]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/printk/printk.c
efi/arm: Fix boot crash with CONFIG_CPUMASK_OFFSTACK=y
[mirror_ubuntu-artful-kernel.git] / kernel / printk / printk.c
1 /*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/delay.h>
30 #include <linux/smp.h>
31 #include <linux/security.h>
32 #include <linux/bootmem.h>
33 #include <linux/memblock.h>
34 #include <linux/syscalls.h>
35 #include <linux/kexec.h>
36 #include <linux/kdb.h>
37 #include <linux/ratelimit.h>
38 #include <linux/kmsg_dump.h>
39 #include <linux/syslog.h>
40 #include <linux/cpu.h>
41 #include <linux/notifier.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/utsname.h>
46 #include <linux/ctype.h>
47 #include <linux/uio.h>
48
49 #include <linux/uaccess.h>
50 #include <asm/sections.h>
51
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/printk.h>
54
55 #include "console_cmdline.h"
56 #include "braille.h"
57 #include "internal.h"
58
59 int console_printk[4] = {
60 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */
61 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */
62 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */
63 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */
64 };
65
66 /*
67 * Low level drivers may need that to know if they can schedule in
68 * their unblank() callback or not. So let's export it.
69 */
70 int oops_in_progress;
71 EXPORT_SYMBOL(oops_in_progress);
72
73 /*
74 * console_sem protects the console_drivers list, and also
75 * provides serialisation for access to the entire console
76 * driver system.
77 */
78 static DEFINE_SEMAPHORE(console_sem);
79 struct console *console_drivers;
80 EXPORT_SYMBOL_GPL(console_drivers);
81
82 #ifdef CONFIG_LOCKDEP
83 static struct lockdep_map console_lock_dep_map = {
84 .name = "console_lock"
85 };
86 #endif
87
88 enum devkmsg_log_bits {
89 __DEVKMSG_LOG_BIT_ON = 0,
90 __DEVKMSG_LOG_BIT_OFF,
91 __DEVKMSG_LOG_BIT_LOCK,
92 };
93
94 enum devkmsg_log_masks {
95 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON),
96 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF),
97 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK),
98 };
99
100 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
101 #define DEVKMSG_LOG_MASK_DEFAULT 0
102
103 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
104
105 static int __control_devkmsg(char *str)
106 {
107 if (!str)
108 return -EINVAL;
109
110 if (!strncmp(str, "on", 2)) {
111 devkmsg_log = DEVKMSG_LOG_MASK_ON;
112 return 2;
113 } else if (!strncmp(str, "off", 3)) {
114 devkmsg_log = DEVKMSG_LOG_MASK_OFF;
115 return 3;
116 } else if (!strncmp(str, "ratelimit", 9)) {
117 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
118 return 9;
119 }
120 return -EINVAL;
121 }
122
123 static int __init control_devkmsg(char *str)
124 {
125 if (__control_devkmsg(str) < 0)
126 return 1;
127
128 /*
129 * Set sysctl string accordingly:
130 */
131 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) {
132 memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
133 strncpy(devkmsg_log_str, "on", 2);
134 } else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) {
135 memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
136 strncpy(devkmsg_log_str, "off", 3);
137 }
138 /* else "ratelimit" which is set by default. */
139
140 /*
141 * Sysctl cannot change it anymore. The kernel command line setting of
142 * this parameter is to force the setting to be permanent throughout the
143 * runtime of the system. This is a precation measure against userspace
144 * trying to be a smarta** and attempting to change it up on us.
145 */
146 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
147
148 return 0;
149 }
150 __setup("printk.devkmsg=", control_devkmsg);
151
152 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
153
154 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
155 void __user *buffer, size_t *lenp, loff_t *ppos)
156 {
157 char old_str[DEVKMSG_STR_MAX_SIZE];
158 unsigned int old;
159 int err;
160
161 if (write) {
162 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
163 return -EINVAL;
164
165 old = devkmsg_log;
166 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
167 }
168
169 err = proc_dostring(table, write, buffer, lenp, ppos);
170 if (err)
171 return err;
172
173 if (write) {
174 err = __control_devkmsg(devkmsg_log_str);
175
176 /*
177 * Do not accept an unknown string OR a known string with
178 * trailing crap...
179 */
180 if (err < 0 || (err + 1 != *lenp)) {
181
182 /* ... and restore old setting. */
183 devkmsg_log = old;
184 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
185
186 return -EINVAL;
187 }
188 }
189
190 return 0;
191 }
192
193 /*
194 * Number of registered extended console drivers.
195 *
196 * If extended consoles are present, in-kernel cont reassembly is disabled
197 * and each fragment is stored as a separate log entry with proper
198 * continuation flag so that every emitted message has full metadata. This
199 * doesn't change the result for regular consoles or /proc/kmsg. For
200 * /dev/kmsg, as long as the reader concatenates messages according to
201 * consecutive continuation flags, the end result should be the same too.
202 */
203 static int nr_ext_console_drivers;
204
205 /*
206 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
207 * macros instead of functions so that _RET_IP_ contains useful information.
208 */
209 #define down_console_sem() do { \
210 down(&console_sem);\
211 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
212 } while (0)
213
214 static int __down_trylock_console_sem(unsigned long ip)
215 {
216 int lock_failed;
217 unsigned long flags;
218
219 /*
220 * Here and in __up_console_sem() we need to be in safe mode,
221 * because spindump/WARN/etc from under console ->lock will
222 * deadlock in printk()->down_trylock_console_sem() otherwise.
223 */
224 printk_safe_enter_irqsave(flags);
225 lock_failed = down_trylock(&console_sem);
226 printk_safe_exit_irqrestore(flags);
227
228 if (lock_failed)
229 return 1;
230 mutex_acquire(&console_lock_dep_map, 0, 1, ip);
231 return 0;
232 }
233 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
234
235 static void __up_console_sem(unsigned long ip)
236 {
237 unsigned long flags;
238
239 mutex_release(&console_lock_dep_map, 1, ip);
240
241 printk_safe_enter_irqsave(flags);
242 up(&console_sem);
243 printk_safe_exit_irqrestore(flags);
244 }
245 #define up_console_sem() __up_console_sem(_RET_IP_)
246
247 /*
248 * This is used for debugging the mess that is the VT code by
249 * keeping track if we have the console semaphore held. It's
250 * definitely not the perfect debug tool (we don't know if _WE_
251 * hold it and are racing, but it helps tracking those weird code
252 * paths in the console code where we end up in places I want
253 * locked without the console sempahore held).
254 */
255 static int console_locked, console_suspended;
256
257 /*
258 * If exclusive_console is non-NULL then only this console is to be printed to.
259 */
260 static struct console *exclusive_console;
261
262 /*
263 * Array of consoles built from command line options (console=)
264 */
265
266 #define MAX_CMDLINECONSOLES 8
267
268 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
269
270 static int selected_console = -1;
271 static int preferred_console = -1;
272 int console_set_on_cmdline;
273 EXPORT_SYMBOL(console_set_on_cmdline);
274
275 /* Flag: console code may call schedule() */
276 static int console_may_schedule;
277
278 /*
279 * The printk log buffer consists of a chain of concatenated variable
280 * length records. Every record starts with a record header, containing
281 * the overall length of the record.
282 *
283 * The heads to the first and last entry in the buffer, as well as the
284 * sequence numbers of these entries are maintained when messages are
285 * stored.
286 *
287 * If the heads indicate available messages, the length in the header
288 * tells the start next message. A length == 0 for the next message
289 * indicates a wrap-around to the beginning of the buffer.
290 *
291 * Every record carries the monotonic timestamp in microseconds, as well as
292 * the standard userspace syslog level and syslog facility. The usual
293 * kernel messages use LOG_KERN; userspace-injected messages always carry
294 * a matching syslog facility, by default LOG_USER. The origin of every
295 * message can be reliably determined that way.
296 *
297 * The human readable log message directly follows the message header. The
298 * length of the message text is stored in the header, the stored message
299 * is not terminated.
300 *
301 * Optionally, a message can carry a dictionary of properties (key/value pairs),
302 * to provide userspace with a machine-readable message context.
303 *
304 * Examples for well-defined, commonly used property names are:
305 * DEVICE=b12:8 device identifier
306 * b12:8 block dev_t
307 * c127:3 char dev_t
308 * n8 netdev ifindex
309 * +sound:card0 subsystem:devname
310 * SUBSYSTEM=pci driver-core subsystem name
311 *
312 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
313 * follows directly after a '=' character. Every property is terminated by
314 * a '\0' character. The last property is not terminated.
315 *
316 * Example of a message structure:
317 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
318 * 0008 34 00 record is 52 bytes long
319 * 000a 0b 00 text is 11 bytes long
320 * 000c 1f 00 dictionary is 23 bytes long
321 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
322 * 0010 69 74 27 73 20 61 20 6c "it's a l"
323 * 69 6e 65 "ine"
324 * 001b 44 45 56 49 43 "DEVIC"
325 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
326 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
327 * 67 "g"
328 * 0032 00 00 00 padding to next message header
329 *
330 * The 'struct printk_log' buffer header must never be directly exported to
331 * userspace, it is a kernel-private implementation detail that might
332 * need to be changed in the future, when the requirements change.
333 *
334 * /dev/kmsg exports the structured data in the following line format:
335 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
336 *
337 * Users of the export format should ignore possible additional values
338 * separated by ',', and find the message after the ';' character.
339 *
340 * The optional key/value pairs are attached as continuation lines starting
341 * with a space character and terminated by a newline. All possible
342 * non-prinatable characters are escaped in the "\xff" notation.
343 */
344
345 enum log_flags {
346 LOG_NOCONS = 1, /* already flushed, do not print to console */
347 LOG_NEWLINE = 2, /* text ended with a newline */
348 LOG_PREFIX = 4, /* text started with a prefix */
349 LOG_CONT = 8, /* text is a fragment of a continuation line */
350 };
351
352 struct printk_log {
353 u64 ts_nsec; /* timestamp in nanoseconds */
354 u16 len; /* length of entire record */
355 u16 text_len; /* length of text buffer */
356 u16 dict_len; /* length of dictionary buffer */
357 u8 facility; /* syslog facility */
358 u8 flags:5; /* internal record flags */
359 u8 level:3; /* syslog level */
360 }
361 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
362 __packed __aligned(4)
363 #endif
364 ;
365
366 /*
367 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken
368 * within the scheduler's rq lock. It must be released before calling
369 * console_unlock() or anything else that might wake up a process.
370 */
371 DEFINE_RAW_SPINLOCK(logbuf_lock);
372
373 /*
374 * Helper macros to lock/unlock logbuf_lock and switch between
375 * printk-safe/unsafe modes.
