]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/power/swsusp.c
Manual merge with Linus
[mirror_ubuntu-zesty-kernel.git] / kernel / power / swsusp.c
1 /*
2 * linux/kernel/power/swsusp.c
3 *
4 * This file is to realize architecture-independent
5 * machine suspend feature using pretty near only high-level routines
6 *
7 * Copyright (C) 1998-2001 Gabor Kuti <seasons@fornax.hu>
8 * Copyright (C) 1998,2001-2004 Pavel Machek <pavel@suse.cz>
9 *
10 * This file is released under the GPLv2.
11 *
12 * I'd like to thank the following people for their work:
13 *
14 * Pavel Machek <pavel@ucw.cz>:
15 * Modifications, defectiveness pointing, being with me at the very beginning,
16 * suspend to swap space, stop all tasks. Port to 2.4.18-ac and 2.5.17.
17 *
18 * Steve Doddi <dirk@loth.demon.co.uk>:
19 * Support the possibility of hardware state restoring.
20 *
21 * Raph <grey.havens@earthling.net>:
22 * Support for preserving states of network devices and virtual console
23 * (including X and svgatextmode)
24 *
25 * Kurt Garloff <garloff@suse.de>:
26 * Straightened the critical function in order to prevent compilers from
27 * playing tricks with local variables.
28 *
29 * Andreas Mohr <a.mohr@mailto.de>
30 *
31 * Alex Badea <vampire@go.ro>:
32 * Fixed runaway init
33 *
34 * Andreas Steinmetz <ast@domdv.de>:
35 * Added encrypted suspend option
36 *
37 * More state savers are welcome. Especially for the scsi layer...
38 *
39 * For TODOs,FIXMEs also look in Documentation/power/swsusp.txt
40 */
41
42 #include <linux/module.h>
43 #include <linux/mm.h>
44 #include <linux/suspend.h>
45 #include <linux/smp_lock.h>
46 #include <linux/file.h>
47 #include <linux/utsname.h>
48 #include <linux/version.h>
49 #include <linux/delay.h>
50 #include <linux/reboot.h>
51 #include <linux/bitops.h>
52 #include <linux/vt_kern.h>
53 #include <linux/kbd_kern.h>
54 #include <linux/keyboard.h>
55 #include <linux/spinlock.h>
56 #include <linux/genhd.h>
57 #include <linux/kernel.h>
58 #include <linux/major.h>
59 #include <linux/swap.h>
60 #include <linux/pm.h>
61 #include <linux/device.h>
62 #include <linux/buffer_head.h>
63 #include <linux/swapops.h>
64 #include <linux/bootmem.h>
65 #include <linux/syscalls.h>
66 #include <linux/console.h>
67 #include <linux/highmem.h>
68 #include <linux/bio.h>
69 #include <linux/mount.h>
70
71 #include <asm/uaccess.h>
72 #include <asm/mmu_context.h>
73 #include <asm/pgtable.h>
74 #include <asm/tlbflush.h>
75 #include <asm/io.h>
76
77 #include <linux/random.h>
78 #include <linux/crypto.h>
79 #include <asm/scatterlist.h>
80
81 #include "power.h"
82
83 #define CIPHER "aes"
84 #define MAXKEY 32
85 #define MAXIV 32
86
87 /* References to section boundaries */
88 extern const void __nosave_begin, __nosave_end;
89
90 /* Variables to be preserved over suspend */
91 static int nr_copy_pages_check;
92
93 extern char resume_file[];
94
95 /* Local variables that should not be affected by save */
96 static unsigned int nr_copy_pages __nosavedata = 0;
97
98 /* Suspend pagedir is allocated before final copy, therefore it
99 must be freed after resume
100
101 Warning: this is evil. There are actually two pagedirs at time of
102 resume. One is "pagedir_save", which is empty frame allocated at
103 time of suspend, that must be freed. Second is "pagedir_nosave",
104 allocated at time of resume, that travels through memory not to
105 collide with anything.
106
107 Warning: this is even more evil than it seems. Pagedirs this file
108 talks about are completely different from page directories used by
109 MMU hardware.
110 */
111 suspend_pagedir_t *pagedir_nosave __nosavedata = NULL;
112 static suspend_pagedir_t *pagedir_save;
113
114 #define SWSUSP_SIG "S1SUSPEND"
115
116 static struct swsusp_header {
117 char reserved[PAGE_SIZE - 20 - MAXKEY - MAXIV - sizeof(swp_entry_t)];
118 u8 key_iv[MAXKEY+MAXIV];
119 swp_entry_t swsusp_info;
120 char orig_sig[10];
121 char sig[10];
122 } __attribute__((packed, aligned(PAGE_SIZE))) swsusp_header;
123
124 static struct swsusp_info swsusp_info;
125
126 /*
127 * XXX: We try to keep some more pages free so that I/O operations succeed
128 * without paging. Might this be more?
129 */
130 #define PAGES_FOR_IO 512
131
132 /*
133 * Saving part...
