]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/power/swsusp.c
Linux-2.6.12-rc2
[mirror_ubuntu-artful-kernel.git] / kernel / power / swsusp.c
1 /*
2 * linux/kernel/power/swsusp.c
3 *
4 * This file is to realize architecture-independent
5 * machine suspend feature using pretty near only high-level routines
6 *
7 * Copyright (C) 1998-2001 Gabor Kuti <seasons@fornax.hu>
8 * Copyright (C) 1998,2001-2004 Pavel Machek <pavel@suse.cz>
9 *
10 * This file is released under the GPLv2.
11 *
12 * I'd like to thank the following people for their work:
13 *
14 * Pavel Machek <pavel@ucw.cz>:
15 * Modifications, defectiveness pointing, being with me at the very beginning,
16 * suspend to swap space, stop all tasks. Port to 2.4.18-ac and 2.5.17.
17 *
18 * Steve Doddi <dirk@loth.demon.co.uk>:
19 * Support the possibility of hardware state restoring.
20 *
21 * Raph <grey.havens@earthling.net>:
22 * Support for preserving states of network devices and virtual console
23 * (including X and svgatextmode)
24 *
25 * Kurt Garloff <garloff@suse.de>:
26 * Straightened the critical function in order to prevent compilers from
27 * playing tricks with local variables.
28 *
29 * Andreas Mohr <a.mohr@mailto.de>
30 *
31 * Alex Badea <vampire@go.ro>:
32 * Fixed runaway init
33 *
34 * More state savers are welcome. Especially for the scsi layer...
35 *
36 * For TODOs,FIXMEs also look in Documentation/power/swsusp.txt
37 */
38
39 #include <linux/module.h>
40 #include <linux/mm.h>
41 #include <linux/suspend.h>
42 #include <linux/smp_lock.h>
43 #include <linux/file.h>
44 #include <linux/utsname.h>
45 #include <linux/version.h>
46 #include <linux/delay.h>
47 #include <linux/reboot.h>
48 #include <linux/bitops.h>
49 #include <linux/vt_kern.h>
50 #include <linux/kbd_kern.h>
51 #include <linux/keyboard.h>
52 #include <linux/spinlock.h>
53 #include <linux/genhd.h>
54 #include <linux/kernel.h>
55 #include <linux/major.h>
56 #include <linux/swap.h>
57 #include <linux/pm.h>
58 #include <linux/device.h>
59 #include <linux/buffer_head.h>
60 #include <linux/swapops.h>
61 #include <linux/bootmem.h>
62 #include <linux/syscalls.h>
63 #include <linux/console.h>
64 #include <linux/highmem.h>
65 #include <linux/bio.h>
66
67 #include <asm/uaccess.h>
68 #include <asm/mmu_context.h>
69 #include <asm/pgtable.h>
70 #include <asm/tlbflush.h>
71 #include <asm/io.h>
72
73 #include "power.h"
74
75 /* References to section boundaries */
76 extern const void __nosave_begin, __nosave_end;
77
78 /* Variables to be preserved over suspend */
79 static int nr_copy_pages_check;
80
81 extern char resume_file[];
82
83 /* Local variables that should not be affected by save */
84 unsigned int nr_copy_pages __nosavedata = 0;
85
86 /* Suspend pagedir is allocated before final copy, therefore it
87 must be freed after resume
88
89 Warning: this is evil. There are actually two pagedirs at time of
90 resume. One is "pagedir_save", which is empty frame allocated at
91 time of suspend, that must be freed. Second is "pagedir_nosave",
92 allocated at time of resume, that travels through memory not to
93 collide with anything.
94
95 Warning: this is even more evil than it seems. Pagedirs this file
96 talks about are completely different from page directories used by
97 MMU hardware.
98 */
99 suspend_pagedir_t *pagedir_nosave __nosavedata = NULL;
100 static suspend_pagedir_t *pagedir_save;
101
102 #define SWSUSP_SIG "S1SUSPEND"
103
104 static struct swsusp_header {
105 char reserved[PAGE_SIZE - 20 - sizeof(swp_entry_t)];
106 swp_entry_t swsusp_info;
107 char orig_sig[10];
108 char sig[10];
109 } __attribute__((packed, aligned(PAGE_SIZE))) swsusp_header;
110
111 static struct swsusp_info swsusp_info;
112
113 /*
114 * XXX: We try to keep some more pages free so that I/O operations succeed
115 * without paging. Might this be more?
116 */
117 #define PAGES_FOR_IO 512
118
119 /*
120 * Saving part...
121 */
122
123 /* We memorize in swapfile_used what swap devices are used for suspension */
124 #define SWAPFILE_UNUSED 0
125 #define SWAPFILE_SUSPEND 1 /* This is the suspending device */
126 #define SWAPFILE_IGNORED 2 /* Those are other swap devices ignored for suspension */
127
128 static unsigned short swapfile_used[MAX_SWAPFILES];
129 static unsigned short root_swap;
130
131 static int mark_swapfiles(swp_entry_t prev)
132 {
133 int error;
134
135 rw_swap_page_sync(READ,
136 swp_entry(root_swap, 0),
137 virt_to_page((unsigned long)&swsusp_header));
138 if (!memcmp("SWAP-SPACE",swsusp_header.sig, 10) ||
139 !memcmp("SWAPSPACE2",swsusp_header.sig, 10)) {
140 memcpy(swsusp_header.orig_sig,swsusp_header.sig, 10);
141 memcpy(swsusp_header.sig,SWSUSP_SIG, 10);
142 swsusp_header.swsusp_info = prev;
143 error = rw_swap_page_sync(WRITE,
144 swp_entry(root_swap, 0),
145 virt_to_page((unsigned long)
146 &swsusp_header));
147 } else {
148 pr_debug("swsusp: Partition is not swap space.\n");
149 error = -ENODEV;
150 }
151 return error;
152 }
153
154 /*
155 * Check whether the swap device is the specified resume
156 * device, irrespective of whether they are specified by
157 * identical names.
