]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/printk/printk.c
printk: use also the last bytes in the ring buffer
[mirror_ubuntu-artful-kernel.git] / kernel / printk / printk.c
1 /*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h> /* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/aio.h>
36 #include <linux/syscalls.h>
37 #include <linux/kexec.h>
38 #include <linux/kdb.h>
39 #include <linux/ratelimit.h>
40 #include <linux/kmsg_dump.h>
41 #include <linux/syslog.h>
42 #include <linux/cpu.h>
43 #include <linux/notifier.h>
44 #include <linux/rculist.h>
45 #include <linux/poll.h>
46 #include <linux/irq_work.h>
47 #include <linux/utsname.h>
48
49 #include <asm/uaccess.h>
50
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/printk.h>
53
54 #include "console_cmdline.h"
55 #include "braille.h"
56
57 /* printk's without a loglevel use this.. */
58 #define DEFAULT_MESSAGE_LOGLEVEL CONFIG_DEFAULT_MESSAGE_LOGLEVEL
59
60 /* We show everything that is MORE important than this.. */
61 #define MINIMUM_CONSOLE_LOGLEVEL 1 /* Minimum loglevel we let people use */
62 #define DEFAULT_CONSOLE_LOGLEVEL 7 /* anything MORE serious than KERN_DEBUG */
63
64 int console_printk[4] = {
65 DEFAULT_CONSOLE_LOGLEVEL, /* console_loglevel */
66 DEFAULT_MESSAGE_LOGLEVEL, /* default_message_loglevel */
67 MINIMUM_CONSOLE_LOGLEVEL, /* minimum_console_loglevel */
68 DEFAULT_CONSOLE_LOGLEVEL, /* default_console_loglevel */
69 };
70
71 /*
72 * Low level drivers may need that to know if they can schedule in
73 * their unblank() callback or not. So let's export it.
74 */
75 int oops_in_progress;
76 EXPORT_SYMBOL(oops_in_progress);
77
78 /*
79 * console_sem protects the console_drivers list, and also
80 * provides serialisation for access to the entire console
81 * driver system.
82 */
83 static DEFINE_SEMAPHORE(console_sem);
84 struct console *console_drivers;
85 EXPORT_SYMBOL_GPL(console_drivers);
86
87 #ifdef CONFIG_LOCKDEP
88 static struct lockdep_map console_lock_dep_map = {
89 .name = "console_lock"
90 };
91 #endif
92
93 /*
94 * This is used for debugging the mess that is the VT code by
95 * keeping track if we have the console semaphore held. It's
96 * definitely not the perfect debug tool (we don't know if _WE_
97 * hold it are racing, but it helps tracking those weird code
98 * path in the console code where we end up in places I want
99 * locked without the console sempahore held
100 */
101 static int console_locked, console_suspended;
102
103 /*
104 * If exclusive_console is non-NULL then only this console is to be printed to.
105 */
106 static struct console *exclusive_console;
107
108 /*
109 * Array of consoles built from command line options (console=)
110 */
111
112 #define MAX_CMDLINECONSOLES 8
113
114 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
115
116 static int selected_console = -1;
117 static int preferred_console = -1;
118 int console_set_on_cmdline;
119 EXPORT_SYMBOL(console_set_on_cmdline);
120
121 /* Flag: console code may call schedule() */
122 static int console_may_schedule;
123
124 /*
125 * The printk log buffer consists of a chain of concatenated variable
126 * length records. Every record starts with a record header, containing
127 * the overall length of the record.
128 *
129 * The heads to the first and last entry in the buffer, as well as the
130 * sequence numbers of these both entries are maintained when messages
131 * are stored..
132 *
133 * If the heads indicate available messages, the length in the header
134 * tells the start next message. A length == 0 for the next message
135 * indicates a wrap-around to the beginning of the buffer.
136 *
137 * Every record carries the monotonic timestamp in microseconds, as well as
138 * the standard userspace syslog level and syslog facility. The usual
139 * kernel messages use LOG_KERN; userspace-injected messages always carry
140 * a matching syslog facility, by default LOG_USER. The origin of every
141 * message can be reliably determined that way.
142 *
143 * The human readable log message directly follows the message header. The
144 * length of the message text is stored in the header, the stored message
145 * is not terminated.
146 *
147 * Optionally, a message can carry a dictionary of properties (key/value pairs),
148 * to provide userspace with a machine-readable message context.
149 *
150 * Examples for well-defined, commonly used property names are:
151 * DEVICE=b12:8 device identifier
152 * b12:8 block dev_t
153 * c127:3 char dev_t
154 * n8 netdev ifindex
155 * +sound:card0 subsystem:devname
156 * SUBSYSTEM=pci driver-core subsystem name
157 *
158 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
159 * follows directly after a '=' character. Every property is terminated by
160 * a '\0' character. The last property is not terminated.
161 *
162 * Example of a message structure:
163 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
164 * 0008 34 00 record is 52 bytes long
165 * 000a 0b 00 text is 11 bytes long
166 * 000c 1f 00 dictionary is 23 bytes long
167 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
168 * 0010 69 74 27 73 20 61 20 6c "it's a l"
169 * 69 6e 65 "ine"
170 * 001b 44 45 56 49 43 "DEVIC"
171 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
172 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
173 * 67 "g"
174 * 0032 00 00 00 padding to next message header
175 *
176 * The 'struct printk_log' buffer header must never be directly exported to
177 * userspace, it is a kernel-private implementation detail that might
178 * need to be changed in the future, when the requirements change.
179 *
180 * /dev/kmsg exports the structured data in the following line format:
181 * "level,sequnum,timestamp;<message text>\n"
182 *
183 * The optional key/value pairs are attached as continuation lines starting
184 * with a space character and terminated by a newline. All possible
185 * non-prinatable characters are escaped in the "\xff" notation.
186 *
187 * Users of the export format should ignore possible additional values
188 * separated by ',', and find the message after the ';' character.
189 */
190
191 enum log_flags {
192 LOG_NOCONS = 1, /* already flushed, do not print to console */
193 LOG_NEWLINE = 2, /* text ended with a newline */
194 LOG_PREFIX = 4, /* text started with a prefix */
195 LOG_CONT = 8, /* text is a fragment of a continuation line */
196 };
197
198 struct printk_log {
199 u64 ts_nsec; /* timestamp in nanoseconds */
200 u16 len; /* length of entire record */
201 u16 text_len; /* length of text buffer */
202 u16 dict_len; /* length of dictionary buffer */
203 u8 facility; /* syslog facility */
204 u8 flags:5; /* internal record flags */
205 u8 level:3; /* syslog level */
206 };
207
208 /*
209 * The logbuf_lock protects kmsg buffer, indices, counters. It is also
210 * used in interesting ways to provide interlocking in console_unlock();
211 */
212 static DEFINE_RAW_SPINLOCK(logbuf_lock);
213
214 #ifdef CONFIG_PRINTK
215 DECLARE_WAIT_QUEUE_HEAD(log_wait);
216 /* the next printk record to read by syslog(READ) or /proc/kmsg */
217 static u64 syslog_seq;
218 static u32 syslog_idx;
219 static enum log_flags syslog_prev;
220 static size_t syslog_partial;
221
222 /* index and sequence number of the first record stored in the buffer */
223 static u64 log_first_seq;
224 static u32 log_first_idx;
225
226 /* index and sequence number of the next record to store in the buffer */
227 static u64 log_next_seq;
228 static u32 log_next_idx;
229
230 /* the next printk record to write to the console */
231 static u64 console_seq;
232 static u32 console_idx;
233 static enum log_flags console_prev;
234
235 /* the next printk record to read after the last 'clear' command */
236 static u64 clear_seq;
237 static u32 clear_idx;
238
239 #define PREFIX_MAX 32
240 #define LOG_LINE_MAX 1024 - PREFIX_MAX
241
242 /* record buffer */
243 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
244 #define LOG_ALIGN 4
245 #else
246 #define LOG_ALIGN __alignof__(struct printk_log)
247 #endif
248 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
249 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
250 static char *log_buf = __log_buf;
251 static u32 log_buf_len = __LOG_BUF_LEN;
252
253 /* cpu currently holding logbuf_lock */
254 static volatile unsigned int logbuf_cpu = UINT_MAX;
255
256 /* human readable text of the record */
257 static char *log_text(const struct printk_log *msg)
258 {
259 return (char *)msg + sizeof(struct printk_log);
260 }
261
262 /* optional key/value pair dictionary attached to the record */
263 static char *log_dict(const struct printk_log *msg)
264 {
265 return (char *)msg + sizeof(struct printk_log) + msg->text_len;
266 }
267
268 /* get record by index; idx must point to valid msg */
269 static struct printk_log *log_from_idx(u32 idx)
270 {
271 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
272
273 /*
274 * A length == 0 record is the end of buffer marker. Wrap around and
275 * read the message at the start of the buffer.
276 */
277 if (!msg->len)
278 return (struct printk_log *)log_buf;
279 return msg;
280 }
281
282 /* get next record; idx must point to valid msg */
283 static u32 log_next(u32 idx)
284 {
285 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
286
287 /* length == 0 indicates the end of the buffer; wrap */
288 /*
289 * A length == 0 record is the end of buffer marker. Wrap around and
290 * read the message at the start of the buffer as *this* one, and
291 * return the one after that.
292 */
293 if (!msg->len) {
294 msg = (struct printk_log *)log_buf;
295 return msg->len;
296 }
297 return idx + msg->len;
298 }
299
300 /* insert record into the buffer, discard old ones, update heads */
301 static void log_store(int facility, int level,
302 enum log_flags flags, u64 ts_nsec,
303 const char *dict, u16 dict_len,
304 const char *text, u16 text_len)
305 {
306 struct printk_log *msg;
307 u32 size, pad_len;
308
309 /* number of '\0' padding bytes to next message */
310 size = sizeof(struct printk_log) + text_len + dict_len;
311 pad_len = (-size) & (LOG_ALIGN - 1);
312 size += pad_len;
313
314 while (log_first_seq < log_next_seq) {
315 u32 free;
316
317 if (log_next_idx > log_first_idx)
318 free = max(log_buf_len - log_next_idx, log_first_idx);
319 else
320 free = log_first_idx - log_next_idx;
321
322 if (free >= size + sizeof(struct printk_log))
323 break;
324
325 /* drop old messages until we have enough contiuous space */
326 log_first_idx = log_next(log_first_idx);
327 log_first_seq++;
328 }
329
330 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
331 /*
332 * This message + an additional empty header does not fit
333 * at the end of the buffer. Add an empty header with len == 0
334 * to signify a wrap around.
