]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/power/swsusp.c
Merge branch 'for-linus' of master.kernel.org:/pub/scm/linux/kernel/git/roland/infiniband
[mirror_ubuntu-zesty-kernel.git] / kernel / power / swsusp.c
1 /*
2 * linux/kernel/power/swsusp.c
3 *
4 * This file is to realize architecture-independent
5 * machine suspend feature using pretty near only high-level routines
6 *
7 * Copyright (C) 1998-2001 Gabor Kuti <seasons@fornax.hu>
8 * Copyright (C) 1998,2001-2004 Pavel Machek <pavel@suse.cz>
9 *
10 * This file is released under the GPLv2.
11 *
12 * I'd like to thank the following people for their work:
13 *
14 * Pavel Machek <pavel@ucw.cz>:
15 * Modifications, defectiveness pointing, being with me at the very beginning,
16 * suspend to swap space, stop all tasks. Port to 2.4.18-ac and 2.5.17.
17 *
18 * Steve Doddi <dirk@loth.demon.co.uk>:
19 * Support the possibility of hardware state restoring.
20 *
21 * Raph <grey.havens@earthling.net>:
22 * Support for preserving states of network devices and virtual console
23 * (including X and svgatextmode)
24 *
25 * Kurt Garloff <garloff@suse.de>:
26 * Straightened the critical function in order to prevent compilers from
27 * playing tricks with local variables.
28 *
29 * Andreas Mohr <a.mohr@mailto.de>
30 *
31 * Alex Badea <vampire@go.ro>:
32 * Fixed runaway init
33 *
34 * Andreas Steinmetz <ast@domdv.de>:
35 * Added encrypted suspend option
36 *
37 * More state savers are welcome. Especially for the scsi layer...
38 *
39 * For TODOs,FIXMEs also look in Documentation/power/swsusp.txt
40 */
41
42 #include <linux/module.h>
43 #include <linux/mm.h>
44 #include <linux/suspend.h>
45 #include <linux/smp_lock.h>
46 #include <linux/file.h>
47 #include <linux/utsname.h>
48 #include <linux/version.h>
49 #include <linux/delay.h>
50 #include <linux/reboot.h>
51 #include <linux/bitops.h>
52 #include <linux/vt_kern.h>
53 #include <linux/kbd_kern.h>
54 #include <linux/keyboard.h>
55 #include <linux/spinlock.h>
56 #include <linux/genhd.h>
57 #include <linux/kernel.h>
58 #include <linux/major.h>
59 #include <linux/swap.h>
60 #include <linux/pm.h>
61 #include <linux/device.h>
62 #include <linux/buffer_head.h>
63 #include <linux/swapops.h>
64 #include <linux/bootmem.h>
65 #include <linux/syscalls.h>
66 #include <linux/console.h>
67 #include <linux/highmem.h>
68 #include <linux/bio.h>
69 #include <linux/mount.h>
70
71 #include <asm/uaccess.h>
72 #include <asm/mmu_context.h>
73 #include <asm/pgtable.h>
74 #include <asm/tlbflush.h>
75 #include <asm/io.h>
76
77 #include <linux/random.h>
78 #include <linux/crypto.h>
79 #include <asm/scatterlist.h>
80
81 #include "power.h"
82
83 #define CIPHER "aes"
84 #define MAXKEY 32
85 #define MAXIV 32
86
87 /* References to section boundaries */
88 extern const void __nosave_begin, __nosave_end;
89
90 /* Variables to be preserved over suspend */
91 static int nr_copy_pages_check;
92
93 extern char resume_file[];
94
95 /* Local variables that should not be affected by save */
96 static unsigned int nr_copy_pages __nosavedata = 0;
97
98 /* Suspend pagedir is allocated before final copy, therefore it
99 must be freed after resume
100
101 Warning: this is evil. There are actually two pagedirs at time of
102 resume. One is "pagedir_save", which is empty frame allocated at
103 time of suspend, that must be freed. Second is "pagedir_nosave",
104 allocated at time of resume, that travels through memory not to
105 collide with anything.
106
107 Warning: this is even more evil than it seems. Pagedirs this file
108 talks about are completely different from page directories used by
109 MMU hardware.
110 */
111 suspend_pagedir_t *pagedir_nosave __nosavedata = NULL;
112 static suspend_pagedir_t *pagedir_save;
113
114 #define SWSUSP_SIG "S1SUSPEND"
115
116 static struct swsusp_header {
117 char reserved[PAGE_SIZE - 20 - MAXKEY - MAXIV - sizeof(swp_entry_t)];
118 u8 key_iv[MAXKEY+MAXIV];
119 swp_entry_t swsusp_info;
120 char orig_sig[10];
121 char sig[10];
122 } __attribute__((packed, aligned(PAGE_SIZE))) swsusp_header;
123
124 static struct swsusp_info swsusp_info;
125
126 /*
127 * XXX: We try to keep some more pages free so that I/O operations succeed
128 * without paging. Might this be more?
129 */
130 #define PAGES_FOR_IO 512
131
132 /*
133 * Saving part...