158 *
159 * (Thus, device inode aliasing is allowed. You can say /dev/hda4
160 * instead of /dev/ide/host0/bus0/target0/lun0/part4 [if using devfs]
161 * and they'll be considered the same device. This is *necessary* for
162 * devfs, since the resume code can only recognize the form /dev/hda4,
163 * but the suspend code would see the long name.)
164 */
165 static int is_resume_device(const struct swap_info_struct *swap_info)
166 {
167 struct file *file = swap_info->swap_file;
168 struct inode *inode = file->f_dentry->d_inode;
169
170 return S_ISBLK(inode->i_mode) &&
171 swsusp_resume_device == MKDEV(imajor(inode), iminor(inode));
172 }
173
174 static int swsusp_swap_check(void) /* This is called before saving image */
175 {
176 int i, len;
177
178 len=strlen(resume_file);
179 root_swap = 0xFFFF;
180
181 swap_list_lock();
182 for(i=0; i<MAX_SWAPFILES; i++) {
183 if (swap_info[i].flags == 0) {
184 swapfile_used[i]=SWAPFILE_UNUSED;
185 } else {
186 if(!len) {
187 printk(KERN_WARNING "resume= option should be used to set suspend device" );
188 if(root_swap == 0xFFFF) {
189 swapfile_used[i] = SWAPFILE_SUSPEND;
190 root_swap = i;
191 } else
192 swapfile_used[i] = SWAPFILE_IGNORED;
193 } else {
194 /* we ignore all swap devices that are not the resume_file */
195 if (is_resume_device(&swap_info[i])) {
196 swapfile_used[i] = SWAPFILE_SUSPEND;
197 root_swap = i;
198 } else {
199 swapfile_used[i] = SWAPFILE_IGNORED;
200 }
201 }
202 }
203 }
204 swap_list_unlock();
205 return (root_swap != 0xffff) ? 0 : -ENODEV;
206 }
207
208 /**
209 * This is called after saving image so modification
210 * will be lost after resume... and that's what we want.
211 * we make the device unusable. A new call to
212 * lock_swapdevices can unlock the devices.
213 */
214 static void lock_swapdevices(void)
215 {
216 int i;
217
218 swap_list_lock();
219 for(i = 0; i< MAX_SWAPFILES; i++)
220 if(swapfile_used[i] == SWAPFILE_IGNORED) {
221 swap_info[i].flags ^= 0xFF;
222 }
223 swap_list_unlock();
224 }
225
226 /**
227 * write_swap_page - Write one page to a fresh swap location.
228 * @addr: Address we're writing.
229 * @loc: Place to store the entry we used.
230 *
231 * Allocate a new swap entry and 'sync' it. Note we discard -EIO
232 * errors. That is an artifact left over from swsusp. It did not
233 * check the return of rw_swap_page_sync() at all, since most pages
234 * written back to swap would return -EIO.
235 * This is a partial improvement, since we will at least return other
236 * errors, though we need to eventually fix the damn code.
237 */
238 static int write_page(unsigned long addr, swp_entry_t * loc)
239 {
240 swp_entry_t entry;
241 int error = 0;
242
243 entry = get_swap_page();
244 if (swp_offset(entry) &&
245 swapfile_used[swp_type(entry)] == SWAPFILE_SUSPEND) {
246 error = rw_swap_page_sync(WRITE, entry,
247 virt_to_page(addr));
248 if (error == -EIO)
249 error = 0;
250 if (!error)
251 *loc = entry;
252 } else
253 error = -ENOSPC;
254 return error;
255 }
256
257 /**
258 * data_free - Free the swap entries used by the saved image.
259 *
260 * Walk the list of used swap entries and free each one.
261 * This is only used for cleanup when suspend fails.
262 */
263 static void data_free(void)
264 {
265 swp_entry_t entry;
266 int i;
267
268 for (i = 0; i < nr_copy_pages; i++) {
269 entry = (pagedir_nosave + i)->swap_address;
270 if (entry.val)
271 swap_free(entry);
272 else
273 break;
274 (pagedir_nosave + i)->swap_address = (swp_entry_t){0};
275 }
276 }
277
278 /**
279 * data_write - Write saved image to swap.
280 *
281 * Walk the list of pages in the image and sync each one to swap.