376 */
377 #define logbuf_lock_irq() \
378 do { \
379 printk_safe_enter_irq(); \
380 raw_spin_lock(&logbuf_lock); \
381 } while (0)
382
383 #define logbuf_unlock_irq() \
384 do { \
385 raw_spin_unlock(&logbuf_lock); \
386 printk_safe_exit_irq(); \
387 } while (0)
388
389 #define logbuf_lock_irqsave(flags) \
390 do { \
391 printk_safe_enter_irqsave(flags); \
392 raw_spin_lock(&logbuf_lock); \
393 } while (0)
394
395 #define logbuf_unlock_irqrestore(flags) \
396 do { \
397 raw_spin_unlock(&logbuf_lock); \
398 printk_safe_exit_irqrestore(flags); \
399 } while (0)
400
401 #ifdef CONFIG_PRINTK
402 DECLARE_WAIT_QUEUE_HEAD(log_wait);
403 /* the next printk record to read by syslog(READ) or /proc/kmsg */
404 static u64 syslog_seq;
405 static u32 syslog_idx;
406 static size_t syslog_partial;
407
408 /* index and sequence number of the first record stored in the buffer */
409 static u64 log_first_seq;
410 static u32 log_first_idx;
411
412 /* index and sequence number of the next record to store in the buffer */
413 static u64 log_next_seq;
414 static u32 log_next_idx;
415
416 /* the next printk record to write to the console */
417 static u64 console_seq;
418 static u32 console_idx;
419
420 /* the next printk record to read after the last 'clear' command */
421 static u64 clear_seq;
422 static u32 clear_idx;
423
424 #define PREFIX_MAX 32
425 #define LOG_LINE_MAX (1024 - PREFIX_MAX)
426
427 #define LOG_LEVEL(v) ((v) & 0x07)
428 #define LOG_FACILITY(v) ((v) >> 3 & 0xff)
429
430 /* record buffer */
431 #define LOG_ALIGN __alignof__(struct printk_log)
432 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
433 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
434 static char *log_buf = __log_buf;
435 static u32 log_buf_len = __LOG_BUF_LEN;
436
437 /* Return log buffer address */
438 char *log_buf_addr_get(void)
439 {
440 return log_buf;
441 }
442
443 /* Return log buffer size */
444 u32 log_buf_len_get(void)
445 {
446 return log_buf_len;
447 }
448
449 /* human readable text of the record */
450 static char *log_text(const struct printk_log *msg)
451 {
452 return (char *)msg + sizeof(struct printk_log);
453 }
454
455 /* optional key/value pair dictionary attached to the record */
456 static char *log_dict(const struct printk_log *msg)
457 {
458 return (char *)msg + sizeof(struct printk_log) + msg->text_len;
459 }
460
461 /* get record by index; idx must point to valid msg */
462 static struct printk_log *log_from_idx(u32 idx)
463 {
464 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
465
466 /*
467 * A length == 0 record is the end of buffer marker. Wrap around and
468 * read the message at the start of the buffer.
469 */
470 if (!msg->len)
471 return (struct printk_log *)log_buf;
472 return msg;
473 }
474
475 /* get next record; idx must point to valid msg */
476 static u32 log_next(u32 idx)
477 {
478 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
479
480 /* length == 0 indicates the end of the buffer; wrap */
481 /*
482 * A length == 0 record is the end of buffer marker. Wrap around and
483 * read the message at the start of the buffer as *this* one, and
484 * return the one after that.
485 */
486 if (!msg->len) {
487 msg = (struct printk_log *)log_buf;
488 return msg->len;
489 }
490 return idx + msg->len;
491 }
492
493 /*
494 * Check whether there is enough free space for the given message.
495 *
496 * The same values of first_idx and next_idx mean that the buffer
497 * is either empty or full.
498 *
499 * If the buffer is empty, we must respect the position of the indexes.
500 * They cannot be reset to the beginning of the buffer.
501 */
502 static int logbuf_has_space(u32 msg_size, bool empty)
503 {
504 u32 free;
505
506 if (log_next_idx > log_first_idx || empty)
507 free = max(log_buf_len - log_next_idx, log_first_idx);
508 else
509 free = log_first_idx - log_next_idx;
510
511 /*
512 * We need space also for an empty header that signalizes wrapping
513 * of the buffer.
514 */
515 return free >= msg_size + sizeof(struct printk_log);
516 }
517
518 static int log_make_free_space(u32 msg_size)
519 {
520 while (log_first_seq < log_next_seq &&
521 !logbuf_has_space(msg_size, false)) {
522 /* drop old messages until we have enough contiguous space */
523 log_first_idx = log_next(log_first_idx);
524 log_first_seq++;
525 }
526
527 if (clear_seq < log_first_seq) {
528 clear_seq = log_first_seq;
529 clear_idx = log_first_idx;
530 }
531
532 /* sequence numbers are equal, so the log buffer is empty */
533 if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
534 return 0;
535
536 return -ENOMEM;
537 }
538
539 /* compute the message size including the padding bytes */
540 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
541 {
542 u32 size;
543
544 size = sizeof(struct printk_log) + text_len + dict_len;
545 *pad_len = (-size) & (LOG_ALIGN - 1);
546 size += *pad_len;
547
548 return size;
549 }
550
551 /*
552 * Define how much of the log buffer we could take at maximum. The value
553 * must be greater than two. Note that only half of the buffer is available
554 * when the index points to the middle.
555 */
556 #define MAX_LOG_TAKE_PART 4
557 static const char trunc_msg[] = "<truncated>";
558
559 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
560 u16 *dict_len, u32 *pad_len)
561 {
562 /*
563 * The message should not take the whole buffer. Otherwise, it might
564 * get removed too soon.
565 */
566 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
567 if (*text_len > max_text_len)
568 *text_len = max_text_len;
569 /* enable the warning message */
570 *trunc_msg_len = strlen(trunc_msg);
571 /* disable the "dict" completely */
572 *dict_len = 0;
573 /* compute the size again, count also the warning message */
574 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
575 }
576
577 /* insert record into the buffer, discard old ones, update heads */
578 static int log_store(int facility, int level,
579 enum log_flags flags, u64 ts_nsec,
580 const char *dict, u16 dict_len,
581 const char *text, u16 text_len)
582 {
583 struct printk_log *msg;
584 u32 size, pad_len;
585 u16 trunc_msg_len = 0;
586
587 /* number of '\0' padding bytes to next message */
588 size = msg_used_size(text_len, dict_len, &pad_len);
589
590 if (log_make_free_space(size)) {
591 /* truncate the message if it is too long for empty buffer */
592 size = truncate_msg(&text_len, &trunc_msg_len,
593 &dict_len, &pad_len);
594 /* survive when the log buffer is too small for trunc_msg */
595 if (log_make_free_space(size))
596 return 0;
597 }
598
599 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
600 /*
601 * This message + an additional empty header does not fit
602 * at the end of the buffer. Add an empty header with len == 0
603 * to signify a wrap around.
604 */
605 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
606 log_next_idx = 0;
607 }
608
609 /* fill message */
610 msg = (struct printk_log *)(log_buf + log_next_idx);
611 memcpy(log_text(msg), text, text_len);
612 msg->text_len = text_len;
613 if (trunc_msg_len) {
614 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
615 msg->text_len += trunc_msg_len;
616 }
617 memcpy(log_dict(msg), dict, dict_len);
618 msg->dict_len = dict_len;
619 msg->facility = facility;
620 msg->level = level & 7;
621 msg->flags = flags & 0x1f;
622 if (ts_nsec > 0)
623 msg->ts_nsec = ts_nsec;
624 else
625 msg->ts_nsec = local_clock();
626 memset(log_dict(msg) + dict_len, 0, pad_len);
627 msg->len = size;
628
629 /* insert message */
630 log_next_idx += msg->len;
631 log_next_seq++;
632
633 return msg->text_len;
634 }
635
636 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
637
638 static int syslog_action_restricted(int type)
639 {
640 if (dmesg_restrict)
641 return 1;
642 /*
643 * Unless restricted, we allow "read all" and "get buffer size"
644 * for everybody.
645 */
646 return type != SYSLOG_ACTION_READ_ALL &&
647 type != SYSLOG_ACTION_SIZE_BUFFER;
648 }
649
650 int check_syslog_permissions(int type, int source)
651 {
652 /*
653 * If this is from /proc/kmsg and we've already opened it, then we've
654 * already done the capabilities checks at open time.
655 */
656 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
657 goto ok;
658
659 if (syslog_action_restricted(type)) {
660 if (capable(CAP_SYSLOG))
661 goto ok;
662 /*
663 * For historical reasons, accept CAP_SYS_ADMIN too, with
664 * a warning.
665 */
666 if (capable(CAP_SYS_ADMIN)) {
667 pr_warn_once("%s (%d): Attempt to access syslog with "
668 "CAP_SYS_ADMIN but no CAP_SYSLOG "
669 "(deprecated).\n",
670 current->comm, task_pid_nr(current));
671 goto ok;
672 }
673 return -EPERM;
674 }
675 ok:
676 return security_syslog(type);
677 }
678 EXPORT_SYMBOL_GPL(check_syslog_permissions);
679
680 static void append_char(char **pp, char *e, char c)
681 {
682 if (*pp < e)
683 *(*pp)++ = c;
684 }
685
686 static ssize_t msg_print_ext_header(char *buf, size_t size,
687 struct printk_log *msg, u64 seq)
688 {
689 u64 ts_usec = msg->ts_nsec;
690
691 do_div(ts_usec, 1000);
692
693 return scnprintf(buf, size, "%u,%llu,%llu,%c;",
694 (msg->facility << 3) | msg->level, seq, ts_usec,
695 msg->flags & LOG_CONT ? 'c' : '-');
696 }
697
698 static ssize_t msg_print_ext_body(char *buf, size_t size,
699 char *dict, size_t dict_len,
700 char *text, size_t text_len)
701 {
702 char *p = buf, *e = buf + size;
703 size_t i;
704
705 /* escape non-printable characters */
706 for (i = 0; i < text_len; i++) {
707 unsigned char c = text[i];
708
709 if (c < ' ' || c >= 127 || c == '\\')
710 p += scnprintf(p, e - p, "\\x%02x", c);
711 else
712 append_char(&p, e, c);
713 }
714 append_char(&p, e, '\n');
715
716 if (dict_len) {
717 bool line = true;
718
719 for (i = 0; i < dict_len; i++) {
720 unsigned char c = dict[i];
721
722 if (line) {
723 append_char(&p, e, ' ');
724 line = false;
725 }
726
727 if (c == '\0') {
728 append_char(&p, e, '\n');
729 line = true;
730 continue;
731 }
732
733 if (c < ' ' || c >= 127 || c == '\\') {
734 p += scnprintf(p, e - p, "\\x%02x", c);
735 continue;
736 }
737
738 append_char(&p, e, c);
739 }
740 append_char(&p, e, '\n');
741 }
742
743 return p - buf;
744 }
745
746 /* /dev/kmsg - userspace message inject/listen interface */
747 struct devkmsg_user {
748 u64 seq;
749 u32 idx;
750 struct ratelimit_state rs;
751 struct mutex lock;
752 char buf[CONSOLE_EXT_LOG_MAX];
753 };
754
755 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
756 {
757 char *buf, *line;
758 int level = default_message_loglevel;
759 int facility = 1; /* LOG_USER */
760 struct file *file = iocb->ki_filp;
761 struct devkmsg_user *user = file->private_data;
762 size_t len = iov_iter_count(from);
763 ssize_t ret = len;
764
765 if (!user || len > LOG_LINE_MAX)
766 return -EINVAL;
767
768 /* Ignore when user logging is disabled. */
769 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
770 return len;
771
772 /* Ratelimit when not explicitly enabled. */
773 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
774 if (!___ratelimit(&user->rs, current->comm))
775 return ret;
776 }
777
778 buf = kmalloc(len+1, GFP_KERNEL);
779 if (buf == NULL)
780 return -ENOMEM;
781
782 buf[len] = '\0';
783 if (!copy_from_iter_full(buf, len, from)) {
784 kfree(buf);
785 return -EFAULT;
786 }
787
788 /*
789 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
790 * the decimal value represents 32bit, the lower 3 bit are the log
791 * level, the rest are the log facility.
792 *
793 * If no prefix or no userspace facility is specified, we
794 * enforce LOG_USER, to be able to reliably distinguish
795 * kernel-generated messages from userspace-injected ones.