134 */
135
136 /* We memorize in swapfile_used what swap devices are used for suspension */
137 #define SWAPFILE_UNUSED 0
138 #define SWAPFILE_SUSPEND 1 /* This is the suspending device */
139 #define SWAPFILE_IGNORED 2 /* Those are other swap devices ignored for suspension */
140
141 static unsigned short swapfile_used[MAX_SWAPFILES];
142 static unsigned short root_swap;
143
144 static int write_page(unsigned long addr, swp_entry_t * loc);
145 static int bio_read_page(pgoff_t page_off, void * page);
146
147 static u8 key_iv[MAXKEY+MAXIV];
148
149 #ifdef CONFIG_SWSUSP_ENCRYPT
150
151 static int crypto_init(int mode, void **mem)
152 {
153 int error = 0;
154 int len;
155 char *modemsg;
156 struct crypto_tfm *tfm;
157
158 modemsg = mode ? "suspend not possible" : "resume not possible";
159
160 tfm = crypto_alloc_tfm(CIPHER, CRYPTO_TFM_MODE_CBC);
161 if(!tfm) {
162 printk(KERN_ERR "swsusp: no tfm, %s\n", modemsg);
163 error = -EINVAL;
164 goto out;
165 }
166
167 if(MAXKEY < crypto_tfm_alg_min_keysize(tfm)) {
168 printk(KERN_ERR "swsusp: key buffer too small, %s\n", modemsg);
169 error = -ENOKEY;
170 goto fail;
171 }
172
173 if (mode)
174 get_random_bytes(key_iv, MAXKEY+MAXIV);
175
176 len = crypto_tfm_alg_max_keysize(tfm);
177 if (len > MAXKEY)
178 len = MAXKEY;
179
180 if (crypto_cipher_setkey(tfm, key_iv, len)) {
181 printk(KERN_ERR "swsusp: key setup failure, %s\n", modemsg);
182 error = -EKEYREJECTED;
183 goto fail;
184 }
185
186 len = crypto_tfm_alg_ivsize(tfm);
187
188 if (MAXIV < len) {
189 printk(KERN_ERR "swsusp: iv buffer too small, %s\n", modemsg);
190 error = -EOVERFLOW;
191 goto fail;
192 }
193
194 crypto_cipher_set_iv(tfm, key_iv+MAXKEY, len);
195
196 *mem=(void *)tfm;
197
198 goto out;
199
200 fail: crypto_free_tfm(tfm);
201 out: return error;
202 }
203
204 static __inline__ void crypto_exit(void *mem)
205 {
206 crypto_free_tfm((struct crypto_tfm *)mem);
207 }
208
209 static __inline__ int crypto_write(struct pbe *p, void *mem)
210 {
211 int error = 0;
212 struct scatterlist src, dst;
213
214 src.page = virt_to_page(p->address);
215 src.offset = 0;
216 src.length = PAGE_SIZE;
217 dst.page = virt_to_page((void *)&swsusp_header);
218 dst.offset = 0;
219 dst.length = PAGE_SIZE;
220
221 error = crypto_cipher_encrypt((struct crypto_tfm *)mem, &dst, &src,
222 PAGE_SIZE);
223
224 if (!error)
225 error = write_page((unsigned long)&swsusp_header,
226 &(p->swap_address));
227 return error;
228 }
229
230 static __inline__ int crypto_read(struct pbe *p, void *mem)
231 {
232 int error = 0;
233 struct scatterlist src, dst;
234
235 error = bio_read_page(swp_offset(p->swap_address), (void *)p->address);
236 if (!error) {
237 src.offset = 0;
238 src.length = PAGE_SIZE;
239 dst.offset = 0;
240 dst.length = PAGE_SIZE;
241 src.page = dst.page = virt_to_page((void *)p->address);
242
243 error = crypto_cipher_decrypt((struct crypto_tfm *)mem, &dst,
244 &src, PAGE_SIZE);
245 }
246 return error;
247 }
248 #else
249 static __inline__ int crypto_init(int mode, void *mem)
250 {
251 return 0;
252 }
253
254 static __inline__ void crypto_exit(void *mem)
255 {
256 }
257
258 static __inline__ int crypto_write(struct pbe *p, void *mem)
259 {
260 return write_page(p->address, &(p->swap_address));
261 }
262
263 static __inline__ int crypto_read(struct pbe *p, void *mem)
264 {
265 return bio_read_page(swp_offset(p->swap_address), (void *)p->address);
266 }
267 #endif
268
269 static int mark_swapfiles(swp_entry_t prev)
270 {
271 int error;
272
273 rw_swap_page_sync(READ,
274 swp_entry(root_swap, 0),
275 virt_to_page((unsigned long)&swsusp_header));
276 if (!memcmp("SWAP-SPACE",swsusp_header.sig, 10) ||
277 !memcmp("SWAPSPACE2",swsusp_header.sig, 10)) {
278 memcpy(swsusp_header.orig_sig,swsusp_header.sig, 10);
279 memcpy(swsusp_header.sig,SWSUSP_SIG, 10);
280 memcpy(swsusp_header.key_iv, key_iv, MAXKEY+MAXIV);
281 swsusp_header.swsusp_info = prev;
282 error = rw_swap_page_sync(WRITE,
283 swp_entry(root_swap, 0),
284 virt_to_page((unsigned long)
285 &swsusp_header));
286 } else {
287 pr_debug("swsusp: Partition is not swap space.\n");
288 error = -ENODEV;
289 }
290 return error;
291 }
292
293 /*
294 * Check whether the swap device is the specified resume
295 * device, irrespective of whether they are specified by
296 * identical names.
297 *
298 * (Thus, device inode aliasing is allowed. You can say /dev/hda4
299 * instead of /dev/ide/host0/bus0/target0/lun0/part4 [if using devfs]
300 * and they'll be considered the same device. This is *necessary* for
301 * devfs, since the resume code can only recognize the form /dev/hda4,
302 * but the suspend code would see the long name.)
303 */
304 static int is_resume_device(const struct swap_info_struct *swap_info)
305 {
306 struct file *file = swap_info->swap_file;
307 struct inode *inode = file->f_dentry->d_inode;
308
309 return S_ISBLK(inode->i_mode) &&
310 swsusp_resume_device == MKDEV(imajor(inode), iminor(inode));
311 }
312
313 static int swsusp_swap_check(void) /* This is called before saving image */
314 {
315 int i, len;
316
317 len=strlen(resume_file);
318 root_swap = 0xFFFF;
319
320 spin_lock(&swap_lock);
321 for (i=0; i<MAX_SWAPFILES; i++) {
322 if (!(swap_info[i].flags & SWP_WRITEOK)) {
323 swapfile_used[i]=SWAPFILE_UNUSED;
324 } else {
325 if (!len) {
326 printk(KERN_WARNING "resume= option should be used to set suspend device" );
327 if (root_swap == 0xFFFF) {
328 swapfile_used[i] = SWAPFILE_SUSPEND;
329 root_swap = i;
330 } else
331 swapfile_used[i] = SWAPFILE_IGNORED;
332 } else {
333 /* we ignore all swap devices that are not the resume_file */
334 if (is_resume_device(&swap_info[i])) {
335 swapfile_used[i] = SWAPFILE_SUSPEND;
336 root_swap = i;
337 } else {
338 swapfile_used[i] = SWAPFILE_IGNORED;
339 }
340 }
341 }
342 }
343 spin_unlock(&swap_lock);
344 return (root_swap != 0xffff) ? 0 : -ENODEV;
345 }
346
347 /**
348 * This is called after saving image so modification
349 * will be lost after resume... and that's what we want.