282 */
283 static int data_write(void)
284 {
285 int error = 0, i = 0;
286 unsigned int mod = nr_copy_pages / 100;
287 struct pbe *p;
288
289 if (!mod)
290 mod = 1;
291
292 printk( "Writing data to swap (%d pages)... ", nr_copy_pages );
293 for_each_pbe(p, pagedir_nosave) {
294 if (!(i%mod))
295 printk( "\b\b\b\b%3d%%", i / mod );
296 if ((error = write_page(p->address, &(p->swap_address))))
297 return error;
298 i++;
299 }
300 printk("\b\b\b\bdone\n");
301 return error;
302 }
303
304 static void dump_info(void)
305 {
306 pr_debug(" swsusp: Version: %u\n",swsusp_info.version_code);
307 pr_debug(" swsusp: Num Pages: %ld\n",swsusp_info.num_physpages);
308 pr_debug(" swsusp: UTS Sys: %s\n",swsusp_info.uts.sysname);
309 pr_debug(" swsusp: UTS Node: %s\n",swsusp_info.uts.nodename);
310 pr_debug(" swsusp: UTS Release: %s\n",swsusp_info.uts.release);
311 pr_debug(" swsusp: UTS Version: %s\n",swsusp_info.uts.version);
312 pr_debug(" swsusp: UTS Machine: %s\n",swsusp_info.uts.machine);
313 pr_debug(" swsusp: UTS Domain: %s\n",swsusp_info.uts.domainname);
314 pr_debug(" swsusp: CPUs: %d\n",swsusp_info.cpus);
315 pr_debug(" swsusp: Image: %ld Pages\n",swsusp_info.image_pages);
316 pr_debug(" swsusp: Pagedir: %ld Pages\n",swsusp_info.pagedir_pages);
317 }
318
319 static void init_header(void)
320 {
321 memset(&swsusp_info, 0, sizeof(swsusp_info));
322 swsusp_info.version_code = LINUX_VERSION_CODE;
323 swsusp_info.num_physpages = num_physpages;
324 memcpy(&swsusp_info.uts, &system_utsname, sizeof(system_utsname));
325
326 swsusp_info.suspend_pagedir = pagedir_nosave;
327 swsusp_info.cpus = num_online_cpus();
328 swsusp_info.image_pages = nr_copy_pages;
329 }
330
331 static int close_swap(void)
332 {
333 swp_entry_t entry;
334 int error;
335
336 dump_info();
337 error = write_page((unsigned long)&swsusp_info, &entry);
338 if (!error) {
339 printk( "S" );
340 error = mark_swapfiles(entry);
341 printk( "|\n" );
342 }
343 return error;
344 }
345
346 /**
347 * free_pagedir_entries - Free pages used by the page directory.
348 *
349 * This is used during suspend for error recovery.
350 */
351
352 static void free_pagedir_entries(void)
353 {
354 int i;
355
356 for (i = 0; i < swsusp_info.pagedir_pages; i++)
357 swap_free(swsusp_info.pagedir[i]);
358 }
359
360
361 /**
362 * write_pagedir - Write the array of pages holding the page directory.
363 * @last: Last swap entry we write (needed for header).
364 */
365
366 static int write_pagedir(void)
367 {
368 int error = 0;
369 unsigned n = 0;
370 struct pbe * pbe;
371
372 printk( "Writing pagedir...");
373 for_each_pb_page(pbe, pagedir_nosave) {
374 if ((error = write_page((unsigned long)pbe, &swsusp_info.pagedir[n++])))
375 return error;
376 }
377
378 swsusp_info.pagedir_pages = n;
379 printk("done (%u pages)\n", n);
380 return error;
381 }
382
383 /**
384 * write_suspend_image - Write entire image and metadata.
385 *
386 */
387
388 static int write_suspend_image(void)
389 {
390 int error;
391
392 init_header();
393 if ((error = data_write()))
394 goto FreeData;
395
396 if ((error = write_pagedir()))
397 goto FreePagedir;
398
399 if ((error = close_swap()))
400 goto FreePagedir;
401 Done:
402 return error;
403 FreePagedir:
404 free_pagedir_entries();
405 FreeData:
406 data_free();
407 goto Done;
408 }
409
410
411 #ifdef CONFIG_HIGHMEM
412 struct highmem_page {
413 char *data;
414 struct page *page;
415 struct highmem_page *next;
416 };
417
418 static struct highmem_page *highmem_copy;
419
420 static int save_highmem_zone(struct zone *zone)
421 {
422 unsigned long zone_pfn;
423 mark_free_pages(zone);
424 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) {
425 struct page *page;
426 struct highmem_page *save;
427 void *kaddr;
428 unsigned long pfn = zone_pfn + zone->zone_start_pfn;
429
430 if (!(pfn%1000))
431 printk(".");
432 if (!pfn_valid(pfn))
433 continue;
434 page = pfn_to_page(pfn);
435 /*
436 * This condition results from rvmalloc() sans vmalloc_32()
437 * and architectural memory reservations. This should be
438 * corrected eventually when the cases giving rise to this
439 * are better understood.
440 */
441 if (PageReserved(page)) {
442 printk("highmem reserved page?!\n");
443 continue;
444 }
445 BUG_ON(PageNosave(page));
446 if (PageNosaveFree(page))
447 continue;
448 save = kmalloc(sizeof(struct highmem_page), GFP_ATOMIC);
449 if (!save)
450 return -ENOMEM;
451 save->next = highmem_copy;
452 save->page = page;
453 save->data = (void *) get_zeroed_page(GFP_ATOMIC);
454 if (!save->data) {
455 kfree(save);
456 return -ENOMEM;
457 }
458 kaddr = kmap_atomic(page, KM_USER0);
459 memcpy(save->data, kaddr, PAGE_SIZE);
460 kunmap_atomic(kaddr, KM_USER0);
461 highmem_copy = save;
462 }
463 return 0;
464 }
465 #endif /* CONFIG_HIGHMEM */
466
467
468 static int save_highmem(void)
469 {
470 #ifdef CONFIG_HIGHMEM
471 struct zone *zone;
472 int res = 0;
473
474 pr_debug("swsusp: Saving Highmem\n");
475 for_each_zone(zone) {
476 if (is_highmem(zone))
477 res = save_highmem_zone(zone);
478 if (res)
479 return res;
480 }
481 #endif
482 return 0;
483 }
484
485 static int restore_highmem(void)
486 {
487 #ifdef CONFIG_HIGHMEM
488 printk("swsusp: Restoring Highmem\n");
489 while (highmem_copy) {
490 struct highmem_page *save = highmem_copy;
491 void *kaddr;
492 highmem_copy = save->next;
493
494 kaddr = kmap_atomic(save->page, KM_USER0);
495 memcpy(kaddr, save->data, PAGE_SIZE);
496 kunmap_atomic(kaddr, KM_USER0);
497 free_page((long) save->data);
498 kfree(save);
499 }
500 #endif
501 return 0;
502 }
503
504
505 static int pfn_is_nosave(unsigned long pfn)
506 {
507 unsigned long nosave_begin_pfn = __pa(&__nosave_begin) >> PAGE_SHIFT;
508 unsigned long nosave_end_pfn = PAGE_ALIGN(__pa(&__nosave_end)) >> PAGE_SHIFT;
509 return (pfn >= nosave_begin_pfn) && (pfn < nosave_end_pfn);
510 }
511
512 /**
513 * saveable - Determine whether a page should be cloned or not.
