]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/printk/printk.c
Merge tag 'sound-fix-4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[mirror_ubuntu-zesty-kernel.git] / kernel / printk / printk.c
1 /*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/delay.h>
30 #include <linux/smp.h>
31 #include <linux/security.h>
32 #include <linux/bootmem.h>
33 #include <linux/memblock.h>
34 #include <linux/syscalls.h>
35 #include <linux/kexec.h>
36 #include <linux/kdb.h>
37 #include <linux/ratelimit.h>
38 #include <linux/kmsg_dump.h>
39 #include <linux/syslog.h>
40 #include <linux/cpu.h>
41 #include <linux/notifier.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/utsname.h>
46 #include <linux/ctype.h>
47 #include <linux/uio.h>
48
49 #include <asm/uaccess.h>
50 #include <asm/sections.h>
51
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/printk.h>
54
55 #include "console_cmdline.h"
56 #include "braille.h"
57 #include "internal.h"
58
59 int console_printk[4] = {
60 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */
61 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */
62 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */
63 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */
64 };
65
66 /*
67 * Low level drivers may need that to know if they can schedule in
68 * their unblank() callback or not. So let's export it.
69 */
70 int oops_in_progress;
71 EXPORT_SYMBOL(oops_in_progress);
72
73 /*
74 * console_sem protects the console_drivers list, and also
75 * provides serialisation for access to the entire console
76 * driver system.
77 */
78 static DEFINE_SEMAPHORE(console_sem);
79 struct console *console_drivers;
80 EXPORT_SYMBOL_GPL(console_drivers);
81
82 #ifdef CONFIG_LOCKDEP
83 static struct lockdep_map console_lock_dep_map = {
84 .name = "console_lock"
85 };
86 #endif
87
88 enum devkmsg_log_bits {
89 __DEVKMSG_LOG_BIT_ON = 0,
90 __DEVKMSG_LOG_BIT_OFF,
91 __DEVKMSG_LOG_BIT_LOCK,
92 };
93
94 enum devkmsg_log_masks {
95 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON),
96 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF),
97 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK),
98 };
99
100 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
101 #define DEVKMSG_LOG_MASK_DEFAULT 0
102
103 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
104
105 static int __control_devkmsg(char *str)
106 {
107 if (!str)
108 return -EINVAL;
109
110 if (!strncmp(str, "on", 2)) {
111 devkmsg_log = DEVKMSG_LOG_MASK_ON;
112 return 2;
113 } else if (!strncmp(str, "off", 3)) {
114 devkmsg_log = DEVKMSG_LOG_MASK_OFF;
115 return 3;
116 } else if (!strncmp(str, "ratelimit", 9)) {
117 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
118 return 9;
119 }
120 return -EINVAL;
121 }
122
123 static int __init control_devkmsg(char *str)
124 {
125 if (__control_devkmsg(str) < 0)
126 return 1;
127
128 /*
129 * Set sysctl string accordingly:
130 */
131 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) {
132 memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
133 strncpy(devkmsg_log_str, "on", 2);
134 } else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) {
135 memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
136 strncpy(devkmsg_log_str, "off", 3);
137 }
138 /* else "ratelimit" which is set by default. */
139
140 /*
141 * Sysctl cannot change it anymore. The kernel command line setting of
142 * this parameter is to force the setting to be permanent throughout the
143 * runtime of the system. This is a precation measure against userspace
144 * trying to be a smarta** and attempting to change it up on us.
145 */
146 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
147
148 return 0;
149 }
150 __setup("printk.devkmsg=", control_devkmsg);
151
152 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
153
154 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
155 void __user *buffer, size_t *lenp, loff_t *ppos)
156 {
157 char old_str[DEVKMSG_STR_MAX_SIZE];
158 unsigned int old;
159 int err;
160
161 if (write) {
162 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
163 return -EINVAL;
164
165 old = devkmsg_log;
166 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
167 }
168
169 err = proc_dostring(table, write, buffer, lenp, ppos);
170 if (err)
171 return err;
172
173 if (write) {
174 err = __control_devkmsg(devkmsg_log_str);
175
176 /*
177 * Do not accept an unknown string OR a known string with
178 * trailing crap...
179 */
180 if (err < 0 || (err + 1 != *lenp)) {
181
182 /* ... and restore old setting. */
183 devkmsg_log = old;
184 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
185
186 return -EINVAL;
187 }
188 }
189
190 return 0;
191 }
192
193 /*
194 * Number of registered extended console drivers.
195 *
196 * If extended consoles are present, in-kernel cont reassembly is disabled
197 * and each fragment is stored as a separate log entry with proper
198 * continuation flag so that every emitted message has full metadata. This
199 * doesn't change the result for regular consoles or /proc/kmsg. For
200 * /dev/kmsg, as long as the reader concatenates messages according to
201 * consecutive continuation flags, the end result should be the same too.
202 */
203 static int nr_ext_console_drivers;
204
205 /*
206 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
207 * macros instead of functions so that _RET_IP_ contains useful information.
208 */
209 #define down_console_sem() do { \
210 down(&console_sem);\
211 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
212 } while (0)
213
214 static int __down_trylock_console_sem(unsigned long ip)
215 {
216 if (down_trylock(&console_sem))
217 return 1;
218 mutex_acquire(&console_lock_dep_map, 0, 1, ip);
219 return 0;
220 }
221 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
222
223 #define up_console_sem() do { \
224 mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
225 up(&console_sem);\
226 } while (0)
227
228 /*
229 * This is used for debugging the mess that is the VT code by
230 * keeping track if we have the console semaphore held. It's
231 * definitely not the perfect debug tool (we don't know if _WE_
232 * hold it and are racing, but it helps tracking those weird code
233 * paths in the console code where we end up in places I want
234 * locked without the console sempahore held).
