]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/printk/printk.c
remove task and stack pointer printout from oops dump
[mirror_ubuntu-bionic-kernel.git] / kernel / printk / printk.c
1 /*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/delay.h>
30 #include <linux/smp.h>
31 #include <linux/security.h>
32 #include <linux/bootmem.h>
33 #include <linux/memblock.h>
34 #include <linux/syscalls.h>
35 #include <linux/crash_core.h>
36 #include <linux/kdb.h>
37 #include <linux/ratelimit.h>
38 #include <linux/kmsg_dump.h>
39 #include <linux/syslog.h>
40 #include <linux/cpu.h>
41 #include <linux/notifier.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/utsname.h>
46 #include <linux/ctype.h>
47 #include <linux/uio.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/debug.h>
50 #include <linux/sched/task_stack.h>
51
52 #include <linux/uaccess.h>
53 #include <asm/sections.h>
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/printk.h>
57
58 #include "console_cmdline.h"
59 #include "braille.h"
60 #include "internal.h"
61
62 int console_printk[4] = {
63 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */
64 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */
65 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */
66 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */
67 };
68
69 /*
70 * Low level drivers may need that to know if they can schedule in
71 * their unblank() callback or not. So let's export it.
72 */
73 int oops_in_progress;
74 EXPORT_SYMBOL(oops_in_progress);
75
76 /*
77 * console_sem protects the console_drivers list, and also
78 * provides serialisation for access to the entire console
79 * driver system.
80 */
81 static DEFINE_SEMAPHORE(console_sem);
82 struct console *console_drivers;
83 EXPORT_SYMBOL_GPL(console_drivers);
84
85 #ifdef CONFIG_LOCKDEP
86 static struct lockdep_map console_lock_dep_map = {
87 .name = "console_lock"
88 };
89 #endif
90
91 enum devkmsg_log_bits {
92 __DEVKMSG_LOG_BIT_ON = 0,
93 __DEVKMSG_LOG_BIT_OFF,
94 __DEVKMSG_LOG_BIT_LOCK,
95 };
96
97 enum devkmsg_log_masks {
98 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON),
99 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF),
100 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK),
101 };
102
103 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
104 #define DEVKMSG_LOG_MASK_DEFAULT 0
105
106 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
107
108 static int __control_devkmsg(char *str)
109 {
110 if (!str)
111 return -EINVAL;
112
113 if (!strncmp(str, "on", 2)) {
114 devkmsg_log = DEVKMSG_LOG_MASK_ON;
115 return 2;
116 } else if (!strncmp(str, "off", 3)) {
117 devkmsg_log = DEVKMSG_LOG_MASK_OFF;
118 return 3;
119 } else if (!strncmp(str, "ratelimit", 9)) {
120 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
121 return 9;
122 }
123 return -EINVAL;
124 }
125
126 static int __init control_devkmsg(char *str)
127 {
128 if (__control_devkmsg(str) < 0)
129 return 1;
130
131 /*
132 * Set sysctl string accordingly:
133 */
134 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) {
135 memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
136 strncpy(devkmsg_log_str, "on", 2);
137 } else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) {
138 memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
139 strncpy(devkmsg_log_str, "off", 3);
140 }
141 /* else "ratelimit" which is set by default. */
142
143 /*
144 * Sysctl cannot change it anymore. The kernel command line setting of
145 * this parameter is to force the setting to be permanent throughout the
146 * runtime of the system. This is a precation measure against userspace
147 * trying to be a smarta** and attempting to change it up on us.
148 */
149 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
150
151 return 0;
152 }
153 __setup("printk.devkmsg=", control_devkmsg);
154
155 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
156
157 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
158 void __user *buffer, size_t *lenp, loff_t *ppos)
159 {
160 char old_str[DEVKMSG_STR_MAX_SIZE];
161 unsigned int old;
162 int err;
163
164 if (write) {
165 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
166 return -EINVAL;
167
168 old = devkmsg_log;
169 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
170 }
171
172 err = proc_dostring(table, write, buffer, lenp, ppos);
173 if (err)
174 return err;
175
176 if (write) {
177 err = __control_devkmsg(devkmsg_log_str);
178
179 /*
180 * Do not accept an unknown string OR a known string with
181 * trailing crap...
182 */
183 if (err < 0 || (err + 1 != *lenp)) {
184
185 /* ... and restore old setting. */
186 devkmsg_log = old;
187 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
188
189 return -EINVAL;
190 }
191 }
192
193 return 0;
194 }
195
196 /*
197 * Number of registered extended console drivers.
198 *
199 * If extended consoles are present, in-kernel cont reassembly is disabled
200 * and each fragment is stored as a separate log entry with proper
201 * continuation flag so that every emitted message has full metadata. This
202 * doesn't change the result for regular consoles or /proc/kmsg. For
203 * /dev/kmsg, as long as the reader concatenates messages according to
204 * consecutive continuation flags, the end result should be the same too.
205 */
206 static int nr_ext_console_drivers;
207
208 /*
209 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
210 * macros instead of functions so that _RET_IP_ contains useful information.
211 */
212 #define down_console_sem() do { \
213 down(&console_sem);\
214 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
215 } while (0)
216
217 static int __down_trylock_console_sem(unsigned long ip)
218 {
219 int lock_failed;
220 unsigned long flags;
221
222 /*
223 * Here and in __up_console_sem() we need to be in safe mode,
224 * because spindump/WARN/etc from under console ->lock will
225 * deadlock in printk()->down_trylock_console_sem() otherwise.
226 */
227 printk_safe_enter_irqsave(flags);
228 lock_failed = down_trylock(&console_sem);
229 printk_safe_exit_irqrestore(flags);
230
231 if (lock_failed)
232 return 1;
233 mutex_acquire(&console_lock_dep_map, 0, 1, ip);
234 return 0;
235 }
236 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
237
238 static void __up_console_sem(unsigned long ip)
239 {
240 unsigned long flags;
241
242 mutex_release(&console_lock_dep_map, 1, ip);
243
244 printk_safe_enter_irqsave(flags);
245 up(&console_sem);
246 printk_safe_exit_irqrestore(flags);
247 }
248 #define up_console_sem() __up_console_sem(_RET_IP_)
249
250 /*
251 * This is used for debugging the mess that is the VT code by
252 * keeping track if we have the console semaphore held. It's
253 * definitely not the perfect debug tool (we don't know if _WE_
254 * hold it and are racing, but it helps tracking those weird code
255 * paths in the console code where we end up in places I want
256 * locked without the console sempahore held).
257 */
258 static int console_locked, console_suspended;
259
260 /*
261 * If exclusive_console is non-NULL then only this console is to be printed to.
262 */
263 static struct console *exclusive_console;
264
265 /*
266 * Array of consoles built from command line options (console=)
267 */
268
269 #define MAX_CMDLINECONSOLES 8
270
271 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
272
273 static int preferred_console = -1;
274 int console_set_on_cmdline;
275 EXPORT_SYMBOL(console_set_on_cmdline);
276
277 /* Flag: console code may call schedule() */
278 static int console_may_schedule;
279
280 /*
281 * The printk log buffer consists of a chain of concatenated variable
282 * length records. Every record starts with a record header, containing
283 * the overall length of the record.
284 *
285 * The heads to the first and last entry in the buffer, as well as the
286 * sequence numbers of these entries are maintained when messages are
287 * stored.
288 *
289 * If the heads indicate available messages, the length in the header
290 * tells the start next message. A length == 0 for the next message
291 * indicates a wrap-around to the beginning of the buffer.
292 *
293 * Every record carries the monotonic timestamp in microseconds, as well as
294 * the standard userspace syslog level and syslog facility. The usual
295 * kernel messages use LOG_KERN; userspace-injected messages always carry
296 * a matching syslog facility, by default LOG_USER. The origin of every
297 * message can be reliably determined that way.
298 *
299 * The human readable log message directly follows the message header. The
300 * length of the message text is stored in the header, the stored message
301 * is not terminated.
302 *
303 * Optionally, a message can carry a dictionary of properties (key/value pairs),
304 * to provide userspace with a machine-readable message context.
305 *
306 * Examples for well-defined, commonly used property names are:
307 * DEVICE=b12:8 device identifier
308 * b12:8 block dev_t
309 * c127:3 char dev_t
310 * n8 netdev ifindex
311 * +sound:card0 subsystem:devname
312 * SUBSYSTEM=pci driver-core subsystem name
313 *
314 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
315 * follows directly after a '=' character. Every property is terminated by
316 * a '\0' character. The last property is not terminated.
317 *
318 * Example of a message structure:
319 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
320 * 0008 34 00 record is 52 bytes long
321 * 000a 0b 00 text is 11 bytes long
322 * 000c 1f 00 dictionary is 23 bytes long
323 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
324 * 0010 69 74 27 73 20 61 20 6c "it's a l"
325 * 69 6e 65 "ine"
326 * 001b 44 45 56 49 43 "DEVIC"
327 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
328 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
329 * 67 "g"
330 * 0032 00 00 00 padding to next message header
331 *
332 * The 'struct printk_log' buffer header must never be directly exported to
333 * userspace, it is a kernel-private implementation detail that might
334 * need to be changed in the future, when the requirements change.
335 *
336 * /dev/kmsg exports the structured data in the following line format:
337 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
338 *
339 * Users of the export format should ignore possible additional values
340 * separated by ',', and find the message after the ';' character.
341 *
342 * The optional key/value pairs are attached as continuation lines starting
343 * with a space character and terminated by a newline. All possible
344 * non-prinatable characters are escaped in the "\xff" notation.
345 */
346
347 enum log_flags {
348 LOG_NOCONS = 1, /* already flushed, do not print to console */
349 LOG_NEWLINE = 2, /* text ended with a newline */
350 LOG_PREFIX = 4, /* text started with a prefix */
351 LOG_CONT = 8, /* text is a fragment of a continuation line */
352 };
353
354 struct printk_log {
355 u64 ts_nsec; /* timestamp in nanoseconds */
356 u16 len; /* length of entire record */
357 u16 text_len; /* length of text buffer */
358 u16 dict_len; /* length of dictionary buffer */
359 u8 facility; /* syslog facility */
360 u8 flags:5; /* internal record flags */
361 u8 level:3; /* syslog level */
362 }
363 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
364 __packed __aligned(4)
365 #endif
366 ;
367
368 /*
369 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken
370 * within the scheduler's rq lock. It must be released before calling
371 * console_unlock() or anything else that might wake up a process.
372 */
373 DEFINE_RAW_SPINLOCK(logbuf_lock);
374
375 /*
376 * Helper macros to lock/unlock logbuf_lock and switch between
377 * printk-safe/unsafe modes.
