]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/printk/printk.c
70c66c5ba2125f5561e74b7f05a1999dd394109a
[mirror_ubuntu-artful-kernel.git] / kernel / printk / printk.c
1 /*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/delay.h>
30 #include <linux/smp.h>
31 #include <linux/security.h>
32 #include <linux/bootmem.h>
33 #include <linux/memblock.h>
34 #include <linux/syscalls.h>
35 #include <linux/kexec.h>
36 #include <linux/kdb.h>
37 #include <linux/ratelimit.h>
38 #include <linux/kmsg_dump.h>
39 #include <linux/syslog.h>
40 #include <linux/cpu.h>
41 #include <linux/notifier.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/utsname.h>
46 #include <linux/ctype.h>
47 #include <linux/uio.h>
48
49 #include <asm/uaccess.h>
50 #include <asm/sections.h>
51
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/printk.h>
54
55 #include "console_cmdline.h"
56 #include "braille.h"
57 #include "internal.h"
58
59 int console_printk[4] = {
60 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */
61 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */
62 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */
63 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */
64 };
65
66 /*
67 * Low level drivers may need that to know if they can schedule in
68 * their unblank() callback or not. So let's export it.
69 */
70 int oops_in_progress;
71 EXPORT_SYMBOL(oops_in_progress);
72
73 /*
74 * console_sem protects the console_drivers list, and also
75 * provides serialisation for access to the entire console
76 * driver system.
77 */
78 static DEFINE_SEMAPHORE(console_sem);
79 struct console *console_drivers;
80 EXPORT_SYMBOL_GPL(console_drivers);
81
82 #ifdef CONFIG_LOCKDEP
83 static struct lockdep_map console_lock_dep_map = {
84 .name = "console_lock"
85 };
86 #endif
87
88 /*
89 * Number of registered extended console drivers.
90 *
91 * If extended consoles are present, in-kernel cont reassembly is disabled
92 * and each fragment is stored as a separate log entry with proper
93 * continuation flag so that every emitted message has full metadata. This
94 * doesn't change the result for regular consoles or /proc/kmsg. For
95 * /dev/kmsg, as long as the reader concatenates messages according to
96 * consecutive continuation flags, the end result should be the same too.
97 */
98 static int nr_ext_console_drivers;
99
100 /*
101 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
102 * macros instead of functions so that _RET_IP_ contains useful information.
103 */
104 #define down_console_sem() do { \
105 down(&console_sem);\
106 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
107 } while (0)
108
109 static int __down_trylock_console_sem(unsigned long ip)
110 {
111 if (down_trylock(&console_sem))
112 return 1;
113 mutex_acquire(&console_lock_dep_map, 0, 1, ip);
114 return 0;
115 }
116 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
117
118 #define up_console_sem() do { \
119 mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
120 up(&console_sem);\
121 } while (0)
122
123 /*
124 * This is used for debugging the mess that is the VT code by
125 * keeping track if we have the console semaphore held. It's
126 * definitely not the perfect debug tool (we don't know if _WE_
127 * hold it and are racing, but it helps tracking those weird code
128 * paths in the console code where we end up in places I want
129 * locked without the console sempahore held).
130 */
131 static int console_locked, console_suspended;
132
133 /*
134 * If exclusive_console is non-NULL then only this console is to be printed to.
135 */
136 static struct console *exclusive_console;
137
138 /*
139 * Array of consoles built from command line options (console=)
140 */
141
142 #define MAX_CMDLINECONSOLES 8
143
144 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
145
146 static int selected_console = -1;
147 static int preferred_console = -1;
148 int console_set_on_cmdline;
149 EXPORT_SYMBOL(console_set_on_cmdline);
150
151 /* Flag: console code may call schedule() */
152 static int console_may_schedule;
153
154 /*
155 * The printk log buffer consists of a chain of concatenated variable
156 * length records. Every record starts with a record header, containing
157 * the overall length of the record.
158 *
159 * The heads to the first and last entry in the buffer, as well as the
160 * sequence numbers of these entries are maintained when messages are
161 * stored.
162 *
163 * If the heads indicate available messages, the length in the header
164 * tells the start next message. A length == 0 for the next message
165 * indicates a wrap-around to the beginning of the buffer.
166 *
167 * Every record carries the monotonic timestamp in microseconds, as well as
168 * the standard userspace syslog level and syslog facility. The usual
169 * kernel messages use LOG_KERN; userspace-injected messages always carry
170 * a matching syslog facility, by default LOG_USER. The origin of every
171 * message can be reliably determined that way.
172 *
173 * The human readable log message directly follows the message header. The
174 * length of the message text is stored in the header, the stored message
175 * is not terminated.
176 *
177 * Optionally, a message can carry a dictionary of properties (key/value pairs),
178 * to provide userspace with a machine-readable message context.
179 *
180 * Examples for well-defined, commonly used property names are:
181 * DEVICE=b12:8 device identifier
182 * b12:8 block dev_t
183 * c127:3 char dev_t
184 * n8 netdev ifindex
185 * +sound:card0 subsystem:devname
186 * SUBSYSTEM=pci driver-core subsystem name
187 *
188 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
189 * follows directly after a '=' character. Every property is terminated by
190 * a '\0' character. The last property is not terminated.
191 *
192 * Example of a message structure:
193 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
194 * 0008 34 00 record is 52 bytes long
195 * 000a 0b 00 text is 11 bytes long
196 * 000c 1f 00 dictionary is 23 bytes long
197 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
198 * 0010 69 74 27 73 20 61 20 6c "it's a l"
199 * 69 6e 65 "ine"
200 * 001b 44 45 56 49 43 "DEVIC"
201 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
202 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
203 * 67 "g"
204 * 0032 00 00 00 padding to next message header
205 *
206 * The 'struct printk_log' buffer header must never be directly exported to
207 * userspace, it is a kernel-private implementation detail that might
208 * need to be changed in the future, when the requirements change.
209 *
210 * /dev/kmsg exports the structured data in the following line format:
211 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
212 *
213 * Users of the export format should ignore possible additional values
214 * separated by ',', and find the message after the ';' character.
215 *
216 * The optional key/value pairs are attached as continuation lines starting
217 * with a space character and terminated by a newline. All possible
218 * non-prinatable characters are escaped in the "\xff" notation.
219 */
220
221 enum log_flags {
222 LOG_NOCONS = 1, /* already flushed, do not print to console */
223 LOG_NEWLINE = 2, /* text ended with a newline */
224 LOG_PREFIX = 4, /* text started with a prefix */
225 LOG_CONT = 8, /* text is a fragment of a continuation line */
226 };
227
228 struct printk_log {
229 u64 ts_nsec; /* timestamp in nanoseconds */
230 u16 len; /* length of entire record */
231 u16 text_len; /* length of text buffer */
232 u16 dict_len; /* length of dictionary buffer */
233 u8 facility; /* syslog facility */
234 u8 flags:5; /* internal record flags */
235 u8 level:3; /* syslog level */
236 }
237 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
238 __packed __aligned(4)
239 #endif
240 ;
241
242 /*
243 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken
244 * within the scheduler's rq lock. It must be released before calling
245 * console_unlock() or anything else that might wake up a process.
246 */
247 DEFINE_RAW_SPINLOCK(logbuf_lock);
248
249 #ifdef CONFIG_PRINTK
250 DECLARE_WAIT_QUEUE_HEAD(log_wait);
251 /* the next printk record to read by syslog(READ) or /proc/kmsg */
252 static u64 syslog_seq;
253 static u32 syslog_idx;
254 static enum log_flags syslog_prev;
255 static size_t syslog_partial;
256
257 /* index and sequence number of the first record stored in the buffer */
258 static u64 log_first_seq;
259 static u32 log_first_idx;
260
261 /* index and sequence number of the next record to store in the buffer */
262 static u64 log_next_seq;
263 static u32 log_next_idx;
264
265 /* the next printk record to write to the console */
266 static u64 console_seq;
267 static u32 console_idx;
268 static enum log_flags console_prev;
269
270 /* the next printk record to read after the last 'clear' command */
271 static u64 clear_seq;
272 static u32 clear_idx;
273
274 #define PREFIX_MAX 32
275 #define LOG_LINE_MAX (1024 - PREFIX_MAX)
276
277 #define LOG_LEVEL(v) ((v) & 0x07)
278 #define LOG_FACILITY(v) ((v) >> 3 & 0xff)
279
280 /* record buffer */
281 #define LOG_ALIGN __alignof__(struct printk_log)
282 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
283 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
284 static char *log_buf = __log_buf;
285 static u32 log_buf_len = __LOG_BUF_LEN;
286
287 /* Return log buffer address */
288 char *log_buf_addr_get(void)
289 {
290 return log_buf;
291 }
292
293 /* Return log buffer size */
294 u32 log_buf_len_get(void)
295 {
296 return log_buf_len;
297 }
298
299 /* human readable text of the record */
300 static char *log_text(const struct printk_log *msg)
301 {
302 return (char *)msg + sizeof(struct printk_log);
303 }
304
305 /* optional key/value pair dictionary attached to the record */
306 static char *log_dict(const struct printk_log *msg)
307 {
308 return (char *)msg + sizeof(struct printk_log) + msg->text_len;
309 }
310
311 /* get record by index; idx must point to valid msg */
312 static struct printk_log *log_from_idx(u32 idx)
313 {
314 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
315
316 /*
317 * A length == 0 record is the end of buffer marker. Wrap around and
318 * read the message at the start of the buffer.
319 */
320 if (!msg->len)
321 return (struct printk_log *)log_buf;
322 return msg;
323 }
324
325 /* get next record; idx must point to valid msg */
326 static u32 log_next(u32 idx)
327 {
328 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
329
330 /* length == 0 indicates the end of the buffer; wrap */
331 /*
332 * A length == 0 record is the end of buffer marker. Wrap around and
333 * read the message at the start of the buffer as *this* one, and
334 * return the one after that.
335 */
336 if (!msg->len) {
337 msg = (struct printk_log *)log_buf;
338 return msg->len;
339 }
340 return idx + msg->len;
341 }
342
343 /*
344 * Check whether there is enough free space for the given message.
345 *
346 * The same values of first_idx and next_idx mean that the buffer
347 * is either empty or full.
348 *
349 * If the buffer is empty, we must respect the position of the indexes.
350 * They cannot be reset to the beginning of the buffer.
351 */
352 static int logbuf_has_space(u32 msg_size, bool empty)
353 {
354 u32 free;
355
356 if (log_next_idx > log_first_idx || empty)
357 free = max(log_buf_len - log_next_idx, log_first_idx);
358 else
359 free = log_first_idx - log_next_idx;
360
361 /*
362 * We need space also for an empty header that signalizes wrapping
363 * of the buffer.
364 */
365 return free >= msg_size + sizeof(struct printk_log);
366 }
367
368 static int log_make_free_space(u32 msg_size)
369 {
370 while (log_first_seq < log_next_seq &&
371 !logbuf_has_space(msg_size, false)) {
372 /* drop old messages until we have enough contiguous space */
373 log_first_idx = log_next(log_first_idx);
374 log_first_seq++;
375 }
376
377 if (clear_seq < log_first_seq) {
378 clear_seq = log_first_seq;
379 clear_idx = log_first_idx;
380 }
381
382 /* sequence numbers are equal, so the log buffer is empty */
383 if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
384 return 0;
385
386 return -ENOMEM;
387 }
388
389 /* compute the message size including the padding bytes */
390 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
391 {
392 u32 size;
393
394 size = sizeof(struct printk_log) + text_len + dict_len;
395 *pad_len = (-size) & (LOG_ALIGN - 1);
396 size += *pad_len;
397
398 return size;
399 }
400
401 /*
402 * Define how much of the log buffer we could take at maximum. The value
403 * must be greater than two. Note that only half of the buffer is available
404 * when the index points to the middle.
405 */
406 #define MAX_LOG_TAKE_PART 4
407 static const char trunc_msg[] = "<truncated>";
408
409 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
410 u16 *dict_len, u32 *pad_len)
411 {
412 /*
413 * The message should not take the whole buffer. Otherwise, it might
414 * get removed too soon.
