char **page = NULL;
1173 struct dec_data *data = NULL;
1174 struct crc_data *crc = NULL;
1175
1176 hib_init_batch(&hb);
1177
1178 /*
1179 * We'll limit the number of threads for decompression to limit memory
1180 * footprint.
1181 */
1182 nr_threads = num_online_cpus() - 1;
1183 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1184
1185 page = vmalloc(sizeof(*page) * LZO_MAX_RD_PAGES);
1186 if (!page) {
1187 printk(KERN_ERR "PM: Failed to allocate LZO page\n");
1188 ret = -ENOMEM;
1189 goto out_clean;
1190 }
1191
1192 data = vmalloc(sizeof(*data) * nr_threads);
1193 if (!data) {
1194 printk(KERN_ERR "PM: Failed to allocate LZO data\n");
1195 ret = -ENOMEM;
1196 goto out_clean;
1197 }
1198 for (thr = 0; thr < nr_threads; thr++)
1199 memset(&data[thr], 0, offsetof(struct dec_data, go));
1200
1201 crc = kmalloc(sizeof(*crc), GFP_KERNEL);
1202 if (!crc) {
1203 printk(KERN_ERR "PM: Failed to allocate crc\n");
1204 ret = -ENOMEM;
1205 goto out_clean;
1206 }
1207 memset(crc, 0, offsetof(struct crc_data, go));
1208
1209 clean_pages_on_decompress = true;
1210
1211 /*
1212 * Start the decompression threads.
1213 */
1214 for (thr = 0; thr < nr_threads; thr++) {
1215 init_waitqueue_head(&data[thr].go);
1216 init_waitqueue_head(&data[thr].done);
1217
1218 data[thr].thr = kthread_run(lzo_decompress_threadfn,
1219 &data[thr],
1220 "image_decompress/%u", thr);
1221 if (IS_ERR(data[thr].thr)) {
1222 data[thr].thr = NULL;
1223 printk(KERN_ERR
1224 "PM: Cannot start decompression threads\n");
1225 ret = -ENOMEM;
1226 goto out_clean;
1227 }
1228 }
1229
1230 /*
1231 * Start the CRC32 thread.
1232 */
1233 init_waitqueue_head(&crc->go);
1234 init_waitqueue_head(&crc->done);
1235
1236 handle->crc32 = 0;
1237 crc->crc32 = &handle->crc32;
1238 for (thr = 0; thr < nr_threads; thr++) {
1239 crc->unc[thr] = data[thr].unc;
1240 crc->unc_len[thr] = &data[thr].unc_len;
1241 }
1242
1243 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1244 if (IS_ERR(crc->thr)) {
1245 crc->thr = NULL;
1246 printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
1247 ret = -ENOMEM;
1248 goto out_clean;
1249 }
1250
1251 /*
1252 * Set the number of pages for read buffering.
1253 * This is complete guesswork, because we'll only know the real
1254 * picture once prepare_image() is called, which is much later on
1255 * during the image load phase. We'll assume the worst case and
1256 * say that none of the image pages are from high memory.
1257 */
1258 if (low_free_pages() > snapshot_get_image_size())
1259 read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1260 read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1261
1262 for (i = 0; i < read_pages; i++) {
1263 page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1264 __GFP_RECLAIM | __GFP_HIGH :
1265 __GFP_RECLAIM | __GFP_NOWARN |
1266 __GFP_NORETRY);
1267
1268 if (!page[i]) {
1269 if (i < LZO_CMP_PAGES) {
1270 ring_size = i;
1271 printk(KERN_ERR
1272 "PM: Failed to allocate LZO pages\n");
1273 ret = -ENOMEM;
1274 goto out_clean;
1275 } else {
1276 break;
1277 }
1278 }
1279 }
1280 want = ring_size = i;
1281
1282 printk(KERN_INFO
1283 "PM: Using %u thread(s) for decompression.\n"
1284 "PM: Loading and decompressing image data (%u pages)...\n",
1285 nr_threads, nr_to_read);
1286 m = nr_to_read / 10;
1287 if (!m)
1288 m = 1;
1289 nr_pages = 0;
1290 start = ktime_get();
1291
1292 ret = snapshot_write_next(snapshot);
1293 if (ret <= 0)
1294 goto out_finish;
1295
1296 for(;;) {
1297 for (i = 0; !eof && i < want; i++) {
1298 ret = swap_read_page(handle, page[ring], &hb);
1299 if (ret) {
1300 /*
1301 * On real read error, finish. On end of data,
1302 * set EOF flag and just exit the read loop.