796 */
797 line = buf;
798 if (line[0] == '<') {
799 char *endp = NULL;
800 unsigned int u;
801
802 u = simple_strtoul(line + 1, &endp, 10);
803 if (endp && endp[0] == '>') {
804 level = LOG_LEVEL(u);
805 if (LOG_FACILITY(u) != 0)
806 facility = LOG_FACILITY(u);
807 endp++;
808 len -= endp - line;
809 line = endp;
810 }
811 }
812
813 printk_emit(facility, level, NULL, 0, "%s", line);
814 kfree(buf);
815 return ret;
816 }
817
818 static ssize_t devkmsg_read(struct file *file, char __user *buf,
819 size_t count, loff_t *ppos)
820 {
821 struct devkmsg_user *user = file->private_data;
822 struct printk_log *msg;
823 size_t len;
824 ssize_t ret;
825
826 if (!user)
827 return -EBADF;
828
829 ret = mutex_lock_interruptible(&user->lock);
830 if (ret)
831 return ret;
832
833 logbuf_lock_irq();
834 while (user->seq == log_next_seq) {
835 if (file->f_flags & O_NONBLOCK) {
836 ret = -EAGAIN;
837 logbuf_unlock_irq();
838 goto out;
839 }
840
841 logbuf_unlock_irq();
842 ret = wait_event_interruptible(log_wait,
843 user->seq != log_next_seq);
844 if (ret)
845 goto out;
846 logbuf_lock_irq();
847 }
848
849 if (user->seq < log_first_seq) {
850 /* our last seen message is gone, return error and reset */
851 user->idx = log_first_idx;
852 user->seq = log_first_seq;
853 ret = -EPIPE;
854 logbuf_unlock_irq();
855 goto out;
856 }
857
858 msg = log_from_idx(user->idx);
859 len = msg_print_ext_header(user->buf, sizeof(user->buf),
860 msg, user->seq);
861 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
862 log_dict(msg), msg->dict_len,
863 log_text(msg), msg->text_len);
864
865 user->idx = log_next(user->idx);
866 user->seq++;
867 logbuf_unlock_irq();
868
869 if (len > count) {
870 ret = -EINVAL;
871 goto out;
872 }
873
874 if (copy_to_user(buf, user->buf, len)) {
875 ret = -EFAULT;
876 goto out;
877 }
878 ret = len;
879 out:
880 mutex_unlock(&user->lock);
881 return ret;
882 }
883
884 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
885 {
886 struct devkmsg_user *user = file->private_data;
887 loff_t ret = 0;
888
889 if (!user)
890 return -EBADF;
891 if (offset)
892 return -ESPIPE;
893
894 logbuf_lock_irq();
895 switch (whence) {
896 case SEEK_SET:
897 /* the first record */
898 user->idx = log_first_idx;
899 user->seq = log_first_seq;
900 break;
901 case SEEK_DATA:
902 /*
903 * The first record after the last SYSLOG_ACTION_CLEAR,
904 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
905 * changes no global state, and does not clear anything.
906 */
907 user->idx = clear_idx;
908 user->seq = clear_seq;
909 break;
910 case SEEK_END:
911 /* after the last record */
912 user->idx = log_next_idx;
913 user->seq = log_next_seq;
914 break;
915 default:
916 ret = -EINVAL;
917 }
918 logbuf_unlock_irq();
919 return ret;
920 }
921
922 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
923 {
924 struct devkmsg_user *user = file->private_data;
925 int ret = 0;
926
927 if (!user)
928 return POLLERR|POLLNVAL;
929
930 poll_wait(file, &log_wait, wait);
931
932 logbuf_lock_irq();
933 if (user->seq < log_next_seq) {
934 /* return error when data has vanished underneath us */
935 if (user->seq < log_first_seq)
936 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
937 else
938 ret = POLLIN|POLLRDNORM;
939 }
940 logbuf_unlock_irq();
941
942 return ret;
943 }
944
945 static int devkmsg_open(struct inode *inode, struct file *file)
946 {
947 struct devkmsg_user *user;
948 int err;
949
950 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
951 return -EPERM;
952
953 /* write-only does not need any file context */
954 if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
955 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
956 SYSLOG_FROM_READER);
957 if (err)
958 return err;
959 }
960
961 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
962 if (!user)
963 return -ENOMEM;
964
965 ratelimit_default_init(&user->rs);
966 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
967
968 mutex_init(&user->lock);
969
970 logbuf_lock_irq();
971 user->idx = log_first_idx;
972 user->seq = log_first_seq;
973 logbuf_unlock_irq();
974
975 file->private_data = user;
976 return 0;
977 }
978
979 static int devkmsg_release(struct inode *inode, struct file *file)
980 {
981 struct devkmsg_user *user = file->private_data;
982
983 if (!user)
984 return 0;
985
986 ratelimit_state_exit(&user->rs);
987
988 mutex_destroy(&user->lock);
989 kfree(user);
990 return 0;
991 }
992
993 const struct file_operations kmsg_fops = {
994 .open = devkmsg_open,
995 .read = devkmsg_read,
996 .write_iter = devkmsg_write,
997 .llseek = devkmsg_llseek,
998 .poll = devkmsg_poll,
999 .release = devkmsg_release,
1000 };
1001
1002 #ifdef CONFIG_KEXEC_CORE
1003 /*
1004 * This appends the listed symbols to /proc/vmcore
1005 *
1006 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
1007 * obtain access to symbols that are otherwise very difficult to locate. These
1008 * symbols are specifically used so that utilities can access and extract the
1009 * dmesg log from a vmcore file after a crash.
1010 */
1011 void log_buf_kexec_setup(void)
1012 {
1013 VMCOREINFO_SYMBOL(log_buf);
1014 VMCOREINFO_SYMBOL(log_buf_len);
1015 VMCOREINFO_SYMBOL(log_first_idx);
1016 VMCOREINFO_SYMBOL(clear_idx);
1017 VMCOREINFO_SYMBOL(log_next_idx);
1018 /*
1019 * Export struct printk_log size and field offsets. User space tools can
1020 * parse it and detect any changes to structure down the line.
1021 */
1022 VMCOREINFO_STRUCT_SIZE(printk_log);
1023 VMCOREINFO_OFFSET(printk_log, ts_nsec);
1024 VMCOREINFO_OFFSET(printk_log, len);
1025 VMCOREINFO_OFFSET(printk_log, text_len);
1026 VMCOREINFO_OFFSET(printk_log, dict_len);
1027 }
1028 #endif
1029
1030 /* requested log_buf_len from kernel cmdline */
1031 static unsigned long __initdata new_log_buf_len;
1032
1033 /* we practice scaling the ring buffer by powers of 2 */
1034 static void __init log_buf_len_update(unsigned size)
1035 {
1036 if (size)
1037 size = roundup_pow_of_two(size);
1038 if (size > log_buf_len)
1039 new_log_buf_len = size;
1040 }
1041
1042 /* save requested log_buf_len since it's too early to process it */
1043 static int __init log_buf_len_setup(char *str)
1044 {
1045 unsigned size = memparse(str, &str);
1046
1047 log_buf_len_update(size);
1048
1049 return 0;
1050 }
1051 early_param("log_buf_len", log_buf_len_setup);
1052
1053 #ifdef CONFIG_SMP
1054 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1055
1056 static void __init log_buf_add_cpu(void)
1057 {
1058 unsigned int cpu_extra;
1059
1060 /*
1061 * archs should set up cpu_possible_bits properly with
1062 * set_cpu_possible() after setup_arch() but just in
1063 * case lets ensure this is valid.
1064 */
1065 if (num_possible_cpus() == 1)
1066 return;
1067
1068 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1069
1070 /* by default this will only continue through for large > 64 CPUs */
1071 if (cpu_extra <= __LOG_BUF_LEN / 2)
1072 return;
1073
1074 pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1075 __LOG_CPU_MAX_BUF_LEN);
1076 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1077 cpu_extra);
1078 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1079
1080 log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1081 }
1082 #else /* !CONFIG_SMP */
1083 static inline void log_buf_add_cpu(void) {}
1084 #endif /* CONFIG_SMP */
1085
1086 void __init setup_log_buf(int early)
1087 {
1088 unsigned long flags;
1089 char *new_log_buf;
1090 int free;
1091
1092 if (log_buf != __log_buf)
1093 return;
1094
1095 if (!early && !new_log_buf_len)
1096 log_buf_add_cpu();
1097
1098 if (!new_log_buf_len)
1099 return;
1100
1101 if (early) {
1102 new_log_buf =
1103 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
1104 } else {
1105 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
1106 LOG_ALIGN);
1107 }
1108
1109 if (unlikely(!new_log_buf)) {
1110 pr_err("log_buf_len: %ld bytes not available\n",
1111 new_log_buf_len);
1112 return;
1113 }
1114
1115 logbuf_lock_irqsave(flags);
1116 log_buf_len = new_log_buf_len;
1117 log_buf = new_log_buf;
1118 new_log_buf_len = 0;
1119 free = __LOG_BUF_LEN - log_next_idx;
1120 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1121 logbuf_unlock_irqrestore(flags);
1122
1123 pr_info("log_buf_len: %d bytes\n", log_buf_len);
1124 pr_info("early log buf free: %d(%d%%)\n",
1125 free, (free * 100) / __LOG_BUF_LEN);
1126 }
1127
1128 static bool __read_mostly ignore_loglevel;
1129
1130 static int __init ignore_loglevel_setup(char *str)
1131 {
1132 ignore_loglevel = true;
1133 pr_info("debug: ignoring loglevel setting.\n");
1134
1135 return 0;
1136 }
1137
1138 early_param("ignore_loglevel", ignore_loglevel_setup);
1139 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1140 MODULE_PARM_DESC(ignore_loglevel,
1141 "ignore loglevel setting (prints all kernel messages to the console)");
1142
1143 static bool suppress_message_printing(int level)
1144 {
1145 return (level >= console_loglevel && !ignore_loglevel);
1146 }
1147
1148 #ifdef CONFIG_BOOT_PRINTK_DELAY
1149
1150 static int boot_delay; /* msecs delay after each printk during bootup */
1151 static unsigned long long loops_per_msec; /* based on boot_delay */
1152
1153 static int __init boot_delay_setup(char *str)
1154 {
1155 unsigned long lpj;
1156
1157 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
1158 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1159
1160 get_option(&str, &boot_delay);
1161 if (boot_delay > 10 * 1000)
1162 boot_delay = 0;
1163
1164 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1165 "HZ: %d, loops_per_msec: %llu\n",
1166 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1167 return 0;
1168 }
1169 early_param("boot_delay", boot_delay_setup);
1170
1171 static void boot_delay_msec(int level)
1172 {
1173 unsigned long long k;
1174 unsigned long timeout;
1175
1176 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
1177 || suppress_message_printing(level)) {
1178 return;
1179 }
1180
1181 k = (unsigned long long)loops_per_msec * boot_delay;
1182
1183 timeout = jiffies + msecs_to_jiffies(boot_delay);
1184 while (k) {
1185 k--;
1186 cpu_relax();
1187 /*
1188 * use (volatile) jiffies to prevent
1189 * compiler reduction; loop termination via jiffies
1190 * is secondary and may or may not happen.