514 * @pfn: The page
515 *
516 * We save a page if it's Reserved, and not in the range of pages
517 * statically defined as 'unsaveable', or if it isn't reserved, and
518 * isn't part of a free chunk of pages.
519 */
520
521 static int saveable(struct zone * zone, unsigned long * zone_pfn)
522 {
523 unsigned long pfn = *zone_pfn + zone->zone_start_pfn;
524 struct page * page;
525
526 if (!pfn_valid(pfn))
527 return 0;
528
529 page = pfn_to_page(pfn);
530 BUG_ON(PageReserved(page) && PageNosave(page));
531 if (PageNosave(page))
532 return 0;
533 if (PageReserved(page) && pfn_is_nosave(pfn)) {
534 pr_debug("[nosave pfn 0x%lx]", pfn);
535 return 0;
536 }
537 if (PageNosaveFree(page))
538 return 0;
539
540 return 1;
541 }
542
543 static void count_data_pages(void)
544 {
545 struct zone *zone;
546 unsigned long zone_pfn;
547
548 nr_copy_pages = 0;
549
550 for_each_zone(zone) {
551 if (is_highmem(zone))
552 continue;
553 mark_free_pages(zone);
554 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
555 nr_copy_pages += saveable(zone, &zone_pfn);
556 }
557 }
558
559
560 static void copy_data_pages(void)
561 {
562 struct zone *zone;
563 unsigned long zone_pfn;
564 struct pbe * pbe = pagedir_nosave;
565
566 pr_debug("copy_data_pages(): pages to copy: %d\n", nr_copy_pages);
567 for_each_zone(zone) {
568 if (is_highmem(zone))
569 continue;
570 mark_free_pages(zone);
571 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) {
572 if (saveable(zone, &zone_pfn)) {
573 struct page * page;
574 page = pfn_to_page(zone_pfn + zone->zone_start_pfn);
575 BUG_ON(!pbe);
576 pbe->orig_address = (long) page_address(page);
577 /* copy_page is not usable for copying task structs. */
578 memcpy((void *)pbe->address, (void *)pbe->orig_address, PAGE_SIZE);
579 pbe = pbe->next;
580 }
581 }
582 }
583 BUG_ON(pbe);
584 }
585
586
587 /**
588 * calc_nr - Determine the number of pages needed for a pbe list.
589 */
590
591 static int calc_nr(int nr_copy)
592 {
593 int extra = 0;
594 int mod = !!(nr_copy % PBES_PER_PAGE);
595 int diff = (nr_copy / PBES_PER_PAGE) + mod;
596
597 do {
598 extra += diff;
599 nr_copy += diff;
600 mod = !!(nr_copy % PBES_PER_PAGE);
601 diff = (nr_copy / PBES_PER_PAGE) + mod - extra;
602 } while (diff > 0);
603
604 return nr_copy;
605 }
606
607 /**
608 * free_pagedir - free pages allocated with alloc_pagedir()
609 */
610
611 static inline void free_pagedir(struct pbe *pblist)
612 {
613 struct pbe *pbe;
614
615 while (pblist) {
616 pbe = (pblist + PB_PAGE_SKIP)->next;
617 free_page((unsigned long)pblist);
618 pblist = pbe;
619 }
620 }
621
622 /**
623 * fill_pb_page - Create a list of PBEs on a given memory page
624 */
625
626 static inline void fill_pb_page(struct pbe *pbpage)
627 {
628 struct pbe *p;
629
630 p = pbpage;
631 pbpage += PB_PAGE_SKIP;
632 do
633 p->next = p + 1;
634 while (++p < pbpage);
635 }
636
637 /**
638 * create_pbe_list - Create a list of PBEs on top of a given chain
639 * of memory pages allocated with alloc_pagedir()
640 */
641
642 static void create_pbe_list(struct pbe *pblist, unsigned nr_pages)
643 {
644 struct pbe *pbpage, *p;
645 unsigned num = PBES_PER_PAGE;
646
647 for_each_pb_page (pbpage, pblist) {
648 if (num >= nr_pages)
649 break;
650
651 fill_pb_page(pbpage);
652 num += PBES_PER_PAGE;
653 }
654 if (pbpage) {
655 for (num -= PBES_PER_PAGE - 1, p = pbpage; num < nr_pages; p++, num++)
656 p->next = p + 1;
657 p->next = NULL;
658 }
659 pr_debug("create_pbe_list(): initialized %d PBEs\n", num);
660 }
661
662 /**
663 * alloc_pagedir - Allocate the page directory.
664 *
665 * First, determine exactly how many pages we need and
666 * allocate them.
667 *
668 * We arrange the pages in a chain: each page is an array of PBES_PER_PAGE
669 * struct pbe elements (pbes) and the last element in the page points
670 * to the next page.
671 *
672 * On each page we set up a list of struct_pbe elements.
