]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - kernel/printk/printk.c
a1d88212a5d213cb3faff340fa360c162d8d6ca2
[mirror_ubuntu-focal-kernel.git] / kernel / printk / printk.c
1 /*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/tty.h>
24 #include <linux/tty_driver.h>
25 #include <linux/console.h>
26 #include <linux/init.h>
27 #include <linux/jiffies.h>
28 #include <linux/nmi.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/delay.h>
32 #include <linux/smp.h>
33 #include <linux/security.h>
34 #include <linux/bootmem.h>
35 #include <linux/memblock.h>
36 #include <linux/syscalls.h>
37 #include <linux/crash_core.h>
38 #include <linux/kdb.h>
39 #include <linux/ratelimit.h>
40 #include <linux/kmsg_dump.h>
41 #include <linux/syslog.h>
42 #include <linux/cpu.h>
43 #include <linux/rculist.h>
44 #include <linux/poll.h>
45 #include <linux/irq_work.h>
46 #include <linux/ctype.h>
47 #include <linux/uio.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/debug.h>
50 #include <linux/sched/task_stack.h>
51
52 #include <linux/uaccess.h>
53 #include <asm/sections.h>
54
55 #include <trace/events/initcall.h>
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/printk.h>
58
59 #include "console_cmdline.h"
60 #include "braille.h"
61 #include "internal.h"
62
63 int console_printk[4] = {
64 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */
65 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */
66 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */
67 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */
68 };
69
70 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
71 EXPORT_SYMBOL(ignore_console_lock_warning);
72
73 /*
74 * Low level drivers may need that to know if they can schedule in
75 * their unblank() callback or not. So let's export it.
76 */
77 int oops_in_progress;
78 EXPORT_SYMBOL(oops_in_progress);
79
80 /*
81 * console_sem protects the console_drivers list, and also
82 * provides serialisation for access to the entire console
83 * driver system.
84 */
85 static DEFINE_SEMAPHORE(console_sem);
86 struct console *console_drivers;
87 EXPORT_SYMBOL_GPL(console_drivers);
88
89 #ifdef CONFIG_LOCKDEP
90 static struct lockdep_map console_lock_dep_map = {
91 .name = "console_lock"
92 };
93 #endif
94
95 enum devkmsg_log_bits {
96 __DEVKMSG_LOG_BIT_ON = 0,
97 __DEVKMSG_LOG_BIT_OFF,
98 __DEVKMSG_LOG_BIT_LOCK,
99 };
100
101 enum devkmsg_log_masks {
102 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON),
103 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF),
104 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK),
105 };
106
107 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
108 #define DEVKMSG_LOG_MASK_DEFAULT 0
109
110 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
111
112 static int __control_devkmsg(char *str)
113 {
114 if (!str)
115 return -EINVAL;
116
117 if (!strncmp(str, "on", 2)) {
118 devkmsg_log = DEVKMSG_LOG_MASK_ON;
119 return 2;
120 } else if (!strncmp(str, "off", 3)) {
121 devkmsg_log = DEVKMSG_LOG_MASK_OFF;
122 return 3;
123 } else if (!strncmp(str, "ratelimit", 9)) {
124 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
125 return 9;
126 }
127 return -EINVAL;
128 }
129
130 static int __init control_devkmsg(char *str)
131 {
132 if (__control_devkmsg(str) < 0)
133 return 1;
134
135 /*
136 * Set sysctl string accordingly:
137 */
138 if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
139 strcpy(devkmsg_log_str, "on");
140 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
141 strcpy(devkmsg_log_str, "off");
142 /* else "ratelimit" which is set by default. */
143
144 /*
145 * Sysctl cannot change it anymore. The kernel command line setting of
146 * this parameter is to force the setting to be permanent throughout the
147 * runtime of the system. This is a precation measure against userspace
148 * trying to be a smarta** and attempting to change it up on us.
149 */
150 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
151
152 return 0;
153 }
154 __setup("printk.devkmsg=", control_devkmsg);
155
156 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
157
158 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
159 void __user *buffer, size_t *lenp, loff_t *ppos)
160 {
161 char old_str[DEVKMSG_STR_MAX_SIZE];
162 unsigned int old;
163 int err;
164
165 if (write) {
166 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
167 return -EINVAL;
168
169 old = devkmsg_log;
170 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
171 }
172
173 err = proc_dostring(table, write, buffer, lenp, ppos);
174 if (err)
175 return err;
176
177 if (write) {
178 err = __control_devkmsg(devkmsg_log_str);
179
180 /*
181 * Do not accept an unknown string OR a known string with
182 * trailing crap...
183 */
184 if (err < 0 || (err + 1 != *lenp)) {
185
186 /* ... and restore old setting. */
187 devkmsg_log = old;
188 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
189
190 return -EINVAL;
191 }
192 }
193
194 return 0;
195 }
196
197 /* Number of registered extended console drivers. */
198 static int nr_ext_console_drivers;
199
200 /*
201 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
202 * macros instead of functions so that _RET_IP_ contains useful information.
203 */
204 #define down_console_sem() do { \
205 down(&console_sem);\
206 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
207 } while (0)
208
209 static int __down_trylock_console_sem(unsigned long ip)
210 {
211 int lock_failed;
212 unsigned long flags;
213
214 /*
215 * Here and in __up_console_sem() we need to be in safe mode,
216 * because spindump/WARN/etc from under console ->lock will
217 * deadlock in printk()->down_trylock_console_sem() otherwise.
218 */
219 printk_safe_enter_irqsave(flags);
220 lock_failed = down_trylock(&console_sem);
221 printk_safe_exit_irqrestore(flags);
222
223 if (lock_failed)
224 return 1;
225 mutex_acquire(&console_lock_dep_map, 0, 1, ip);
226 return 0;
227 }
228 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
229
230 static void __up_console_sem(unsigned long ip)
231 {
232 unsigned long flags;
233
234 mutex_release(&console_lock_dep_map, 1, ip);
235
236 printk_safe_enter_irqsave(flags);
237 up(&console_sem);
238 printk_safe_exit_irqrestore(flags);
239 }
240 #define up_console_sem() __up_console_sem(_RET_IP_)
241
242 /*
243 * This is used for debugging the mess that is the VT code by
244 * keeping track if we have the console semaphore held. It's
245 * definitely not the perfect debug tool (we don't know if _WE_
246 * hold it and are racing, but it helps tracking those weird code
247 * paths in the console code where we end up in places I want
248 * locked without the console sempahore held).
249 */
250 static int console_locked, console_suspended;
251
252 /*
253 * If exclusive_console is non-NULL then only this console is to be printed to.
254 */
255 static struct console *exclusive_console;
256
257 /*
258 * Array of consoles built from command line options (console=)
259 */
260
261 #define MAX_CMDLINECONSOLES 8
262
263 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
264
265 static int preferred_console = -1;
266 int console_set_on_cmdline;
267 EXPORT_SYMBOL(console_set_on_cmdline);
268
269 /* Flag: console code may call schedule() */
270 static int console_may_schedule;
271
272 enum con_msg_format_flags {
273 MSG_FORMAT_DEFAULT = 0,
274 MSG_FORMAT_SYSLOG = (1 << 0),
275 };
276
277 static int console_msg_format = MSG_FORMAT_DEFAULT;
278
279 /*
280 * The printk log buffer consists of a chain of concatenated variable
281 * length records. Every record starts with a record header, containing
282 * the overall length of the record.
283 *
284 * The heads to the first and last entry in the buffer, as well as the
285 * sequence numbers of these entries are maintained when messages are
286 * stored.
287 *
288 * If the heads indicate available messages, the length in the header
289 * tells the start next message. A length == 0 for the next message
290 * indicates a wrap-around to the beginning of the buffer.
291 *
292 * Every record carries the monotonic timestamp in microseconds, as well as
293 * the standard userspace syslog level and syslog facility. The usual
294 * kernel messages use LOG_KERN; userspace-injected messages always carry
295 * a matching syslog facility, by default LOG_USER. The origin of every
296 * message can be reliably determined that way.
297 *
298 * The human readable log message directly follows the message header. The
299 * length of the message text is stored in the header, the stored message
300 * is not terminated.
301 *
302 * Optionally, a message can carry a dictionary of properties (key/value pairs),
303 * to provide userspace with a machine-readable message context.
304 *
305 * Examples for well-defined, commonly used property names are:
306 * DEVICE=b12:8 device identifier
307 * b12:8 block dev_t
308 * c127:3 char dev_t
309 * n8 netdev ifindex
310 * +sound:card0 subsystem:devname
311 * SUBSYSTEM=pci driver-core subsystem name
312 *
313 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
314 * follows directly after a '=' character. Every property is terminated by
315 * a '\0' character. The last property is not terminated.
316 *
317 * Example of a message structure:
318 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
319 * 0008 34 00 record is 52 bytes long
320 * 000a 0b 00 text is 11 bytes long
321 * 000c 1f 00 dictionary is 23 bytes long
322 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
323 * 0010 69 74 27 73 20 61 20 6c "it's a l"
324 * 69 6e 65 "ine"
325 * 001b 44 45 56 49 43 "DEVIC"
326 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
327 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
328 * 67 "g"
329 * 0032 00 00 00 padding to next message header
330 *
331 * The 'struct printk_log' buffer header must never be directly exported to
332 * userspace, it is a kernel-private implementation detail that might
333 * need to be changed in the future, when the requirements change.
334 *
335 * /dev/kmsg exports the structured data in the following line format:
336 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
337 *
338 * Users of the export format should ignore possible additional values
339 * separated by ',', and find the message after the ';' character.
340 *
341 * The optional key/value pairs are attached as continuation lines starting
342 * with a space character and terminated by a newline. All possible
343 * non-prinatable characters are escaped in the "\xff" notation.
344 */
345
346 enum log_flags {
347 LOG_NEWLINE = 2, /* text ended with a newline */
348 LOG_PREFIX = 4, /* text started with a prefix */
349 LOG_CONT = 8, /* text is a fragment of a continuation line */
350 };
351
352 struct printk_log {
353 u64 ts_nsec; /* timestamp in nanoseconds */
354 u16 len; /* length of entire record */
355 u16 text_len; /* length of text buffer */
356 u16 dict_len; /* length of dictionary buffer */
357 u8 facility; /* syslog facility */
358 u8 flags:5; /* internal record flags */
359 u8 level:3; /* syslog level */
360 }
361 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
362 __packed __aligned(4)
363 #endif
364 ;
365
366 /*
367 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken
368 * within the scheduler's rq lock. It must be released before calling
369 * console_unlock() or anything else that might wake up a process.
370 */
371 DEFINE_RAW_SPINLOCK(logbuf_lock);
372
373 /*
374 * Helper macros to lock/unlock logbuf_lock and switch between
375 * printk-safe/unsafe modes.
376 */
377 #define logbuf_lock_irq() \
378 do { \
379 printk_safe_enter_irq(); \
380 raw_spin_lock(&logbuf_lock); \
381 } while (0)
382
383 #define logbuf_unlock_irq() \
384 do { \
385 raw_spin_unlock(&logbuf_lock); \
386 printk_safe_exit_irq(); \
387 } while (0)
388
389 #define logbuf_lock_irqsave(flags) \
390 do { \
391 printk_safe_enter_irqsave(flags); \
392 raw_spin_lock(&logbuf_lock); \
393 } while (0)
394
395 #define logbuf_unlock_irqrestore(flags) \
396 do { \
397 raw_spin_unlock(&logbuf_lock); \
398 printk_safe_exit_irqrestore(flags); \
399 } while (0)
400
401 #ifdef CONFIG_PRINTK
402 DECLARE_WAIT_QUEUE_HEAD(log_wait);
403 /* the next printk record to read by syslog(READ) or /proc/kmsg */
404 static u64 syslog_seq;
405 static u32 syslog_idx;
406 static size_t syslog_partial;
407
408 /* index and sequence number of the first record stored in the buffer */
409 static u64 log_first_seq;
410 static u32 log_first_idx;
411
412 /* index and sequence number of the next record to store in the buffer */
413 static u64 log_next_seq;
414 static u32 log_next_idx;
415
416 /* the next printk record to write to the console */
417 static u64 console_seq;
418 static u32 console_idx;
419 static u64 exclusive_console_stop_seq;
420
421 /* the next printk record to read after the last 'clear' command */
422 static u64 clear_seq;
423 static u32 clear_idx;
424
425 #define PREFIX_MAX 32
426 #define LOG_LINE_MAX (1024 - PREFIX_MAX)
427
428 #define LOG_LEVEL(v) ((v) & 0x07)
429 #define LOG_FACILITY(v) ((v) >> 3 & 0xff)
430
431 /* record buffer */
432 #define LOG_ALIGN __alignof__(struct printk_log)
433 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
434 #define LOG_BUF_LEN_MAX (u32)(1 << 31)
435 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
436 static char *log_buf = __log_buf;
437 static u32 log_buf_len = __LOG_BUF_LEN;
438
439 /* Return log buffer address */
440 char *log_buf_addr_get(void)
441 {
442 return log_buf;
443 }
444
445 /* Return log buffer size */
446 u32 log_buf_len_get(void)
447 {
448 return log_buf_len;
449 }
450
451 /* human readable text of the record */
452 static char *log_text(const struct printk_log *msg)
453 {
454 return (char *)msg + sizeof(struct printk_log);
455 }
456
457 /* optional key/value pair dictionary attached to the record */
458 static char *log_dict(const struct printk_log *msg)
459 {
460 return (char *)msg + sizeof(struct printk_log) + msg->text_len;
461 }
462
463 /* get record by index; idx must point to valid msg */
464 static struct printk_log *log_from_idx(u32 idx)
465 {
466 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
467
468 /*
469 * A length == 0 record is the end of buffer marker. Wrap around and
470 * read the message at the start of the buffer.