415 */
416 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
417 if (*text_len > max_text_len)
418 *text_len = max_text_len;
419 /* enable the warning message */
420 *trunc_msg_len = strlen(trunc_msg);
421 /* disable the "dict" completely */
422 *dict_len = 0;
423 /* compute the size again, count also the warning message */
424 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
425 }
426
427 /* insert record into the buffer, discard old ones, update heads */
428 static int log_store(int facility, int level,
429 enum log_flags flags, u64 ts_nsec,
430 const char *dict, u16 dict_len,
431 const char *text, u16 text_len)
432 {
433 struct printk_log *msg;
434 u32 size, pad_len;
435 u16 trunc_msg_len = 0;
436
437 /* number of '\0' padding bytes to next message */
438 size = msg_used_size(text_len, dict_len, &pad_len);
439
440 if (log_make_free_space(size)) {
441 /* truncate the message if it is too long for empty buffer */
442 size = truncate_msg(&text_len, &trunc_msg_len,
443 &dict_len, &pad_len);
444 /* survive when the log buffer is too small for trunc_msg */
445 if (log_make_free_space(size))
446 return 0;
447 }
448
449 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
450 /*
451 * This message + an additional empty header does not fit
452 * at the end of the buffer. Add an empty header with len == 0
453 * to signify a wrap around.
454 */
455 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
456 log_next_idx = 0;
457 }
458
459 /* fill message */
460 msg = (struct printk_log *)(log_buf + log_next_idx);
461 memcpy(log_text(msg), text, text_len);
462 msg->text_len = text_len;
463 if (trunc_msg_len) {
464 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
465 msg->text_len += trunc_msg_len;
466 }
467 memcpy(log_dict(msg), dict, dict_len);
468 msg->dict_len = dict_len;
469 msg->facility = facility;
470 msg->level = level & 7;
471 msg->flags = flags & 0x1f;
472 if (ts_nsec > 0)
473 msg->ts_nsec = ts_nsec;
474 else
475 msg->ts_nsec = local_clock();
476 memset(log_dict(msg) + dict_len, 0, pad_len);
477 msg->len = size;
478
479 /* insert message */
480 log_next_idx += msg->len;
481 log_next_seq++;
482
483 return msg->text_len;
484 }
485
486 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
487
488 static int syslog_action_restricted(int type)
489 {
490 if (dmesg_restrict)
491 return 1;
492 /*
493 * Unless restricted, we allow "read all" and "get buffer size"
494 * for everybody.
495 */
496 return type != SYSLOG_ACTION_READ_ALL &&
497 type != SYSLOG_ACTION_SIZE_BUFFER;
498 }
499
500 int check_syslog_permissions(int type, int source)
501 {
502 /*
503 * If this is from /proc/kmsg and we've already opened it, then we've
504 * already done the capabilities checks at open time.
505 */
506 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
507 goto ok;
508
509 if (syslog_action_restricted(type)) {
510 if (capable(CAP_SYSLOG))
511 goto ok;
512 /*
513 * For historical reasons, accept CAP_SYS_ADMIN too, with
514 * a warning.
515 */
516 if (capable(CAP_SYS_ADMIN)) {
517 pr_warn_once("%s (%d): Attempt to access syslog with "
518 "CAP_SYS_ADMIN but no CAP_SYSLOG "
519 "(deprecated).\n",
520 current->comm, task_pid_nr(current));
521 goto ok;
522 }
523 return -EPERM;
524 }
525 ok:
526 return security_syslog(type);
527 }
528 EXPORT_SYMBOL_GPL(check_syslog_permissions);
529
530 static void append_char(char **pp, char *e, char c)
531 {
532 if (*pp < e)
533 *(*pp)++ = c;
534 }
535
536 static ssize_t msg_print_ext_header(char *buf, size_t size,
537 struct printk_log *msg, u64 seq,
538 enum log_flags prev_flags)
539 {
540 u64 ts_usec = msg->ts_nsec;
541 char cont = '-';
542
543 do_div(ts_usec, 1000);
544
545 /*
546 * If we couldn't merge continuation line fragments during the print,
547 * export the stored flags to allow an optional external merge of the
548 * records. Merging the records isn't always neccessarily correct, like
549 * when we hit a race during printing. In most cases though, it produces
550 * better readable output. 'c' in the record flags mark the first
551 * fragment of a line, '+' the following.
552 */
553 if (msg->flags & LOG_CONT && !(prev_flags & LOG_CONT))
554 cont = 'c';
555 else if ((msg->flags & LOG_CONT) ||
556 ((prev_flags & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
557 cont = '+';
558
559 return scnprintf(buf, size, "%u,%llu,%llu,%c;",
560 (msg->facility << 3) | msg->level, seq, ts_usec, cont);
561 }
562
563 static ssize_t msg_print_ext_body(char *buf, size_t size,
564 char *dict, size_t dict_len,
565 char *text, size_t text_len)
566 {
567 char *p = buf, *e = buf + size;
568 size_t i;
569
570 /* escape non-printable characters */
571 for (i = 0; i < text_len; i++) {
572 unsigned char c = text[i];
573
574 if (c < ' ' || c >= 127 || c == '\\')
575 p += scnprintf(p, e - p, "\\x%02x", c);
576 else
577 append_char(&p, e, c);
578 }
579 append_char(&p, e, '\n');
580
581 if (dict_len) {
582 bool line = true;
583
584 for (i = 0; i < dict_len; i++) {
585 unsigned char c = dict[i];
586
587 if (line) {
588 append_char(&p, e, ' ');
589 line = false;
590 }
591
592 if (c == '\0') {
593 append_char(&p, e, '\n');
594 line = true;
595 continue;
596 }
597
598 if (c < ' ' || c >= 127 || c == '\\') {
599 p += scnprintf(p, e - p, "\\x%02x", c);
600 continue;
601 }
602
603 append_char(&p, e, c);
604 }
605 append_char(&p, e, '\n');
606 }
607
608 return p - buf;
609 }
610
611 /* /dev/kmsg - userspace message inject/listen interface */
612 struct devkmsg_user {
613 u64 seq;
614 u32 idx;
615 enum log_flags prev;
616 struct mutex lock;
617 char buf[CONSOLE_EXT_LOG_MAX];
618 };
619
620 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
621 {
622 char *buf, *line;
623 int level = default_message_loglevel;
624 int facility = 1; /* LOG_USER */
625 size_t len = iov_iter_count(from);
626 ssize_t ret = len;
627
628 if (len > LOG_LINE_MAX)
629 return -EINVAL;
630 buf = kmalloc(len+1, GFP_KERNEL);
631 if (buf == NULL)
632 return -ENOMEM;
633
634 buf[len] = '\0';
635 if (copy_from_iter(buf, len, from) != len) {
636 kfree(buf);
637 return -EFAULT;
638 }
639
640 /*
641 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
642 * the decimal value represents 32bit, the lower 3 bit are the log
643 * level, the rest are the log facility.
644 *
645 * If no prefix or no userspace facility is specified, we
646 * enforce LOG_USER, to be able to reliably distinguish
647 * kernel-generated messages from userspace-injected ones.
648 */
649 line = buf;
650 if (line[0] == '<') {
651 char *endp = NULL;
652 unsigned int u;
653
654 u = simple_strtoul(line + 1, &endp, 10);
655 if (endp && endp[0] == '>') {
656 level = LOG_LEVEL(u);
657 if (LOG_FACILITY(u) != 0)
658 facility = LOG_FACILITY(u);
659 endp++;
660 len -= endp - line;
661 line = endp;
662 }
663 }
664
665 printk_emit(facility, level, NULL, 0, "%s", line);
666 kfree(buf);
667 return ret;
668 }
669
670 static ssize_t devkmsg_read(struct file *file, char __user *buf,
671 size_t count, loff_t *ppos)
672 {
673 struct devkmsg_user *user = file->private_data;
674 struct printk_log *msg;
675 size_t len;
676 ssize_t ret;
677
678 if (!user)
679 return -EBADF;
680
681 ret = mutex_lock_interruptible(&user->lock);
682 if (ret)
683 return ret;
684 raw_spin_lock_irq(&logbuf_lock);
685 while (user->seq == log_next_seq) {
686 if (file->f_flags & O_NONBLOCK) {
687 ret = -EAGAIN;
688 raw_spin_unlock_irq(&logbuf_lock);
689 goto out;
690 }
691
692 raw_spin_unlock_irq(&logbuf_lock);
693 ret = wait_event_interruptible(log_wait,
694 user->seq != log_next_seq);
695 if (ret)
696 goto out;
697 raw_spin_lock_irq(&logbuf_lock);
698 }
699
700 if (user->seq < log_first_seq) {
701 /* our last seen message is gone, return error and reset */
702 user->idx = log_first_idx;
703 user->seq = log_first_seq;
704 ret = -EPIPE;
705 raw_spin_unlock_irq(&logbuf_lock);
706 goto out;
707 }
708
709 msg = log_from_idx(user->idx);
710 len = msg_print_ext_header(user->buf, sizeof(user->buf),
711 msg, user->seq, user->prev);
712 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
713 log_dict(msg), msg->dict_len,
714 log_text(msg), msg->text_len);
715
716 user->prev = msg->flags;
717 user->idx = log_next(user->idx);
718 user->seq++;
719 raw_spin_unlock_irq(&logbuf_lock);
720
721 if (len > count) {
722 ret = -EINVAL;
723 goto out;
724 }
725
726 if (copy_to_user(buf, user->buf, len)) {
727 ret = -EFAULT;
728 goto out;
729 }
730 ret = len;
731 out:
732 mutex_unlock(&user->lock);
733 return ret;
734 }
735
736 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
737 {
738 struct devkmsg_user *user = file->private_data;
739 loff_t ret = 0;
740
741 if (!user)
742 return -EBADF;
743 if (offset)
744 return -ESPIPE;
745
746 raw_spin_lock_irq(&logbuf_lock);
747 switch (whence) {
748 case SEEK_SET:
749 /* the first record */
750 user->idx = log_first_idx;
751 user->seq = log_first_seq;
752 break;
753 case SEEK_DATA:
754 /*
755 * The first record after the last SYSLOG_ACTION_CLEAR,
756 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
757 * changes no global state, and does not clear anything.
758 */
759 user->idx = clear_idx;
760 user->seq = clear_seq;
761 break;
762 case SEEK_END:
763 /* after the last record */
764 user->idx = log_next_idx;
765 user->seq = log_next_seq;
766 break;
767 default:
768 ret = -EINVAL;
769 }
770 raw_spin_unlock_irq(&logbuf_lock);
771 return ret;
772 }
773
774 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
775 {
776 struct devkmsg_user *user = file->private_data;
777 int ret = 0;
778
779 if (!user)
780 return POLLERR|POLLNVAL;
781
782 poll_wait(file, &log_wait, wait);
783
784 raw_spin_lock_irq(&logbuf_lock);
785 if (user->seq < log_next_seq) {
786 /* return error when data has vanished underneath us */
787 if (user->seq < log_first_seq)
788 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
789 else
790 ret = POLLIN|POLLRDNORM;
791 }
792 raw_spin_unlock_irq(&logbuf_lock);
793
794 return ret;
795 }
796
797 static int devkmsg_open(struct inode *inode, struct file *file)
798 {
799 struct devkmsg_user *user;
800 int err;
801
802 /* write-only does not need any file context */
803 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
804 return 0;
805
806 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
807 SYSLOG_FROM_READER);
808 if (err)
809 return err;
810
811 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
812 if (!user)
813 return -ENOMEM;
814
815 mutex_init(&user->lock);
816
817 raw_spin_lock_irq(&logbuf_lock);
818 user->idx = log_first_idx;
819 user->seq = log_first_seq;
820 raw_spin_unlock_irq(&logbuf_lock);
821
822 file->private_data = user;
823 return 0;
824 }
825
826 static int devkmsg_release(struct inode *inode, struct file *file)
827 {
828 struct devkmsg_user *user = file->private_data;
829
830 if (!user)
831 return 0;
832
833 mutex_destroy(&user->lock);
834 kfree(user);
835 return 0;
836 }
837
838 const struct file_operations kmsg_fops = {
839 .open = devkmsg_open,
840 .read = devkmsg_read,
841 .write_iter = devkmsg_write,
842 .llseek = devkmsg_llseek,
843 .poll = devkmsg_poll,
844 .release = devkmsg_release,
845 };
846
847 #ifdef CONFIG_KEXEC_CORE
848 /*
849 * This appends the listed symbols to /proc/vmcore
850 *
851 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
852 * obtain access to symbols that are otherwise very difficult to locate. These
853 * symbols are specifically used so that utilities can access and extract the
854 * dmesg log from a vmcore file after a crash.