1191 */
1192 if (time_after(jiffies, timeout))
1193 break;
1194 touch_nmi_watchdog();
1195 }
1196 }
1197 #else
1198 static inline void boot_delay_msec(int level)
1199 {
1200 }
1201 #endif
1202
1203 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1204 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1205
1206 static size_t print_time(u64 ts, char *buf)
1207 {
1208 unsigned long rem_nsec;
1209
1210 if (!printk_time)
1211 return 0;
1212
1213 rem_nsec = do_div(ts, 1000000000);
1214
1215 if (!buf)
1216 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1217
1218 return sprintf(buf, "[%5lu.%06lu] ",
1219 (unsigned long)ts, rem_nsec / 1000);
1220 }
1221
1222 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1223 {
1224 size_t len = 0;
1225 unsigned int prefix = (msg->facility << 3) | msg->level;
1226
1227 if (syslog) {
1228 if (buf) {
1229 len += sprintf(buf, "<%u>", prefix);
1230 } else {
1231 len += 3;
1232 if (prefix > 999)
1233 len += 3;
1234 else if (prefix > 99)
1235 len += 2;
1236 else if (prefix > 9)
1237 len++;
1238 }
1239 }
1240
1241 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1242 return len;
1243 }
1244
1245 static size_t msg_print_text(const struct printk_log *msg, bool syslog, char *buf, size_t size)
1246 {
1247 const char *text = log_text(msg);
1248 size_t text_size = msg->text_len;
1249 size_t len = 0;
1250
1251 do {
1252 const char *next = memchr(text, '\n', text_size);
1253 size_t text_len;
1254
1255 if (next) {
1256 text_len = next - text;
1257 next++;
1258 text_size -= next - text;
1259 } else {
1260 text_len = text_size;
1261 }
1262
1263 if (buf) {
1264 if (print_prefix(msg, syslog, NULL) +
1265 text_len + 1 >= size - len)
1266 break;
1267
1268 len += print_prefix(msg, syslog, buf + len);
1269 memcpy(buf + len, text, text_len);
1270 len += text_len;
1271 buf[len++] = '\n';
1272 } else {
1273 /* SYSLOG_ACTION_* buffer size only calculation */
1274 len += print_prefix(msg, syslog, NULL);
1275 len += text_len;
1276 len++;
1277 }
1278
1279 text = next;
1280 } while (text);
1281
1282 return len;
1283 }
1284
1285 static int syslog_print(char __user *buf, int size)
1286 {
1287 char *text;
1288 struct printk_log *msg;
1289 int len = 0;
1290
1291 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1292 if (!text)
1293 return -ENOMEM;
1294
1295 while (size > 0) {
1296 size_t n;
1297 size_t skip;
1298
1299 logbuf_lock_irq();
1300 if (syslog_seq < log_first_seq) {
1301 /* messages are gone, move to first one */
1302 syslog_seq = log_first_seq;
1303 syslog_idx = log_first_idx;
1304 syslog_partial = 0;
1305 }
1306 if (syslog_seq == log_next_seq) {
1307 logbuf_unlock_irq();
1308 break;
1309 }
1310
1311 skip = syslog_partial;
1312 msg = log_from_idx(syslog_idx);
1313 n = msg_print_text(msg, true, text, LOG_LINE_MAX + PREFIX_MAX);
1314 if (n - syslog_partial <= size) {
1315 /* message fits into buffer, move forward */
1316 syslog_idx = log_next(syslog_idx);
1317 syslog_seq++;
1318 n -= syslog_partial;
1319 syslog_partial = 0;
1320 } else if (!len){
1321 /* partial read(), remember position */
1322 n = size;
1323 syslog_partial += n;
1324 } else
1325 n = 0;
1326 logbuf_unlock_irq();
1327
1328 if (!n)
1329 break;
1330
1331 if (copy_to_user(buf, text + skip, n)) {
1332 if (!len)
1333 len = -EFAULT;
1334 break;
1335 }
1336
1337 len += n;
1338 size -= n;
1339 buf += n;
1340 }
1341
1342 kfree(text);
1343 return len;
1344 }
1345
1346 static int syslog_print_all(char __user *buf, int size, bool clear)
1347 {
1348 char *text;
1349 int len = 0;
1350
1351 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1352 if (!text)
1353 return -ENOMEM;
1354
1355 logbuf_lock_irq();
1356 if (buf) {
1357 u64 next_seq;
1358 u64 seq;
1359 u32 idx;
1360
1361 /*
1362 * Find first record that fits, including all following records,
1363 * into the user-provided buffer for this dump.
1364 */
1365 seq = clear_seq;
1366 idx = clear_idx;
1367 while (seq < log_next_seq) {
1368 struct printk_log *msg = log_from_idx(idx);
1369
1370 len += msg_print_text(msg, true, NULL, 0);
1371 idx = log_next(idx);
1372 seq++;
1373 }
1374
1375 /* move first record forward until length fits into the buffer */
1376 seq = clear_seq;
1377 idx = clear_idx;
1378 while (len > size && seq < log_next_seq) {
1379 struct printk_log *msg = log_from_idx(idx);
1380
1381 len -= msg_print_text(msg, true, NULL, 0);
1382 idx = log_next(idx);
1383 seq++;
1384 }
1385
1386 /* last message fitting into this dump */
1387 next_seq = log_next_seq;
1388
1389 len = 0;
1390 while (len >= 0 && seq < next_seq) {
1391 struct printk_log *msg = log_from_idx(idx);
1392 int textlen;
1393
1394 textlen = msg_print_text(msg, true, text,
1395 LOG_LINE_MAX + PREFIX_MAX);
1396 if (textlen < 0) {
1397 len = textlen;
1398 break;
1399 }
1400 idx = log_next(idx);
1401 seq++;
1402
1403 logbuf_unlock_irq();
1404 if (copy_to_user(buf + len, text, textlen))
1405 len = -EFAULT;
1406 else
1407 len += textlen;
1408 logbuf_lock_irq();
1409
1410 if (seq < log_first_seq) {
1411 /* messages are gone, move to next one */
1412 seq = log_first_seq;
1413 idx = log_first_idx;
1414 }
1415 }
1416 }
1417
1418 if (clear) {
1419 clear_seq = log_next_seq;
1420 clear_idx = log_next_idx;
1421 }
1422 logbuf_unlock_irq();
1423
1424 kfree(text);
1425 return len;
1426 }
1427
1428 int do_syslog(int type, char __user *buf, int len, int source)
1429 {
1430 bool clear = false;
1431 static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1432 int error;
1433
1434 error = check_syslog_permissions(type, source);
1435 if (error)
1436 goto out;
1437
1438 switch (type) {
1439 case SYSLOG_ACTION_CLOSE: /* Close log */
1440 break;
1441 case SYSLOG_ACTION_OPEN: /* Open log */
1442 break;
1443 case SYSLOG_ACTION_READ: /* Read from log */
1444 error = -EINVAL;
1445 if (!buf || len < 0)
1446 goto out;
1447 error = 0;
1448 if (!len)
1449 goto out;
1450 if (!access_ok(VERIFY_WRITE, buf, len)) {
1451 error = -EFAULT;
1452 goto out;
1453 }
1454 error = wait_event_interruptible(log_wait,
1455 syslog_seq != log_next_seq);
1456 if (error)
1457 goto out;
1458 error = syslog_print(buf, len);
1459 break;
1460 /* Read/clear last kernel messages */
1461 case SYSLOG_ACTION_READ_CLEAR:
1462 clear = true;
1463 /* FALL THRU */
1464 /* Read last kernel messages */
1465 case SYSLOG_ACTION_READ_ALL:
1466 error = -EINVAL;
1467 if (!buf || len < 0)
1468 goto out;
1469 error = 0;
1470 if (!len)
1471 goto out;
1472 if (!access_ok(VERIFY_WRITE, buf, len)) {
1473 error = -EFAULT;
1474 goto out;
1475 }
1476 error = syslog_print_all(buf, len, clear);
1477 break;
1478 /* Clear ring buffer */
1479 case SYSLOG_ACTION_CLEAR:
1480 syslog_print_all(NULL, 0, true);
1481 break;
1482 /* Disable logging to console */
1483 case SYSLOG_ACTION_CONSOLE_OFF:
1484 if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1485 saved_console_loglevel = console_loglevel;
1486 console_loglevel = minimum_console_loglevel;
1487 break;
1488 /* Enable logging to console */
1489 case SYSLOG_ACTION_CONSOLE_ON:
1490 if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1491 console_loglevel = saved_console_loglevel;
1492 saved_console_loglevel = LOGLEVEL_DEFAULT;
1493 }
1494 break;
1495 /* Set level of messages printed to console */
1496 case SYSLOG_ACTION_CONSOLE_LEVEL:
1497 error = -EINVAL;
1498 if (len < 1 || len > 8)
1499 goto out;
1500 if (len < minimum_console_loglevel)
1501 len = minimum_console_loglevel;
1502 console_loglevel = len;
1503 /* Implicitly re-enable logging to console */
1504 saved_console_loglevel = LOGLEVEL_DEFAULT;
1505 error = 0;
1506 break;
1507 /* Number of chars in the log buffer */
1508 case SYSLOG_ACTION_SIZE_UNREAD:
1509 logbuf_lock_irq();
1510 if (syslog_seq < log_first_seq) {
1511 /* messages are gone, move to first one */
1512 syslog_seq = log_first_seq;
1513 syslog_idx = log_first_idx;
1514 syslog_partial = 0;
1515 }
1516 if (source == SYSLOG_FROM_PROC) {
1517 /*
1518 * Short-cut for poll(/"proc/kmsg") which simply checks
1519 * for pending data, not the size; return the count of
1520 * records, not the length.
1521 */
1522 error = log_next_seq - syslog_seq;
1523 } else {
1524 u64 seq = syslog_seq;
1525 u32 idx = syslog_idx;
1526
1527 error = 0;
1528 while (seq < log_next_seq) {
1529 struct printk_log *msg = log_from_idx(idx);
1530
1531 error += msg_print_text(msg, true, NULL, 0);
1532 idx = log_next(idx);
1533 seq++;
1534 }
1535 error -= syslog_partial;
1536 }
1537 logbuf_unlock_irq();
1538 break;
1539 /* Size of the log buffer */
1540 case SYSLOG_ACTION_SIZE_BUFFER:
1541 error = log_buf_len;
1542 break;
1543 default:
1544 error = -EINVAL;
1545 break;
1546 }
1547 out:
1548 return error;
1549 }
1550
1551 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1552 {
1553 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1554 }
1555
1556 /*
1557 * Call the console drivers, asking them to write out
1558 * log_buf[start] to log_buf[end - 1].
1559 * The console_lock must be held.
1560 */
1561 static void call_console_drivers(const char *ext_text, size_t ext_len,
1562 const char *text, size_t len)
1563 {
1564 struct console *con;
1565
1566 trace_console_rcuidle(text, len);
1567
1568 if (!console_drivers)
1569 return;
1570
1571 for_each_console(con) {
1572 if (exclusive_console && con != exclusive_console)
1573 continue;
1574 if (!(con->flags & CON_ENABLED))
1575 continue;
1576 if (!con->write)
1577 continue;
1578 if (!cpu_online(smp_processor_id()) &&
1579 !(con->flags & CON_ANYTIME))
1580 continue;
1581 if (con->flags & CON_EXTENDED)
1582 con->write(con, ext_text, ext_len);
1583 else
1584 con->write(con, text, len);
1585 }
1586 }
1587
1588 int printk_delay_msec __read_mostly;
1589
1590 static inline void printk_delay(void)
1591 {
1592 if (unlikely(printk_delay_msec)) {
1593 int m = printk_delay_msec;
1594
1595 while (m--) {
1596 mdelay(1);
1597 touch_nmi_watchdog();
1598 }
1599 }
1600 }
1601
1602 /*
1603 * Continuation lines are buffered, and not committed to the record buffer
1604 * until the line is complete, or a race forces it. The line fragments
1605 * though, are printed immediately to the consoles to ensure everything has
1606 * reached the console in case of a kernel crash.