471 */
472 if (!msg->len)
473 return (struct printk_log *)log_buf;
474 return msg;
475 }
476
477 /* get next record; idx must point to valid msg */
478 static u32 log_next(u32 idx)
479 {
480 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
481
482 /* length == 0 indicates the end of the buffer; wrap */
483 /*
484 * A length == 0 record is the end of buffer marker. Wrap around and
485 * read the message at the start of the buffer as *this* one, and
486 * return the one after that.
487 */
488 if (!msg->len) {
489 msg = (struct printk_log *)log_buf;
490 return msg->len;
491 }
492 return idx + msg->len;
493 }
494
495 /*
496 * Check whether there is enough free space for the given message.
497 *
498 * The same values of first_idx and next_idx mean that the buffer
499 * is either empty or full.
500 *
501 * If the buffer is empty, we must respect the position of the indexes.
502 * They cannot be reset to the beginning of the buffer.
503 */
504 static int logbuf_has_space(u32 msg_size, bool empty)
505 {
506 u32 free;
507
508 if (log_next_idx > log_first_idx || empty)
509 free = max(log_buf_len - log_next_idx, log_first_idx);
510 else
511 free = log_first_idx - log_next_idx;
512
513 /*
514 * We need space also for an empty header that signalizes wrapping
515 * of the buffer.
516 */
517 return free >= msg_size + sizeof(struct printk_log);
518 }
519
520 static int log_make_free_space(u32 msg_size)
521 {
522 while (log_first_seq < log_next_seq &&
523 !logbuf_has_space(msg_size, false)) {
524 /* drop old messages until we have enough contiguous space */
525 log_first_idx = log_next(log_first_idx);
526 log_first_seq++;
527 }
528
529 if (clear_seq < log_first_seq) {
530 clear_seq = log_first_seq;
531 clear_idx = log_first_idx;
532 }
533
534 /* sequence numbers are equal, so the log buffer is empty */
535 if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
536 return 0;
537
538 return -ENOMEM;
539 }
540
541 /* compute the message size including the padding bytes */
542 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
543 {
544 u32 size;
545
546 size = sizeof(struct printk_log) + text_len + dict_len;
547 *pad_len = (-size) & (LOG_ALIGN - 1);
548 size += *pad_len;
549
550 return size;
551 }
552
553 /*
554 * Define how much of the log buffer we could take at maximum. The value
555 * must be greater than two. Note that only half of the buffer is available
556 * when the index points to the middle.
557 */
558 #define MAX_LOG_TAKE_PART 4
559 static const char trunc_msg[] = "<truncated>";
560
561 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
562 u16 *dict_len, u32 *pad_len)
563 {
564 /*
565 * The message should not take the whole buffer. Otherwise, it might
566 * get removed too soon.
567 */
568 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
569 if (*text_len > max_text_len)
570 *text_len = max_text_len;
571 /* enable the warning message */
572 *trunc_msg_len = strlen(trunc_msg);
573 /* disable the "dict" completely */
574 *dict_len = 0;
575 /* compute the size again, count also the warning message */
576 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
577 }
578
579 /* insert record into the buffer, discard old ones, update heads */
580 static int log_store(int facility, int level,
581 enum log_flags flags, u64 ts_nsec,
582 const char *dict, u16 dict_len,
583 const char *text, u16 text_len)
584 {
585 struct printk_log *msg;
586 u32 size, pad_len;
587 u16 trunc_msg_len = 0;
588
589 /* number of '\0' padding bytes to next message */
590 size = msg_used_size(text_len, dict_len, &pad_len);
591
592 if (log_make_free_space(size)) {
593 /* truncate the message if it is too long for empty buffer */
594 size = truncate_msg(&text_len, &trunc_msg_len,
595 &dict_len, &pad_len);
596 /* survive when the log buffer is too small for trunc_msg */
597 if (log_make_free_space(size))
598 return 0;
599 }
600
601 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
602 /*
603 * This message + an additional empty header does not fit
604 * at the end of the buffer. Add an empty header with len == 0
605 * to signify a wrap around.
606 */
607 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
608 log_next_idx = 0;
609 }
610
611 /* fill message */
612 msg = (struct printk_log *)(log_buf + log_next_idx);
613 memcpy(log_text(msg), text, text_len);
614 msg->text_len = text_len;
615 if (trunc_msg_len) {
616 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
617 msg->text_len += trunc_msg_len;
618 }
619 memcpy(log_dict(msg), dict, dict_len);
620 msg->dict_len = dict_len;
621 msg->facility = facility;
622 msg->level = level & 7;
623 msg->flags = flags & 0x1f;
624 if (ts_nsec > 0)
625 msg->ts_nsec = ts_nsec;
626 else
627 msg->ts_nsec = local_clock();
628 memset(log_dict(msg) + dict_len, 0, pad_len);
629 msg->len = size;
630
631 /* insert message */
632 log_next_idx += msg->len;
633 log_next_seq++;
634
635 return msg->text_len;
636 }
637
638 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
639
640 static int syslog_action_restricted(int type)
641 {
642 if (dmesg_restrict)
643 return 1;
644 /*
645 * Unless restricted, we allow "read all" and "get buffer size"
646 * for everybody.
647 */
648 return type != SYSLOG_ACTION_READ_ALL &&
649 type != SYSLOG_ACTION_SIZE_BUFFER;
650 }
651
652 static int check_syslog_permissions(int type, int source)
653 {
654 /*
655 * If this is from /proc/kmsg and we've already opened it, then we've
656 * already done the capabilities checks at open time.
657 */
658 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
659 goto ok;
660
661 if (syslog_action_restricted(type)) {
662 if (capable(CAP_SYSLOG))
663 goto ok;
664 /*
665 * For historical reasons, accept CAP_SYS_ADMIN too, with
666 * a warning.
667 */
668 if (capable(CAP_SYS_ADMIN)) {
669 pr_warn_once("%s (%d): Attempt to access syslog with "
670 "CAP_SYS_ADMIN but no CAP_SYSLOG "
671 "(deprecated).\n",
672 current->comm, task_pid_nr(current));
673 goto ok;
674 }
675 return -EPERM;
676 }
677 ok:
678 return security_syslog(type);
679 }
680
681 static void append_char(char **pp, char *e, char c)
682 {
683 if (*pp < e)
684 *(*pp)++ = c;
685 }
686
687 static ssize_t msg_print_ext_header(char *buf, size_t size,
688 struct printk_log *msg, u64 seq)
689 {
690 u64 ts_usec = msg->ts_nsec;
691
692 do_div(ts_usec, 1000);
693
694 return scnprintf(buf, size, "%u,%llu,%llu,%c;",
695 (msg->facility << 3) | msg->level, seq, ts_usec,
696 msg->flags & LOG_CONT ? 'c' : '-');
697 }
698
699 static ssize_t msg_print_ext_body(char *buf, size_t size,
700 char *dict, size_t dict_len,
701 char *text, size_t text_len)
702 {
703 char *p = buf, *e = buf + size;
704 size_t i;
705
706 /* escape non-printable characters */
707 for (i = 0; i < text_len; i++) {
708 unsigned char c = text[i];
709
710 if (c < ' ' || c >= 127 || c == '\\')
711 p += scnprintf(p, e - p, "\\x%02x", c);
712 else
713 append_char(&p, e, c);
714 }
715 append_char(&p, e, '\n');
716
717 if (dict_len) {
718 bool line = true;
719
720 for (i = 0; i < dict_len; i++) {
721 unsigned char c = dict[i];
722
723 if (line) {
724 append_char(&p, e, ' ');
725 line = false;
726 }
727
728 if (c == '\0') {
729 append_char(&p, e, '\n');
730 line = true;
731 continue;
732 }
733
734 if (c < ' ' || c >= 127 || c == '\\') {
735 p += scnprintf(p, e - p, "\\x%02x", c);
736 continue;
737 }
738
739 append_char(&p, e, c);
740 }
741 append_char(&p, e, '\n');
742 }
743
744 return p - buf;
745 }
746
747 /* /dev/kmsg - userspace message inject/listen interface */
748 struct devkmsg_user {
749 u64 seq;
750 u32 idx;
751 struct ratelimit_state rs;
752 struct mutex lock;
753 char buf[CONSOLE_EXT_LOG_MAX];
754 };
755
756 static __printf(3, 4) __cold
757 int devkmsg_emit(int facility, int level, const char *fmt, ...)
758 {
759 va_list args;
760 int r;
761
762 va_start(args, fmt);
763 r = vprintk_emit(facility, level, NULL, 0, fmt, args);
764 va_end(args);
765
766 return r;
767 }
768
769 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
770 {
771 char *buf, *line;
772 int level = default_message_loglevel;
773 int facility = 1; /* LOG_USER */
774 struct file *file = iocb->ki_filp;
775 struct devkmsg_user *user = file->private_data;
776 size_t len = iov_iter_count(from);
777 ssize_t ret = len;
778
779 if (!user || len > LOG_LINE_MAX)
780 return -EINVAL;
781
782 /* Ignore when user logging is disabled. */
783 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
784 return len;
785
786 /* Ratelimit when not explicitly enabled. */
787 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
788 if (!___ratelimit(&user->rs, current->comm))
789 return ret;
790 }
791
792 buf = kmalloc(len+1, GFP_KERNEL);
793 if (buf == NULL)
794 return -ENOMEM;
795
796 buf[len] = '\0';
797 if (!copy_from_iter_full(buf, len, from)) {
798 kfree(buf);
799 return -EFAULT;
800 }
801
802 /*
803 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
804 * the decimal value represents 32bit, the lower 3 bit are the log
805 * level, the rest are the log facility.
806 *
807 * If no prefix or no userspace facility is specified, we
808 * enforce LOG_USER, to be able to reliably distinguish
809 * kernel-generated messages from userspace-injected ones.