335 */
336 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
337 log_next_idx = 0;
338 }
339
340 /* fill message */
341 msg = (struct printk_log *)(log_buf + log_next_idx);
342 memcpy(log_text(msg), text, text_len);
343 msg->text_len = text_len;
344 memcpy(log_dict(msg), dict, dict_len);
345 msg->dict_len = dict_len;
346 msg->facility = facility;
347 msg->level = level & 7;
348 msg->flags = flags & 0x1f;
349 if (ts_nsec > 0)
350 msg->ts_nsec = ts_nsec;
351 else
352 msg->ts_nsec = local_clock();
353 memset(log_dict(msg) + dict_len, 0, pad_len);
354 msg->len = sizeof(struct printk_log) + text_len + dict_len + pad_len;
355
356 /* insert message */
357 log_next_idx += msg->len;
358 log_next_seq++;
359 }
360
361 #ifdef CONFIG_SECURITY_DMESG_RESTRICT
362 int dmesg_restrict = 1;
363 #else
364 int dmesg_restrict;
365 #endif
366
367 static int syslog_action_restricted(int type)
368 {
369 if (dmesg_restrict)
370 return 1;
371 /*
372 * Unless restricted, we allow "read all" and "get buffer size"
373 * for everybody.
374 */
375 return type != SYSLOG_ACTION_READ_ALL &&
376 type != SYSLOG_ACTION_SIZE_BUFFER;
377 }
378
379 static int check_syslog_permissions(int type, bool from_file)
380 {
381 /*
382 * If this is from /proc/kmsg and we've already opened it, then we've
383 * already done the capabilities checks at open time.
384 */
385 if (from_file && type != SYSLOG_ACTION_OPEN)
386 return 0;
387
388 if (syslog_action_restricted(type)) {
389 if (capable(CAP_SYSLOG))
390 return 0;
391 /*
392 * For historical reasons, accept CAP_SYS_ADMIN too, with
393 * a warning.
394 */
395 if (capable(CAP_SYS_ADMIN)) {
396 pr_warn_once("%s (%d): Attempt to access syslog with "
397 "CAP_SYS_ADMIN but no CAP_SYSLOG "
398 "(deprecated).\n",
399 current->comm, task_pid_nr(current));
400 return 0;
401 }
402 return -EPERM;
403 }
404 return security_syslog(type);
405 }
406
407
408 /* /dev/kmsg - userspace message inject/listen interface */
409 struct devkmsg_user {
410 u64 seq;
411 u32 idx;
412 enum log_flags prev;
413 struct mutex lock;
414 char buf[8192];
415 };
416
417 static ssize_t devkmsg_writev(struct kiocb *iocb, const struct iovec *iv,
418 unsigned long count, loff_t pos)
419 {
420 char *buf, *line;
421 int i;
422 int level = default_message_loglevel;
423 int facility = 1; /* LOG_USER */
424 size_t len = iov_length(iv, count);
425 ssize_t ret = len;
426
427 if (len > LOG_LINE_MAX)
428 return -EINVAL;
429 buf = kmalloc(len+1, GFP_KERNEL);
430 if (buf == NULL)
431 return -ENOMEM;
432
433 line = buf;
434 for (i = 0; i < count; i++) {
435 if (copy_from_user(line, iv[i].iov_base, iv[i].iov_len)) {
436 ret = -EFAULT;
437 goto out;
438 }
439 line += iv[i].iov_len;
440 }
441
442 /*
443 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
444 * the decimal value represents 32bit, the lower 3 bit are the log
445 * level, the rest are the log facility.
446 *
447 * If no prefix or no userspace facility is specified, we
448 * enforce LOG_USER, to be able to reliably distinguish
449 * kernel-generated messages from userspace-injected ones.
450 */
451 line = buf;
452 if (line[0] == '<') {
453 char *endp = NULL;
454
455 i = simple_strtoul(line+1, &endp, 10);
456 if (endp && endp[0] == '>') {
457 level = i & 7;
458 if (i >> 3)
459 facility = i >> 3;
460 endp++;
461 len -= endp - line;
462 line = endp;
463 }
464 }
465 line[len] = '\0';
466
467 printk_emit(facility, level, NULL, 0, "%s", line);
468 out:
469 kfree(buf);
470 return ret;
471 }
472
473 static ssize_t devkmsg_read(struct file *file, char __user *buf,
474 size_t count, loff_t *ppos)
475 {
476 struct devkmsg_user *user = file->private_data;
477 struct printk_log *msg;
478 u64 ts_usec;
479 size_t i;
480 char cont = '-';
481 size_t len;
482 ssize_t ret;
483
484 if (!user)
485 return -EBADF;
486
487 ret = mutex_lock_interruptible(&user->lock);
488 if (ret)
489 return ret;
490 raw_spin_lock_irq(&logbuf_lock);
491 while (user->seq == log_next_seq) {
492 if (file->f_flags & O_NONBLOCK) {
493 ret = -EAGAIN;
494 raw_spin_unlock_irq(&logbuf_lock);
495 goto out;
496 }
497
498 raw_spin_unlock_irq(&logbuf_lock);
499 ret = wait_event_interruptible(log_wait,
500 user->seq != log_next_seq);
501 if (ret)
502 goto out;
503 raw_spin_lock_irq(&logbuf_lock);
504 }
505
506 if (user->seq < log_first_seq) {
507 /* our last seen message is gone, return error and reset */
508 user->idx = log_first_idx;
509 user->seq = log_first_seq;
510 ret = -EPIPE;
511 raw_spin_unlock_irq(&logbuf_lock);
512 goto out;
513 }
514
515 msg = log_from_idx(user->idx);
516 ts_usec = msg->ts_nsec;
517 do_div(ts_usec, 1000);
518
519 /*
520 * If we couldn't merge continuation line fragments during the print,
521 * export the stored flags to allow an optional external merge of the
522 * records. Merging the records isn't always neccessarily correct, like
523 * when we hit a race during printing. In most cases though, it produces
524 * better readable output. 'c' in the record flags mark the first
525 * fragment of a line, '+' the following.
526 */
527 if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT))
528 cont = 'c';
529 else if ((msg->flags & LOG_CONT) ||
530 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
531 cont = '+';
532
533 len = sprintf(user->buf, "%u,%llu,%llu,%c;",
534 (msg->facility << 3) | msg->level,
535 user->seq, ts_usec, cont);
536 user->prev = msg->flags;
537
538 /* escape non-printable characters */
539 for (i = 0; i < msg->text_len; i++) {
540 unsigned char c = log_text(msg)[i];
541
542 if (c < ' ' || c >= 127 || c == '\\')
543 len += sprintf(user->buf + len, "\\x%02x", c);
544 else
545 user->buf[len++] = c;
546 }
547 user->buf[len++] = '\n';
548
549 if (msg->dict_len) {
550 bool line = true;
551
552 for (i = 0; i < msg->dict_len; i++) {
553 unsigned char c = log_dict(msg)[i];
554
555 if (line) {
556 user->buf[len++] = ' ';
557 line = false;
558 }
559
560 if (c == '\0') {
561 user->buf[len++] = '\n';
562 line = true;
563 continue;
564 }
565
566 if (c < ' ' || c >= 127 || c == '\\') {
567 len += sprintf(user->buf + len, "\\x%02x", c);
568 continue;
569 }
570
571 user->buf[len++] = c;
572 }
573 user->buf[len++] = '\n';
574 }
575
576 user->idx = log_next(user->idx);
577 user->seq++;
578 raw_spin_unlock_irq(&logbuf_lock);
579
580 if (len > count) {
581 ret = -EINVAL;
582 goto out;
583 }
584
585 if (copy_to_user(buf, user->buf, len)) {
586 ret = -EFAULT;
587 goto out;
588 }
589 ret = len;
590 out:
591 mutex_unlock(&user->lock);
592 return ret;
593 }
594
595 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
596 {
597 struct devkmsg_user *user = file->private_data;
598 loff_t ret = 0;
599
600 if (!user)
601 return -EBADF;
602 if (offset)
603 return -ESPIPE;
604
605 raw_spin_lock_irq(&logbuf_lock);
606 switch (whence) {
607 case SEEK_SET:
608 /* the first record */
609 user->idx = log_first_idx;
610 user->seq = log_first_seq;
611 break;
612 case SEEK_DATA:
613 /*
614 * The first record after the last SYSLOG_ACTION_CLEAR,
615 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
616 * changes no global state, and does not clear anything.
617 */
618 user->idx = clear_idx;
619 user->seq = clear_seq;
620 break;
621 case SEEK_END:
622 /* after the last record */
623 user->idx = log_next_idx;
624 user->seq = log_next_seq;
625 break;
626 default:
627 ret = -EINVAL;
628 }
629 raw_spin_unlock_irq(&logbuf_lock);
630 return ret;
631 }
632
633 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
634 {
635 struct devkmsg_user *user = file->private_data;
636 int ret = 0;
637
638 if (!user)
639 return POLLERR|POLLNVAL;
640
641 poll_wait(file, &log_wait, wait);
642
643 raw_spin_lock_irq(&logbuf_lock);
644 if (user->seq < log_next_seq) {
645 /* return error when data has vanished underneath us */
646 if (user->seq < log_first_seq)
647 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
648 else
649 ret = POLLIN|POLLRDNORM;
650 }
651 raw_spin_unlock_irq(&logbuf_lock);
652
653 return ret;
654 }
655
656 static int devkmsg_open(struct inode *inode, struct file *file)
657 {
658 struct devkmsg_user *user;
659 int err;
660
661 /* write-only does not need any file context */
662 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
663 return 0;
664
665 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
666 SYSLOG_FROM_READER);
667 if (err)
668 return err;
669
670 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
671 if (!user)
672 return -ENOMEM;
673
674 mutex_init(&user->lock);
675
676 raw_spin_lock_irq(&logbuf_lock);
677 user->idx = log_first_idx;
678 user->seq = log_first_seq;
679 raw_spin_unlock_irq(&logbuf_lock);
680
681 file->private_data = user;
682 return 0;
683 }
684
685 static int devkmsg_release(struct inode *inode, struct file *file)
686 {
687 struct devkmsg_user *user = file->private_data;
688
689 if (!user)
690 return 0;
691
692 mutex_destroy(&user->lock);
693 kfree(user);
694 return 0;
695 }
696
697 const struct file_operations kmsg_fops = {
698 .open = devkmsg_open,
699 .read = devkmsg_read,
700 .aio_write = devkmsg_writev,
701 .llseek = devkmsg_llseek,
702 .poll = devkmsg_poll,
703 .release = devkmsg_release,
704 };
705
706 #ifdef CONFIG_KEXEC
707 /*
708 * This appends the listed symbols to /proc/vmcore
709 *
710 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
711 * obtain access to symbols that are otherwise very difficult to locate. These
712 * symbols are specifically used so that utilities can access and extract the
713 * dmesg log from a vmcore file after a crash.
714 */
715 void log_buf_kexec_setup(void)
716 {
717 VMCOREINFO_SYMBOL(log_buf);
718 VMCOREINFO_SYMBOL(log_buf_len);
719 VMCOREINFO_SYMBOL(log_first_idx);
720 VMCOREINFO_SYMBOL(log_next_idx);
721 /*
722 * Export struct printk_log size and field offsets. User space tools can
723 * parse it and detect any changes to structure down the line.