350 * we make the device unusable. A new call to
351 * lock_swapdevices can unlock the devices.
352 */
353 static void lock_swapdevices(void)
354 {
355 int i;
356
357 spin_lock(&swap_lock);
358 for (i = 0; i< MAX_SWAPFILES; i++)
359 if (swapfile_used[i] == SWAPFILE_IGNORED) {
360 swap_info[i].flags ^= SWP_WRITEOK;
361 }
362 spin_unlock(&swap_lock);
363 }
364
365 /**
366 * write_page - Write one page to a fresh swap location.
367 * @addr: Address we're writing.
368 * @loc: Place to store the entry we used.
369 *
370 * Allocate a new swap entry and 'sync' it. Note we discard -EIO
371 * errors. That is an artifact left over from swsusp. It did not
372 * check the return of rw_swap_page_sync() at all, since most pages
373 * written back to swap would return -EIO.
374 * This is a partial improvement, since we will at least return other
375 * errors, though we need to eventually fix the damn code.
376 */
377 static int write_page(unsigned long addr, swp_entry_t * loc)
378 {
379 swp_entry_t entry;
380 int error = 0;
381
382 entry = get_swap_page();
383 if (swp_offset(entry) &&
384 swapfile_used[swp_type(entry)] == SWAPFILE_SUSPEND) {
385 error = rw_swap_page_sync(WRITE, entry,
386 virt_to_page(addr));
387 if (error == -EIO)
388 error = 0;
389 if (!error)
390 *loc = entry;
391 } else
392 error = -ENOSPC;
393 return error;
394 }
395
396 /**
397 * data_free - Free the swap entries used by the saved image.
398 *
399 * Walk the list of used swap entries and free each one.
400 * This is only used for cleanup when suspend fails.
401 */
402 static void data_free(void)
403 {
404 swp_entry_t entry;
405 struct pbe * p;
406
407 for_each_pbe(p, pagedir_nosave) {
408 entry = p->swap_address;
409 if (entry.val)
410 swap_free(entry);
411 else
412 break;
413 }
414 }
415
416 /**
417 * data_write - Write saved image to swap.
418 *
419 * Walk the list of pages in the image and sync each one to swap.
420 */
421 static int data_write(void)
422 {
423 int error = 0, i = 0;
424 unsigned int mod = nr_copy_pages / 100;
425 struct pbe *p;
426 void *tfm;
427
428 if ((error = crypto_init(1, &tfm)))
429 return error;
430
431 if (!mod)
432 mod = 1;
433
434 printk( "Writing data to swap (%d pages)... ", nr_copy_pages );
435 for_each_pbe (p, pagedir_nosave) {
436 if (!(i%mod))
437 printk( "\b\b\b\b%3d%%", i / mod );
438 if ((error = crypto_write(p, tfm))) {
439 crypto_exit(tfm);
440 return error;
441 }
442 i++;
443 }
444 printk("\b\b\b\bdone\n");
445 crypto_exit(tfm);
446 return error;
447 }
448
449 static void dump_info(void)
450 {
451 pr_debug(" swsusp: Version: %u\n",swsusp_info.version_code);
452 pr_debug(" swsusp: Num Pages: %ld\n",swsusp_info.num_physpages);
453 pr_debug(" swsusp: UTS Sys: %s\n",swsusp_info.uts.sysname);
454 pr_debug(" swsusp: UTS Node: %s\n",swsusp_info.uts.nodename);
455 pr_debug(" swsusp: UTS Release: %s\n",swsusp_info.uts.release);
456 pr_debug(" swsusp: UTS Version: %s\n",swsusp_info.uts.version);
457 pr_debug(" swsusp: UTS Machine: %s\n",swsusp_info.uts.machine);
458 pr_debug(" swsusp: UTS Domain: %s\n",swsusp_info.uts.domainname);
459 pr_debug(" swsusp: CPUs: %d\n",swsusp_info.cpus);
460 pr_debug(" swsusp: Image: %ld Pages\n",swsusp_info.image_pages);
461 pr_debug(" swsusp: Pagedir: %ld Pages\n",swsusp_info.pagedir_pages);
462 }
463
464 static void init_header(void)
465 {
466 memset(&swsusp_info, 0, sizeof(swsusp_info));
467 swsusp_info.version_code = LINUX_VERSION_CODE;
468 swsusp_info.num_physpages = num_physpages;
469 memcpy(&swsusp_info.uts, &system_utsname, sizeof(system_utsname));
470
471 swsusp_info.suspend_pagedir = pagedir_nosave;
472 swsusp_info.cpus = num_online_cpus();
473 swsusp_info.image_pages = nr_copy_pages;
474 }
475
476 static int close_swap(void)
477 {
478 swp_entry_t entry;
479 int error;
480
481 dump_info();
482 error = write_page((unsigned long)&swsusp_info, &entry);
483 if (!error) {
484 printk( "S" );
485 error = mark_swapfiles(entry);
486 printk( "|\n" );
487 }
488 return error;
489 }
490
491 /**
492 * free_pagedir_entries - Free pages used by the page directory.
493 *
494 * This is used during suspend for error recovery.
495 */
496
497 static void free_pagedir_entries(void)
498 {
499 int i;
500
501 for (i = 0; i < swsusp_info.pagedir_pages; i++)
502 swap_free(swsusp_info.pagedir[i]);
503 }
504
505
506 /**
507 * write_pagedir - Write the array of pages holding the page directory.
508 * @last: Last swap entry we write (needed for header).
509 */
510
511 static int write_pagedir(void)
512 {
513 int error = 0;
514 unsigned n = 0;
515 struct pbe * pbe;
516
517 printk( "Writing pagedir...");
518 for_each_pb_page (pbe, pagedir_nosave) {
519 if ((error = write_page((unsigned long)pbe, &swsusp_info.pagedir[n++])))
520 return error;
521 }
522
523 swsusp_info.pagedir_pages = n;
524 printk("done (%u pages)\n", n);
525 return error;
526 }
527
528 /**
529 * write_suspend_image - Write entire image and metadata.