810 */
811 line = buf;
812 if (line[0] == '<') {
813 char *endp = NULL;
814 unsigned int u;
815
816 u = simple_strtoul(line + 1, &endp, 10);
817 if (endp && endp[0] == '>') {
818 level = LOG_LEVEL(u);
819 if (LOG_FACILITY(u) != 0)
820 facility = LOG_FACILITY(u);
821 endp++;
822 len -= endp - line;
823 line = endp;
824 }
825 }
826
827 devkmsg_emit(facility, level, "%s", line);
828 kfree(buf);
829 return ret;
830 }
831
832 static ssize_t devkmsg_read(struct file *file, char __user *buf,
833 size_t count, loff_t *ppos)
834 {
835 struct devkmsg_user *user = file->private_data;
836 struct printk_log *msg;
837 size_t len;
838 ssize_t ret;
839
840 if (!user)
841 return -EBADF;
842
843 ret = mutex_lock_interruptible(&user->lock);
844 if (ret)
845 return ret;
846
847 logbuf_lock_irq();
848 while (user->seq == log_next_seq) {
849 if (file->f_flags & O_NONBLOCK) {
850 ret = -EAGAIN;
851 logbuf_unlock_irq();
852 goto out;
853 }
854
855 logbuf_unlock_irq();
856 ret = wait_event_interruptible(log_wait,
857 user->seq != log_next_seq);
858 if (ret)
859 goto out;
860 logbuf_lock_irq();
861 }
862
863 if (user->seq < log_first_seq) {
864 /* our last seen message is gone, return error and reset */
865 user->idx = log_first_idx;
866 user->seq = log_first_seq;
867 ret = -EPIPE;
868 logbuf_unlock_irq();
869 goto out;
870 }
871
872 msg = log_from_idx(user->idx);
873 len = msg_print_ext_header(user->buf, sizeof(user->buf),
874 msg, user->seq);
875 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
876 log_dict(msg), msg->dict_len,
877 log_text(msg), msg->text_len);
878
879 user->idx = log_next(user->idx);
880 user->seq++;
881 logbuf_unlock_irq();
882
883 if (len > count) {
884 ret = -EINVAL;
885 goto out;
886 }
887
888 if (copy_to_user(buf, user->buf, len)) {
889 ret = -EFAULT;
890 goto out;
891 }
892 ret = len;
893 out:
894 mutex_unlock(&user->lock);
895 return ret;
896 }
897
898 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
899 {
900 struct devkmsg_user *user = file->private_data;
901 loff_t ret = 0;
902
903 if (!user)
904 return -EBADF;
905 if (offset)
906 return -ESPIPE;
907
908 logbuf_lock_irq();
909 switch (whence) {
910 case SEEK_SET:
911 /* the first record */
912 user->idx = log_first_idx;
913 user->seq = log_first_seq;
914 break;
915 case SEEK_DATA:
916 /*
917 * The first record after the last SYSLOG_ACTION_CLEAR,
918 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
919 * changes no global state, and does not clear anything.
920 */
921 user->idx = clear_idx;
922 user->seq = clear_seq;
923 break;
924 case SEEK_END:
925 /* after the last record */
926 user->idx = log_next_idx;
927 user->seq = log_next_seq;
928 break;
929 default:
930 ret = -EINVAL;
931 }
932 logbuf_unlock_irq();
933 return ret;
934 }
935
936 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
937 {
938 struct devkmsg_user *user = file->private_data;
939 __poll_t ret = 0;
940
941 if (!user)
942 return EPOLLERR|EPOLLNVAL;
943
944 poll_wait(file, &log_wait, wait);
945
946 logbuf_lock_irq();
947 if (user->seq < log_next_seq) {
948 /* return error when data has vanished underneath us */
949 if (user->seq < log_first_seq)
950 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
951 else
952 ret = EPOLLIN|EPOLLRDNORM;
953 }
954 logbuf_unlock_irq();
955
956 return ret;
957 }
958
959 static int devkmsg_open(struct inode *inode, struct file *file)
960 {
961 struct devkmsg_user *user;
962 int err;
963
964 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
965 return -EPERM;
966
967 /* write-only does not need any file context */
968 if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
969 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
970 SYSLOG_FROM_READER);
971 if (err)
972 return err;
973 }
974
975 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
976 if (!user)
977 return -ENOMEM;
978
979 ratelimit_default_init(&user->rs);
980 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
981
982 mutex_init(&user->lock);
983
984 logbuf_lock_irq();
985 user->idx = log_first_idx;
986 user->seq = log_first_seq;
987 logbuf_unlock_irq();
988
989 file->private_data = user;
990 return 0;
991 }
992
993 static int devkmsg_release(struct inode *inode, struct file *file)
994 {
995 struct devkmsg_user *user = file->private_data;
996
997 if (!user)
998 return 0;
999
1000 ratelimit_state_exit(&user->rs);
1001
1002 mutex_destroy(&user->lock);
1003 kfree(user);
1004 return 0;
1005 }
1006
1007 const struct file_operations kmsg_fops = {
1008 .open = devkmsg_open,
1009 .read = devkmsg_read,
1010 .write_iter = devkmsg_write,
1011 .llseek = devkmsg_llseek,
1012 .poll = devkmsg_poll,
1013 .release = devkmsg_release,
1014 };
1015
1016 #ifdef CONFIG_CRASH_CORE
1017 /*
1018 * This appends the listed symbols to /proc/vmcore
1019 *
1020 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
1021 * obtain access to symbols that are otherwise very difficult to locate. These
1022 * symbols are specifically used so that utilities can access and extract the
1023 * dmesg log from a vmcore file after a crash.
1024 */
1025 void log_buf_vmcoreinfo_setup(void)
1026 {
1027 VMCOREINFO_SYMBOL(log_buf);
1028 VMCOREINFO_SYMBOL(log_buf_len);
1029 VMCOREINFO_SYMBOL(log_first_idx);
1030 VMCOREINFO_SYMBOL(clear_idx);
1031 VMCOREINFO_SYMBOL(log_next_idx);
1032 /*
1033 * Export struct printk_log size and field offsets. User space tools can
1034 * parse it and detect any changes to structure down the line.
1035 */
1036 VMCOREINFO_STRUCT_SIZE(printk_log);
1037 VMCOREINFO_OFFSET(printk_log, ts_nsec);
1038 VMCOREINFO_OFFSET(printk_log, len);
1039 VMCOREINFO_OFFSET(printk_log, text_len);
1040 VMCOREINFO_OFFSET(printk_log, dict_len);
1041 }
1042 #endif
1043
1044 /* requested log_buf_len from kernel cmdline */
1045 static unsigned long __initdata new_log_buf_len;
1046
1047 /* we practice scaling the ring buffer by powers of 2 */
1048 static void __init log_buf_len_update(u64 size)
1049 {
1050 if (size > (u64)LOG_BUF_LEN_MAX) {
1051 size = (u64)LOG_BUF_LEN_MAX;
1052 pr_err("log_buf over 2G is not supported.\n");
1053 }
1054
1055 if (size)
1056 size = roundup_pow_of_two(size);
1057 if (size > log_buf_len)
1058 new_log_buf_len = (unsigned long)size;
1059 }
1060
1061 /* save requested log_buf_len since it's too early to process it */
1062 static int __init log_buf_len_setup(char *str)
1063 {
1064 u64 size;
1065
1066 if (!str)
1067 return -EINVAL;
1068
1069 size = memparse(str, &str);
1070
1071 log_buf_len_update(size);
1072
1073 return 0;
1074 }
1075 early_param("log_buf_len", log_buf_len_setup);
1076
1077 #ifdef CONFIG_SMP
1078 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1079
1080 static void __init log_buf_add_cpu(void)
1081 {
1082 unsigned int cpu_extra;
1083
1084 /*
1085 * archs should set up cpu_possible_bits properly with
1086 * set_cpu_possible() after setup_arch() but just in
1087 * case lets ensure this is valid.
1088 */
1089 if (num_possible_cpus() == 1)
1090 return;
1091
1092 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1093
1094 /* by default this will only continue through for large > 64 CPUs */
1095 if (cpu_extra <= __LOG_BUF_LEN / 2)
1096 return;
1097
1098 pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1099 __LOG_CPU_MAX_BUF_LEN);
1100 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1101 cpu_extra);
1102 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1103
1104 log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1105 }
1106 #else /* !CONFIG_SMP */
1107 static inline void log_buf_add_cpu(void) {}
1108 #endif /* CONFIG_SMP */
1109
1110 void __init setup_log_buf(int early)
1111 {
1112 unsigned long flags;
1113 char *new_log_buf;
1114 unsigned int free;
1115
1116 if (log_buf != __log_buf)
1117 return;
1118
1119 if (!early && !new_log_buf_len)
1120 log_buf_add_cpu();
1121
1122 if (!new_log_buf_len)
1123 return;
1124
1125 if (early) {
1126 new_log_buf =
1127 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
1128 } else {
1129 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
1130 LOG_ALIGN);
1131 }
1132
1133 if (unlikely(!new_log_buf)) {
1134 pr_err("log_buf_len: %lu bytes not available\n",
1135 new_log_buf_len);
1136 return;
1137 }
1138
1139 logbuf_lock_irqsave(flags);
1140 log_buf_len = new_log_buf_len;
1141 log_buf = new_log_buf;
1142 new_log_buf_len = 0;
1143 free = __LOG_BUF_LEN - log_next_idx;
1144 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1145 logbuf_unlock_irqrestore(flags);
1146
1147 pr_info("log_buf_len: %u bytes\n", log_buf_len);
1148 pr_info("early log buf free: %u(%u%%)\n",
1149 free, (free * 100) / __LOG_BUF_LEN);
1150 }
1151
1152 static bool __read_mostly ignore_loglevel;
1153
1154 static int __init ignore_loglevel_setup(char *str)
1155 {
1156 ignore_loglevel = true;
1157 pr_info("debug: ignoring loglevel setting.\n");
1158
1159 return 0;
1160 }
1161
1162 early_param("ignore_loglevel", ignore_loglevel_setup);
1163 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1164 MODULE_PARM_DESC(ignore_loglevel,
1165 "ignore loglevel setting (prints all kernel messages to the console)");
1166
1167 static bool suppress_message_printing(int level)
1168 {
1169 return (level >= console_loglevel && !ignore_loglevel);
1170 }
1171
1172 #ifdef CONFIG_BOOT_PRINTK_DELAY
1173
1174 static int boot_delay; /* msecs delay after each printk during bootup */
1175 static unsigned long long loops_per_msec; /* based on boot_delay */
1176
1177 static int __init boot_delay_setup(char *str)
1178 {
1179 unsigned long lpj;
1180
1181 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
1182 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1183
1184 get_option(&str, &boot_delay);
1185 if (boot_delay > 10 * 1000)
1186 boot_delay = 0;
1187
1188 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1189 "HZ: %d, loops_per_msec: %llu\n",
1190 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1191 return 0;
1192 }
1193 early_param("boot_delay", boot_delay_setup);
1194
1195 static void boot_delay_msec(int level)
1196 {
1197 unsigned long long k;
1198 unsigned long timeout;
1199
1200 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1201 || suppress_message_printing(level)) {
1202 return;
1203 }
1204
1205 k = (unsigned long long)loops_per_msec * boot_delay;
1206
1207 timeout = jiffies + msecs_to_jiffies(boot_delay);
1208 while (k) {
1209 k--;
1210 cpu_relax();
1211 /*
1212 * use (volatile) jiffies to prevent
1213 * compiler reduction; loop termination via jiffies
1214 * is secondary and may or may not happen.
