]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/power/swap.c
timekeeping: Repair ktime_get_coarse*() granularity
[mirror_ubuntu-jammy-kernel.git] / kernel / power / swap.c
1 /*
2 * linux/kernel/power/swap.c
3 *
4 * This file provides functions for reading the suspend image from
5 * and writing it to a swap partition.
6 *
7 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
10 *
11 * This file is released under the GPLv2.
12 *
13 */
14
15 #define pr_fmt(fmt) "PM: " fmt
16
17 #include <linux/module.h>
18 #include <linux/file.h>
19 #include <linux/delay.h>
20 #include <linux/bitops.h>
21 #include <linux/genhd.h>
22 #include <linux/device.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/swap.h>
26 #include <linux/swapops.h>
27 #include <linux/pm.h>
28 #include <linux/slab.h>
29 #include <linux/lzo.h>
30 #include <linux/vmalloc.h>
31 #include <linux/cpumask.h>
32 #include <linux/atomic.h>
33 #include <linux/kthread.h>
34 #include <linux/crc32.h>
35 #include <linux/ktime.h>
36
37 #include "power.h"
38
39 #define HIBERNATE_SIG "S1SUSPEND"
40
41 /*
42 * When reading an {un,}compressed image, we may restore pages in place,
43 * in which case some architectures need these pages cleaning before they
44 * can be executed. We don't know which pages these may be, so clean the lot.
45 */
46 static bool clean_pages_on_read;
47 static bool clean_pages_on_decompress;
48
49 /*
50 * The swap map is a data structure used for keeping track of each page
51 * written to a swap partition. It consists of many swap_map_page
52 * structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
53 * These structures are stored on the swap and linked together with the
54 * help of the .next_swap member.
55 *
56 * The swap map is created during suspend. The swap map pages are
57 * allocated and populated one at a time, so we only need one memory
58 * page to set up the entire structure.
59 *
60 * During resume we pick up all swap_map_page structures into a list.
61 */
62
63 #define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(sector_t) - 1)
64
65 /*
66 * Number of free pages that are not high.
67 */
68 static inline unsigned long low_free_pages(void)
69 {
70 return nr_free_pages() - nr_free_highpages();
71 }
72
73 /*
74 * Number of pages required to be kept free while writing the image. Always
75 * half of all available low pages before the writing starts.
76 */
77 static inline unsigned long reqd_free_pages(void)
78 {
79 return low_free_pages() / 2;
80 }
81
82 struct swap_map_page {
83 sector_t entries[MAP_PAGE_ENTRIES];
84 sector_t next_swap;
85 };
86
87 struct swap_map_page_list {
88 struct swap_map_page *map;
89 struct swap_map_page_list *next;
90 };
91
92 /**
93 * The swap_map_handle structure is used for handling swap in
94 * a file-alike way
95 */
96
97 struct swap_map_handle {
98 struct swap_map_page *cur;
99 struct swap_map_page_list *maps;
100 sector_t cur_swap;
101 sector_t first_sector;
102 unsigned int k;
103 unsigned long reqd_free_pages;
104 u32 crc32;
105 };
106
107 struct swsusp_header {
108 char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
109 sizeof(u32)];
110 u32 crc32;
111 sector_t image;
112 unsigned int flags; /* Flags to pass to the "boot" kernel */
113 char orig_sig[10];
114 char sig[10];
115 } __packed;
116
117 static struct swsusp_header *swsusp_header;
118
119 /**
120 * The following functions are used for tracing the allocated
121 * swap pages, so that they can be freed in case of an error.
122 */
123
124 struct swsusp_extent {
125 struct rb_node node;
126 unsigned long start;
127 unsigned long end;
128 };
129
130 static struct rb_root swsusp_extents = RB_ROOT;
131
132 static int swsusp_extents_insert(unsigned long swap_offset)
133 {
134 struct rb_node **new = &(swsusp_extents.rb_node);
135 struct rb_node *parent = NULL;
136 struct swsusp_extent *ext;
137
138 /* Figure out where to put the new node */
139 while (*new) {
140 ext = rb_entry(*new, struct swsusp_extent, node);
141 parent = *new;
142 if (swap_offset < ext->start) {
143 /* Try to merge */
144 if (swap_offset == ext->start - 1) {
145 ext->start--;
146 return 0;
147 }
148 new = &((*new)->rb_left);
149 } else if (swap_offset > ext->end) {
150 /* Try to merge */
151 if (swap_offset == ext->end + 1) {
152 ext->end++;
153 return 0;
154 }
155 new = &((*new)->rb_right);
156 } else {
157 /* It already is in the tree */
158 return -EINVAL;
159 }
160 }
161 /* Add the new node and rebalance the tree. */
162 ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
163 if (!ext)
164 return -ENOMEM;
165
166 ext->start = swap_offset;
167 ext->end = swap_offset;
168 rb_link_node(&ext->node, parent, new);
169 rb_insert_color(&ext->node, &swsusp_extents);
170 return 0;
171 }
172
173 /**
174 * alloc_swapdev_block - allocate a swap page and register that it has
175 * been allocated, so that it can be freed in case of an error.
176 */
177
178 sector_t alloc_swapdev_block(int swap)
179 {
180 unsigned long offset;
181
182 offset = swp_offset(get_swap_page_of_type(swap));
183 if (offset) {
184 if (swsusp_extents_insert(offset))
185 swap_free(swp_entry(swap, offset));
186 else
187 return swapdev_block(swap, offset);
188 }
189 return 0;
190 }
191
192 /**
193 * free_all_swap_pages - free swap pages allocated for saving image data.
194 * It also frees the extents used to register which swap entries had been
195 * allocated.