134 */
135
136 /* We memorize in swapfile_used what swap devices are used for suspension */
137 #define SWAPFILE_UNUSED 0
138 #define SWAPFILE_SUSPEND 1 /* This is the suspending device */
139 #define SWAPFILE_IGNORED 2 /* Those are other swap devices ignored for suspension */
140
141 static unsigned short swapfile_used[MAX_SWAPFILES];
142 static unsigned short root_swap;
143
144 static int write_page(unsigned long addr, swp_entry_t * loc);
145 static int bio_read_page(pgoff_t page_off, void * page);
146
147 static u8 key_iv[MAXKEY+MAXIV];
148
149 #ifdef CONFIG_SWSUSP_ENCRYPT
150
151 static int crypto_init(int mode, void **mem)
152 {
153 int error = 0;
154 int len;
155 char *modemsg;
156 struct crypto_tfm *tfm;
157
158 modemsg = mode ? "suspend not possible" : "resume not possible";
159
160 tfm = crypto_alloc_tfm(CIPHER, CRYPTO_TFM_MODE_CBC);
161 if(!tfm) {
162 printk(KERN_ERR "swsusp: no tfm, %s\n", modemsg);
163 error = -EINVAL;
164 goto out;
165 }
166
167 if(MAXKEY < crypto_tfm_alg_min_keysize(tfm)) {
168 printk(KERN_ERR "swsusp: key buffer too small, %s\n", modemsg);
169 error = -ENOKEY;
170 goto fail;
171 }
172
173 if (mode)
174 get_random_bytes(key_iv, MAXKEY+MAXIV);
175
176 len = crypto_tfm_alg_max_keysize(tfm);
177 if (len > MAXKEY)
178 len = MAXKEY;
179
180 if (crypto_cipher_setkey(tfm, key_iv, len)) {
181 printk(KERN_ERR "swsusp: key setup failure, %s\n", modemsg);
182 error = -EKEYREJECTED;
183 goto fail;
184 }
185
186 len = crypto_tfm_alg_ivsize(tfm);
187
188 if (MAXIV < len) {
189 printk(KERN_ERR "swsusp: iv buffer too small, %s\n", modemsg);
190 error = -EOVERFLOW;
191 goto fail;
192 }
193
194 crypto_cipher_set_iv(tfm, key_iv+MAXKEY, len);
195
196 *mem=(void *)tfm;
197
198 goto out;
199
200 fail: crypto_free_tfm(tfm);
201 out: return error;
202 }
203
204 static __inline__ void crypto_exit(void *mem)
205 {
206 crypto_free_tfm((struct crypto_tfm *)mem);
207 }
208
209 static __inline__ int crypto_write(struct pbe *p, void *mem)
210 {
211 int error = 0;
212 struct scatterlist src, dst;
213
214 src.page = virt_to_page(p->address);
215 src.offset = 0;
216 src.length = PAGE_SIZE;
217 dst.page = virt_to_page((void *)&swsusp_header);
218 dst.offset = 0;
219 dst.length = PAGE_SIZE;
220
221 error = crypto_cipher_encrypt((struct crypto_tfm *)mem, &dst, &src,
222 PAGE_SIZE);
223
224 if (!error)
225 error = write_page((unsigned long)&swsusp_header,
226 &(p->swap_address));
227 return error;
228 }
229
230 static __inline__ int crypto_read(struct pbe *p, void *mem)
231 {
232 int error = 0;
233 struct scatterlist src, dst;
234
235 error = bio_read_page(swp_offset(p->swap_address), (void *)p->address);
236 if (!error) {
237 src.offset = 0;
238 src.length = PAGE_SIZE;
239 dst.offset = 0;
240 dst.length = PAGE_SIZE;
241 src.page = dst.page = virt_to_page((void *)p->address);
242
243 error = crypto_cipher_decrypt((struct crypto_tfm *)mem, &dst,
244 &src, PAGE_SIZE);
245 }
246 return error;
247 }
248 #else
249 static __inline__ int crypto_init(int mode, void *mem)
250 {
251 return 0;
252 }
253
254 static __inline__ void crypto_exit(void *mem)
255 {
256 }
257
258 static __inline__ int crypto_write(struct pbe *p, void *mem)
259 {
260 return write_page(p->address, &(p->swap_address));
261 }
262
263 static __inline__ int crypto_read(struct pbe *p, void *mem)
264 {
265 return bio_read_page(swp_offset(p->swap_address), (void *)p->address);
266 }
267 #endif
268
269 static int mark_swapfiles(swp_entry_t prev)
270 {
271 int error;
272
273 rw_swap_page_sync(READ,
274 swp_entry(root_swap, 0),
275 virt_to_page((unsigned long)&swsusp_header));
276 if (!memcmp("SWAP-SPACE",swsusp_header.sig, 10) ||
277 !memcmp("SWAPSPACE2",swsusp_header.sig, 10)) {
278 memcpy(swsusp_header.orig_sig,swsusp_header.sig, 10);
279 memcpy(swsusp_header.sig,SWSUSP_SIG, 10);
280 memcpy(swsusp_header.key_iv, key_iv, MAXKEY+MAXIV);
281 swsusp_header.swsusp_info = prev;
282 error = rw_swap_page_sync(WRITE,
283 swp_entry(root_swap, 0),
284 virt_to_page((unsigned long)
285 &swsusp_header));
286 } else {
287 pr_debug("swsusp: Partition is not swap space.\n");
288 error = -ENODEV;
289 }
290 return error;
291 }
292
293 /*
294 * Check whether the swap device is the specified resume
295 * device, irrespective of whether they are specified by
296 * identical names.
297 *
298 * (Thus, device inode aliasing is allowed. You can say /dev/hda4
299 * instead of /dev/ide/host0/bus0/target0/lun0/part4 [if using devfs]
300 * and they'll be considered the same device. This is *necessary* for
301 * devfs, since the resume code can only recognize the form /dev/hda4,
302 * but the suspend code would see the long name.)
303 */
304 static int is_resume_device(const struct swap_info_struct *swap_info)
305 {
306 struct file *file = swap_info->swap_file;
307 struct inode *inode = file->f_dentry->d_inode;
308
309 return S_ISBLK(inode->i_mode) &&
310 swsusp_resume_device == MKDEV(imajor(inode), iminor(inode));
311 }
312
313 static int swsusp_swap_check(void) /* This is called before saving image */
314 {
315 int i, len;
316
317 len=strlen(resume_file);
318 root_swap = 0xFFFF;
319
320 spin_lock(&swap_lock);
321 for (i=0; i<MAX_SWAPFILES; i++) {
322 if (!(swap_info[i].flags & SWP_WRITEOK)) {
323 swapfile_used[i]=SWAPFILE_UNUSED;
324 } else {
325 if (!len) {
326 printk(KERN_WARNING "resume= option should be used to set suspend device" );
327 if (root_swap == 0xFFFF) {
328 swapfile_used[i] = SWAPFILE_SUSPEND;
329 root_swap = i;
330 } else
331 swapfile_used[i] = SWAPFILE_IGNORED;
332 } else {
333 /* we ignore all swap devices that are not the resume_file */
334 if (is_resume_device(&swap_info[i])) {
335 swapfile_used[i] = SWAPFILE_SUSPEND;
336 root_swap = i;
337 } else {
338 swapfile_used[i] = SWAPFILE_IGNORED;
339 }
340 }
341 }
342 }
343 spin_unlock(&swap_lock);
344 return (root_swap != 0xffff) ? 0 : -ENODEV;
345 }
346
347 /**
348 * This is called after saving image so modification
349 * will be lost after resume... and that's what we want.