1215 */
1216 if (time_after(jiffies, timeout))
1217 break;
1218 touch_nmi_watchdog();
1219 }
1220 }
1221 #else
1222 static inline void boot_delay_msec(int level)
1223 {
1224 }
1225 #endif
1226
1227 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1228 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1229
1230 static size_t print_time(u64 ts, char *buf)
1231 {
1232 unsigned long rem_nsec;
1233
1234 if (!printk_time)
1235 return 0;
1236
1237 rem_nsec = do_div(ts, 1000000000);
1238
1239 if (!buf)
1240 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1241
1242 return sprintf(buf, "[%5lu.%06lu] ",
1243 (unsigned long)ts, rem_nsec / 1000);
1244 }
1245
1246 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1247 {
1248 size_t len = 0;
1249 unsigned int prefix = (msg->facility << 3) | msg->level;
1250
1251 if (syslog) {
1252 if (buf) {
1253 len += sprintf(buf, "<%u>", prefix);
1254 } else {
1255 len += 3;
1256 if (prefix > 999)
1257 len += 3;
1258 else if (prefix > 99)
1259 len += 2;
1260 else if (prefix > 9)
1261 len++;
1262 }
1263 }
1264
1265 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1266 return len;
1267 }
1268
1269 static size_t msg_print_text(const struct printk_log *msg, bool syslog, char *buf, size_t size)
1270 {
1271 const char *text = log_text(msg);
1272 size_t text_size = msg->text_len;
1273 size_t len = 0;
1274
1275 do {
1276 const char *next = memchr(text, '\n', text_size);
1277 size_t text_len;
1278
1279 if (next) {
1280 text_len = next - text;
1281 next++;
1282 text_size -= next - text;
1283 } else {
1284 text_len = text_size;
1285 }
1286
1287 if (buf) {
1288 if (print_prefix(msg, syslog, NULL) +
1289 text_len + 1 >= size - len)
1290 break;
1291
1292 len += print_prefix(msg, syslog, buf + len);
1293 memcpy(buf + len, text, text_len);
1294 len += text_len;
1295 buf[len++] = '\n';
1296 } else {
1297 /* SYSLOG_ACTION_* buffer size only calculation */
1298 len += print_prefix(msg, syslog, NULL);
1299 len += text_len;
1300 len++;
1301 }
1302
1303 text = next;
1304 } while (text);
1305
1306 return len;
1307 }
1308
1309 static int syslog_print(char __user *buf, int size)
1310 {
1311 char *text;
1312 struct printk_log *msg;
1313 int len = 0;
1314
1315 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1316 if (!text)
1317 return -ENOMEM;
1318
1319 while (size > 0) {
1320 size_t n;
1321 size_t skip;
1322
1323 logbuf_lock_irq();
1324 if (syslog_seq < log_first_seq) {
1325 /* messages are gone, move to first one */
1326 syslog_seq = log_first_seq;
1327 syslog_idx = log_first_idx;
1328 syslog_partial = 0;
1329 }
1330 if (syslog_seq == log_next_seq) {
1331 logbuf_unlock_irq();
1332 break;
1333 }
1334
1335 skip = syslog_partial;
1336 msg = log_from_idx(syslog_idx);
1337 n = msg_print_text(msg, true, text, LOG_LINE_MAX + PREFIX_MAX);
1338 if (n - syslog_partial <= size) {
1339 /* message fits into buffer, move forward */
1340 syslog_idx = log_next(syslog_idx);
1341 syslog_seq++;
1342 n -= syslog_partial;
1343 syslog_partial = 0;
1344 } else if (!len){
1345 /* partial read(), remember position */
1346 n = size;
1347 syslog_partial += n;
1348 } else
1349 n = 0;
1350 logbuf_unlock_irq();
1351
1352 if (!n)
1353 break;
1354
1355 if (copy_to_user(buf, text + skip, n)) {
1356 if (!len)
1357 len = -EFAULT;
1358 break;
1359 }
1360
1361 len += n;
1362 size -= n;
1363 buf += n;
1364 }
1365
1366 kfree(text);
1367 return len;
1368 }
1369
1370 static int syslog_print_all(char __user *buf, int size, bool clear)
1371 {
1372 char *text;
1373 int len = 0;
1374 u64 next_seq;
1375 u64 seq;
1376 u32 idx;
1377
1378 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1379 if (!text)
1380 return -ENOMEM;
1381
1382 logbuf_lock_irq();
1383 /*
1384 * Find first record that fits, including all following records,
1385 * into the user-provided buffer for this dump.
1386 */
1387 seq = clear_seq;
1388 idx = clear_idx;
1389 while (seq < log_next_seq) {
1390 struct printk_log *msg = log_from_idx(idx);
1391
1392 len += msg_print_text(msg, true, NULL, 0);
1393 idx = log_next(idx);
1394 seq++;
1395 }
1396
1397 /* move first record forward until length fits into the buffer */
1398 seq = clear_seq;
1399 idx = clear_idx;
1400 while (len > size && seq < log_next_seq) {
1401 struct printk_log *msg = log_from_idx(idx);
1402
1403 len -= msg_print_text(msg, true, NULL, 0);
1404 idx = log_next(idx);
1405 seq++;
1406 }
1407
1408 /* last message fitting into this dump */
1409 next_seq = log_next_seq;
1410
1411 len = 0;
1412 while (len >= 0 && seq < next_seq) {
1413 struct printk_log *msg = log_from_idx(idx);
1414 int textlen;
1415
1416 textlen = msg_print_text(msg, true, text,
1417 LOG_LINE_MAX + PREFIX_MAX);
1418 if (textlen < 0) {
1419 len = textlen;
1420 break;
1421 }
1422 idx = log_next(idx);
1423 seq++;
1424
1425 logbuf_unlock_irq();
1426 if (copy_to_user(buf + len, text, textlen))
1427 len = -EFAULT;
1428 else
1429 len += textlen;
1430 logbuf_lock_irq();
1431
1432 if (seq < log_first_seq) {
1433 /* messages are gone, move to next one */
1434 seq = log_first_seq;
1435 idx = log_first_idx;
1436 }
1437 }
1438
1439 if (clear) {
1440 clear_seq = log_next_seq;
1441 clear_idx = log_next_idx;
1442 }
1443 logbuf_unlock_irq();
1444
1445 kfree(text);
1446 return len;
1447 }
1448
1449 static void syslog_clear(void)
1450 {
1451 logbuf_lock_irq();
1452 clear_seq = log_next_seq;
1453 clear_idx = log_next_idx;
1454 logbuf_unlock_irq();
1455 }
1456
1457 int do_syslog(int type, char __user *buf, int len, int source)
1458 {
1459 bool clear = false;
1460 static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1461 int error;
1462
1463 error = check_syslog_permissions(type, source);
1464 if (error)
1465 return error;
1466
1467 switch (type) {
1468 case SYSLOG_ACTION_CLOSE: /* Close log */
1469 break;
1470 case SYSLOG_ACTION_OPEN: /* Open log */
1471 break;
1472 case SYSLOG_ACTION_READ: /* Read from log */
1473 if (!buf || len < 0)
1474 return -EINVAL;
1475 if (!len)
1476 return 0;
1477 if (!access_ok(VERIFY_WRITE, buf, len))
1478 return -EFAULT;
1479 error = wait_event_interruptible(log_wait,
1480 syslog_seq != log_next_seq);
1481 if (error)
1482 return error;
1483 error = syslog_print(buf, len);
1484 break;
1485 /* Read/clear last kernel messages */
1486 case SYSLOG_ACTION_READ_CLEAR:
1487 clear = true;
1488 /* FALL THRU */
1489 /* Read last kernel messages */
1490 case SYSLOG_ACTION_READ_ALL:
1491 if (!buf || len < 0)
1492 return -EINVAL;
1493 if (!len)
1494 return 0;
1495 if (!access_ok(VERIFY_WRITE, buf, len))
1496 return -EFAULT;
1497 error = syslog_print_all(buf, len, clear);
1498 break;
1499 /* Clear ring buffer */
1500 case SYSLOG_ACTION_CLEAR:
1501 syslog_clear();
1502 break;
1503 /* Disable logging to console */
1504 case SYSLOG_ACTION_CONSOLE_OFF:
1505 if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1506 saved_console_loglevel = console_loglevel;
1507 console_loglevel = minimum_console_loglevel;
1508 break;
1509 /* Enable logging to console */
1510 case SYSLOG_ACTION_CONSOLE_ON:
1511 if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1512 console_loglevel = saved_console_loglevel;
1513 saved_console_loglevel = LOGLEVEL_DEFAULT;
1514 }
1515 break;
1516 /* Set level of messages printed to console */
1517 case SYSLOG_ACTION_CONSOLE_LEVEL:
1518 if (len < 1 || len > 8)
1519 return -EINVAL;
1520 if (len < minimum_console_loglevel)
1521 len = minimum_console_loglevel;
1522 console_loglevel = len;
1523 /* Implicitly re-enable logging to console */
1524 saved_console_loglevel = LOGLEVEL_DEFAULT;
1525 break;
1526 /* Number of chars in the log buffer */
1527 case SYSLOG_ACTION_SIZE_UNREAD:
1528 logbuf_lock_irq();
1529 if (syslog_seq < log_first_seq) {
1530 /* messages are gone, move to first one */
1531 syslog_seq = log_first_seq;
1532 syslog_idx = log_first_idx;
1533 syslog_partial = 0;
1534 }
1535 if (source == SYSLOG_FROM_PROC) {
1536 /*
1537 * Short-cut for poll(/"proc/kmsg") which simply checks
1538 * for pending data, not the size; return the count of
1539 * records, not the length.
1540 */
1541 error = log_next_seq - syslog_seq;
1542 } else {
1543 u64 seq = syslog_seq;
1544 u32 idx = syslog_idx;
1545
1546 while (seq < log_next_seq) {
1547 struct printk_log *msg = log_from_idx(idx);
1548
1549 error += msg_print_text(msg, true, NULL, 0);
1550 idx = log_next(idx);
1551 seq++;
1552 }
1553 error -= syslog_partial;
1554 }
1555 logbuf_unlock_irq();
1556 break;
1557 /* Size of the log buffer */
1558 case SYSLOG_ACTION_SIZE_BUFFER:
1559 error = log_buf_len;
1560 break;
1561 default:
1562 error = -EINVAL;
1563 break;
1564 }
1565
1566 return error;
1567 }
1568
1569 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1570 {
1571 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1572 }
1573
1574 /*
1575 * Special console_lock variants that help to reduce the risk of soft-lockups.
1576 * They allow to pass console_lock to another printk() call using a busy wait.
1577 */
1578
1579 #ifdef CONFIG_LOCKDEP
1580 static struct lockdep_map console_owner_dep_map = {
1581 .name = "console_owner"
1582 };
1583 #endif
1584
1585 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1586 static struct task_struct *console_owner;
1587 static bool console_waiter;
1588
1589 /**
1590 * console_lock_spinning_enable - mark beginning of code where another
1591 * thread might safely busy wait
1592 *
1593 * This basically converts console_lock into a spinlock. This marks
1594 * the section where the console_lock owner can not sleep, because
1595 * there may be a waiter spinning (like a spinlock). Also it must be
1596 * ready to hand over the lock at the end of the section.
1597 */
1598 static void console_lock_spinning_enable(void)
1599 {
1600 raw_spin_lock(&console_owner_lock);
1601 console_owner = current;
1602 raw_spin_unlock(&console_owner_lock);
1603
1604 /* The waiter may spin on us after setting console_owner */
1605 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1606 }
1607
1608 /**
1609 * console_lock_spinning_disable_and_check - mark end of code where another
1610 * thread was able to busy wait and check if there is a waiter
1611 *
1612 * This is called at the end of the section where spinning is allowed.
1613 * It has two functions. First, it is a signal that it is no longer
1614 * safe to start busy waiting for the lock. Second, it checks if
1615 * there is a busy waiter and passes the lock rights to her.
1616 *
1617 * Important: Callers lose the lock if there was a busy waiter.
1618 * They must not touch items synchronized by console_lock
1619 * in this case.
1620 *
1621 * Return: 1 if the lock rights were passed, 0 otherwise.
1622 */
1623 static int console_lock_spinning_disable_and_check(void)
1624 {
1625 int waiter;
1626
1627 raw_spin_lock(&console_owner_lock);
1628 waiter = READ_ONCE(console_waiter);
1629 console_owner = NULL;
1630 raw_spin_unlock(&console_owner_lock);
1631
1632 if (!waiter) {
1633 spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1634 return 0;
1635 }
1636
1637 /* The waiter is now free to continue */
1638 WRITE_ONCE(console_waiter, false);
1639
1640 spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1641
1642 /*
1643 * Hand off console_lock to waiter. The waiter will perform
1644 * the up(). After this, the waiter is the console_lock owner.
1645 */
1646 mutex_release(&console_lock_dep_map, 1, _THIS_IP_);
1647 return 1;
1648 }
1649
1650 /**
1651 * console_trylock_spinning - try to get console_lock by busy waiting
1652 *
1653 * This allows to busy wait for the console_lock when the current
1654 * owner is running in specially marked sections. It means that
1655 * the current owner is running and cannot reschedule until it
1656 * is ready to lose the lock.
1657 *
1658 * Return: 1 if we got the lock, 0 othrewise
1659 */
1660 static int console_trylock_spinning(void)
1661 {
1662 struct task_struct *owner = NULL;
1663 bool waiter;
1664 bool spin = false;
1665 unsigned long flags;
1666
1667 if (console_trylock())
1668 return 1;
1669
1670 printk_safe_enter_irqsave(flags);
1671
1672 raw_spin_lock(&console_owner_lock);
1673 owner = READ_ONCE(console_owner);
1674 waiter = READ_ONCE(console_waiter);
1675 if (!waiter && owner && owner != current) {
1676 WRITE_ONCE(console_waiter, true);
1677 spin = true;
1678 }
1679 raw_spin_unlock(&console_owner_lock);
1680
1681 /*
1682 * If there is an active printk() writing to the
1683 * consoles, instead of having it write our data too,
1684 * see if we can offload that load from the active
1685 * printer, and do some printing ourselves.
1686 * Go into a spin only if there isn't already a waiter
1687 * spinning, and there is an active printer, and
1688 * that active printer isn't us (recursive printk?).