1303 */
1304 if (handle->cur &&
1305 handle->cur->entries[handle->k]) {
1306 goto out_finish;
1307 } else {
1308 eof = 1;
1309 break;
1310 }
1311 }
1312 if (++ring >= ring_size)
1313 ring = 0;
1314 }
1315 asked += i;
1316 want -= i;
1317
1318 /*
1319 * We are out of data, wait for some more.
1320 */
1321 if (!have) {
1322 if (!asked)
1323 break;
1324
1325 ret = hib_wait_io(&hb);
1326 if (ret)
1327 goto out_finish;
1328 have += asked;
1329 asked = 0;
1330 if (eof)
1331 eof = 2;
1332 }
1333
1334 if (crc->run_threads) {
1335 wait_event(crc->done, atomic_read(&crc->stop));
1336 atomic_set(&crc->stop, 0);
1337 crc->run_threads = 0;
1338 }
1339
1340 for (thr = 0; have && thr < nr_threads; thr++) {
1341 data[thr].cmp_len = *(size_t *)page[pg];
1342 if (unlikely(!data[thr].cmp_len ||
1343 data[thr].cmp_len >
1344 lzo1x_worst_compress(LZO_UNC_SIZE))) {
1345 printk(KERN_ERR
1346 "PM: Invalid LZO compressed length\n");
1347 ret = -1;
1348 goto out_finish;
1349 }
1350
1351 need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1352 PAGE_SIZE);
1353 if (need > have) {
1354 if (eof > 1) {
1355 ret = -1;
1356 goto out_finish;
1357 }
1358 break;
1359 }
1360
1361 for (off = 0;
1362 off < LZO_HEADER + data[thr].cmp_len;
1363 off += PAGE_SIZE) {
1364 memcpy(data[thr].cmp + off,
1365 page[pg], PAGE_SIZE);
1366 have--;
1367 want++;
1368 if (++pg >= ring_size)
1369 pg = 0;
1370 }
1371
1372 atomic_set(&data[thr].ready, 1);
1373 wake_up(&data[thr].go);
1374 }
1375
1376 /*
1377 * Wait for more data while we are decompressing.
1378 */
1379 if (have < LZO_CMP_PAGES && asked) {
1380 ret = hib_wait_io(&hb);
1381 if (ret)
1382 goto out_finish;
1383 have += asked;
1384 asked = 0;
1385 if (eof)
1386 eof = 2;
1387 }
1388
1389 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1390 wait_event(data[thr].done,
1391 atomic_read(&data[thr].stop));
1392 atomic_set(&data[thr].stop, 0);
1393
1394 ret = data[thr].ret;
1395
1396 if (ret < 0) {
1397 printk(KERN_ERR
1398 "PM: LZO decompression failed\n");
1399 goto out_finish;
1400 }
1401
1402 if (unlikely(!data[thr].unc_len ||
1403 data[thr].unc_len > LZO_UNC_SIZE ||
1404 data[thr].unc_len & (PAGE_SIZE - 1))) {
1405 printk(KERN_ERR
1406 "PM: Invalid LZO uncompressed length\n");
1407 ret = -1;
1408 goto out_finish;
1409 }
1410
1411 for (off = 0;
1412 off < data[thr].unc_len; off += PAGE_SIZE) {
1413 memcpy(data_of(*snapshot),
1414 data[thr].unc + off, PAGE_SIZE);
1415
1416 if (!(nr_pages % m))
1417 printk(KERN_INFO
1418 "PM: Image loading progress: "
1419 "%3d%%\n",
1420 nr_pages / m * 10);
1421 nr_pages++;
1422
1423 ret = snapshot_write_next(snapshot);
1424 if (ret <= 0) {
1425 crc->run_threads = thr + 1;
1426 atomic_set(&crc->ready, 1);
1427 wake_up(&crc->go);
1428 goto out_finish;
1429 }
1430 }
1431 }
1432
1433 crc->run_threads = thr;
1434 atomic_set(&crc->ready, 1);
1435 wake_up(&crc->go);
1436 }
1437
1438 out_finish:
1439 if (crc->run_threads) {
1440 wait_event(crc->done, atomic_read(&crc->stop));
1441 atomic_set(&crc->stop, 0);
1442 }
1443 stop = ktime_get();
1444 if (!ret) {
1445 printk(KERN_INFO "PM: Image loading done.\n");
1446 snapshot_write_finalize(snapshot);
1447 if (!snapshot_image_loaded(snapshot))
1448 ret = -ENODATA;
1449 if (!ret) {
1450 if (swsusp_header->flags & SF_CRC32_MODE) {
1451 if(handle->crc32 != swsusp_header->crc32) {
1452 printk(KERN_ERR
1453 "PM: Invalid image CRC32!\n");
1454 ret = -ENODATA;
1455 }
1456 }
1457 }
1458 }
1459 swsusp_show_speed(start, stop, nr_to_read, "Read");
1460 out_clean:
1461 for (i = 0; i < ring_size; i++)
1462 free_page((unsigned long)page[i]);
1463 if (crc) {
1464 if (crc->thr)
1465 kthread_stop(crc->thr);
1466 kfree(crc);
1467 }
1468 if (data) {
1469 for (thr = 0; thr < nr_threads; thr++)
1470 if (data[thr].thr)
1471 kthread_stop(data[thr].thr);
1472 vfree(data);
1473 }
1474 vfree(page);
1475
1476 return ret;
1477 }
1478
1479 /**
1480 * swsusp_read - read the hibernation image.