673 */
674
675 static struct pbe * alloc_pagedir(unsigned nr_pages)
676 {
677 unsigned num;
678 struct pbe *pblist, *pbe;
679
680 if (!nr_pages)
681 return NULL;
682
683 pr_debug("alloc_pagedir(): nr_pages = %d\n", nr_pages);
684 pblist = (struct pbe *)get_zeroed_page(GFP_ATOMIC | __GFP_COLD);
685 for (pbe = pblist, num = PBES_PER_PAGE; pbe && num < nr_pages;
686 pbe = pbe->next, num += PBES_PER_PAGE) {
687 pbe += PB_PAGE_SKIP;
688 pbe->next = (struct pbe *)get_zeroed_page(GFP_ATOMIC | __GFP_COLD);
689 }
690 if (!pbe) { /* get_zeroed_page() failed */
691 free_pagedir(pblist);
692 pblist = NULL;
693 }
694 return pblist;
695 }
696
697 /**
698 * free_image_pages - Free pages allocated for snapshot
699 */
700
701 static void free_image_pages(void)
702 {
703 struct pbe * p;
704
705 for_each_pbe(p, pagedir_save) {
706 if (p->address) {
707 ClearPageNosave(virt_to_page(p->address));
708 free_page(p->address);
709 p->address = 0;
710 }
711 }
712 }
713
714 /**
715 * alloc_image_pages - Allocate pages for the snapshot.
716 */
717
718 static int alloc_image_pages(void)
719 {
720 struct pbe * p;
721
722 for_each_pbe(p, pagedir_save) {
723 p->address = get_zeroed_page(GFP_ATOMIC | __GFP_COLD);
724 if (!p->address)
725 return -ENOMEM;
726 SetPageNosave(virt_to_page(p->address));
727 }
728 return 0;
729 }
730
731 void swsusp_free(void)
732 {
733 BUG_ON(PageNosave(virt_to_page(pagedir_save)));
734 BUG_ON(PageNosaveFree(virt_to_page(pagedir_save)));
735 free_image_pages();
736 free_pagedir(pagedir_save);
737 }
738
739
740 /**
741 * enough_free_mem - Make sure we enough free memory to snapshot.
742 *
743 * Returns TRUE or FALSE after checking the number of available
744 * free pages.
745 */
746
747 static int enough_free_mem(void)
748 {
749 if (nr_free_pages() < (nr_copy_pages + PAGES_FOR_IO)) {
750 pr_debug("swsusp: Not enough free pages: Have %d\n",
751 nr_free_pages());
752 return 0;
753 }
754 return 1;
755 }
756
757
758 /**
759 * enough_swap - Make sure we have enough swap to save the image.
760 *
761 * Returns TRUE or FALSE after checking the total amount of swap
762 * space avaiable.
763 *
764 * FIXME: si_swapinfo(&i) returns all swap devices information.
765 * We should only consider resume_device.
766 */
767
768 static int enough_swap(void)
769 {
770 struct sysinfo i;
771
772 si_swapinfo(&i);
773 if (i.freeswap < (nr_copy_pages + PAGES_FOR_IO)) {
774 pr_debug("swsusp: Not enough swap. Need %ld\n",i.freeswap);
775 return 0;
776 }
777 return 1;
778 }
779
780 static int swsusp_alloc(void)
781 {
782 int error;
783
784 pr_debug("suspend: (pages needed: %d + %d free: %d)\n",
785 nr_copy_pages, PAGES_FOR_IO, nr_free_pages());
786
787 pagedir_nosave = NULL;
788 if (!enough_free_mem())
789 return -ENOMEM;
790
791 if (!enough_swap())
792 return -ENOSPC;
793
794 nr_copy_pages = calc_nr(nr_copy_pages);
795
796 if (!(pagedir_save = alloc_pagedir(nr_copy_pages))) {
797 printk(KERN_ERR "suspend: Allocating pagedir failed.\n");
798 return -ENOMEM;
799 }
800 create_pbe_list(pagedir_save, nr_copy_pages);
801 pagedir_nosave = pagedir_save;
802 if ((error = alloc_image_pages())) {
803 printk(KERN_ERR "suspend: Allocating image pages failed.\n");
804 swsusp_free();
805 return error;
806 }
807
808 nr_copy_pages_check = nr_copy_pages;
809 return 0;
810 }
811
812 static int suspend_prepare_image(void)
813 {
814 int error;
815
816 pr_debug("swsusp: critical section: \n");
817 if (save_highmem()) {
818 printk(KERN_CRIT "Suspend machine: Not enough free pages for highmem\n");
819 restore_highmem();
820 return -ENOMEM;
821 }
822
823 drain_local_pages();
824 count_data_pages();
825 printk("swsusp: Need to copy %u pages\n", nr_copy_pages);
826
827 error = swsusp_alloc();
828 if (error)
829 return error;
830
831 /* During allocating of suspend pagedir, new cold pages may appear.
832 * Kill them.
833 */
834 drain_local_pages();
835 copy_data_pages();
836
837 /*
838 * End of critical section. From now on, we can write to memory,
839 * but we should not touch disk. This specially means we must _not_
840 * touch swap space! Except we must write out our image of course.
841 */
842
843 printk("swsusp: critical section/: done (%d pages copied)\n", nr_copy_pages );
844 return 0;
845 }
846
847
848 /* It is important _NOT_ to umount filesystems at this point. We want
849 * them synced (in case something goes wrong) but we DO not want to mark
850 * filesystem clean: it is not. (And it does not matter, if we resume
851 * correctly, we'll mark system clean, anyway.)
852 */
853 int swsusp_write(void)
854 {
855 int error;
856 device_resume();
857 lock_swapdevices();
858 error = write_suspend_image();
859 /* This will unlock ignored swap devices since writing is finished */
860 lock_swapdevices();
861 return error;
862
863 }
864
865
866 extern asmlinkage int swsusp_arch_suspend(void);
867 extern asmlinkage int swsusp_arch_resume(void);
868
869
870 asmlinkage int swsusp_save(void)
871 {
872 int error = 0;
873
874 if ((error = swsusp_swap_check())) {
875 printk(KERN_ERR "swsusp: FATAL: cannot find swap device, try "
876 "swapon -a!\n");
877 return error;
878 }
879 return suspend_prepare_image();
880 }
881
882 int swsusp_suspend(void)
883 {
884 int error;
885 if ((error = arch_prepare_suspend()))
886 return error;
887 local_irq_disable();
888 /* At this point, device_suspend() has been called, but *not*
889 * device_power_down(). We *must* device_power_down() now.