1689 */
1690 if (!spin) {
1691 printk_safe_exit_irqrestore(flags);
1692 return 0;
1693 }
1694
1695 /* We spin waiting for the owner to release us */
1696 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1697 /* Owner will clear console_waiter on hand off */
1698 while (READ_ONCE(console_waiter))
1699 cpu_relax();
1700 spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1701
1702 printk_safe_exit_irqrestore(flags);
1703 /*
1704 * The owner passed the console lock to us.
1705 * Since we did not spin on console lock, annotate
1706 * this as a trylock. Otherwise lockdep will
1707 * complain.
1708 */
1709 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1710
1711 return 1;
1712 }
1713
1714 /*
1715 * Call the console drivers, asking them to write out
1716 * log_buf[start] to log_buf[end - 1].
1717 * The console_lock must be held.
1718 */
1719 static void call_console_drivers(const char *ext_text, size_t ext_len,
1720 const char *text, size_t len)
1721 {
1722 struct console *con;
1723
1724 trace_console_rcuidle(text, len);
1725
1726 if (!console_drivers)
1727 return;
1728
1729 for_each_console(con) {
1730 if (exclusive_console && con != exclusive_console)
1731 continue;
1732 if (!(con->flags & CON_ENABLED))
1733 continue;
1734 if (!con->write)
1735 continue;
1736 if (!cpu_online(smp_processor_id()) &&
1737 !(con->flags & CON_ANYTIME))
1738 continue;
1739 if (con->flags & CON_EXTENDED)
1740 con->write(con, ext_text, ext_len);
1741 else
1742 con->write(con, text, len);
1743 }
1744 }
1745
1746 int printk_delay_msec __read_mostly;
1747
1748 static inline void printk_delay(void)
1749 {
1750 if (unlikely(printk_delay_msec)) {
1751 int m = printk_delay_msec;
1752
1753 while (m--) {
1754 mdelay(1);
1755 touch_nmi_watchdog();
1756 }
1757 }
1758 }
1759
1760 /*
1761 * Continuation lines are buffered, and not committed to the record buffer
1762 * until the line is complete, or a race forces it. The line fragments
1763 * though, are printed immediately to the consoles to ensure everything has
1764 * reached the console in case of a kernel crash.
1765 */
1766 static struct cont {
1767 char buf[LOG_LINE_MAX];
1768 size_t len; /* length == 0 means unused buffer */
1769 struct task_struct *owner; /* task of first print*/
1770 u64 ts_nsec; /* time of first print */
1771 u8 level; /* log level of first message */
1772 u8 facility; /* log facility of first message */
1773 enum log_flags flags; /* prefix, newline flags */
1774 } cont;
1775
1776 static void cont_flush(void)
1777 {
1778 if (cont.len == 0)
1779 return;
1780
1781 log_store(cont.facility, cont.level, cont.flags, cont.ts_nsec,
1782 NULL, 0, cont.buf, cont.len);
1783 cont.len = 0;
1784 }
1785
1786 static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len)
1787 {
1788 /* If the line gets too long, split it up in separate records. */
1789 if (cont.len + len > sizeof(cont.buf)) {
1790 cont_flush();
1791 return false;
1792 }
1793
1794 if (!cont.len) {
1795 cont.facility = facility;
1796 cont.level = level;
1797 cont.owner = current;
1798 cont.ts_nsec = local_clock();
1799 cont.flags = flags;
1800 }
1801
1802 memcpy(cont.buf + cont.len, text, len);
1803 cont.len += len;
1804
1805 // The original flags come from the first line,
1806 // but later continuations can add a newline.
1807 if (flags & LOG_NEWLINE) {
1808 cont.flags |= LOG_NEWLINE;
1809 cont_flush();
1810 }
1811
1812 return true;
1813 }
1814
1815 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1816 {
1817 /*
1818 * If an earlier line was buffered, and we're a continuation
1819 * write from the same process, try to add it to the buffer.
1820 */
1821 if (cont.len) {
1822 if (cont.owner == current && (lflags & LOG_CONT)) {
1823 if (cont_add(facility, level, lflags, text, text_len))
1824 return text_len;
1825 }
1826 /* Otherwise, make sure it's flushed */
1827 cont_flush();
1828 }
1829
1830 /* Skip empty continuation lines that couldn't be added - they just flush */
1831 if (!text_len && (lflags & LOG_CONT))
1832 return 0;
1833
1834 /* If it doesn't end in a newline, try to buffer the current line */
1835 if (!(lflags & LOG_NEWLINE)) {
1836 if (cont_add(facility, level, lflags, text, text_len))
1837 return text_len;
1838 }
1839
1840 /* Store it in the record log */
1841 return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len);
1842 }
1843
1844 /* Must be called under logbuf_lock. */
1845 int vprintk_store(int facility, int level,
1846 const char *dict, size_t dictlen,
1847 const char *fmt, va_list args)
1848 {
1849 static char textbuf[LOG_LINE_MAX];
1850 char *text = textbuf;
1851 size_t text_len;
1852 enum log_flags lflags = 0;
1853
1854 /*
1855 * The printf needs to come first; we need the syslog
1856 * prefix which might be passed-in as a parameter.
1857 */
1858 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1859
1860 /* mark and strip a trailing newline */
1861 if (text_len && text[text_len-1] == '\n') {
1862 text_len--;
1863 lflags |= LOG_NEWLINE;
1864 }
1865
1866 /* strip kernel syslog prefix and extract log level or control flags */
1867 if (facility == 0) {
1868 int kern_level;
1869
1870 while ((kern_level = printk_get_level(text)) != 0) {
1871 switch (kern_level) {
1872 case '0' ... '7':
1873 if (level == LOGLEVEL_DEFAULT)
1874 level = kern_level - '0';
1875 /* fallthrough */
1876 case 'd': /* KERN_DEFAULT */
1877 lflags |= LOG_PREFIX;
1878 break;
1879 case 'c': /* KERN_CONT */
1880 lflags |= LOG_CONT;
1881 }
1882
1883 text_len -= 2;
1884 text += 2;
1885 }
1886 }
1887
1888 if (level == LOGLEVEL_DEFAULT)
1889 level = default_message_loglevel;
1890
1891 if (dict)
1892 lflags |= LOG_PREFIX|LOG_NEWLINE;
1893
1894 return log_output(facility, level, lflags,
1895 dict, dictlen, text, text_len);
1896 }
1897
1898 asmlinkage int vprintk_emit(int facility, int level,
1899 const char *dict, size_t dictlen,
1900 const char *fmt, va_list args)
1901 {
1902 int printed_len;
1903 bool in_sched = false, pending_output;
1904 unsigned long flags;
1905 u64 curr_log_seq;
1906
1907 if (level == LOGLEVEL_SCHED) {
1908 level = LOGLEVEL_DEFAULT;
1909 in_sched = true;
1910 }
1911
1912 boot_delay_msec(level);
1913 printk_delay();
1914
1915 /* This stops the holder of console_sem just where we want him */
1916 logbuf_lock_irqsave(flags);
1917 curr_log_seq = log_next_seq;
1918 printed_len = vprintk_store(facility, level, dict, dictlen, fmt, args);
1919 pending_output = (curr_log_seq != log_next_seq);
1920 logbuf_unlock_irqrestore(flags);
1921
1922 /* If called from the scheduler, we can not call up(). */
1923 if (!in_sched && pending_output) {
1924 /*
1925 * Disable preemption to avoid being preempted while holding
1926 * console_sem which would prevent anyone from printing to
1927 * console
1928 */
1929 preempt_disable();
1930 /*
1931 * Try to acquire and then immediately release the console
1932 * semaphore. The release will print out buffers and wake up
1933 * /dev/kmsg and syslog() users.
1934 */
1935 if (console_trylock_spinning())
1936 console_unlock();
1937 preempt_enable();
1938 }
1939
1940 if (pending_output)
1941 wake_up_klogd();
1942 return printed_len;
1943 }
1944 EXPORT_SYMBOL(vprintk_emit);
1945
1946 asmlinkage int vprintk(const char *fmt, va_list args)
1947 {
1948 return vprintk_func(fmt, args);
1949 }
1950 EXPORT_SYMBOL(vprintk);
1951
1952 int vprintk_default(const char *fmt, va_list args)
1953 {
1954 int r;
1955
1956 #ifdef CONFIG_KGDB_KDB
1957 /* Allow to pass printk() to kdb but avoid a recursion. */
1958 if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) {
1959 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1960 return r;
1961 }
1962 #endif
1963 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1964
1965 return r;
1966 }
1967 EXPORT_SYMBOL_GPL(vprintk_default);
1968
1969 /**
1970 * printk - print a kernel message
1971 * @fmt: format string
1972 *
1973 * This is printk(). It can be called from any context. We want it to work.
1974 *
1975 * We try to grab the console_lock. If we succeed, it's easy - we log the
1976 * output and call the console drivers. If we fail to get the semaphore, we
1977 * place the output into the log buffer and return. The current holder of
1978 * the console_sem will notice the new output in console_unlock(); and will
1979 * send it to the consoles before releasing the lock.
1980 *
1981 * One effect of this deferred printing is that code which calls printk() and
1982 * then changes console_loglevel may break. This is because console_loglevel
1983 * is inspected when the actual printing occurs.
1984 *
1985 * See also:
1986 * printf(3)
1987 *
1988 * See the vsnprintf() documentation for format string extensions over C99.
1989 */
1990 asmlinkage __visible int printk(const char *fmt, ...)
1991 {
1992 va_list args;
1993 int r;
1994
1995 va_start(args, fmt);
1996 r = vprintk_func(fmt, args);
1997 va_end(args);
1998
1999 return r;
2000 }
2001 EXPORT_SYMBOL(printk);
2002
2003 #else /* CONFIG_PRINTK */
2004
2005 #define LOG_LINE_MAX 0
2006 #define PREFIX_MAX 0
2007
2008 static u64 syslog_seq;
2009 static u32 syslog_idx;
2010 static u64 console_seq;
2011 static u32 console_idx;
2012 static u64 exclusive_console_stop_seq;
2013 static u64 log_first_seq;
2014 static u32 log_first_idx;
2015 static u64 log_next_seq;
2016 static char *log_text(const struct printk_log *msg) { return NULL; }
2017 static char *log_dict(const struct printk_log *msg) { return NULL; }
2018 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
2019 static u32 log_next(u32 idx) { return 0; }
2020 static ssize_t msg_print_ext_header(char *buf, size_t size,
2021 struct printk_log *msg,
2022 u64 seq) { return 0; }
2023 static ssize_t msg_print_ext_body(char *buf, size_t size,
2024 char *dict, size_t dict_len,
2025 char *text, size_t text_len) { return 0; }
2026 static void console_lock_spinning_enable(void) { }
2027 static int console_lock_spinning_disable_and_check(void) { return 0; }
2028 static void call_console_drivers(const char *ext_text, size_t ext_len,
2029 const char *text, size_t len) {}
2030 static size_t msg_print_text(const struct printk_log *msg,
2031 bool syslog, char *buf, size_t size) { return 0; }
2032 static bool suppress_message_printing(int level) { return false; }
2033
2034 #endif /* CONFIG_PRINTK */
2035
2036 #ifdef CONFIG_EARLY_PRINTK
2037 struct console *early_console;
2038
2039 asmlinkage __visible void early_printk(const char *fmt, ...)
2040 {
2041 va_list ap;
2042 char buf[512];
2043 int n;
2044
2045 if (!early_console)
2046 return;
2047
2048 va_start(ap, fmt);
2049 n = vscnprintf(buf, sizeof(buf), fmt, ap);
2050 va_end(ap);
2051
2052 early_console->write(early_console, buf, n);
2053 }
2054 #endif
2055
2056 static int __add_preferred_console(char *name, int idx, char *options,
2057 char *brl_options)
2058 {
2059 struct console_cmdline *c;
2060 int i;
2061
2062 /*
2063 * See if this tty is not yet registered, and
2064 * if we have a slot free.
2065 */
2066 for (i = 0, c = console_cmdline;
2067 i < MAX_CMDLINECONSOLES && c->name[0];
2068 i++, c++) {
2069 if (strcmp(c->name, name) == 0 && c->index == idx) {
2070 if (!brl_options)
2071 preferred_console = i;
2072 return 0;
2073 }
2074 }
2075 if (i == MAX_CMDLINECONSOLES)
2076 return -E2BIG;
2077 if (!brl_options)
2078 preferred_console = i;
2079 strlcpy(c->name, name, sizeof(c->name));
2080 c->options = options;
2081 braille_set_options(c, brl_options);
2082
2083 c->index = idx;
2084 return 0;
2085 }
2086
2087 static int __init console_msg_format_setup(char *str)
2088 {
2089 if (!strcmp(str, "syslog"))
2090 console_msg_format = MSG_FORMAT_SYSLOG;
2091 if (!strcmp(str, "default"))
2092 console_msg_format = MSG_FORMAT_DEFAULT;
2093 return 1;
2094 }
2095 __setup("console_msg_format=", console_msg_format_setup);
2096
2097 /*
2098 * Set up a console. Called via do_early_param() in init/main.c
2099 * for each "console=" parameter in the boot command line.