378 */
379 #define logbuf_lock_irq() \
380 do { \
381 printk_safe_enter_irq(); \
382 raw_spin_lock(&logbuf_lock); \
383 } while (0)
384
385 #define logbuf_unlock_irq() \
386 do { \
387 raw_spin_unlock(&logbuf_lock); \
388 printk_safe_exit_irq(); \
389 } while (0)
390
391 #define logbuf_lock_irqsave(flags) \
392 do { \
393 printk_safe_enter_irqsave(flags); \
394 raw_spin_lock(&logbuf_lock); \
395 } while (0)
396
397 #define logbuf_unlock_irqrestore(flags) \
398 do { \
399 raw_spin_unlock(&logbuf_lock); \
400 printk_safe_exit_irqrestore(flags); \
401 } while (0)
402
403 #ifdef CONFIG_PRINTK
404 DECLARE_WAIT_QUEUE_HEAD(log_wait);
405 /* the next printk record to read by syslog(READ) or /proc/kmsg */
406 static u64 syslog_seq;
407 static u32 syslog_idx;
408 static size_t syslog_partial;
409
410 /* index and sequence number of the first record stored in the buffer */
411 static u64 log_first_seq;
412 static u32 log_first_idx;
413
414 /* index and sequence number of the next record to store in the buffer */
415 static u64 log_next_seq;
416 static u32 log_next_idx;
417
418 /* the next printk record to write to the console */
419 static u64 console_seq;
420 static u32 console_idx;
421
422 /* the next printk record to read after the last 'clear' command */
423 static u64 clear_seq;
424 static u32 clear_idx;
425
426 #define PREFIX_MAX 32
427 #define LOG_LINE_MAX (1024 - PREFIX_MAX)
428
429 #define LOG_LEVEL(v) ((v) & 0x07)
430 #define LOG_FACILITY(v) ((v) >> 3 & 0xff)
431
432 /* record buffer */
433 #define LOG_ALIGN __alignof__(struct printk_log)
434 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
435 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
436 static char *log_buf = __log_buf;
437 static u32 log_buf_len = __LOG_BUF_LEN;
438
439 /* Return log buffer address */
440 char *log_buf_addr_get(void)
441 {
442 return log_buf;
443 }
444
445 /* Return log buffer size */
446 u32 log_buf_len_get(void)
447 {
448 return log_buf_len;
449 }
450
451 /* human readable text of the record */
452 static char *log_text(const struct printk_log *msg)
453 {
454 return (char *)msg + sizeof(struct printk_log);
455 }
456
457 /* optional key/value pair dictionary attached to the record */
458 static char *log_dict(const struct printk_log *msg)
459 {
460 return (char *)msg + sizeof(struct printk_log) + msg->text_len;
461 }
462
463 /* get record by index; idx must point to valid msg */
464 static struct printk_log *log_from_idx(u32 idx)
465 {
466 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
467
468 /*
469 * A length == 0 record is the end of buffer marker. Wrap around and
470 * read the message at the start of the buffer.
471 */
472 if (!msg->len)
473 return (struct printk_log *)log_buf;
474 return msg;
475 }
476
477 /* get next record; idx must point to valid msg */
478 static u32 log_next(u32 idx)
479 {
480 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
481
482 /* length == 0 indicates the end of the buffer; wrap */
483 /*
484 * A length == 0 record is the end of buffer marker. Wrap around and
485 * read the message at the start of the buffer as *this* one, and
486 * return the one after that.
487 */
488 if (!msg->len) {
489 msg = (struct printk_log *)log_buf;
490 return msg->len;
491 }
492 return idx + msg->len;
493 }
494
495 /*
496 * Check whether there is enough free space for the given message.
497 *
498 * The same values of first_idx and next_idx mean that the buffer
499 * is either empty or full.
500 *
501 * If the buffer is empty, we must respect the position of the indexes.
502 * They cannot be reset to the beginning of the buffer.
503 */
504 static int logbuf_has_space(u32 msg_size, bool empty)
505 {
506 u32 free;
507
508 if (log_next_idx > log_first_idx || empty)
509 free = max(log_buf_len - log_next_idx, log_first_idx);
510 else
511 free = log_first_idx - log_next_idx;
512
513 /*
514 * We need space also for an empty header that signalizes wrapping
515 * of the buffer.
516 */
517 return free >= msg_size + sizeof(struct printk_log);
518 }
519
520 static int log_make_free_space(u32 msg_size)
521 {
522 while (log_first_seq < log_next_seq &&
523 !logbuf_has_space(msg_size, false)) {
524 /* drop old messages until we have enough contiguous space */
525 log_first_idx = log_next(log_first_idx);
526 log_first_seq++;
527 }
528
529 if (clear_seq < log_first_seq) {
530 clear_seq = log_first_seq;
531 clear_idx = log_first_idx;
532 }
533
534 /* sequence numbers are equal, so the log buffer is empty */
535 if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
536 return 0;
537
538 return -ENOMEM;
539 }
540
541 /* compute the message size including the padding bytes */
542 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
543 {
544 u32 size;
545
546 size = sizeof(struct printk_log) + text_len + dict_len;
547 *pad_len = (-size) & (LOG_ALIGN - 1);
548 size += *pad_len;
549
550 return size;
551 }
552
553 /*
554 * Define how much of the log buffer we could take at maximum. The value
555 * must be greater than two. Note that only half of the buffer is available
556 * when the index points to the middle.
557 */
558 #define MAX_LOG_TAKE_PART 4
559 static const char trunc_msg[] = "<truncated>";
560
561 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
562 u16 *dict_len, u32 *pad_len)
563 {
564 /*
565 * The message should not take the whole buffer. Otherwise, it might
566 * get removed too soon.
567 */
568 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
569 if (*text_len > max_text_len)
570 *text_len = max_text_len;
571 /* enable the warning message */
572 *trunc_msg_len = strlen(trunc_msg);
573 /* disable the "dict" completely */
574 *dict_len = 0;
575 /* compute the size again, count also the warning message */
576 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
577 }
578
579 /* insert record into the buffer, discard old ones, update heads */
580 static int log_store(int facility, int level,
581 enum log_flags flags, u64 ts_nsec,
582 const char *dict, u16 dict_len,
583 const char *text, u16 text_len)
584 {
585 struct printk_log *msg;
586 u32 size, pad_len;
587 u16 trunc_msg_len = 0;
588
589 /* number of '\0' padding bytes to next message */
590 size = msg_used_size(text_len, dict_len, &pad_len);
591
592 if (log_make_free_space(size)) {
593 /* truncate the message if it is too long for empty buffer */
594 size = truncate_msg(&text_len, &trunc_msg_len,
595 &dict_len, &pad_len);
596 /* survive when the log buffer is too small for trunc_msg */
597 if (log_make_free_space(size))
598 return 0;
599 }
600
601 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
602 /*
603 * This message + an additional empty header does not fit
604 * at the end of the buffer. Add an empty header with len == 0
605 * to signify a wrap around.
606 */
607 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
608 log_next_idx = 0;
609 }
610
611 /* fill message */
612 msg = (struct printk_log *)(log_buf + log_next_idx);
613 memcpy(log_text(msg), text, text_len);
614 msg->text_len = text_len;
615 if (trunc_msg_len) {
616 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
617 msg->text_len += trunc_msg_len;
618 }
619 memcpy(log_dict(msg), dict, dict_len);
620 msg->dict_len = dict_len;
621 msg->facility = facility;
622 msg->level = level & 7;
623 msg->flags = flags & 0x1f;
624 if (ts_nsec > 0)
625 msg->ts_nsec = ts_nsec;
626 else
627 msg->ts_nsec = local_clock();
628 memset(log_dict(msg) + dict_len, 0, pad_len);
629 msg->len = size;
630
631 /* insert message */
632 log_next_idx += msg->len;
633 log_next_seq++;
634
635 return msg->text_len;
636 }
637
638 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
639
640 static int syslog_action_restricted(int type)
641 {
642 if (dmesg_restrict)
643 return 1;
644 /*
645 * Unless restricted, we allow "read all" and "get buffer size"
646 * for everybody.
647 */
648 return type != SYSLOG_ACTION_READ_ALL &&
649 type != SYSLOG_ACTION_SIZE_BUFFER;
650 }
651
652 static int check_syslog_permissions(int type, int source)
653 {
654 /*
655 * If this is from /proc/kmsg and we've already opened it, then we've
656 * already done the capabilities checks at open time.
657 */
658 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
659 goto ok;
660
661 if (syslog_action_restricted(type)) {
662 if (capable(CAP_SYSLOG))
663 goto ok;
664 /*
665 * For historical reasons, accept CAP_SYS_ADMIN too, with
666 * a warning.
667 */
668 if (capable(CAP_SYS_ADMIN)) {
669 pr_warn_once("%s (%d): Attempt to access syslog with "
670 "CAP_SYS_ADMIN but no CAP_SYSLOG "
671 "(deprecated).\n",
672 current->comm, task_pid_nr(current));
673 goto ok;
674 }
675 return -EPERM;
676 }
677 ok:
678 return security_syslog(type);
679 }
680
681 static void append_char(char **pp, char *e, char c)
682 {
683 if (*pp < e)
684 *(*pp)++ = c;
685 }
686
687 static ssize_t msg_print_ext_header(char *buf, size_t size,
688 struct printk_log *msg, u64 seq)
689 {
690 u64 ts_usec = msg->ts_nsec;
691
692 do_div(ts_usec, 1000);
693
694 return scnprintf(buf, size, "%u,%llu,%llu,%c;",
695 (msg->facility << 3) | msg->level, seq, ts_usec,
696 msg->flags & LOG_CONT ? 'c' : '-');
697 }
698
699 static ssize_t msg_print_ext_body(char *buf, size_t size,
700 char *dict, size_t dict_len,
701 char *text, size_t text_len)
702 {
703 char *p = buf, *e = buf + size;
704 size_t i;
705
706 /* escape non-printable characters */
707 for (i = 0; i < text_len; i++) {
708 unsigned char c = text[i];
709
710 if (c < ' ' || c >= 127 || c == '\\')
711 p += scnprintf(p, e - p, "\\x%02x", c);
712 else
713 append_char(&p, e, c);
714 }
715 append_char(&p, e, '\n');
716
717 if (dict_len) {
718 bool line = true;
719
720 for (i = 0; i < dict_len; i++) {
721 unsigned char c = dict[i];
722
723 if (line) {
724 append_char(&p, e, ' ');
725 line = false;
726 }
727
728 if (c == '\0') {
729 append_char(&p, e, '\n');
730 line = true;
731 continue;
732 }
733
734 if (c < ' ' || c >= 127 || c == '\\') {
735 p += scnprintf(p, e - p, "\\x%02x", c);
736 continue;
737 }
738
739 append_char(&p, e, c);
740 }
741 append_char(&p, e, '\n');
742 }
743
744 return p - buf;
745 }
746
747 /* /dev/kmsg - userspace message inject/listen interface */
748 struct devkmsg_user {
749 u64 seq;
750 u32 idx;
751 struct ratelimit_state rs;
752 struct mutex lock;
753 char buf[CONSOLE_EXT_LOG_MAX];
754 };
755
756 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
757 {
758 char *buf, *line;
759 int level = default_message_loglevel;
760 int facility = 1; /* LOG_USER */
761 struct file *file = iocb->ki_filp;
762 struct devkmsg_user *user = file->private_data;
763 size_t len = iov_iter_count(from);
764 ssize_t ret = len;
765
766 if (!user || len > LOG_LINE_MAX)
767 return -EINVAL;
768
769 /* Ignore when user logging is disabled. */
770 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
771 return len;
772
773 /* Ratelimit when not explicitly enabled. */
774 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
775 if (!___ratelimit(&user->rs, current->comm))
776 return ret;
777 }
778
779 buf = kmalloc(len+1, GFP_KERNEL);
780 if (buf == NULL)
781 return -ENOMEM;
782
783 buf[len] = '\0';
784 if (!copy_from_iter_full(buf, len, from)) {
785 kfree(buf);
786 return -EFAULT;
787 }
788
789 /*
790 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
791 * the decimal value represents 32bit, the lower 3 bit are the log
792 * level, the rest are the log facility.
793 *
794 * If no prefix or no userspace facility is specified, we
795 * enforce LOG_USER, to be able to reliably distinguish
796 * kernel-generated messages from userspace-injected ones.