235 */
236 static int console_locked, console_suspended;
237
238 /*
239 * If exclusive_console is non-NULL then only this console is to be printed to.
240 */
241 static struct console *exclusive_console;
242
243 /*
244 * Array of consoles built from command line options (console=)
245 */
246
247 #define MAX_CMDLINECONSOLES 8
248
249 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
250
251 static int selected_console = -1;
252 static int preferred_console = -1;
253 int console_set_on_cmdline;
254 EXPORT_SYMBOL(console_set_on_cmdline);
255
256 #ifdef CONFIG_OF
257 static bool of_specified_console;
258
259 void console_set_by_of(void)
260 {
261 of_specified_console = true;
262 }
263 #else
264 # define of_specified_console false
265 #endif
266
267 /* Flag: console code may call schedule() */
268 static int console_may_schedule;
269
270 /*
271 * The printk log buffer consists of a chain of concatenated variable
272 * length records. Every record starts with a record header, containing
273 * the overall length of the record.
274 *
275 * The heads to the first and last entry in the buffer, as well as the
276 * sequence numbers of these entries are maintained when messages are
277 * stored.
278 *
279 * If the heads indicate available messages, the length in the header
280 * tells the start next message. A length == 0 for the next message
281 * indicates a wrap-around to the beginning of the buffer.
282 *
283 * Every record carries the monotonic timestamp in microseconds, as well as
284 * the standard userspace syslog level and syslog facility. The usual
285 * kernel messages use LOG_KERN; userspace-injected messages always carry
286 * a matching syslog facility, by default LOG_USER. The origin of every
287 * message can be reliably determined that way.
288 *
289 * The human readable log message directly follows the message header. The
290 * length of the message text is stored in the header, the stored message
291 * is not terminated.
292 *
293 * Optionally, a message can carry a dictionary of properties (key/value pairs),
294 * to provide userspace with a machine-readable message context.
295 *
296 * Examples for well-defined, commonly used property names are:
297 * DEVICE=b12:8 device identifier
298 * b12:8 block dev_t
299 * c127:3 char dev_t
300 * n8 netdev ifindex
301 * +sound:card0 subsystem:devname
302 * SUBSYSTEM=pci driver-core subsystem name
303 *
304 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
305 * follows directly after a '=' character. Every property is terminated by
306 * a '\0' character. The last property is not terminated.
307 *
308 * Example of a message structure:
309 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
310 * 0008 34 00 record is 52 bytes long
311 * 000a 0b 00 text is 11 bytes long
312 * 000c 1f 00 dictionary is 23 bytes long
313 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
314 * 0010 69 74 27 73 20 61 20 6c "it's a l"
315 * 69 6e 65 "ine"
316 * 001b 44 45 56 49 43 "DEVIC"
317 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
318 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
319 * 67 "g"
320 * 0032 00 00 00 padding to next message header
321 *
322 * The 'struct printk_log' buffer header must never be directly exported to
323 * userspace, it is a kernel-private implementation detail that might
324 * need to be changed in the future, when the requirements change.
325 *
326 * /dev/kmsg exports the structured data in the following line format:
327 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
328 *
329 * Users of the export format should ignore possible additional values
330 * separated by ',', and find the message after the ';' character.
331 *
332 * The optional key/value pairs are attached as continuation lines starting
333 * with a space character and terminated by a newline. All possible
334 * non-prinatable characters are escaped in the "\xff" notation.
335 */
336
337 enum log_flags {
338 LOG_NOCONS = 1, /* already flushed, do not print to console */
339 LOG_NEWLINE = 2, /* text ended with a newline */
340 LOG_PREFIX = 4, /* text started with a prefix */
341 LOG_CONT = 8, /* text is a fragment of a continuation line */
342 };
343
344 struct printk_log {
345 u64 ts_nsec; /* timestamp in nanoseconds */
346 u16 len; /* length of entire record */
347 u16 text_len; /* length of text buffer */
348 u16 dict_len; /* length of dictionary buffer */
349 u8 facility; /* syslog facility */
350 u8 flags:5; /* internal record flags */
351 u8 level:3; /* syslog level */
352 }
353 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
354 __packed __aligned(4)
355 #endif
356 ;
357
358 /*
359 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken
360 * within the scheduler's rq lock. It must be released before calling
361 * console_unlock() or anything else that might wake up a process.
362 */
363 DEFINE_RAW_SPINLOCK(logbuf_lock);
364
365 #ifdef CONFIG_PRINTK
366 DECLARE_WAIT_QUEUE_HEAD(log_wait);
367 /* the next printk record to read by syslog(READ) or /proc/kmsg */
368 static u64 syslog_seq;
369 static u32 syslog_idx;
370 static enum log_flags syslog_prev;
371 static size_t syslog_partial;
372
373 /* index and sequence number of the first record stored in the buffer */
374 static u64 log_first_seq;
375 static u32 log_first_idx;
376
377 /* index and sequence number of the next record to store in the buffer */
378 static u64 log_next_seq;
379 static u32 log_next_idx;
380
381 /* the next printk record to write to the console */
382 static u64 console_seq;
383 static u32 console_idx;
384 static enum log_flags console_prev;
385
386 /* the next printk record to read after the last 'clear' command */
387 static u64 clear_seq;
388 static u32 clear_idx;
389
390 #define PREFIX_MAX 32
391 #define LOG_LINE_MAX (1024 - PREFIX_MAX)
392
393 #define LOG_LEVEL(v) ((v) & 0x07)
394 #define LOG_FACILITY(v) ((v) >> 3 & 0xff)
395
396 /* record buffer */
397 #define LOG_ALIGN __alignof__(struct printk_log)
398 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
399 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
400 static char *log_buf = __log_buf;
401 static u32 log_buf_len = __LOG_BUF_LEN;
402
403 /* Return log buffer address */
404 char *log_buf_addr_get(void)
405 {
406 return log_buf;
407 }
408
409 /* Return log buffer size */
410 u32 log_buf_len_get(void)
411 {
412 return log_buf_len;
413 }
414
415 /* human readable text of the record */
416 static char *log_text(const struct printk_log *msg)
417 {
418 return (char *)msg + sizeof(struct printk_log);
419 }
420
421 /* optional key/value pair dictionary attached to the record */
422 static char *log_dict(const struct printk_log *msg)
423 {
424 return (char *)msg + sizeof(struct printk_log) + msg->text_len;
425 }
426
427 /* get record by index; idx must point to valid msg */
428 static struct printk_log *log_from_idx(u32 idx)
429 {
430 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
431
432 /*
433 * A length == 0 record is the end of buffer marker. Wrap around and
434 * read the message at the start of the buffer.