1481 * @flags_p: flags passed by the "frozen" kernel in the image header should
1482 * be written into this memory location
1483 */
1484
1485 int swsusp_read(unsigned int *flags_p)
1486 {
1487 int error;
1488 struct swap_map_handle handle;
1489 struct snapshot_handle snapshot;
1490 struct swsusp_info *header;
1491
1492 memset(&snapshot, 0, sizeof(struct snapshot_handle));
1493 error = snapshot_write_next(&snapshot);
1494 if (error < PAGE_SIZE)
1495 return error < 0 ? error : -EFAULT;
1496 header = (struct swsusp_info *)data_of(snapshot);
1497 error = get_swap_reader(&handle, flags_p);
1498 if (error)
1499 goto end;
1500 if (!error)
1501 error = swap_read_page(&handle, header, NULL);
1502 if (!error) {
1503 error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1504 load_image(&handle, &snapshot, header->pages - 1) :
1505 load_image_lzo(&handle, &snapshot, header->pages - 1);
1506 }
1507 swap_reader_finish(&handle);
1508 end:
1509 if (!error)
1510 pr_debug("PM: Image successfully loaded\n");
1511 else
1512 pr_debug("PM: Error %d resuming\n", error);
1513 return error;
1514 }
1515
1516 /**
1517 * swsusp_check - Check for swsusp signature in the resume device
1518 */
1519
1520 int swsusp_check(void)
1521 {
1522 int error;
1523
1524 hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1525 FMODE_READ, NULL);
1526 if (!IS_ERR(hib_resume_bdev)) {
1527 set_blocksize(hib_resume_bdev, PAGE_SIZE);
1528 clear_page(swsusp_header);
1529 error = hib_submit_io(READ_SYNC, swsusp_resume_block,
1530 swsusp_header, NULL);
1531 if (error)
1532 goto put;
1533
1534 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1535 memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1536 /* Reset swap signature now */
1537 error = hib_submit_io(WRITE_SYNC, swsusp_resume_block,
1538 swsusp_header, NULL);
1539 } else {
1540 error = -EINVAL;
1541 }
1542
1543 put:
1544 if (error)
1545 blkdev_put(hib_resume_bdev, FMODE_READ);
1546 else
1547 pr_debug("PM: Image signature found, resuming\n");
1548 } else {
1549 error = PTR_ERR(hib_resume_bdev);
1550 }
1551
1552 if (error)
1553 pr_debug("PM: Image not found (code %d)\n", error);
1554
1555 return error;
1556 }
1557
1558 /**
1559 * swsusp_close - close swap device.
1560 */
1561
1562 void swsusp_close(fmode_t mode)
1563 {
1564 if (IS_ERR(hib_resume_bdev)) {
1565 pr_debug("PM: Image device not initialised\n");
1566 return;
1567 }
1568
1569 blkdev_put(hib_resume_bdev, mode);
1570 }
1571
1572 /**
1573 * swsusp_unmark - Unmark swsusp signature in the resume device
1574 */
1575
1576 #ifdef CONFIG_SUSPEND
1577 int swsusp_unmark(void)
1578 {
1579 int error;
1580
1581 hib_submit_io(READ_SYNC, swsusp_resume_block, swsusp_header, NULL);
1582 if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1583 memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1584 error = hib_submit_io(WRITE_SYNC, swsusp_resume_block,
1585 swsusp_header, NULL);
1586 } else {
1587 printk(KERN_ERR "PM: Cannot find swsusp signature!\n");
1588 error = -ENODEV;
1589 }
1590
1591 /*
1592 * We just returned from suspend, we don't need the image any more.
1593 */
1594 free_all_swap_pages(root_swap);
1595
1596 return error;
1597 }
1598 #endif
1599
1600 static int swsusp_header_init(void)
1601 {
1602 swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1603 if (!swsusp_header)
1604 panic("Could not allocate memory for swsusp_header\n");
1605 return 0;
1606 }
1607
1608 core_initcall(swsusp_header_init);