890 * Otherwise, drivers for some devices (e.g. interrupt controllers)
891 * become desynchronized with the actual state of the hardware
892 * at resume time, and evil weirdness ensues.
893 */
894 if ((error = device_power_down(PMSG_FREEZE))) {
895 printk(KERN_ERR "Some devices failed to power down, aborting suspend\n");
896 local_irq_enable();
897 swsusp_free();
898 return error;
899 }
900 save_processor_state();
901 if ((error = swsusp_arch_suspend()))
902 swsusp_free();
903 /* Restore control flow magically appears here */
904 restore_processor_state();
905 BUG_ON (nr_copy_pages_check != nr_copy_pages);
906 restore_highmem();
907 device_power_up();
908 local_irq_enable();
909 return error;
910 }
911
912 int swsusp_resume(void)
913 {
914 int error;
915 local_irq_disable();
916 if (device_power_down(PMSG_FREEZE))
917 printk(KERN_ERR "Some devices failed to power down, very bad\n");
918 /* We'll ignore saved state, but this gets preempt count (etc) right */
919 save_processor_state();
920 error = swsusp_arch_resume();
921 /* Code below is only ever reached in case of failure. Otherwise
922 * execution continues at place where swsusp_arch_suspend was called
923 */
924 BUG_ON(!error);
925 restore_processor_state();
926 restore_highmem();
927 device_power_up();
928 local_irq_enable();
929 return error;
930 }
931
932 /* More restore stuff */
933
934 /*
935 * Returns true if given address/order collides with any orig_address
936 */
937 static int does_collide_order(unsigned long addr, int order)
938 {
939 int i;
940
941 for (i=0; i < (1<<order); i++)
942 if (!PageNosaveFree(virt_to_page(addr + i * PAGE_SIZE)))
943 return 1;
944 return 0;
945 }
946
947 /**
948 * On resume, for storing the PBE list and the image,
949 * we can only use memory pages that do not conflict with the pages
950 * which had been used before suspend.
951 *
952 * We don't know which pages are usable until we allocate them.
953 *
954 * Allocated but unusable (ie eaten) memory pages are linked together
955 * to create a list, so that we can free them easily
956 *
957 * We could have used a type other than (void *)
958 * for this purpose, but ...
959 */
960 static void **eaten_memory = NULL;
961
962 static inline void eat_page(void *page)
963 {
964 void **c;
965
966 c = eaten_memory;
967 eaten_memory = page;
968 *eaten_memory = c;
969 }
970
971 static unsigned long get_usable_page(unsigned gfp_mask)
972 {
973 unsigned long m;
974
975 m = get_zeroed_page(gfp_mask);
976 while (does_collide_order(m, 0)) {
977 eat_page((void *)m);
978 m = get_zeroed_page(gfp_mask);
979 if (!m)
980 break;
981 }
982 return m;
983 }
984
985 static void free_eaten_memory(void)
986 {
987 unsigned long m;
988 void **c;
989 int i = 0;
990
991 c = eaten_memory;
992 while (c) {
993 m = (unsigned long)c;
994 c = *c;
995 free_page(m);
996 i++;
997 }
998 eaten_memory = NULL;
999 pr_debug("swsusp: %d unused pages freed\n", i);
1000 }
1001
1002 /**
1003 * check_pagedir - We ensure here that pages that the PBEs point to
1004 * won't collide with pages where we're going to restore from the loaded
1005 * pages later
1006 */
1007
1008 static int check_pagedir(struct pbe *pblist)
1009 {
1010 struct pbe *p;
1011
1012 /* This is necessary, so that we can free allocated pages
1013 * in case of failure
1014 */
1015 for_each_pbe (p, pblist)
1016 p->address = 0UL;
1017
1018 for_each_pbe (p, pblist) {
1019 p->address = get_usable_page(GFP_ATOMIC);
1020 if (!p->address)
1021 return -ENOMEM;
1022 }
1023 return 0;
1024 }
1025
1026 /**
1027 * swsusp_pagedir_relocate - It is possible, that some memory pages
1028 * occupied by the list of PBEs collide with pages where we're going to
1029 * restore from the loaded pages later. We relocate them here.
1030 */
1031
1032 static struct pbe * swsusp_pagedir_relocate(struct pbe *pblist)
1033 {
1034 struct zone *zone;
1035 unsigned long zone_pfn;
1036 struct pbe *pbpage, *tail, *p;
1037 void *m;
1038 int rel = 0, error = 0;
1039
1040 if (!pblist) /* a sanity check */
1041 return NULL;
1042
1043 pr_debug("swsusp: Relocating pagedir (%lu pages to check)\n",
1044 swsusp_info.pagedir_pages);
1045
1046 /* Set page flags */
1047
1048 for_each_zone(zone) {
1049 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
1050 SetPageNosaveFree(pfn_to_page(zone_pfn +
1051 zone->zone_start_pfn));
1052 }
1053
1054 /* Clear orig addresses */
1055
1056 for_each_pbe (p, pblist)
1057 ClearPageNosaveFree(virt_to_page(p->orig_address));
1058
1059 tail = pblist + PB_PAGE_SKIP;
1060
1061 /* Relocate colliding pages */
1062
1063 for_each_pb_page (pbpage, pblist) {
1064 if (does_collide_order((unsigned long)pbpage, 0)) {
1065 m = (void *)get_usable_page(GFP_ATOMIC | __GFP_COLD);
1066 if (!m) {
1067 error = -ENOMEM;
1068 break;
1069 }
1070 memcpy(m, (void *)pbpage, PAGE_SIZE);
1071 if (pbpage == pblist)
1072 pblist = (struct pbe *)m;
1073 else
1074 tail->next = (struct pbe *)m;
1075
1076 eat_page((void *)pbpage);
1077 pbpage = (struct pbe *)m;
1078
1079 /* We have to link the PBEs again */
1080
1081 for (p = pbpage; p < pbpage + PB_PAGE_SKIP; p++)
1082 if (p->next) /* needed to save the end */
1083 p->next = p + 1;
1084
1085 rel++;
1086 }
1087 tail = pbpage + PB_PAGE_SKIP;
1088 }
1089
1090 if (error) {
1091 printk("\nswsusp: Out of memory\n\n");
1092 free_pagedir(pblist);
1093 free_eaten_memory();
1094 pblist = NULL;
1095 }
1096 else
1097 printk("swsusp: Relocated %d pages\n", rel);
1098
1099 return pblist;
1100 }
1101
1102 /**
1103 * Using bio to read from swap.