435 */
436 if (!msg->len)
437 return (struct printk_log *)log_buf;
438 return msg;
439 }
440
441 /* get next record; idx must point to valid msg */
442 static u32 log_next(u32 idx)
443 {
444 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
445
446 /* length == 0 indicates the end of the buffer; wrap */
447 /*
448 * A length == 0 record is the end of buffer marker. Wrap around and
449 * read the message at the start of the buffer as *this* one, and
450 * return the one after that.
451 */
452 if (!msg->len) {
453 msg = (struct printk_log *)log_buf;
454 return msg->len;
455 }
456 return idx + msg->len;
457 }
458
459 /*
460 * Check whether there is enough free space for the given message.
461 *
462 * The same values of first_idx and next_idx mean that the buffer
463 * is either empty or full.
464 *
465 * If the buffer is empty, we must respect the position of the indexes.
466 * They cannot be reset to the beginning of the buffer.
467 */
468 static int logbuf_has_space(u32 msg_size, bool empty)
469 {
470 u32 free;
471
472 if (log_next_idx > log_first_idx || empty)
473 free = max(log_buf_len - log_next_idx, log_first_idx);
474 else
475 free = log_first_idx - log_next_idx;
476
477 /*
478 * We need space also for an empty header that signalizes wrapping
479 * of the buffer.
480 */
481 return free >= msg_size + sizeof(struct printk_log);
482 }
483
484 static int log_make_free_space(u32 msg_size)
485 {
486 while (log_first_seq < log_next_seq &&
487 !logbuf_has_space(msg_size, false)) {
488 /* drop old messages until we have enough contiguous space */
489 log_first_idx = log_next(log_first_idx);
490 log_first_seq++;
491 }
492
493 if (clear_seq < log_first_seq) {
494 clear_seq = log_first_seq;
495 clear_idx = log_first_idx;
496 }
497
498 /* sequence numbers are equal, so the log buffer is empty */
499 if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
500 return 0;
501
502 return -ENOMEM;
503 }
504
505 /* compute the message size including the padding bytes */
506 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
507 {
508 u32 size;
509
510 size = sizeof(struct printk_log) + text_len + dict_len;
511 *pad_len = (-size) & (LOG_ALIGN - 1);
512 size += *pad_len;
513
514 return size;
515 }
516
517 /*
518 * Define how much of the log buffer we could take at maximum. The value
519 * must be greater than two. Note that only half of the buffer is available
520 * when the index points to the middle.
521 */
522 #define MAX_LOG_TAKE_PART 4
523 static const char trunc_msg[] = "<truncated>";
524
525 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
526 u16 *dict_len, u32 *pad_len)
527 {
528 /*
529 * The message should not take the whole buffer. Otherwise, it might
530 * get removed too soon.
531 */
532 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
533 if (*text_len > max_text_len)
534 *text_len = max_text_len;
535 /* enable the warning message */
536 *trunc_msg_len = strlen(trunc_msg);
537 /* disable the "dict" completely */
538 *dict_len = 0;
539 /* compute the size again, count also the warning message */
540 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
541 }
542
543 /* insert record into the buffer, discard old ones, update heads */
544 static int log_store(int facility, int level,
545 enum log_flags flags, u64 ts_nsec,
546 const char *dict, u16 dict_len,
547 const char *text, u16 text_len)
548 {
549 struct printk_log *msg;
550 u32 size, pad_len;
551 u16 trunc_msg_len = 0;
552
553 /* number of '\0' padding bytes to next message */
554 size = msg_used_size(text_len, dict_len, &pad_len);
555
556 if (log_make_free_space(size)) {
557 /* truncate the message if it is too long for empty buffer */
558 size = truncate_msg(&text_len, &trunc_msg_len,
559 &dict_len, &pad_len);
560 /* survive when the log buffer is too small for trunc_msg */
561 if (log_make_free_space(size))
562 return 0;
563 }
564
565 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
566 /*
567 * This message + an additional empty header does not fit
568 * at the end of the buffer. Add an empty header with len == 0
569 * to signify a wrap around.
570 */
571 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
572 log_next_idx = 0;
573 }
574
575 /* fill message */
576 msg = (struct printk_log *)(log_buf + log_next_idx);
577 memcpy(log_text(msg), text, text_len);
578 msg->text_len = text_len;
579 if (trunc_msg_len) {
580 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
581 msg->text_len += trunc_msg_len;
582 }
583 memcpy(log_dict(msg), dict, dict_len);
584 msg->dict_len = dict_len;
585 msg->facility = facility;
586 msg->level = level & 7;
587 msg->flags = flags & 0x1f;
588 if (ts_nsec > 0)
589 msg->ts_nsec = ts_nsec;
590 else
591 msg->ts_nsec = local_clock();
592 memset(log_dict(msg) + dict_len, 0, pad_len);
593 msg->len = size;
594
595 /* insert message */
596 log_next_idx += msg->len;
597 log_next_seq++;
598
599 return msg->text_len;
600 }
601
602 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
603
604 static int syslog_action_restricted(int type)
605 {
606 if (dmesg_restrict)
607 return 1;
608 /*
609 * Unless restricted, we allow "read all" and "get buffer size"
610 * for everybody.