350 * we make the device unusable. A new call to
351 * lock_swapdevices can unlock the devices.
352 */
353 static void lock_swapdevices(void)
354 {
355 int i;
356
357 spin_lock(&swap_lock);
358 for (i = 0; i< MAX_SWAPFILES; i++)
359 if (swapfile_used[i] == SWAPFILE_IGNORED) {
360 swap_info[i].flags ^= SWP_WRITEOK;
361 }
362 spin_unlock(&swap_lock);
363 }
364
365 /**
366 * write_swap_page - Write one page to a fresh swap location.
367 * @addr: Address we're writing.
368 * @loc: Place to store the entry we used.
369 *
370 * Allocate a new swap entry and 'sync' it. Note we discard -EIO
371 * errors. That is an artifact left over from swsusp. It did not
372 * check the return of rw_swap_page_sync() at all, since most pages
373 * written back to swap would return -EIO.
374 * This is a partial improvement, since we will at least return other
375 * errors, though we need to eventually fix the damn code.
376 */
377 static int write_page(unsigned long addr, swp_entry_t * loc)
378 {
379 swp_entry_t entry;
380 int error = 0;
381
382 entry = get_swap_page();
383 if (swp_offset(entry) &&
384 swapfile_used[swp_type(entry)] == SWAPFILE_SUSPEND) {
385 error = rw_swap_page_sync(WRITE, entry,
386 virt_to_page(addr));
387 if (error == -EIO)
388 error = 0;
389 if (!error)
390 *loc = entry;
391 } else
392 error = -ENOSPC;
393 return error;
394 }
395
396 /**
397 * data_free - Free the swap entries used by the saved image.
398 *
399 * Walk the list of used swap entries and free each one.
400 * This is only used for cleanup when suspend fails.
401 */
402 static void data_free(void)
403 {
404 swp_entry_t entry;
405 int i;
406
407 for (i = 0; i < nr_copy_pages; i++) {
408 entry = (pagedir_nosave + i)->swap_address;
409 if (entry.val)
410 swap_free(entry);
411 else
412 break;
413 (pagedir_nosave + i)->swap_address = (swp_entry_t){0};
414 }
415 }
416
417 /**
418 * data_write - Write saved image to swap.
419 *
420 * Walk the list of pages in the image and sync each one to swap.
421 */
422 static int data_write(void)
423 {
424 int error = 0, i = 0;
425 unsigned int mod = nr_copy_pages / 100;
426 struct pbe *p;
427 void *tfm;
428
429 if ((error = crypto_init(1, &tfm)))
430 return error;
431
432 if (!mod)
433 mod = 1;
434
435 printk( "Writing data to swap (%d pages)... ", nr_copy_pages );
436 for_each_pbe (p, pagedir_nosave) {
437 if (!(i%mod))
438 printk( "\b\b\b\b%3d%%", i / mod );
439 if ((error = crypto_write(p, tfm))) {
440 crypto_exit(tfm);
441 return error;
442 }
443 i++;
444 }
445 printk("\b\b\b\bdone\n");
446 crypto_exit(tfm);
447 return error;
448 }
449
450 static void dump_info(void)
451 {
452 pr_debug(" swsusp: Version: %u\n",swsusp_info.version_code);
453 pr_debug(" swsusp: Num Pages: %ld\n",swsusp_info.num_physpages);
454 pr_debug(" swsusp: UTS Sys: %s\n",swsusp_info.uts.sysname);
455 pr_debug(" swsusp: UTS Node: %s\n",swsusp_info.uts.nodename);
456 pr_debug(" swsusp: UTS Release: %s\n",swsusp_info.uts.release);
457 pr_debug(" swsusp: UTS Version: %s\n",swsusp_info.uts.version);
458 pr_debug(" swsusp: UTS Machine: %s\n",swsusp_info.uts.machine);
459 pr_debug(" swsusp: UTS Domain: %s\n",swsusp_info.uts.domainname);
460 pr_debug(" swsusp: CPUs: %d\n",swsusp_info.cpus);
461 pr_debug(" swsusp: Image: %ld Pages\n",swsusp_info.image_pages);
462 pr_debug(" swsusp: Pagedir: %ld Pages\n",swsusp_info.pagedir_pages);
463 }
464
465 static void init_header(void)
466 {
467 memset(&swsusp_info, 0, sizeof(swsusp_info));
468 swsusp_info.version_code = LINUX_VERSION_CODE;
469 swsusp_info.num_physpages = num_physpages;
470 memcpy(&swsusp_info.uts, &system_utsname, sizeof(system_utsname));
471
472 swsusp_info.suspend_pagedir = pagedir_nosave;
473 swsusp_info.cpus = num_online_cpus();
474 swsusp_info.image_pages = nr_copy_pages;
475 }
476
477 static int close_swap(void)
478 {
479 swp_entry_t entry;
480 int error;
481
482 dump_info();
483 error = write_page((unsigned long)&swsusp_info, &entry);
484 if (!error) {
485 printk( "S" );
486 error = mark_swapfiles(entry);
487 printk( "|\n" );
488 }
489 return error;
490 }
491
492 /**
493 * free_pagedir_entries - Free pages used by the page directory.
494 *
495 * This is used during suspend for error recovery.
496 */
497
498 static void free_pagedir_entries(void)
499 {
500 int i;
501
502 for (i = 0; i < swsusp_info.pagedir_pages; i++)
503 swap_free(swsusp_info.pagedir[i]);
504 }
505
506
507 /**
508 * write_pagedir - Write the array of pages holding the page directory.
509 * @last: Last swap entry we write (needed for header).
510 */
511
512 static int write_pagedir(void)
513 {
514 int error = 0;
515 unsigned n = 0;
516 struct pbe * pbe;
517
518 printk( "Writing pagedir...");
519 for_each_pb_page (pbe, pagedir_nosave) {
520 if ((error = write_page((unsigned long)pbe, &swsusp_info.pagedir[n++])))
521 return error;
522 }
523
524 swsusp_info.pagedir_pages = n;
525 printk("done (%u pages)\n", n);
526 return error;
527 }
528
529 /**
530 * write_suspend_image - Write entire image and metadata.