196 */
197
198 void free_all_swap_pages(int swap)
199 {
200 struct rb_node *node;
201
202 while ((node = swsusp_extents.rb_node)) {
203 struct swsusp_extent *ext;
204 unsigned long offset;
205
206 ext = rb_entry(node, struct swsusp_extent, node);
207 rb_erase(node, &swsusp_extents);
208 for (offset = ext->start; offset <= ext->end; offset++)
209 swap_free(swp_entry(swap, offset));
210
211 kfree(ext);
212 }
213 }
214
215 int swsusp_swap_in_use(void)
216 {
217 return (swsusp_extents.rb_node != NULL);
218 }
219
220 /*
221 * General things
222 */
223
224 static unsigned short root_swap = 0xffff;
225 static struct block_device *hib_resume_bdev;
226
227 struct hib_bio_batch {
228 atomic_t count;
229 wait_queue_head_t wait;
230 blk_status_t error;
231 };
232
233 static void hib_init_batch(struct hib_bio_batch *hb)
234 {
235 atomic_set(&hb->count, 0);
236 init_waitqueue_head(&hb->wait);
237 hb->error = BLK_STS_OK;
238 }
239
240 static void hib_end_io(struct bio *bio)
241 {
242 struct hib_bio_batch *hb = bio->bi_private;
243 struct page *page = bio_first_page_all(bio);
244
245 if (bio->bi_status) {
246 pr_alert("Read-error on swap-device (%u:%u:%Lu)\n",
247 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
248 (unsigned long long)bio->bi_iter.bi_sector);
249 }
250
251 if (bio_data_dir(bio) == WRITE)
252 put_page(page);
253 else if (clean_pages_on_read)
254 flush_icache_range((unsigned long)page_address(page),
255 (unsigned long)page_address(page) + PAGE_SIZE);
256
257 if (bio->bi_status && !hb->error)
258 hb->error = bio->bi_status;
259 if (atomic_dec_and_test(&hb->count))
260 wake_up(&hb->wait);
261
262 bio_put(bio);
263 }
264
265 static int hib_submit_io(int op, int op_flags, pgoff_t page_off, void *addr,
266 struct hib_bio_batch *hb)
267 {
268 struct page *page = virt_to_page(addr);
269 struct bio *bio;
270 int error = 0;
271
272 bio = bio_alloc(GFP_NOIO | __GFP_HIGH, 1);
273 bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
274 bio_set_dev(bio, hib_resume_bdev);
275 bio_set_op_attrs(bio, op, op_flags);
276
277 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
278 pr_err("Adding page to bio failed at %llu\n",
279 (unsigned long long)bio->bi_iter.bi_sector);
280 bio_put(bio);
281 return -EFAULT;
282 }
283
284 if (hb) {
285 bio->bi_end_io = hib_end_io;
286 bio->bi_private = hb;
287 atomic_inc(&hb->count);
288 submit_bio(bio);
289 } else {
290 error = submit_bio_wait(bio);
291 bio_put(bio);
292 }
293
294 return error;
295 }
296
297 static blk_status_t hib_wait_io(struct hib_bio_batch *hb)
298 {
299 wait_event(hb->wait, atomic_read(&hb->count) == 0);
300 return blk_status_to_errno(hb->error);
301 }
302
303 /*
304 * Saving part
305 */
306
307 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
308 {
309 int error;
310
311 hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block,
312 swsusp_header, NULL);
313 if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
314 !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
315 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
316 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
317 swsusp_header->image = handle->first_sector;
318 swsusp_header->flags = flags;
319 if (flags & SF_CRC32_MODE)
320 swsusp_header->crc32 = handle->crc32;
321 error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
322 swsusp_resume_block, swsusp_header, NULL);
323 } else {
324 pr_err("Swap header not found!\n");
325 error = -ENODEV;
326 }
327 return error;
328 }
329
330 /**
331 * swsusp_swap_check - check if the resume device is a swap device
332 * and get its index (if so)
333 *
334 * This is called before saving image
335 */
336 static int swsusp_swap_check(void)
337 {
338 int res;
339
340 res = swap_type_of(swsusp_resume_device, swsusp_resume_block,
341 &hib_resume_bdev);
342 if (res < 0)
343 return res;
344
345 root_swap = res;
346 res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL);
347 if (res)
348 return res;
349
350 res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
351 if (res < 0)
352 blkdev_put(hib_resume_bdev, FMODE_WRITE);
353
354 /*
355 * Update the resume device to the one actually used,
356 * so the test_resume mode can use it in case it is
357 * invoked from hibernate() to test the snapshot.
358 */
359 swsusp_resume_device = hib_resume_bdev->bd_dev;
360 return res;
361 }
362
363 /**
364 * write_page - Write one page to given swap location.
365 * @buf: Address we're writing.
366 * @offset: Offset of the swap page we're writing to.
367 * @hb: bio completion batch
368 */
369
370 static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
371 {
372 void *src;
373 int ret;
374
375 if (!offset)
376 return -ENOSPC;
377
378 if (hb) {
379 src = (void *)__get_free_page(GFP_NOIO | __GFP_NOWARN |
380 __GFP_NORETRY);
381 if (src) {
382 copy_page(src, buf);
383 } else {
384 ret = hib_wait_io(hb); /* Free pages */
385 if (ret)
386 return ret;
387 src = (void *)__get_free_page(GFP_NOIO |
388 __GFP_NOWARN |
389 __GFP_NORETRY);
390 if (src) {
391 copy_page(src, buf);
392 } else {
393 WARN_ON_ONCE(1);
394 hb = NULL; /* Go synchronous */
395 src = buf;
396 }
397 }
398 } else {
399 src = buf;
400 }
401 return hib_submit_io(REQ_OP_WRITE, REQ_SYNC, offset, src, hb);
402 }
403
404 static void release_swap_writer(struct swap_map_handle *handle)
405 {
406 if (handle->cur)
407 free_page((unsigned long)handle->cur);
408 handle->cur = NULL;
409 }
410
411 static int get_swap_writer(struct swap_map_handle *handle)
412 {
413 int ret;
414
415 ret = swsusp_swap_check();
416 if (ret) {
417 if (ret != -ENOSPC)
418 pr_err("Cannot find swap device, try swapon -a\n");
419 return ret;
420 }
421 handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
422 if (!handle->cur) {
423 ret = -ENOMEM;
424 goto err_close;
425 }
426 handle->cur_swap = alloc_swapdev_block(root_swap);
427 if (!handle->cur_swap) {
428 ret = -ENOSPC;
429 goto err_rel;
430 }
431 handle->k = 0;
432 handle->reqd_free_pages = reqd_free_pages();
433 handle->first_sector = handle->cur_swap;
434 return 0;
435 err_rel:
436 release_swap_writer(handle);
437 err_close:
438 swsusp_close(FMODE_WRITE);
439 return ret;
440 }
441
442 static int swap_write_page(struct swap_map_handle *handle, void *buf,
443 struct hib_bio_batch *hb)
444 {
445 int error = 0;
446 sector_t offset;
447
448 if (!handle->cur)
449 return -EINVAL;
450 offset = alloc_swapdev_block(root_swap);
451 error = write_page(buf, offset, hb);
452 if (error)
453 return error;
454 handle->cur->entries[handle->k++] = offset;
455 if (handle->k >= MAP_PAGE_ENTRIES) {
456 offset = alloc_swapdev_block(root_swap);
457 if (!offset)
458 return -ENOSPC;
459 handle->cur->next_swap = offset;
460 error = write_page(handle->cur, handle->cur_swap, hb);
461 if (error)
462 goto out;
463 clear_page(handle->cur);
464 handle->cur_swap = offset;
465 handle->k = 0;
466
467 if (hb && low_free_pages() <= handle->reqd_free_pages) {
468 error = hib_wait_io(hb);
469 if (error)
470 goto out;
471 /*
472 * Recalculate the number of required free pages, to
473 * make sure we never take more than half.