855 */
856 void log_buf_kexec_setup(void)
857 {
858 VMCOREINFO_SYMBOL(log_buf);
859 VMCOREINFO_SYMBOL(log_buf_len);
860 VMCOREINFO_SYMBOL(log_first_idx);
861 VMCOREINFO_SYMBOL(clear_idx);
862 VMCOREINFO_SYMBOL(log_next_idx);
863 /*
864 * Export struct printk_log size and field offsets. User space tools can
865 * parse it and detect any changes to structure down the line.
866 */
867 VMCOREINFO_STRUCT_SIZE(printk_log);
868 VMCOREINFO_OFFSET(printk_log, ts_nsec);
869 VMCOREINFO_OFFSET(printk_log, len);
870 VMCOREINFO_OFFSET(printk_log, text_len);
871 VMCOREINFO_OFFSET(printk_log, dict_len);
872 }
873 #endif
874
875 /* requested log_buf_len from kernel cmdline */
876 static unsigned long __initdata new_log_buf_len;
877
878 /* we practice scaling the ring buffer by powers of 2 */
879 static void __init log_buf_len_update(unsigned size)
880 {
881 if (size)
882 size = roundup_pow_of_two(size);
883 if (size > log_buf_len)
884 new_log_buf_len = size;
885 }
886
887 /* save requested log_buf_len since it's too early to process it */
888 static int __init log_buf_len_setup(char *str)
889 {
890 unsigned size = memparse(str, &str);
891
892 log_buf_len_update(size);
893
894 return 0;
895 }
896 early_param("log_buf_len", log_buf_len_setup);
897
898 #ifdef CONFIG_SMP
899 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
900
901 static void __init log_buf_add_cpu(void)
902 {
903 unsigned int cpu_extra;
904
905 /*
906 * archs should set up cpu_possible_bits properly with
907 * set_cpu_possible() after setup_arch() but just in
908 * case lets ensure this is valid.
909 */
910 if (num_possible_cpus() == 1)
911 return;
912
913 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
914
915 /* by default this will only continue through for large > 64 CPUs */
916 if (cpu_extra <= __LOG_BUF_LEN / 2)
917 return;
918
919 pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
920 __LOG_CPU_MAX_BUF_LEN);
921 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
922 cpu_extra);
923 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
924
925 log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
926 }
927 #else /* !CONFIG_SMP */
928 static inline void log_buf_add_cpu(void) {}
929 #endif /* CONFIG_SMP */
930
931 void __init setup_log_buf(int early)
932 {
933 unsigned long flags;
934 char *new_log_buf;
935 int free;
936
937 if (log_buf != __log_buf)
938 return;
939
940 if (!early && !new_log_buf_len)
941 log_buf_add_cpu();
942
943 if (!new_log_buf_len)
944 return;
945
946 if (early) {
947 new_log_buf =
948 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
949 } else {
950 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
951 LOG_ALIGN);
952 }
953
954 if (unlikely(!new_log_buf)) {
955 pr_err("log_buf_len: %ld bytes not available\n",
956 new_log_buf_len);
957 return;
958 }
959
960 raw_spin_lock_irqsave(&logbuf_lock, flags);
961 log_buf_len = new_log_buf_len;
962 log_buf = new_log_buf;
963 new_log_buf_len = 0;
964 free = __LOG_BUF_LEN - log_next_idx;
965 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
966 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
967
968 pr_info("log_buf_len: %d bytes\n", log_buf_len);
969 pr_info("early log buf free: %d(%d%%)\n",
970 free, (free * 100) / __LOG_BUF_LEN);
971 }
972
973 static bool __read_mostly ignore_loglevel;
974
975 static int __init ignore_loglevel_setup(char *str)
976 {
977 ignore_loglevel = true;
978 pr_info("debug: ignoring loglevel setting.\n");
979
980 return 0;
981 }
982
983 early_param("ignore_loglevel", ignore_loglevel_setup);
984 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
985 MODULE_PARM_DESC(ignore_loglevel,
986 "ignore loglevel setting (prints all kernel messages to the console)");
987
988 static bool suppress_message_printing(int level)
989 {
990 return (level >= console_loglevel && !ignore_loglevel);
991 }
992
993 #ifdef CONFIG_BOOT_PRINTK_DELAY
994
995 static int boot_delay; /* msecs delay after each printk during bootup */
996 static unsigned long long loops_per_msec; /* based on boot_delay */
997
998 static int __init boot_delay_setup(char *str)
999 {
1000 unsigned long lpj;
1001
1002 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
1003 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1004
1005 get_option(&str, &boot_delay);
1006 if (boot_delay > 10 * 1000)
1007 boot_delay = 0;
1008
1009 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1010 "HZ: %d, loops_per_msec: %llu\n",
1011 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1012 return 0;
1013 }
1014 early_param("boot_delay", boot_delay_setup);
1015
1016 static void boot_delay_msec(int level)
1017 {
1018 unsigned long long k;
1019 unsigned long timeout;
1020
1021 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
1022 || suppress_message_printing(level)) {
1023 return;
1024 }
1025
1026 k = (unsigned long long)loops_per_msec * boot_delay;
1027
1028 timeout = jiffies + msecs_to_jiffies(boot_delay);
1029 while (k) {
1030 k--;
1031 cpu_relax();
1032 /*
1033 * use (volatile) jiffies to prevent
1034 * compiler reduction; loop termination via jiffies
1035 * is secondary and may or may not happen.
1036 */
1037 if (time_after(jiffies, timeout))
1038 break;
1039 touch_nmi_watchdog();
1040 }
1041 }
1042 #else
1043 static inline void boot_delay_msec(int level)
1044 {
1045 }
1046 #endif
1047
1048 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1049 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1050
1051 static size_t print_time(u64 ts, char *buf)
1052 {
1053 unsigned long rem_nsec;
1054
1055 if (!printk_time)
1056 return 0;
1057
1058 rem_nsec = do_div(ts, 1000000000);
1059
1060 if (!buf)
1061 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1062
1063 return sprintf(buf, "[%5lu.%06lu] ",
1064 (unsigned long)ts, rem_nsec / 1000);
1065 }
1066
1067 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1068 {
1069 size_t len = 0;
1070 unsigned int prefix = (msg->facility << 3) | msg->level;
1071
1072 if (syslog) {
1073 if (buf) {
1074 len += sprintf(buf, "<%u>", prefix);
1075 } else {
1076 len += 3;
1077 if (prefix > 999)
1078 len += 3;
1079 else if (prefix > 99)
1080 len += 2;
1081 else if (prefix > 9)
1082 len++;
1083 }
1084 }
1085
1086 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1087 return len;
1088 }
1089
1090 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1091 bool syslog, char *buf, size_t size)
1092 {
1093 const char *text = log_text(msg);
1094 size_t text_size = msg->text_len;
1095 bool prefix = true;
1096 bool newline = true;
1097 size_t len = 0;
1098
1099 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1100 prefix = false;
1101
1102 if (msg->flags & LOG_CONT) {
1103 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1104 prefix = false;
1105
1106 if (!(msg->flags & LOG_NEWLINE))
1107 newline = false;
1108 }
1109
1110 do {
1111 const char *next = memchr(text, '\n', text_size);
1112 size_t text_len;
1113
1114 if (next) {
1115 text_len = next - text;
1116 next++;
1117 text_size -= next - text;
1118 } else {
1119 text_len = text_size;
1120 }
1121
1122 if (buf) {
1123 if (print_prefix(msg, syslog, NULL) +
1124 text_len + 1 >= size - len)
1125 break;
1126
1127 if (prefix)
1128 len += print_prefix(msg, syslog, buf + len);
1129 memcpy(buf + len, text, text_len);
1130 len += text_len;
1131 if (next || newline)
1132 buf[len++] = '\n';
1133 } else {
1134 /* SYSLOG_ACTION_* buffer size only calculation */
1135 if (prefix)
1136 len += print_prefix(msg, syslog, NULL);
1137 len += text_len;
1138 if (next || newline)
1139 len++;
1140 }
1141
1142 prefix = true;
1143 text = next;
1144 } while (text);
1145
1146 return len;
1147 }
1148
1149 static int syslog_print(char __user *buf, int size)
1150 {
1151 char *text;
1152 struct printk_log *msg;
1153 int len = 0;
1154
1155 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1156 if (!text)
1157 return -ENOMEM;
1158
1159 while (size > 0) {
1160 size_t n;
1161 size_t skip;
1162
1163 raw_spin_lock_irq(&logbuf_lock);
1164 if (syslog_seq < log_first_seq) {
1165 /* messages are gone, move to first one */
1166 syslog_seq = log_first_seq;
1167 syslog_idx = log_first_idx;
1168 syslog_prev = 0;
1169 syslog_partial = 0;
1170 }
1171 if (syslog_seq == log_next_seq) {
1172 raw_spin_unlock_irq(&logbuf_lock);
1173 break;
1174 }
1175
1176 skip = syslog_partial;
1177 msg = log_from_idx(syslog_idx);
1178 n = msg_print_text(msg, syslog_prev, true, text,
1179 LOG_LINE_MAX + PREFIX_MAX);
1180 if (n - syslog_partial <= size) {
1181 /* message fits into buffer, move forward */
1182 syslog_idx = log_next(syslog_idx);
1183 syslog_seq++;
1184 syslog_prev = msg->flags;
1185 n -= syslog_partial;
1186 syslog_partial = 0;
1187 } else if (!len){
1188 /* partial read(), remember position */
1189 n = size;
1190 syslog_partial += n;
1191 } else
1192 n = 0;
1193 raw_spin_unlock_irq(&logbuf_lock);
1194
1195 if (!n)
1196 break;
1197
1198 if (copy_to_user(buf, text + skip, n)) {
1199 if (!len)
1200 len = -EFAULT;
1201 break;
1202 }
1203
1204 len += n;
1205 size -= n;
1206 buf += n;
1207 }
1208
1209 kfree(text);
1210 return len;
1211 }
1212
1213 static int syslog_print_all(char __user *buf, int size, bool clear)
1214 {
1215 char *text;
1216 int len = 0;
1217
1218 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1219 if (!text)
1220 return -ENOMEM;
1221
1222 raw_spin_lock_irq(&logbuf_lock);
1223 if (buf) {
1224 u64 next_seq;
1225 u64 seq;
1226 u32 idx;
1227 enum log_flags prev;
1228
1229 /*
1230 * Find first record that fits, including all following records,
1231 * into the user-provided buffer for this dump.