797 */
798 line = buf;
799 if (line[0] == '<') {
800 char *endp = NULL;
801 unsigned int u;
802
803 u = simple_strtoul(line + 1, &endp, 10);
804 if (endp && endp[0] == '>') {
805 level = LOG_LEVEL(u);
806 if (LOG_FACILITY(u) != 0)
807 facility = LOG_FACILITY(u);
808 endp++;
809 len -= endp - line;
810 line = endp;
811 }
812 }
813
814 printk_emit(facility, level, NULL, 0, "%s", line);
815 kfree(buf);
816 return ret;
817 }
818
819 static ssize_t devkmsg_read(struct file *file, char __user *buf,
820 size_t count, loff_t *ppos)
821 {
822 struct devkmsg_user *user = file->private_data;
823 struct printk_log *msg;
824 size_t len;
825 ssize_t ret;
826
827 if (!user)
828 return -EBADF;
829
830 ret = mutex_lock_interruptible(&user->lock);
831 if (ret)
832 return ret;
833
834 logbuf_lock_irq();
835 while (user->seq == log_next_seq) {
836 if (file->f_flags & O_NONBLOCK) {
837 ret = -EAGAIN;
838 logbuf_unlock_irq();
839 goto out;
840 }
841
842 logbuf_unlock_irq();
843 ret = wait_event_interruptible(log_wait,
844 user->seq != log_next_seq);
845 if (ret)
846 goto out;
847 logbuf_lock_irq();
848 }
849
850 if (user->seq < log_first_seq) {
851 /* our last seen message is gone, return error and reset */
852 user->idx = log_first_idx;
853 user->seq = log_first_seq;
854 ret = -EPIPE;
855 logbuf_unlock_irq();
856 goto out;
857 }
858
859 msg = log_from_idx(user->idx);
860 len = msg_print_ext_header(user->buf, sizeof(user->buf),
861 msg, user->seq);
862 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
863 log_dict(msg), msg->dict_len,
864 log_text(msg), msg->text_len);
865
866 user->idx = log_next(user->idx);
867 user->seq++;
868 logbuf_unlock_irq();
869
870 if (len > count) {
871 ret = -EINVAL;
872 goto out;
873 }
874
875 if (copy_to_user(buf, user->buf, len)) {
876 ret = -EFAULT;
877 goto out;
878 }
879 ret = len;
880 out:
881 mutex_unlock(&user->lock);
882 return ret;
883 }
884
885 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
886 {
887 struct devkmsg_user *user = file->private_data;
888 loff_t ret = 0;
889
890 if (!user)
891 return -EBADF;
892 if (offset)
893 return -ESPIPE;
894
895 logbuf_lock_irq();
896 switch (whence) {
897 case SEEK_SET:
898 /* the first record */
899 user->idx = log_first_idx;
900 user->seq = log_first_seq;
901 break;
902 case SEEK_DATA:
903 /*
904 * The first record after the last SYSLOG_ACTION_CLEAR,
905 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
906 * changes no global state, and does not clear anything.
907 */
908 user->idx = clear_idx;
909 user->seq = clear_seq;
910 break;
911 case SEEK_END:
912 /* after the last record */
913 user->idx = log_next_idx;
914 user->seq = log_next_seq;
915 break;
916 default:
917 ret = -EINVAL;
918 }
919 logbuf_unlock_irq();
920 return ret;
921 }
922
923 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
924 {
925 struct devkmsg_user *user = file->private_data;
926 int ret = 0;
927
928 if (!user)
929 return POLLERR|POLLNVAL;
930
931 poll_wait(file, &log_wait, wait);
932
933 logbuf_lock_irq();
934 if (user->seq < log_next_seq) {
935 /* return error when data has vanished underneath us */
936 if (user->seq < log_first_seq)
937 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
938 else
939 ret = POLLIN|POLLRDNORM;
940 }
941 logbuf_unlock_irq();
942
943 return ret;
944 }
945
946 static int devkmsg_open(struct inode *inode, struct file *file)
947 {
948 struct devkmsg_user *user;
949 int err;
950
951 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
952 return -EPERM;
953
954 /* write-only does not need any file context */
955 if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
956 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
957 SYSLOG_FROM_READER);
958 if (err)
959 return err;
960 }
961
962 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
963 if (!user)
964 return -ENOMEM;
965
966 ratelimit_default_init(&user->rs);
967 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
968
969 mutex_init(&user->lock);
970
971 logbuf_lock_irq();
972 user->idx = log_first_idx;
973 user->seq = log_first_seq;
974 logbuf_unlock_irq();
975
976 file->private_data = user;
977 return 0;
978 }
979
980 static int devkmsg_release(struct inode *inode, struct file *file)
981 {
982 struct devkmsg_user *user = file->private_data;
983
984 if (!user)
985 return 0;
986
987 ratelimit_state_exit(&user->rs);
988
989 mutex_destroy(&user->lock);
990 kfree(user);
991 return 0;
992 }
993
994 const struct file_operations kmsg_fops = {
995 .open = devkmsg_open,
996 .read = devkmsg_read,
997 .write_iter = devkmsg_write,
998 .llseek = devkmsg_llseek,
999 .poll = devkmsg_poll,
1000 .release = devkmsg_release,
1001 };
1002
1003 #ifdef CONFIG_CRASH_CORE
1004 /*
1005 * This appends the listed symbols to /proc/vmcore
1006 *
1007 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
1008 * obtain access to symbols that are otherwise very difficult to locate. These
1009 * symbols are specifically used so that utilities can access and extract the
1010 * dmesg log from a vmcore file after a crash.
1011 */
1012 void log_buf_vmcoreinfo_setup(void)
1013 {
1014 VMCOREINFO_SYMBOL(log_buf);
1015 VMCOREINFO_SYMBOL(log_buf_len);
1016 VMCOREINFO_SYMBOL(log_first_idx);
1017 VMCOREINFO_SYMBOL(clear_idx);
1018 VMCOREINFO_SYMBOL(log_next_idx);
1019 /*
1020 * Export struct printk_log size and field offsets. User space tools can
1021 * parse it and detect any changes to structure down the line.
1022 */
1023 VMCOREINFO_STRUCT_SIZE(printk_log);
1024 VMCOREINFO_OFFSET(printk_log, ts_nsec);
1025 VMCOREINFO_OFFSET(printk_log, len);
1026 VMCOREINFO_OFFSET(printk_log, text_len);
1027 VMCOREINFO_OFFSET(printk_log, dict_len);
1028 }
1029 #endif
1030
1031 /* requested log_buf_len from kernel cmdline */
1032 static unsigned long __initdata new_log_buf_len;
1033
1034 /* we practice scaling the ring buffer by powers of 2 */
1035 static void __init log_buf_len_update(unsigned size)
1036 {
1037 if (size)
1038 size = roundup_pow_of_two(size);
1039 if (size > log_buf_len)
1040 new_log_buf_len = size;
1041 }
1042
1043 /* save requested log_buf_len since it's too early to process it */
1044 static int __init log_buf_len_setup(char *str)
1045 {
1046 unsigned size = memparse(str, &str);
1047
1048 log_buf_len_update(size);
1049
1050 return 0;
1051 }
1052 early_param("log_buf_len", log_buf_len_setup);
1053
1054 #ifdef CONFIG_SMP
1055 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1056
1057 static void __init log_buf_add_cpu(void)
1058 {
1059 unsigned int cpu_extra;
1060
1061 /*
1062 * archs should set up cpu_possible_bits properly with
1063 * set_cpu_possible() after setup_arch() but just in
1064 * case lets ensure this is valid.
1065 */
1066 if (num_possible_cpus() == 1)
1067 return;
1068
1069 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1070
1071 /* by default this will only continue through for large > 64 CPUs */
1072 if (cpu_extra <= __LOG_BUF_LEN / 2)
1073 return;
1074
1075 pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1076 __LOG_CPU_MAX_BUF_LEN);
1077 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1078 cpu_extra);
1079 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1080
1081 log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1082 }
1083 #else /* !CONFIG_SMP */
1084 static inline void log_buf_add_cpu(void) {}
1085 #endif /* CONFIG_SMP */
1086
1087 void __init setup_log_buf(int early)
1088 {
1089 unsigned long flags;
1090 char *new_log_buf;
1091 int free;
1092
1093 if (log_buf != __log_buf)
1094 return;
1095
1096 if (!early && !new_log_buf_len)
1097 log_buf_add_cpu();
1098
1099 if (!new_log_buf_len)
1100 return;
1101
1102 if (early) {
1103 new_log_buf =
1104 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
1105 } else {
1106 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
1107 LOG_ALIGN);
1108 }
1109
1110 if (unlikely(!new_log_buf)) {
1111 pr_err("log_buf_len: %ld bytes not available\n",
1112 new_log_buf_len);
1113 return;
1114 }
1115
1116 logbuf_lock_irqsave(flags);
1117 log_buf_len = new_log_buf_len;
1118 log_buf = new_log_buf;
1119 new_log_buf_len = 0;
1120 free = __LOG_BUF_LEN - log_next_idx;
1121 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1122 logbuf_unlock_irqrestore(flags);
1123
1124 pr_info("log_buf_len: %d bytes\n", log_buf_len);
1125 pr_info("early log buf free: %d(%d%%)\n",
1126 free, (free * 100) / __LOG_BUF_LEN);
1127 }
1128
1129 static bool __read_mostly ignore_loglevel;
1130
1131 static int __init ignore_loglevel_setup(char *str)
1132 {
1133 ignore_loglevel = true;
1134 pr_info("debug: ignoring loglevel setting.\n");
1135
1136 return 0;
1137 }
1138
1139 early_param("ignore_loglevel", ignore_loglevel_setup);
1140 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1141 MODULE_PARM_DESC(ignore_loglevel,
1142 "ignore loglevel setting (prints all kernel messages to the console)");
1143
1144 static bool suppress_message_printing(int level)
1145 {
1146 return (level >= console_loglevel && !ignore_loglevel);
1147 }
1148
1149 #ifdef CONFIG_BOOT_PRINTK_DELAY
1150
1151 static int boot_delay; /* msecs delay after each printk during bootup */
1152 static unsigned long long loops_per_msec; /* based on boot_delay */
1153
1154 static int __init boot_delay_setup(char *str)
1155 {
1156 unsigned long lpj;
1157
1158 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
1159 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1160
1161 get_option(&str, &boot_delay);
1162 if (boot_delay > 10 * 1000)
1163 boot_delay = 0;
1164
1165 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1166 "HZ: %d, loops_per_msec: %llu\n",
1167 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1168 return 0;
1169 }
1170 early_param("boot_delay", boot_delay_setup);
1171
1172 static void boot_delay_msec(int level)
1173 {
1174 unsigned long long k;
1175 unsigned long timeout;
1176
1177 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1178 || suppress_message_printing(level)) {
1179 return;
1180 }
1181
1182 k = (unsigned long long)loops_per_msec * boot_delay;
1183
1184 timeout = jiffies + msecs_to_jiffies(boot_delay);
1185 while (k) {
1186 k--;
1187 cpu_relax();
1188 /*
1189 * use (volatile) jiffies to prevent
1190 * compiler reduction; loop termination via jiffies
1191 * is secondary and may or may not happen.