1607 */
1608 static struct cont {
1609 char buf[LOG_LINE_MAX];
1610 size_t len; /* length == 0 means unused buffer */
1611 struct task_struct *owner; /* task of first print*/
1612 u64 ts_nsec; /* time of first print */
1613 u8 level; /* log level of first message */
1614 u8 facility; /* log facility of first message */
1615 enum log_flags flags; /* prefix, newline flags */
1616 } cont;
1617
1618 static void cont_flush(void)
1619 {
1620 if (cont.len == 0)
1621 return;
1622
1623 log_store(cont.facility, cont.level, cont.flags, cont.ts_nsec,
1624 NULL, 0, cont.buf, cont.len);
1625 cont.len = 0;
1626 }
1627
1628 static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len)
1629 {
1630 /*
1631 * If ext consoles are present, flush and skip in-kernel
1632 * continuation. See nr_ext_console_drivers definition. Also, if
1633 * the line gets too long, split it up in separate records.
1634 */
1635 if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1636 cont_flush();
1637 return false;
1638 }
1639
1640 if (!cont.len) {
1641 cont.facility = facility;
1642 cont.level = level;
1643 cont.owner = current;
1644 cont.ts_nsec = local_clock();
1645 cont.flags = flags;
1646 }
1647
1648 memcpy(cont.buf + cont.len, text, len);
1649 cont.len += len;
1650
1651 // The original flags come from the first line,
1652 // but later continuations can add a newline.
1653 if (flags & LOG_NEWLINE) {
1654 cont.flags |= LOG_NEWLINE;
1655 cont_flush();
1656 }
1657
1658 if (cont.len > (sizeof(cont.buf) * 80) / 100)
1659 cont_flush();
1660
1661 return true;
1662 }
1663
1664 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1665 {
1666 /*
1667 * If an earlier line was buffered, and we're a continuation
1668 * write from the same process, try to add it to the buffer.
1669 */
1670 if (cont.len) {
1671 if (cont.owner == current && (lflags & LOG_CONT)) {
1672 if (cont_add(facility, level, lflags, text, text_len))
1673 return text_len;
1674 }
1675 /* Otherwise, make sure it's flushed */
1676 cont_flush();
1677 }
1678
1679 /* Skip empty continuation lines that couldn't be added - they just flush */
1680 if (!text_len && (lflags & LOG_CONT))
1681 return 0;
1682
1683 /* If it doesn't end in a newline, try to buffer the current line */
1684 if (!(lflags & LOG_NEWLINE)) {
1685 if (cont_add(facility, level, lflags, text, text_len))
1686 return text_len;
1687 }
1688
1689 /* Store it in the record log */
1690 return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len);
1691 }
1692
1693 asmlinkage int vprintk_emit(int facility, int level,
1694 const char *dict, size_t dictlen,
1695 const char *fmt, va_list args)
1696 {
1697 static char textbuf[LOG_LINE_MAX];
1698 char *text = textbuf;
1699 size_t text_len = 0;
1700 enum log_flags lflags = 0;
1701 unsigned long flags;
1702 int printed_len = 0;
1703 bool in_sched = false;
1704
1705 if (level == LOGLEVEL_SCHED) {
1706 level = LOGLEVEL_DEFAULT;
1707 in_sched = true;
1708 }
1709
1710 boot_delay_msec(level);
1711 printk_delay();
1712
1713 /* This stops the holder of console_sem just where we want him */
1714 logbuf_lock_irqsave(flags);
1715 /*
1716 * The printf needs to come first; we need the syslog
1717 * prefix which might be passed-in as a parameter.
1718 */
1719 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1720
1721 /* mark and strip a trailing newline */
1722 if (text_len && text[text_len-1] == '\n') {
1723 text_len--;
1724 lflags |= LOG_NEWLINE;
1725 }
1726
1727 /* strip kernel syslog prefix and extract log level or control flags */
1728 if (facility == 0) {
1729 int kern_level;
1730
1731 while ((kern_level = printk_get_level(text)) != 0) {
1732 switch (kern_level) {
1733 case '0' ... '7':
1734 if (level == LOGLEVEL_DEFAULT)
1735 level = kern_level - '0';
1736 /* fallthrough */
1737 case 'd': /* KERN_DEFAULT */
1738 lflags |= LOG_PREFIX;
1739 break;
1740 case 'c': /* KERN_CONT */
1741 lflags |= LOG_CONT;
1742 }
1743
1744 text_len -= 2;
1745 text += 2;
1746 }
1747 }
1748
1749 if (level == LOGLEVEL_DEFAULT)
1750 level = default_message_loglevel;
1751
1752 if (dict)
1753 lflags |= LOG_PREFIX|LOG_NEWLINE;
1754
1755 printed_len += log_output(facility, level, lflags, dict, dictlen, text, text_len);
1756
1757 logbuf_unlock_irqrestore(flags);
1758
1759 /* If called from the scheduler, we can not call up(). */
1760 if (!in_sched) {
1761 /*
1762 * Try to acquire and then immediately release the console
1763 * semaphore. The release will print out buffers and wake up
1764 * /dev/kmsg and syslog() users.
1765 */
1766 if (console_trylock())
1767 console_unlock();
1768 }
1769
1770 return printed_len;
1771 }
1772 EXPORT_SYMBOL(vprintk_emit);
1773
1774 asmlinkage int vprintk(const char *fmt, va_list args)
1775 {
1776 return vprintk_func(fmt, args);
1777 }
1778 EXPORT_SYMBOL(vprintk);
1779
1780 asmlinkage int printk_emit(int facility, int level,
1781 const char *dict, size_t dictlen,
1782 const char *fmt, ...)
1783 {
1784 va_list args;
1785 int r;
1786
1787 va_start(args, fmt);
1788 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1789 va_end(args);
1790
1791 return r;
1792 }
1793 EXPORT_SYMBOL(printk_emit);
1794
1795 int vprintk_default(const char *fmt, va_list args)
1796 {
1797 int r;
1798
1799 #ifdef CONFIG_KGDB_KDB
1800 /* Allow to pass printk() to kdb but avoid a recursion. */
1801 if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) {
1802 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1803 return r;
1804 }
1805 #endif
1806 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1807
1808 return r;
1809 }
1810 EXPORT_SYMBOL_GPL(vprintk_default);
1811
1812 /**
1813 * printk - print a kernel message
1814 * @fmt: format string
1815 *
1816 * This is printk(). It can be called from any context. We want it to work.
1817 *
1818 * We try to grab the console_lock. If we succeed, it's easy - we log the
1819 * output and call the console drivers. If we fail to get the semaphore, we
1820 * place the output into the log buffer and return. The current holder of
1821 * the console_sem will notice the new output in console_unlock(); and will
1822 * send it to the consoles before releasing the lock.
1823 *
1824 * One effect of this deferred printing is that code which calls printk() and
1825 * then changes console_loglevel may break. This is because console_loglevel
1826 * is inspected when the actual printing occurs.
1827 *
1828 * See also:
1829 * printf(3)
1830 *
1831 * See the vsnprintf() documentation for format string extensions over C99.
1832 */
1833 asmlinkage __visible int printk(const char *fmt, ...)
1834 {
1835 va_list args;
1836 int r;
1837
1838 va_start(args, fmt);
1839 r = vprintk_func(fmt, args);
1840 va_end(args);
1841
1842 return r;
1843 }
1844 EXPORT_SYMBOL(printk);
1845
1846 #else /* CONFIG_PRINTK */
1847
1848 #define LOG_LINE_MAX 0
1849 #define PREFIX_MAX 0
1850
1851 static u64 syslog_seq;
1852 static u32 syslog_idx;
1853 static u64 console_seq;
1854 static u32 console_idx;
1855 static u64 log_first_seq;
1856 static u32 log_first_idx;
1857 static u64 log_next_seq;
1858 static char *log_text(const struct printk_log *msg) { return NULL; }
1859 static char *log_dict(const struct printk_log *msg) { return NULL; }
1860 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1861 static u32 log_next(u32 idx) { return 0; }
1862 static ssize_t msg_print_ext_header(char *buf, size_t size,
1863 struct printk_log *msg,
1864 u64 seq) { return 0; }
1865 static ssize_t msg_print_ext_body(char *buf, size_t size,
1866 char *dict, size_t dict_len,
1867 char *text, size_t text_len) { return 0; }
1868 static void call_console_drivers(const char *ext_text, size_t ext_len,
1869 const char *text, size_t len) {}
1870 static size_t msg_print_text(const struct printk_log *msg,
1871 bool syslog, char *buf, size_t size) { return 0; }
1872 static bool suppress_message_printing(int level) { return false; }
1873
1874 #endif /* CONFIG_PRINTK */
1875
1876 #ifdef CONFIG_EARLY_PRINTK
1877 struct console *early_console;
1878
1879 asmlinkage __visible void early_printk(const char *fmt, ...)
1880 {
1881 va_list ap;
1882 char buf[512];
1883 int n;
1884
1885 if (!early_console)
1886 return;
1887
1888 va_start(ap, fmt);
1889 n = vscnprintf(buf, sizeof(buf), fmt, ap);
1890 va_end(ap);
1891
1892 early_console->write(early_console, buf, n);
1893 }
1894 #endif
1895
1896 static int __add_preferred_console(char *name, int idx, char *options,
1897 char *brl_options)
1898 {
1899 struct console_cmdline *c;
1900 int i;
1901
1902 /*
1903 * See if this tty is not yet registered, and
1904 * if we have a slot free.
1905 */
1906 for (i = 0, c = console_cmdline;
1907 i < MAX_CMDLINECONSOLES && c->name[0];
1908 i++, c++) {
1909 if (strcmp(c->name, name) == 0 && c->index == idx) {
1910 if (!brl_options)
1911 selected_console = i;
1912 return 0;
1913 }
1914 }
1915 if (i == MAX_CMDLINECONSOLES)
1916 return -E2BIG;
1917 if (!brl_options)
1918 selected_console = i;
1919 strlcpy(c->name, name, sizeof(c->name));
1920 c->options = options;
1921 braille_set_options(c, brl_options);
1922
1923 c->index = idx;
1924 return 0;
1925 }
1926 /*
1927 * Set up a console. Called via do_early_param() in init/main.c
1928 * for each "console=" parameter in the boot command line.
1929 */
1930 static int __init console_setup(char *str)
1931 {
1932 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
1933 char *s, *options, *brl_options = NULL;
1934 int idx;
1935
1936 if (_braille_console_setup(&str, &brl_options))
1937 return 1;
1938
1939 /*
1940 * Decode str into name, index, options.
1941 */
1942 if (str[0] >= '0' && str[0] <= '9') {
1943 strcpy(buf, "ttyS");
1944 strncpy(buf + 4, str, sizeof(buf) - 5);
1945 } else {
1946 strncpy(buf, str, sizeof(buf) - 1);
1947 }
1948 buf[sizeof(buf) - 1] = 0;
1949 options = strchr(str, ',');
1950 if (options)
1951 *(options++) = 0;
1952 #ifdef __sparc__
1953 if (!strcmp(str, "ttya"))
1954 strcpy(buf, "ttyS0");
1955 if (!strcmp(str, "ttyb"))
1956 strcpy(buf, "ttyS1");
1957 #endif
1958 for (s = buf; *s; s++)
1959 if (isdigit(*s) || *s == ',')
1960 break;
1961 idx = simple_strtoul(s, NULL, 10);
1962 *s = 0;
1963
1964 __add_preferred_console(buf, idx, options, brl_options);
1965 console_set_on_cmdline = 1;
1966 return 1;
1967 }
1968 __setup("console=", console_setup);
1969
1970 /**
1971 * add_preferred_console - add a device to the list of preferred consoles.
1972 * @name: device name
1973 * @idx: device index
1974 * @options: options for this console
1975 *
1976 * The last preferred console added will be used for kernel messages
1977 * and stdin/out/err for init. Normally this is used by console_setup
1978 * above to handle user-supplied console arguments; however it can also
1979 * be used by arch-specific code either to override the user or more
1980 * commonly to provide a default console (ie from PROM variables) when
1981 * the user has not supplied one.