530 *
531 */
532 static int write_suspend_image(void)
533 {
534 int error;
535
536 init_header();
537 if ((error = data_write()))
538 goto FreeData;
539
540 if ((error = write_pagedir()))
541 goto FreePagedir;
542
543 if ((error = close_swap()))
544 goto FreePagedir;
545 Done:
546 memset(key_iv, 0, MAXKEY+MAXIV);
547 return error;
548 FreePagedir:
549 free_pagedir_entries();
550 FreeData:
551 data_free();
552 goto Done;
553 }
554
555
556 #ifdef CONFIG_HIGHMEM
557 struct highmem_page {
558 char *data;
559 struct page *page;
560 struct highmem_page *next;
561 };
562
563 static struct highmem_page *highmem_copy;
564
565 static int save_highmem_zone(struct zone *zone)
566 {
567 unsigned long zone_pfn;
568 mark_free_pages(zone);
569 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) {
570 struct page *page;
571 struct highmem_page *save;
572 void *kaddr;
573 unsigned long pfn = zone_pfn + zone->zone_start_pfn;
574
575 if (!(pfn%1000))
576 printk(".");
577 if (!pfn_valid(pfn))
578 continue;
579 page = pfn_to_page(pfn);
580 /*
581 * This condition results from rvmalloc() sans vmalloc_32()
582 * and architectural memory reservations. This should be
583 * corrected eventually when the cases giving rise to this
584 * are better understood.
585 */
586 if (PageReserved(page)) {
587 printk("highmem reserved page?!\n");
588 continue;
589 }
590 BUG_ON(PageNosave(page));
591 if (PageNosaveFree(page))
592 continue;
593 save = kmalloc(sizeof(struct highmem_page), GFP_ATOMIC);
594 if (!save)
595 return -ENOMEM;
596 save->next = highmem_copy;
597 save->page = page;
598 save->data = (void *) get_zeroed_page(GFP_ATOMIC);
599 if (!save->data) {
600 kfree(save);
601 return -ENOMEM;
602 }
603 kaddr = kmap_atomic(page, KM_USER0);
604 memcpy(save->data, kaddr, PAGE_SIZE);
605 kunmap_atomic(kaddr, KM_USER0);
606 highmem_copy = save;
607 }
608 return 0;
609 }
610 #endif /* CONFIG_HIGHMEM */
611
612
613 static int save_highmem(void)
614 {
615 #ifdef CONFIG_HIGHMEM
616 struct zone *zone;
617 int res = 0;
618
619 pr_debug("swsusp: Saving Highmem\n");
620 for_each_zone (zone) {
621 if (is_highmem(zone))
622 res = save_highmem_zone(zone);
623 if (res)
624 return res;
625 }
626 #endif
627 return 0;
628 }
629
630 static int restore_highmem(void)
631 {
632 #ifdef CONFIG_HIGHMEM
633 printk("swsusp: Restoring Highmem\n");
634 while (highmem_copy) {
635 struct highmem_page *save = highmem_copy;
636 void *kaddr;
637 highmem_copy = save->next;
638
639 kaddr = kmap_atomic(save->page, KM_USER0);
640 memcpy(kaddr, save->data, PAGE_SIZE);
641 kunmap_atomic(kaddr, KM_USER0);
642 free_page((long) save->data);
643 kfree(save);
644 }
645 #endif
646 return 0;
647 }
648
649
650 static int pfn_is_nosave(unsigned long pfn)
651 {
652 unsigned long nosave_begin_pfn = __pa(&__nosave_begin) >> PAGE_SHIFT;
653 unsigned long nosave_end_pfn = PAGE_ALIGN(__pa(&__nosave_end)) >> PAGE_SHIFT;
654 return (pfn >= nosave_begin_pfn) && (pfn < nosave_end_pfn);
655 }
656
657 /**
658 * saveable - Determine whether a page should be cloned or not.
659 * @pfn: The page
660 *
661 * We save a page if it's Reserved, and not in the range of pages
662 * statically defined as 'unsaveable', or if it isn't reserved, and
663 * isn't part of a free chunk of pages.
664 */
665
666 static int saveable(struct zone * zone, unsigned long * zone_pfn)
667 {
668 unsigned long pfn = *zone_pfn + zone->zone_start_pfn;
669 struct page * page;
670
671 if (!pfn_valid(pfn))
672 return 0;
673
674 page = pfn_to_page(pfn);
675 BUG_ON(PageReserved(page) && PageNosave(page));
676 if (PageNosave(page))
677 return 0;
678 if (PageReserved(page) && pfn_is_nosave(pfn)) {
679 pr_debug("[nosave pfn 0x%lx]", pfn);
680 return 0;
681 }
682 if (PageNosaveFree(page))
683 return 0;
684
685 return 1;
686 }
687
688 static void count_data_pages(void)
689 {
690 struct zone *zone;
691 unsigned long zone_pfn;
692
693 nr_copy_pages = 0;
694
695 for_each_zone (zone) {
696 if (is_highmem(zone))
697 continue;
698 mark_free_pages(zone);
699 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
700 nr_copy_pages += saveable(zone, &zone_pfn);
701 }
702 }
703
704
705 static void copy_data_pages(void)
706 {
707 struct zone *zone;
708 unsigned long zone_pfn;
709 struct pbe * pbe = pagedir_nosave;
710
711 pr_debug("copy_data_pages(): pages to copy: %d\n", nr_copy_pages);
712 for_each_zone (zone) {
713 if (is_highmem(zone))
714 continue;
715 mark_free_pages(zone);
716 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) {
717 if (saveable(zone, &zone_pfn)) {
718 struct page * page;
719 page = pfn_to_page(zone_pfn + zone->zone_start_pfn);
720 BUG_ON(!pbe);
721 pbe->orig_address = (long) page_address(page);
722 /* copy_page is not usable for copying task structs. */
723 memcpy((void *)pbe->address, (void *)pbe->orig_address, PAGE_SIZE);
724 pbe = pbe->next;
725 }
726 }
727 }
728 BUG_ON(pbe);
729 }
730
731
732 /**
733 * calc_nr - Determine the number of pages needed for a pbe list.