611 */
612 return type != SYSLOG_ACTION_READ_ALL &&
613 type != SYSLOG_ACTION_SIZE_BUFFER;
614 }
615
616 int check_syslog_permissions(int type, int source)
617 {
618 /*
619 * If this is from /proc/kmsg and we've already opened it, then we've
620 * already done the capabilities checks at open time.
621 */
622 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
623 goto ok;
624
625 if (syslog_action_restricted(type)) {
626 if (capable(CAP_SYSLOG))
627 goto ok;
628 /*
629 * For historical reasons, accept CAP_SYS_ADMIN too, with
630 * a warning.
631 */
632 if (capable(CAP_SYS_ADMIN)) {
633 pr_warn_once("%s (%d): Attempt to access syslog with "
634 "CAP_SYS_ADMIN but no CAP_SYSLOG "
635 "(deprecated).\n",
636 current->comm, task_pid_nr(current));
637 goto ok;
638 }
639 return -EPERM;
640 }
641 ok:
642 return security_syslog(type);
643 }
644 EXPORT_SYMBOL_GPL(check_syslog_permissions);
645
646 static void append_char(char **pp, char *e, char c)
647 {
648 if (*pp < e)
649 *(*pp)++ = c;
650 }
651
652 static ssize_t msg_print_ext_header(char *buf, size_t size,
653 struct printk_log *msg, u64 seq,
654 enum log_flags prev_flags)
655 {
656 u64 ts_usec = msg->ts_nsec;
657 char cont = '-';
658
659 do_div(ts_usec, 1000);
660
661 /*
662 * If we couldn't merge continuation line fragments during the print,
663 * export the stored flags to allow an optional external merge of the
664 * records. Merging the records isn't always neccessarily correct, like
665 * when we hit a race during printing. In most cases though, it produces
666 * better readable output. 'c' in the record flags mark the first
667 * fragment of a line, '+' the following.
668 */
669 if (msg->flags & LOG_CONT)
670 cont = (prev_flags & LOG_CONT) ? '+' : 'c';
671
672 return scnprintf(buf, size, "%u,%llu,%llu,%c;",
673 (msg->facility << 3) | msg->level, seq, ts_usec, cont);
674 }
675
676 static ssize_t msg_print_ext_body(char *buf, size_t size,
677 char *dict, size_t dict_len,
678 char *text, size_t text_len)
679 {
680 char *p = buf, *e = buf + size;
681 size_t i;
682
683 /* escape non-printable characters */
684 for (i = 0; i < text_len; i++) {
685 unsigned char c = text[i];
686
687 if (c < ' ' || c >= 127 || c == '\\')
688 p += scnprintf(p, e - p, "\\x%02x", c);
689 else
690 append_char(&p, e, c);
691 }
692 append_char(&p, e, '\n');
693
694 if (dict_len) {
695 bool line = true;
696
697 for (i = 0; i < dict_len; i++) {
698 unsigned char c = dict[i];
699
700 if (line) {
701 append_char(&p, e, ' ');
702 line = false;
703 }
704
705 if (c == '\0') {
706 append_char(&p, e, '\n');
707 line = true;
708 continue;
709 }
710
711 if (c < ' ' || c >= 127 || c == '\\') {
712 p += scnprintf(p, e - p, "\\x%02x", c);
713 continue;
714 }
715
716 append_char(&p, e, c);
717 }
718 append_char(&p, e, '\n');
719 }
720
721 return p - buf;
722 }
723
724 /* /dev/kmsg - userspace message inject/listen interface */
725 struct devkmsg_user {
726 u64 seq;
727 u32 idx;
728 enum log_flags prev;
729 struct ratelimit_state rs;
730 struct mutex lock;
731 char buf[CONSOLE_EXT_LOG_MAX];
732 };
733
734 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
735 {
736 char *buf, *line;
737 int level = default_message_loglevel;
738 int facility = 1; /* LOG_USER */
739 struct file *file = iocb->ki_filp;
740 struct devkmsg_user *user = file->private_data;
741 size_t len = iov_iter_count(from);
742 ssize_t ret = len;
743
744 if (!user || len > LOG_LINE_MAX)
745 return -EINVAL;
746
747 /* Ignore when user logging is disabled. */
748 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
749 return len;
750
751 /* Ratelimit when not explicitly enabled. */
752 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
753 if (!___ratelimit(&user->rs, current->comm))
754 return ret;
755 }
756
757 buf = kmalloc(len+1, GFP_KERNEL);
758 if (buf == NULL)
759 return -ENOMEM;
760
761 buf[len] = '\0';
762 if (copy_from_iter(buf, len, from) != len) {
763 kfree(buf);
764 return -EFAULT;
765 }
766
767 /*
768 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
769 * the decimal value represents 32bit, the lower 3 bit are the log
770 * level, the rest are the log facility.
771 *
772 * If no prefix or no userspace facility is specified, we
773 * enforce LOG_USER, to be able to reliably distinguish
774 * kernel-generated messages from userspace-injected ones.