2100 */
2101 static int __init console_setup(char *str)
2102 {
2103 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2104 char *s, *options, *brl_options = NULL;
2105 int idx;
2106
2107 if (_braille_console_setup(&str, &brl_options))
2108 return 1;
2109
2110 /*
2111 * Decode str into name, index, options.
2112 */
2113 if (str[0] >= '0' && str[0] <= '9') {
2114 strcpy(buf, "ttyS");
2115 strncpy(buf + 4, str, sizeof(buf) - 5);
2116 } else {
2117 strncpy(buf, str, sizeof(buf) - 1);
2118 }
2119 buf[sizeof(buf) - 1] = 0;
2120 options = strchr(str, ',');
2121 if (options)
2122 *(options++) = 0;
2123 #ifdef __sparc__
2124 if (!strcmp(str, "ttya"))
2125 strcpy(buf, "ttyS0");
2126 if (!strcmp(str, "ttyb"))
2127 strcpy(buf, "ttyS1");
2128 #endif
2129 for (s = buf; *s; s++)
2130 if (isdigit(*s) || *s == ',')
2131 break;
2132 idx = simple_strtoul(s, NULL, 10);
2133 *s = 0;
2134
2135 __add_preferred_console(buf, idx, options, brl_options);
2136 console_set_on_cmdline = 1;
2137 return 1;
2138 }
2139 __setup("console=", console_setup);
2140
2141 /**
2142 * add_preferred_console - add a device to the list of preferred consoles.
2143 * @name: device name
2144 * @idx: device index
2145 * @options: options for this console
2146 *
2147 * The last preferred console added will be used for kernel messages
2148 * and stdin/out/err for init. Normally this is used by console_setup
2149 * above to handle user-supplied console arguments; however it can also
2150 * be used by arch-specific code either to override the user or more
2151 * commonly to provide a default console (ie from PROM variables) when
2152 * the user has not supplied one.
2153 */
2154 int add_preferred_console(char *name, int idx, char *options)
2155 {
2156 return __add_preferred_console(name, idx, options, NULL);
2157 }
2158
2159 bool console_suspend_enabled = true;
2160 EXPORT_SYMBOL(console_suspend_enabled);
2161
2162 static int __init console_suspend_disable(char *str)
2163 {
2164 console_suspend_enabled = false;
2165 return 1;
2166 }
2167 __setup("no_console_suspend", console_suspend_disable);
2168 module_param_named(console_suspend, console_suspend_enabled,
2169 bool, S_IRUGO | S_IWUSR);
2170 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2171 " and hibernate operations");
2172
2173 /**
2174 * suspend_console - suspend the console subsystem
2175 *
2176 * This disables printk() while we go into suspend states
2177 */
2178 void suspend_console(void)
2179 {
2180 if (!console_suspend_enabled)
2181 return;
2182 pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2183 console_lock();
2184 console_suspended = 1;
2185 up_console_sem();
2186 }
2187
2188 void resume_console(void)
2189 {
2190 if (!console_suspend_enabled)
2191 return;
2192 down_console_sem();
2193 console_suspended = 0;
2194 console_unlock();
2195 }
2196
2197 /**
2198 * console_cpu_notify - print deferred console messages after CPU hotplug
2199 * @cpu: unused
2200 *
2201 * If printk() is called from a CPU that is not online yet, the messages
2202 * will be printed on the console only if there are CON_ANYTIME consoles.
2203 * This function is called when a new CPU comes online (or fails to come
2204 * up) or goes offline.
2205 */
2206 static int console_cpu_notify(unsigned int cpu)
2207 {
2208 if (!cpuhp_tasks_frozen) {
2209 /* If trylock fails, someone else is doing the printing */
2210 if (console_trylock())
2211 console_unlock();
2212 }
2213 return 0;
2214 }
2215
2216 /**
2217 * console_lock - lock the console system for exclusive use.
2218 *
2219 * Acquires a lock which guarantees that the caller has
2220 * exclusive access to the console system and the console_drivers list.
2221 *
2222 * Can sleep, returns nothing.
2223 */
2224 void console_lock(void)
2225 {
2226 might_sleep();
2227
2228 down_console_sem();
2229 if (console_suspended)
2230 return;
2231 console_locked = 1;
2232 console_may_schedule = 1;
2233 }
2234 EXPORT_SYMBOL(console_lock);
2235
2236 /**
2237 * console_trylock - try to lock the console system for exclusive use.
2238 *
2239 * Try to acquire a lock which guarantees that the caller has exclusive
2240 * access to the console system and the console_drivers list.
2241 *
2242 * returns 1 on success, and 0 on failure to acquire the lock.
2243 */
2244 int console_trylock(void)
2245 {
2246 if (down_trylock_console_sem())
2247 return 0;
2248 if (console_suspended) {
2249 up_console_sem();
2250 return 0;
2251 }
2252 console_locked = 1;
2253 console_may_schedule = 0;
2254 return 1;
2255 }
2256 EXPORT_SYMBOL(console_trylock);
2257
2258 int is_console_locked(void)
2259 {
2260 return console_locked;
2261 }
2262 EXPORT_SYMBOL(is_console_locked);
2263
2264 /*
2265 * Check if we have any console that is capable of printing while cpu is
2266 * booting or shutting down. Requires console_sem.
2267 */
2268 static int have_callable_console(void)
2269 {
2270 struct console *con;
2271
2272 for_each_console(con)
2273 if ((con->flags & CON_ENABLED) &&
2274 (con->flags & CON_ANYTIME))
2275 return 1;
2276
2277 return 0;
2278 }
2279
2280 /*
2281 * Can we actually use the console at this time on this cpu?
2282 *
2283 * Console drivers may assume that per-cpu resources have been allocated. So
2284 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2285 * call them until this CPU is officially up.
2286 */
2287 static inline int can_use_console(void)
2288 {
2289 return cpu_online(raw_smp_processor_id()) || have_callable_console();
2290 }
2291
2292 /**
2293 * console_unlock - unlock the console system
2294 *
2295 * Releases the console_lock which the caller holds on the console system
2296 * and the console driver list.
2297 *
2298 * While the console_lock was held, console output may have been buffered
2299 * by printk(). If this is the case, console_unlock(); emits
2300 * the output prior to releasing the lock.
2301 *
2302 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2303 *
2304 * console_unlock(); may be called from any context.
2305 */
2306 void console_unlock(void)
2307 {
2308 static char ext_text[CONSOLE_EXT_LOG_MAX];
2309 static char text[LOG_LINE_MAX + PREFIX_MAX];
2310 unsigned long flags;
2311 bool do_cond_resched, retry;
2312
2313 if (console_suspended) {
2314 up_console_sem();
2315 return;
2316 }
2317
2318 /*
2319 * Console drivers are called with interrupts disabled, so
2320 * @console_may_schedule should be cleared before; however, we may
2321 * end up dumping a lot of lines, for example, if called from
2322 * console registration path, and should invoke cond_resched()
2323 * between lines if allowable. Not doing so can cause a very long
2324 * scheduling stall on a slow console leading to RCU stall and
2325 * softlockup warnings which exacerbate the issue with more
2326 * messages practically incapacitating the system.
2327 *
2328 * console_trylock() is not able to detect the preemptive
2329 * context reliably. Therefore the value must be stored before
2330 * and cleared after the the "again" goto label.
2331 */
2332 do_cond_resched = console_may_schedule;
2333 again:
2334 console_may_schedule = 0;
2335
2336 /*
2337 * We released the console_sem lock, so we need to recheck if
2338 * cpu is online and (if not) is there at least one CON_ANYTIME
2339 * console.
2340 */
2341 if (!can_use_console()) {
2342 console_locked = 0;
2343 up_console_sem();
2344 return;
2345 }
2346
2347 for (;;) {
2348 struct printk_log *msg;
2349 size_t ext_len = 0;
2350 size_t len;
2351
2352 printk_safe_enter_irqsave(flags);
2353 raw_spin_lock(&logbuf_lock);
2354 if (console_seq < log_first_seq) {
2355 len = sprintf(text,
2356 "** %llu printk messages dropped **\n",
2357 log_first_seq - console_seq);
2358
2359 /* messages are gone, move to first one */
2360 console_seq = log_first_seq;
2361 console_idx = log_first_idx;
2362 } else {
2363 len = 0;
2364 }
2365 skip:
2366 if (console_seq == log_next_seq)
2367 break;
2368
2369 msg = log_from_idx(console_idx);
2370 if (suppress_message_printing(msg->level)) {
2371 /*
2372 * Skip record we have buffered and already printed
2373 * directly to the console when we received it, and
2374 * record that has level above the console loglevel.
2375 */
2376 console_idx = log_next(console_idx);
2377 console_seq++;
2378 goto skip;
2379 }
2380
2381 /* Output to all consoles once old messages replayed. */
2382 if (unlikely(exclusive_console &&
2383 console_seq >= exclusive_console_stop_seq)) {
2384 exclusive_console = NULL;
2385 }
2386
2387 len += msg_print_text(msg,
2388 console_msg_format & MSG_FORMAT_SYSLOG,
2389 text + len,
2390 sizeof(text) - len);
2391 if (nr_ext_console_drivers) {
2392 ext_len = msg_print_ext_header(ext_text,
2393 sizeof(ext_text),
2394 msg, console_seq);
2395 ext_len += msg_print_ext_body(ext_text + ext_len,
2396 sizeof(ext_text) - ext_len,
2397 log_dict(msg), msg->dict_len,
2398 log_text(msg), msg->text_len);
2399 }
2400 console_idx = log_next(console_idx);
2401 console_seq++;
2402 raw_spin_unlock(&logbuf_lock);
2403
2404 /*
2405 * While actively printing out messages, if another printk()
2406 * were to occur on another CPU, it may wait for this one to
2407 * finish. This task can not be preempted if there is a
2408 * waiter waiting to take over.
2409 */
2410 console_lock_spinning_enable();
2411
2412 stop_critical_timings(); /* don't trace print latency */
2413 call_console_drivers(ext_text, ext_len, text, len);
2414 start_critical_timings();
2415
2416 if (console_lock_spinning_disable_and_check()) {
2417 printk_safe_exit_irqrestore(flags);
2418 return;
2419 }
2420
2421 printk_safe_exit_irqrestore(flags);
2422
2423 if (do_cond_resched)
2424 cond_resched();
2425 }
2426
2427 console_locked = 0;
2428
2429 raw_spin_unlock(&logbuf_lock);
2430
2431 up_console_sem();
2432
2433 /*
2434 * Someone could have filled up the buffer again, so re-check if there's
2435 * something to flush. In case we cannot trylock the console_sem again,
2436 * there's a new owner and the console_unlock() from them will do the
2437 * flush, no worries.
2438 */
2439 raw_spin_lock(&logbuf_lock);
2440 retry = console_seq != log_next_seq;
2441 raw_spin_unlock(&logbuf_lock);
2442 printk_safe_exit_irqrestore(flags);
2443
2444 if (retry && console_trylock())
2445 goto again;
2446 }
2447 EXPORT_SYMBOL(console_unlock);
2448
2449 /**
2450 * console_conditional_schedule - yield the CPU if required
2451 *
2452 * If the console code is currently allowed to sleep, and
2453 * if this CPU should yield the CPU to another task, do
2454 * so here.
2455 *
2456 * Must be called within console_lock();.
2457 */
2458 void __sched console_conditional_schedule(void)
2459 {
2460 if (console_may_schedule)
2461 cond_resched();
2462 }
2463 EXPORT_SYMBOL(console_conditional_schedule);
2464
2465 void console_unblank(void)
2466 {
2467 struct console *c;
2468
2469 /*
2470 * console_unblank can no longer be called in interrupt context unless
2471 * oops_in_progress is set to 1..