1982 */
1983 int add_preferred_console(char *name, int idx, char *options)
1984 {
1985 return __add_preferred_console(name, idx, options, NULL);
1986 }
1987
1988 bool console_suspend_enabled = true;
1989 EXPORT_SYMBOL(console_suspend_enabled);
1990
1991 static int __init console_suspend_disable(char *str)
1992 {
1993 console_suspend_enabled = false;
1994 return 1;
1995 }
1996 __setup("no_console_suspend", console_suspend_disable);
1997 module_param_named(console_suspend, console_suspend_enabled,
1998 bool, S_IRUGO | S_IWUSR);
1999 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2000 " and hibernate operations");
2001
2002 /**
2003 * suspend_console - suspend the console subsystem
2004 *
2005 * This disables printk() while we go into suspend states
2006 */
2007 void suspend_console(void)
2008 {
2009 if (!console_suspend_enabled)
2010 return;
2011 printk("Suspending console(s) (use no_console_suspend to debug)\n");
2012 console_lock();
2013 console_suspended = 1;
2014 up_console_sem();
2015 }
2016
2017 void resume_console(void)
2018 {
2019 if (!console_suspend_enabled)
2020 return;
2021 down_console_sem();
2022 console_suspended = 0;
2023 console_unlock();
2024 }
2025
2026 /**
2027 * console_cpu_notify - print deferred console messages after CPU hotplug
2028 * @cpu: unused
2029 *
2030 * If printk() is called from a CPU that is not online yet, the messages
2031 * will be spooled but will not show up on the console. This function is
2032 * called when a new CPU comes online (or fails to come up), and ensures
2033 * that any such output gets printed.
2034 */
2035 static int console_cpu_notify(unsigned int cpu)
2036 {
2037 if (!cpuhp_tasks_frozen) {
2038 console_lock();
2039 console_unlock();
2040 }
2041 return 0;
2042 }
2043
2044 /**
2045 * console_lock - lock the console system for exclusive use.
2046 *
2047 * Acquires a lock which guarantees that the caller has
2048 * exclusive access to the console system and the console_drivers list.
2049 *
2050 * Can sleep, returns nothing.
2051 */
2052 void console_lock(void)
2053 {
2054 might_sleep();
2055
2056 down_console_sem();
2057 if (console_suspended)
2058 return;
2059 console_locked = 1;
2060 console_may_schedule = 1;
2061 }
2062 EXPORT_SYMBOL(console_lock);
2063
2064 /**
2065 * console_trylock - try to lock the console system for exclusive use.
2066 *
2067 * Try to acquire a lock which guarantees that the caller has exclusive
2068 * access to the console system and the console_drivers list.
2069 *
2070 * returns 1 on success, and 0 on failure to acquire the lock.
2071 */
2072 int console_trylock(void)
2073 {
2074 if (down_trylock_console_sem())
2075 return 0;
2076 if (console_suspended) {
2077 up_console_sem();
2078 return 0;
2079 }
2080 console_locked = 1;
2081 /*
2082 * When PREEMPT_COUNT disabled we can't reliably detect if it's
2083 * safe to schedule (e.g. calling printk while holding a spin_lock),
2084 * because preempt_disable()/preempt_enable() are just barriers there
2085 * and preempt_count() is always 0.
2086 *
2087 * RCU read sections have a separate preemption counter when
2088 * PREEMPT_RCU enabled thus we must take extra care and check
2089 * rcu_preempt_depth(), otherwise RCU read sections modify
2090 * preempt_count().
2091 */
2092 console_may_schedule = !oops_in_progress &&
2093 preemptible() &&
2094 !rcu_preempt_depth();
2095 return 1;
2096 }
2097 EXPORT_SYMBOL(console_trylock);
2098
2099 int is_console_locked(void)
2100 {
2101 return console_locked;
2102 }
2103
2104 /*
2105 * Check if we have any console that is capable of printing while cpu is
2106 * booting or shutting down. Requires console_sem.
2107 */
2108 static int have_callable_console(void)
2109 {
2110 struct console *con;
2111
2112 for_each_console(con)
2113 if ((con->flags & CON_ENABLED) &&
2114 (con->flags & CON_ANYTIME))
2115 return 1;
2116
2117 return 0;
2118 }
2119
2120 /*
2121 * Can we actually use the console at this time on this cpu?
2122 *
2123 * Console drivers may assume that per-cpu resources have been allocated. So
2124 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2125 * call them until this CPU is officially up.
2126 */
2127 static inline int can_use_console(void)
2128 {
2129 return cpu_online(raw_smp_processor_id()) || have_callable_console();
2130 }
2131
2132 /**
2133 * console_unlock - unlock the console system
2134 *
2135 * Releases the console_lock which the caller holds on the console system
2136 * and the console driver list.
2137 *
2138 * While the console_lock was held, console output may have been buffered
2139 * by printk(). If this is the case, console_unlock(); emits
2140 * the output prior to releasing the lock.
2141 *
2142 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2143 *
2144 * console_unlock(); may be called from any context.
2145 */
2146 void console_unlock(void)
2147 {
2148 static char ext_text[CONSOLE_EXT_LOG_MAX];
2149 static char text[LOG_LINE_MAX + PREFIX_MAX];
2150 static u64 seen_seq;
2151 unsigned long flags;
2152 bool wake_klogd = false;
2153 bool do_cond_resched, retry;
2154
2155 if (console_suspended) {
2156 up_console_sem();
2157 return;
2158 }
2159
2160 /*
2161 * Console drivers are called under logbuf_lock, so
2162 * @console_may_schedule should be cleared before; however, we may
2163 * end up dumping a lot of lines, for example, if called from
2164 * console registration path, and should invoke cond_resched()
2165 * between lines if allowable. Not doing so can cause a very long
2166 * scheduling stall on a slow console leading to RCU stall and
2167 * softlockup warnings which exacerbate the issue with more
2168 * messages practically incapacitating the system.
2169 */
2170 do_cond_resched = console_may_schedule;
2171 console_may_schedule = 0;
2172
2173 again:
2174 /*
2175 * We released the console_sem lock, so we need to recheck if
2176 * cpu is online and (if not) is there at least one CON_ANYTIME
2177 * console.
2178 */
2179 if (!can_use_console()) {
2180 console_locked = 0;
2181 up_console_sem();
2182 return;
2183 }
2184
2185 for (;;) {
2186 struct printk_log *msg;
2187 size_t ext_len = 0;
2188 size_t len;
2189
2190 printk_safe_enter_irqsave(flags);
2191 raw_spin_lock(&logbuf_lock);
2192 if (seen_seq != log_next_seq) {
2193 wake_klogd = true;
2194 seen_seq = log_next_seq;
2195 }
2196
2197 if (console_seq < log_first_seq) {
2198 len = sprintf(text, "** %u printk messages dropped ** ",
2199 (unsigned)(log_first_seq - console_seq));
2200
2201 /* messages are gone, move to first one */
2202 console_seq = log_first_seq;
2203 console_idx = log_first_idx;
2204 } else {
2205 len = 0;
2206 }
2207 skip:
2208 if (console_seq == log_next_seq)
2209 break;
2210
2211 msg = log_from_idx(console_idx);
2212 if (suppress_message_printing(msg->level)) {
2213 /*
2214 * Skip record we have buffered and already printed
2215 * directly to the console when we received it, and
2216 * record that has level above the console loglevel.
2217 */
2218 console_idx = log_next(console_idx);
2219 console_seq++;
2220 goto skip;
2221 }
2222
2223 len += msg_print_text(msg, false, text + len, sizeof(text) - len);
2224 if (nr_ext_console_drivers) {
2225 ext_len = msg_print_ext_header(ext_text,
2226 sizeof(ext_text),
2227 msg, console_seq);
2228 ext_len += msg_print_ext_body(ext_text + ext_len,
2229 sizeof(ext_text) - ext_len,
2230 log_dict(msg), msg->dict_len,
2231 log_text(msg), msg->text_len);
2232 }
2233 console_idx = log_next(console_idx);
2234 console_seq++;
2235 raw_spin_unlock(&logbuf_lock);
2236
2237 stop_critical_timings(); /* don't trace print latency */
2238 call_console_drivers(ext_text, ext_len, text, len);
2239 start_critical_timings();
2240 printk_safe_exit_irqrestore(flags);
2241
2242 if (do_cond_resched)
2243 cond_resched();
2244 }
2245 console_locked = 0;
2246
2247 /* Release the exclusive_console once it is used */
2248 if (unlikely(exclusive_console))
2249 exclusive_console = NULL;
2250
2251 raw_spin_unlock(&logbuf_lock);
2252
2253 up_console_sem();
2254
2255 /*
2256 * Someone could have filled up the buffer again, so re-check if there's
2257 * something to flush. In case we cannot trylock the console_sem again,
2258 * there's a new owner and the console_unlock() from them will do the
2259 * flush, no worries.
2260 */
2261 raw_spin_lock(&logbuf_lock);
2262 retry = console_seq != log_next_seq;
2263 raw_spin_unlock(&logbuf_lock);
2264 printk_safe_exit_irqrestore(flags);
2265
2266 if (retry && console_trylock())
2267 goto again;
2268
2269 if (wake_klogd)
2270 wake_up_klogd();
2271 }
2272 EXPORT_SYMBOL(console_unlock);
2273
2274 /**
2275 * console_conditional_schedule - yield the CPU if required
2276 *
2277 * If the console code is currently allowed to sleep, and
2278 * if this CPU should yield the CPU to another task, do
2279 * so here.
2280 *
2281 * Must be called within console_lock();.
2282 */
2283 void __sched console_conditional_schedule(void)
2284 {
2285 if (console_may_schedule)
2286 cond_resched();
2287 }
2288 EXPORT_SYMBOL(console_conditional_schedule);
2289
2290 void console_unblank(void)
2291 {
2292 struct console *c;
2293
2294 /*
2295 * console_unblank can no longer be called in interrupt context unless
2296 * oops_in_progress is set to 1..
2297 */
2298 if (oops_in_progress) {
2299 if (down_trylock_console_sem() != 0)
2300 return;
2301 } else
2302 console_lock();
2303
2304 console_locked = 1;
2305 console_may_schedule = 0;
2306 for_each_console(c)
2307 if ((c->flags & CON_ENABLED) && c->unblank)
2308 c->unblank();
2309 console_unlock();
2310 }
2311
2312 /**
2313 * console_flush_on_panic - flush console content on panic
2314 *
2315 * Immediately output all pending messages no matter what.
2316 */
2317 void console_flush_on_panic(void)
2318 {
2319 /*
2320 * If someone else is holding the console lock, trylock will fail
2321 * and may_schedule may be set. Ignore and proceed to unlock so
2322 * that messages are flushed out. As this can be called from any
2323 * context and we don't want to get preempted while flushing,
2324 * ensure may_schedule is cleared.
2325 */
2326 console_trylock();
2327 console_may_schedule = 0;
2328 console_unlock();
2329 }
2330
2331 /*
2332 * Return the console tty driver structure and its associated index
2333 */
2334 struct tty_driver *console_device(int *index)
2335 {
2336 struct console *c;
2337 struct tty_driver *driver = NULL;
2338
2339 console_lock();
2340 for_each_console(c) {
2341 if (!c->device)
2342 continue;
2343 driver = c->device(c, index);
2344 if (driver)
2345 break;
2346 }
2347 console_unlock();
2348 return driver;
2349 }
2350
2351 /*
2352 * Prevent further output on the passed console device so that (for example)
2353 * serial drivers can disable console output before suspending a port, and can
2354 * re-enable output afterwards.