1192 */
1193 if (time_after(jiffies, timeout))
1194 break;
1195 touch_nmi_watchdog();
1196 }
1197 }
1198 #else
1199 static inline void boot_delay_msec(int level)
1200 {
1201 }
1202 #endif
1203
1204 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1205 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1206
1207 static size_t print_time(u64 ts, char *buf)
1208 {
1209 unsigned long rem_nsec;
1210
1211 if (!printk_time)
1212 return 0;
1213
1214 rem_nsec = do_div(ts, 1000000000);
1215
1216 if (!buf)
1217 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1218
1219 return sprintf(buf, "[%5lu.%06lu] ",
1220 (unsigned long)ts, rem_nsec / 1000);
1221 }
1222
1223 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1224 {
1225 size_t len = 0;
1226 unsigned int prefix = (msg->facility << 3) | msg->level;
1227
1228 if (syslog) {
1229 if (buf) {
1230 len += sprintf(buf, "<%u>", prefix);
1231 } else {
1232 len += 3;
1233 if (prefix > 999)
1234 len += 3;
1235 else if (prefix > 99)
1236 len += 2;
1237 else if (prefix > 9)
1238 len++;
1239 }
1240 }
1241
1242 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1243 return len;
1244 }
1245
1246 static size_t msg_print_text(const struct printk_log *msg, bool syslog, char *buf, size_t size)
1247 {
1248 const char *text = log_text(msg);
1249 size_t text_size = msg->text_len;
1250 size_t len = 0;
1251
1252 do {
1253 const char *next = memchr(text, '\n', text_size);
1254 size_t text_len;
1255
1256 if (next) {
1257 text_len = next - text;
1258 next++;
1259 text_size -= next - text;
1260 } else {
1261 text_len = text_size;
1262 }
1263
1264 if (buf) {
1265 if (print_prefix(msg, syslog, NULL) +
1266 text_len + 1 >= size - len)
1267 break;
1268
1269 len += print_prefix(msg, syslog, buf + len);
1270 memcpy(buf + len, text, text_len);
1271 len += text_len;
1272 buf[len++] = '\n';
1273 } else {
1274 /* SYSLOG_ACTION_* buffer size only calculation */
1275 len += print_prefix(msg, syslog, NULL);
1276 len += text_len;
1277 len++;
1278 }
1279
1280 text = next;
1281 } while (text);
1282
1283 return len;
1284 }
1285
1286 static int syslog_print(char __user *buf, int size)
1287 {
1288 char *text;
1289 struct printk_log *msg;
1290 int len = 0;
1291
1292 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1293 if (!text)
1294 return -ENOMEM;
1295
1296 while (size > 0) {
1297 size_t n;
1298 size_t skip;
1299
1300 logbuf_lock_irq();
1301 if (syslog_seq < log_first_seq) {
1302 /* messages are gone, move to first one */
1303 syslog_seq = log_first_seq;
1304 syslog_idx = log_first_idx;
1305 syslog_partial = 0;
1306 }
1307 if (syslog_seq == log_next_seq) {
1308 logbuf_unlock_irq();
1309 break;
1310 }
1311
1312 skip = syslog_partial;
1313 msg = log_from_idx(syslog_idx);
1314 n = msg_print_text(msg, true, text, LOG_LINE_MAX + PREFIX_MAX);
1315 if (n - syslog_partial <= size) {
1316 /* message fits into buffer, move forward */
1317 syslog_idx = log_next(syslog_idx);
1318 syslog_seq++;
1319 n -= syslog_partial;
1320 syslog_partial = 0;
1321 } else if (!len){
1322 /* partial read(), remember position */
1323 n = size;
1324 syslog_partial += n;
1325 } else
1326 n = 0;
1327 logbuf_unlock_irq();
1328
1329 if (!n)
1330 break;
1331
1332 if (copy_to_user(buf, text + skip, n)) {
1333 if (!len)
1334 len = -EFAULT;
1335 break;
1336 }
1337
1338 len += n;
1339 size -= n;
1340 buf += n;
1341 }
1342
1343 kfree(text);
1344 return len;
1345 }
1346
1347 static int syslog_print_all(char __user *buf, int size, bool clear)
1348 {
1349 char *text;
1350 int len = 0;
1351
1352 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1353 if (!text)
1354 return -ENOMEM;
1355
1356 logbuf_lock_irq();
1357 if (buf) {
1358 u64 next_seq;
1359 u64 seq;
1360 u32 idx;
1361
1362 /*
1363 * Find first record that fits, including all following records,
1364 * into the user-provided buffer for this dump.
1365 */
1366 seq = clear_seq;
1367 idx = clear_idx;
1368 while (seq < log_next_seq) {
1369 struct printk_log *msg = log_from_idx(idx);
1370
1371 len += msg_print_text(msg, true, NULL, 0);
1372 idx = log_next(idx);
1373 seq++;
1374 }
1375
1376 /* move first record forward until length fits into the buffer */
1377 seq = clear_seq;
1378 idx = clear_idx;
1379 while (len > size && seq < log_next_seq) {
1380 struct printk_log *msg = log_from_idx(idx);
1381
1382 len -= msg_print_text(msg, true, NULL, 0);
1383 idx = log_next(idx);
1384 seq++;
1385 }
1386
1387 /* last message fitting into this dump */
1388 next_seq = log_next_seq;
1389
1390 len = 0;
1391 while (len >= 0 && seq < next_seq) {
1392 struct printk_log *msg = log_from_idx(idx);
1393 int textlen;
1394
1395 textlen = msg_print_text(msg, true, text,
1396 LOG_LINE_MAX + PREFIX_MAX);
1397 if (textlen < 0) {
1398 len = textlen;
1399 break;
1400 }
1401 idx = log_next(idx);
1402 seq++;
1403
1404 logbuf_unlock_irq();
1405 if (copy_to_user(buf + len, text, textlen))
1406 len = -EFAULT;
1407 else
1408 len += textlen;
1409 logbuf_lock_irq();
1410
1411 if (seq < log_first_seq) {
1412 /* messages are gone, move to next one */
1413 seq = log_first_seq;
1414 idx = log_first_idx;
1415 }
1416 }
1417 }
1418
1419 if (clear) {
1420 clear_seq = log_next_seq;
1421 clear_idx = log_next_idx;
1422 }
1423 logbuf_unlock_irq();
1424
1425 kfree(text);
1426 return len;
1427 }
1428
1429 int do_syslog(int type, char __user *buf, int len, int source)
1430 {
1431 bool clear = false;
1432 static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1433 int error;
1434
1435 error = check_syslog_permissions(type, source);
1436 if (error)
1437 return error;
1438
1439 switch (type) {
1440 case SYSLOG_ACTION_CLOSE: /* Close log */
1441 break;
1442 case SYSLOG_ACTION_OPEN: /* Open log */
1443 break;
1444 case SYSLOG_ACTION_READ: /* Read from log */
1445 if (!buf || len < 0)
1446 return -EINVAL;
1447 if (!len)
1448 return 0;
1449 if (!access_ok(VERIFY_WRITE, buf, len))
1450 return -EFAULT;
1451 error = wait_event_interruptible(log_wait,
1452 syslog_seq != log_next_seq);
1453 if (error)
1454 return error;
1455 error = syslog_print(buf, len);
1456 break;
1457 /* Read/clear last kernel messages */
1458 case SYSLOG_ACTION_READ_CLEAR:
1459 clear = true;
1460 /* FALL THRU */
1461 /* Read last kernel messages */
1462 case SYSLOG_ACTION_READ_ALL:
1463 if (!buf || len < 0)
1464 return -EINVAL;
1465 if (!len)
1466 return 0;
1467 if (!access_ok(VERIFY_WRITE, buf, len))
1468 return -EFAULT;
1469 error = syslog_print_all(buf, len, clear);
1470 break;
1471 /* Clear ring buffer */
1472 case SYSLOG_ACTION_CLEAR:
1473 syslog_print_all(NULL, 0, true);
1474 break;
1475 /* Disable logging to console */
1476 case SYSLOG_ACTION_CONSOLE_OFF:
1477 if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1478 saved_console_loglevel = console_loglevel;
1479 console_loglevel = minimum_console_loglevel;
1480 break;
1481 /* Enable logging to console */
1482 case SYSLOG_ACTION_CONSOLE_ON:
1483 if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1484 console_loglevel = saved_console_loglevel;
1485 saved_console_loglevel = LOGLEVEL_DEFAULT;
1486 }
1487 break;
1488 /* Set level of messages printed to console */
1489 case SYSLOG_ACTION_CONSOLE_LEVEL:
1490 if (len < 1 || len > 8)
1491 return -EINVAL;
1492 if (len < minimum_console_loglevel)
1493 len = minimum_console_loglevel;
1494 console_loglevel = len;
1495 /* Implicitly re-enable logging to console */
1496 saved_console_loglevel = LOGLEVEL_DEFAULT;
1497 break;
1498 /* Number of chars in the log buffer */
1499 case SYSLOG_ACTION_SIZE_UNREAD:
1500 logbuf_lock_irq();
1501 if (syslog_seq < log_first_seq) {
1502 /* messages are gone, move to first one */
1503 syslog_seq = log_first_seq;
1504 syslog_idx = log_first_idx;
1505 syslog_partial = 0;
1506 }
1507 if (source == SYSLOG_FROM_PROC) {
1508 /*
1509 * Short-cut for poll(/"proc/kmsg") which simply checks
1510 * for pending data, not the size; return the count of
1511 * records, not the length.
1512 */
1513 error = log_next_seq - syslog_seq;
1514 } else {
1515 u64 seq = syslog_seq;
1516 u32 idx = syslog_idx;
1517
1518 while (seq < log_next_seq) {
1519 struct printk_log *msg = log_from_idx(idx);
1520
1521 error += msg_print_text(msg, true, NULL, 0);
1522 idx = log_next(idx);
1523 seq++;
1524 }
1525 error -= syslog_partial;
1526 }
1527 logbuf_unlock_irq();
1528 break;
1529 /* Size of the log buffer */
1530 case SYSLOG_ACTION_SIZE_BUFFER:
1531 error = log_buf_len;
1532 break;
1533 default:
1534 error = -EINVAL;
1535 break;
1536 }
1537
1538 return error;
1539 }
1540
1541 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1542 {
1543 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1544 }
1545
1546 /*
1547 * Call the console drivers, asking them to write out
1548 * log_buf[start] to log_buf[end - 1].
1549 * The console_lock must be held.
1550 */
1551 static void call_console_drivers(const char *ext_text, size_t ext_len,
1552 const char *text, size_t len)
1553 {
1554 struct console *con;
1555
1556 trace_console_rcuidle(text, len);
1557
1558 if (!console_drivers)
1559 return;
1560
1561 for_each_console(con) {
1562 if (exclusive_console && con != exclusive_console)
1563 continue;
1564 if (!(con->flags & CON_ENABLED))
1565 continue;
1566 if (!con->write)
1567 continue;
1568 if (!cpu_online(smp_processor_id()) &&
1569 !(con->flags & CON_ANYTIME))
1570 continue;
1571 if (con->flags & CON_EXTENDED)
1572 con->write(con, ext_text, ext_len);
1573 else
1574 con->write(con, text, len);
1575 }
1576 }
1577
1578 int printk_delay_msec __read_mostly;
1579
1580 static inline void printk_delay(void)
1581 {
1582 if (unlikely(printk_delay_msec)) {
1583 int m = printk_delay_msec;
1584
1585 while (m--) {
1586 mdelay(1);
1587 touch_nmi_watchdog();
1588 }
1589 }
1590 }
1591
1592 /*
1593 * Continuation lines are buffered, and not committed to the record buffer
1594 * until the line is complete, or a race forces it. The line fragments
1595 * though, are printed immediately to the consoles to ensure everything has
1596 * reached the console in case of a kernel crash.
1597 */
1598 static struct cont {
1599 char buf[LOG_LINE_MAX];
1600 size_t len; /* length == 0 means unused buffer */
1601 struct task_struct *owner; /* task of first print*/
1602 u64 ts_nsec; /* time of first print */
1603 u8 level; /* log level of first message */
1604 u8 facility; /* log facility of first message */
1605 enum log_flags flags; /* prefix, newline flags */
1606 } cont;
1607
1608 static void cont_flush(void)
1609 {
1610 if (cont.len == 0)
1611 return;
1612
1613 log_store(cont.facility, cont.level, cont.flags, cont.ts_nsec,
1614 NULL, 0, cont.buf, cont.len);
1615 cont.len = 0;
1616 }
1617
1618 static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len)
1619 {
1620 /*
1621 * If ext consoles are present, flush and skip in-kernel
1622 * continuation. See nr_ext_console_drivers definition. Also, if
1623 * the line gets too long, split it up in separate records.