2472 */
2473 if (oops_in_progress) {
2474 if (down_trylock_console_sem() != 0)
2475 return;
2476 } else
2477 console_lock();
2478
2479 console_locked = 1;
2480 console_may_schedule = 0;
2481 for_each_console(c)
2482 if ((c->flags & CON_ENABLED) && c->unblank)
2483 c->unblank();
2484 console_unlock();
2485 }
2486
2487 /**
2488 * console_flush_on_panic - flush console content on panic
2489 *
2490 * Immediately output all pending messages no matter what.
2491 */
2492 void console_flush_on_panic(void)
2493 {
2494 /*
2495 * If someone else is holding the console lock, trylock will fail
2496 * and may_schedule may be set. Ignore and proceed to unlock so
2497 * that messages are flushed out. As this can be called from any
2498 * context and we don't want to get preempted while flushing,
2499 * ensure may_schedule is cleared.
2500 */
2501 console_trylock();
2502 console_may_schedule = 0;
2503 console_unlock();
2504 }
2505
2506 /*
2507 * Return the console tty driver structure and its associated index
2508 */
2509 struct tty_driver *console_device(int *index)
2510 {
2511 struct console *c;
2512 struct tty_driver *driver = NULL;
2513
2514 console_lock();
2515 for_each_console(c) {
2516 if (!c->device)
2517 continue;
2518 driver = c->device(c, index);
2519 if (driver)
2520 break;
2521 }
2522 console_unlock();
2523 return driver;
2524 }
2525
2526 /*
2527 * Prevent further output on the passed console device so that (for example)
2528 * serial drivers can disable console output before suspending a port, and can
2529 * re-enable output afterwards.
2530 */
2531 void console_stop(struct console *console)
2532 {
2533 console_lock();
2534 console->flags &= ~CON_ENABLED;
2535 console_unlock();
2536 }
2537 EXPORT_SYMBOL(console_stop);
2538
2539 void console_start(struct console *console)
2540 {
2541 console_lock();
2542 console->flags |= CON_ENABLED;
2543 console_unlock();
2544 }
2545 EXPORT_SYMBOL(console_start);
2546
2547 static int __read_mostly keep_bootcon;
2548
2549 static int __init keep_bootcon_setup(char *str)
2550 {
2551 keep_bootcon = 1;
2552 pr_info("debug: skip boot console de-registration.\n");
2553
2554 return 0;
2555 }
2556
2557 early_param("keep_bootcon", keep_bootcon_setup);
2558
2559 /*
2560 * The console driver calls this routine during kernel initialization
2561 * to register the console printing procedure with printk() and to
2562 * print any messages that were printed by the kernel before the
2563 * console driver was initialized.
2564 *
2565 * This can happen pretty early during the boot process (because of
2566 * early_printk) - sometimes before setup_arch() completes - be careful
2567 * of what kernel features are used - they may not be initialised yet.
2568 *
2569 * There are two types of consoles - bootconsoles (early_printk) and
2570 * "real" consoles (everything which is not a bootconsole) which are
2571 * handled differently.
2572 * - Any number of bootconsoles can be registered at any time.
2573 * - As soon as a "real" console is registered, all bootconsoles
2574 * will be unregistered automatically.
2575 * - Once a "real" console is registered, any attempt to register a
2576 * bootconsoles will be rejected
2577 */
2578 void register_console(struct console *newcon)
2579 {
2580 int i;
2581 unsigned long flags;
2582 struct console *bcon = NULL;
2583 struct console_cmdline *c;
2584 static bool has_preferred;
2585
2586 if (console_drivers)
2587 for_each_console(bcon)
2588 if (WARN(bcon == newcon,
2589 "console '%s%d' already registered\n",
2590 bcon->name, bcon->index))
2591 return;
2592
2593 /*
2594 * before we register a new CON_BOOT console, make sure we don't
2595 * already have a valid console
2596 */
2597 if (console_drivers && newcon->flags & CON_BOOT) {
2598 /* find the last or real console */
2599 for_each_console(bcon) {
2600 if (!(bcon->flags & CON_BOOT)) {
2601 pr_info("Too late to register bootconsole %s%d\n",
2602 newcon->name, newcon->index);
2603 return;
2604 }
2605 }
2606 }
2607
2608 if (console_drivers && console_drivers->flags & CON_BOOT)
2609 bcon = console_drivers;
2610
2611 if (!has_preferred || bcon || !console_drivers)
2612 has_preferred = preferred_console >= 0;
2613
2614 /*
2615 * See if we want to use this console driver. If we
2616 * didn't select a console we take the first one
2617 * that registers here.
2618 */
2619 if (!has_preferred) {
2620 if (newcon->index < 0)
2621 newcon->index = 0;
2622 if (newcon->setup == NULL ||
2623 newcon->setup(newcon, NULL) == 0) {
2624 newcon->flags |= CON_ENABLED;
2625 if (newcon->device) {
2626 newcon->flags |= CON_CONSDEV;
2627 has_preferred = true;
2628 }
2629 }
2630 }
2631
2632 /*
2633 * See if this console matches one we selected on
2634 * the command line.
2635 */
2636 for (i = 0, c = console_cmdline;
2637 i < MAX_CMDLINECONSOLES && c->name[0];
2638 i++, c++) {
2639 if (!newcon->match ||
2640 newcon->match(newcon, c->name, c->index, c->options) != 0) {
2641 /* default matching */
2642 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2643 if (strcmp(c->name, newcon->name) != 0)
2644 continue;
2645 if (newcon->index >= 0 &&
2646 newcon->index != c->index)
2647 continue;
2648 if (newcon->index < 0)
2649 newcon->index = c->index;
2650
2651 if (_braille_register_console(newcon, c))
2652 return;
2653
2654 if (newcon->setup &&
2655 newcon->setup(newcon, c->options) != 0)
2656 break;
2657 }
2658
2659 newcon->flags |= CON_ENABLED;
2660 if (i == preferred_console) {
2661 newcon->flags |= CON_CONSDEV;
2662 has_preferred = true;
2663 }
2664 break;
2665 }
2666
2667 if (!(newcon->flags & CON_ENABLED))
2668 return;
2669
2670 /*
2671 * If we have a bootconsole, and are switching to a real console,
2672 * don't print everything out again, since when the boot console, and
2673 * the real console are the same physical device, it's annoying to
2674 * see the beginning boot messages twice
2675 */
2676 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2677 newcon->flags &= ~CON_PRINTBUFFER;
2678
2679 /*
2680 * Put this console in the list - keep the
2681 * preferred driver at the head of the list.
2682 */
2683 console_lock();
2684 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2685 newcon->next = console_drivers;
2686 console_drivers = newcon;
2687 if (newcon->next)
2688 newcon->next->flags &= ~CON_CONSDEV;
2689 } else {
2690 newcon->next = console_drivers->next;
2691 console_drivers->next = newcon;
2692 }
2693
2694 if (newcon->flags & CON_EXTENDED)
2695 nr_ext_console_drivers++;
2696
2697 if (newcon->flags & CON_PRINTBUFFER) {
2698 /*
2699 * console_unlock(); will print out the buffered messages
2700 * for us.
2701 */
2702 logbuf_lock_irqsave(flags);
2703 console_seq = syslog_seq;
2704 console_idx = syslog_idx;
2705 /*
2706 * We're about to replay the log buffer. Only do this to the
2707 * just-registered console to avoid excessive message spam to
2708 * the already-registered consoles.
2709 *
2710 * Set exclusive_console with disabled interrupts to reduce
2711 * race window with eventual console_flush_on_panic() that
2712 * ignores console_lock.
2713 */
2714 exclusive_console = newcon;
2715 exclusive_console_stop_seq = console_seq;
2716 logbuf_unlock_irqrestore(flags);
2717 }
2718 console_unlock();
2719 console_sysfs_notify();
2720
2721 /*
2722 * By unregistering the bootconsoles after we enable the real console
2723 * we get the "console xxx enabled" message on all the consoles -
2724 * boot consoles, real consoles, etc - this is to ensure that end
2725 * users know there might be something in the kernel's log buffer that
2726 * went to the bootconsole (that they do not see on the real console)
2727 */
2728 pr_info("%sconsole [%s%d] enabled\n",
2729 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2730 newcon->name, newcon->index);
2731 if (bcon &&
2732 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2733 !keep_bootcon) {
2734 /* We need to iterate through all boot consoles, to make
2735 * sure we print everything out, before we unregister them.
2736 */
2737 for_each_console(bcon)
2738 if (bcon->flags & CON_BOOT)
2739 unregister_console(bcon);
2740 }
2741 }
2742 EXPORT_SYMBOL(register_console);
2743
2744 int unregister_console(struct console *console)
2745 {
2746 struct console *a, *b;
2747 int res;
2748
2749 pr_info("%sconsole [%s%d] disabled\n",
2750 (console->flags & CON_BOOT) ? "boot" : "" ,
2751 console->name, console->index);
2752
2753 res = _braille_unregister_console(console);
2754 if (res)
2755 return res;
2756
2757 res = 1;
2758 console_lock();
2759 if (console_drivers == console) {
2760 console_drivers=console->next;
2761 res = 0;
2762 } else if (console_drivers) {
2763 for (a=console_drivers->next, b=console_drivers ;
2764 a; b=a, a=b->next) {
2765 if (a == console) {
2766 b->next = a->next;
2767 res = 0;
2768 break;
2769 }
2770 }
2771 }
2772
2773 if (!res && (console->flags & CON_EXTENDED))
2774 nr_ext_console_drivers--;
2775
2776 /*
2777 * If this isn't the last console and it has CON_CONSDEV set, we
2778 * need to set it on the next preferred console.
2779 */
2780 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2781 console_drivers->flags |= CON_CONSDEV;
2782
2783 console->flags &= ~CON_ENABLED;
2784 console_unlock();
2785 console_sysfs_notify();
2786 return res;
2787 }
2788 EXPORT_SYMBOL(unregister_console);
2789
2790 /*
2791 * Initialize the console device. This is called *early*, so
2792 * we can't necessarily depend on lots of kernel help here.
2793 * Just do some early initializations, and do the complex setup
2794 * later.
2795 */
2796 void __init console_init(void)
2797 {
2798 int ret;
2799 initcall_t call;
2800 initcall_entry_t *ce;
2801
2802 /* Setup the default TTY line discipline. */
2803 n_tty_init();
2804
2805 /*
2806 * set up the console device so that later boot sequences can
2807 * inform about problems etc..
2808 */
2809 ce = __con_initcall_start;
2810 trace_initcall_level("console");
2811 while (ce < __con_initcall_end) {
2812 call = initcall_from_entry(ce);
2813 trace_initcall_start(call);
2814 ret = call();
2815 trace_initcall_finish(call, ret);
2816 ce++;
2817 }
2818 }
2819
2820 /*
2821 * Some boot consoles access data that is in the init section and which will
2822 * be discarded after the initcalls have been run. To make sure that no code
2823 * will access this data, unregister the boot consoles in a late initcall.
2824 *
2825 * If for some reason, such as deferred probe or the driver being a loadable
2826 * module, the real console hasn't registered yet at this point, there will
2827 * be a brief interval in which no messages are logged to the console, which
2828 * makes it difficult to diagnose problems that occur during this time.
2829 *
2830 * To mitigate this problem somewhat, only unregister consoles whose memory
2831 * intersects with the init section. Note that all other boot consoles will
2832 * get unregistred when the real preferred console is registered.
2833 */
2834 static int __init printk_late_init(void)
2835 {
2836 struct console *con;
2837 int ret;
2838
2839 for_each_console(con) {
2840 if (!(con->flags & CON_BOOT))
2841 continue;
2842
2843 /* Check addresses that might be used for enabled consoles. */
2844 if (init_section_intersects(con, sizeof(*con)) ||
2845 init_section_contains(con->write, 0) ||
2846 init_section_contains(con->read, 0) ||
2847 init_section_contains(con->device, 0) ||
2848 init_section_contains(con->unblank, 0) ||
2849 init_section_contains(con->data, 0)) {
2850 /*
2851 * Please, consider moving the reported consoles out
2852 * of the init section.