775 */
776 line = buf;
777 if (line[0] == '<') {
778 char *endp = NULL;
779 unsigned int u;
780
781 u = simple_strtoul(line + 1, &endp, 10);
782 if (endp && endp[0] == '>') {
783 level = LOG_LEVEL(u);
784 if (LOG_FACILITY(u) != 0)
785 facility = LOG_FACILITY(u);
786 endp++;
787 len -= endp - line;
788 line = endp;
789 }
790 }
791
792 printk_emit(facility, level, NULL, 0, "%s", line);
793 kfree(buf);
794 return ret;
795 }
796
797 static void cont_flush(void);
798
799 static ssize_t devkmsg_read(struct file *file, char __user *buf,
800 size_t count, loff_t *ppos)
801 {
802 struct devkmsg_user *user = file->private_data;
803 struct printk_log *msg;
804 size_t len;
805 ssize_t ret;
806
807 if (!user)
808 return -EBADF;
809
810 ret = mutex_lock_interruptible(&user->lock);
811 if (ret)
812 return ret;
813 raw_spin_lock_irq(&logbuf_lock);
814 cont_flush();
815 while (user->seq == log_next_seq) {
816 if (file->f_flags & O_NONBLOCK) {
817 ret = -EAGAIN;
818 raw_spin_unlock_irq(&logbuf_lock);
819 goto out;
820 }
821
822 raw_spin_unlock_irq(&logbuf_lock);
823 ret = wait_event_interruptible(log_wait,
824 user->seq != log_next_seq);
825 if (ret)
826 goto out;
827 raw_spin_lock_irq(&logbuf_lock);
828 }
829
830 if (user->seq < log_first_seq) {
831 /* our last seen message is gone, return error and reset */
832 user->idx = log_first_idx;
833 user->seq = log_first_seq;
834 ret = -EPIPE;
835 raw_spin_unlock_irq(&logbuf_lock);
836 goto out;
837 }
838
839 msg = log_from_idx(user->idx);
840 len = msg_print_ext_header(user->buf, sizeof(user->buf),
841 msg, user->seq, user->prev);
842 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
843 log_dict(msg), msg->dict_len,
844 log_text(msg), msg->text_len);
845
846 user->prev = msg->flags;
847 user->idx = log_next(user->idx);
848 user->seq++;
849 raw_spin_unlock_irq(&logbuf_lock);
850
851 if (len > count) {
852 ret = -EINVAL;
853 goto out;
854 }
855
856 if (copy_to_user(buf, user->buf, len)) {
857 ret = -EFAULT;
858 goto out;
859 }
860 ret = len;
861 out:
862 mutex_unlock(&user->lock);
863 return ret;
864 }
865
866 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
867 {
868 struct devkmsg_user *user = file->private_data;
869 loff_t ret = 0;
870
871 if (!user)
872 return -EBADF;
873 if (offset)
874 return -ESPIPE;
875
876 raw_spin_lock_irq(&logbuf_lock);
877 cont_flush();
878 switch (whence) {
879 case SEEK_SET:
880 /* the first record */
881 user->idx = log_first_idx;
882 user->seq = log_first_seq;
883 break;
884 case SEEK_DATA:
885 /*
886 * The first record after the last SYSLOG_ACTION_CLEAR,
887 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
888 * changes no global state, and does not clear anything.
889 */
890 user->idx = clear_idx;
891 user->seq = clear_seq;
892 break;
893 case SEEK_END:
894 /* after the last record */
895 user->idx = log_next_idx;
896 user->seq = log_next_seq;
897 break;
898 default:
899 ret = -EINVAL;
900 }
901 raw_spin_unlock_irq(&logbuf_lock);
902 return ret;
903 }
904
905 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
906 {
907 struct devkmsg_user *user = file->private_data;
908 int ret = 0;
909
910 if (!user)
911 return POLLERR|POLLNVAL;
912
913 poll_wait(file, &log_wait, wait);
914
915 raw_spin_lock_irq(&logbuf_lock);
916 cont_flush();
917 if (user->seq < log_next_seq) {
918 /* return error when data has vanished underneath us */
919 if (user->seq < log_first_seq)
920 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
921 else
922 ret = POLLIN|POLLRDNORM;
923 }
924 raw_spin_unlock_irq(&logbuf_lock);
925
926 return ret;
927 }
928
929 static int devkmsg_open(struct inode *inode, struct file *file)
930 {
931 struct devkmsg_user *user;
932 int err;
933
934 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
935 return -EPERM;
936
937 /* write-only does not need any file context */
938 if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
939 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
940 SYSLOG_FROM_READER);
941 if (err)
942 return err;
943 }
944
945 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
946 if (!user)
947 return -ENOMEM;
948
949 ratelimit_default_init(&user->rs);
950 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
951
952 mutex_init(&user->lock);
953
954 raw_spin_lock_irq(&logbuf_lock);
955 user->idx = log_first_idx;
956 user->seq = log_first_seq;
957 raw_spin_unlock_irq(&logbuf_lock);
958
959 file->private_data = user;
960 return 0;
961 }
962
963 static int devkmsg_release(struct inode *inode, struct file *file)
964 {
965 struct devkmsg_user *user = file->private_data;
966
967 if (!user)
968 return 0;
969
970 ratelimit_state_exit(&user->rs);
971
972 mutex_destroy(&user->lock);
973 kfree(user);
974 return 0;
975 }
976
977 const struct file_operations kmsg_fops = {
978 .open = devkmsg_open,
979 .read = devkmsg_read,
980 .write_iter = devkmsg_write,
981 .llseek = devkmsg_llseek,
982 .poll = devkmsg_poll,
983 .release = devkmsg_release,
984 };
985
986 #ifdef CONFIG_KEXEC_CORE
987 /*
988 * This appends the listed symbols to /proc/vmcore
989 *
990 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
991 * obtain access to symbols that are otherwise very difficult to locate. These
992 * symbols are specifically used so that utilities can access and extract the
993 * dmesg log from a vmcore file after a crash.