1232 */
1233 seq = clear_seq;
1234 idx = clear_idx;
1235 prev = 0;
1236 while (seq < log_next_seq) {
1237 struct printk_log *msg = log_from_idx(idx);
1238
1239 len += msg_print_text(msg, prev, true, NULL, 0);
1240 prev = msg->flags;
1241 idx = log_next(idx);
1242 seq++;
1243 }
1244
1245 /* move first record forward until length fits into the buffer */
1246 seq = clear_seq;
1247 idx = clear_idx;
1248 prev = 0;
1249 while (len > size && seq < log_next_seq) {
1250 struct printk_log *msg = log_from_idx(idx);
1251
1252 len -= msg_print_text(msg, prev, true, NULL, 0);
1253 prev = msg->flags;
1254 idx = log_next(idx);
1255 seq++;
1256 }
1257
1258 /* last message fitting into this dump */
1259 next_seq = log_next_seq;
1260
1261 len = 0;
1262 while (len >= 0 && seq < next_seq) {
1263 struct printk_log *msg = log_from_idx(idx);
1264 int textlen;
1265
1266 textlen = msg_print_text(msg, prev, true, text,
1267 LOG_LINE_MAX + PREFIX_MAX);
1268 if (textlen < 0) {
1269 len = textlen;
1270 break;
1271 }
1272 idx = log_next(idx);
1273 seq++;
1274 prev = msg->flags;
1275
1276 raw_spin_unlock_irq(&logbuf_lock);
1277 if (copy_to_user(buf + len, text, textlen))
1278 len = -EFAULT;
1279 else
1280 len += textlen;
1281 raw_spin_lock_irq(&logbuf_lock);
1282
1283 if (seq < log_first_seq) {
1284 /* messages are gone, move to next one */
1285 seq = log_first_seq;
1286 idx = log_first_idx;
1287 prev = 0;
1288 }
1289 }
1290 }
1291
1292 if (clear) {
1293 clear_seq = log_next_seq;
1294 clear_idx = log_next_idx;
1295 }
1296 raw_spin_unlock_irq(&logbuf_lock);
1297
1298 kfree(text);
1299 return len;
1300 }
1301
1302 int do_syslog(int type, char __user *buf, int len, int source)
1303 {
1304 bool clear = false;
1305 static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1306 int error;
1307
1308 error = check_syslog_permissions(type, source);
1309 if (error)
1310 goto out;
1311
1312 switch (type) {
1313 case SYSLOG_ACTION_CLOSE: /* Close log */
1314 break;
1315 case SYSLOG_ACTION_OPEN: /* Open log */
1316 break;
1317 case SYSLOG_ACTION_READ: /* Read from log */
1318 error = -EINVAL;
1319 if (!buf || len < 0)
1320 goto out;
1321 error = 0;
1322 if (!len)
1323 goto out;
1324 if (!access_ok(VERIFY_WRITE, buf, len)) {
1325 error = -EFAULT;
1326 goto out;
1327 }
1328 error = wait_event_interruptible(log_wait,
1329 syslog_seq != log_next_seq);
1330 if (error)
1331 goto out;
1332 error = syslog_print(buf, len);
1333 break;
1334 /* Read/clear last kernel messages */
1335 case SYSLOG_ACTION_READ_CLEAR:
1336 clear = true;
1337 /* FALL THRU */
1338 /* Read last kernel messages */
1339 case SYSLOG_ACTION_READ_ALL:
1340 error = -EINVAL;
1341 if (!buf || len < 0)
1342 goto out;
1343 error = 0;
1344 if (!len)
1345 goto out;
1346 if (!access_ok(VERIFY_WRITE, buf, len)) {
1347 error = -EFAULT;
1348 goto out;
1349 }
1350 error = syslog_print_all(buf, len, clear);
1351 break;
1352 /* Clear ring buffer */
1353 case SYSLOG_ACTION_CLEAR:
1354 syslog_print_all(NULL, 0, true);
1355 break;
1356 /* Disable logging to console */
1357 case SYSLOG_ACTION_CONSOLE_OFF:
1358 if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1359 saved_console_loglevel = console_loglevel;
1360 console_loglevel = minimum_console_loglevel;
1361 break;
1362 /* Enable logging to console */
1363 case SYSLOG_ACTION_CONSOLE_ON:
1364 if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1365 console_loglevel = saved_console_loglevel;
1366 saved_console_loglevel = LOGLEVEL_DEFAULT;
1367 }
1368 break;
1369 /* Set level of messages printed to console */
1370 case SYSLOG_ACTION_CONSOLE_LEVEL:
1371 error = -EINVAL;
1372 if (len < 1 || len > 8)
1373 goto out;
1374 if (len < minimum_console_loglevel)
1375 len = minimum_console_loglevel;
1376 console_loglevel = len;
1377 /* Implicitly re-enable logging to console */
1378 saved_console_loglevel = LOGLEVEL_DEFAULT;
1379 error = 0;
1380 break;
1381 /* Number of chars in the log buffer */
1382 case SYSLOG_ACTION_SIZE_UNREAD:
1383 raw_spin_lock_irq(&logbuf_lock);
1384 if (syslog_seq < log_first_seq) {
1385 /* messages are gone, move to first one */
1386 syslog_seq = log_first_seq;
1387 syslog_idx = log_first_idx;
1388 syslog_prev = 0;
1389 syslog_partial = 0;
1390 }
1391 if (source == SYSLOG_FROM_PROC) {
1392 /*
1393 * Short-cut for poll(/"proc/kmsg") which simply checks
1394 * for pending data, not the size; return the count of
1395 * records, not the length.
1396 */
1397 error = log_next_seq - syslog_seq;
1398 } else {
1399 u64 seq = syslog_seq;
1400 u32 idx = syslog_idx;
1401 enum log_flags prev = syslog_prev;
1402
1403 error = 0;
1404 while (seq < log_next_seq) {
1405 struct printk_log *msg = log_from_idx(idx);
1406
1407 error += msg_print_text(msg, prev, true, NULL, 0);
1408 idx = log_next(idx);
1409 seq++;
1410 prev = msg->flags;
1411 }
1412 error -= syslog_partial;
1413 }
1414 raw_spin_unlock_irq(&logbuf_lock);
1415 break;
1416 /* Size of the log buffer */
1417 case SYSLOG_ACTION_SIZE_BUFFER:
1418 error = log_buf_len;
1419 break;
1420 default:
1421 error = -EINVAL;
1422 break;
1423 }
1424 out:
1425 return error;
1426 }
1427
1428 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1429 {
1430 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1431 }
1432
1433 /*
1434 * Call the console drivers, asking them to write out
1435 * log_buf[start] to log_buf[end - 1].
1436 * The console_lock must be held.
1437 */
1438 static void call_console_drivers(int level,
1439 const char *ext_text, size_t ext_len,
1440 const char *text, size_t len)
1441 {
1442 struct console *con;
1443
1444 trace_console(text, len);
1445
1446 if (!console_drivers)
1447 return;
1448
1449 for_each_console(con) {
1450 if (exclusive_console && con != exclusive_console)
1451 continue;
1452 if (!(con->flags & CON_ENABLED))
1453 continue;
1454 if (!con->write)
1455 continue;
1456 if (!cpu_online(smp_processor_id()) &&
1457 !(con->flags & CON_ANYTIME))
1458 continue;
1459 if (con->flags & CON_EXTENDED)
1460 con->write(con, ext_text, ext_len);
1461 else
1462 con->write(con, text, len);
1463 }
1464 }
1465
1466 /*
1467 * Zap console related locks when oopsing.
1468 * To leave time for slow consoles to print a full oops,
1469 * only zap at most once every 30 seconds.
1470 */
1471 static void zap_locks(void)
1472 {
1473 static unsigned long oops_timestamp;
1474
1475 if (time_after_eq(jiffies, oops_timestamp) &&
1476 !time_after(jiffies, oops_timestamp + 30 * HZ))
1477 return;
1478
1479 oops_timestamp = jiffies;
1480
1481 debug_locks_off();
1482 /* If a crash is occurring, make sure we can't deadlock */
1483 raw_spin_lock_init(&logbuf_lock);
1484 /* And make sure that we print immediately */
1485 sema_init(&console_sem, 1);
1486 }
1487
1488 int printk_delay_msec __read_mostly;
1489
1490 static inline void printk_delay(void)
1491 {
1492 if (unlikely(printk_delay_msec)) {
1493 int m = printk_delay_msec;
1494
1495 while (m--) {
1496 mdelay(1);
1497 touch_nmi_watchdog();
1498 }
1499 }
1500 }
1501
1502 /*
1503 * Continuation lines are buffered, and not committed to the record buffer
1504 * until the line is complete, or a race forces it. The line fragments
1505 * though, are printed immediately to the consoles to ensure everything has
1506 * reached the console in case of a kernel crash.
1507 */
1508 static struct cont {
1509 char buf[LOG_LINE_MAX];
1510 size_t len; /* length == 0 means unused buffer */
1511 size_t cons; /* bytes written to console */
1512 struct task_struct *owner; /* task of first print*/
1513 u64 ts_nsec; /* time of first print */
1514 u8 level; /* log level of first message */
1515 u8 facility; /* log facility of first message */
1516 enum log_flags flags; /* prefix, newline flags */
1517 bool flushed:1; /* buffer sealed and committed */
1518 } cont;
1519
1520 static void cont_flush(enum log_flags flags)
1521 {
1522 if (cont.flushed)
1523 return;
1524 if (cont.len == 0)
1525 return;
1526
1527 if (cont.cons) {
1528 /*
1529 * If a fragment of this line was directly flushed to the
1530 * console; wait for the console to pick up the rest of the
1531 * line. LOG_NOCONS suppresses a duplicated output.
1532 */
1533 log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1534 cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1535 cont.flags = flags;
1536 cont.flushed = true;
1537 } else {
1538 /*
1539 * If no fragment of this line ever reached the console,
1540 * just submit it to the store and free the buffer.
1541 */
1542 log_store(cont.facility, cont.level, flags, 0,
1543 NULL, 0, cont.buf, cont.len);
1544 cont.len = 0;
1545 }
1546 }
1547
1548 static bool cont_add(int facility, int level, const char *text, size_t len)
1549 {
1550 if (cont.len && cont.flushed)
1551 return false;
1552
1553 /*
1554 * If ext consoles are present, flush and skip in-kernel
1555 * continuation. See nr_ext_console_drivers definition. Also, if
1556 * the line gets too long, split it up in separate records.
1557 */
1558 if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1559 cont_flush(LOG_CONT);
1560 return false;
1561 }
1562
1563 if (!cont.len) {
1564 cont.facility = facility;
1565 cont.level = level;
1566 cont.owner = current;
1567 cont.ts_nsec = local_clock();
1568 cont.flags = 0;
1569 cont.cons = 0;
1570 cont.flushed = false;
1571 }
1572
1573 memcpy(cont.buf + cont.len, text, len);
1574 cont.len += len;
1575
1576 if (cont.len > (sizeof(cont.buf) * 80) / 100)
1577 cont_flush(LOG_CONT);
1578
1579 return true;
1580 }
1581
1582 static size_t cont_print_text(char *text, size_t size)
1583 {
1584 size_t textlen = 0;
1585 size_t len;
1586
1587 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1588 textlen += print_time(cont.ts_nsec, text);
1589 size -= textlen;
1590 }
1591
1592 len = cont.len - cont.cons;
1593 if (len > 0) {
1594 if (len+1 > size)
1595 len = size-1;
1596 memcpy(text + textlen, cont.buf + cont.cons, len);
1597 textlen += len;
1598 cont.cons = cont.len;
1599 }
1600
1601 if (cont.flushed) {
1602 if (cont.flags & LOG_NEWLINE)
1603 text[textlen++] = '\n';
1604 /* got everything, release buffer */
1605 cont.len = 0;
1606 }
1607 return textlen;
1608 }
1609
1610 asmlinkage int vprintk_emit(int facility, int level,
1611 const char *dict, size_t dictlen,
1612 const char *fmt, va_list args)
1613 {
1614 static bool recursion_bug;
1615 static char textbuf[LOG_LINE_MAX];
1616 char *text = textbuf;
1617 size_t text_len = 0;
1618 enum log_flags lflags = 0;
1619 unsigned long flags;
1620 int this_cpu;
1621 int printed_len = 0;
1622 int nmi_message_lost;
1623 bool in_sched = false;
1624 /* cpu currently holding logbuf_lock in this function */
1625 static unsigned int logbuf_cpu = UINT_MAX;
1626
1627 if (level == LOGLEVEL_SCHED) {
1628 level = LOGLEVEL_DEFAULT;
1629 in_sched = true;
1630 }
1631
1632 boot_delay_msec(level);
1633 printk_delay();
1634
1635 local_irq_save(flags);
1636 this_cpu = smp_processor_id();
1637
1638 /*
1639 * Ouch, printk recursed into itself!
1640 */
1641 if (unlikely(logbuf_cpu == this_cpu)) {
1642 /*
1643 * If a crash is occurring during printk() on this CPU,
1644 * then try to get the crash message out but make sure
1645 * we can't deadlock. Otherwise just return to avoid the
1646 * recursion and return - but flag the recursion so that
1647 * it can be printed at the next appropriate moment:
1648 */
1649 if (!oops_in_progress && !lockdep_recursing(current)) {
1650 recursion_bug = true;
1651 local_irq_restore(flags);
1652 return 0;
1653 }
1654 zap_locks();
1655 }
1656
1657 lockdep_off();
1658 /* This stops the holder of console_sem just where we want him */
1659 raw_spin_lock(&logbuf_lock);
1660 logbuf_cpu = this_cpu;
1661
1662 if (unlikely(recursion_bug)) {
1663 static const char recursion_msg[] =
1664 "BUG: recent printk recursion!";
1665
1666 recursion_bug = false;
1667 /* emit KERN_CRIT message */
1668 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1669 NULL, 0, recursion_msg,
1670 strlen(recursion_msg));
1671 }
1672
1673 nmi_message_lost = get_nmi_message_lost();
1674 if (unlikely(nmi_message_lost)) {
1675 text_len = scnprintf(textbuf, sizeof(textbuf),
1676 "BAD LUCK: lost %d message(s) from NMI context!",
1677 nmi_message_lost);
1678 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1679 NULL, 0, textbuf, text_len);
1680 }
1681
1682 /*
1683 * The printf needs to come first; we need the syslog
1684 * prefix which might be passed-in as a parameter.