474 */
475 handle->reqd_free_pages = reqd_free_pages();
476 }
477 }
478 out:
479 return error;
480 }
481
482 static int flush_swap_writer(struct swap_map_handle *handle)
483 {
484 if (handle->cur && handle->cur_swap)
485 return write_page(handle->cur, handle->cur_swap, NULL);
486 else
487 return -EINVAL;
488 }
489
490 static int swap_writer_finish(struct swap_map_handle *handle,
491 unsigned int flags, int error)
492 {
493 if (!error) {
494 flush_swap_writer(handle);
495 pr_info("S");
496 error = mark_swapfiles(handle, flags);
497 pr_cont("|\n");
498 }
499
500 if (error)
501 free_all_swap_pages(root_swap);
502 release_swap_writer(handle);
503 swsusp_close(FMODE_WRITE);
504
505 return error;
506 }
507
508 /* We need to remember how much compressed data we need to read. */
509 #define LZO_HEADER sizeof(size_t)
510
511 /* Number of pages/bytes we'll compress at one time. */
512 #define LZO_UNC_PAGES 32
513 #define LZO_UNC_SIZE (LZO_UNC_PAGES * PAGE_SIZE)
514
515 /* Number of pages/bytes we need for compressed data (worst case). */
516 #define LZO_CMP_PAGES DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
517 LZO_HEADER, PAGE_SIZE)
518 #define LZO_CMP_SIZE (LZO_CMP_PAGES * PAGE_SIZE)
519
520 /* Maximum number of threads for compression/decompression. */
521 #define LZO_THREADS 3
522
523 /* Minimum/maximum number of pages for read buffering. */
524 #define LZO_MIN_RD_PAGES 1024
525 #define LZO_MAX_RD_PAGES 8192
526
527
528 /**
529 * save_image - save the suspend image data
530 */
531
532 static int save_image(struct swap_map_handle *handle,
533 struct snapshot_handle *snapshot,
534 unsigned int nr_to_write)
535 {
536 unsigned int m;
537 int ret;
538 int nr_pages;
539 int err2;
540 struct hib_bio_batch hb;
541 ktime_t start;
542 ktime_t stop;
543
544 hib_init_batch(&hb);
545
546 pr_info("Saving image data pages (%u pages)...\n",
547 nr_to_write);
548 m = nr_to_write / 10;
549 if (!m)
550 m = 1;
551 nr_pages = 0;
552 start = ktime_get();
553 while (1) {
554 ret = snapshot_read_next(snapshot);
555 if (ret <= 0)
556 break;
557 ret = swap_write_page(handle, data_of(*snapshot), &hb);
558 if (ret)
559 break;
560 if (!(nr_pages % m))
561 pr_info("Image saving progress: %3d%%\n",
562 nr_pages / m * 10);
563 nr_pages++;
564 }
565 err2 = hib_wait_io(&hb);
566 stop = ktime_get();
567 if (!ret)
568 ret = err2;
569 if (!ret)
570 pr_info("Image saving done\n");
571 swsusp_show_speed(start, stop, nr_to_write, "Wrote");
572 return ret;
573 }
574
575 /**
576 * Structure used for CRC32.
577 */
578 struct crc_data {
579 struct task_struct *thr; /* thread */
580 atomic_t ready; /* ready to start flag */
581 atomic_t stop; /* ready to stop flag */
582 unsigned run_threads; /* nr current threads */
583 wait_queue_head_t go; /* start crc update */
584 wait_queue_head_t done; /* crc update done */
585 u32 *crc32; /* points to handle's crc32 */
586 size_t *unc_len[LZO_THREADS]; /* uncompressed lengths */
587 unsigned char *unc[LZO_THREADS]; /* uncompressed data */
588 };
589
590 /**
591 * CRC32 update function that runs in its own thread.
592 */
593 static int crc32_threadfn(void *data)
594 {
595 struct crc_data *d = data;
596 unsigned i;
597
598 while (1) {
599 wait_event(d->go, atomic_read(&d->ready) ||
600 kthread_should_stop());
601 if (kthread_should_stop()) {
602 d->thr = NULL;
603 atomic_set(&d->stop, 1);
604 wake_up(&d->done);
605 break;
606 }
607 atomic_set(&d->ready, 0);
608
609 for (i = 0; i < d->run_threads; i++)
610 *d->crc32 = crc32_le(*d->crc32,
611 d->unc[i], *d->unc_len[i]);
612 atomic_set(&d->stop, 1);
613 wake_up(&d->done);
614 }
615 return 0;
616 }
617 /**
618 * Structure used for LZO data compression.
619 */
620 struct cmp_data {
621 struct task_struct *thr; /* thread */
622 atomic_t ready; /* ready to start flag */
623 atomic_t stop; /* ready to stop flag */
624 int ret; /* return code */
625 wait_queue_head_t go; /* start compression */
626 wait_queue_head_t done; /* compression done */
627 size_t unc_len; /* uncompressed length */
628 size_t cmp_len; /* compressed length */
629 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */
630 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */
631 unsigned char wrk[LZO1X_1_MEM_COMPRESS]; /* compression workspace */
632 };
633
634 /**
635 * Compression function that runs in its own thread.