994 */
995 void log_buf_kexec_setup(void)
996 {
997 VMCOREINFO_SYMBOL(log_buf);
998 VMCOREINFO_SYMBOL(log_buf_len);
999 VMCOREINFO_SYMBOL(log_first_idx);
1000 VMCOREINFO_SYMBOL(clear_idx);
1001 VMCOREINFO_SYMBOL(log_next_idx);
1002 /*
1003 * Export struct printk_log size and field offsets. User space tools can
1004 * parse it and detect any changes to structure down the line.
1005 */
1006 VMCOREINFO_STRUCT_SIZE(printk_log);
1007 VMCOREINFO_OFFSET(printk_log, ts_nsec);
1008 VMCOREINFO_OFFSET(printk_log, len);
1009 VMCOREINFO_OFFSET(printk_log, text_len);
1010 VMCOREINFO_OFFSET(printk_log, dict_len);
1011 }
1012 #endif
1013
1014 /* requested log_buf_len from kernel cmdline */
1015 static unsigned long __initdata new_log_buf_len;
1016
1017 /* we practice scaling the ring buffer by powers of 2 */
1018 static void __init log_buf_len_update(unsigned size)
1019 {
1020 if (size)
1021 size = roundup_pow_of_two(size);
1022 if (size > log_buf_len)
1023 new_log_buf_len = size;
1024 }
1025
1026 /* save requested log_buf_len since it's too early to process it */
1027 static int __init log_buf_len_setup(char *str)
1028 {
1029 unsigned size = memparse(str, &str);
1030
1031 log_buf_len_update(size);
1032
1033 return 0;
1034 }
1035 early_param("log_buf_len", log_buf_len_setup);
1036
1037 #ifdef CONFIG_SMP
1038 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1039
1040 static void __init log_buf_add_cpu(void)
1041 {
1042 unsigned int cpu_extra;
1043
1044 /*
1045 * archs should set up cpu_possible_bits properly with
1046 * set_cpu_possible() after setup_arch() but just in
1047 * case lets ensure this is valid.
1048 */
1049 if (num_possible_cpus() == 1)
1050 return;
1051
1052 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1053
1054 /* by default this will only continue through for large > 64 CPUs */
1055 if (cpu_extra <= __LOG_BUF_LEN / 2)
1056 return;
1057
1058 pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1059 __LOG_CPU_MAX_BUF_LEN);
1060 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1061 cpu_extra);
1062 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1063
1064 log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1065 }
1066 #else /* !CONFIG_SMP */
1067 static inline void log_buf_add_cpu(void) {}
1068 #endif /* CONFIG_SMP */
1069
1070 void __init setup_log_buf(int early)
1071 {
1072 unsigned long flags;
1073 char *new_log_buf;
1074 int free;
1075
1076 if (log_buf != __log_buf)
1077 return;
1078
1079 if (!early && !new_log_buf_len)
1080 log_buf_add_cpu();
1081
1082 if (!new_log_buf_len)
1083 return;
1084
1085 if (early) {
1086 new_log_buf =
1087 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
1088 } else {
1089 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
1090 LOG_ALIGN);
1091 }
1092
1093 if (unlikely(!new_log_buf)) {
1094 pr_err("log_buf_len: %ld bytes not available\n",
1095 new_log_buf_len);
1096 return;
1097 }
1098
1099 raw_spin_lock_irqsave(&logbuf_lock, flags);
1100 log_buf_len = new_log_buf_len;
1101 log_buf = new_log_buf;
1102 new_log_buf_len = 0;
1103 free = __LOG_BUF_LEN - log_next_idx;
1104 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1105 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
1106
1107 pr_info("log_buf_len: %d bytes\n", log_buf_len);
1108 pr_info("early log buf free: %d(%d%%)\n",
1109 free, (free * 100) / __LOG_BUF_LEN);
1110 }
1111
1112 static bool __read_mostly ignore_loglevel;
1113
1114 static int __init ignore_loglevel_setup(char *str)
1115 {
1116 ignore_loglevel = true;
1117 pr_info("debug: ignoring loglevel setting.\n");
1118
1119 return 0;
1120 }
1121
1122 early_param("ignore_loglevel", ignore_loglevel_setup);
1123 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1124 MODULE_PARM_DESC(ignore_loglevel,
1125 "ignore loglevel setting (prints all kernel messages to the console)");
1126
1127 static bool suppress_message_printing(int level)
1128 {
1129 return (level >= console_loglevel && !ignore_loglevel);
1130 }
1131
1132 #ifdef CONFIG_BOOT_PRINTK_DELAY
1133
1134 static int boot_delay; /* msecs delay after each printk during bootup */
1135 static unsigned long long loops_per_msec; /* based on boot_delay */
1136
1137 static int __init boot_delay_setup(char *str)
1138 {
1139 unsigned long lpj;
1140
1141 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
1142 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1143
1144 get_option(&str, &boot_delay);
1145 if (boot_delay > 10 * 1000)
1146 boot_delay = 0;
1147
1148 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1149 "HZ: %d, loops_per_msec: %llu\n",
1150 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1151 return 0;
1152 }
1153 early_param("boot_delay", boot_delay_setup);
1154
1155 static void boot_delay_msec(int level)
1156 {
1157 unsigned long long k;
1158 unsigned long timeout;
1159
1160 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
1161 || suppress_message_printing(level)) {
1162 return;
1163 }
1164
1165 k = (unsigned long long)loops_per_msec * boot_delay;
1166
1167 timeout = jiffies + msecs_to_jiffies(boot_delay);
1168 while (k) {
1169 k--;
1170 cpu_relax();
1171 /*
1172 * use (volatile) jiffies to prevent
1173 * compiler reduction; loop termination via jiffies
1174 * is secondary and may or may not happen.