734 */
735
736 static int calc_nr(int nr_copy)
737 {
738 return nr_copy + (nr_copy+PBES_PER_PAGE-2)/(PBES_PER_PAGE-1);
739 }
740
741 /**
742 * free_pagedir - free pages allocated with alloc_pagedir()
743 */
744
745 static inline void free_pagedir(struct pbe *pblist)
746 {
747 struct pbe *pbe;
748
749 while (pblist) {
750 pbe = (pblist + PB_PAGE_SKIP)->next;
751 free_page((unsigned long)pblist);
752 pblist = pbe;
753 }
754 }
755
756 /**
757 * fill_pb_page - Create a list of PBEs on a given memory page
758 */
759
760 static inline void fill_pb_page(struct pbe *pbpage)
761 {
762 struct pbe *p;
763
764 p = pbpage;
765 pbpage += PB_PAGE_SKIP;
766 do
767 p->next = p + 1;
768 while (++p < pbpage);
769 }
770
771 /**
772 * create_pbe_list - Create a list of PBEs on top of a given chain
773 * of memory pages allocated with alloc_pagedir()
774 */
775
776 static void create_pbe_list(struct pbe *pblist, unsigned nr_pages)
777 {
778 struct pbe *pbpage, *p;
779 unsigned num = PBES_PER_PAGE;
780
781 for_each_pb_page (pbpage, pblist) {
782 if (num >= nr_pages)
783 break;
784
785 fill_pb_page(pbpage);
786 num += PBES_PER_PAGE;
787 }
788 if (pbpage) {
789 for (num -= PBES_PER_PAGE - 1, p = pbpage; num < nr_pages; p++, num++)
790 p->next = p + 1;
791 p->next = NULL;
792 }
793 pr_debug("create_pbe_list(): initialized %d PBEs\n", num);
794 }
795
796 /**
797 * alloc_pagedir - Allocate the page directory.
798 *
799 * First, determine exactly how many pages we need and
800 * allocate them.
801 *
802 * We arrange the pages in a chain: each page is an array of PBES_PER_PAGE
803 * struct pbe elements (pbes) and the last element in the page points
804 * to the next page.
805 *
806 * On each page we set up a list of struct_pbe elements.
807 */
808
809 static struct pbe * alloc_pagedir(unsigned nr_pages)
810 {
811 unsigned num;
812 struct pbe *pblist, *pbe;
813
814 if (!nr_pages)
815 return NULL;
816
817 pr_debug("alloc_pagedir(): nr_pages = %d\n", nr_pages);
818 pblist = (struct pbe *)get_zeroed_page(GFP_ATOMIC | __GFP_COLD);
819 for (pbe = pblist, num = PBES_PER_PAGE; pbe && num < nr_pages;
820 pbe = pbe->next, num += PBES_PER_PAGE) {
821 pbe += PB_PAGE_SKIP;
822 pbe->next = (struct pbe *)get_zeroed_page(GFP_ATOMIC | __GFP_COLD);
823 }
824 if (!pbe) { /* get_zeroed_page() failed */
825 free_pagedir(pblist);
826 pblist = NULL;
827 }
828 return pblist;
829 }
830
831 /**
832 * free_image_pages - Free pages allocated for snapshot
833 */
834
835 static void free_image_pages(void)
836 {
837 struct pbe * p;
838
839 for_each_pbe (p, pagedir_save) {
840 if (p->address) {
841 ClearPageNosave(virt_to_page(p->address));
842 free_page(p->address);
843 p->address = 0;
844 }
845 }
846 }
847
848 /**
849 * alloc_image_pages - Allocate pages for the snapshot.
850 */
851
852 static int alloc_image_pages(void)
853 {
854 struct pbe * p;
855
856 for_each_pbe (p, pagedir_save) {
857 p->address = get_zeroed_page(GFP_ATOMIC | __GFP_COLD);
858 if (!p->address)
859 return -ENOMEM;
860 SetPageNosave(virt_to_page(p->address));
861 }
862 return 0;
863 }
864
865 /* Free pages we allocated for suspend. Suspend pages are alocated
866 * before atomic copy, so we need to free them after resume.
867 */
868 void swsusp_free(void)
869 {
870 BUG_ON(PageNosave(virt_to_page(pagedir_save)));
871 BUG_ON(PageNosaveFree(virt_to_page(pagedir_save)));
872 free_image_pages();
873 free_pagedir(pagedir_save);
874 }
875
876
877 /**
878 * enough_free_mem - Make sure we enough free memory to snapshot.
879 *
880 * Returns TRUE or FALSE after checking the number of available
881 * free pages.
882 */
883
884 static int enough_free_mem(void)
885 {
886 if (nr_free_pages() < (nr_copy_pages + PAGES_FOR_IO)) {
887 pr_debug("swsusp: Not enough free pages: Have %d\n",
888 nr_free_pages());
889 return 0;
890 }
891 return 1;
892 }
893
894
895 /**
896 * enough_swap - Make sure we have enough swap to save the image.
897 *
898 * Returns TRUE or FALSE after checking the total amount of swap
899 * space avaiable.
900 *
901 * FIXME: si_swapinfo(&i) returns all swap devices information.
902 * We should only consider resume_device.
903 */
904
905 static int enough_swap(void)
906 {
907 struct sysinfo i;
908
909 si_swapinfo(&i);
910 if (i.freeswap < (nr_copy_pages + PAGES_FOR_IO)) {
911 pr_debug("swsusp: Not enough swap. Need %ld\n",i.freeswap);
912 return 0;
913 }
914 return 1;
915 }
916
917 static int swsusp_alloc(void)
918 {
919 int error;
920
921 pagedir_nosave = NULL;
922 nr_copy_pages = calc_nr(nr_copy_pages);
923 nr_copy_pages_check = nr_copy_pages;
924
925 pr_debug("suspend: (pages needed: %d + %d free: %d)\n",
926 nr_copy_pages, PAGES_FOR_IO, nr_free_pages());
927
928 if (!enough_free_mem())
929 return -ENOMEM;
930
931 if (!enough_swap())
932 return -ENOSPC;
933
934 if (MAX_PBES < nr_copy_pages / PBES_PER_PAGE +
935 !!(nr_copy_pages % PBES_PER_PAGE))
936 return -ENOSPC;
937
938 if (!(pagedir_save = alloc_pagedir(nr_copy_pages))) {
939 printk(KERN_ERR "suspend: Allocating pagedir failed.\n");
940 return -ENOMEM;
941 }
942 create_pbe_list(pagedir_save, nr_copy_pages);
943 pagedir_nosave = pagedir_save;
944 if ((error = alloc_image_pages())) {
945 printk(KERN_ERR "suspend: Allocating image pages failed.\n");
946 swsusp_free();
947 return error;
948 }
949
950 return 0;
951 }
952
953 static int suspend_prepare_image(void)
954 {
955 int error;
956
957 pr_debug("swsusp: critical section: \n");
958 if (save_highmem()) {
959 printk(KERN_CRIT "Suspend machine: Not enough free pages for highmem\n");
960 restore_highmem();
961 return -ENOMEM;
962 }
963
964 drain_local_pages();
965 count_data_pages();
966 printk("swsusp: Need to copy %u pages\n", nr_copy_pages);
967
968 error = swsusp_alloc();
969 if (error)
970 return error;
971
972 /* During allocating of suspend pagedir, new cold pages may appear.