2355 */
2356 void console_stop(struct console *console)
2357 {
2358 console_lock();
2359 console->flags &= ~CON_ENABLED;
2360 console_unlock();
2361 }
2362 EXPORT_SYMBOL(console_stop);
2363
2364 void console_start(struct console *console)
2365 {
2366 console_lock();
2367 console->flags |= CON_ENABLED;
2368 console_unlock();
2369 }
2370 EXPORT_SYMBOL(console_start);
2371
2372 static int __read_mostly keep_bootcon;
2373
2374 static int __init keep_bootcon_setup(char *str)
2375 {
2376 keep_bootcon = 1;
2377 pr_info("debug: skip boot console de-registration.\n");
2378
2379 return 0;
2380 }
2381
2382 early_param("keep_bootcon", keep_bootcon_setup);
2383
2384 /*
2385 * The console driver calls this routine during kernel initialization
2386 * to register the console printing procedure with printk() and to
2387 * print any messages that were printed by the kernel before the
2388 * console driver was initialized.
2389 *
2390 * This can happen pretty early during the boot process (because of
2391 * early_printk) - sometimes before setup_arch() completes - be careful
2392 * of what kernel features are used - they may not be initialised yet.
2393 *
2394 * There are two types of consoles - bootconsoles (early_printk) and
2395 * "real" consoles (everything which is not a bootconsole) which are
2396 * handled differently.
2397 * - Any number of bootconsoles can be registered at any time.
2398 * - As soon as a "real" console is registered, all bootconsoles
2399 * will be unregistered automatically.
2400 * - Once a "real" console is registered, any attempt to register a
2401 * bootconsoles will be rejected
2402 */
2403 void register_console(struct console *newcon)
2404 {
2405 int i;
2406 unsigned long flags;
2407 struct console *bcon = NULL;
2408 struct console_cmdline *c;
2409
2410 if (console_drivers)
2411 for_each_console(bcon)
2412 if (WARN(bcon == newcon,
2413 "console '%s%d' already registered\n",
2414 bcon->name, bcon->index))
2415 return;
2416
2417 /*
2418 * before we register a new CON_BOOT console, make sure we don't
2419 * already have a valid console
2420 */
2421 if (console_drivers && newcon->flags & CON_BOOT) {
2422 /* find the last or real console */
2423 for_each_console(bcon) {
2424 if (!(bcon->flags & CON_BOOT)) {
2425 pr_info("Too late to register bootconsole %s%d\n",
2426 newcon->name, newcon->index);
2427 return;
2428 }
2429 }
2430 }
2431
2432 if (console_drivers && console_drivers->flags & CON_BOOT)
2433 bcon = console_drivers;
2434
2435 if (preferred_console < 0 || bcon || !console_drivers)
2436 preferred_console = selected_console;
2437
2438 /*
2439 * See if we want to use this console driver. If we
2440 * didn't select a console we take the first one
2441 * that registers here.
2442 */
2443 if (preferred_console < 0) {
2444 if (newcon->index < 0)
2445 newcon->index = 0;
2446 if (newcon->setup == NULL ||
2447 newcon->setup(newcon, NULL) == 0) {
2448 newcon->flags |= CON_ENABLED;
2449 if (newcon->device) {
2450 newcon->flags |= CON_CONSDEV;
2451 preferred_console = 0;
2452 }
2453 }
2454 }
2455
2456 /*
2457 * See if this console matches one we selected on
2458 * the command line.
2459 */
2460 for (i = 0, c = console_cmdline;
2461 i < MAX_CMDLINECONSOLES && c->name[0];
2462 i++, c++) {
2463 if (!newcon->match ||
2464 newcon->match(newcon, c->name, c->index, c->options) != 0) {
2465 /* default matching */
2466 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2467 if (strcmp(c->name, newcon->name) != 0)
2468 continue;
2469 if (newcon->index >= 0 &&
2470 newcon->index != c->index)
2471 continue;
2472 if (newcon->index < 0)
2473 newcon->index = c->index;
2474
2475 if (_braille_register_console(newcon, c))
2476 return;
2477
2478 if (newcon->setup &&
2479 newcon->setup(newcon, c->options) != 0)
2480 break;
2481 }
2482
2483 newcon->flags |= CON_ENABLED;
2484 if (i == selected_console) {
2485 newcon->flags |= CON_CONSDEV;
2486 preferred_console = selected_console;
2487 }
2488 break;
2489 }
2490
2491 if (!(newcon->flags & CON_ENABLED))
2492 return;
2493
2494 /*
2495 * If we have a bootconsole, and are switching to a real console,
2496 * don't print everything out again, since when the boot console, and
2497 * the real console are the same physical device, it's annoying to
2498 * see the beginning boot messages twice
2499 */
2500 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2501 newcon->flags &= ~CON_PRINTBUFFER;
2502
2503 /*
2504 * Put this console in the list - keep the
2505 * preferred driver at the head of the list.
2506 */
2507 console_lock();
2508 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2509 newcon->next = console_drivers;
2510 console_drivers = newcon;
2511 if (newcon->next)
2512 newcon->next->flags &= ~CON_CONSDEV;
2513 } else {
2514 newcon->next = console_drivers->next;
2515 console_drivers->next = newcon;
2516 }
2517
2518 if (newcon->flags & CON_EXTENDED)
2519 if (!nr_ext_console_drivers++)
2520 pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2521
2522 if (newcon->flags & CON_PRINTBUFFER) {
2523 /*
2524 * console_unlock(); will print out the buffered messages
2525 * for us.
2526 */
2527 logbuf_lock_irqsave(flags);
2528 console_seq = syslog_seq;
2529 console_idx = syslog_idx;
2530 logbuf_unlock_irqrestore(flags);
2531 /*
2532 * We're about to replay the log buffer. Only do this to the
2533 * just-registered console to avoid excessive message spam to
2534 * the already-registered consoles.
2535 */
2536 exclusive_console = newcon;
2537 }
2538 console_unlock();
2539 console_sysfs_notify();
2540
2541 /*
2542 * By unregistering the bootconsoles after we enable the real console
2543 * we get the "console xxx enabled" message on all the consoles -
2544 * boot consoles, real consoles, etc - this is to ensure that end
2545 * users know there might be something in the kernel's log buffer that
2546 * went to the bootconsole (that they do not see on the real console)
2547 */
2548 pr_info("%sconsole [%s%d] enabled\n",
2549 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2550 newcon->name, newcon->index);
2551 if (bcon &&
2552 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2553 !keep_bootcon) {
2554 /* We need to iterate through all boot consoles, to make
2555 * sure we print everything out, before we unregister them.
2556 */
2557 for_each_console(bcon)
2558 if (bcon->flags & CON_BOOT)
2559 unregister_console(bcon);
2560 }
2561 }
2562 EXPORT_SYMBOL(register_console);
2563
2564 int unregister_console(struct console *console)
2565 {
2566 struct console *a, *b;
2567 int res;
2568
2569 pr_info("%sconsole [%s%d] disabled\n",
2570 (console->flags & CON_BOOT) ? "boot" : "" ,
2571 console->name, console->index);
2572
2573 res = _braille_unregister_console(console);
2574 if (res)
2575 return res;
2576
2577 res = 1;
2578 console_lock();
2579 if (console_drivers == console) {
2580 console_drivers=console->next;
2581 res = 0;
2582 } else if (console_drivers) {
2583 for (a=console_drivers->next, b=console_drivers ;
2584 a; b=a, a=b->next) {
2585 if (a == console) {
2586 b->next = a->next;
2587 res = 0;
2588 break;
2589 }
2590 }
2591 }
2592
2593 if (!res && (console->flags & CON_EXTENDED))
2594 nr_ext_console_drivers--;
2595
2596 /*
2597 * If this isn't the last console and it has CON_CONSDEV set, we
2598 * need to set it on the next preferred console.
2599 */
2600 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2601 console_drivers->flags |= CON_CONSDEV;
2602
2603 console->flags &= ~CON_ENABLED;
2604 console_unlock();
2605 console_sysfs_notify();
2606 return res;
2607 }
2608 EXPORT_SYMBOL(unregister_console);
2609
2610 /*
2611 * Some boot consoles access data that is in the init section and which will
2612 * be discarded after the initcalls have been run. To make sure that no code
2613 * will access this data, unregister the boot consoles in a late initcall.
2614 *
2615 * If for some reason, such as deferred probe or the driver being a loadable
2616 * module, the real console hasn't registered yet at this point, there will
2617 * be a brief interval in which no messages are logged to the console, which
2618 * makes it difficult to diagnose problems that occur during this time.
2619 *
2620 * To mitigate this problem somewhat, only unregister consoles whose memory
2621 * intersects with the init section. Note that code exists elsewhere to get
2622 * rid of the boot console as soon as the proper console shows up, so there
2623 * won't be side-effects from postponing the removal.
2624 */
2625 static int __init printk_late_init(void)
2626 {
2627 struct console *con;
2628 int ret;
2629
2630 for_each_console(con) {
2631 if (!keep_bootcon && con->flags & CON_BOOT) {
2632 /*
2633 * Make sure to unregister boot consoles whose data
2634 * resides in the init section before the init section
2635 * is discarded. Boot consoles whose data will stick
2636 * around will automatically be unregistered when the
2637 * proper console replaces them.
2638 */
2639 if (init_section_intersects(con, sizeof(*con)))
2640 unregister_console(con);
2641 }
2642 }
2643 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
2644 console_cpu_notify);
2645 WARN_ON(ret < 0);
2646 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
2647 console_cpu_notify, NULL);
2648 WARN_ON(ret < 0);
2649 return 0;
2650 }
2651 late_initcall(printk_late_init);
2652
2653 #if defined CONFIG_PRINTK
2654 /*
2655 * Delayed printk version, for scheduler-internal messages:
2656 */
2657 #define PRINTK_PENDING_WAKEUP 0x01
2658 #define PRINTK_PENDING_OUTPUT 0x02
2659
2660 static DEFINE_PER_CPU(int, printk_pending);
2661
2662 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2663 {
2664 int pending = __this_cpu_xchg(printk_pending, 0);
2665
2666 if (pending & PRINTK_PENDING_OUTPUT) {
2667 /* If trylock fails, someone else is doing the printing */
2668 if (console_trylock())
2669 console_unlock();
2670 }
2671
2672 if (pending & PRINTK_PENDING_WAKEUP)
2673 wake_up_interruptible(&log_wait);
2674 }
2675
2676 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2677 .func = wake_up_klogd_work_func,
2678 .flags = IRQ_WORK_LAZY,
2679 };
2680
2681 void wake_up_klogd(void)
2682 {
2683 preempt_disable();
2684 if (waitqueue_active(&log_wait)) {
2685 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2686 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2687 }
2688 preempt_enable();
2689 }
2690
2691 int printk_deferred(const char *fmt, ...)
2692 {
2693 va_list args;
2694 int r;
2695
2696 preempt_disable();
2697 va_start(args, fmt);
2698 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2699 va_end(args);
2700
2701 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2702 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2703 preempt_enable();
2704
2705 return r;
2706 }
2707
2708 /*
2709 * printk rate limiting, lifted from the networking subsystem.
2710 *
2711 * This enforces a rate limit: not more than 10 kernel messages
2712 * every 5s to make a denial-of-service attack impossible.
2713 */
2714 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2715
2716 int __printk_ratelimit(const char *func)
2717 {
2718 return ___ratelimit(&printk_ratelimit_state, func);
2719 }
2720 EXPORT_SYMBOL(__printk_ratelimit);
2721
2722 /**
2723 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2724 * @caller_jiffies: pointer to caller's state
2725 * @interval_msecs: minimum interval between prints
2726 *
2727 * printk_timed_ratelimit() returns true if more than @interval_msecs
2728 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2729 * returned true.