1175 */
1176 if (time_after(jiffies, timeout))
1177 break;
1178 touch_nmi_watchdog();
1179 }
1180 }
1181 #else
1182 static inline void boot_delay_msec(int level)
1183 {
1184 }
1185 #endif
1186
1187 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1188 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1189
1190 static size_t print_time(u64 ts, char *buf)
1191 {
1192 unsigned long rem_nsec;
1193
1194 if (!printk_time)
1195 return 0;
1196
1197 rem_nsec = do_div(ts, 1000000000);
1198
1199 if (!buf)
1200 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1201
1202 return sprintf(buf, "[%5lu.%06lu] ",
1203 (unsigned long)ts, rem_nsec / 1000);
1204 }
1205
1206 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1207 {
1208 size_t len = 0;
1209 unsigned int prefix = (msg->facility << 3) | msg->level;
1210
1211 if (syslog) {
1212 if (buf) {
1213 len += sprintf(buf, "<%u>", prefix);
1214 } else {
1215 len += 3;
1216 if (prefix > 999)
1217 len += 3;
1218 else if (prefix > 99)
1219 len += 2;
1220 else if (prefix > 9)
1221 len++;
1222 }
1223 }
1224
1225 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1226 return len;
1227 }
1228
1229 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1230 bool syslog, char *buf, size_t size)
1231 {
1232 const char *text = log_text(msg);
1233 size_t text_size = msg->text_len;
1234 bool prefix = true;
1235 bool newline = true;
1236 size_t len = 0;
1237
1238 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1239 prefix = false;
1240
1241 if (msg->flags & LOG_CONT) {
1242 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1243 prefix = false;
1244
1245 if (!(msg->flags & LOG_NEWLINE))
1246 newline = false;
1247 }
1248
1249 do {
1250 const char *next = memchr(text, '\n', text_size);
1251 size_t text_len;
1252
1253 if (next) {
1254 text_len = next - text;
1255 next++;
1256 text_size -= next - text;
1257 } else {
1258 text_len = text_size;
1259 }
1260
1261 if (buf) {
1262 if (print_prefix(msg, syslog, NULL) +
1263 text_len + 1 >= size - len)
1264 break;
1265
1266 if (prefix)
1267 len += print_prefix(msg, syslog, buf + len);
1268 memcpy(buf + len, text, text_len);
1269 len += text_len;
1270 if (next || newline)
1271 buf[len++] = '\n';
1272 } else {
1273 /* SYSLOG_ACTION_* buffer size only calculation */
1274 if (prefix)
1275 len += print_prefix(msg, syslog, NULL);
1276 len += text_len;
1277 if (next || newline)
1278 len++;
1279 }
1280
1281 prefix = true;
1282 text = next;
1283 } while (text);
1284
1285 return len;
1286 }
1287
1288 static int syslog_print(char __user *buf, int size)
1289 {
1290 char *text;
1291 struct printk_log *msg;
1292 int len = 0;
1293
1294 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1295 if (!text)
1296 return -ENOMEM;
1297
1298 while (size > 0) {
1299 size_t n;
1300 size_t skip;
1301
1302 raw_spin_lock_irq(&logbuf_lock);
1303 cont_flush();
1304 if (syslog_seq < log_first_seq) {
1305 /* messages are gone, move to first one */
1306 syslog_seq = log_first_seq;
1307 syslog_idx = log_first_idx;
1308 syslog_prev = 0;
1309 syslog_partial = 0;
1310 }
1311 if (syslog_seq == log_next_seq) {
1312 raw_spin_unlock_irq(&logbuf_lock);
1313 break;
1314 }
1315
1316 skip = syslog_partial;
1317 msg = log_from_idx(syslog_idx);
1318 n = msg_print_text(msg, syslog_prev, true, text,
1319 LOG_LINE_MAX + PREFIX_MAX);
1320 if (n - syslog_partial <= size) {
1321 /* message fits into buffer, move forward */
1322 syslog_idx = log_next(syslog_idx);
1323 syslog_seq++;
1324 syslog_prev = msg->flags;
1325 n -= syslog_partial;
1326 syslog_partial = 0;
1327 } else if (!len){
1328 /* partial read(), remember position */
1329 n = size;
1330 syslog_partial += n;
1331 } else
1332 n = 0;
1333 raw_spin_unlock_irq(&logbuf_lock);
1334
1335 if (!n)
1336 break;
1337
1338 if (copy_to_user(buf, text + skip, n)) {
1339 if (!len)
1340 len = -EFAULT;
1341 break;
1342 }
1343
1344 len += n;
1345 size -= n;
1346 buf += n;
1347 }
1348
1349 kfree(text);
1350 return len;
1351 }
1352
1353 static int syslog_print_all(char __user *buf, int size, bool clear)
1354 {
1355 char *text;
1356 int len = 0;
1357
1358 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1359 if (!text)
1360 return -ENOMEM;
1361
1362 raw_spin_lock_irq(&logbuf_lock);
1363 cont_flush();
1364 if (buf) {
1365 u64 next_seq;
1366 u64 seq;
1367 u32 idx;
1368 enum log_flags prev;
1369
1370 /*
1371 * Find first record that fits, including all following records,
1372 * into the user-provided buffer for this dump.