973 * Kill them.
974 */
975 drain_local_pages();
976 copy_data_pages();
977
978 /*
979 * End of critical section. From now on, we can write to memory,
980 * but we should not touch disk. This specially means we must _not_
981 * touch swap space! Except we must write out our image of course.
982 */
983
984 printk("swsusp: critical section/: done (%d pages copied)\n", nr_copy_pages );
985 return 0;
986 }
987
988
989 /* It is important _NOT_ to umount filesystems at this point. We want
990 * them synced (in case something goes wrong) but we DO not want to mark
991 * filesystem clean: it is not. (And it does not matter, if we resume
992 * correctly, we'll mark system clean, anyway.)
993 */
994 int swsusp_write(void)
995 {
996 int error;
997 device_resume();
998 lock_swapdevices();
999 error = write_suspend_image();
1000 /* This will unlock ignored swap devices since writing is finished */
1001 lock_swapdevices();
1002 return error;
1003
1004 }
1005
1006
1007 extern asmlinkage int swsusp_arch_suspend(void);
1008 extern asmlinkage int swsusp_arch_resume(void);
1009
1010
1011 asmlinkage int swsusp_save(void)
1012 {
1013 return suspend_prepare_image();
1014 }
1015
1016 int swsusp_suspend(void)
1017 {
1018 int error;
1019 if ((error = arch_prepare_suspend()))
1020 return error;
1021 local_irq_disable();
1022 /* At this point, device_suspend() has been called, but *not*
1023 * device_power_down(). We *must* device_power_down() now.
1024 * Otherwise, drivers for some devices (e.g. interrupt controllers)
1025 * become desynchronized with the actual state of the hardware
1026 * at resume time, and evil weirdness ensues.
1027 */
1028 if ((error = device_power_down(PMSG_FREEZE))) {
1029 printk(KERN_ERR "Some devices failed to power down, aborting suspend\n");
1030 local_irq_enable();
1031 return error;
1032 }
1033
1034 if ((error = swsusp_swap_check())) {
1035 printk(KERN_ERR "swsusp: cannot find swap device, try swapon -a.\n");
1036 device_power_up();
1037 local_irq_enable();
1038 return error;
1039 }
1040
1041 save_processor_state();
1042 if ((error = swsusp_arch_suspend()))
1043 printk(KERN_ERR "Error %d suspending\n", error);
1044 /* Restore control flow magically appears here */
1045 restore_processor_state();
1046 BUG_ON (nr_copy_pages_check != nr_copy_pages);
1047 restore_highmem();
1048 device_power_up();
1049 local_irq_enable();
1050 return error;
1051 }
1052
1053 int swsusp_resume(void)
1054 {
1055 int error;
1056 local_irq_disable();
1057 if (device_power_down(PMSG_FREEZE))
1058 printk(KERN_ERR "Some devices failed to power down, very bad\n");
1059 /* We'll ignore saved state, but this gets preempt count (etc) right */
1060 save_processor_state();
1061 error = swsusp_arch_resume();
1062 /* Code below is only ever reached in case of failure. Otherwise
1063 * execution continues at place where swsusp_arch_suspend was called
1064 */
1065 BUG_ON(!error);
1066 restore_processor_state();
1067 restore_highmem();
1068 touch_softlockup_watchdog();
1069 device_power_up();
1070 local_irq_enable();
1071 return error;
1072 }
1073
1074 /**
1075 * On resume, for storing the PBE list and the image,
1076 * we can only use memory pages that do not conflict with the pages
1077 * which had been used before suspend.
1078 *
1079 * We don't know which pages are usable until we allocate them.
1080 *
1081 * Allocated but unusable (ie eaten) memory pages are linked together
1082 * to create a list, so that we can free them easily
1083 *
1084 * We could have used a type other than (void *)
1085 * for this purpose, but ...
1086 */
1087 static void **eaten_memory = NULL;
1088
1089 static inline void eat_page(void *page)
1090 {
1091 void **c;
1092
1093 c = eaten_memory;
1094 eaten_memory = page;
1095 *eaten_memory = c;
1096 }
1097
1098 static unsigned long get_usable_page(unsigned gfp_mask)
1099 {
1100 unsigned long m;
1101
1102 m = get_zeroed_page(gfp_mask);
1103 while (!PageNosaveFree(virt_to_page(m))) {
1104 eat_page((void *)m);
1105 m = get_zeroed_page(gfp_mask);
1106 if (!m)
1107 break;
1108 }
1109 return m;
1110 }
1111
1112 static void free_eaten_memory(void)
1113 {
1114 unsigned long m;
1115 void **c;
1116 int i = 0;
1117
1118 c = eaten_memory;
1119 while (c) {
1120 m = (unsigned long)c;
1121 c = *c;
1122 free_page(m);
1123 i++;
1124 }
1125 eaten_memory = NULL;
1126 pr_debug("swsusp: %d unused pages freed\n", i);
1127 }
1128
1129 /**
1130 * check_pagedir - We ensure here that pages that the PBEs point to
1131 * won't collide with pages where we're going to restore from the loaded
1132 * pages later
1133 */
1134
1135 static int check_pagedir(struct pbe *pblist)
1136 {
1137 struct pbe *p;
1138
1139 /* This is necessary, so that we can free allocated pages
1140 * in case of failure
1141 */
1142 for_each_pbe (p, pblist)
1143 p->address = 0UL;
1144
1145 for_each_pbe (p, pblist) {
1146 p->address = get_usable_page(GFP_ATOMIC);
1147 if (!p->address)
1148 return -ENOMEM;
1149 }
1150 return 0;
1151 }
1152
1153 /**
1154 * swsusp_pagedir_relocate - It is possible, that some memory pages
1155 * occupied by the list of PBEs collide with pages where we're going to
1156 * restore from the loaded pages later. We relocate them here.