531 *
532 */
533 static int write_suspend_image(void)
534 {
535 int error;
536
537 init_header();
538 if ((error = data_write()))
539 goto FreeData;
540
541 if ((error = write_pagedir()))
542 goto FreePagedir;
543
544 if ((error = close_swap()))
545 goto FreePagedir;
546 Done:
547 memset(key_iv, 0, MAXKEY+MAXIV);
548 return error;
549 FreePagedir:
550 free_pagedir_entries();
551 FreeData:
552 data_free();
553 goto Done;
554 }
555
556
557 #ifdef CONFIG_HIGHMEM
558 struct highmem_page {
559 char *data;
560 struct page *page;
561 struct highmem_page *next;
562 };
563
564 static struct highmem_page *highmem_copy;
565
566 static int save_highmem_zone(struct zone *zone)
567 {
568 unsigned long zone_pfn;
569 mark_free_pages(zone);
570 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) {
571 struct page *page;
572 struct highmem_page *save;
573 void *kaddr;
574 unsigned long pfn = zone_pfn + zone->zone_start_pfn;
575
576 if (!(pfn%1000))
577 printk(".");
578 if (!pfn_valid(pfn))
579 continue;
580 page = pfn_to_page(pfn);
581 /*
582 * This condition results from rvmalloc() sans vmalloc_32()
583 * and architectural memory reservations. This should be
584 * corrected eventually when the cases giving rise to this
585 * are better understood.
586 */
587 if (PageReserved(page)) {
588 printk("highmem reserved page?!\n");
589 continue;
590 }
591 BUG_ON(PageNosave(page));
592 if (PageNosaveFree(page))
593 continue;
594 save = kmalloc(sizeof(struct highmem_page), GFP_ATOMIC);
595 if (!save)
596 return -ENOMEM;
597 save->next = highmem_copy;
598 save->page = page;
599 save->data = (void *) get_zeroed_page(GFP_ATOMIC);
600 if (!save->data) {
601 kfree(save);
602 return -ENOMEM;
603 }
604 kaddr = kmap_atomic(page, KM_USER0);
605 memcpy(save->data, kaddr, PAGE_SIZE);
606 kunmap_atomic(kaddr, KM_USER0);
607 highmem_copy = save;
608 }
609 return 0;
610 }
611 #endif /* CONFIG_HIGHMEM */
612
613
614 static int save_highmem(void)
615 {
616 #ifdef CONFIG_HIGHMEM
617 struct zone *zone;
618 int res = 0;
619
620 pr_debug("swsusp: Saving Highmem\n");
621 for_each_zone (zone) {
622 if (is_highmem(zone))
623 res = save_highmem_zone(zone);
624 if (res)
625 return res;
626 }
627 #endif
628 return 0;
629 }
630
631 static int restore_highmem(void)
632 {
633 #ifdef CONFIG_HIGHMEM
634 printk("swsusp: Restoring Highmem\n");
635 while (highmem_copy) {
636 struct highmem_page *save = highmem_copy;
637 void *kaddr;
638 highmem_copy = save->next;
639
640 kaddr = kmap_atomic(save->page, KM_USER0);
641 memcpy(kaddr, save->data, PAGE_SIZE);
642 kunmap_atomic(kaddr, KM_USER0);
643 free_page((long) save->data);
644 kfree(save);
645 }
646 #endif
647 return 0;
648 }
649
650
651 static int pfn_is_nosave(unsigned long pfn)
652 {
653 unsigned long nosave_begin_pfn = __pa(&__nosave_begin) >> PAGE_SHIFT;
654 unsigned long nosave_end_pfn = PAGE_ALIGN(__pa(&__nosave_end)) >> PAGE_SHIFT;
655 return (pfn >= nosave_begin_pfn) && (pfn < nosave_end_pfn);
656 }
657
658 /**
659 * saveable - Determine whether a page should be cloned or not.
660 * @pfn: The page
661 *
662 * We save a page if it's Reserved, and not in the range of pages
663 * statically defined as 'unsaveable', or if it isn't reserved, and
664 * isn't part of a free chunk of pages.
665 */
666
667 static int saveable(struct zone * zone, unsigned long * zone_pfn)
668 {
669 unsigned long pfn = *zone_pfn + zone->zone_start_pfn;
670 struct page * page;
671
672 if (!pfn_valid(pfn))
673 return 0;
674
675 page = pfn_to_page(pfn);
676 BUG_ON(PageReserved(page) && PageNosave(page));
677 if (PageNosave(page))
678 return 0;
679 if (PageReserved(page) && pfn_is_nosave(pfn)) {
680 pr_debug("[nosave pfn 0x%lx]", pfn);
681 return 0;
682 }
683 if (PageNosaveFree(page))
684 return 0;
685
686 return 1;
687 }
688
689 static void count_data_pages(void)
690 {
691 struct zone *zone;
692 unsigned long zone_pfn;
693
694 nr_copy_pages = 0;
695
696 for_each_zone (zone) {
697 if (is_highmem(zone))
698 continue;
699 mark_free_pages(zone);
700 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
701 nr_copy_pages += saveable(zone, &zone_pfn);
702 }
703 }
704
705
706 static void copy_data_pages(void)
707 {
708 struct zone *zone;
709 unsigned long zone_pfn;
710 struct pbe * pbe = pagedir_nosave;
711
712 pr_debug("copy_data_pages(): pages to copy: %d\n", nr_copy_pages);
713 for_each_zone (zone) {
714 if (is_highmem(zone))
715 continue;
716 mark_free_pages(zone);
717 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) {
718 if (saveable(zone, &zone_pfn)) {
719 struct page * page;
720 page = pfn_to_page(zone_pfn + zone->zone_start_pfn);
721 BUG_ON(!pbe);
722 pbe->orig_address = (long) page_address(page);
723 /* copy_page is not usable for copying task structs. */
724 memcpy((void *)pbe->address, (void *)pbe->orig_address, PAGE_SIZE);
725 pbe = pbe->next;
726 }
727 }
728 }
729 BUG_ON(pbe);
730 }
731
732
733 /**
734 * calc_nr - Determine the number of pages needed for a pbe list.