1624 */
1625 if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1626 cont_flush();
1627 return false;
1628 }
1629
1630 if (!cont.len) {
1631 cont.facility = facility;
1632 cont.level = level;
1633 cont.owner = current;
1634 cont.ts_nsec = local_clock();
1635 cont.flags = flags;
1636 }
1637
1638 memcpy(cont.buf + cont.len, text, len);
1639 cont.len += len;
1640
1641 // The original flags come from the first line,
1642 // but later continuations can add a newline.
1643 if (flags & LOG_NEWLINE) {
1644 cont.flags |= LOG_NEWLINE;
1645 cont_flush();
1646 }
1647
1648 if (cont.len > (sizeof(cont.buf) * 80) / 100)
1649 cont_flush();
1650
1651 return true;
1652 }
1653
1654 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1655 {
1656 /*
1657 * If an earlier line was buffered, and we're a continuation
1658 * write from the same process, try to add it to the buffer.
1659 */
1660 if (cont.len) {
1661 if (cont.owner == current && (lflags & LOG_CONT)) {
1662 if (cont_add(facility, level, lflags, text, text_len))
1663 return text_len;
1664 }
1665 /* Otherwise, make sure it's flushed */
1666 cont_flush();
1667 }
1668
1669 /* Skip empty continuation lines that couldn't be added - they just flush */
1670 if (!text_len && (lflags & LOG_CONT))
1671 return 0;
1672
1673 /* If it doesn't end in a newline, try to buffer the current line */
1674 if (!(lflags & LOG_NEWLINE)) {
1675 if (cont_add(facility, level, lflags, text, text_len))
1676 return text_len;
1677 }
1678
1679 /* Store it in the record log */
1680 return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len);
1681 }
1682
1683 asmlinkage int vprintk_emit(int facility, int level,
1684 const char *dict, size_t dictlen,
1685 const char *fmt, va_list args)
1686 {
1687 static char textbuf[LOG_LINE_MAX];
1688 char *text = textbuf;
1689 size_t text_len;
1690 enum log_flags lflags = 0;
1691 unsigned long flags;
1692 int printed_len;
1693 bool in_sched = false;
1694
1695 if (level == LOGLEVEL_SCHED) {
1696 level = LOGLEVEL_DEFAULT;
1697 in_sched = true;
1698 }
1699
1700 boot_delay_msec(level);
1701 printk_delay();
1702
1703 /* This stops the holder of console_sem just where we want him */
1704 logbuf_lock_irqsave(flags);
1705 /*
1706 * The printf needs to come first; we need the syslog
1707 * prefix which might be passed-in as a parameter.
1708 */
1709 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1710
1711 /* mark and strip a trailing newline */
1712 if (text_len && text[text_len-1] == '\n') {
1713 text_len--;
1714 lflags |= LOG_NEWLINE;
1715 }
1716
1717 /* strip kernel syslog prefix and extract log level or control flags */
1718 if (facility == 0) {
1719 int kern_level;
1720
1721 while ((kern_level = printk_get_level(text)) != 0) {
1722 switch (kern_level) {
1723 case '0' ... '7':
1724 if (level == LOGLEVEL_DEFAULT)
1725 level = kern_level - '0';
1726 /* fallthrough */
1727 case 'd': /* KERN_DEFAULT */
1728 lflags |= LOG_PREFIX;
1729 break;
1730 case 'c': /* KERN_CONT */
1731 lflags |= LOG_CONT;
1732 }
1733
1734 text_len -= 2;
1735 text += 2;
1736 }
1737 }
1738
1739 if (level == LOGLEVEL_DEFAULT)
1740 level = default_message_loglevel;
1741
1742 if (dict)
1743 lflags |= LOG_PREFIX|LOG_NEWLINE;
1744
1745 printed_len = log_output(facility, level, lflags, dict, dictlen, text, text_len);
1746
1747 logbuf_unlock_irqrestore(flags);
1748
1749 /* If called from the scheduler, we can not call up(). */
1750 if (!in_sched) {
1751 /*
1752 * Try to acquire and then immediately release the console
1753 * semaphore. The release will print out buffers and wake up
1754 * /dev/kmsg and syslog() users.
1755 */
1756 if (console_trylock())
1757 console_unlock();
1758 }
1759
1760 return printed_len;
1761 }
1762 EXPORT_SYMBOL(vprintk_emit);
1763
1764 asmlinkage int vprintk(const char *fmt, va_list args)
1765 {
1766 return vprintk_func(fmt, args);
1767 }
1768 EXPORT_SYMBOL(vprintk);
1769
1770 asmlinkage int printk_emit(int facility, int level,
1771 const char *dict, size_t dictlen,
1772 const char *fmt, ...)
1773 {
1774 va_list args;
1775 int r;
1776
1777 va_start(args, fmt);
1778 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1779 va_end(args);
1780
1781 return r;
1782 }
1783 EXPORT_SYMBOL(printk_emit);
1784
1785 int vprintk_default(const char *fmt, va_list args)
1786 {
1787 int r;
1788
1789 #ifdef CONFIG_KGDB_KDB
1790 /* Allow to pass printk() to kdb but avoid a recursion. */
1791 if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) {
1792 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1793 return r;
1794 }
1795 #endif
1796 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1797
1798 return r;
1799 }
1800 EXPORT_SYMBOL_GPL(vprintk_default);
1801
1802 /**
1803 * printk - print a kernel message
1804 * @fmt: format string
1805 *
1806 * This is printk(). It can be called from any context. We want it to work.
1807 *
1808 * We try to grab the console_lock. If we succeed, it's easy - we log the
1809 * output and call the console drivers. If we fail to get the semaphore, we
1810 * place the output into the log buffer and return. The current holder of
1811 * the console_sem will notice the new output in console_unlock(); and will
1812 * send it to the consoles before releasing the lock.
1813 *
1814 * One effect of this deferred printing is that code which calls printk() and
1815 * then changes console_loglevel may break. This is because console_loglevel
1816 * is inspected when the actual printing occurs.
1817 *
1818 * See also:
1819 * printf(3)
1820 *
1821 * See the vsnprintf() documentation for format string extensions over C99.
1822 */
1823 asmlinkage __visible int printk(const char *fmt, ...)
1824 {
1825 va_list args;
1826 int r;
1827
1828 va_start(args, fmt);
1829 r = vprintk_func(fmt, args);
1830 va_end(args);
1831
1832 return r;
1833 }
1834 EXPORT_SYMBOL(printk);
1835
1836 #else /* CONFIG_PRINTK */
1837
1838 #define LOG_LINE_MAX 0
1839 #define PREFIX_MAX 0
1840
1841 static u64 syslog_seq;
1842 static u32 syslog_idx;
1843 static u64 console_seq;
1844 static u32 console_idx;
1845 static u64 log_first_seq;
1846 static u32 log_first_idx;
1847 static u64 log_next_seq;
1848 static char *log_text(const struct printk_log *msg) { return NULL; }
1849 static char *log_dict(const struct printk_log *msg) { return NULL; }
1850 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1851 static u32 log_next(u32 idx) { return 0; }
1852 static ssize_t msg_print_ext_header(char *buf, size_t size,
1853 struct printk_log *msg,
1854 u64 seq) { return 0; }
1855 static ssize_t msg_print_ext_body(char *buf, size_t size,
1856 char *dict, size_t dict_len,
1857 char *text, size_t text_len) { return 0; }
1858 static void call_console_drivers(const char *ext_text, size_t ext_len,
1859 const char *text, size_t len) {}
1860 static size_t msg_print_text(const struct printk_log *msg,
1861 bool syslog, char *buf, size_t size) { return 0; }
1862 static bool suppress_message_printing(int level) { return false; }
1863
1864 #endif /* CONFIG_PRINTK */
1865
1866 #ifdef CONFIG_EARLY_PRINTK
1867 struct console *early_console;
1868
1869 asmlinkage __visible void early_printk(const char *fmt, ...)
1870 {
1871 va_list ap;
1872 char buf[512];
1873 int n;
1874
1875 if (!early_console)
1876 return;
1877
1878 va_start(ap, fmt);
1879 n = vscnprintf(buf, sizeof(buf), fmt, ap);
1880 va_end(ap);
1881
1882 early_console->write(early_console, buf, n);
1883 }
1884 #endif
1885
1886 static int __add_preferred_console(char *name, int idx, char *options,
1887 char *brl_options)
1888 {
1889 struct console_cmdline *c;
1890 int i;
1891
1892 /*
1893 * See if this tty is not yet registered, and
1894 * if we have a slot free.
1895 */
1896 for (i = 0, c = console_cmdline;
1897 i < MAX_CMDLINECONSOLES && c->name[0];
1898 i++, c++) {
1899 if (strcmp(c->name, name) == 0 && c->index == idx) {
1900 if (!brl_options)
1901 preferred_console = i;
1902 return 0;
1903 }
1904 }
1905 if (i == MAX_CMDLINECONSOLES)
1906 return -E2BIG;
1907 if (!brl_options)
1908 preferred_console = i;
1909 strlcpy(c->name, name, sizeof(c->name));
1910 c->options = options;
1911 braille_set_options(c, brl_options);
1912
1913 c->index = idx;
1914 return 0;
1915 }
1916 /*
1917 * Set up a console. Called via do_early_param() in init/main.c
1918 * for each "console=" parameter in the boot command line.
1919 */
1920 static int __init console_setup(char *str)
1921 {
1922 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
1923 char *s, *options, *brl_options = NULL;
1924 int idx;
1925
1926 if (_braille_console_setup(&str, &brl_options))
1927 return 1;
1928
1929 /*
1930 * Decode str into name, index, options.
1931 */
1932 if (str[0] >= '0' && str[0] <= '9') {
1933 strcpy(buf, "ttyS");
1934 strncpy(buf + 4, str, sizeof(buf) - 5);
1935 } else {
1936 strncpy(buf, str, sizeof(buf) - 1);
1937 }
1938 buf[sizeof(buf) - 1] = 0;
1939 options = strchr(str, ',');
1940 if (options)
1941 *(options++) = 0;
1942 #ifdef __sparc__
1943 if (!strcmp(str, "ttya"))
1944 strcpy(buf, "ttyS0");
1945 if (!strcmp(str, "ttyb"))
1946 strcpy(buf, "ttyS1");
1947 #endif
1948 for (s = buf; *s; s++)
1949 if (isdigit(*s) || *s == ',')
1950 break;
1951 idx = simple_strtoul(s, NULL, 10);
1952 *s = 0;
1953
1954 __add_preferred_console(buf, idx, options, brl_options);
1955 console_set_on_cmdline = 1;
1956 return 1;
1957 }
1958 __setup("console=", console_setup);
1959
1960 /**
1961 * add_preferred_console - add a device to the list of preferred consoles.
1962 * @name: device name
1963 * @idx: device index
1964 * @options: options for this console
1965 *
1966 * The last preferred console added will be used for kernel messages
1967 * and stdin/out/err for init. Normally this is used by console_setup
1968 * above to handle user-supplied console arguments; however it can also
1969 * be used by arch-specific code either to override the user or more
1970 * commonly to provide a default console (ie from PROM variables) when
1971 * the user has not supplied one.
1972 */
1973 int add_preferred_console(char *name, int idx, char *options)
1974 {
1975 return __add_preferred_console(name, idx, options, NULL);
1976 }
1977
1978 bool console_suspend_enabled = true;
1979 EXPORT_SYMBOL(console_suspend_enabled);
1980
1981 static int __init console_suspend_disable(char *str)
1982 {
1983 console_suspend_enabled = false;
1984 return 1;
1985 }
1986 __setup("no_console_suspend", console_suspend_disable);
1987 module_param_named(console_suspend, console_suspend_enabled,
1988 bool, S_IRUGO | S_IWUSR);
1989 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
1990 " and hibernate operations");
1991
1992 /**
1993 * suspend_console - suspend the console subsystem
1994 *
1995 * This disables printk() while we go into suspend states
1996 */
1997 void suspend_console(void)
1998 {
1999 if (!console_suspend_enabled)
2000 return;
2001 printk("Suspending console(s) (use no_console_suspend to debug)\n");
2002 console_lock();
2003 console_suspended = 1;
2004 up_console_sem();
2005 }
2006
2007 void resume_console(void)
2008 {
2009 if (!console_suspend_enabled)
2010 return;
2011 down_console_sem();
2012 console_suspended = 0;
2013 console_unlock();
2014 }
2015
2016 /**
2017 * console_cpu_notify - print deferred console messages after CPU hotplug
2018 * @cpu: unused
2019 *
2020 * If printk() is called from a CPU that is not online yet, the messages
2021 * will be printed on the console only if there are CON_ANYTIME consoles.