1157 */
1158
1159 static struct pbe * swsusp_pagedir_relocate(struct pbe *pblist)
1160 {
1161 struct zone *zone;
1162 unsigned long zone_pfn;
1163 struct pbe *pbpage, *tail, *p;
1164 void *m;
1165 int rel = 0, error = 0;
1166
1167 if (!pblist) /* a sanity check */
1168 return NULL;
1169
1170 pr_debug("swsusp: Relocating pagedir (%lu pages to check)\n",
1171 swsusp_info.pagedir_pages);
1172
1173 /* Set page flags */
1174
1175 for_each_zone (zone) {
1176 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
1177 SetPageNosaveFree(pfn_to_page(zone_pfn +
1178 zone->zone_start_pfn));
1179 }
1180
1181 /* Clear orig addresses */
1182
1183 for_each_pbe (p, pblist)
1184 ClearPageNosaveFree(virt_to_page(p->orig_address));
1185
1186 tail = pblist + PB_PAGE_SKIP;
1187
1188 /* Relocate colliding pages */
1189
1190 for_each_pb_page (pbpage, pblist) {
1191 if (!PageNosaveFree(virt_to_page((unsigned long)pbpage))) {
1192 m = (void *)get_usable_page(GFP_ATOMIC | __GFP_COLD);
1193 if (!m) {
1194 error = -ENOMEM;
1195 break;
1196 }
1197 memcpy(m, (void *)pbpage, PAGE_SIZE);
1198 if (pbpage == pblist)
1199 pblist = (struct pbe *)m;
1200 else
1201 tail->next = (struct pbe *)m;
1202
1203 eat_page((void *)pbpage);
1204 pbpage = (struct pbe *)m;
1205
1206 /* We have to link the PBEs again */
1207
1208 for (p = pbpage; p < pbpage + PB_PAGE_SKIP; p++)
1209 if (p->next) /* needed to save the end */
1210 p->next = p + 1;
1211
1212 rel++;
1213 }
1214 tail = pbpage + PB_PAGE_SKIP;
1215 }
1216
1217 if (error) {
1218 printk("\nswsusp: Out of memory\n\n");
1219 free_pagedir(pblist);
1220 free_eaten_memory();
1221 pblist = NULL;
1222 /* Is this even worth handling? It should never ever happen, and we
1223 have just lost user's state, anyway... */
1224 } else
1225 printk("swsusp: Relocated %d pages\n", rel);
1226
1227 return pblist;
1228 }
1229
1230 /*
1231 * Using bio to read from swap.
1232 * This code requires a bit more work than just using buffer heads
1233 * but, it is the recommended way for 2.5/2.6.
1234 * The following are to signal the beginning and end of I/O. Bios
1235 * finish asynchronously, while we want them to happen synchronously.
1236 * A simple atomic_t, and a wait loop take care of this problem.
1237 */
1238
1239 static atomic_t io_done = ATOMIC_INIT(0);
1240
1241 static int end_io(struct bio * bio, unsigned int num, int err)
1242 {
1243 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1244 panic("I/O error reading memory image");
1245 atomic_set(&io_done, 0);
1246 return 0;
1247 }
1248
1249 static struct block_device * resume_bdev;
1250
1251 /**
1252 * submit - submit BIO request.
1253 * @rw: READ or WRITE.
1254 * @off physical offset of page.
1255 * @page: page we're reading or writing.
1256 *
1257 * Straight from the textbook - allocate and initialize the bio.
1258 * If we're writing, make sure the page is marked as dirty.
1259 * Then submit it and wait.
1260 */
1261
1262 static int submit(int rw, pgoff_t page_off, void * page)
1263 {
1264 int error = 0;
1265 struct bio * bio;
1266
1267 bio = bio_alloc(GFP_ATOMIC, 1);
1268 if (!bio)
1269 return -ENOMEM;
1270 bio->bi_sector = page_off * (PAGE_SIZE >> 9);
1271 bio_get(bio);
1272 bio->bi_bdev = resume_bdev;
1273 bio->bi_end_io = end_io;
1274
1275 if (bio_add_page(bio, virt_to_page(page), PAGE_SIZE, 0) < PAGE_SIZE) {
1276 printk("swsusp: ERROR: adding page to bio at %ld\n",page_off);
1277 error = -EFAULT;
1278 goto Done;
1279 }
1280
1281 if (rw == WRITE)
1282 bio_set_pages_dirty(bio);
1283
1284 atomic_set(&io_done, 1);
1285 submit_bio(rw | (1 << BIO_RW_SYNC), bio);
1286 while (atomic_read(&io_done))
1287 yield();
1288
1289 Done:
1290 bio_put(bio);
1291 return error;
1292 }
1293
1294 static int bio_read_page(pgoff_t page_off, void * page)
1295 {
1296 return submit(READ, page_off, page);
1297 }
1298
1299 static int bio_write_page(pgoff_t page_off, void * page)
1300 {
1301 return submit(WRITE, page_off, page);
1302 }
1303
1304 /*
1305 * Sanity check if this image makes sense with this kernel/swap context
1306 * I really don't think that it's foolproof but more than nothing..
1307 */
1308
1309 static const char * sanity_check(void)
1310 {
1311 dump_info();
1312 if (swsusp_info.version_code != LINUX_VERSION_CODE)
1313 return "kernel version";
1314 if (swsusp_info.num_physpages != num_physpages)
1315 return "memory size";
1316 if (strcmp(swsusp_info.uts.sysname,system_utsname.sysname))
1317 return "system type";
1318 if (strcmp(swsusp_info.uts.release,system_utsname.release))
1319 return "kernel release";
1320 if (strcmp(swsusp_info.uts.version,system_utsname.version))
1321 return "version";
1322 if (strcmp(swsusp_info.uts.machine,system_utsname.machine))
1323 return "machine";
1324 #if 0
1325 /* We can't use number of online CPUs when we use hotplug to remove them ;-))) */
1326 if (swsusp_info.cpus != num_possible_cpus())
1327 return "number of cpus";
1328 #endif
1329 return NULL;
1330 }
1331
1332
1333 static int check_header(void)
1334 {
1335 const char * reason = NULL;
1336 int error;
1337
1338 if ((error = bio_read_page(swp_offset(swsusp_header.swsusp_info), &swsusp_info)))
1339 return error;
1340
1341 /* Is this same machine? */
1342 if ((reason = sanity_check())) {
1343 printk(KERN_ERR "swsusp: Resume mismatch: %s\n",reason);
1344 return -EPERM;
1345 }
1346 nr_copy_pages = swsusp_info.image_pages;
1347 return error;
1348 }
1349
1350 static int check_sig(void)
1351 {
1352 int error;
1353
1354 memset(&swsusp_header, 0, sizeof(swsusp_header));
1355 if ((error = bio_read_page(0, &swsusp_header)))
1356 return error;
1357 if (!memcmp(SWSUSP_SIG, swsusp_header.sig, 10)) {
1358 memcpy(swsusp_header.sig, swsusp_header.orig_sig, 10);
1359 memcpy(key_iv, swsusp_header.key_iv, MAXKEY+MAXIV);
1360 memset(swsusp_header.key_iv, 0, MAXKEY+MAXIV);
1361
1362 /*
1363 * Reset swap signature now.