735 */
736
737 static int calc_nr(int nr_copy)
738 {
739 return nr_copy + (nr_copy+PBES_PER_PAGE-2)/(PBES_PER_PAGE-1);
740 }
741
742 /**
743 * free_pagedir - free pages allocated with alloc_pagedir()
744 */
745
746 static inline void free_pagedir(struct pbe *pblist)
747 {
748 struct pbe *pbe;
749
750 while (pblist) {
751 pbe = (pblist + PB_PAGE_SKIP)->next;
752 free_page((unsigned long)pblist);
753 pblist = pbe;
754 }
755 }
756
757 /**
758 * fill_pb_page - Create a list of PBEs on a given memory page
759 */
760
761 static inline void fill_pb_page(struct pbe *pbpage)
762 {
763 struct pbe *p;
764
765 p = pbpage;
766 pbpage += PB_PAGE_SKIP;
767 do
768 p->next = p + 1;
769 while (++p < pbpage);
770 }
771
772 /**
773 * create_pbe_list - Create a list of PBEs on top of a given chain
774 * of memory pages allocated with alloc_pagedir()
775 */
776
777 static void create_pbe_list(struct pbe *pblist, unsigned nr_pages)
778 {
779 struct pbe *pbpage, *p;
780 unsigned num = PBES_PER_PAGE;
781
782 for_each_pb_page (pbpage, pblist) {
783 if (num >= nr_pages)
784 break;
785
786 fill_pb_page(pbpage);
787 num += PBES_PER_PAGE;
788 }
789 if (pbpage) {
790 for (num -= PBES_PER_PAGE - 1, p = pbpage; num < nr_pages; p++, num++)
791 p->next = p + 1;
792 p->next = NULL;
793 }
794 pr_debug("create_pbe_list(): initialized %d PBEs\n", num);
795 }
796
797 /**
798 * alloc_pagedir - Allocate the page directory.
799 *
800 * First, determine exactly how many pages we need and
801 * allocate them.
802 *
803 * We arrange the pages in a chain: each page is an array of PBES_PER_PAGE
804 * struct pbe elements (pbes) and the last element in the page points
805 * to the next page.
806 *
807 * On each page we set up a list of struct_pbe elements.
808 */
809
810 static struct pbe * alloc_pagedir(unsigned nr_pages)
811 {
812 unsigned num;
813 struct pbe *pblist, *pbe;
814
815 if (!nr_pages)
816 return NULL;
817
818 pr_debug("alloc_pagedir(): nr_pages = %d\n", nr_pages);
819 pblist = (struct pbe *)get_zeroed_page(GFP_ATOMIC | __GFP_COLD);
820 for (pbe = pblist, num = PBES_PER_PAGE; pbe && num < nr_pages;
821 pbe = pbe->next, num += PBES_PER_PAGE) {
822 pbe += PB_PAGE_SKIP;
823 pbe->next = (struct pbe *)get_zeroed_page(GFP_ATOMIC | __GFP_COLD);
824 }
825 if (!pbe) { /* get_zeroed_page() failed */
826 free_pagedir(pblist);
827 pblist = NULL;
828 }
829 return pblist;
830 }
831
832 /**
833 * free_image_pages - Free pages allocated for snapshot
834 */
835
836 static void free_image_pages(void)
837 {
838 struct pbe * p;
839
840 for_each_pbe (p, pagedir_save) {
841 if (p->address) {
842 ClearPageNosave(virt_to_page(p->address));
843 free_page(p->address);
844 p->address = 0;
845 }
846 }
847 }
848
849 /**
850 * alloc_image_pages - Allocate pages for the snapshot.
851 */
852
853 static int alloc_image_pages(void)
854 {
855 struct pbe * p;
856
857 for_each_pbe (p, pagedir_save) {
858 p->address = get_zeroed_page(GFP_ATOMIC | __GFP_COLD);
859 if (!p->address)
860 return -ENOMEM;
861 SetPageNosave(virt_to_page(p->address));
862 }
863 return 0;
864 }
865
866 void swsusp_free(void)
867 {
868 BUG_ON(PageNosave(virt_to_page(pagedir_save)));
869 BUG_ON(PageNosaveFree(virt_to_page(pagedir_save)));
870 free_image_pages();
871 free_pagedir(pagedir_save);
872 }
873
874
875 /**
876 * enough_free_mem - Make sure we enough free memory to snapshot.
877 *
878 * Returns TRUE or FALSE after checking the number of available
879 * free pages.
880 */
881
882 static int enough_free_mem(void)
883 {
884 if (nr_free_pages() < (nr_copy_pages + PAGES_FOR_IO)) {
885 pr_debug("swsusp: Not enough free pages: Have %d\n",
886 nr_free_pages());
887 return 0;
888 }
889 return 1;
890 }
891
892
893 /**
894 * enough_swap - Make sure we have enough swap to save the image.
895 *
896 * Returns TRUE or FALSE after checking the total amount of swap
897 * space avaiable.
898 *
899 * FIXME: si_swapinfo(&i) returns all swap devices information.
900 * We should only consider resume_device.
901 */
902
903 static int enough_swap(void)
904 {
905 struct sysinfo i;
906
907 si_swapinfo(&i);
908 if (i.freeswap < (nr_copy_pages + PAGES_FOR_IO)) {
909 pr_debug("swsusp: Not enough swap. Need %ld\n",i.freeswap);
910 return 0;
911 }
912 return 1;
913 }
914
915 static int swsusp_alloc(void)
916 {
917 int error;
918
919 pagedir_nosave = NULL;
920 nr_copy_pages = calc_nr(nr_copy_pages);
921
922 pr_debug("suspend: (pages needed: %d + %d free: %d)\n",
923 nr_copy_pages, PAGES_FOR_IO, nr_free_pages());
924
925 if (!enough_free_mem())
926 return -ENOMEM;
927
928 if (!enough_swap())
929 return -ENOSPC;
930
931 if (!(pagedir_save = alloc_pagedir(nr_copy_pages))) {
932 printk(KERN_ERR "suspend: Allocating pagedir failed.\n");
933 return -ENOMEM;
934 }
935 create_pbe_list(pagedir_save, nr_copy_pages);
936 pagedir_nosave = pagedir_save;
937 if ((error = alloc_image_pages())) {
938 printk(KERN_ERR "suspend: Allocating image pages failed.\n");
939 swsusp_free();
940 return error;
941 }
942
943 nr_copy_pages_check = nr_copy_pages;
944 return 0;
945 }
946
947 static int suspend_prepare_image(void)
948 {
949 int error;
950
951 pr_debug("swsusp: critical section: \n");
952 if (save_highmem()) {
953 printk(KERN_CRIT "Suspend machine: Not enough free pages for highmem\n");
954 restore_highmem();
955 return -ENOMEM;
956 }
957
958 drain_local_pages();
959 count_data_pages();
960 printk("swsusp: Need to copy %u pages\n", nr_copy_pages);
961
962 error = swsusp_alloc();
963 if (error)
964 return error;
965
966 /* During allocating of suspend pagedir, new cold pages may appear.