2022 * This function is called when a new CPU comes online (or fails to come
2023 * up) or goes offline.
2024 */
2025 static int console_cpu_notify(unsigned int cpu)
2026 {
2027 if (!cpuhp_tasks_frozen) {
2028 /* If trylock fails, someone else is doing the printing */
2029 if (console_trylock())
2030 console_unlock();
2031 }
2032 return 0;
2033 }
2034
2035 /**
2036 * console_lock - lock the console system for exclusive use.
2037 *
2038 * Acquires a lock which guarantees that the caller has
2039 * exclusive access to the console system and the console_drivers list.
2040 *
2041 * Can sleep, returns nothing.
2042 */
2043 void console_lock(void)
2044 {
2045 might_sleep();
2046
2047 down_console_sem();
2048 if (console_suspended)
2049 return;
2050 console_locked = 1;
2051 console_may_schedule = 1;
2052 }
2053 EXPORT_SYMBOL(console_lock);
2054
2055 /**
2056 * console_trylock - try to lock the console system for exclusive use.
2057 *
2058 * Try to acquire a lock which guarantees that the caller has exclusive
2059 * access to the console system and the console_drivers list.
2060 *
2061 * returns 1 on success, and 0 on failure to acquire the lock.
2062 */
2063 int console_trylock(void)
2064 {
2065 if (down_trylock_console_sem())
2066 return 0;
2067 if (console_suspended) {
2068 up_console_sem();
2069 return 0;
2070 }
2071 console_locked = 1;
2072 /*
2073 * When PREEMPT_COUNT disabled we can't reliably detect if it's
2074 * safe to schedule (e.g. calling printk while holding a spin_lock),
2075 * because preempt_disable()/preempt_enable() are just barriers there
2076 * and preempt_count() is always 0.
2077 *
2078 * RCU read sections have a separate preemption counter when
2079 * PREEMPT_RCU enabled thus we must take extra care and check
2080 * rcu_preempt_depth(), otherwise RCU read sections modify
2081 * preempt_count().
2082 */
2083 console_may_schedule = !oops_in_progress &&
2084 preemptible() &&
2085 !rcu_preempt_depth();
2086 return 1;
2087 }
2088 EXPORT_SYMBOL(console_trylock);
2089
2090 int is_console_locked(void)
2091 {
2092 return console_locked;
2093 }
2094
2095 /*
2096 * Check if we have any console that is capable of printing while cpu is
2097 * booting or shutting down. Requires console_sem.
2098 */
2099 static int have_callable_console(void)
2100 {
2101 struct console *con;
2102
2103 for_each_console(con)
2104 if ((con->flags & CON_ENABLED) &&
2105 (con->flags & CON_ANYTIME))
2106 return 1;
2107
2108 return 0;
2109 }
2110
2111 /*
2112 * Can we actually use the console at this time on this cpu?
2113 *
2114 * Console drivers may assume that per-cpu resources have been allocated. So
2115 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2116 * call them until this CPU is officially up.
2117 */
2118 static inline int can_use_console(void)
2119 {
2120 return cpu_online(raw_smp_processor_id()) || have_callable_console();
2121 }
2122
2123 /**
2124 * console_unlock - unlock the console system
2125 *
2126 * Releases the console_lock which the caller holds on the console system
2127 * and the console driver list.
2128 *
2129 * While the console_lock was held, console output may have been buffered
2130 * by printk(). If this is the case, console_unlock(); emits
2131 * the output prior to releasing the lock.
2132 *
2133 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2134 *
2135 * console_unlock(); may be called from any context.
2136 */
2137 void console_unlock(void)
2138 {
2139 static char ext_text[CONSOLE_EXT_LOG_MAX];
2140 static char text[LOG_LINE_MAX + PREFIX_MAX];
2141 static u64 seen_seq;
2142 unsigned long flags;
2143 bool wake_klogd = false;
2144 bool do_cond_resched, retry;
2145
2146 if (console_suspended) {
2147 up_console_sem();
2148 return;
2149 }
2150
2151 /*
2152 * Console drivers are called with interrupts disabled, so
2153 * @console_may_schedule should be cleared before; however, we may
2154 * end up dumping a lot of lines, for example, if called from
2155 * console registration path, and should invoke cond_resched()
2156 * between lines if allowable. Not doing so can cause a very long
2157 * scheduling stall on a slow console leading to RCU stall and
2158 * softlockup warnings which exacerbate the issue with more
2159 * messages practically incapacitating the system.
2160 *
2161 * console_trylock() is not able to detect the preemptive
2162 * context reliably. Therefore the value must be stored before
2163 * and cleared after the the "again" goto label.
2164 */
2165 do_cond_resched = console_may_schedule;
2166 again:
2167 console_may_schedule = 0;
2168
2169 /*
2170 * We released the console_sem lock, so we need to recheck if
2171 * cpu is online and (if not) is there at least one CON_ANYTIME
2172 * console.
2173 */
2174 if (!can_use_console()) {
2175 console_locked = 0;
2176 up_console_sem();
2177 return;
2178 }
2179
2180 for (;;) {
2181 struct printk_log *msg;
2182 size_t ext_len = 0;
2183 size_t len;
2184
2185 printk_safe_enter_irqsave(flags);
2186 raw_spin_lock(&logbuf_lock);
2187 if (seen_seq != log_next_seq) {
2188 wake_klogd = true;
2189 seen_seq = log_next_seq;
2190 }
2191
2192 if (console_seq < log_first_seq) {
2193 len = sprintf(text, "** %u printk messages dropped **\n",
2194 (unsigned)(log_first_seq - console_seq));
2195
2196 /* messages are gone, move to first one */
2197 console_seq = log_first_seq;
2198 console_idx = log_first_idx;
2199 } else {
2200 len = 0;
2201 }
2202 skip:
2203 if (console_seq == log_next_seq)
2204 break;
2205
2206 msg = log_from_idx(console_idx);
2207 if (suppress_message_printing(msg->level)) {
2208 /*
2209 * Skip record we have buffered and already printed
2210 * directly to the console when we received it, and
2211 * record that has level above the console loglevel.
2212 */
2213 console_idx = log_next(console_idx);
2214 console_seq++;
2215 goto skip;
2216 }
2217
2218 len += msg_print_text(msg, false, text + len, sizeof(text) - len);
2219 if (nr_ext_console_drivers) {
2220 ext_len = msg_print_ext_header(ext_text,
2221 sizeof(ext_text),
2222 msg, console_seq);
2223 ext_len += msg_print_ext_body(ext_text + ext_len,
2224 sizeof(ext_text) - ext_len,
2225 log_dict(msg), msg->dict_len,
2226 log_text(msg), msg->text_len);
2227 }
2228 console_idx = log_next(console_idx);
2229 console_seq++;
2230 raw_spin_unlock(&logbuf_lock);
2231
2232 stop_critical_timings(); /* don't trace print latency */
2233 call_console_drivers(ext_text, ext_len, text, len);
2234 start_critical_timings();
2235 printk_safe_exit_irqrestore(flags);
2236
2237 if (do_cond_resched)
2238 cond_resched();
2239 }
2240 console_locked = 0;
2241
2242 /* Release the exclusive_console once it is used */
2243 if (unlikely(exclusive_console))
2244 exclusive_console = NULL;
2245
2246 raw_spin_unlock(&logbuf_lock);
2247
2248 up_console_sem();
2249
2250 /*
2251 * Someone could have filled up the buffer again, so re-check if there's
2252 * something to flush. In case we cannot trylock the console_sem again,
2253 * there's a new owner and the console_unlock() from them will do the
2254 * flush, no worries.
2255 */
2256 raw_spin_lock(&logbuf_lock);
2257 retry = console_seq != log_next_seq;
2258 raw_spin_unlock(&logbuf_lock);
2259 printk_safe_exit_irqrestore(flags);
2260
2261 if (retry && console_trylock())
2262 goto again;
2263
2264 if (wake_klogd)
2265 wake_up_klogd();
2266 }
2267 EXPORT_SYMBOL(console_unlock);
2268
2269 /**
2270 * console_conditional_schedule - yield the CPU if required
2271 *
2272 * If the console code is currently allowed to sleep, and
2273 * if this CPU should yield the CPU to another task, do
2274 * so here.
2275 *
2276 * Must be called within console_lock();.
2277 */
2278 void __sched console_conditional_schedule(void)
2279 {
2280 if (console_may_schedule)
2281 cond_resched();
2282 }
2283 EXPORT_SYMBOL(console_conditional_schedule);
2284
2285 void console_unblank(void)
2286 {
2287 struct console *c;
2288
2289 /*
2290 * console_unblank can no longer be called in interrupt context unless
2291 * oops_in_progress is set to 1..
2292 */
2293 if (oops_in_progress) {
2294 if (down_trylock_console_sem() != 0)
2295 return;
2296 } else
2297 console_lock();
2298
2299 console_locked = 1;
2300 console_may_schedule = 0;
2301 for_each_console(c)
2302 if ((c->flags & CON_ENABLED) && c->unblank)
2303 c->unblank();
2304 console_unlock();
2305 }
2306
2307 /**
2308 * console_flush_on_panic - flush console content on panic
2309 *
2310 * Immediately output all pending messages no matter what.
2311 */
2312 void console_flush_on_panic(void)
2313 {
2314 /*
2315 * If someone else is holding the console lock, trylock will fail
2316 * and may_schedule may be set. Ignore and proceed to unlock so
2317 * that messages are flushed out. As this can be called from any
2318 * context and we don't want to get preempted while flushing,
2319 * ensure may_schedule is cleared.
2320 */
2321 console_trylock();
2322 console_may_schedule = 0;
2323 console_unlock();
2324 }
2325
2326 /*
2327 * Return the console tty driver structure and its associated index
2328 */
2329 struct tty_driver *console_device(int *index)
2330 {
2331 struct console *c;
2332 struct tty_driver *driver = NULL;
2333
2334 console_lock();
2335 for_each_console(c) {
2336 if (!c->device)
2337 continue;
2338 driver = c->device(c, index);
2339 if (driver)
2340 break;
2341 }
2342 console_unlock();
2343 return driver;
2344 }
2345
2346 /*
2347 * Prevent further output on the passed console device so that (for example)
2348 * serial drivers can disable console output before suspending a port, and can
2349 * re-enable output afterwards.
2350 */
2351 void console_stop(struct console *console)
2352 {
2353 console_lock();
2354 console->flags &= ~CON_ENABLED;
2355 console_unlock();
2356 }
2357 EXPORT_SYMBOL(console_stop);
2358
2359 void console_start(struct console *console)
2360 {
2361 console_lock();
2362 console->flags |= CON_ENABLED;
2363 console_unlock();
2364 }
2365 EXPORT_SYMBOL(console_start);
2366
2367 static int __read_mostly keep_bootcon;
2368
2369 static int __init keep_bootcon_setup(char *str)
2370 {
2371 keep_bootcon = 1;
2372 pr_info("debug: skip boot console de-registration.\n");
2373
2374 return 0;
2375 }
2376
2377 early_param("keep_bootcon", keep_bootcon_setup);
2378
2379 /*
2380 * The console driver calls this routine during kernel initialization
2381 * to register the console printing procedure with printk() and to
2382 * print any messages that were printed by the kernel before the
2383 * console driver was initialized.