1364 */
1365 error = bio_write_page(0, &swsusp_header);
1366 } else {
1367 return -EINVAL;
1368 }
1369 if (!error)
1370 pr_debug("swsusp: Signature found, resuming\n");
1371 return error;
1372 }
1373
1374 /**
1375 * data_read - Read image pages from swap.
1376 *
1377 * You do not need to check for overlaps, check_pagedir()
1378 * already did that.
1379 */
1380
1381 static int data_read(struct pbe *pblist)
1382 {
1383 struct pbe * p;
1384 int error = 0;
1385 int i = 0;
1386 int mod = swsusp_info.image_pages / 100;
1387 void *tfm;
1388
1389 if ((error = crypto_init(0, &tfm)))
1390 return error;
1391
1392 if (!mod)
1393 mod = 1;
1394
1395 printk("swsusp: Reading image data (%lu pages): ",
1396 swsusp_info.image_pages);
1397
1398 for_each_pbe (p, pblist) {
1399 if (!(i % mod))
1400 printk("\b\b\b\b%3d%%", i / mod);
1401
1402 if ((error = crypto_read(p, tfm))) {
1403 crypto_exit(tfm);
1404 return error;
1405 }
1406
1407 i++;
1408 }
1409 printk("\b\b\b\bdone\n");
1410 crypto_exit(tfm);
1411 return error;
1412 }
1413
1414 /**
1415 * read_pagedir - Read page backup list pages from swap
1416 */
1417
1418 static int read_pagedir(struct pbe *pblist)
1419 {
1420 struct pbe *pbpage, *p;
1421 unsigned i = 0;
1422 int error;
1423
1424 if (!pblist)
1425 return -EFAULT;
1426
1427 printk("swsusp: Reading pagedir (%lu pages)\n",
1428 swsusp_info.pagedir_pages);
1429
1430 for_each_pb_page (pbpage, pblist) {
1431 unsigned long offset = swp_offset(swsusp_info.pagedir[i++]);
1432
1433 error = -EFAULT;
1434 if (offset) {
1435 p = (pbpage + PB_PAGE_SKIP)->next;
1436 error = bio_read_page(offset, (void *)pbpage);
1437 (pbpage + PB_PAGE_SKIP)->next = p;
1438 }
1439 if (error)
1440 break;
1441 }
1442
1443 if (error)
1444 free_pagedir(pblist);
1445 else
1446 BUG_ON(i != swsusp_info.pagedir_pages);
1447
1448 return error;
1449 }
1450
1451
1452 static int check_suspend_image(void)
1453 {
1454 int error = 0;
1455
1456 if ((error = check_sig()))
1457 return error;
1458
1459 if ((error = check_header()))
1460 return error;
1461
1462 return 0;
1463 }
1464
1465 static int read_suspend_image(void)
1466 {
1467 int error = 0;
1468 struct pbe *p;
1469
1470 if (!(p = alloc_pagedir(nr_copy_pages)))
1471 return -ENOMEM;
1472
1473 if ((error = read_pagedir(p)))
1474 return error;
1475
1476 create_pbe_list(p, nr_copy_pages);
1477
1478 if (!(pagedir_nosave = swsusp_pagedir_relocate(p)))
1479 return -ENOMEM;
1480
1481 /* Allocate memory for the image and read the data from swap */
1482
1483 error = check_pagedir(pagedir_nosave);
1484 free_eaten_memory();
1485 if (!error)
1486 error = data_read(pagedir_nosave);
1487
1488 if (error) { /* We fail cleanly */
1489 for_each_pbe (p, pagedir_nosave)
1490 if (p->address) {
1491 free_page(p->address);
1492 p->address = 0UL;
1493 }
1494 free_pagedir(pagedir_nosave);
1495 }
1496 return error;
1497 }
1498
1499 /**
1500 * swsusp_check - Check for saved image in swap
1501 */
1502
1503 int swsusp_check(void)
1504 {
1505 int error;
1506
1507 resume_bdev = open_by_devnum(swsusp_resume_device, FMODE_READ);
1508 if (!IS_ERR(resume_bdev)) {
1509 set_blocksize(resume_bdev, PAGE_SIZE);
1510 error = check_suspend_image();
1511 if (error)
1512 blkdev_put(resume_bdev);
1513 } else
1514 error = PTR_ERR(resume_bdev);
1515
1516 if (!error)
1517 pr_debug("swsusp: resume file found\n");
1518 else
1519 pr_debug("swsusp: Error %d check for resume file\n", error);
1520 return error;
1521 }
1522
1523 /**
1524 * swsusp_read - Read saved image from swap.
1525 */
1526
1527 int swsusp_read(void)
1528 {
1529 int error;
1530
1531 if (IS_ERR(resume_bdev)) {
1532 pr_debug("swsusp: block device not initialised\n");
1533 return PTR_ERR(resume_bdev);
1534 }
1535
1536 error = read_suspend_image();
1537 blkdev_put(resume_bdev);
1538 memset(key_iv, 0, MAXKEY+MAXIV);
1539
1540 if (!error)
1541 pr_debug("swsusp: Reading resume file was successful\n");
1542 else
1543 pr_debug("swsusp: Error %d resuming\n", error);
1544 return error;
1545 }
1546
1547 /**
1548 * swsusp_close - close swap device.
1549 */
1550
1551 void swsusp_close(void)
1552 {
1553 if (IS_ERR(resume_bdev)) {
1554 pr_debug("swsusp: block device not initialised\n");
1555 return;
1556 }
1557
1558 blkdev_put(resume_bdev);
1559 }