967 * Kill them.
968 */
969 drain_local_pages();
970 copy_data_pages();
971
972 /*
973 * End of critical section. From now on, we can write to memory,
974 * but we should not touch disk. This specially means we must _not_
975 * touch swap space! Except we must write out our image of course.
976 */
977
978 printk("swsusp: critical section/: done (%d pages copied)\n", nr_copy_pages );
979 return 0;
980 }
981
982
983 /* It is important _NOT_ to umount filesystems at this point. We want
984 * them synced (in case something goes wrong) but we DO not want to mark
985 * filesystem clean: it is not. (And it does not matter, if we resume
986 * correctly, we'll mark system clean, anyway.)
987 */
988 int swsusp_write(void)
989 {
990 int error;
991 device_resume();
992 lock_swapdevices();
993 error = write_suspend_image();
994 /* This will unlock ignored swap devices since writing is finished */
995 lock_swapdevices();
996 return error;
997
998 }
999
1000
1001 extern asmlinkage int swsusp_arch_suspend(void);
1002 extern asmlinkage int swsusp_arch_resume(void);
1003
1004
1005 asmlinkage int swsusp_save(void)
1006 {
1007 return suspend_prepare_image();
1008 }
1009
1010 int swsusp_suspend(void)
1011 {
1012 int error;
1013 if ((error = arch_prepare_suspend()))
1014 return error;
1015 local_irq_disable();
1016 /* At this point, device_suspend() has been called, but *not*
1017 * device_power_down(). We *must* device_power_down() now.
1018 * Otherwise, drivers for some devices (e.g. interrupt controllers)
1019 * become desynchronized with the actual state of the hardware
1020 * at resume time, and evil weirdness ensues.
1021 */
1022 if ((error = device_power_down(PMSG_FREEZE))) {
1023 printk(KERN_ERR "Some devices failed to power down, aborting suspend\n");
1024 local_irq_enable();
1025 return error;
1026 }
1027
1028 if ((error = swsusp_swap_check())) {
1029 printk(KERN_ERR "swsusp: cannot find swap device, try swapon -a.\n");
1030 device_power_up();
1031 local_irq_enable();
1032 return error;
1033 }
1034
1035 save_processor_state();
1036 if ((error = swsusp_arch_suspend()))
1037 printk(KERN_ERR "Error %d suspending\n", error);
1038 /* Restore control flow magically appears here */
1039 restore_processor_state();
1040 BUG_ON (nr_copy_pages_check != nr_copy_pages);
1041 restore_highmem();
1042 device_power_up();
1043 local_irq_enable();
1044 return error;
1045 }
1046
1047 int swsusp_resume(void)
1048 {
1049 int error;
1050 local_irq_disable();
1051 if (device_power_down(PMSG_FREEZE))
1052 printk(KERN_ERR "Some devices failed to power down, very bad\n");
1053 /* We'll ignore saved state, but this gets preempt count (etc) right */
1054 save_processor_state();
1055 error = swsusp_arch_resume();
1056 /* Code below is only ever reached in case of failure. Otherwise
1057 * execution continues at place where swsusp_arch_suspend was called
1058 */
1059 BUG_ON(!error);
1060 restore_processor_state();
1061 restore_highmem();
1062 touch_softlockup_watchdog();
1063 device_power_up();
1064 local_irq_enable();
1065 return error;
1066 }
1067
1068 /**
1069 * On resume, for storing the PBE list and the image,
1070 * we can only use memory pages that do not conflict with the pages
1071 * which had been used before suspend.
1072 *
1073 * We don't know which pages are usable until we allocate them.
1074 *
1075 * Allocated but unusable (ie eaten) memory pages are linked together
1076 * to create a list, so that we can free them easily
1077 *
1078 * We could have used a type other than (void *)
1079 * for this purpose, but ...
1080 */
1081 static void **eaten_memory = NULL;
1082
1083 static inline void eat_page(void *page)
1084 {
1085 void **c;
1086
1087 c = eaten_memory;
1088 eaten_memory = page;
1089 *eaten_memory = c;
1090 }
1091
1092 static unsigned long get_usable_page(unsigned gfp_mask)
1093 {
1094 unsigned long m;
1095
1096 m = get_zeroed_page(gfp_mask);
1097 while (!PageNosaveFree(virt_to_page(m))) {
1098 eat_page((void *)m);
1099 m = get_zeroed_page(gfp_mask);
1100 if (!m)
1101 break;
1102 }
1103 return m;
1104 }
1105
1106 static void free_eaten_memory(void)
1107 {
1108 unsigned long m;
1109 void **c;
1110 int i = 0;
1111
1112 c = eaten_memory;
1113 while (c) {
1114 m = (unsigned long)c;
1115 c = *c;
1116 free_page(m);
1117 i++;
1118 }
1119 eaten_memory = NULL;
1120 pr_debug("swsusp: %d unused pages freed\n", i);
1121 }
1122
1123 /**
1124 * check_pagedir - We ensure here that pages that the PBEs point to
1125 * won't collide with pages where we're going to restore from the loaded
1126 * pages later
1127 */
1128
1129 static int check_pagedir(struct pbe *pblist)
1130 {
1131 struct pbe *p;
1132
1133 /* This is necessary, so that we can free allocated pages
1134 * in case of failure
1135 */
1136 for_each_pbe (p, pblist)
1137 p->address = 0UL;
1138
1139 for_each_pbe (p, pblist) {
1140 p->address = get_usable_page(GFP_ATOMIC);
1141 if (!p->address)
1142 return -ENOMEM;
1143 }
1144 return 0;
1145 }
1146
1147 /**
1148 * swsusp_pagedir_relocate - It is possible, that some memory pages
1149 * occupied by the list of PBEs collide with pages where we're going to
1150 * restore from the loaded pages later. We relocate them here.