1685 */
1686 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1687
1688 /* mark and strip a trailing newline */
1689 if (text_len && text[text_len-1] == '\n') {
1690 text_len--;
1691 lflags |= LOG_NEWLINE;
1692 }
1693
1694 /* strip kernel syslog prefix and extract log level or control flags */
1695 if (facility == 0) {
1696 int kern_level = printk_get_level(text);
1697
1698 if (kern_level) {
1699 const char *end_of_header = printk_skip_level(text);
1700 switch (kern_level) {
1701 case '0' ... '7':
1702 if (level == LOGLEVEL_DEFAULT)
1703 level = kern_level - '0';
1704 /* fallthrough */
1705 case 'd': /* KERN_DEFAULT */
1706 lflags |= LOG_PREFIX;
1707 }
1708 /*
1709 * No need to check length here because vscnprintf
1710 * put '\0' at the end of the string. Only valid and
1711 * newly printed level is detected.
1712 */
1713 text_len -= end_of_header - text;
1714 text = (char *)end_of_header;
1715 }
1716 }
1717
1718 if (level == LOGLEVEL_DEFAULT)
1719 level = default_message_loglevel;
1720
1721 if (dict)
1722 lflags |= LOG_PREFIX|LOG_NEWLINE;
1723
1724 if (!(lflags & LOG_NEWLINE)) {
1725 /*
1726 * Flush the conflicting buffer. An earlier newline was missing,
1727 * or another task also prints continuation lines.
1728 */
1729 if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1730 cont_flush(LOG_NEWLINE);
1731
1732 /* buffer line if possible, otherwise store it right away */
1733 if (cont_add(facility, level, text, text_len))
1734 printed_len += text_len;
1735 else
1736 printed_len += log_store(facility, level,
1737 lflags | LOG_CONT, 0,
1738 dict, dictlen, text, text_len);
1739 } else {
1740 bool stored = false;
1741
1742 /*
1743 * If an earlier newline was missing and it was the same task,
1744 * either merge it with the current buffer and flush, or if
1745 * there was a race with interrupts (prefix == true) then just
1746 * flush it out and store this line separately.
1747 * If the preceding printk was from a different task and missed
1748 * a newline, flush and append the newline.
1749 */
1750 if (cont.len) {
1751 if (cont.owner == current && !(lflags & LOG_PREFIX))
1752 stored = cont_add(facility, level, text,
1753 text_len);
1754 cont_flush(LOG_NEWLINE);
1755 }
1756
1757 if (stored)
1758 printed_len += text_len;
1759 else
1760 printed_len += log_store(facility, level, lflags, 0,
1761 dict, dictlen, text, text_len);
1762 }
1763
1764 logbuf_cpu = UINT_MAX;
1765 raw_spin_unlock(&logbuf_lock);
1766 lockdep_on();
1767 local_irq_restore(flags);
1768
1769 /* If called from the scheduler, we can not call up(). */
1770 if (!in_sched) {
1771 lockdep_off();
1772 /*
1773 * Try to acquire and then immediately release the console
1774 * semaphore. The release will print out buffers and wake up
1775 * /dev/kmsg and syslog() users.
1776 */
1777 if (console_trylock())
1778 console_unlock();
1779 lockdep_on();
1780 }
1781
1782 return printed_len;
1783 }
1784 EXPORT_SYMBOL(vprintk_emit);
1785
1786 asmlinkage int vprintk(const char *fmt, va_list args)
1787 {
1788 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1789 }
1790 EXPORT_SYMBOL(vprintk);
1791
1792 asmlinkage int printk_emit(int facility, int level,
1793 const char *dict, size_t dictlen,
1794 const char *fmt, ...)
1795 {
1796 va_list args;
1797 int r;
1798
1799 va_start(args, fmt);
1800 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1801 va_end(args);
1802
1803 return r;
1804 }
1805 EXPORT_SYMBOL(printk_emit);
1806
1807 #ifdef CONFIG_PRINTK
1808 #define define_pr_level(func, loglevel) \
1809 asmlinkage __visible void func(const char *fmt, ...) \
1810 { \
1811 va_list args; \
1812 \
1813 va_start(args, fmt); \
1814 vprintk_default(loglevel, fmt, args); \
1815 va_end(args); \
1816 } \
1817 EXPORT_SYMBOL(func)
1818
1819 define_pr_level(__pr_emerg, LOGLEVEL_EMERG);
1820 define_pr_level(__pr_alert, LOGLEVEL_ALERT);
1821 define_pr_level(__pr_crit, LOGLEVEL_CRIT);
1822 define_pr_level(__pr_err, LOGLEVEL_ERR);
1823 define_pr_level(__pr_warn, LOGLEVEL_WARNING);
1824 define_pr_level(__pr_notice, LOGLEVEL_NOTICE);
1825 define_pr_level(__pr_info, LOGLEVEL_INFO);
1826 #endif
1827
1828 int vprintk_default(int level, const char *fmt, va_list args)
1829 {
1830 int r;
1831
1832 #ifdef CONFIG_KGDB_KDB
1833 if (unlikely(kdb_trap_printk)) {
1834 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1835 return r;
1836 }
1837 #endif
1838 r = vprintk_emit(0, level, NULL, 0, fmt, args);
1839
1840 return r;
1841 }
1842 EXPORT_SYMBOL_GPL(vprintk_default);
1843
1844 /**
1845 * printk - print a kernel message
1846 * @fmt: format string
1847 *
1848 * This is printk(). It can be called from any context. We want it to work.
1849 *
1850 * We try to grab the console_lock. If we succeed, it's easy - we log the
1851 * output and call the console drivers. If we fail to get the semaphore, we
1852 * place the output into the log buffer and return. The current holder of
1853 * the console_sem will notice the new output in console_unlock(); and will
1854 * send it to the consoles before releasing the lock.
1855 *
1856 * One effect of this deferred printing is that code which calls printk() and
1857 * then changes console_loglevel may break. This is because console_loglevel
1858 * is inspected when the actual printing occurs.
1859 *
1860 * See also:
1861 * printf(3)
1862 *
1863 * See the vsnprintf() documentation for format string extensions over C99.
1864 */
1865 asmlinkage __visible int printk(const char *fmt, ...)
1866 {
1867 va_list args;
1868 int r;
1869
1870 va_start(args, fmt);
1871 r = vprintk_func(LOGLEVEL_DEFAULT, fmt, args);
1872 va_end(args);
1873
1874 return r;
1875 }
1876 EXPORT_SYMBOL(printk);
1877
1878 #else /* CONFIG_PRINTK */
1879
1880 #define LOG_LINE_MAX 0
1881 #define PREFIX_MAX 0
1882
1883 static u64 syslog_seq;
1884 static u32 syslog_idx;
1885 static u64 console_seq;
1886 static u32 console_idx;
1887 static enum log_flags syslog_prev;
1888 static u64 log_first_seq;
1889 static u32 log_first_idx;
1890 static u64 log_next_seq;
1891 static enum log_flags console_prev;
1892 static struct cont {
1893 size_t len;
1894 size_t cons;
1895 u8 level;
1896 bool flushed:1;
1897 } cont;
1898 static char *log_text(const struct printk_log *msg) { return NULL; }
1899 static char *log_dict(const struct printk_log *msg) { return NULL; }
1900 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1901 static u32 log_next(u32 idx) { return 0; }
1902 static ssize_t msg_print_ext_header(char *buf, size_t size,
1903 struct printk_log *msg, u64 seq,
1904 enum log_flags prev_flags) { return 0; }
1905 static ssize_t msg_print_ext_body(char *buf, size_t size,
1906 char *dict, size_t dict_len,
1907 char *text, size_t text_len) { return 0; }
1908 static void call_console_drivers(int level,
1909 const char *ext_text, size_t ext_len,
1910 const char *text, size_t len) {}
1911 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1912 bool syslog, char *buf, size_t size) { return 0; }
1913 static size_t cont_print_text(char *text, size_t size) { return 0; }
1914 static bool suppress_message_printing(int level) { return false; }
1915
1916 /* Still needs to be defined for users */
1917 DEFINE_PER_CPU(printk_func_t, printk_func);
1918
1919 #endif /* CONFIG_PRINTK */
1920
1921 #ifdef CONFIG_EARLY_PRINTK
1922 struct console *early_console;
1923
1924 asmlinkage __visible void early_printk(const char *fmt, ...)
1925 {
1926 va_list ap;
1927 char buf[512];
1928 int n;
1929
1930 if (!early_console)
1931 return;
1932
1933 va_start(ap, fmt);
1934 n = vscnprintf(buf, sizeof(buf), fmt, ap);
1935 va_end(ap);
1936
1937 early_console->write(early_console, buf, n);
1938 }
1939 #endif
1940
1941 static int __add_preferred_console(char *name, int idx, char *options,
1942 char *brl_options)
1943 {
1944 struct console_cmdline *c;
1945 int i;
1946
1947 /*
1948 * See if this tty is not yet registered, and
1949 * if we have a slot free.
1950 */
1951 for (i = 0, c = console_cmdline;
1952 i < MAX_CMDLINECONSOLES && c->name[0];
1953 i++, c++) {
1954 if (strcmp(c->name, name) == 0 && c->index == idx) {
1955 if (!brl_options)
1956 selected_console = i;
1957 return 0;
1958 }
1959 }
1960 if (i == MAX_CMDLINECONSOLES)
1961 return -E2BIG;
1962 if (!brl_options)
1963 selected_console = i;
1964 strlcpy(c->name, name, sizeof(c->name));
1965 c->options = options;
1966 braille_set_options(c, brl_options);
1967
1968 c->index = idx;
1969 return 0;
1970 }
1971 /*
1972 * Set up a console. Called via do_early_param() in init/main.c
1973 * for each "console=" parameter in the boot command line.
1974 */
1975 static int __init console_setup(char *str)
1976 {
1977 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
1978 char *s, *options, *brl_options = NULL;
1979 int idx;
1980
1981 if (_braille_console_setup(&str, &brl_options))
1982 return 1;
1983
1984 /*
1985 * Decode str into name, index, options.
1986 */
1987 if (str[0] >= '0' && str[0] <= '9') {
1988 strcpy(buf, "ttyS");
1989 strncpy(buf + 4, str, sizeof(buf) - 5);
1990 } else {
1991 strncpy(buf, str, sizeof(buf) - 1);
1992 }
1993 buf[sizeof(buf) - 1] = 0;
1994 options = strchr(str, ',');
1995 if (options)
1996 *(options++) = 0;
1997 #ifdef __sparc__
1998 if (!strcmp(str, "ttya"))
1999 strcpy(buf, "ttyS0");
2000 if (!strcmp(str, "ttyb"))
2001 strcpy(buf, "ttyS1");
2002 #endif
2003 for (s = buf; *s; s++)
2004 if (isdigit(*s) || *s == ',')
2005 break;
2006 idx = simple_strtoul(s, NULL, 10);
2007 *s = 0;
2008
2009 __add_preferred_console(buf, idx, options, brl_options);
2010 console_set_on_cmdline = 1;
2011 return 1;
2012 }
2013 __setup("console=", console_setup);
2014
2015 /**
2016 * add_preferred_console - add a device to the list of preferred consoles.
2017 * @name: device name
2018 * @idx: device index
2019 * @options: options for this console
2020 *
2021 * The last preferred console added will be used for kernel messages
2022 * and stdin/out/err for init. Normally this is used by console_setup
2023 * above to handle user-supplied console arguments; however it can also
2024 * be used by arch-specific code either to override the user or more
2025 * commonly to provide a default console (ie from PROM variables) when
2026 * the user has not supplied one.