1104 * This code requires a bit more work than just using buffer heads
1105 * but, it is the recommended way for 2.5/2.6.
1106 * The following are to signal the beginning and end of I/O. Bios
1107 * finish asynchronously, while we want them to happen synchronously.
1108 * A simple atomic_t, and a wait loop take care of this problem.
1109 */
1110
1111 static atomic_t io_done = ATOMIC_INIT(0);
1112
1113 static int end_io(struct bio * bio, unsigned int num, int err)
1114 {
1115 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1116 panic("I/O error reading memory image");
1117 atomic_set(&io_done, 0);
1118 return 0;
1119 }
1120
1121 static struct block_device * resume_bdev;
1122
1123 /**
1124 * submit - submit BIO request.
1125 * @rw: READ or WRITE.
1126 * @off physical offset of page.
1127 * @page: page we're reading or writing.
1128 *
1129 * Straight from the textbook - allocate and initialize the bio.
1130 * If we're writing, make sure the page is marked as dirty.
1131 * Then submit it and wait.
1132 */
1133
1134 static int submit(int rw, pgoff_t page_off, void * page)
1135 {
1136 int error = 0;
1137 struct bio * bio;
1138
1139 bio = bio_alloc(GFP_ATOMIC, 1);
1140 if (!bio)
1141 return -ENOMEM;
1142 bio->bi_sector = page_off * (PAGE_SIZE >> 9);
1143 bio_get(bio);
1144 bio->bi_bdev = resume_bdev;
1145 bio->bi_end_io = end_io;
1146
1147 if (bio_add_page(bio, virt_to_page(page), PAGE_SIZE, 0) < PAGE_SIZE) {
1148 printk("swsusp: ERROR: adding page to bio at %ld\n",page_off);
1149 error = -EFAULT;
1150 goto Done;
1151 }
1152
1153 if (rw == WRITE)
1154 bio_set_pages_dirty(bio);
1155
1156 atomic_set(&io_done, 1);
1157 submit_bio(rw | (1 << BIO_RW_SYNC), bio);
1158 while (atomic_read(&io_done))
1159 yield();
1160
1161 Done:
1162 bio_put(bio);
1163 return error;
1164 }
1165
1166 static int bio_read_page(pgoff_t page_off, void * page)
1167 {
1168 return submit(READ, page_off, page);
1169 }
1170
1171 static int bio_write_page(pgoff_t page_off, void * page)
1172 {
1173 return submit(WRITE, page_off, page);
1174 }
1175
1176 /*
1177 * Sanity check if this image makes sense with this kernel/swap context
1178 * I really don't think that it's foolproof but more than nothing..
1179 */
1180
1181 static const char * sanity_check(void)
1182 {
1183 dump_info();
1184 if(swsusp_info.version_code != LINUX_VERSION_CODE)
1185 return "kernel version";
1186 if(swsusp_info.num_physpages != num_physpages)
1187 return "memory size";
1188 if (strcmp(swsusp_info.uts.sysname,system_utsname.sysname))
1189 return "system type";
1190 if (strcmp(swsusp_info.uts.release,system_utsname.release))
1191 return "kernel release";
1192 if (strcmp(swsusp_info.uts.version,system_utsname.version))
1193 return "version";
1194 if (strcmp(swsusp_info.uts.machine,system_utsname.machine))
1195 return "machine";
1196 if(swsusp_info.cpus != num_online_cpus())
1197 return "number of cpus";
1198 return NULL;
1199 }
1200
1201
1202 static int check_header(void)
1203 {
1204 const char * reason = NULL;
1205 int error;
1206
1207 if ((error = bio_read_page(swp_offset(swsusp_header.swsusp_info), &swsusp_info)))
1208 return error;
1209
1210 /* Is this same machine? */
1211 if ((reason = sanity_check())) {
1212 printk(KERN_ERR "swsusp: Resume mismatch: %s\n",reason);
1213 return -EPERM;
1214 }
1215 nr_copy_pages = swsusp_info.image_pages;
1216 return error;
1217 }
1218
1219 static int check_sig(void)
1220 {
1221 int error;
1222
1223 memset(&swsusp_header, 0, sizeof(swsusp_header));
1224 if ((error = bio_read_page(0, &swsusp_header)))
1225 return error;
1226 if (!memcmp(SWSUSP_SIG, swsusp_header.sig, 10)) {
1227 memcpy(swsusp_header.sig, swsusp_header.orig_sig, 10);
1228
1229 /*
1230 * Reset swap signature now.
1231 */
1232 error = bio_write_page(0, &swsusp_header);
1233 } else {
1234 printk(KERN_ERR "swsusp: Suspend partition has wrong signature?\n");
1235 return -EINVAL;
1236 }
1237 if (!error)
1238 pr_debug("swsusp: Signature found, resuming\n");
1239 return error;
1240 }
1241
1242 /**
1243 * data_read - Read image pages from swap.