1151 */
1152
1153 static struct pbe * swsusp_pagedir_relocate(struct pbe *pblist)
1154 {
1155 struct zone *zone;
1156 unsigned long zone_pfn;
1157 struct pbe *pbpage, *tail, *p;
1158 void *m;
1159 int rel = 0, error = 0;
1160
1161 if (!pblist) /* a sanity check */
1162 return NULL;
1163
1164 pr_debug("swsusp: Relocating pagedir (%lu pages to check)\n",
1165 swsusp_info.pagedir_pages);
1166
1167 /* Set page flags */
1168
1169 for_each_zone (zone) {
1170 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
1171 SetPageNosaveFree(pfn_to_page(zone_pfn +
1172 zone->zone_start_pfn));
1173 }
1174
1175 /* Clear orig addresses */
1176
1177 for_each_pbe (p, pblist)
1178 ClearPageNosaveFree(virt_to_page(p->orig_address));
1179
1180 tail = pblist + PB_PAGE_SKIP;
1181
1182 /* Relocate colliding pages */
1183
1184 for_each_pb_page (pbpage, pblist) {
1185 if (!PageNosaveFree(virt_to_page((unsigned long)pbpage))) {
1186 m = (void *)get_usable_page(GFP_ATOMIC | __GFP_COLD);
1187 if (!m) {
1188 error = -ENOMEM;
1189 break;
1190 }
1191 memcpy(m, (void *)pbpage, PAGE_SIZE);
1192 if (pbpage == pblist)
1193 pblist = (struct pbe *)m;
1194 else
1195 tail->next = (struct pbe *)m;
1196
1197 eat_page((void *)pbpage);
1198 pbpage = (struct pbe *)m;
1199
1200 /* We have to link the PBEs again */
1201
1202 for (p = pbpage; p < pbpage + PB_PAGE_SKIP; p++)
1203 if (p->next) /* needed to save the end */
1204 p->next = p + 1;
1205
1206 rel++;
1207 }
1208 tail = pbpage + PB_PAGE_SKIP;
1209 }
1210
1211 if (error) {
1212 printk("\nswsusp: Out of memory\n\n");
1213 free_pagedir(pblist);
1214 free_eaten_memory();
1215 pblist = NULL;
1216 }
1217 else
1218 printk("swsusp: Relocated %d pages\n", rel);
1219
1220 return pblist;
1221 }
1222
1223 /*
1224 * Using bio to read from swap.
1225 * This code requires a bit more work than just using buffer heads
1226 * but, it is the recommended way for 2.5/2.6.
1227 * The following are to signal the beginning and end of I/O. Bios
1228 * finish asynchronously, while we want them to happen synchronously.
1229 * A simple atomic_t, and a wait loop take care of this problem.
1230 */
1231
1232 static atomic_t io_done = ATOMIC_INIT(0);
1233
1234 static int end_io(struct bio * bio, unsigned int num, int err)
1235 {
1236 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1237 panic("I/O error reading memory image");
1238 atomic_set(&io_done, 0);
1239 return 0;
1240 }
1241
1242 static struct block_device * resume_bdev;
1243
1244 /**
1245 * submit - submit BIO request.
1246 * @rw: READ or WRITE.
1247 * @off physical offset of page.
1248 * @page: page we're reading or writing.
1249 *
1250 * Straight from the textbook - allocate and initialize the bio.
1251 * If we're writing, make sure the page is marked as dirty.
1252 * Then submit it and wait.
1253 */
1254
1255 static int submit(int rw, pgoff_t page_off, void * page)
1256 {
1257 int error = 0;
1258 struct bio * bio;
1259
1260 bio = bio_alloc(GFP_ATOMIC, 1);
1261 if (!bio)
1262 return -ENOMEM;
1263 bio->bi_sector = page_off * (PAGE_SIZE >> 9);
1264 bio_get(bio);
1265 bio->bi_bdev = resume_bdev;
1266 bio->bi_end_io = end_io;
1267
1268 if (bio_add_page(bio, virt_to_page(page), PAGE_SIZE, 0) < PAGE_SIZE) {
1269 printk("swsusp: ERROR: adding page to bio at %ld\n",page_off);
1270 error = -EFAULT;
1271 goto Done;
1272 }
1273
1274 if (rw == WRITE)
1275 bio_set_pages_dirty(bio);
1276
1277 atomic_set(&io_done, 1);
1278 submit_bio(rw | (1 << BIO_RW_SYNC), bio);
1279 while (atomic_read(&io_done))
1280 yield();
1281
1282 Done:
1283 bio_put(bio);
1284 return error;
1285 }
1286
1287 static int bio_read_page(pgoff_t page_off, void * page)
1288 {
1289 return submit(READ, page_off, page);
1290 }
1291
1292 static int bio_write_page(pgoff_t page_off, void * page)
1293 {
1294 return submit(WRITE, page_off, page);
1295 }
1296
1297 /*
1298 * Sanity check if this image makes sense with this kernel/swap context
1299 * I really don't think that it's foolproof but more than nothing..
1300 */
1301
1302 static const char * sanity_check(void)
1303 {
1304 dump_info();
1305 if (swsusp_info.version_code != LINUX_VERSION_CODE)
1306 return "kernel version";
1307 if (swsusp_info.num_physpages != num_physpages)
1308 return "memory size";
1309 if (strcmp(swsusp_info.uts.sysname,system_utsname.sysname))
1310 return "system type";
1311 if (strcmp(swsusp_info.uts.release,system_utsname.release))
1312 return "kernel release";
1313 if (strcmp(swsusp_info.uts.version,system_utsname.version))
1314 return "version";
1315 if (strcmp(swsusp_info.uts.machine,system_utsname.machine))
1316 return "machine";
1317 #if 0
1318 /* We can't use number of online CPUs when we use hotplug to remove them ;-))) */
1319 if (swsusp_info.cpus != num_possible_cpus())
1320 return "number of cpus";
1321 #endif
1322 return NULL;
1323 }
1324
1325
1326 static int check_header(void)
1327 {
1328 const char * reason = NULL;
1329 int error;
1330
1331 if ((error = bio_read_page(swp_offset(swsusp_header.swsusp_info), &swsusp_info)))
1332 return error;
1333
1334 /* Is this same machine? */
1335 if ((reason = sanity_check())) {
1336 printk(KERN_ERR "swsusp: Resume mismatch: %s\n",reason);
1337 return -EPERM;
1338 }
1339 nr_copy_pages = swsusp_info.image_pages;
1340 return error;
1341 }
1342
1343 static int check_sig(void)
1344 {
1345 int error;
1346
1347 memset(&swsusp_header, 0, sizeof(swsusp_header));
1348 if ((error = bio_read_page(0, &swsusp_header)))
1349 return error;
1350 if (!memcmp(SWSUSP_SIG, swsusp_header.sig, 10)) {
1351 memcpy(swsusp_header.sig, swsusp_header.orig_sig, 10);
1352 memcpy(key_iv, swsusp_header.key_iv, MAXKEY+MAXIV);
1353 memset(swsusp_header.key_iv, 0, MAXKEY+MAXIV);
1354
1355 /*
1356 * Reset swap signature now.