2384 *
2385 * This can happen pretty early during the boot process (because of
2386 * early_printk) - sometimes before setup_arch() completes - be careful
2387 * of what kernel features are used - they may not be initialised yet.
2388 *
2389 * There are two types of consoles - bootconsoles (early_printk) and
2390 * "real" consoles (everything which is not a bootconsole) which are
2391 * handled differently.
2392 * - Any number of bootconsoles can be registered at any time.
2393 * - As soon as a "real" console is registered, all bootconsoles
2394 * will be unregistered automatically.
2395 * - Once a "real" console is registered, any attempt to register a
2396 * bootconsoles will be rejected
2397 */
2398 void register_console(struct console *newcon)
2399 {
2400 int i;
2401 unsigned long flags;
2402 struct console *bcon = NULL;
2403 struct console_cmdline *c;
2404 static bool has_preferred;
2405
2406 if (console_drivers)
2407 for_each_console(bcon)
2408 if (WARN(bcon == newcon,
2409 "console '%s%d' already registered\n",
2410 bcon->name, bcon->index))
2411 return;
2412
2413 /*
2414 * before we register a new CON_BOOT console, make sure we don't
2415 * already have a valid console
2416 */
2417 if (console_drivers && newcon->flags & CON_BOOT) {
2418 /* find the last or real console */
2419 for_each_console(bcon) {
2420 if (!(bcon->flags & CON_BOOT)) {
2421 pr_info("Too late to register bootconsole %s%d\n",
2422 newcon->name, newcon->index);
2423 return;
2424 }
2425 }
2426 }
2427
2428 if (console_drivers && console_drivers->flags & CON_BOOT)
2429 bcon = console_drivers;
2430
2431 if (!has_preferred || bcon || !console_drivers)
2432 has_preferred = preferred_console >= 0;
2433
2434 /*
2435 * See if we want to use this console driver. If we
2436 * didn't select a console we take the first one
2437 * that registers here.
2438 */
2439 if (!has_preferred) {
2440 if (newcon->index < 0)
2441 newcon->index = 0;
2442 if (newcon->setup == NULL ||
2443 newcon->setup(newcon, NULL) == 0) {
2444 newcon->flags |= CON_ENABLED;
2445 if (newcon->device) {
2446 newcon->flags |= CON_CONSDEV;
2447 has_preferred = true;
2448 }
2449 }
2450 }
2451
2452 /*
2453 * See if this console matches one we selected on
2454 * the command line.
2455 */
2456 for (i = 0, c = console_cmdline;
2457 i < MAX_CMDLINECONSOLES && c->name[0];
2458 i++, c++) {
2459 if (!newcon->match ||
2460 newcon->match(newcon, c->name, c->index, c->options) != 0) {
2461 /* default matching */
2462 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2463 if (strcmp(c->name, newcon->name) != 0)
2464 continue;
2465 if (newcon->index >= 0 &&
2466 newcon->index != c->index)
2467 continue;
2468 if (newcon->index < 0)
2469 newcon->index = c->index;
2470
2471 if (_braille_register_console(newcon, c))
2472 return;
2473
2474 if (newcon->setup &&
2475 newcon->setup(newcon, c->options) != 0)
2476 break;
2477 }
2478
2479 newcon->flags |= CON_ENABLED;
2480 if (i == preferred_console) {
2481 newcon->flags |= CON_CONSDEV;
2482 has_preferred = true;
2483 }
2484 break;
2485 }
2486
2487 if (!(newcon->flags & CON_ENABLED))
2488 return;
2489
2490 /*
2491 * If we have a bootconsole, and are switching to a real console,
2492 * don't print everything out again, since when the boot console, and
2493 * the real console are the same physical device, it's annoying to
2494 * see the beginning boot messages twice
2495 */
2496 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2497 newcon->flags &= ~CON_PRINTBUFFER;
2498
2499 /*
2500 * Put this console in the list - keep the
2501 * preferred driver at the head of the list.
2502 */
2503 console_lock();
2504 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2505 newcon->next = console_drivers;
2506 console_drivers = newcon;
2507 if (newcon->next)
2508 newcon->next->flags &= ~CON_CONSDEV;
2509 } else {
2510 newcon->next = console_drivers->next;
2511 console_drivers->next = newcon;
2512 }
2513
2514 if (newcon->flags & CON_EXTENDED)
2515 if (!nr_ext_console_drivers++)
2516 pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2517
2518 if (newcon->flags & CON_PRINTBUFFER) {
2519 /*
2520 * console_unlock(); will print out the buffered messages
2521 * for us.
2522 */
2523 logbuf_lock_irqsave(flags);
2524 console_seq = syslog_seq;
2525 console_idx = syslog_idx;
2526 logbuf_unlock_irqrestore(flags);
2527 /*
2528 * We're about to replay the log buffer. Only do this to the
2529 * just-registered console to avoid excessive message spam to
2530 * the already-registered consoles.
2531 */
2532 exclusive_console = newcon;
2533 }
2534 console_unlock();
2535 console_sysfs_notify();
2536
2537 /*
2538 * By unregistering the bootconsoles after we enable the real console
2539 * we get the "console xxx enabled" message on all the consoles -
2540 * boot consoles, real consoles, etc - this is to ensure that end
2541 * users know there might be something in the kernel's log buffer that
2542 * went to the bootconsole (that they do not see on the real console)
2543 */
2544 pr_info("%sconsole [%s%d] enabled\n",
2545 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2546 newcon->name, newcon->index);
2547 if (bcon &&
2548 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2549 !keep_bootcon) {
2550 /* We need to iterate through all boot consoles, to make
2551 * sure we print everything out, before we unregister them.
2552 */
2553 for_each_console(bcon)
2554 if (bcon->flags & CON_BOOT)
2555 unregister_console(bcon);
2556 }
2557 }
2558 EXPORT_SYMBOL(register_console);
2559
2560 int unregister_console(struct console *console)
2561 {
2562 struct console *a, *b;
2563 int res;
2564
2565 pr_info("%sconsole [%s%d] disabled\n",
2566 (console->flags & CON_BOOT) ? "boot" : "" ,
2567 console->name, console->index);
2568
2569 res = _braille_unregister_console(console);
2570 if (res)
2571 return res;
2572
2573 res = 1;
2574 console_lock();
2575 if (console_drivers == console) {
2576 console_drivers=console->next;
2577 res = 0;
2578 } else if (console_drivers) {
2579 for (a=console_drivers->next, b=console_drivers ;
2580 a; b=a, a=b->next) {
2581 if (a == console) {
2582 b->next = a->next;
2583 res = 0;
2584 break;
2585 }
2586 }
2587 }
2588
2589 if (!res && (console->flags & CON_EXTENDED))
2590 nr_ext_console_drivers--;
2591
2592 /*
2593 * If this isn't the last console and it has CON_CONSDEV set, we
2594 * need to set it on the next preferred console.
2595 */
2596 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2597 console_drivers->flags |= CON_CONSDEV;
2598
2599 console->flags &= ~CON_ENABLED;
2600 console_unlock();
2601 console_sysfs_notify();
2602 return res;
2603 }
2604 EXPORT_SYMBOL(unregister_console);
2605
2606 /*
2607 * Initialize the console device. This is called *early*, so
2608 * we can't necessarily depend on lots of kernel help here.
2609 * Just do some early initializations, and do the complex setup
2610 * later.
2611 */
2612 void __init console_init(void)
2613 {
2614 initcall_t *call;
2615
2616 /* Setup the default TTY line discipline. */
2617 n_tty_init();
2618
2619 /*
2620 * set up the console device so that later boot sequences can
2621 * inform about problems etc..
2622 */
2623 call = __con_initcall_start;
2624 while (call < __con_initcall_end) {
2625 (*call)();
2626 call++;
2627 }
2628 }
2629
2630 /*
2631 * Some boot consoles access data that is in the init section and which will
2632 * be discarded after the initcalls have been run. To make sure that no code
2633 * will access this data, unregister the boot consoles in a late initcall.
2634 *
2635 * If for some reason, such as deferred probe or the driver being a loadable
2636 * module, the real console hasn't registered yet at this point, there will
2637 * be a brief interval in which no messages are logged to the console, which
2638 * makes it difficult to diagnose problems that occur during this time.
2639 *
2640 * To mitigate this problem somewhat, only unregister consoles whose memory
2641 * intersects with the init section. Note that all other boot consoles will
2642 * get unregistred when the real preferred console is registered.
2643 */
2644 static int __init printk_late_init(void)
2645 {
2646 struct console *con;
2647 int ret;
2648
2649 for_each_console(con) {
2650 if (!(con->flags & CON_BOOT))
2651 continue;
2652
2653 /* Check addresses that might be used for enabled consoles. */
2654 if (init_section_intersects(con, sizeof(*con)) ||
2655 init_section_contains(con->write, 0) ||
2656 init_section_contains(con->read, 0) ||
2657 init_section_contains(con->device, 0) ||
2658 init_section_contains(con->unblank, 0) ||
2659 init_section_contains(con->data, 0)) {
2660 /*
2661 * Please, consider moving the reported consoles out
2662 * of the init section.
2663 */
2664 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
2665 con->name, con->index);
2666 unregister_console(con);
2667 }
2668 }
2669 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
2670 console_cpu_notify);
2671 WARN_ON(ret < 0);
2672 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
2673 console_cpu_notify, NULL);
2674 WARN_ON(ret < 0);
2675 return 0;
2676 }
2677 late_initcall(printk_late_init);
2678
2679 #if defined CONFIG_PRINTK
2680 /*
2681 * Delayed printk version, for scheduler-internal messages:
2682 */
2683 #define PRINTK_PENDING_WAKEUP 0x01
2684 #define PRINTK_PENDING_OUTPUT 0x02
2685
2686 static DEFINE_PER_CPU(int, printk_pending);
2687
2688 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2689 {
2690 int pending = __this_cpu_xchg(printk_pending, 0);
2691
2692 if (pending & PRINTK_PENDING_OUTPUT) {
2693 /* If trylock fails, someone else is doing the printing */
2694 if (console_trylock())
2695 console_unlock();
2696 }
2697
2698 if (pending & PRINTK_PENDING_WAKEUP)
2699 wake_up_interruptible(&log_wait);
2700 }
2701
2702 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2703 .func = wake_up_klogd_work_func,
2704 .flags = IRQ_WORK_LAZY,
2705 };
2706
2707 void wake_up_klogd(void)
2708 {
2709 preempt_disable();
2710 if (waitqueue_active(&log_wait)) {
2711 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2712 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2713 }
2714 preempt_enable();
2715 }
2716
2717 int vprintk_deferred(const char *fmt, va_list args)
2718 {
2719 int r;
2720
2721 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2722
2723 preempt_disable();
2724 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2725 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2726 preempt_enable();
2727
2728 return r;
2729 }
2730
2731 int printk_deferred(const char *fmt, ...)
2732 {
2733 va_list args;
2734 int r;
2735
2736 va_start(args, fmt);
2737 r = vprintk_deferred(fmt, args);
2738 va_end(args);
2739
2740 return r;
2741 }
2742
2743 /*
2744 * printk rate limiting, lifted from the networking subsystem.
2745 *
2746 * This enforces a rate limit: not more than 10 kernel messages
2747 * every 5s to make a denial-of-service attack impossible.
2748 */
2749 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2750
2751 int __printk_ratelimit(const char *func)
2752 {
2753 return ___ratelimit(&printk_ratelimit_state, func);
2754 }
2755 EXPORT_SYMBOL(__printk_ratelimit);
2756
2757 /**
2758 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2759 * @caller_jiffies: pointer to caller's state
2760 * @interval_msecs: minimum interval between prints
2761 *
2762 * printk_timed_ratelimit() returns true if more than @interval_msecs
2763 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2764 * returned true.