2027 */
2028 int add_preferred_console(char *name, int idx, char *options)
2029 {
2030 return __add_preferred_console(name, idx, options, NULL);
2031 }
2032
2033 bool console_suspend_enabled = true;
2034 EXPORT_SYMBOL(console_suspend_enabled);
2035
2036 static int __init console_suspend_disable(char *str)
2037 {
2038 console_suspend_enabled = false;
2039 return 1;
2040 }
2041 __setup("no_console_suspend", console_suspend_disable);
2042 module_param_named(console_suspend, console_suspend_enabled,
2043 bool, S_IRUGO | S_IWUSR);
2044 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2045 " and hibernate operations");
2046
2047 /**
2048 * suspend_console - suspend the console subsystem
2049 *
2050 * This disables printk() while we go into suspend states
2051 */
2052 void suspend_console(void)
2053 {
2054 if (!console_suspend_enabled)
2055 return;
2056 printk("Suspending console(s) (use no_console_suspend to debug)\n");
2057 console_lock();
2058 console_suspended = 1;
2059 up_console_sem();
2060 }
2061
2062 void resume_console(void)
2063 {
2064 if (!console_suspend_enabled)
2065 return;
2066 down_console_sem();
2067 console_suspended = 0;
2068 console_unlock();
2069 }
2070
2071 /**
2072 * console_cpu_notify - print deferred console messages after CPU hotplug
2073 * @self: notifier struct
2074 * @action: CPU hotplug event
2075 * @hcpu: unused
2076 *
2077 * If printk() is called from a CPU that is not online yet, the messages
2078 * will be spooled but will not show up on the console. This function is
2079 * called when a new CPU comes online (or fails to come up), and ensures
2080 * that any such output gets printed.
2081 */
2082 static int console_cpu_notify(struct notifier_block *self,
2083 unsigned long action, void *hcpu)
2084 {
2085 switch (action) {
2086 case CPU_ONLINE:
2087 case CPU_DEAD:
2088 case CPU_DOWN_FAILED:
2089 case CPU_UP_CANCELED:
2090 console_lock();
2091 console_unlock();
2092 }
2093 return NOTIFY_OK;
2094 }
2095
2096 /**
2097 * console_lock - lock the console system for exclusive use.
2098 *
2099 * Acquires a lock which guarantees that the caller has
2100 * exclusive access to the console system and the console_drivers list.
2101 *
2102 * Can sleep, returns nothing.
2103 */
2104 void console_lock(void)
2105 {
2106 might_sleep();
2107
2108 down_console_sem();
2109 if (console_suspended)
2110 return;
2111 console_locked = 1;
2112 console_may_schedule = 1;
2113 }
2114 EXPORT_SYMBOL(console_lock);
2115
2116 /**
2117 * console_trylock - try to lock the console system for exclusive use.
2118 *
2119 * Try to acquire a lock which guarantees that the caller has exclusive
2120 * access to the console system and the console_drivers list.
2121 *
2122 * returns 1 on success, and 0 on failure to acquire the lock.
2123 */
2124 int console_trylock(void)
2125 {
2126 if (down_trylock_console_sem())
2127 return 0;
2128 if (console_suspended) {
2129 up_console_sem();
2130 return 0;
2131 }
2132 console_locked = 1;
2133 /*
2134 * When PREEMPT_COUNT disabled we can't reliably detect if it's
2135 * safe to schedule (e.g. calling printk while holding a spin_lock),
2136 * because preempt_disable()/preempt_enable() are just barriers there
2137 * and preempt_count() is always 0.
2138 *
2139 * RCU read sections have a separate preemption counter when
2140 * PREEMPT_RCU enabled thus we must take extra care and check
2141 * rcu_preempt_depth(), otherwise RCU read sections modify
2142 * preempt_count().
2143 */
2144 console_may_schedule = !oops_in_progress &&
2145 preemptible() &&
2146 !rcu_preempt_depth();
2147 return 1;
2148 }
2149 EXPORT_SYMBOL(console_trylock);
2150
2151 int is_console_locked(void)
2152 {
2153 return console_locked;
2154 }
2155
2156 /*
2157 * Check if we have any console that is capable of printing while cpu is
2158 * booting or shutting down. Requires console_sem.
2159 */
2160 static int have_callable_console(void)
2161 {
2162 struct console *con;
2163
2164 for_each_console(con)
2165 if ((con->flags & CON_ENABLED) &&
2166 (con->flags & CON_ANYTIME))
2167 return 1;
2168
2169 return 0;
2170 }
2171
2172 /*
2173 * Can we actually use the console at this time on this cpu?
2174 *
2175 * Console drivers may assume that per-cpu resources have been allocated. So
2176 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2177 * call them until this CPU is officially up.
2178 */
2179 static inline int can_use_console(void)
2180 {
2181 return cpu_online(raw_smp_processor_id()) || have_callable_console();
2182 }
2183
2184 static void console_cont_flush(char *text, size_t size)
2185 {
2186 unsigned long flags;
2187 size_t len;
2188
2189 raw_spin_lock_irqsave(&logbuf_lock, flags);
2190
2191 if (!cont.len)
2192 goto out;
2193
2194 if (suppress_message_printing(cont.level)) {
2195 cont.cons = cont.len;
2196 if (cont.flushed)
2197 cont.len = 0;
2198 goto out;
2199 }
2200
2201 /*
2202 * We still queue earlier records, likely because the console was
2203 * busy. The earlier ones need to be printed before this one, we
2204 * did not flush any fragment so far, so just let it queue up.
2205 */
2206 if (console_seq < log_next_seq && !cont.cons)
2207 goto out;
2208
2209 len = cont_print_text(text, size);
2210 raw_spin_unlock(&logbuf_lock);
2211 stop_critical_timings();
2212 call_console_drivers(cont.level, NULL, 0, text, len);
2213 start_critical_timings();
2214 local_irq_restore(flags);
2215 return;
2216 out:
2217 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2218 }
2219
2220 /**
2221 * console_unlock - unlock the console system
2222 *
2223 * Releases the console_lock which the caller holds on the console system
2224 * and the console driver list.
2225 *
2226 * While the console_lock was held, console output may have been buffered
2227 * by printk(). If this is the case, console_unlock(); emits
2228 * the output prior to releasing the lock.
2229 *
2230 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2231 *
2232 * console_unlock(); may be called from any context.
2233 */
2234 void console_unlock(void)
2235 {
2236 static char ext_text[CONSOLE_EXT_LOG_MAX];
2237 static char text[LOG_LINE_MAX + PREFIX_MAX];
2238 static u64 seen_seq;
2239 unsigned long flags;
2240 bool wake_klogd = false;
2241 bool do_cond_resched, retry;
2242
2243 if (console_suspended) {
2244 up_console_sem();
2245 return;
2246 }
2247
2248 /*
2249 * Console drivers are called under logbuf_lock, so
2250 * @console_may_schedule should be cleared before; however, we may
2251 * end up dumping a lot of lines, for example, if called from
2252 * console registration path, and should invoke cond_resched()
2253 * between lines if allowable. Not doing so can cause a very long
2254 * scheduling stall on a slow console leading to RCU stall and
2255 * softlockup warnings which exacerbate the issue with more
2256 * messages practically incapacitating the system.
2257 */
2258 do_cond_resched = console_may_schedule;
2259 console_may_schedule = 0;
2260
2261 again:
2262 /*
2263 * We released the console_sem lock, so we need to recheck if
2264 * cpu is online and (if not) is there at least one CON_ANYTIME
2265 * console.
2266 */
2267 if (!can_use_console()) {
2268 console_locked = 0;
2269 up_console_sem();
2270 return;
2271 }
2272
2273 /* flush buffered message fragment immediately to console */
2274 console_cont_flush(text, sizeof(text));
2275
2276 for (;;) {
2277 struct printk_log *msg;
2278 size_t ext_len = 0;
2279 size_t len;
2280 int level;
2281
2282 raw_spin_lock_irqsave(&logbuf_lock, flags);
2283 if (seen_seq != log_next_seq) {
2284 wake_klogd = true;
2285 seen_seq = log_next_seq;
2286 }
2287
2288 if (console_seq < log_first_seq) {
2289 len = sprintf(text, "** %u printk messages dropped ** ",
2290 (unsigned)(log_first_seq - console_seq));
2291
2292 /* messages are gone, move to first one */
2293 console_seq = log_first_seq;
2294 console_idx = log_first_idx;
2295 console_prev = 0;
2296 } else {
2297 len = 0;
2298 }
2299 skip:
2300 if (console_seq == log_next_seq)
2301 break;
2302
2303 msg = log_from_idx(console_idx);
2304 level = msg->level;
2305 if ((msg->flags & LOG_NOCONS) ||
2306 suppress_message_printing(level)) {
2307 /*
2308 * Skip record we have buffered and already printed
2309 * directly to the console when we received it, and
2310 * record that has level above the console loglevel.
2311 */
2312 console_idx = log_next(console_idx);
2313 console_seq++;
2314 /*
2315 * We will get here again when we register a new
2316 * CON_PRINTBUFFER console. Clear the flag so we
2317 * will properly dump everything later.
2318 */
2319 msg->flags &= ~LOG_NOCONS;
2320 console_prev = msg->flags;
2321 goto skip;
2322 }
2323
2324 len += msg_print_text(msg, console_prev, false,
2325 text + len, sizeof(text) - len);
2326 if (nr_ext_console_drivers) {
2327 ext_len = msg_print_ext_header(ext_text,
2328 sizeof(ext_text),
2329 msg, console_seq, console_prev);
2330 ext_len += msg_print_ext_body(ext_text + ext_len,
2331 sizeof(ext_text) - ext_len,
2332 log_dict(msg), msg->dict_len,
2333 log_text(msg), msg->text_len);
2334 }
2335 console_idx = log_next(console_idx);
2336 console_seq++;
2337 console_prev = msg->flags;
2338 raw_spin_unlock(&logbuf_lock);
2339
2340 stop_critical_timings(); /* don't trace print latency */
2341 call_console_drivers(level, ext_text, ext_len, text, len);
2342 start_critical_timings();
2343 local_irq_restore(flags);
2344
2345 if (do_cond_resched)
2346 cond_resched();
2347 }
2348 console_locked = 0;
2349
2350 /* Release the exclusive_console once it is used */
2351 if (unlikely(exclusive_console))
2352 exclusive_console = NULL;
2353
2354 raw_spin_unlock(&logbuf_lock);
2355
2356 up_console_sem();
2357
2358 /*
2359 * Someone could have filled up the buffer again, so re-check if there's
2360 * something to flush. In case we cannot trylock the console_sem again,
2361 * there's a new owner and the console_unlock() from them will do the
2362 * flush, no worries.
2363 */
2364 raw_spin_lock(&logbuf_lock);
2365 retry = console_seq != log_next_seq;
2366 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2367
2368 if (retry && console_trylock())
2369 goto again;
2370
2371 if (wake_klogd)
2372 wake_up_klogd();
2373 }
2374 EXPORT_SYMBOL(console_unlock);
2375
2376 /**
2377 * console_conditional_schedule - yield the CPU if required
2378 *
2379 * If the console code is currently allowed to sleep, and
2380 * if this CPU should yield the CPU to another task, do
2381 * so here.
2382 *
2383 * Must be called within console_lock();.
2384 */
2385 void __sched console_conditional_schedule(void)
2386 {
2387 if (console_may_schedule)
2388 cond_resched();
2389 }
2390 EXPORT_SYMBOL(console_conditional_schedule);
2391
2392 void console_unblank(void)
2393 {
2394 struct console *c;
2395
2396 /*
2397 * console_unblank can no longer be called in interrupt context unless
2398 * oops_in_progress is set to 1..
2399 */
2400 if (oops_in_progress) {
2401 if (down_trylock_console_sem() != 0)
2402 return;
2403 } else
2404 console_lock();
2405
2406 console_locked = 1;
2407 console_may_schedule = 0;
2408 for_each_console(c)
2409 if ((c->flags & CON_ENABLED) && c->unblank)
2410 c->unblank();
2411 console_unlock();
2412 }
2413
2414 /**
2415 * console_flush_on_panic - flush console content on panic
2416 *
2417 * Immediately output all pending messages no matter what.