1357 */
1358 error = bio_write_page(0, &swsusp_header);
1359 } else {
1360 return -EINVAL;
1361 }
1362 if (!error)
1363 pr_debug("swsusp: Signature found, resuming\n");
1364 return error;
1365 }
1366
1367 /**
1368 * data_read - Read image pages from swap.
1369 *
1370 * You do not need to check for overlaps, check_pagedir()
1371 * already did that.
1372 */
1373
1374 static int data_read(struct pbe *pblist)
1375 {
1376 struct pbe * p;
1377 int error = 0;
1378 int i = 0;
1379 int mod = swsusp_info.image_pages / 100;
1380 void *tfm;
1381
1382 if ((error = crypto_init(0, &tfm)))
1383 return error;
1384
1385 if (!mod)
1386 mod = 1;
1387
1388 printk("swsusp: Reading image data (%lu pages): ",
1389 swsusp_info.image_pages);
1390
1391 for_each_pbe (p, pblist) {
1392 if (!(i % mod))
1393 printk("\b\b\b\b%3d%%", i / mod);
1394
1395 if ((error = crypto_read(p, tfm))) {
1396 crypto_exit(tfm);
1397 return error;
1398 }
1399
1400 i++;
1401 }
1402 printk("\b\b\b\bdone\n");
1403 crypto_exit(tfm);
1404 return error;
1405 }
1406
1407 /**
1408 * read_pagedir - Read page backup list pages from swap
1409 */
1410
1411 static int read_pagedir(struct pbe *pblist)
1412 {
1413 struct pbe *pbpage, *p;
1414 unsigned i = 0;
1415 int error;
1416
1417 if (!pblist)
1418 return -EFAULT;
1419
1420 printk("swsusp: Reading pagedir (%lu pages)\n",
1421 swsusp_info.pagedir_pages);
1422
1423 for_each_pb_page (pbpage, pblist) {
1424 unsigned long offset = swp_offset(swsusp_info.pagedir[i++]);
1425
1426 error = -EFAULT;
1427 if (offset) {
1428 p = (pbpage + PB_PAGE_SKIP)->next;
1429 error = bio_read_page(offset, (void *)pbpage);
1430 (pbpage + PB_PAGE_SKIP)->next = p;
1431 }
1432 if (error)
1433 break;
1434 }
1435
1436 if (error)
1437 free_page((unsigned long)pblist);
1438
1439 BUG_ON(i != swsusp_info.pagedir_pages);
1440
1441 return error;
1442 }
1443
1444
1445 static int check_suspend_image(void)
1446 {
1447 int error = 0;
1448
1449 if ((error = check_sig()))
1450 return error;
1451
1452 if ((error = check_header()))
1453 return error;
1454
1455 return 0;
1456 }
1457
1458 static int read_suspend_image(void)
1459 {
1460 int error = 0;
1461 struct pbe *p;
1462
1463 if (!(p = alloc_pagedir(nr_copy_pages)))
1464 return -ENOMEM;
1465
1466 if ((error = read_pagedir(p)))
1467 return error;
1468
1469 create_pbe_list(p, nr_copy_pages);
1470
1471 if (!(pagedir_nosave = swsusp_pagedir_relocate(p)))
1472 return -ENOMEM;
1473
1474 /* Allocate memory for the image and read the data from swap */
1475
1476 error = check_pagedir(pagedir_nosave);
1477 free_eaten_memory();
1478 if (!error)
1479 error = data_read(pagedir_nosave);
1480
1481 if (error) { /* We fail cleanly */
1482 for_each_pbe (p, pagedir_nosave)
1483 if (p->address) {
1484 free_page(p->address);
1485 p->address = 0UL;
1486 }
1487 free_pagedir(pagedir_nosave);
1488 }
1489 return error;
1490 }
1491
1492 /**
1493 * swsusp_check - Check for saved image in swap
1494 */
1495
1496 int swsusp_check(void)
1497 {
1498 int error;
1499
1500 resume_bdev = open_by_devnum(swsusp_resume_device, FMODE_READ);
1501 if (!IS_ERR(resume_bdev)) {
1502 set_blocksize(resume_bdev, PAGE_SIZE);
1503 error = check_suspend_image();
1504 if (error)
1505 blkdev_put(resume_bdev);
1506 } else
1507 error = PTR_ERR(resume_bdev);
1508
1509 if (!error)
1510 pr_debug("swsusp: resume file found\n");
1511 else
1512 pr_debug("swsusp: Error %d check for resume file\n", error);
1513 return error;
1514 }
1515
1516 /**
1517 * swsusp_read - Read saved image from swap.
1518 */
1519
1520 int swsusp_read(void)
1521 {
1522 int error;
1523
1524 if (IS_ERR(resume_bdev)) {
1525 pr_debug("swsusp: block device not initialised\n");
1526 return PTR_ERR(resume_bdev);
1527 }
1528
1529 error = read_suspend_image();
1530 blkdev_put(resume_bdev);
1531 memset(key_iv, 0, MAXKEY+MAXIV);
1532
1533 if (!error)
1534 pr_debug("swsusp: Reading resume file was successful\n");
1535 else
1536 pr_debug("swsusp: Error %d resuming\n", error);
1537 return error;
1538 }
1539
1540 /**
1541 * swsusp_close - close swap device.
1542 */
1543
1544 void swsusp_close(void)
1545 {
1546 if (IS_ERR(resume_bdev)) {
1547 pr_debug("swsusp: block device not initialised\n");
1548 return;
1549 }
1550
1551 blkdev_put(resume_bdev);
1552 }