636 */
637 static int lzo_compress_threadfn(void *data)
638 {
639 struct cmp_data *d = data;
640
641 while (1) {
642 wait_event(d->go, atomic_read(&d->ready) ||
643 kthread_should_stop());
644 if (kthread_should_stop()) {
645 d->thr = NULL;
646 d->ret = -1;
647 atomic_set(&d->stop, 1);
648 wake_up(&d->done);
649 break;
650 }
651 atomic_set(&d->ready, 0);
652
653 d->ret = lzo1x_1_compress(d->unc, d->unc_len,
654 d->cmp + LZO_HEADER, &d->cmp_len,
655 d->wrk);
656 atomic_set(&d->stop, 1);
657 wake_up(&d->done);
658 }
659 return 0;
660 }
661
662 /**
663 * save_image_lzo - Save the suspend image data compressed with LZO.
664 * @handle: Swap map handle to use for saving the image.
665 * @snapshot: Image to read data from.
666 * @nr_to_write: Number of pages to save.
667 */
668 static int save_image_lzo(struct swap_map_handle *handle,
669 struct snapshot_handle *snapshot,
670 unsigned int nr_to_write)
671 {
672 unsigned int m;
673 int ret = 0;
674 int nr_pages;
675 int err2;
676 struct hib_bio_batch hb;
677 ktime_t start;
678 ktime_t stop;
679 size_t off;
680 unsigned thr, run_threads, nr_threads;
681 unsigned char *page = NULL;
682 struct cmp_data *data = NULL;
683 struct crc_data *crc = NULL;
684
685 hib_init_batch(&hb);
686
687 /*
688 * We'll limit the number of threads for compression to limit memory
689 * footprint.
690 */
691 nr_threads = num_online_cpus() - 1;
692 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
693
694 page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH);
695 if (!page) {
696 pr_err("Failed to allocate LZO page\n");
697 ret = -ENOMEM;
698 goto out_clean;
699 }
700
701 data = vmalloc(array_size(nr_threads, sizeof(*data)));
702 if (!data) {
703 pr_err("Failed to allocate LZO data\n");
704 ret = -ENOMEM;
705 goto out_clean;
706 }
707 for (thr = 0; thr < nr_threads; thr++)
708 memset(&data[thr], 0, offsetof(struct cmp_data, go));
709
710 crc = kmalloc(sizeof(*crc), GFP_KERNEL);
711 if (!crc) {
712 pr_err("Failed to allocate crc\n");
713 ret = -ENOMEM;
714 goto out_clean;
715 }
716 memset(crc, 0, offsetof(struct crc_data, go));
717
718 /*
719 * Start the compression threads.
720 */
721 for (thr = 0; thr < nr_threads; thr++) {
722 init_waitqueue_head(&data[thr].go);
723 init_waitqueue_head(&data[thr].done);
724
725 data[thr].thr = kthread_run(lzo_compress_threadfn,
726 &data[thr],
727 "image_compress/%u", thr);
728 if (IS_ERR(data[thr].thr)) {
729 data[thr].thr = NULL;
730 pr_err("Cannot start compression threads\n");
731 ret = -ENOMEM;
732 goto out_clean;
733 }
734 }
735
736 /*
737 * Start the CRC32 thread.
738 */
739 init_waitqueue_head(&crc->go);
740 init_waitqueue_head(&crc->done);
741
742 handle->crc32 = 0;
743 crc->crc32 = &handle->crc32;
744 for (thr = 0; thr < nr_threads; thr++) {
745 crc->unc[thr] = data[thr].unc;
746 crc->unc_len[thr] = &data[thr].unc_len;
747 }
748
749 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
750 if (IS_ERR(crc->thr)) {
751 crc->thr = NULL;
752 pr_err("Cannot start CRC32 thread\n");
753 ret = -ENOMEM;
754 goto out_clean;
755 }
756
757 /*
758 * Adjust the number of required free pages after all allocations have
759 * been done. We don't want to run out of pages when writing.
760 */
761 handle->reqd_free_pages = reqd_free_pages();
762
763 pr_info("Using %u thread(s) for compression\n", nr_threads);
764 pr_info("Compressing and saving image data (%u pages)...\n",
765 nr_to_write);
766 m = nr_to_write / 10;
767 if (!m)
768 m = 1;
769 nr_pages = 0;
770 start = ktime_get();
771 for (;;) {
772 for (thr = 0; thr < nr_threads; thr++) {
773 for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
774 ret = snapshot_read_next(snapshot);
775 if (ret < 0)
776 goto out_finish;
777
778 if (!ret)
779 break;
780
781 memcpy(data[thr].unc + off,
782 data_of(*snapshot), PAGE_SIZE);
783
784 if (!(nr_pages % m))
785 pr_info("Image saving progress: %3d%%\n",
786 nr_pages / m * 10);
787 nr_pages++;
788 }
789 if (!off)
790 break;
791
792 data[thr].unc_len = off;
793
794 atomic_set(&data[thr].ready, 1);
795 wake_up(&data[thr].go);
796 }
797
798 if (!thr)
799 break;
800
801 crc->run_threads = thr;
802 atomic_set(&crc->ready, 1);
803 wake_up(&crc->go);
804
805 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
806 wait_event(data[thr].done,
807 atomic_read(&data[thr].stop));
808 atomic_set(&data[thr].stop, 0);
809
810 ret = data[thr].ret;
811
812 if (ret < 0) {
813 pr_err("LZO compression failed\n");
814 goto out_finish;
815 }
816
817 if (unlikely(!data[thr].cmp_len ||
818 data[thr].cmp_len >
819 lzo1x_worst_compress(data[thr].unc_len))) {
820 pr_err("Invalid LZO compressed length\n");
821 ret = -1;
822 goto out_finish;
823 }
824
825 *(size_t *)data[thr].cmp = data[thr].cmp_len;
826
827 /*
828 * Given we are writing one page at a time to disk, we
829 * copy that much from the buffer, although the last
830 * bit will likely be smaller than full page. This is
831 * OK - we saved the length of the compressed data, so
832 * any garbage at the end will be discarded when we
833 * read it.