2418 */
2419 void console_flush_on_panic(void)
2420 {
2421 /*
2422 * If someone else is holding the console lock, trylock will fail
2423 * and may_schedule may be set. Ignore and proceed to unlock so
2424 * that messages are flushed out. As this can be called from any
2425 * context and we don't want to get preempted while flushing,
2426 * ensure may_schedule is cleared.
2427 */
2428 console_trylock();
2429 console_may_schedule = 0;
2430 console_unlock();
2431 }
2432
2433 /*
2434 * Return the console tty driver structure and its associated index
2435 */
2436 struct tty_driver *console_device(int *index)
2437 {
2438 struct console *c;
2439 struct tty_driver *driver = NULL;
2440
2441 console_lock();
2442 for_each_console(c) {
2443 if (!c->device)
2444 continue;
2445 driver = c->device(c, index);
2446 if (driver)
2447 break;
2448 }
2449 console_unlock();
2450 return driver;
2451 }
2452
2453 /*
2454 * Prevent further output on the passed console device so that (for example)
2455 * serial drivers can disable console output before suspending a port, and can
2456 * re-enable output afterwards.
2457 */
2458 void console_stop(struct console *console)
2459 {
2460 console_lock();
2461 console->flags &= ~CON_ENABLED;
2462 console_unlock();
2463 }
2464 EXPORT_SYMBOL(console_stop);
2465
2466 void console_start(struct console *console)
2467 {
2468 console_lock();
2469 console->flags |= CON_ENABLED;
2470 console_unlock();
2471 }
2472 EXPORT_SYMBOL(console_start);
2473
2474 static int __read_mostly keep_bootcon;
2475
2476 static int __init keep_bootcon_setup(char *str)
2477 {
2478 keep_bootcon = 1;
2479 pr_info("debug: skip boot console de-registration.\n");
2480
2481 return 0;
2482 }
2483
2484 early_param("keep_bootcon", keep_bootcon_setup);
2485
2486 /*
2487 * The console driver calls this routine during kernel initialization
2488 * to register the console printing procedure with printk() and to
2489 * print any messages that were printed by the kernel before the
2490 * console driver was initialized.
2491 *
2492 * This can happen pretty early during the boot process (because of
2493 * early_printk) - sometimes before setup_arch() completes - be careful
2494 * of what kernel features are used - they may not be initialised yet.
2495 *
2496 * There are two types of consoles - bootconsoles (early_printk) and
2497 * "real" consoles (everything which is not a bootconsole) which are
2498 * handled differently.
2499 * - Any number of bootconsoles can be registered at any time.
2500 * - As soon as a "real" console is registered, all bootconsoles
2501 * will be unregistered automatically.
2502 * - Once a "real" console is registered, any attempt to register a
2503 * bootconsoles will be rejected
2504 */
2505 void register_console(struct console *newcon)
2506 {
2507 int i;
2508 unsigned long flags;
2509 struct console *bcon = NULL;
2510 struct console_cmdline *c;
2511
2512 if (console_drivers)
2513 for_each_console(bcon)
2514 if (WARN(bcon == newcon,
2515 "console '%s%d' already registered\n",
2516 bcon->name, bcon->index))
2517 return;
2518
2519 /*
2520 * before we register a new CON_BOOT console, make sure we don't
2521 * already have a valid console
2522 */
2523 if (console_drivers && newcon->flags & CON_BOOT) {
2524 /* find the last or real console */
2525 for_each_console(bcon) {
2526 if (!(bcon->flags & CON_BOOT)) {
2527 pr_info("Too late to register bootconsole %s%d\n",
2528 newcon->name, newcon->index);
2529 return;
2530 }
2531 }
2532 }
2533
2534 if (console_drivers && console_drivers->flags & CON_BOOT)
2535 bcon = console_drivers;
2536
2537 if (preferred_console < 0 || bcon || !console_drivers)
2538 preferred_console = selected_console;
2539
2540 /*
2541 * See if we want to use this console driver. If we
2542 * didn't select a console we take the first one
2543 * that registers here.
2544 */
2545 if (preferred_console < 0) {
2546 if (newcon->index < 0)
2547 newcon->index = 0;
2548 if (newcon->setup == NULL ||
2549 newcon->setup(newcon, NULL) == 0) {
2550 newcon->flags |= CON_ENABLED;
2551 if (newcon->device) {
2552 newcon->flags |= CON_CONSDEV;
2553 preferred_console = 0;
2554 }
2555 }
2556 }
2557
2558 /*
2559 * See if this console matches one we selected on
2560 * the command line.
2561 */
2562 for (i = 0, c = console_cmdline;
2563 i < MAX_CMDLINECONSOLES && c->name[0];
2564 i++, c++) {
2565 if (!newcon->match ||
2566 newcon->match(newcon, c->name, c->index, c->options) != 0) {
2567 /* default matching */
2568 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2569 if (strcmp(c->name, newcon->name) != 0)
2570 continue;
2571 if (newcon->index >= 0 &&
2572 newcon->index != c->index)
2573 continue;
2574 if (newcon->index < 0)
2575 newcon->index = c->index;
2576
2577 if (_braille_register_console(newcon, c))
2578 return;
2579
2580 if (newcon->setup &&
2581 newcon->setup(newcon, c->options) != 0)
2582 break;
2583 }
2584
2585 newcon->flags |= CON_ENABLED;
2586 if (i == selected_console) {
2587 newcon->flags |= CON_CONSDEV;
2588 preferred_console = selected_console;
2589 }
2590 break;
2591 }
2592
2593 if (!(newcon->flags & CON_ENABLED))
2594 return;
2595
2596 /*
2597 * If we have a bootconsole, and are switching to a real console,
2598 * don't print everything out again, since when the boot console, and
2599 * the real console are the same physical device, it's annoying to
2600 * see the beginning boot messages twice
2601 */
2602 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2603 newcon->flags &= ~CON_PRINTBUFFER;
2604
2605 /*
2606 * Put this console in the list - keep the
2607 * preferred driver at the head of the list.
2608 */
2609 console_lock();
2610 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2611 newcon->next = console_drivers;
2612 console_drivers = newcon;
2613 if (newcon->next)
2614 newcon->next->flags &= ~CON_CONSDEV;
2615 } else {
2616 newcon->next = console_drivers->next;
2617 console_drivers->next = newcon;
2618 }
2619
2620 if (newcon->flags & CON_EXTENDED)
2621 if (!nr_ext_console_drivers++)
2622 pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2623
2624 if (newcon->flags & CON_PRINTBUFFER) {
2625 /*
2626 * console_unlock(); will print out the buffered messages
2627 * for us.
2628 */
2629 raw_spin_lock_irqsave(&logbuf_lock, flags);
2630 console_seq = syslog_seq;
2631 console_idx = syslog_idx;
2632 console_prev = syslog_prev;
2633 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2634 /*
2635 * We're about to replay the log buffer. Only do this to the
2636 * just-registered console to avoid excessive message spam to
2637 * the already-registered consoles.
2638 */
2639 exclusive_console = newcon;
2640 }
2641 console_unlock();
2642 console_sysfs_notify();
2643
2644 /*
2645 * By unregistering the bootconsoles after we enable the real console
2646 * we get the "console xxx enabled" message on all the consoles -
2647 * boot consoles, real consoles, etc - this is to ensure that end
2648 * users know there might be something in the kernel's log buffer that
2649 * went to the bootconsole (that they do not see on the real console)
2650 */
2651 pr_info("%sconsole [%s%d] enabled\n",
2652 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2653 newcon->name, newcon->index);
2654 if (bcon &&
2655 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2656 !keep_bootcon) {
2657 /* We need to iterate through all boot consoles, to make
2658 * sure we print everything out, before we unregister them.
2659 */
2660 for_each_console(bcon)
2661 if (bcon->flags & CON_BOOT)
2662 unregister_console(bcon);
2663 }
2664 }
2665 EXPORT_SYMBOL(register_console);
2666
2667 int unregister_console(struct console *console)
2668 {
2669 struct console *a, *b;
2670 int res;
2671
2672 pr_info("%sconsole [%s%d] disabled\n",
2673 (console->flags & CON_BOOT) ? "boot" : "" ,
2674 console->name, console->index);
2675
2676 res = _braille_unregister_console(console);
2677 if (res)
2678 return res;
2679
2680 res = 1;
2681 console_lock();
2682 if (console_drivers == console) {
2683 console_drivers=console->next;
2684 res = 0;
2685 } else if (console_drivers) {
2686 for (a=console_drivers->next, b=console_drivers ;
2687 a; b=a, a=b->next) {
2688 if (a == console) {
2689 b->next = a->next;
2690 res = 0;
2691 break;
2692 }
2693 }
2694 }
2695
2696 if (!res && (console->flags & CON_EXTENDED))
2697 nr_ext_console_drivers--;
2698
2699 /*
2700 * If this isn't the last console and it has CON_CONSDEV set, we
2701 * need to set it on the next preferred console.
2702 */
2703 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2704 console_drivers->flags |= CON_CONSDEV;
2705
2706 console->flags &= ~CON_ENABLED;
2707 console_unlock();
2708 console_sysfs_notify();
2709 return res;
2710 }
2711 EXPORT_SYMBOL(unregister_console);
2712
2713 /*
2714 * Some boot consoles access data that is in the init section and which will
2715 * be discarded after the initcalls have been run. To make sure that no code
2716 * will access this data, unregister the boot consoles in a late initcall.
2717 *
2718 * If for some reason, such as deferred probe or the driver being a loadable
2719 * module, the real console hasn't registered yet at this point, there will
2720 * be a brief interval in which no messages are logged to the console, which
2721 * makes it difficult to diagnose problems that occur during this time.
2722 *
2723 * To mitigate this problem somewhat, only unregister consoles whose memory
2724 * intersects with the init section. Note that code exists elsewhere to get
2725 * rid of the boot console as soon as the proper console shows up, so there
2726 * won't be side-effects from postponing the removal.
2727 */
2728 static int __init printk_late_init(void)
2729 {
2730 struct console *con;
2731
2732 for_each_console(con) {
2733 if (!keep_bootcon && con->flags & CON_BOOT) {
2734 /*
2735 * Make sure to unregister boot consoles whose data
2736 * resides in the init section before the init section
2737 * is discarded. Boot consoles whose data will stick
2738 * around will automatically be unregistered when the
2739 * proper console replaces them.
2740 */
2741 if (init_section_intersects(con, sizeof(*con)))
2742 unregister_console(con);
2743 }
2744 }
2745 hotcpu_notifier(console_cpu_notify, 0);
2746 return 0;
2747 }
2748 late_initcall(printk_late_init);
2749
2750 #if defined CONFIG_PRINTK
2751 /*
2752 * Delayed printk version, for scheduler-internal messages:
2753 */
2754 #define PRINTK_PENDING_WAKEUP 0x01
2755 #define PRINTK_PENDING_OUTPUT 0x02
2756
2757 static DEFINE_PER_CPU(int, printk_pending);
2758
2759 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2760 {
2761 int pending = __this_cpu_xchg(printk_pending, 0);
2762
2763 if (pending & PRINTK_PENDING_OUTPUT) {
2764 /* If trylock fails, someone else is doing the printing */
2765 if (console_trylock())
2766 console_unlock();
2767 }
2768
2769 if (pending & PRINTK_PENDING_WAKEUP)
2770 wake_up_interruptible(&log_wait);
2771 }
2772
2773 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2774 .func = wake_up_klogd_work_func,
2775 .flags = IRQ_WORK_LAZY,
2776 };
2777
2778 void wake_up_klogd(void)
2779 {
2780 preempt_disable();
2781 if (waitqueue_active(&log_wait)) {
2782 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2783 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2784 }
2785 preempt_enable();
2786 }
2787
2788 int printk_deferred(const char *fmt, ...)
2789 {
2790 va_list args;
2791 int r;
2792
2793 preempt_disable();
2794 va_start(args, fmt);
2795 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2796 va_end(args);
2797
2798 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2799 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2800 preempt_enable();
2801
2802 return r;
2803 }
2804
2805 /*
2806 * printk rate limiting, lifted from the networking subsystem.
2807 *
2808 * This enforces a rate limit: not more than 10 kernel messages
2809 * every 5s to make a denial-of-service attack impossible.