724 */
725 VMCOREINFO_STRUCT_SIZE(printk_log);
726 VMCOREINFO_OFFSET(printk_log, ts_nsec);
727 VMCOREINFO_OFFSET(printk_log, len);
728 VMCOREINFO_OFFSET(printk_log, text_len);
729 VMCOREINFO_OFFSET(printk_log, dict_len);
730 }
731 #endif
732
733 /* requested log_buf_len from kernel cmdline */
734 static unsigned long __initdata new_log_buf_len;
735
736 /* save requested log_buf_len since it's too early to process it */
737 static int __init log_buf_len_setup(char *str)
738 {
739 unsigned size = memparse(str, &str);
740
741 if (size)
742 size = roundup_pow_of_two(size);
743 if (size > log_buf_len)
744 new_log_buf_len = size;
745
746 return 0;
747 }
748 early_param("log_buf_len", log_buf_len_setup);
749
750 void __init setup_log_buf(int early)
751 {
752 unsigned long flags;
753 char *new_log_buf;
754 int free;
755
756 if (!new_log_buf_len)
757 return;
758
759 if (early) {
760 new_log_buf =
761 memblock_virt_alloc(new_log_buf_len, PAGE_SIZE);
762 } else {
763 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len, 0);
764 }
765
766 if (unlikely(!new_log_buf)) {
767 pr_err("log_buf_len: %ld bytes not available\n",
768 new_log_buf_len);
769 return;
770 }
771
772 raw_spin_lock_irqsave(&logbuf_lock, flags);
773 log_buf_len = new_log_buf_len;
774 log_buf = new_log_buf;
775 new_log_buf_len = 0;
776 free = __LOG_BUF_LEN - log_next_idx;
777 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
778 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
779
780 pr_info("log_buf_len: %d\n", log_buf_len);
781 pr_info("early log buf free: %d(%d%%)\n",
782 free, (free * 100) / __LOG_BUF_LEN);
783 }
784
785 static bool __read_mostly ignore_loglevel;
786
787 static int __init ignore_loglevel_setup(char *str)
788 {
789 ignore_loglevel = 1;
790 pr_info("debug: ignoring loglevel setting.\n");
791
792 return 0;
793 }
794
795 early_param("ignore_loglevel", ignore_loglevel_setup);
796 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
797 MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to"
798 "print all kernel messages to the console.");
799
800 #ifdef CONFIG_BOOT_PRINTK_DELAY
801
802 static int boot_delay; /* msecs delay after each printk during bootup */
803 static unsigned long long loops_per_msec; /* based on boot_delay */
804
805 static int __init boot_delay_setup(char *str)
806 {
807 unsigned long lpj;
808
809 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
810 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
811
812 get_option(&str, &boot_delay);
813 if (boot_delay > 10 * 1000)
814 boot_delay = 0;
815
816 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
817 "HZ: %d, loops_per_msec: %llu\n",
818 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
819 return 0;
820 }
821 early_param("boot_delay", boot_delay_setup);
822
823 static void boot_delay_msec(int level)
824 {
825 unsigned long long k;
826 unsigned long timeout;
827
828 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
829 || (level >= console_loglevel && !ignore_loglevel)) {
830 return;
831 }
832
833 k = (unsigned long long)loops_per_msec * boot_delay;
834
835 timeout = jiffies + msecs_to_jiffies(boot_delay);
836 while (k) {
837 k--;
838 cpu_relax();
839 /*
840 * use (volatile) jiffies to prevent
841 * compiler reduction; loop termination via jiffies
842 * is secondary and may or may not happen.
843 */
844 if (time_after(jiffies, timeout))
845 break;
846 touch_nmi_watchdog();
847 }
848 }
849 #else
850 static inline void boot_delay_msec(int level)
851 {
852 }
853 #endif
854
855 #if defined(CONFIG_PRINTK_TIME)
856 static bool printk_time = 1;
857 #else
858 static bool printk_time;
859 #endif
860 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
861
862 static size_t print_time(u64 ts, char *buf)
863 {
864 unsigned long rem_nsec;
865
866 if (!printk_time)
867 return 0;
868
869 rem_nsec = do_div(ts, 1000000000);
870
871 if (!buf)
872 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
873
874 return sprintf(buf, "[%5lu.%06lu] ",
875 (unsigned long)ts, rem_nsec / 1000);
876 }
877
878 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
879 {
880 size_t len = 0;
881 unsigned int prefix = (msg->facility << 3) | msg->level;
882
883 if (syslog) {
884 if (buf) {
885 len += sprintf(buf, "<%u>", prefix);
886 } else {
887 len += 3;
888 if (prefix > 999)
889 len += 3;
890 else if (prefix > 99)
891 len += 2;
892 else if (prefix > 9)
893 len++;
894 }
895 }
896
897 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
898 return len;
899 }
900
901 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
902 bool syslog, char *buf, size_t size)
903 {
904 const char *text = log_text(msg);
905 size_t text_size = msg->text_len;
906 bool prefix = true;
907 bool newline = true;
908 size_t len = 0;
909
910 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
911 prefix = false;
912
913 if (msg->flags & LOG_CONT) {
914 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
915 prefix = false;
916
917 if (!(msg->flags & LOG_NEWLINE))
918 newline = false;
919 }
920
921 do {
922 const char *next = memchr(text, '\n', text_size);
923 size_t text_len;
924
925 if (next) {
926 text_len = next - text;
927 next++;
928 text_size -= next - text;
929 } else {
930 text_len = text_size;
931 }
932
933 if (buf) {
934 if (print_prefix(msg, syslog, NULL) +
935 text_len + 1 >= size - len)
936 break;
937
938 if (prefix)
939 len += print_prefix(msg, syslog, buf + len);
940 memcpy(buf + len, text, text_len);
941 len += text_len;
942 if (next || newline)
943 buf[len++] = '\n';
944 } else {
945 /* SYSLOG_ACTION_* buffer size only calculation */
946 if (prefix)
947 len += print_prefix(msg, syslog, NULL);
948 len += text_len;
949 if (next || newline)
950 len++;
951 }
952
953 prefix = true;
954 text = next;
955 } while (text);
956
957 return len;
958 }
959
960 static int syslog_print(char __user *buf, int size)
961 {
962 char *text;
963 struct printk_log *msg;
964 int len = 0;
965
966 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
967 if (!text)
968 return -ENOMEM;
969
970 while (size > 0) {
971 size_t n;
972 size_t skip;
973
974 raw_spin_lock_irq(&logbuf_lock);
975 if (syslog_seq < log_first_seq) {
976 /* messages are gone, move to first one */
977 syslog_seq = log_first_seq;
978 syslog_idx = log_first_idx;
979 syslog_prev = 0;
980 syslog_partial = 0;
981 }
982 if (syslog_seq == log_next_seq) {
983 raw_spin_unlock_irq(&logbuf_lock);
984 break;
985 }
986
987 skip = syslog_partial;
988 msg = log_from_idx(syslog_idx);
989 n = msg_print_text(msg, syslog_prev, true, text,
990 LOG_LINE_MAX + PREFIX_MAX);
991 if (n - syslog_partial <= size) {
992 /* message fits into buffer, move forward */
993 syslog_idx = log_next(syslog_idx);
994 syslog_seq++;
995 syslog_prev = msg->flags;
996 n -= syslog_partial;
997 syslog_partial = 0;
998 } else if (!len){
999 /* partial read(), remember position */
1000 n = size;
1001 syslog_partial += n;
1002 } else
1003 n = 0;
1004 raw_spin_unlock_irq(&logbuf_lock);
1005
1006 if (!n)
1007 break;
1008
1009 if (copy_to_user(buf, text + skip, n)) {
1010 if (!len)
1011 len = -EFAULT;
1012 break;
1013 }
1014
1015 len += n;
1016 size -= n;
1017 buf += n;
1018 }
1019
1020 kfree(text);
1021 return len;
1022 }
1023
1024 static int syslog_print_all(char __user *buf, int size, bool clear)
1025 {
1026 char *text;
1027 int len = 0;
1028
1029 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1030 if (!text)
1031 return -ENOMEM;
1032
1033 raw_spin_lock_irq(&logbuf_lock);
1034 if (buf) {
1035 u64 next_seq;
1036 u64 seq;
1037 u32 idx;
1038 enum log_flags prev;
1039
1040 if (clear_seq < log_first_seq) {
1041 /* messages are gone, move to first available one */
1042 clear_seq = log_first_seq;
1043 clear_idx = log_first_idx;
1044 }
1045
1046 /*
1047 * Find first record that fits, including all following records,
1048 * into the user-provided buffer for this dump.
1049 */
1050 seq = clear_seq;
1051 idx = clear_idx;
1052 prev = 0;
1053 while (seq < log_next_seq) {
1054 struct printk_log *msg = log_from_idx(idx);
1055
1056 len += msg_print_text(msg, prev, true, NULL, 0);
1057 prev = msg->flags;
1058 idx = log_next(idx);
1059 seq++;
1060 }
1061
1062 /* move first record forward until length fits into the buffer */
1063 seq = clear_seq;
1064 idx = clear_idx;
1065 prev = 0;
1066 while (len > size && seq < log_next_seq) {
1067 struct printk_log *msg = log_from_idx(idx);
1068
1069 len -= msg_print_text(msg, prev, true, NULL, 0);
1070 prev = msg->flags;
1071 idx = log_next(idx);
1072 seq++;
1073 }
1074
1075 /* last message fitting into this dump */
1076 next_seq = log_next_seq;
1077
1078 len = 0;
1079 while (len >= 0 && seq < next_seq) {
1080 struct printk_log *msg = log_from_idx(idx);
1081 int textlen;
1082
1083 textlen = msg_print_text(msg, prev, true, text,
1084 LOG_LINE_MAX + PREFIX_MAX);
1085 if (textlen < 0) {
1086 len = textlen;
1087 break;
1088 }
1089 idx = log_next(idx);
1090 seq++;
1091 prev = msg->flags;
1092
1093 raw_spin_unlock_irq(&logbuf_lock);
1094 if (copy_to_user(buf + len, text, textlen))
1095 len = -EFAULT;
1096 else
1097 len += textlen;
1098 raw_spin_lock_irq(&logbuf_lock);
1099
1100 if (seq < log_first_seq) {
1101 /* messages are gone, move to next one */
1102 seq = log_first_seq;
1103 idx = log_first_idx;
1104 prev = 0;
1105 }
1106 }
1107 }
1108
1109 if (clear) {
1110 clear_seq = log_next_seq;
1111 clear_idx = log_next_idx;
1112 }
1113 raw_spin_unlock_irq(&logbuf_lock);
1114
1115 kfree(text);
1116 return len;
1117 }
1118
1119 int do_syslog(int type, char __user *buf, int len, bool from_file)
1120 {
1121 bool clear = false;
1122 static int saved_console_loglevel = -1;
1123 int error;
1124
1125 error = check_syslog_permissions(type, from_file);
1126 if (error)
1127 goto out;
1128
1129 error = security_syslog(type);
1130 if (error)
1131 return error;
1132
1133 switch (type) {
1134 case SYSLOG_ACTION_CLOSE: /* Close log */
1135 break;
1136 case SYSLOG_ACTION_OPEN: /* Open log */
1137 break;
1138 case SYSLOG_ACTION_READ: /* Read from log */
1139 error = -EINVAL;
1140 if (!buf || len < 0)
1141 goto out;
1142 error = 0;
1143 if (!len)
1144 goto out;
1145 if (!access_ok(VERIFY_WRITE, buf, len)) {
1146 error = -EFAULT;
1147 goto out;
1148 }
1149 error = wait_event_interruptible(log_wait,
1150 syslog_seq != log_next_seq);
1151 if (error)
1152 goto out;
1153 error = syslog_print(buf, len);
1154 break;
1155 /* Read/clear last kernel messages */
1156 case SYSLOG_ACTION_READ_CLEAR:
1157 clear = true;
1158 /* FALL THRU */
1159 /* Read last kernel messages */
1160 case SYSLOG_ACTION_READ_ALL:
1161 error = -EINVAL;
1162 if (!buf || len < 0)
1163 goto out;
1164 error = 0;
1165 if (!len)
1166 goto out;
1167 if (!access_ok(VERIFY_WRITE, buf, len)) {
1168 error = -EFAULT;
1169 goto out;
1170 }
1171 error = syslog_print_all(buf, len, clear);
1172 break;
1173 /* Clear ring buffer */
1174 case SYSLOG_ACTION_CLEAR:
1175 syslog_print_all(NULL, 0, true);
1176 break;
1177 /* Disable logging to console */
1178 case SYSLOG_ACTION_CONSOLE_OFF:
1179 if (saved_console_loglevel == -1)
1180 saved_console_loglevel = console_loglevel;
1181 console_loglevel = minimum_console_loglevel;
1182 break;
1183 /* Enable logging to console */
1184 case SYSLOG_ACTION_CONSOLE_ON:
1185 if (saved_console_loglevel != -1) {
1186 console_loglevel = saved_console_loglevel;
1187 saved_console_loglevel = -1;
1188 }
1189 break;
1190 /* Set level of messages printed to console */
1191 case SYSLOG_ACTION_CONSOLE_LEVEL:
1192 error = -EINVAL;
1193 if (len < 1 || len > 8)
1194 goto out;
1195 if (len < minimum_console_loglevel)
1196 len = minimum_console_loglevel;
1197 console_loglevel = len;
1198 /* Implicitly re-enable logging to console */
1199 saved_console_loglevel = -1;
1200 error = 0;
1201 break;
1202 /* Number of chars in the log buffer */
1203 case SYSLOG_ACTION_SIZE_UNREAD:
1204 raw_spin_lock_irq(&logbuf_lock);
1205 if (syslog_seq < log_first_seq) {
1206 /* messages are gone, move to first one */
1207 syslog_seq = log_first_seq;
1208 syslog_idx = log_first_idx;
1209 syslog_prev = 0;
1210 syslog_partial = 0;
1211 }
1212 if (from_file) {
1213 /*
1214 * Short-cut for poll(/"proc/kmsg") which simply checks
1215 * for pending data, not the size; return the count of
1216 * records, not the length.