834 */
835 for (off = 0;
836 off < LZO_HEADER + data[thr].cmp_len;
837 off += PAGE_SIZE) {
838 memcpy(page, data[thr].cmp + off, PAGE_SIZE);
839
840 ret = swap_write_page(handle, page, &hb);
841 if (ret)
842 goto out_finish;
843 }
844 }
845
846 wait_event(crc->done, atomic_read(&crc->stop));
847 atomic_set(&crc->stop, 0);
848 }
849
850 out_finish:
851 err2 = hib_wait_io(&hb);
852 stop = ktime_get();
853 if (!ret)
854 ret = err2;
855 if (!ret)
856 pr_info("Image saving done\n");
857 swsusp_show_speed(start, stop, nr_to_write, "Wrote");
858 out_clean:
859 if (crc) {
860 if (crc->thr)
861 kthread_stop(crc->thr);
862 kfree(crc);
863 }
864 if (data) {
865 for (thr = 0; thr < nr_threads; thr++)
866 if (data[thr].thr)
867 kthread_stop(data[thr].thr);
868 vfree(data);
869 }
870 if (page) free_page((unsigned long)page);
871
872 return ret;
873 }
874
875 /**
876 * enough_swap - Make sure we have enough swap to save the image.
877 *
878 * Returns TRUE or FALSE after checking the total amount of swap
879 * space avaiable from the resume partition.
880 */
881
882 static int enough_swap(unsigned int nr_pages)
883 {
884 unsigned int free_swap = count_swap_pages(root_swap, 1);
885 unsigned int required;
886
887 pr_debug("Free swap pages: %u\n", free_swap);
888
889 required = PAGES_FOR_IO + nr_pages;
890 return free_swap > required;
891 }
892
893 /**
894 * swsusp_write - Write entire image and metadata.
895 * @flags: flags to pass to the "boot" kernel in the image header
896 *
897 * It is important _NOT_ to umount filesystems at this point. We want
898 * them synced (in case something goes wrong) but we DO not want to mark
899 * filesystem clean: it is not. (And it does not matter, if we resume
900 * correctly, we'll mark system clean, anyway.)
901 */
902
903 int swsusp_write(unsigned int flags)
904 {
905 struct swap_map_handle handle;
906 struct snapshot_handle snapshot;
907 struct swsusp_info *header;
908 unsigned long pages;
909 int error;
910
911 pages = snapshot_get_image_size();
912 error = get_swap_writer(&handle);
913 if (error) {
914 pr_err("Cannot get swap writer\n");
915 return error;
916 }
917 if (flags & SF_NOCOMPRESS_MODE) {
918 if (!enough_swap(pages)) {
919 pr_err("Not enough free swap\n");
920 error = -ENOSPC;
921 goto out_finish;
922 }
923 }
924 memset(&snapshot, 0, sizeof(struct snapshot_handle));
925 error = snapshot_read_next(&snapshot);
926 if (error < (int)PAGE_SIZE) {
927 if (error >= 0)
928 error = -EFAULT;
929
930 goto out_finish;
931 }
932 header = (struct swsusp_info *)data_of(snapshot);
933 error = swap_write_page(&handle, header, NULL);
934 if (!error) {
935 error = (flags & SF_NOCOMPRESS_MODE) ?
936 save_image(&handle, &snapshot, pages - 1) :
937 save_image_lzo(&handle, &snapshot, pages - 1);
938 }
939 out_finish:
940 error = swap_writer_finish(&handle, flags, error);
941 return error;
942 }
943
944 /**
945 * The following functions allow us to read data using a swap map
946 * in a file-alike way
947 */
948
949 static void release_swap_reader(struct swap_map_handle *handle)
950 {
951 struct swap_map_page_list *tmp;
952
953 while (handle->maps) {
954 if (handle->maps->map)
955 free_page((unsigned long)handle->maps->map);
956 tmp = handle->maps;
957 handle->maps = handle->maps->next;
958 kfree(tmp);
959 }
960 handle->cur = NULL;
961 }
962
963 static int get_swap_reader(struct swap_map_handle *handle,
964 unsigned int *flags_p)
965 {
966 int error;
967 struct swap_map_page_list *tmp, *last;
968 sector_t offset;
969
970 *flags_p = swsusp_header->flags;
971
972 if (!swsusp_header->image) /* how can this happen? */
973 return -EINVAL;
974
975 handle->cur = NULL;
976 last = handle->maps = NULL;
977 offset = swsusp_header->image;
978 while (offset) {
979 tmp = kmalloc(sizeof(*handle->maps), GFP_KERNEL);
980 if (!tmp) {
981 release_swap_reader(handle);
982 return -ENOMEM;
983 }
984 memset(tmp, 0, sizeof(*tmp));
985 if (!handle->maps)
986 handle->maps = tmp;
987 if (last)
988 last->next = tmp;
989 last = tmp;
990
991 tmp->map = (struct swap_map_page *)
992 __get_free_page(GFP_NOIO | __GFP_HIGH);
993 if (!tmp->map) {
994 release_swap_reader(handle);
995 return -ENOMEM;
996 }
997
998 error = hib_submit_io(REQ_OP_READ, 0, offset, tmp->map, NULL);
999 if (error) {
1000 release_swap_reader(handle);
1001 return error;
1002 }
1003 offset = tmp->map->next_swap;
1004 }
1005 handle->k = 0;
1006 handle->cur = handle->maps->map;
1007 return 0;
1008 }
1009
1010 static int swap_read_page(struct swap_map_handle *handle, void *buf,
1011 struct hib_bio_batch *hb)
1012 {
1013 sector_t offset;
1014 int error;
1015 struct swap_map_page_list *tmp;
1016
1017 if (!handle->cur)
1018 return -EINVAL;
1019 offset = handle->cur->entries[handle->k];
1020 if (!offset)
1021 return -EFAULT;
1022 error = hib_submit_io(REQ_OP_READ, 0, offset, buf, hb);
1023 if (error)
1024 return error;
1025 if (++handle->k >= MAP_PAGE_ENTRIES) {
1026 handle->k = 0;
1027 free_page((unsigned long)handle->maps->map);
1028 tmp = handle->maps;