2810 */
2811 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2812
2813 int __printk_ratelimit(const char *func)
2814 {
2815 return ___ratelimit(&printk_ratelimit_state, func);
2816 }
2817 EXPORT_SYMBOL(__printk_ratelimit);
2818
2819 /**
2820 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2821 * @caller_jiffies: pointer to caller's state
2822 * @interval_msecs: minimum interval between prints
2823 *
2824 * printk_timed_ratelimit() returns true if more than @interval_msecs
2825 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2826 * returned true.
2827 */
2828 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2829 unsigned int interval_msecs)
2830 {
2831 unsigned long elapsed = jiffies - *caller_jiffies;
2832
2833 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2834 return false;
2835
2836 *caller_jiffies = jiffies;
2837 return true;
2838 }
2839 EXPORT_SYMBOL(printk_timed_ratelimit);
2840
2841 static DEFINE_SPINLOCK(dump_list_lock);
2842 static LIST_HEAD(dump_list);
2843
2844 /**
2845 * kmsg_dump_register - register a kernel log dumper.
2846 * @dumper: pointer to the kmsg_dumper structure
2847 *
2848 * Adds a kernel log dumper to the system. The dump callback in the
2849 * structure will be called when the kernel oopses or panics and must be
2850 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2851 */
2852 int kmsg_dump_register(struct kmsg_dumper *dumper)
2853 {
2854 unsigned long flags;
2855 int err = -EBUSY;
2856
2857 /* The dump callback needs to be set */
2858 if (!dumper->dump)
2859 return -EINVAL;
2860
2861 spin_lock_irqsave(&dump_list_lock, flags);
2862 /* Don't allow registering multiple times */
2863 if (!dumper->registered) {
2864 dumper->registered = 1;
2865 list_add_tail_rcu(&dumper->list, &dump_list);
2866 err = 0;
2867 }
2868 spin_unlock_irqrestore(&dump_list_lock, flags);
2869
2870 return err;
2871 }
2872 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2873
2874 /**
2875 * kmsg_dump_unregister - unregister a kmsg dumper.
2876 * @dumper: pointer to the kmsg_dumper structure
2877 *
2878 * Removes a dump device from the system. Returns zero on success and
2879 * %-EINVAL otherwise.
2880 */
2881 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2882 {
2883 unsigned long flags;
2884 int err = -EINVAL;
2885
2886 spin_lock_irqsave(&dump_list_lock, flags);
2887 if (dumper->registered) {
2888 dumper->registered = 0;
2889 list_del_rcu(&dumper->list);
2890 err = 0;
2891 }
2892 spin_unlock_irqrestore(&dump_list_lock, flags);
2893 synchronize_rcu();
2894
2895 return err;
2896 }
2897 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2898
2899 static bool always_kmsg_dump;
2900 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2901
2902 /**
2903 * kmsg_dump - dump kernel log to kernel message dumpers.
2904 * @reason: the reason (oops, panic etc) for dumping
2905 *
2906 * Call each of the registered dumper's dump() callback, which can
2907 * retrieve the kmsg records with kmsg_dump_get_line() or
2908 * kmsg_dump_get_buffer().
2909 */
2910 void kmsg_dump(enum kmsg_dump_reason reason)
2911 {
2912 struct kmsg_dumper *dumper;
2913 unsigned long flags;
2914
2915 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2916 return;
2917
2918 rcu_read_lock();
2919 list_for_each_entry_rcu(dumper, &dump_list, list) {
2920 if (dumper->max_reason && reason > dumper->max_reason)
2921 continue;
2922
2923 /* initialize iterator with data about the stored records */
2924 dumper->active = true;
2925
2926 raw_spin_lock_irqsave(&logbuf_lock, flags);
2927 dumper->cur_seq = clear_seq;
2928 dumper->cur_idx = clear_idx;
2929 dumper->next_seq = log_next_seq;
2930 dumper->next_idx = log_next_idx;
2931 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2932
2933 /* invoke dumper which will iterate over records */
2934 dumper->dump(dumper, reason);
2935
2936 /* reset iterator */
2937 dumper->active = false;
2938 }
2939 rcu_read_unlock();
2940 }
2941
2942 /**
2943 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2944 * @dumper: registered kmsg dumper
2945 * @syslog: include the "<4>" prefixes
2946 * @line: buffer to copy the line to
2947 * @size: maximum size of the buffer
2948 * @len: length of line placed into buffer
2949 *
2950 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2951 * record, and copy one record into the provided buffer.
2952 *
2953 * Consecutive calls will return the next available record moving
2954 * towards the end of the buffer with the youngest messages.
2955 *
2956 * A return value of FALSE indicates that there are no more records to
2957 * read.
2958 *
2959 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2960 */
2961 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2962 char *line, size_t size, size_t *len)
2963 {
2964 struct printk_log *msg;
2965 size_t l = 0;
2966 bool ret = false;
2967
2968 if (!dumper->active)
2969 goto out;
2970
2971 if (dumper->cur_seq < log_first_seq) {
2972 /* messages are gone, move to first available one */
2973 dumper->cur_seq = log_first_seq;
2974 dumper->cur_idx = log_first_idx;
2975 }
2976
2977 /* last entry */
2978 if (dumper->cur_seq >= log_next_seq)
2979 goto out;
2980
2981 msg = log_from_idx(dumper->cur_idx);
2982 l = msg_print_text(msg, 0, syslog, line, size);
2983
2984 dumper->cur_idx = log_next(dumper->cur_idx);
2985 dumper->cur_seq++;
2986 ret = true;
2987 out:
2988 if (len)
2989 *len = l;
2990 return ret;
2991 }
2992
2993 /**
2994 * kmsg_dump_get_line - retrieve one kmsg log line
2995 * @dumper: registered kmsg dumper
2996 * @syslog: include the "<4>" prefixes
2997 * @line: buffer to copy the line to
2998 * @size: maximum size of the buffer
2999 * @len: length of line placed into buffer
3000 *
3001 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3002 * record, and copy one record into the provided buffer.
3003 *
3004 * Consecutive calls will return the next available record moving
3005 * towards the end of the buffer with the youngest messages.
3006 *
3007 * A return value of FALSE indicates that there are no more records to
3008 * read.
3009 */
3010 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3011 char *line, size_t size, size_t *len)
3012 {
3013 unsigned long flags;
3014 bool ret;
3015
3016 raw_spin_lock_irqsave(&logbuf_lock, flags);
3017 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3018 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3019
3020 return ret;
3021 }
3022 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3023
3024 /**
3025 * kmsg_dump_get_buffer - copy kmsg log lines
3026 * @dumper: registered kmsg dumper
3027 * @syslog: include the "<4>" prefixes
3028 * @buf: buffer to copy the line to
3029 * @size: maximum size of the buffer
3030 * @len: length of line placed into buffer
3031 *
3032 * Start at the end of the kmsg buffer and fill the provided buffer
3033 * with as many of the the *youngest* kmsg records that fit into it.
3034 * If the buffer is large enough, all available kmsg records will be
3035 * copied with a single call.
3036 *
3037 * Consecutive calls will fill the buffer with the next block of
3038 * available older records, not including the earlier retrieved ones.
3039 *
3040 * A return value of FALSE indicates that there are no more records to
3041 * read.
3042 */
3043 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3044 char *buf, size_t size, size_t *len)
3045 {
3046 unsigned long flags;
3047 u64 seq;
3048 u32 idx;
3049 u64 next_seq;
3050 u32 next_idx;
3051 enum log_flags prev;
3052 size_t l = 0;
3053 bool ret = false;
3054
3055 if (!dumper->active)
3056 goto out;
3057
3058 raw_spin_lock_irqsave(&logbuf_lock, flags);
3059 if (dumper->cur_seq < log_first_seq) {
3060 /* messages are gone, move to first available one */
3061 dumper->cur_seq = log_first_seq;
3062 dumper->cur_idx = log_first_idx;
3063 }
3064
3065 /* last entry */
3066 if (dumper->cur_seq >= dumper->next_seq) {
3067 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3068 goto out;
3069 }
3070
3071 /* calculate length of entire buffer */
3072 seq = dumper->cur_seq;
3073 idx = dumper->cur_idx;
3074 prev = 0;
3075 while (seq < dumper->next_seq) {
3076 struct printk_log *msg = log_from_idx(idx);
3077
3078 l += msg_print_text(msg, prev, true, NULL, 0);
3079 idx = log_next(idx);
3080 seq++;
3081 prev = msg->flags;
3082 }
3083
3084 /* move first record forward until length fits into the buffer */
3085 seq = dumper->cur_seq;
3086 idx = dumper->cur_idx;
3087 prev = 0;
3088 while (l > size && seq < dumper->next_seq) {
3089 struct printk_log *msg = log_from_idx(idx);
3090
3091 l -= msg_print_text(msg, prev, true, NULL, 0);
3092 idx = log_next(idx);
3093 seq++;
3094 prev = msg->flags;
3095 }
3096
3097 /* last message in next interation */
3098 next_seq = seq;
3099 next_idx = idx;
3100
3101 l = 0;
3102 while (seq < dumper->next_seq) {
3103 struct printk_log *msg = log_from_idx(idx);
3104
3105 l += msg_print_text(msg, prev, syslog, buf + l, size - l);
3106 idx = log_next(idx);
3107 seq++;
3108 prev = msg->flags;
3109 }
3110
3111 dumper->next_seq = next_seq;
3112 dumper->next_idx = next_idx;
3113 ret = true;
3114 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3115 out:
3116 if (len)
3117 *len = l;
3118 return ret;
3119 }
3120 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3121
3122 /**
3123 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3124 * @dumper: registered kmsg dumper
3125 *
3126 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3127 * kmsg_dump_get_buffer() can be called again and used multiple
3128 * times within the same dumper.dump() callback.
3129 *
3130 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3131 */
3132 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3133 {
3134 dumper->cur_seq = clear_seq;
3135 dumper->cur_idx = clear_idx;
3136 dumper->next_seq = log_next_seq;
3137 dumper->next_idx = log_next_idx;
3138 }
3139
3140 /**
3141 * kmsg_dump_rewind - reset the interator
3142 * @dumper: registered kmsg dumper
3143 *
3144 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3145 * kmsg_dump_get_buffer() can be called again and used multiple
3146 * times within the same dumper.dump() callback.
3147 */
3148 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3149 {
3150 unsigned long flags;
3151
3152 raw_spin_lock_irqsave(&logbuf_lock, flags);
3153 kmsg_dump_rewind_nolock(dumper);
3154 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3155 }
3156 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3157
3158 static char dump_stack_arch_desc_str[128];
3159
3160 /**
3161 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3162 * @fmt: printf-style format string
3163 * @...: arguments for the format string
3164 *
3165 * The configured string will be printed right after utsname during task
3166 * dumps. Usually used to add arch-specific system identifiers. If an
3167 * arch wants to make use of such an ID string, it should initialize this
3168 * as soon as possible during boot.
3169 */
3170 void __init dump_stack_set_arch_desc(const char *fmt, ...)
3171 {
3172 va_list args;
3173
3174 va_start(args, fmt);
3175 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3176 fmt, args);
3177 va_end(args);
3178 }
3179
3180 /**
3181 * dump_stack_print_info - print generic debug info for dump_stack()
3182 * @log_lvl: log level
3183 *
3184 * Arch-specific dump_stack() implementations can use this function to
3185 * print out the same debug information as the generic dump_stack().
3186 */
3187 void dump_stack_print_info(const char *log_lvl)
3188 {
3189 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3190 log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3191 print_tainted(), init_utsname()->release,
3192 (int)strcspn(init_utsname()->version, " "),
3193 init_utsname()->version);
3194
3195 if (dump_stack_arch_desc_str[0] != '\0')
3196 printk("%sHardware name: %s\n",
3197 log_lvl, dump_stack_arch_desc_str);
3198
3199 print_worker_info(log_lvl, current);
3200 }
3201
3202 /**
3203 * show_regs_print_info - print generic debug info for show_regs()
3204 * @log_lvl: log level
3205 *
3206 * show_regs() implementations can use this function to print out generic
3207 * debug information.
3208 */
3209 void show_regs_print_info(const char *log_lvl)
3210 {
3211 dump_stack_print_info(log_lvl);
3212
3213 printk("%stask: %p task.stack: %p\n",
3214 log_lvl, current, task_stack_page(current));
3215 }
3216
3217 #endif