1217 */
1218 error = log_next_idx - syslog_idx;
1219 } else {
1220 u64 seq = syslog_seq;
1221 u32 idx = syslog_idx;
1222 enum log_flags prev = syslog_prev;
1223
1224 error = 0;
1225 while (seq < log_next_seq) {
1226 struct printk_log *msg = log_from_idx(idx);
1227
1228 error += msg_print_text(msg, prev, true, NULL, 0);
1229 idx = log_next(idx);
1230 seq++;
1231 prev = msg->flags;
1232 }
1233 error -= syslog_partial;
1234 }
1235 raw_spin_unlock_irq(&logbuf_lock);
1236 break;
1237 /* Size of the log buffer */
1238 case SYSLOG_ACTION_SIZE_BUFFER:
1239 error = log_buf_len;
1240 break;
1241 default:
1242 error = -EINVAL;
1243 break;
1244 }
1245 out:
1246 return error;
1247 }
1248
1249 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1250 {
1251 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1252 }
1253
1254 /*
1255 * Call the console drivers, asking them to write out
1256 * log_buf[start] to log_buf[end - 1].
1257 * The console_lock must be held.
1258 */
1259 static void call_console_drivers(int level, const char *text, size_t len)
1260 {
1261 struct console *con;
1262
1263 trace_console(text, len);
1264
1265 if (level >= console_loglevel && !ignore_loglevel)
1266 return;
1267 if (!console_drivers)
1268 return;
1269
1270 for_each_console(con) {
1271 if (exclusive_console && con != exclusive_console)
1272 continue;
1273 if (!(con->flags & CON_ENABLED))
1274 continue;
1275 if (!con->write)
1276 continue;
1277 if (!cpu_online(smp_processor_id()) &&
1278 !(con->flags & CON_ANYTIME))
1279 continue;
1280 con->write(con, text, len);
1281 }
1282 }
1283
1284 /*
1285 * Zap console related locks when oopsing. Only zap at most once
1286 * every 10 seconds, to leave time for slow consoles to print a
1287 * full oops.
1288 */
1289 static void zap_locks(void)
1290 {
1291 static unsigned long oops_timestamp;
1292
1293 if (time_after_eq(jiffies, oops_timestamp) &&
1294 !time_after(jiffies, oops_timestamp + 30 * HZ))
1295 return;
1296
1297 oops_timestamp = jiffies;
1298
1299 debug_locks_off();
1300 /* If a crash is occurring, make sure we can't deadlock */
1301 raw_spin_lock_init(&logbuf_lock);
1302 /* And make sure that we print immediately */
1303 sema_init(&console_sem, 1);
1304 }
1305
1306 /* Check if we have any console registered that can be called early in boot. */
1307 static int have_callable_console(void)
1308 {
1309 struct console *con;
1310
1311 for_each_console(con)
1312 if (con->flags & CON_ANYTIME)
1313 return 1;
1314
1315 return 0;
1316 }
1317
1318 /*
1319 * Can we actually use the console at this time on this cpu?
1320 *
1321 * Console drivers may assume that per-cpu resources have
1322 * been allocated. So unless they're explicitly marked as
1323 * being able to cope (CON_ANYTIME) don't call them until
1324 * this CPU is officially up.
1325 */
1326 static inline int can_use_console(unsigned int cpu)
1327 {
1328 return cpu_online(cpu) || have_callable_console();
1329 }
1330
1331 /*
1332 * Try to get console ownership to actually show the kernel
1333 * messages from a 'printk'. Return true (and with the
1334 * console_lock held, and 'console_locked' set) if it
1335 * is successful, false otherwise.
1336 *
1337 * This gets called with the 'logbuf_lock' spinlock held and
1338 * interrupts disabled. It should return with 'lockbuf_lock'
1339 * released but interrupts still disabled.
1340 */
1341 static int console_trylock_for_printk(unsigned int cpu)
1342 __releases(&logbuf_lock)
1343 {
1344 int retval = 0, wake = 0;
1345
1346 if (console_trylock()) {
1347 retval = 1;
1348
1349 /*
1350 * If we can't use the console, we need to release
1351 * the console semaphore by hand to avoid flushing
1352 * the buffer. We need to hold the console semaphore
1353 * in order to do this test safely.
1354 */
1355 if (!can_use_console(cpu)) {
1356 console_locked = 0;
1357 wake = 1;
1358 retval = 0;
1359 }
1360 }
1361 logbuf_cpu = UINT_MAX;
1362 raw_spin_unlock(&logbuf_lock);
1363 if (wake)
1364 up(&console_sem);
1365 return retval;
1366 }
1367
1368 int printk_delay_msec __read_mostly;
1369
1370 static inline void printk_delay(void)
1371 {
1372 if (unlikely(printk_delay_msec)) {
1373 int m = printk_delay_msec;
1374
1375 while (m--) {
1376 mdelay(1);
1377 touch_nmi_watchdog();
1378 }
1379 }
1380 }
1381
1382 /*
1383 * Continuation lines are buffered, and not committed to the record buffer
1384 * until the line is complete, or a race forces it. The line fragments
1385 * though, are printed immediately to the consoles to ensure everything has
1386 * reached the console in case of a kernel crash.
1387 */
1388 static struct cont {
1389 char buf[LOG_LINE_MAX];
1390 size_t len; /* length == 0 means unused buffer */
1391 size_t cons; /* bytes written to console */
1392 struct task_struct *owner; /* task of first print*/
1393 u64 ts_nsec; /* time of first print */
1394 u8 level; /* log level of first message */
1395 u8 facility; /* log level of first message */
1396 enum log_flags flags; /* prefix, newline flags */
1397 bool flushed:1; /* buffer sealed and committed */
1398 } cont;
1399
1400 static void cont_flush(enum log_flags flags)
1401 {
1402 if (cont.flushed)
1403 return;
1404 if (cont.len == 0)
1405 return;
1406
1407 if (cont.cons) {
1408 /*
1409 * If a fragment of this line was directly flushed to the
1410 * console; wait for the console to pick up the rest of the
1411 * line. LOG_NOCONS suppresses a duplicated output.
1412 */
1413 log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1414 cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1415 cont.flags = flags;
1416 cont.flushed = true;
1417 } else {
1418 /*
1419 * If no fragment of this line ever reached the console,
1420 * just submit it to the store and free the buffer.
1421 */
1422 log_store(cont.facility, cont.level, flags, 0,
1423 NULL, 0, cont.buf, cont.len);
1424 cont.len = 0;
1425 }
1426 }
1427
1428 static bool cont_add(int facility, int level, const char *text, size_t len)
1429 {
1430 if (cont.len && cont.flushed)
1431 return false;
1432
1433 if (cont.len + len > sizeof(cont.buf)) {
1434 /* the line gets too long, split it up in separate records */
1435 cont_flush(LOG_CONT);
1436 return false;
1437 }
1438
1439 if (!cont.len) {
1440 cont.facility = facility;
1441 cont.level = level;
1442 cont.owner = current;
1443 cont.ts_nsec = local_clock();
1444 cont.flags = 0;
1445 cont.cons = 0;
1446 cont.flushed = false;
1447 }
1448
1449 memcpy(cont.buf + cont.len, text, len);
1450 cont.len += len;
1451
1452 if (cont.len > (sizeof(cont.buf) * 80) / 100)
1453 cont_flush(LOG_CONT);
1454
1455 return true;
1456 }
1457
1458 static size_t cont_print_text(char *text, size_t size)
1459 {
1460 size_t textlen = 0;
1461 size_t len;
1462
1463 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1464 textlen += print_time(cont.ts_nsec, text);
1465 size -= textlen;
1466 }
1467
1468 len = cont.len - cont.cons;
1469 if (len > 0) {
1470 if (len+1 > size)
1471 len = size-1;
1472 memcpy(text + textlen, cont.buf + cont.cons, len);
1473 textlen += len;
1474 cont.cons = cont.len;
1475 }
1476
1477 if (cont.flushed) {
1478 if (cont.flags & LOG_NEWLINE)
1479 text[textlen++] = '\n';
1480 /* got everything, release buffer */
1481 cont.len = 0;
1482 }
1483 return textlen;
1484 }
1485
1486 asmlinkage int vprintk_emit(int facility, int level,
1487 const char *dict, size_t dictlen,
1488 const char *fmt, va_list args)
1489 {
1490 static int recursion_bug;
1491 static char textbuf[LOG_LINE_MAX];
1492 char *text = textbuf;
1493 size_t text_len;
1494 enum log_flags lflags = 0;
1495 unsigned long flags;
1496 int this_cpu;
1497 int printed_len = 0;
1498
1499 boot_delay_msec(level);
1500 printk_delay();
1501
1502 /* This stops the holder of console_sem just where we want him */
1503 local_irq_save(flags);
1504 this_cpu = smp_processor_id();
1505
1506 /*
1507 * Ouch, printk recursed into itself!