1244 *
1245 * You do not need to check for overlaps, check_pagedir()
1246 * already did that.
1247 */
1248
1249 static int data_read(struct pbe *pblist)
1250 {
1251 struct pbe * p;
1252 int error = 0;
1253 int i = 0;
1254 int mod = swsusp_info.image_pages / 100;
1255
1256 if (!mod)
1257 mod = 1;
1258
1259 printk("swsusp: Reading image data (%lu pages): ",
1260 swsusp_info.image_pages);
1261
1262 for_each_pbe (p, pblist) {
1263 if (!(i % mod))
1264 printk("\b\b\b\b%3d%%", i / mod);
1265
1266 error = bio_read_page(swp_offset(p->swap_address),
1267 (void *)p->address);
1268 if (error)
1269 return error;
1270
1271 i++;
1272 }
1273 printk("\b\b\b\bdone\n");
1274 return error;
1275 }
1276
1277 extern dev_t name_to_dev_t(const char *line);
1278
1279 /**
1280 * read_pagedir - Read page backup list pages from swap
1281 */
1282
1283 static int read_pagedir(struct pbe *pblist)
1284 {
1285 struct pbe *pbpage, *p;
1286 unsigned i = 0;
1287 int error;
1288
1289 if (!pblist)
1290 return -EFAULT;
1291
1292 printk("swsusp: Reading pagedir (%lu pages)\n",
1293 swsusp_info.pagedir_pages);
1294
1295 for_each_pb_page (pbpage, pblist) {
1296 unsigned long offset = swp_offset(swsusp_info.pagedir[i++]);
1297
1298 error = -EFAULT;
1299 if (offset) {
1300 p = (pbpage + PB_PAGE_SKIP)->next;
1301 error = bio_read_page(offset, (void *)pbpage);
1302 (pbpage + PB_PAGE_SKIP)->next = p;
1303 }
1304 if (error)
1305 break;
1306 }
1307
1308 if (error)
1309 free_page((unsigned long)pblist);
1310
1311 BUG_ON(i != swsusp_info.pagedir_pages);
1312
1313 return error;
1314 }
1315
1316
1317 static int check_suspend_image(void)
1318 {
1319 int error = 0;
1320
1321 if ((error = check_sig()))
1322 return error;
1323
1324 if ((error = check_header()))
1325 return error;
1326
1327 return 0;
1328 }
1329
1330 static int read_suspend_image(void)
1331 {
1332 int error = 0;
1333 struct pbe *p;
1334
1335 if (!(p = alloc_pagedir(nr_copy_pages)))
1336 return -ENOMEM;
1337
1338 if ((error = read_pagedir(p)))
1339 return error;
1340
1341 create_pbe_list(p, nr_copy_pages);
1342
1343 if (!(pagedir_nosave = swsusp_pagedir_relocate(p)))
1344 return -ENOMEM;
1345
1346 /* Allocate memory for the image and read the data from swap */
1347
1348 error = check_pagedir(pagedir_nosave);
1349 free_eaten_memory();
1350 if (!error)
1351 error = data_read(pagedir_nosave);
1352
1353 if (error) { /* We fail cleanly */
1354 for_each_pbe (p, pagedir_nosave)
1355 if (p->address) {
1356 free_page(p->address);
1357 p->address = 0UL;
1358 }
1359 free_pagedir(pagedir_nosave);
1360 }
1361 return error;
1362 }
1363
1364 /**
1365 * swsusp_check - Check for saved image in swap
1366 */
1367
1368 int swsusp_check(void)
1369 {
1370 int error;
1371
1372 if (!swsusp_resume_device) {
1373 if (!strlen(resume_file))
1374 return -ENOENT;
1375 swsusp_resume_device = name_to_dev_t(resume_file);
1376 pr_debug("swsusp: Resume From Partition %s\n", resume_file);
1377 } else {
1378 pr_debug("swsusp: Resume From Partition %d:%d\n",
1379 MAJOR(swsusp_resume_device), MINOR(swsusp_resume_device));
1380 }
1381
1382 resume_bdev = open_by_devnum(swsusp_resume_device, FMODE_READ);
1383 if (!IS_ERR(resume_bdev)) {
1384 set_blocksize(resume_bdev, PAGE_SIZE);
1385 error = check_suspend_image();
1386 if (error)
1387 blkdev_put(resume_bdev);
1388 } else
1389 error = PTR_ERR(resume_bdev);
1390
1391 if (!error)
1392 pr_debug("swsusp: resume file found\n");
1393 else
1394 pr_debug("swsusp: Error %d check for resume file\n", error);
1395 return error;
1396 }
1397
1398 /**
1399 * swsusp_read - Read saved image from swap.
1400 */
1401
1402 int swsusp_read(void)
1403 {
1404 int error;
1405
1406 if (IS_ERR(resume_bdev)) {
1407 pr_debug("swsusp: block device not initialised\n");
1408 return PTR_ERR(resume_bdev);
1409 }
1410
1411 error = read_suspend_image();
1412 blkdev_put(resume_bdev);
1413
1414 if (!error)
1415 pr_debug("swsusp: Reading resume file was successful\n");
1416 else
1417 pr_debug("swsusp: Error %d resuming\n", error);
1418 return error;
1419 }
1420
1421 /**
1422 * swsusp_close - close swap device.
1423 */
1424
1425 void swsusp_close(void)
1426 {
1427 if (IS_ERR(resume_bdev)) {
1428 pr_debug("swsusp: block device not initialised\n");
1429 return;
1430 }
1431
1432 blkdev_put(resume_bdev);
1433 }