2730 */
2731 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2732 unsigned int interval_msecs)
2733 {
2734 unsigned long elapsed = jiffies - *caller_jiffies;
2735
2736 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2737 return false;
2738
2739 *caller_jiffies = jiffies;
2740 return true;
2741 }
2742 EXPORT_SYMBOL(printk_timed_ratelimit);
2743
2744 static DEFINE_SPINLOCK(dump_list_lock);
2745 static LIST_HEAD(dump_list);
2746
2747 /**
2748 * kmsg_dump_register - register a kernel log dumper.
2749 * @dumper: pointer to the kmsg_dumper structure
2750 *
2751 * Adds a kernel log dumper to the system. The dump callback in the
2752 * structure will be called when the kernel oopses or panics and must be
2753 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2754 */
2755 int kmsg_dump_register(struct kmsg_dumper *dumper)
2756 {
2757 unsigned long flags;
2758 int err = -EBUSY;
2759
2760 /* The dump callback needs to be set */
2761 if (!dumper->dump)
2762 return -EINVAL;
2763
2764 spin_lock_irqsave(&dump_list_lock, flags);
2765 /* Don't allow registering multiple times */
2766 if (!dumper->registered) {
2767 dumper->registered = 1;
2768 list_add_tail_rcu(&dumper->list, &dump_list);
2769 err = 0;
2770 }
2771 spin_unlock_irqrestore(&dump_list_lock, flags);
2772
2773 return err;
2774 }
2775 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2776
2777 /**
2778 * kmsg_dump_unregister - unregister a kmsg dumper.
2779 * @dumper: pointer to the kmsg_dumper structure
2780 *
2781 * Removes a dump device from the system. Returns zero on success and
2782 * %-EINVAL otherwise.
2783 */
2784 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2785 {
2786 unsigned long flags;
2787 int err = -EINVAL;
2788
2789 spin_lock_irqsave(&dump_list_lock, flags);
2790 if (dumper->registered) {
2791 dumper->registered = 0;
2792 list_del_rcu(&dumper->list);
2793 err = 0;
2794 }
2795 spin_unlock_irqrestore(&dump_list_lock, flags);
2796 synchronize_rcu();
2797
2798 return err;
2799 }
2800 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2801
2802 static bool always_kmsg_dump;
2803 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2804
2805 /**
2806 * kmsg_dump - dump kernel log to kernel message dumpers.
2807 * @reason: the reason (oops, panic etc) for dumping
2808 *
2809 * Call each of the registered dumper's dump() callback, which can
2810 * retrieve the kmsg records with kmsg_dump_get_line() or
2811 * kmsg_dump_get_buffer().
2812 */
2813 void kmsg_dump(enum kmsg_dump_reason reason)
2814 {
2815 struct kmsg_dumper *dumper;
2816 unsigned long flags;
2817
2818 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2819 return;
2820
2821 rcu_read_lock();
2822 list_for_each_entry_rcu(dumper, &dump_list, list) {
2823 if (dumper->max_reason && reason > dumper->max_reason)
2824 continue;
2825
2826 /* initialize iterator with data about the stored records */
2827 dumper->active = true;
2828
2829 logbuf_lock_irqsave(flags);
2830 dumper->cur_seq = clear_seq;
2831 dumper->cur_idx = clear_idx;
2832 dumper->next_seq = log_next_seq;
2833 dumper->next_idx = log_next_idx;
2834 logbuf_unlock_irqrestore(flags);
2835
2836 /* invoke dumper which will iterate over records */
2837 dumper->dump(dumper, reason);
2838
2839 /* reset iterator */
2840 dumper->active = false;
2841 }
2842 rcu_read_unlock();
2843 }
2844
2845 /**
2846 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2847 * @dumper: registered kmsg dumper
2848 * @syslog: include the "<4>" prefixes
2849 * @line: buffer to copy the line to
2850 * @size: maximum size of the buffer
2851 * @len: length of line placed into buffer
2852 *
2853 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2854 * record, and copy one record into the provided buffer.
2855 *
2856 * Consecutive calls will return the next available record moving
2857 * towards the end of the buffer with the youngest messages.
2858 *
2859 * A return value of FALSE indicates that there are no more records to
2860 * read.
2861 *
2862 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2863 */
2864 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2865 char *line, size_t size, size_t *len)
2866 {
2867 struct printk_log *msg;
2868 size_t l = 0;
2869 bool ret = false;
2870
2871 if (!dumper->active)
2872 goto out;
2873
2874 if (dumper->cur_seq < log_first_seq) {
2875 /* messages are gone, move to first available one */
2876 dumper->cur_seq = log_first_seq;
2877 dumper->cur_idx = log_first_idx;
2878 }
2879
2880 /* last entry */
2881 if (dumper->cur_seq >= log_next_seq)
2882 goto out;
2883
2884 msg = log_from_idx(dumper->cur_idx);
2885 l = msg_print_text(msg, syslog, line, size);
2886
2887 dumper->cur_idx = log_next(dumper->cur_idx);
2888 dumper->cur_seq++;
2889 ret = true;
2890 out:
2891 if (len)
2892 *len = l;
2893 return ret;
2894 }
2895
2896 /**
2897 * kmsg_dump_get_line - retrieve one kmsg log line
2898 * @dumper: registered kmsg dumper
2899 * @syslog: include the "<4>" prefixes
2900 * @line: buffer to copy the line to
2901 * @size: maximum size of the buffer
2902 * @len: length of line placed into buffer
2903 *
2904 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2905 * record, and copy one record into the provided buffer.
2906 *
2907 * Consecutive calls will return the next available record moving
2908 * towards the end of the buffer with the youngest messages.
2909 *
2910 * A return value of FALSE indicates that there are no more records to
2911 * read.
2912 */
2913 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2914 char *line, size_t size, size_t *len)
2915 {
2916 unsigned long flags;
2917 bool ret;
2918
2919 logbuf_lock_irqsave(flags);
2920 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2921 logbuf_unlock_irqrestore(flags);
2922
2923 return ret;
2924 }
2925 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2926
2927 /**
2928 * kmsg_dump_get_buffer - copy kmsg log lines
2929 * @dumper: registered kmsg dumper
2930 * @syslog: include the "<4>" prefixes
2931 * @buf: buffer to copy the line to
2932 * @size: maximum size of the buffer
2933 * @len: length of line placed into buffer
2934 *
2935 * Start at the end of the kmsg buffer and fill the provided buffer
2936 * with as many of the the *youngest* kmsg records that fit into it.
2937 * If the buffer is large enough, all available kmsg records will be
2938 * copied with a single call.
2939 *
2940 * Consecutive calls will fill the buffer with the next block of
2941 * available older records, not including the earlier retrieved ones.
2942 *
2943 * A return value of FALSE indicates that there are no more records to
2944 * read.
2945 */
2946 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2947 char *buf, size_t size, size_t *len)
2948 {
2949 unsigned long flags;
2950 u64 seq;
2951 u32 idx;
2952 u64 next_seq;
2953 u32 next_idx;
2954 size_t l = 0;
2955 bool ret = false;
2956
2957 if (!dumper->active)
2958 goto out;
2959
2960 logbuf_lock_irqsave(flags);
2961 if (dumper->cur_seq < log_first_seq) {
2962 /* messages are gone, move to first available one */
2963 dumper->cur_seq = log_first_seq;
2964 dumper->cur_idx = log_first_idx;
2965 }
2966
2967 /* last entry */
2968 if (dumper->cur_seq >= dumper->next_seq) {
2969 logbuf_unlock_irqrestore(flags);
2970 goto out;
2971 }
2972
2973 /* calculate length of entire buffer */
2974 seq = dumper->cur_seq;
2975 idx = dumper->cur_idx;
2976 while (seq < dumper->next_seq) {
2977 struct printk_log *msg = log_from_idx(idx);
2978
2979 l += msg_print_text(msg, true, NULL, 0);
2980 idx = log_next(idx);
2981 seq++;
2982 }
2983
2984 /* move first record forward until length fits into the buffer */
2985 seq = dumper->cur_seq;
2986 idx = dumper->cur_idx;
2987 while (l > size && seq < dumper->next_seq) {
2988 struct printk_log *msg = log_from_idx(idx);
2989
2990 l -= msg_print_text(msg, true, NULL, 0);
2991 idx = log_next(idx);
2992 seq++;
2993 }
2994
2995 /* last message in next interation */
2996 next_seq = seq;
2997 next_idx = idx;
2998
2999 l = 0;
3000 while (seq < dumper->next_seq) {
3001 struct printk_log *msg = log_from_idx(idx);
3002
3003 l += msg_print_text(msg, syslog, buf + l, size - l);
3004 idx = log_next(idx);
3005 seq++;
3006 }
3007
3008 dumper->next_seq = next_seq;
3009 dumper->next_idx = next_idx;
3010 ret = true;
3011 logbuf_unlock_irqrestore(flags);
3012 out:
3013 if (len)
3014 *len = l;
3015 return ret;
3016 }
3017 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3018
3019 /**
3020 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3021 * @dumper: registered kmsg dumper
3022 *
3023 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3024 * kmsg_dump_get_buffer() can be called again and used multiple
3025 * times within the same dumper.dump() callback.
3026 *
3027 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3028 */
3029 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3030 {
3031 dumper->cur_seq = clear_seq;
3032 dumper->cur_idx = clear_idx;
3033 dumper->next_seq = log_next_seq;
3034 dumper->next_idx = log_next_idx;
3035 }
3036
3037 /**
3038 * kmsg_dump_rewind - reset the interator
3039 * @dumper: registered kmsg dumper
3040 *
3041 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3042 * kmsg_dump_get_buffer() can be called again and used multiple
3043 * times within the same dumper.dump() callback.
3044 */
3045 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3046 {
3047 unsigned long flags;
3048
3049 logbuf_lock_irqsave(flags);
3050 kmsg_dump_rewind_nolock(dumper);
3051 logbuf_unlock_irqrestore(flags);
3052 }
3053 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3054
3055 static char dump_stack_arch_desc_str[128];
3056
3057 /**
3058 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3059 * @fmt: printf-style format string
3060 * @...: arguments for the format string
3061 *
3062 * The configured string will be printed right after utsname during task
3063 * dumps. Usually used to add arch-specific system identifiers. If an
3064 * arch wants to make use of such an ID string, it should initialize this
3065 * as soon as possible during boot.
3066 */
3067 void __init dump_stack_set_arch_desc(const char *fmt, ...)
3068 {
3069 va_list args;
3070
3071 va_start(args, fmt);
3072 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3073 fmt, args);
3074 va_end(args);
3075 }
3076
3077 /**
3078 * dump_stack_print_info - print generic debug info for dump_stack()
3079 * @log_lvl: log level
3080 *
3081 * Arch-specific dump_stack() implementations can use this function to
3082 * print out the same debug information as the generic dump_stack().
3083 */
3084 void dump_stack_print_info(const char *log_lvl)
3085 {
3086 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3087 log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3088 print_tainted(), init_utsname()->release,
3089 (int)strcspn(init_utsname()->version, " "),
3090 init_utsname()->version);
3091
3092 if (dump_stack_arch_desc_str[0] != '\0')
3093 printk("%sHardware name: %s\n",
3094 log_lvl, dump_stack_arch_desc_str);
3095
3096 print_worker_info(log_lvl, current);
3097 }
3098
3099 /**
3100 * show_regs_print_info - print generic debug info for show_regs()
3101 * @log_lvl: log level
3102 *
3103 * show_regs() implementations can use this function to print out generic
3104 * debug information.
3105 */
3106 void show_regs_print_info(const char *log_lvl)
3107 {
3108 dump_stack_print_info(log_lvl);
3109
3110 printk("%stask: %p task.stack: %p\n",
3111 log_lvl, current, task_stack_page(current));
3112 }
3113
3114 #endif