2765 */
2766 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2767 unsigned int interval_msecs)
2768 {
2769 unsigned long elapsed = jiffies - *caller_jiffies;
2770
2771 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2772 return false;
2773
2774 *caller_jiffies = jiffies;
2775 return true;
2776 }
2777 EXPORT_SYMBOL(printk_timed_ratelimit);
2778
2779 static DEFINE_SPINLOCK(dump_list_lock);
2780 static LIST_HEAD(dump_list);
2781
2782 /**
2783 * kmsg_dump_register - register a kernel log dumper.
2784 * @dumper: pointer to the kmsg_dumper structure
2785 *
2786 * Adds a kernel log dumper to the system. The dump callback in the
2787 * structure will be called when the kernel oopses or panics and must be
2788 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2789 */
2790 int kmsg_dump_register(struct kmsg_dumper *dumper)
2791 {
2792 unsigned long flags;
2793 int err = -EBUSY;
2794
2795 /* The dump callback needs to be set */
2796 if (!dumper->dump)
2797 return -EINVAL;
2798
2799 spin_lock_irqsave(&dump_list_lock, flags);
2800 /* Don't allow registering multiple times */
2801 if (!dumper->registered) {
2802 dumper->registered = 1;
2803 list_add_tail_rcu(&dumper->list, &dump_list);
2804 err = 0;
2805 }
2806 spin_unlock_irqrestore(&dump_list_lock, flags);
2807
2808 return err;
2809 }
2810 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2811
2812 /**
2813 * kmsg_dump_unregister - unregister a kmsg dumper.
2814 * @dumper: pointer to the kmsg_dumper structure
2815 *
2816 * Removes a dump device from the system. Returns zero on success and
2817 * %-EINVAL otherwise.
2818 */
2819 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2820 {
2821 unsigned long flags;
2822 int err = -EINVAL;
2823
2824 spin_lock_irqsave(&dump_list_lock, flags);
2825 if (dumper->registered) {
2826 dumper->registered = 0;
2827 list_del_rcu(&dumper->list);
2828 err = 0;
2829 }
2830 spin_unlock_irqrestore(&dump_list_lock, flags);
2831 synchronize_rcu();
2832
2833 return err;
2834 }
2835 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2836
2837 static bool always_kmsg_dump;
2838 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2839
2840 /**
2841 * kmsg_dump - dump kernel log to kernel message dumpers.
2842 * @reason: the reason (oops, panic etc) for dumping
2843 *
2844 * Call each of the registered dumper's dump() callback, which can
2845 * retrieve the kmsg records with kmsg_dump_get_line() or
2846 * kmsg_dump_get_buffer().
2847 */
2848 void kmsg_dump(enum kmsg_dump_reason reason)
2849 {
2850 struct kmsg_dumper *dumper;
2851 unsigned long flags;
2852
2853 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2854 return;
2855
2856 rcu_read_lock();
2857 list_for_each_entry_rcu(dumper, &dump_list, list) {
2858 if (dumper->max_reason && reason > dumper->max_reason)
2859 continue;
2860
2861 /* initialize iterator with data about the stored records */
2862 dumper->active = true;
2863
2864 logbuf_lock_irqsave(flags);
2865 dumper->cur_seq = clear_seq;
2866 dumper->cur_idx = clear_idx;
2867 dumper->next_seq = log_next_seq;
2868 dumper->next_idx = log_next_idx;
2869 logbuf_unlock_irqrestore(flags);
2870
2871 /* invoke dumper which will iterate over records */
2872 dumper->dump(dumper, reason);
2873
2874 /* reset iterator */
2875 dumper->active = false;
2876 }
2877 rcu_read_unlock();
2878 }
2879
2880 /**
2881 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2882 * @dumper: registered kmsg dumper
2883 * @syslog: include the "<4>" prefixes
2884 * @line: buffer to copy the line to
2885 * @size: maximum size of the buffer
2886 * @len: length of line placed into buffer
2887 *
2888 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2889 * record, and copy one record into the provided buffer.
2890 *
2891 * Consecutive calls will return the next available record moving
2892 * towards the end of the buffer with the youngest messages.
2893 *
2894 * A return value of FALSE indicates that there are no more records to
2895 * read.
2896 *
2897 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2898 */
2899 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2900 char *line, size_t size, size_t *len)
2901 {
2902 struct printk_log *msg;
2903 size_t l = 0;
2904 bool ret = false;
2905
2906 if (!dumper->active)
2907 goto out;
2908
2909 if (dumper->cur_seq < log_first_seq) {
2910 /* messages are gone, move to first available one */
2911 dumper->cur_seq = log_first_seq;
2912 dumper->cur_idx = log_first_idx;
2913 }
2914
2915 /* last entry */
2916 if (dumper->cur_seq >= log_next_seq)
2917 goto out;
2918
2919 msg = log_from_idx(dumper->cur_idx);
2920 l = msg_print_text(msg, syslog, line, size);
2921
2922 dumper->cur_idx = log_next(dumper->cur_idx);
2923 dumper->cur_seq++;
2924 ret = true;
2925 out:
2926 if (len)
2927 *len = l;
2928 return ret;
2929 }
2930
2931 /**
2932 * kmsg_dump_get_line - retrieve one kmsg log line
2933 * @dumper: registered kmsg dumper
2934 * @syslog: include the "<4>" prefixes
2935 * @line: buffer to copy the line to
2936 * @size: maximum size of the buffer
2937 * @len: length of line placed into buffer
2938 *
2939 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2940 * record, and copy one record into the provided buffer.
2941 *
2942 * Consecutive calls will return the next available record moving
2943 * towards the end of the buffer with the youngest messages.
2944 *
2945 * A return value of FALSE indicates that there are no more records to
2946 * read.
2947 */
2948 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2949 char *line, size_t size, size_t *len)
2950 {
2951 unsigned long flags;
2952 bool ret;
2953
2954 logbuf_lock_irqsave(flags);
2955 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2956 logbuf_unlock_irqrestore(flags);
2957
2958 return ret;
2959 }
2960 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2961
2962 /**
2963 * kmsg_dump_get_buffer - copy kmsg log lines
2964 * @dumper: registered kmsg dumper
2965 * @syslog: include the "<4>" prefixes
2966 * @buf: buffer to copy the line to
2967 * @size: maximum size of the buffer
2968 * @len: length of line placed into buffer
2969 *
2970 * Start at the end of the kmsg buffer and fill the provided buffer
2971 * with as many of the the *youngest* kmsg records that fit into it.
2972 * If the buffer is large enough, all available kmsg records will be
2973 * copied with a single call.
2974 *
2975 * Consecutive calls will fill the buffer with the next block of
2976 * available older records, not including the earlier retrieved ones.
2977 *
2978 * A return value of FALSE indicates that there are no more records to
2979 * read.
2980 */
2981 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2982 char *buf, size_t size, size_t *len)
2983 {
2984 unsigned long flags;
2985 u64 seq;
2986 u32 idx;
2987 u64 next_seq;
2988 u32 next_idx;
2989 size_t l = 0;
2990 bool ret = false;
2991
2992 if (!dumper->active)
2993 goto out;
2994
2995 logbuf_lock_irqsave(flags);
2996 if (dumper->cur_seq < log_first_seq) {
2997 /* messages are gone, move to first available one */
2998 dumper->cur_seq = log_first_seq;
2999 dumper->cur_idx = log_first_idx;
3000 }
3001
3002 /* last entry */
3003 if (dumper->cur_seq >= dumper->next_seq) {
3004 logbuf_unlock_irqrestore(flags);
3005 goto out;
3006 }
3007
3008 /* calculate length of entire buffer */
3009 seq = dumper->cur_seq;
3010 idx = dumper->cur_idx;
3011 while (seq < dumper->next_seq) {
3012 struct printk_log *msg = log_from_idx(idx);
3013
3014 l += msg_print_text(msg, true, NULL, 0);
3015 idx = log_next(idx);
3016 seq++;
3017 }
3018
3019 /* move first record forward until length fits into the buffer */
3020 seq = dumper->cur_seq;
3021 idx = dumper->cur_idx;
3022 while (l > size && seq < dumper->next_seq) {
3023 struct printk_log *msg = log_from_idx(idx);
3024
3025 l -= msg_print_text(msg, true, NULL, 0);
3026 idx = log_next(idx);
3027 seq++;
3028 }
3029
3030 /* last message in next interation */
3031 next_seq = seq;
3032 next_idx = idx;
3033
3034 l = 0;
3035 while (seq < dumper->next_seq) {
3036 struct printk_log *msg = log_from_idx(idx);
3037
3038 l += msg_print_text(msg, syslog, buf + l, size - l);
3039 idx = log_next(idx);
3040 seq++;
3041 }
3042
3043 dumper->next_seq = next_seq;
3044 dumper->next_idx = next_idx;
3045 ret = true;
3046 logbuf_unlock_irqrestore(flags);
3047 out:
3048 if (len)
3049 *len = l;
3050 return ret;
3051 }
3052 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3053
3054 /**
3055 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3056 * @dumper: registered kmsg dumper
3057 *
3058 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3059 * kmsg_dump_get_buffer() can be called again and used multiple
3060 * times within the same dumper.dump() callback.
3061 *
3062 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3063 */
3064 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3065 {
3066 dumper->cur_seq = clear_seq;
3067 dumper->cur_idx = clear_idx;
3068 dumper->next_seq = log_next_seq;
3069 dumper->next_idx = log_next_idx;
3070 }
3071
3072 /**
3073 * kmsg_dump_rewind - reset the interator
3074 * @dumper: registered kmsg dumper
3075 *
3076 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3077 * kmsg_dump_get_buffer() can be called again and used multiple
3078 * times within the same dumper.dump() callback.
3079 */
3080 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3081 {
3082 unsigned long flags;
3083
3084 logbuf_lock_irqsave(flags);
3085 kmsg_dump_rewind_nolock(dumper);
3086 logbuf_unlock_irqrestore(flags);
3087 }
3088 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3089
3090 static char dump_stack_arch_desc_str[128];
3091
3092 /**
3093 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3094 * @fmt: printf-style format string
3095 * @...: arguments for the format string
3096 *
3097 * The configured string will be printed right after utsname during task
3098 * dumps. Usually used to add arch-specific system identifiers. If an
3099 * arch wants to make use of such an ID string, it should initialize this
3100 * as soon as possible during boot.
3101 */
3102 void __init dump_stack_set_arch_desc(const char *fmt, ...)
3103 {
3104 va_list args;
3105
3106 va_start(args, fmt);
3107 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3108 fmt, args);
3109 va_end(args);
3110 }
3111
3112 /**
3113 * dump_stack_print_info - print generic debug info for dump_stack()
3114 * @log_lvl: log level
3115 *
3116 * Arch-specific dump_stack() implementations can use this function to
3117 * print out the same debug information as the generic dump_stack().
3118 */
3119 void dump_stack_print_info(const char *log_lvl)
3120 {
3121 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3122 log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3123 print_tainted(), init_utsname()->release,
3124 (int)strcspn(init_utsname()->version, " "),
3125 init_utsname()->version);
3126
3127 if (dump_stack_arch_desc_str[0] != '\0')
3128 printk("%sHardware name: %s\n",
3129 log_lvl, dump_stack_arch_desc_str);
3130
3131 print_worker_info(log_lvl, current);
3132 }
3133
3134 /**
3135 * show_regs_print_info - print generic debug info for show_regs()
3136 * @log_lvl: log level
3137 *
3138 * show_regs() implementations can use this function to print out generic
3139 * debug information.
3140 */
3141 void show_regs_print_info(const char *log_lvl)
3142 {
3143 dump_stack_print_info(log_lvl);
3144 }
3145
3146 #endif