1029 handle->maps = handle->maps->next;
1030 kfree(tmp);
1031 if (!handle->maps)
1032 release_swap_reader(handle);
1033 else
1034 handle->cur = handle->maps->map;
1035 }
1036 return error;
1037 }
1038
1039 static int swap_reader_finish(struct swap_map_handle *handle)
1040 {
1041 release_swap_reader(handle);
1042
1043 return 0;
1044 }
1045
1046 /**
1047 * load_image - load the image using the swap map handle
1048 * @handle and the snapshot handle @snapshot
1049 * (assume there are @nr_pages pages to load)
1050 */
1051
1052 static int load_image(struct swap_map_handle *handle,
1053 struct snapshot_handle *snapshot,
1054 unsigned int nr_to_read)
1055 {
1056 unsigned int m;
1057 int ret = 0;
1058 ktime_t start;
1059 ktime_t stop;
1060 struct hib_bio_batch hb;
1061 int err2;
1062 unsigned nr_pages;
1063
1064 hib_init_batch(&hb);
1065
1066 clean_pages_on_read = true;
1067 pr_info("Loading image data pages (%u pages)...\n", nr_to_read);
1068 m = nr_to_read / 10;
1069 if (!m)
1070 m = 1;
1071 nr_pages = 0;
1072 start = ktime_get();
1073 for ( ; ; ) {
1074 ret = snapshot_write_next(snapshot);
1075 if (ret <= 0)
1076 break;
1077 ret = swap_read_page(handle, data_of(*snapshot), &hb);
1078 if (ret)
1079 break;
1080 if (snapshot->sync_read)
1081 ret = hib_wait_io(&hb);
1082 if (ret)
1083 break;
1084 if (!(nr_pages % m))
1085 pr_info("Image loading progress: %3d%%\n",
1086 nr_pages / m * 10);
1087 nr_pages++;
1088 }
1089 err2 = hib_wait_io(&hb);
1090 stop = ktime_get();
1091 if (!ret)
1092 ret = err2;
1093 if (!ret) {
1094 pr_info("Image loading done\n");
1095 snapshot_write_finalize(snapshot);
1096 if (!snapshot_image_loaded(snapshot))
1097 ret = -ENODATA;
1098 }
1099 swsusp_show_speed(start, stop, nr_to_read, "Read");
1100 return ret;
1101 }
1102
1103 /**
1104 * Structure used for LZO data decompression.
1105 */
1106 struct dec_data {
1107 struct task_struct *thr; /* thread */
1108 atomic_t ready; /* ready to start flag */
1109 atomic_t stop; /* ready to stop flag */
1110 int ret; /* return code */
1111 wait_queue_head_t go; /* start decompression */
1112 wait_queue_head_t done; /* decompression done */
1113 size_t unc_len; /* uncompressed length */
1114 size_t cmp_len; /* compressed length */
1115 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */
1116 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */
1117 };
1118
1119 /**
1120 * Deompression function that runs in its own thread.
1121 */
1122 static int lzo_decompress_threadfn(void *data)
1123 {
1124 struct dec_data *d = data;
1125
1126 while (1) {
1127 wait_event(d->go, atomic_read(&d->ready) ||
1128 kthread_should_stop());
1129 if (kthread_should_stop()) {
1130 d->thr = NULL;
1131 d->ret = -1;
1132 atomic_set(&d->stop, 1);
1133 wake_up(&d->done);
1134 break;
1135 }
1136 atomic_set(&d->ready, 0);
1137
1138 d->unc_len = LZO_UNC_SIZE;
1139 d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1140 d->unc, &d->unc_len);
1141 if (clean_pages_on_decompress)
1142 flush_icache_range((unsigned long)d->unc,
1143 (unsigned long)d->unc + d->unc_len);
1144
1145 atomic_set(&d->stop, 1);
1146 wake_up(&d->done);
1147 }
1148 return 0;
1149 }
1150
1151 /**
1152 * load_image_lzo - Load compressed image data and decompress them with LZO.
1153 * @handle: Swap map handle to use for loading data.
1154 * @snapshot: Image to copy uncompressed data into.
1155 * @nr_to_read: Number of pages to load.
1156 */
1157 static int load_image_lzo(struct swap_map_handle *handle,
1158 struct snapshot_handle *snapshot,
1159 unsigned int nr_to_read)
1160 {
1161 unsigned int m;
1162 int ret = 0;
1163 int eof = 0;
1164 struct hib_bio_batch hb;
1165 ktime_t start;
1166 ktime_t stop;
1167 unsigned nr_pages;
1168 size_t off;
1169 unsigned i, thr, run_threads, nr_threads;
1170 unsigned ring = 0, pg = 0, ring_size = 0,
1171 have = 0, want, need, asked = 0;
1172 unsigned long read_pages = 0;
1173 unsigned char **page = NULL;
1174 struct dec_data *data = NULL;
1175 struct crc_data *crc = NULL;
1176
1177 hib_init_batch(&hb);
1178
1179 /*
1180 * We'll limit the number of threads for decompression to limit memory
1181 * footprint.
1182 */
1183 nr_threads = num_online_cpus() - 1;
1184 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1185
1186 page = vmalloc(array_size(LZO_MAX_RD_PAGES, sizeof(*page)));
1187 if (!page) {
1188 pr_err("Failed to allocate LZO page\n");
1189 ret = -ENOMEM;
1190 goto out_clean;
1191 }
1192
1193 data = vmalloc(array_size(nr_threads, sizeof(*data)));
1194 if (!data) {
1195 pr_err("Failed to allocate LZO data\n");
1196 ret = -ENOMEM;
1197 goto out_clean;
1198 }
1199 for (thr = 0; thr < nr_threads; thr++)
1200 memset(&data[thr], 0, offsetof(struct dec_data, go));
1201
1202 crc = kmalloc(sizeof(*crc), GFP_KERNEL);
1203 if (!crc) {
1204 pr_err("Failed to allocate crc\n");
1205 ret = -ENOMEM;
1206 goto out_clean;
1207 }
1208 memset(crc, 0, offsetof(struct crc_data, go));
1209
1210 clean_pages_on_decompress = true;
1211
1212 /*
1213 * Start the decompression threads.