1508 */
1509 if (unlikely(logbuf_cpu == this_cpu)) {
1510 /*
1511 * If a crash is occurring during printk() on this CPU,
1512 * then try to get the crash message out but make sure
1513 * we can't deadlock. Otherwise just return to avoid the
1514 * recursion and return - but flag the recursion so that
1515 * it can be printed at the next appropriate moment:
1516 */
1517 if (!oops_in_progress && !lockdep_recursing(current)) {
1518 recursion_bug = 1;
1519 goto out_restore_irqs;
1520 }
1521 zap_locks();
1522 }
1523
1524 lockdep_off();
1525 raw_spin_lock(&logbuf_lock);
1526 logbuf_cpu = this_cpu;
1527
1528 if (recursion_bug) {
1529 static const char recursion_msg[] =
1530 "BUG: recent printk recursion!";
1531
1532 recursion_bug = 0;
1533 printed_len += strlen(recursion_msg);
1534 /* emit KERN_CRIT message */
1535 log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1536 NULL, 0, recursion_msg, printed_len);
1537 }
1538
1539 /*
1540 * The printf needs to come first; we need the syslog
1541 * prefix which might be passed-in as a parameter.
1542 */
1543 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1544
1545 /* mark and strip a trailing newline */
1546 if (text_len && text[text_len-1] == '\n') {
1547 text_len--;
1548 lflags |= LOG_NEWLINE;
1549 }
1550
1551 /* strip kernel syslog prefix and extract log level or control flags */
1552 if (facility == 0) {
1553 int kern_level = printk_get_level(text);
1554
1555 if (kern_level) {
1556 const char *end_of_header = printk_skip_level(text);
1557 switch (kern_level) {
1558 case '0' ... '7':
1559 if (level == -1)
1560 level = kern_level - '0';
1561 case 'd': /* KERN_DEFAULT */
1562 lflags |= LOG_PREFIX;
1563 }
1564 /*
1565 * No need to check length here because vscnprintf
1566 * put '\0' at the end of the string. Only valid and
1567 * newly printed level is detected.
1568 */
1569 text_len -= end_of_header - text;
1570 text = (char *)end_of_header;
1571 }
1572 }
1573
1574 if (level == -1)
1575 level = default_message_loglevel;
1576
1577 if (dict)
1578 lflags |= LOG_PREFIX|LOG_NEWLINE;
1579
1580 if (!(lflags & LOG_NEWLINE)) {
1581 /*
1582 * Flush the conflicting buffer. An earlier newline was missing,
1583 * or another task also prints continuation lines.
1584 */
1585 if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1586 cont_flush(LOG_NEWLINE);
1587
1588 /* buffer line if possible, otherwise store it right away */
1589 if (!cont_add(facility, level, text, text_len))
1590 log_store(facility, level, lflags | LOG_CONT, 0,
1591 dict, dictlen, text, text_len);
1592 } else {
1593 bool stored = false;
1594
1595 /*
1596 * If an earlier newline was missing and it was the same task,
1597 * either merge it with the current buffer and flush, or if
1598 * there was a race with interrupts (prefix == true) then just
1599 * flush it out and store this line separately.
1600 * If the preceding printk was from a different task and missed
1601 * a newline, flush and append the newline.
1602 */
1603 if (cont.len) {
1604 if (cont.owner == current && !(lflags & LOG_PREFIX))
1605 stored = cont_add(facility, level, text,
1606 text_len);
1607 cont_flush(LOG_NEWLINE);
1608 }
1609
1610 if (!stored)
1611 log_store(facility, level, lflags, 0,
1612 dict, dictlen, text, text_len);
1613 }
1614 printed_len += text_len;
1615
1616 /*
1617 * Try to acquire and then immediately release the console semaphore.
1618 * The release will print out buffers and wake up /dev/kmsg and syslog()
1619 * users.
1620 *
1621 * The console_trylock_for_printk() function will release 'logbuf_lock'
1622 * regardless of whether it actually gets the console semaphore or not.
1623 */
1624 if (console_trylock_for_printk(this_cpu))
1625 console_unlock();
1626
1627 lockdep_on();
1628 out_restore_irqs:
1629 local_irq_restore(flags);
1630
1631 return printed_len;
1632 }
1633 EXPORT_SYMBOL(vprintk_emit);
1634
1635 asmlinkage int vprintk(const char *fmt, va_list args)
1636 {
1637 return vprintk_emit(0, -1, NULL, 0, fmt, args);
1638 }
1639 EXPORT_SYMBOL(vprintk);
1640
1641 asmlinkage int printk_emit(int facility, int level,
1642 const char *dict, size_t dictlen,
1643 const char *fmt, ...)
1644 {
1645 va_list args;
1646 int r;
1647
1648 va_start(args, fmt);
1649 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1650 va_end(args);
1651
1652 return r;
1653 }
1654 EXPORT_SYMBOL(printk_emit);
1655
1656 /**
1657 * printk - print a kernel message
1658 * @fmt: format string
1659 *
1660 * This is printk(). It can be called from any context. We want it to work.
1661 *
1662 * We try to grab the console_lock. If we succeed, it's easy - we log the
1663 * output and call the console drivers. If we fail to get the semaphore, we
1664 * place the output into the log buffer and return. The current holder of
1665 * the console_sem will notice the new output in console_unlock(); and will
1666 * send it to the consoles before releasing the lock.
1667 *
1668 * One effect of this deferred printing is that code which calls printk() and
1669 * then changes console_loglevel may break. This is because console_loglevel
1670 * is inspected when the actual printing occurs.
1671 *
1672 * See also:
1673 * printf(3)
1674 *
1675 * See the vsnprintf() documentation for format string extensions over C99.
1676 */
1677 asmlinkage int printk(const char *fmt, ...)
1678 {
1679 va_list args;
1680 int r;
1681
1682 #ifdef CONFIG_KGDB_KDB
1683 if (unlikely(kdb_trap_printk)) {
1684 va_start(args, fmt);
1685 r = vkdb_printf(fmt, args);
1686 va_end(args);
1687 return r;
1688 }
1689 #endif
1690 va_start(args, fmt);
1691 r = vprintk_emit(0, -1, NULL, 0, fmt, args);
1692 va_end(args);
1693
1694 return r;
1695 }
1696 EXPORT_SYMBOL(printk);
1697
1698 #else /* CONFIG_PRINTK */
1699
1700 #define LOG_LINE_MAX 0
1701 #define PREFIX_MAX 0
1702 #define LOG_LINE_MAX 0
1703 static u64 syslog_seq;
1704 static u32 syslog_idx;
1705 static u64 console_seq;
1706 static u32 console_idx;
1707 static enum log_flags syslog_prev;
1708 static u64 log_first_seq;
1709 static u32 log_first_idx;
1710 static u64 log_next_seq;
1711 static enum log_flags console_prev;
1712 static struct cont {
1713 size_t len;
1714 size_t cons;
1715 u8 level;
1716 bool flushed:1;
1717 } cont;
1718 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1719 static u32 log_next(u32 idx) { return 0; }
1720 static void call_console_drivers(int level, const char *text, size_t len) {}
1721 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1722 bool syslog, char *buf, size_t size) { return 0; }
1723 static size_t cont_print_text(char *text, size_t size) { return 0; }
1724
1725 #endif /* CONFIG_PRINTK */
1726
1727 #ifdef CONFIG_EARLY_PRINTK
1728 struct console *early_console;
1729
1730 void early_vprintk(const char *fmt, va_list ap)
1731 {
1732 if (early_console) {
1733 char buf[512];
1734 int n = vscnprintf(buf, sizeof(buf), fmt, ap);
1735
1736 early_console->write(early_console, buf, n);
1737 }
1738 }
1739
1740 asmlinkage void early_printk(const char *fmt, ...)
1741 {
1742 va_list ap;
1743
1744 va_start(ap, fmt);
1745 early_vprintk(fmt, ap);
1746 va_end(ap);
1747 }
1748 #endif
1749
1750 static int __add_preferred_console(char *name, int idx, char *options,
1751 char *brl_options)
1752 {
1753 struct console_cmdline *c;
1754 int i;
1755
1756 /*
1757 * See if this tty is not yet registered, and
1758 * if we have a slot free.
1759 */
1760 for (i = 0, c = console_cmdline;
1761 i < MAX_CMDLINECONSOLES && c->name[0];
1762 i++, c++) {
1763 if (strcmp(c->name, name) == 0 && c->index == idx) {
1764 if (!brl_options)
1765 selected_console = i;
1766 return 0;
1767 }
1768 }
1769 if (i == MAX_CMDLINECONSOLES)
1770 return -E2BIG;
1771 if (!brl_options)
1772 selected_console = i;
1773 strlcpy(c->name, name, sizeof(c->name));
1774 c->options = options;
1775 braille_set_options(c, brl_options);
1776
1777 c->index = idx;
1778 return 0;
1779 }
1780 /*
1781 * Set up a list of consoles. Called from init/main.c
1782 */
1783 static int __init console_setup(char *str)
1784 {
1785 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for index */
1786 char *s, *options, *brl_options = NULL;
1787 int idx;
1788
1789 if (_braille_console_setup(&str, &brl_options))
1790 return 1;
1791
1792 /*
1793 * Decode str into name, index, options.
1794 */
1795 if (str[0] >= '0' && str[0] <= '9') {
1796 strcpy(buf, "ttyS");
1797 strncpy(buf + 4, str, sizeof(buf) - 5);
1798 } else {
1799 strncpy(buf, str, sizeof(buf) - 1);
1800 }
1801 buf[sizeof(buf) - 1] = 0;
1802 if ((options = strchr(str, ',')) != NULL)
1803 *(options++) = 0;
1804 #ifdef __sparc__
1805 if (!strcmp(str, "ttya"))
1806 strcpy(buf, "ttyS0");
1807 if (!strcmp(str, "ttyb"))
1808 strcpy(buf, "ttyS1");
1809 #endif
1810 for (s = buf; *s; s++)
1811 if ((*s >= '0' && *s <= '9') || *s == ',')
1812 break;
1813 idx = simple_strtoul(s, NULL, 10);
1814 *s = 0;
1815
1816 __add_preferred_console(buf, idx, options, brl_options);
1817 console_set_on_cmdline = 1;
1818 return 1;
1819 }
1820 __setup("console=", console_setup);
1821
1822 /**
1823 * add_preferred_console - add a device to the list of preferred consoles.
1824 * @name: device name
1825 * @idx: device index
1826 * @options: options for this console
1827 *
1828 * The last preferred console added will be used for kernel messages
1829 * and stdin/out/err for init. Normally this is used by console_setup
1830 * above to handle user-supplied console arguments; however it can also
1831 * be used by arch-specific code either to override the user or more
1832 * commonly to provide a default console (ie from PROM variables) when
1833 * the user has not supplied one.