2853 */
2854 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
2855 con->name, con->index);
2856 unregister_console(con);
2857 }
2858 }
2859 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
2860 console_cpu_notify);
2861 WARN_ON(ret < 0);
2862 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
2863 console_cpu_notify, NULL);
2864 WARN_ON(ret < 0);
2865 return 0;
2866 }
2867 late_initcall(printk_late_init);
2868
2869 #if defined CONFIG_PRINTK
2870 /*
2871 * Delayed printk version, for scheduler-internal messages:
2872 */
2873 #define PRINTK_PENDING_WAKEUP 0x01
2874 #define PRINTK_PENDING_OUTPUT 0x02
2875
2876 static DEFINE_PER_CPU(int, printk_pending);
2877
2878 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2879 {
2880 int pending = __this_cpu_xchg(printk_pending, 0);
2881
2882 if (pending & PRINTK_PENDING_OUTPUT) {
2883 /* If trylock fails, someone else is doing the printing */
2884 if (console_trylock())
2885 console_unlock();
2886 }
2887
2888 if (pending & PRINTK_PENDING_WAKEUP)
2889 wake_up_interruptible(&log_wait);
2890 }
2891
2892 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2893 .func = wake_up_klogd_work_func,
2894 .flags = IRQ_WORK_LAZY,
2895 };
2896
2897 void wake_up_klogd(void)
2898 {
2899 preempt_disable();
2900 if (waitqueue_active(&log_wait)) {
2901 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2902 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2903 }
2904 preempt_enable();
2905 }
2906
2907 void defer_console_output(void)
2908 {
2909 preempt_disable();
2910 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2911 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2912 preempt_enable();
2913 }
2914
2915 int vprintk_deferred(const char *fmt, va_list args)
2916 {
2917 int r;
2918
2919 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2920 defer_console_output();
2921
2922 return r;
2923 }
2924
2925 int printk_deferred(const char *fmt, ...)
2926 {
2927 va_list args;
2928 int r;
2929
2930 va_start(args, fmt);
2931 r = vprintk_deferred(fmt, args);
2932 va_end(args);
2933
2934 return r;
2935 }
2936
2937 /*
2938 * printk rate limiting, lifted from the networking subsystem.
2939 *
2940 * This enforces a rate limit: not more than 10 kernel messages
2941 * every 5s to make a denial-of-service attack impossible.
2942 */
2943 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2944
2945 int __printk_ratelimit(const char *func)
2946 {
2947 return ___ratelimit(&printk_ratelimit_state, func);
2948 }
2949 EXPORT_SYMBOL(__printk_ratelimit);
2950
2951 /**
2952 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2953 * @caller_jiffies: pointer to caller's state
2954 * @interval_msecs: minimum interval between prints
2955 *
2956 * printk_timed_ratelimit() returns true if more than @interval_msecs
2957 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2958 * returned true.
2959 */
2960 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2961 unsigned int interval_msecs)
2962 {
2963 unsigned long elapsed = jiffies - *caller_jiffies;
2964
2965 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2966 return false;
2967
2968 *caller_jiffies = jiffies;
2969 return true;
2970 }
2971 EXPORT_SYMBOL(printk_timed_ratelimit);
2972
2973 static DEFINE_SPINLOCK(dump_list_lock);
2974 static LIST_HEAD(dump_list);
2975
2976 /**
2977 * kmsg_dump_register - register a kernel log dumper.
2978 * @dumper: pointer to the kmsg_dumper structure
2979 *
2980 * Adds a kernel log dumper to the system. The dump callback in the
2981 * structure will be called when the kernel oopses or panics and must be
2982 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2983 */
2984 int kmsg_dump_register(struct kmsg_dumper *dumper)
2985 {
2986 unsigned long flags;
2987 int err = -EBUSY;
2988
2989 /* The dump callback needs to be set */
2990 if (!dumper->dump)
2991 return -EINVAL;
2992
2993 spin_lock_irqsave(&dump_list_lock, flags);
2994 /* Don't allow registering multiple times */
2995 if (!dumper->registered) {
2996 dumper->registered = 1;
2997 list_add_tail_rcu(&dumper->list, &dump_list);
2998 err = 0;
2999 }
3000 spin_unlock_irqrestore(&dump_list_lock, flags);
3001
3002 return err;
3003 }
3004 EXPORT_SYMBOL_GPL(kmsg_dump_register);
3005
3006 /**
3007 * kmsg_dump_unregister - unregister a kmsg dumper.
3008 * @dumper: pointer to the kmsg_dumper structure
3009 *
3010 * Removes a dump device from the system. Returns zero on success and
3011 * %-EINVAL otherwise.
3012 */
3013 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
3014 {
3015 unsigned long flags;
3016 int err = -EINVAL;
3017
3018 spin_lock_irqsave(&dump_list_lock, flags);
3019 if (dumper->registered) {
3020 dumper->registered = 0;
3021 list_del_rcu(&dumper->list);
3022 err = 0;
3023 }
3024 spin_unlock_irqrestore(&dump_list_lock, flags);
3025 synchronize_rcu();
3026
3027 return err;
3028 }
3029 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3030
3031 static bool always_kmsg_dump;
3032 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3033
3034 /**
3035 * kmsg_dump - dump kernel log to kernel message dumpers.
3036 * @reason: the reason (oops, panic etc) for dumping
3037 *
3038 * Call each of the registered dumper's dump() callback, which can
3039 * retrieve the kmsg records with kmsg_dump_get_line() or
3040 * kmsg_dump_get_buffer().
3041 */
3042 void kmsg_dump(enum kmsg_dump_reason reason)
3043 {
3044 struct kmsg_dumper *dumper;
3045 unsigned long flags;
3046
3047 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
3048 return;
3049
3050 rcu_read_lock();
3051 list_for_each_entry_rcu(dumper, &dump_list, list) {
3052 if (dumper->max_reason && reason > dumper->max_reason)
3053 continue;
3054
3055 /* initialize iterator with data about the stored records */
3056 dumper->active = true;
3057
3058 logbuf_lock_irqsave(flags);
3059 dumper->cur_seq = clear_seq;
3060 dumper->cur_idx = clear_idx;
3061 dumper->next_seq = log_next_seq;
3062 dumper->next_idx = log_next_idx;
3063 logbuf_unlock_irqrestore(flags);
3064
3065 /* invoke dumper which will iterate over records */
3066 dumper->dump(dumper, reason);
3067
3068 /* reset iterator */
3069 dumper->active = false;
3070 }
3071 rcu_read_unlock();
3072 }
3073
3074 /**
3075 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
3076 * @dumper: registered kmsg dumper
3077 * @syslog: include the "<4>" prefixes
3078 * @line: buffer to copy the line to
3079 * @size: maximum size of the buffer
3080 * @len: length of line placed into buffer
3081 *
3082 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3083 * record, and copy one record into the provided buffer.
3084 *
3085 * Consecutive calls will return the next available record moving
3086 * towards the end of the buffer with the youngest messages.
3087 *
3088 * A return value of FALSE indicates that there are no more records to
3089 * read.
3090 *
3091 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
3092 */
3093 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
3094 char *line, size_t size, size_t *len)
3095 {
3096 struct printk_log *msg;
3097 size_t l = 0;
3098 bool ret = false;
3099
3100 if (!dumper->active)
3101 goto out;
3102
3103 if (dumper->cur_seq < log_first_seq) {
3104 /* messages are gone, move to first available one */
3105 dumper->cur_seq = log_first_seq;
3106 dumper->cur_idx = log_first_idx;
3107 }
3108
3109 /* last entry */
3110 if (dumper->cur_seq >= log_next_seq)
3111 goto out;
3112
3113 msg = log_from_idx(dumper->cur_idx);
3114 l = msg_print_text(msg, syslog, line, size);
3115
3116 dumper->cur_idx = log_next(dumper->cur_idx);
3117 dumper->cur_seq++;
3118 ret = true;
3119 out:
3120 if (len)
3121 *len = l;
3122 return ret;
3123 }
3124
3125 /**
3126 * kmsg_dump_get_line - retrieve one kmsg log line
3127 * @dumper: registered kmsg dumper
3128 * @syslog: include the "<4>" prefixes
3129 * @line: buffer to copy the line to
3130 * @size: maximum size of the buffer
3131 * @len: length of line placed into buffer
3132 *
3133 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3134 * record, and copy one record into the provided buffer.
3135 *
3136 * Consecutive calls will return the next available record moving
3137 * towards the end of the buffer with the youngest messages.
3138 *
3139 * A return value of FALSE indicates that there are no more records to
3140 * read.
3141 */
3142 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3143 char *line, size_t size, size_t *len)
3144 {
3145 unsigned long flags;
3146 bool ret;
3147
3148 logbuf_lock_irqsave(flags);
3149 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3150 logbuf_unlock_irqrestore(flags);
3151
3152 return ret;
3153 }
3154 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3155
3156 /**
3157 * kmsg_dump_get_buffer - copy kmsg log lines
3158 * @dumper: registered kmsg dumper
3159 * @syslog: include the "<4>" prefixes
3160 * @buf: buffer to copy the line to
3161 * @size: maximum size of the buffer
3162 * @len: length of line placed into buffer
3163 *
3164 * Start at the end of the kmsg buffer and fill the provided buffer
3165 * with as many of the the *youngest* kmsg records that fit into it.
3166 * If the buffer is large enough, all available kmsg records will be
3167 * copied with a single call.
3168 *
3169 * Consecutive calls will fill the buffer with the next block of
3170 * available older records, not including the earlier retrieved ones.
3171 *
3172 * A return value of FALSE indicates that there are no more records to
3173 * read.
3174 */
3175 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3176 char *buf, size_t size, size_t *len)
3177 {
3178 unsigned long flags;
3179 u64 seq;
3180 u32 idx;
3181 u64 next_seq;
3182 u32 next_idx;
3183 size_t l = 0;
3184 bool ret = false;
3185
3186 if (!dumper->active)
3187 goto out;
3188
3189 logbuf_lock_irqsave(flags);
3190 if (dumper->cur_seq < log_first_seq) {
3191 /* messages are gone, move to first available one */
3192 dumper->cur_seq = log_first_seq;
3193 dumper->cur_idx = log_first_idx;
3194 }
3195
3196 /* last entry */
3197 if (dumper->cur_seq >= dumper->next_seq) {
3198 logbuf_unlock_irqrestore(flags);
3199 goto out;
3200 }
3201
3202 /* calculate length of entire buffer */
3203 seq = dumper->cur_seq;
3204 idx = dumper->cur_idx;
3205 while (seq < dumper->next_seq) {
3206 struct printk_log *msg = log_from_idx(idx);
3207
3208 l += msg_print_text(msg, true, NULL, 0);
3209 idx = log_next(idx);
3210 seq++;
3211 }
3212
3213 /* move first record forward until length fits into the buffer */
3214 seq = dumper->cur_seq;
3215 idx = dumper->cur_idx;
3216 while (l > size && seq < dumper->next_seq) {
3217 struct printk_log *msg = log_from_idx(idx);
3218
3219 l -= msg_print_text(msg, true, NULL, 0);
3220 idx = log_next(idx);
3221 seq++;
3222 }
3223
3224 /* last message in next interation */
3225 next_seq = seq;
3226 next_idx = idx;
3227
3228 l = 0;
3229 while (seq < dumper->next_seq) {
3230 struct printk_log *msg = log_from_idx(idx);
3231
3232 l += msg_print_text(msg, syslog, buf + l, size - l);
3233 idx = log_next(idx);
3234 seq++;
3235 }
3236
3237 dumper->next_seq = next_seq;
3238 dumper->next_idx = next_idx;
3239 ret = true;
3240 logbuf_unlock_irqrestore(flags);
3241 out:
3242 if (len)
3243 *len = l;
3244 return ret;
3245 }
3246 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3247
3248 /**
3249 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3250 * @dumper: registered kmsg dumper
3251 *
3252 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3253 * kmsg_dump_get_buffer() can be called again and used multiple
3254 * times within the same dumper.dump() callback.
3255 *
3256 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3257 */
3258 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3259 {
3260 dumper->cur_seq = clear_seq;
3261 dumper->cur_idx = clear_idx;
3262 dumper->next_seq = log_next_seq;
3263 dumper->next_idx = log_next_idx;
3264 }
3265
3266 /**
3267 * kmsg_dump_rewind - reset the interator
3268 * @dumper: registered kmsg dumper
3269 *
3270 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3271 * kmsg_dump_get_buffer() can be called again and used multiple
3272 * times within the same dumper.dump() callback.
3273 */
3274 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3275 {
3276 unsigned long flags;
3277
3278 logbuf_lock_irqsave(flags);
3279 kmsg_dump_rewind_nolock(dumper);
3280 logbuf_unlock_irqrestore(flags);
3281 }
3282 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3283
3284 #endif