1214 */
1215 for (thr = 0; thr < nr_threads; thr++) {
1216 init_waitqueue_head(&data[thr].go);
1217 init_waitqueue_head(&data[thr].done);
1218
1219 data[thr].thr = kthread_run(lzo_decompress_threadfn,
1220 &data[thr],
1221 "image_decompress/%u", thr);
1222 if (IS_ERR(data[thr].thr)) {
1223 data[thr].thr = NULL;
1224 pr_err("Cannot start decompression threads\n");
1225 ret = -ENOMEM;
1226 goto out_clean;
1227 }
1228 }
1229
1230 /*
1231 * Start the CRC32 thread.
1232 */
1233 init_waitqueue_head(&crc->go);
1234 init_waitqueue_head(&crc->done);
1235
1236 handle->crc32 = 0;
1237 crc->crc32 = &handle->crc32;
1238 for (thr = 0; thr < nr_threads; thr++) {
1239 crc->unc[thr] = data[thr].unc;
1240 crc->unc_len[thr] = &data[thr].unc_len;
1241 }
1242
1243 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1244 if (IS_ERR(crc->thr)) {
1245 crc->thr = NULL;
1246 pr_err("Cannot start CRC32 thread\n");
1247 ret = -ENOMEM;
1248 goto out_clean;
1249 }
1250
1251 /*
1252 * Set the number of pages for read buffering.
1253 * This is complete guesswork, because we'll only know the real
1254 * picture once prepare_image() is called, which is much later on
1255 * during the image load phase. We'll assume the worst case and
1256 * say that none of the image pages are from high memory.
1257 */
1258 if (low_free_pages() > snapshot_get_image_size())
1259 read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1260 read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1261
1262 for (i = 0; i < read_pages; i++) {
1263 page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1264 GFP_NOIO | __GFP_HIGH :
1265 GFP_NOIO | __GFP_NOWARN |
1266 __GFP_NORETRY);
1267
1268 if (!page[i]) {
1269 if (i < LZO_CMP_PAGES) {
1270 ring_size = i;
1271 pr_err("Failed to allocate LZO pages\n");
1272 ret = -ENOMEM;
1273 goto out_clean;
1274 } else {
1275 break;
1276 }
1277 }
1278 }
1279 want = ring_size = i;
1280
1281 pr_info("Using %u thread(s) for decompression\n", nr_threads);
1282 pr_info("Loading and decompressing image data (%u pages)...\n",
1283 nr_to_read);
1284 m = nr_to_read / 10;
1285 if (!m)
1286 m = 1;
1287 nr_pages = 0;
1288 start = ktime_get();
1289
1290 ret = snapshot_write_next(snapshot);
1291 if (ret <= 0)
1292 goto out_finish;
1293
1294 for(;;) {
1295 for (i = 0; !eof && i < want; i++) {
1296 ret = swap_read_page(handle, page[ring], &hb);
1297 if (ret) {
1298 /*
1299 * On real read error, finish. On end of data,
1300 * set EOF flag and just exit the read loop.
1301 */
1302 if (handle->cur &&
1303 handle->cur->entries[handle->k]) {
1304 goto out_finish;
1305 } else {
1306 eof = 1;
1307 break;
1308 }
1309 }
1310 if (++ring >= ring_size)
1311 ring = 0;
1312 }
1313 asked += i;
1314 want -= i;
1315
1316 /*
1317 * We are out of data, wait for some more.
1318 */
1319 if (!have) {
1320 if (!asked)
1321 break;
1322
1323 ret = hib_wait_io(&hb);
1324 if (ret)
1325 goto out_finish;
1326 have += asked;
1327 asked = 0;
1328 if (eof)
1329 eof = 2;
1330 }
1331
1332 if (crc->run_threads) {
1333 wait_event(crc->done, atomic_read(&crc->stop));
1334 atomic_set(&crc->stop, 0);
1335 crc->run_threads = 0;
1336 }
1337
1338 for (thr = 0; have && thr < nr_threads; thr++) {
1339 data[thr].cmp_len = *(size_t *)page[pg];
1340 if (unlikely(!data[thr].cmp_len ||
1341 data[thr].cmp_len >
1342 lzo1x_worst_compress(LZO_UNC_SIZE))) {
1343 pr_err("Invalid LZO compressed length\n");
1344 ret = -1;
1345 goto out_finish;
1346 }
1347
1348 need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1349 PAGE_SIZE);
1350 if (need > have) {
1351 if (eof > 1) {
1352 ret = -1;
1353 goto out_finish;
1354 }
1355 break;
1356 }
1357
1358 for (off = 0;
1359 off < LZO_HEADER + data[thr].cmp_len;
1360 off += PAGE_SIZE) {
1361 memcpy(data[thr].cmp + off,
1362 page[pg], PAGE_SIZE);
1363 have--;
1364 want++;
1365 if (++pg >= ring_size)
1366 pg = 0;
1367 }
1368
1369 atomic_set(&data[thr].ready, 1);
1370 wake_up(&data[thr].go);
1371 }
1372
1373 /*
1374 * Wait for more data while we are decompressing.