1834 */
1835 int add_preferred_console(char *name, int idx, char *options)
1836 {
1837 return __add_preferred_console(name, idx, options, NULL);
1838 }
1839
1840 int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options)
1841 {
1842 struct console_cmdline *c;
1843 int i;
1844
1845 for (i = 0, c = console_cmdline;
1846 i < MAX_CMDLINECONSOLES && c->name[0];
1847 i++, c++)
1848 if (strcmp(c->name, name) == 0 && c->index == idx) {
1849 strlcpy(c->name, name_new, sizeof(c->name));
1850 c->name[sizeof(c->name) - 1] = 0;
1851 c->options = options;
1852 c->index = idx_new;
1853 return i;
1854 }
1855 /* not found */
1856 return -1;
1857 }
1858
1859 bool console_suspend_enabled = 1;
1860 EXPORT_SYMBOL(console_suspend_enabled);
1861
1862 static int __init console_suspend_disable(char *str)
1863 {
1864 console_suspend_enabled = 0;
1865 return 1;
1866 }
1867 __setup("no_console_suspend", console_suspend_disable);
1868 module_param_named(console_suspend, console_suspend_enabled,
1869 bool, S_IRUGO | S_IWUSR);
1870 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
1871 " and hibernate operations");
1872
1873 /**
1874 * suspend_console - suspend the console subsystem
1875 *
1876 * This disables printk() while we go into suspend states
1877 */
1878 void suspend_console(void)
1879 {
1880 if (!console_suspend_enabled)
1881 return;
1882 printk("Suspending console(s) (use no_console_suspend to debug)\n");
1883 console_lock();
1884 console_suspended = 1;
1885 up(&console_sem);
1886 }
1887
1888 void resume_console(void)
1889 {
1890 if (!console_suspend_enabled)
1891 return;
1892 down(&console_sem);
1893 console_suspended = 0;
1894 console_unlock();
1895 }
1896
1897 /**
1898 * console_cpu_notify - print deferred console messages after CPU hotplug
1899 * @self: notifier struct
1900 * @action: CPU hotplug event
1901 * @hcpu: unused
1902 *
1903 * If printk() is called from a CPU that is not online yet, the messages
1904 * will be spooled but will not show up on the console. This function is
1905 * called when a new CPU comes online (or fails to come up), and ensures
1906 * that any such output gets printed.
1907 */
1908 static int console_cpu_notify(struct notifier_block *self,
1909 unsigned long action, void *hcpu)
1910 {
1911 switch (action) {
1912 case CPU_ONLINE:
1913 case CPU_DEAD:
1914 case CPU_DOWN_FAILED:
1915 case CPU_UP_CANCELED:
1916 console_lock();
1917 console_unlock();
1918 }
1919 return NOTIFY_OK;
1920 }
1921
1922 /**
1923 * console_lock - lock the console system for exclusive use.
1924 *
1925 * Acquires a lock which guarantees that the caller has
1926 * exclusive access to the console system and the console_drivers list.
1927 *
1928 * Can sleep, returns nothing.
1929 */
1930 void console_lock(void)
1931 {
1932 might_sleep();
1933
1934 down(&console_sem);
1935 if (console_suspended)
1936 return;
1937 console_locked = 1;
1938 console_may_schedule = 1;
1939 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);
1940 }
1941 EXPORT_SYMBOL(console_lock);
1942
1943 /**
1944 * console_trylock - try to lock the console system for exclusive use.
1945 *
1946 * Tried to acquire a lock which guarantees that the caller has
1947 * exclusive access to the console system and the console_drivers list.
1948 *
1949 * returns 1 on success, and 0 on failure to acquire the lock.
1950 */
1951 int console_trylock(void)
1952 {
1953 if (down_trylock(&console_sem))
1954 return 0;
1955 if (console_suspended) {
1956 up(&console_sem);
1957 return 0;
1958 }
1959 console_locked = 1;
1960 console_may_schedule = 0;
1961 mutex_acquire(&console_lock_dep_map, 0, 1, _RET_IP_);
1962 return 1;
1963 }
1964 EXPORT_SYMBOL(console_trylock);
1965
1966 int is_console_locked(void)
1967 {
1968 return console_locked;
1969 }
1970
1971 static void console_cont_flush(char *text, size_t size)
1972 {
1973 unsigned long flags;
1974 size_t len;
1975
1976 raw_spin_lock_irqsave(&logbuf_lock, flags);
1977
1978 if (!cont.len)
1979 goto out;
1980
1981 /*
1982 * We still queue earlier records, likely because the console was
1983 * busy. The earlier ones need to be printed before this one, we
1984 * did not flush any fragment so far, so just let it queue up.
1985 */
1986 if (console_seq < log_next_seq && !cont.cons)
1987 goto out;
1988
1989 len = cont_print_text(text, size);
1990 raw_spin_unlock(&logbuf_lock);
1991 stop_critical_timings();
1992 call_console_drivers(cont.level, text, len);
1993 start_critical_timings();
1994 local_irq_restore(flags);
1995 return;
1996 out:
1997 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
1998 }
1999
2000 /**
2001 * console_unlock - unlock the console system
2002 *
2003 * Releases the console_lock which the caller holds on the console system
2004 * and the console driver list.
2005 *
2006 * While the console_lock was held, console output may have been buffered
2007 * by printk(). If this is the case, console_unlock(); emits
2008 * the output prior to releasing the lock.
2009 *
2010 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2011 *
2012 * console_unlock(); may be called from any context.
2013 */
2014 void console_unlock(void)
2015 {
2016 static char text[LOG_LINE_MAX + PREFIX_MAX];
2017 static u64 seen_seq;
2018 unsigned long flags;
2019 bool wake_klogd = false;
2020 bool retry;
2021
2022 if (console_suspended) {
2023 up(&console_sem);
2024 return;
2025 }
2026
2027 console_may_schedule = 0;
2028
2029 /* flush buffered message fragment immediately to console */
2030 console_cont_flush(text, sizeof(text));
2031 again:
2032 for (;;) {
2033 struct printk_log *msg;
2034 size_t len;
2035 int level;
2036
2037 raw_spin_lock_irqsave(&logbuf_lock, flags);
2038 if (seen_seq != log_next_seq) {
2039 wake_klogd = true;
2040 seen_seq = log_next_seq;
2041 }
2042
2043 if (console_seq < log_first_seq) {
2044 /* messages are gone, move to first one */
2045 console_seq = log_first_seq;
2046 console_idx = log_first_idx;
2047 console_prev = 0;
2048 }
2049 skip:
2050 if (console_seq == log_next_seq)
2051 break;
2052
2053 msg = log_from_idx(console_idx);
2054 if (msg->flags & LOG_NOCONS) {
2055 /*
2056 * Skip record we have buffered and already printed
2057 * directly to the console when we received it.
2058 */
2059 console_idx = log_next(console_idx);
2060 console_seq++;
2061 /*
2062 * We will get here again when we register a new
2063 * CON_PRINTBUFFER console. Clear the flag so we
2064 * will properly dump everything later.
2065 */
2066 msg->flags &= ~LOG_NOCONS;
2067 console_prev = msg->flags;
2068 goto skip;
2069 }
2070
2071 level = msg->level;
2072 len = msg_print_text(msg, console_prev, false,
2073 text, sizeof(text));
2074 console_idx = log_next(console_idx);
2075 console_seq++;
2076 console_prev = msg->flags;
2077 raw_spin_unlock(&logbuf_lock);
2078
2079 stop_critical_timings(); /* don't trace print latency */
2080 call_console_drivers(level, text, len);
2081 start_critical_timings();
2082 local_irq_restore(flags);
2083 }
2084 console_locked = 0;
2085 mutex_release(&console_lock_dep_map, 1, _RET_IP_);
2086
2087 /* Release the exclusive_console once it is used */
2088 if (unlikely(exclusive_console))
2089 exclusive_console = NULL;
2090
2091 raw_spin_unlock(&logbuf_lock);
2092
2093 up(&console_sem);
2094
2095 /*
2096 * Someone could have filled up the buffer again, so re-check if there's
2097 * something to flush. In case we cannot trylock the console_sem again,
2098 * there's a new owner and the console_unlock() from them will do the
2099 * flush, no worries.
2100 */
2101 raw_spin_lock(&logbuf_lock);
2102 retry = console_seq != log_next_seq;
2103 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2104
2105 if (retry && console_trylock())
2106 goto again;
2107
2108 if (wake_klogd)
2109 wake_up_klogd();
2110 }
2111 EXPORT_SYMBOL(console_unlock);
2112
2113 /**
2114 * console_conditional_schedule - yield the CPU if required
2115 *
2116 * If the console code is currently allowed to sleep, and
2117 * if this CPU should yield the CPU to another task, do
2118 * so here.
2119 *
2120 * Must be called within console_lock();.
2121 */
2122 void __sched console_conditional_schedule(void)
2123 {
2124 if (console_may_schedule)
2125 cond_resched();
2126 }
2127 EXPORT_SYMBOL(console_conditional_schedule);
2128
2129 void console_unblank(void)
2130 {
2131 struct console *c;
2132
2133 /*
2134 * console_unblank can no longer be called in interrupt context unless
2135 * oops_in_progress is set to 1..
2136 */
2137 if (oops_in_progress) {
2138 if (down_trylock(&console_sem) != 0)
2139 return;
2140 } else
2141 console_lock();
2142
2143 console_locked = 1;
2144 console_may_schedule = 0;
2145 for_each_console(c)
2146 if ((c->flags & CON_ENABLED) && c->unblank)
2147 c->unblank();
2148 console_unlock();
2149 }
2150
2151 /*
2152 * Return the console tty driver structure and its associated index
2153 */
2154 struct tty_driver *console_device(int *index)
2155 {
2156 struct console *c;
2157 struct tty_driver *driver = NULL;
2158
2159 console_lock();
2160 for_each_console(c) {
2161 if (!c->device)
2162 continue;
2163 driver = c->device(c, index);
2164 if (driver)
2165 break;
2166 }
2167 console_unlock();
2168 return driver;
2169 }
2170
2171 /*
2172 * Prevent further output on the passed console device so that (for example)
2173 * serial drivers can disable console output before suspending a port, and can
2174 * re-enable output afterwards.
2175 */
2176 void console_stop(struct console *console)
2177 {
2178 console_lock();
2179 console->flags &= ~CON_ENABLED;
2180 console_unlock();
2181 }
2182 EXPORT_SYMBOL(console_stop);
2183
2184 void console_start(struct console *console)
2185 {
2186 console_lock();
2187 console->flags |= CON_ENABLED;
2188 console_unlock();
2189 }
2190 EXPORT_SYMBOL(console_start);
2191
2192 static int __read_mostly keep_bootcon;
2193
2194 static int __init keep_bootcon_setup(char *str)
2195 {
2196 keep_bootcon = 1;
2197 pr_info("debug: skip boot console de-registration.\n");
2198
2199 return 0;
2200 }
2201
2202 early_param("keep_bootcon", keep_bootcon_setup);
2203
2204 /*
2205 * The console driver calls this routine during kernel initialization
2206 * to register the console printing procedure with printk() and to
2207 * print any messages that were printed by the kernel before the
2208 * console driver was initialized.
2209 *
2210 * This can happen pretty early during the boot process (because of
2211 * early_printk) - sometimes before setup_arch() completes - be careful
2212 * of what kernel features are used - they may not be initialised yet.
2213 *
2214 * There are two types of consoles - bootconsoles (early_printk) and
2215 * "real" consoles (everything which is not a bootconsole) which are
2216 * handled differently.
2217 * - Any number of bootconsoles can be registered at any time.
2218 * - As soon as a "real" console is registered, all bootconsoles
2219 * will be unregistered automatically.
2220 * - Once a "real" console is registered, any attempt to register a
2221 * bootconsoles will be rejected
2222 */
2223 void register_console(struct console *newcon)
2224 {
2225 int i;
2226 unsigned long flags;
2227 struct console *bcon = NULL;
2228 struct console_cmdline *c;
2229
2230 if (console_drivers)
2231 for_each_console(bcon)
2232 if (WARN(bcon == newcon,
2233 "console '%s%d' already registered\n",
2234 bcon->name, bcon->index))
2235 return;
2236
2237 /*
2238 * before we register a new CON_BOOT console, make sure we don't
2239 * already have a valid console
2240 */
2241 if (console_drivers && newcon->flags & CON_BOOT) {
2242 /* find the last or real console */
2243 for_each_console(bcon) {
2244 if (!(bcon->flags & CON_BOOT)) {
2245 pr_info("Too late to register bootconsole %s%d\n",
2246 newcon->name, newcon->index);
2247 return;
2248 }
2249 }
2250 }
2251
2252 if (console_drivers && console_drivers->flags & CON_BOOT)
2253 bcon = console_drivers;
2254
2255 if (preferred_console < 0 || bcon || !console_drivers)
2256 preferred_console = selected_console;
2257
2258 if (newcon->early_setup)
2259 newcon->early_setup();
2260
2261 /*
2262 * See if we want to use this console driver. If we
2263 * didn't select a console we take the first one
2264 * that registers here.
2265 */
2266 if (preferred_console < 0) {
2267 if (newcon->index < 0)
2268 newcon->index = 0;
2269 if (newcon->setup == NULL ||
2270 newcon->setup(newcon, NULL) == 0) {
2271 newcon->flags |= CON_ENABLED;
2272 if (newcon->device) {
2273 newcon->flags |= CON_CONSDEV;
2274 preferred_console = 0;
2275 }
2276 }
2277 }
2278
2279 /*
2280 * See if this console matches one we selected on
2281 * the command line.
2282 */
2283 for (i = 0, c = console_cmdline;
2284 i < MAX_CMDLINECONSOLES && c->name[0];
2285 i++, c++) {
2286 if (strcmp(c->name, newcon->name) != 0)
2287 continue;
2288 if (newcon->index >= 0 &&
2289 newcon->index != c->index)
2290 continue;
2291 if (newcon->index < 0)
2292 newcon->index = c->index;
2293
2294 if (_braille_register_console(newcon, c))
2295 return;
2296
2297 if (newcon->setup &&
2298 newcon->setup(newcon, console_cmdline[i].options) != 0)
2299 break;
2300 newcon->flags |= CON_ENABLED;
2301 newcon->index = c->index;
2302 if (i == selected_console) {
2303 newcon->flags |= CON_CONSDEV;
2304 preferred_console = selected_console;
2305 }
2306 break;
2307 }
2308
2309 if (!(newcon->flags & CON_ENABLED))
2310 return;
2311
2312 /*
2313 * If we have a bootconsole, and are switching to a real console,
2314 * don't print everything out again, since when the boot console, and
2315 * the real console are the same physical device, it's annoying to
2316 * see the beginning boot messages twice
2317 */
2318 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2319 newcon->flags &= ~CON_PRINTBUFFER;
2320
2321 /*
2322 * Put this console in the list - keep the
2323 * preferred driver at the head of the list.
2324 */
2325 console_lock();
2326 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2327 newcon->next = console_drivers;
2328 console_drivers = newcon;
2329 if (newcon->next)
2330 newcon->next->flags &= ~CON_CONSDEV;
2331 } else {
2332 newcon->next = console_drivers->next;
2333 console_drivers->next = newcon;
2334 }
2335 if (newcon->flags & CON_PRINTBUFFER) {
2336 /*
2337 * console_unlock(); will print out the buffered messages
2338 * for us.
2339 */
2340 raw_spin_lock_irqsave(&logbuf_lock, flags);
2341 console_seq = syslog_seq;
2342 console_idx = syslog_idx;
2343 console_prev = syslog_prev;
2344 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2345 /*
2346 * We're about to replay the log buffer. Only do this to the
2347 * just-registered console to avoid excessive message spam to
2348 * the already-registered consoles.
2349 */
2350 exclusive_console = newcon;
2351 }
2352 console_unlock();
2353 console_sysfs_notify();
2354
2355 /*
2356 * By unregistering the bootconsoles after we enable the real console
2357 * we get the "console xxx enabled" message on all the consoles -
2358 * boot consoles, real consoles, etc - this is to ensure that end
2359 * users know there might be something in the kernel's log buffer that
2360 * went to the bootconsole (that they do not see on the real console)
2361 */
2362 pr_info("%sconsole [%s%d] enabled\n",
2363 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2364 newcon->name, newcon->index);
2365 if (bcon &&
2366 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2367 !keep_bootcon) {
2368 /* We need to iterate through all boot consoles, to make
2369 * sure we print everything out, before we unregister them.
2370 */
2371 for_each_console(bcon)
2372 if (bcon->flags & CON_BOOT)
2373 unregister_console(bcon);
2374 }
2375 }
2376 EXPORT_SYMBOL(register_console);
2377
2378 int unregister_console(struct console *console)
2379 {
2380 struct console *a, *b;
2381 int res;
2382
2383 pr_info("%sconsole [%s%d] disabled\n",
2384 (console->flags & CON_BOOT) ? "boot" : "" ,
2385 console->name, console->index);
2386
2387 res = _braille_unregister_console(console);
2388 if (res)
2389 return res;
2390
2391 res = 1;
2392 console_lock();
2393 if (console_drivers == console) {
2394 console_drivers=console->next;
2395 res = 0;
2396 } else if (console_drivers) {
2397 for (a=console_drivers->next, b=console_drivers ;
2398 a; b=a, a=b->next) {
2399 if (a == console) {
2400 b->next = a->next;
2401 res = 0;
2402 break;
2403 }
2404 }
2405 }
2406
2407 /*
2408 * If this isn't the last console and it has CON_CONSDEV set, we
2409 * need to set it on the next preferred console.
2410 */
2411 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2412 console_drivers->flags |= CON_CONSDEV;
2413
2414 console_unlock();
2415 console_sysfs_notify();
2416 return res;
2417 }
2418 EXPORT_SYMBOL(unregister_console);
2419
2420 static int __init printk_late_init(void)
2421 {
2422 struct console *con;
2423
2424 for_each_console(con) {
2425 if (!keep_bootcon && con->flags & CON_BOOT) {
2426 unregister_console(con);
2427 }
2428 }
2429 hotcpu_notifier(console_cpu_notify, 0);
2430 return 0;
2431 }
2432 late_initcall(printk_late_init);
2433
2434 #if defined CONFIG_PRINTK
2435 /*
2436 * Delayed printk version, for scheduler-internal messages:
2437 */
2438 #define PRINTK_BUF_SIZE 512
2439
2440 #define PRINTK_PENDING_WAKEUP 0x01
2441 #define PRINTK_PENDING_SCHED 0x02
2442
2443 static DEFINE_PER_CPU(int, printk_pending);
2444 static DEFINE_PER_CPU(char [PRINTK_BUF_SIZE], printk_sched_buf);
2445
2446 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2447 {
2448 int pending = __this_cpu_xchg(printk_pending, 0);
2449
2450 if (pending & PRINTK_PENDING_SCHED) {
2451 char *buf = __get_cpu_var(printk_sched_buf);
2452 pr_warn("[sched_delayed] %s", buf);
2453 }
2454
2455 if (pending & PRINTK_PENDING_WAKEUP)
2456 wake_up_interruptible(&log_wait);
2457 }
2458
2459 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2460 .func = wake_up_klogd_work_func,
2461 .flags = IRQ_WORK_LAZY,
2462 };
2463
2464 void wake_up_klogd(void)
2465 {
2466 preempt_disable();
2467 if (waitqueue_active(&log_wait)) {
2468 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2469 irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2470 }
2471 preempt_enable();
2472 }
2473
2474 int printk_sched(const char *fmt, ...)
2475 {
2476 unsigned long flags;
2477 va_list args;
2478 char *buf;
2479 int r;
2480
2481 local_irq_save(flags);
2482 buf = __get_cpu_var(printk_sched_buf);
2483
2484 va_start(args, fmt);
2485 r = vsnprintf(buf, PRINTK_BUF_SIZE, fmt, args);
2486 va_end(args);
2487
2488 __this_cpu_or(printk_pending, PRINTK_PENDING_SCHED);
2489 irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2490 local_irq_restore(flags);
2491
2492 return r;
2493 }
2494
2495 /*
2496 * printk rate limiting, lifted from the networking subsystem.
2497 *
2498 * This enforces a rate limit: not more than 10 kernel messages
2499 * every 5s to make a denial-of-service attack impossible.
2500 */
2501 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2502
2503 int __printk_ratelimit(const char *func)
2504 {
2505 return ___ratelimit(&printk_ratelimit_state, func);
2506 }
2507 EXPORT_SYMBOL(__printk_ratelimit);
2508
2509 /**
2510 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2511 * @caller_jiffies: pointer to caller's state
2512 * @interval_msecs: minimum interval between prints
2513 *
2514 * printk_timed_ratelimit() returns true if more than @interval_msecs
2515 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2516 * returned true.
2517 */
2518 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2519 unsigned int interval_msecs)
2520 {
2521 if (*caller_jiffies == 0
2522 || !time_in_range(jiffies, *caller_jiffies,
2523 *caller_jiffies
2524 + msecs_to_jiffies(interval_msecs))) {
2525 *caller_jiffies = jiffies;
2526 return true;
2527 }
2528 return false;
2529 }
2530 EXPORT_SYMBOL(printk_timed_ratelimit);
2531
2532 static DEFINE_SPINLOCK(dump_list_lock);
2533 static LIST_HEAD(dump_list);
2534
2535 /**
2536 * kmsg_dump_register - register a kernel log dumper.