1375 */
1376 if (have < LZO_CMP_PAGES && asked) {
1377 ret = hib_wait_io(&hb);
1378 if (ret)
1379 goto out_finish;
1380 have += asked;
1381 asked = 0;
1382 if (eof)
1383 eof = 2;
1384 }
1385
1386 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1387 wait_event(data[thr].done,
1388 atomic_read(&data[thr].stop));
1389 atomic_set(&data[thr].stop, 0);
1390
1391 ret = data[thr].ret;
1392
1393 if (ret < 0) {
1394 pr_err("LZO decompression failed\n");
1395 goto out_finish;
1396 }
1397
1398 if (unlikely(!data[thr].unc_len ||
1399 data[thr].unc_len > LZO_UNC_SIZE ||
1400 data[thr].unc_len & (PAGE_SIZE - 1))) {
1401 pr_err("Invalid LZO uncompressed length\n");
1402 ret = -1;
1403 goto out_finish;
1404 }
1405
1406 for (off = 0;
1407 off < data[thr].unc_len; off += PAGE_SIZE) {
1408 memcpy(data_of(*snapshot),
1409 data[thr].unc + off, PAGE_SIZE);
1410
1411 if (!(nr_pages % m))
1412 pr_info("Image loading progress: %3d%%\n",
1413 nr_pages / m * 10);
1414 nr_pages++;
1415
1416 ret = snapshot_write_next(snapshot);
1417 if (ret <= 0) {
1418 crc->run_threads = thr + 1;
1419 atomic_set(&crc->ready, 1);
1420 wake_up(&crc->go);
1421 goto out_finish;
1422 }
1423 }
1424 }
1425
1426 crc->run_threads = thr;
1427 atomic_set(&crc->ready, 1);
1428 wake_up(&crc->go);
1429 }
1430
1431 out_finish:
1432 if (crc->run_threads) {
1433 wait_event(crc->done, atomic_read(&crc->stop));
1434 atomic_set(&crc->stop, 0);
1435 }
1436 stop = ktime_get();
1437 if (!ret) {
1438 pr_info("Image loading done\n");
1439 snapshot_write_finalize(snapshot);
1440 if (!snapshot_image_loaded(snapshot))
1441 ret = -ENODATA;
1442 if (!ret) {
1443 if (swsusp_header->flags & SF_CRC32_MODE) {
1444 if(handle->crc32 != swsusp_header->crc32) {
1445 pr_err("Invalid image CRC32!\n");
1446 ret = -ENODATA;
1447 }
1448 }
1449 }
1450 }
1451 swsusp_show_speed(start, stop, nr_to_read, "Read");
1452 out_clean:
1453 for (i = 0; i < ring_size; i++)
1454 free_page((unsigned long)page[i]);
1455 if (crc) {
1456 if (crc->thr)
1457 kthread_stop(crc->thr);
1458 kfree(crc);
1459 }
1460 if (data) {
1461 for (thr = 0; thr < nr_threads; thr++)
1462 if (data[thr].thr)
1463 kthread_stop(data[thr].thr);
1464 vfree(data);
1465 }
1466 vfree(page);
1467
1468 return ret;
1469 }
1470
1471 /**
1472 * swsusp_read - read the hibernation image.
1473 * @flags_p: flags passed by the "frozen" kernel in the image header should
1474 * be written into this memory location
1475 */
1476
1477 int swsusp_read(unsigned int *flags_p)
1478 {
1479 int error;
1480 struct swap_map_handle handle;
1481 struct snapshot_handle snapshot;
1482 struct swsusp_info *header;
1483
1484 memset(&snapshot, 0, sizeof(struct snapshot_handle));
1485 error = snapshot_write_next(&snapshot);
1486 if (error < (int)PAGE_SIZE)
1487 return error < 0 ? error : -EFAULT;
1488 header = (struct swsusp_info *)data_of(snapshot);
1489 error = get_swap_reader(&handle, flags_p);
1490 if (error)
1491 goto end;
1492 if (!error)
1493 error = swap_read_page(&handle, header, NULL);
1494 if (!error) {
1495 error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1496 load_image(&handle, &snapshot, header->pages - 1) :
1497 load_image_lzo(&handle, &snapshot, header->pages - 1);
1498 }
1499 swap_reader_finish(&handle);
1500 end:
1501 if (!error)
1502 pr_debug("Image successfully loaded\n");
1503 else
1504 pr_debug("Error %d resuming\n", error);
1505 return error;
1506 }
1507
1508 /**
1509 * swsusp_check - Check for swsusp signature in the resume device
1510 */
1511
1512 int swsusp_check(void)
1513 {
1514 int error;
1515
1516 hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1517 FMODE_READ, NULL);
1518 if (!IS_ERR(hib_resume_bdev)) {
1519 set_blocksize(hib_resume_bdev, PAGE_SIZE);
1520 clear_page(swsusp_header);
1521 error = hib_submit_io(REQ_OP_READ, 0,
1522 swsusp_resume_block,
1523 swsusp_header, NULL);
1524 if (error)
1525 goto put;
1526
1527 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1528 memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1529 /* Reset swap signature now */
1530 error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
1531 swsusp_resume_block,
1532 swsusp_header, NULL);
1533 } else {
1534 error = -EINVAL;
1535 }
1536
1537 put:
1538 if (error)
1539 blkdev_put(hib_resume_bdev, FMODE_READ);
1540 else
1541 pr_debug("Image signature found, resuming\n");
1542 } else {
1543 error = PTR_ERR(hib_resume_bdev);
1544 }
1545
1546 if (error)
1547 pr_debug("Image not found (code %d)\n", error);
1548
1549 return error;
1550 }
1551
1552 /**
1553 * swsusp_close - close swap device.
1554 */
1555
1556 void swsusp_close(fmode_t mode)
1557 {
1558 if (IS_ERR(hib_resume_bdev)) {
1559 pr_debug("Image device not initialised\n");
1560 return;
1561 }
1562
1563 blkdev_put(hib_resume_bdev, mode);
1564 }
1565
1566 /**
1567 * swsusp_unmark - Unmark swsusp signature in the resume device
1568 */
1569
1570 #ifdef CONFIG_SUSPEND
1571 int swsusp_unmark(void)
1572 {
1573 int error;
1574
1575 hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block,
1576 swsusp_header, NULL);
1577 if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1578 memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1579 error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
1580 swsusp_resume_block,
1581 swsusp_header, NULL);
1582 } else {
1583 pr_err("Cannot find swsusp signature!\n");
1584 error = -ENODEV;
1585 }
1586
1587 /*
1588 * We just returned from suspend, we don't need the image any more.
1589 */
1590 free_all_swap_pages(root_swap);
1591
1592 return error;
1593 }
1594 #endif
1595
1596 static int swsusp_header_init(void)
1597 {
1598 swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1599 if (!swsusp_header)
1600 panic("Could not allocate memory for swsusp_header\n");
1601 return 0;
1602 }
1603
1604 core_initcall(swsusp_header_init);