2537 * @dumper: pointer to the kmsg_dumper structure
2538 *
2539 * Adds a kernel log dumper to the system. The dump callback in the
2540 * structure will be called when the kernel oopses or panics and must be
2541 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2542 */
2543 int kmsg_dump_register(struct kmsg_dumper *dumper)
2544 {
2545 unsigned long flags;
2546 int err = -EBUSY;
2547
2548 /* The dump callback needs to be set */
2549 if (!dumper->dump)
2550 return -EINVAL;
2551
2552 spin_lock_irqsave(&dump_list_lock, flags);
2553 /* Don't allow registering multiple times */
2554 if (!dumper->registered) {
2555 dumper->registered = 1;
2556 list_add_tail_rcu(&dumper->list, &dump_list);
2557 err = 0;
2558 }
2559 spin_unlock_irqrestore(&dump_list_lock, flags);
2560
2561 return err;
2562 }
2563 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2564
2565 /**
2566 * kmsg_dump_unregister - unregister a kmsg dumper.
2567 * @dumper: pointer to the kmsg_dumper structure
2568 *
2569 * Removes a dump device from the system. Returns zero on success and
2570 * %-EINVAL otherwise.
2571 */
2572 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2573 {
2574 unsigned long flags;
2575 int err = -EINVAL;
2576
2577 spin_lock_irqsave(&dump_list_lock, flags);
2578 if (dumper->registered) {
2579 dumper->registered = 0;
2580 list_del_rcu(&dumper->list);
2581 err = 0;
2582 }
2583 spin_unlock_irqrestore(&dump_list_lock, flags);
2584 synchronize_rcu();
2585
2586 return err;
2587 }
2588 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2589
2590 static bool always_kmsg_dump;
2591 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2592
2593 /**
2594 * kmsg_dump - dump kernel log to kernel message dumpers.
2595 * @reason: the reason (oops, panic etc) for dumping
2596 *
2597 * Call each of the registered dumper's dump() callback, which can
2598 * retrieve the kmsg records with kmsg_dump_get_line() or
2599 * kmsg_dump_get_buffer().
2600 */
2601 void kmsg_dump(enum kmsg_dump_reason reason)
2602 {
2603 struct kmsg_dumper *dumper;
2604 unsigned long flags;
2605
2606 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2607 return;
2608
2609 rcu_read_lock();
2610 list_for_each_entry_rcu(dumper, &dump_list, list) {
2611 if (dumper->max_reason && reason > dumper->max_reason)
2612 continue;
2613
2614 /* initialize iterator with data about the stored records */
2615 dumper->active = true;
2616
2617 raw_spin_lock_irqsave(&logbuf_lock, flags);
2618 dumper->cur_seq = clear_seq;
2619 dumper->cur_idx = clear_idx;
2620 dumper->next_seq = log_next_seq;
2621 dumper->next_idx = log_next_idx;
2622 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2623
2624 /* invoke dumper which will iterate over records */
2625 dumper->dump(dumper, reason);
2626
2627 /* reset iterator */
2628 dumper->active = false;
2629 }
2630 rcu_read_unlock();
2631 }
2632
2633 /**
2634 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2635 * @dumper: registered kmsg dumper
2636 * @syslog: include the "<4>" prefixes
2637 * @line: buffer to copy the line to
2638 * @size: maximum size of the buffer
2639 * @len: length of line placed into buffer
2640 *
2641 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2642 * record, and copy one record into the provided buffer.
2643 *
2644 * Consecutive calls will return the next available record moving
2645 * towards the end of the buffer with the youngest messages.
2646 *
2647 * A return value of FALSE indicates that there are no more records to
2648 * read.
2649 *
2650 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2651 */
2652 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2653 char *line, size_t size, size_t *len)
2654 {
2655 struct printk_log *msg;
2656 size_t l = 0;
2657 bool ret = false;
2658
2659 if (!dumper->active)
2660 goto out;
2661
2662 if (dumper->cur_seq < log_first_seq) {
2663 /* messages are gone, move to first available one */
2664 dumper->cur_seq = log_first_seq;
2665 dumper->cur_idx = log_first_idx;
2666 }
2667
2668 /* last entry */
2669 if (dumper->cur_seq >= log_next_seq)
2670 goto out;
2671
2672 msg = log_from_idx(dumper->cur_idx);
2673 l = msg_print_text(msg, 0, syslog, line, size);
2674
2675 dumper->cur_idx = log_next(dumper->cur_idx);
2676 dumper->cur_seq++;
2677 ret = true;
2678 out:
2679 if (len)
2680 *len = l;
2681 return ret;
2682 }
2683
2684 /**
2685 * kmsg_dump_get_line - retrieve one kmsg log line
2686 * @dumper: registered kmsg dumper
2687 * @syslog: include the "<4>" prefixes
2688 * @line: buffer to copy the line to
2689 * @size: maximum size of the buffer
2690 * @len: length of line placed into buffer
2691 *
2692 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2693 * record, and copy one record into the provided buffer.
2694 *
2695 * Consecutive calls will return the next available record moving
2696 * towards the end of the buffer with the youngest messages.
2697 *
2698 * A return value of FALSE indicates that there are no more records to
2699 * read.
2700 */
2701 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2702 char *line, size_t size, size_t *len)
2703 {
2704 unsigned long flags;
2705 bool ret;
2706
2707 raw_spin_lock_irqsave(&logbuf_lock, flags);
2708 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2709 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2710
2711 return ret;
2712 }
2713 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2714
2715 /**
2716 * kmsg_dump_get_buffer - copy kmsg log lines
2717 * @dumper: registered kmsg dumper
2718 * @syslog: include the "<4>" prefixes
2719 * @buf: buffer to copy the line to
2720 * @size: maximum size of the buffer
2721 * @len: length of line placed into buffer
2722 *
2723 * Start at the end of the kmsg buffer and fill the provided buffer
2724 * with as many of the the *youngest* kmsg records that fit into it.
2725 * If the buffer is large enough, all available kmsg records will be
2726 * copied with a single call.
2727 *
2728 * Consecutive calls will fill the buffer with the next block of
2729 * available older records, not including the earlier retrieved ones.
2730 *
2731 * A return value of FALSE indicates that there are no more records to
2732 * read.
2733 */
2734 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2735 char *buf, size_t size, size_t *len)
2736 {
2737 unsigned long flags;
2738 u64 seq;
2739 u32 idx;
2740 u64 next_seq;
2741 u32 next_idx;
2742 enum log_flags prev;
2743 size_t l = 0;
2744 bool ret = false;
2745
2746 if (!dumper->active)
2747 goto out;
2748
2749 raw_spin_lock_irqsave(&logbuf_lock, flags);
2750 if (dumper->cur_seq < log_first_seq) {
2751 /* messages are gone, move to first available one */
2752 dumper->cur_seq = log_first_seq;
2753 dumper->cur_idx = log_first_idx;
2754 }
2755
2756 /* last entry */
2757 if (dumper->cur_seq >= dumper->next_seq) {
2758 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2759 goto out;
2760 }
2761
2762 /* calculate length of entire buffer */
2763 seq = dumper->cur_seq;
2764 idx = dumper->cur_idx;
2765 prev = 0;
2766 while (seq < dumper->next_seq) {
2767 struct printk_log *msg = log_from_idx(idx);
2768
2769 l += msg_print_text(msg, prev, true, NULL, 0);
2770 idx = log_next(idx);
2771 seq++;
2772 prev = msg->flags;
2773 }
2774
2775 /* move first record forward until length fits into the buffer */
2776 seq = dumper->cur_seq;
2777 idx = dumper->cur_idx;
2778 prev = 0;
2779 while (l > size && seq < dumper->next_seq) {
2780 struct printk_log *msg = log_from_idx(idx);
2781
2782 l -= msg_print_text(msg, prev, true, NULL, 0);
2783 idx = log_next(idx);
2784 seq++;
2785 prev = msg->flags;
2786 }
2787
2788 /* last message in next interation */
2789 next_seq = seq;
2790 next_idx = idx;
2791
2792 l = 0;
2793 while (seq < dumper->next_seq) {
2794 struct printk_log *msg = log_from_idx(idx);
2795
2796 l += msg_print_text(msg, prev, syslog, buf + l, size - l);
2797 idx = log_next(idx);
2798 seq++;
2799 prev = msg->flags;
2800 }
2801
2802 dumper->next_seq = next_seq;
2803 dumper->next_idx = next_idx;
2804 ret = true;
2805 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2806 out:
2807 if (len)
2808 *len = l;
2809 return ret;
2810 }
2811 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
2812
2813 /**
2814 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
2815 * @dumper: registered kmsg dumper
2816 *
2817 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2818 * kmsg_dump_get_buffer() can be called again and used multiple
2819 * times within the same dumper.dump() callback.
2820 *
2821 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
2822 */
2823 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
2824 {
2825 dumper->cur_seq = clear_seq;
2826 dumper->cur_idx = clear_idx;
2827 dumper->next_seq = log_next_seq;
2828 dumper->next_idx = log_next_idx;
2829 }
2830
2831 /**
2832 * kmsg_dump_rewind - reset the interator
2833 * @dumper: registered kmsg dumper
2834 *
2835 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2836 * kmsg_dump_get_buffer() can be called again and used multiple
2837 * times within the same dumper.dump() callback.
2838 */
2839 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
2840 {
2841 unsigned long flags;
2842
2843 raw_spin_lock_irqsave(&logbuf_lock, flags);
2844 kmsg_dump_rewind_nolock(dumper);
2845 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2846 }
2847 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
2848
2849 static char dump_stack_arch_desc_str[128];
2850
2851 /**
2852 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
2853 * @fmt: printf-style format string
2854 * @...: arguments for the format string
2855 *
2856 * The configured string will be printed right after utsname during task
2857 * dumps. Usually used to add arch-specific system identifiers. If an
2858 * arch wants to make use of such an ID string, it should initialize this
2859 * as soon as possible during boot.
2860 */
2861 void __init dump_stack_set_arch_desc(const char *fmt, ...)
2862 {
2863 va_list args;
2864
2865 va_start(args, fmt);
2866 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
2867 fmt, args);
2868 va_end(args);
2869 }
2870
2871 /**
2872 * dump_stack_print_info - print generic debug info for dump_stack()
2873 * @log_lvl: log level
2874 *
2875 * Arch-specific dump_stack() implementations can use this function to
2876 * print out the same debug information as the generic dump_stack().
2877 */
2878 void dump_stack_print_info(const char *log_lvl)
2879 {
2880 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
2881 log_lvl, raw_smp_processor_id(), current->pid, current->comm,
2882 print_tainted(), init_utsname()->release,
2883 (int)strcspn(init_utsname()->version, " "),
2884 init_utsname()->version);
2885
2886 if (dump_stack_arch_desc_str[0] != '\0')
2887 printk("%sHardware name: %s\n",
2888 log_lvl, dump_stack_arch_desc_str);
2889
2890 print_worker_info(log_lvl, current);
2891 }
2892
2893 /**
2894 * show_regs_print_info - print generic debug info for show_regs()
2895 * @log_lvl: log level
2896 *
2897 * show_regs() implementations can use this function to print out generic
2898 * debug information.
2899 */
2900 void show_regs_print_info(const char *log_lvl)
2901 {
2902 dump_stack_print_info(log_lvl);
2903
2904 printk("%stask: %p ti: %p task.ti: %p\n",
2905 log_lvl, current, current_thread_info(),
2906 task_thread_info(current));
2907 }
2908
2909 #endif