1373 */
1374 seq = clear_seq;
1375 idx = clear_idx;
1376 prev = 0;
1377 while (seq < log_next_seq) {
1378 struct printk_log *msg = log_from_idx(idx);
1379
1380 len += msg_print_text(msg, prev, true, NULL, 0);
1381 prev = msg->flags;
1382 idx = log_next(idx);
1383 seq++;
1384 }
1385
1386 /* move first record forward until length fits into the buffer */
1387 seq = clear_seq;
1388 idx = clear_idx;
1389 prev = 0;
1390 while (len > size && seq < log_next_seq) {
1391 struct printk_log *msg = log_from_idx(idx);
1392
1393 len -= msg_print_text(msg, prev, true, NULL, 0);
1394 prev = msg->flags;
1395 idx = log_next(idx);
1396 seq++;
1397 }
1398
1399 /* last message fitting into this dump */
1400 next_seq = log_next_seq;
1401
1402 len = 0;
1403 while (len >= 0 && seq < next_seq) {
1404 struct printk_log *msg = log_from_idx(idx);
1405 int textlen;
1406
1407 textlen = msg_print_text(msg, prev, true, text,
1408 LOG_LINE_MAX + PREFIX_MAX);
1409 if (textlen < 0) {
1410 len = textlen;
1411 break;
1412 }
1413 idx = log_next(idx);
1414 seq++;
1415 prev = msg->flags;
1416
1417 raw_spin_unlock_irq(&logbuf_lock);
1418 if (copy_to_user(buf + len, text, textlen))
1419 len = -EFAULT;
1420 else
1421 len += textlen;
1422 raw_spin_lock_irq(&logbuf_lock);
1423
1424 if (seq < log_first_seq) {
1425 /* messages are gone, move to next one */
1426 seq = log_first_seq;
1427 idx = log_first_idx;
1428 prev = 0;
1429 }
1430 }
1431 }
1432
1433 if (clear) {
1434 clear_seq = log_next_seq;
1435 clear_idx = log_next_idx;
1436 }
1437 raw_spin_unlock_irq(&logbuf_lock);
1438
1439 kfree(text);
1440 return len;
1441 }
1442
1443 int do_syslog(int type, char __user *buf, int len, int source)
1444 {
1445 bool clear = false;
1446 static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1447 int error;
1448
1449 error = check_syslog_permissions(type, source);
1450 if (error)
1451 goto out;
1452
1453 switch (type) {
1454 case SYSLOG_ACTION_CLOSE: /* Close log */
1455 break;
1456 case SYSLOG_ACTION_OPEN: /* Open log */
1457 break;
1458 case SYSLOG_ACTION_READ: /* Read from log */
1459 error = -EINVAL;
1460 if (!buf || len < 0)
1461 goto out;
1462 error = 0;
1463 if (!len)
1464 goto out;
1465 if (!access_ok(VERIFY_WRITE, buf, len)) {
1466 error = -EFAULT;
1467 goto out;
1468 }
1469 error = wait_event_interruptible(log_wait,
1470 syslog_seq != log_next_seq);
1471 if (error)
1472 goto out;
1473 error = syslog_print(buf, len);
1474 break;
1475 /* Read/clear last kernel messages */
1476 case SYSLOG_ACTION_READ_CLEAR:
1477 clear = true;
1478 /* FALL THRU */
1479 /* Read last kernel messages */
1480 case SYSLOG_ACTION_READ_ALL:
1481 error = -EINVAL;
1482 if (!buf || len < 0)
1483 goto out;
1484 error = 0;
1485 if (!len)
1486 goto out;
1487 if (!access_ok(VERIFY_WRITE, buf, len)) {
1488 error = -EFAULT;
1489 goto out;
1490 }
1491 error = syslog_print_all(buf, len, clear);
1492 break;
1493 /* Clear ring buffer */
1494 case SYSLOG_ACTION_CLEAR:
1495 syslog_print_all(NULL, 0, true);
1496 break;
1497 /* Disable logging to console */
1498 case SYSLOG_ACTION_CONSOLE_OFF:
1499 if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1500 saved_console_loglevel = console_loglevel;
1501 console_loglevel = minimum_console_loglevel;
1502 break;
1503 /* Enable logging to console */
1504 case SYSLOG_ACTION_CONSOLE_ON:
1505 if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1506 console_loglevel = saved_console_loglevel;
1507 saved_console_loglevel = LOGLEVEL_DEFAULT;
1508 }
1509 break;
1510 /* Set level of messages printed to console */
1511 case SYSLOG_ACTION_CONSOLE_LEVEL:
1512 error = -EINVAL;
1513 if (len < 1 || len > 8)
1514 goto out;
1515 if (len < minimum_console_loglevel)
1516 len = minimum_console_loglevel;
1517 console_loglevel = len;
1518 /* Implicitly re-enable logging to console */
1519 saved_console_loglevel = LOGLEVEL_DEFAULT;
1520 error = 0;
1521 break;
1522 /* Number of chars in the log buffer */
1523 case SYSLOG_ACTION_SIZE_UNREAD:
1524 raw_spin_lock_irq(&logbuf_lock);
1525 cont_flush();
1526 if (syslog_seq < log_first_seq) {
1527 /* messages are gone, move to first one */
1528 syslog_seq = log_first_seq;
1529 syslog_idx = log_first_idx;
1530 syslog_prev = 0;
1531 syslog_partial = 0;
1532 }
1533 if (source == SYSLOG_FROM_PROC) {
1534 /*
1535 * Short-cut for poll(/"proc/kmsg") which simply checks
1536 * for pending data, not the size; return the count of
1537 * records, not the length.
1538 */
1539 error = log_next_seq - syslog_seq;
1540 } else {
1541 u64 seq = syslog_seq;
1542 u32 idx = syslog_idx;
1543 enum log_flags prev = syslog_prev;
1544
1545 error = 0;
1546 while (seq < log_next_seq) {
1547 struct printk_log *msg = log_from_idx(idx);
1548
1549 error += msg_print_text(msg, prev, true, NULL, 0);
1550 idx = log_next(idx);
1551 seq++;
1552 prev = msg->flags;
1553 }
1554 error -= syslog_partial;
1555 }
1556 raw_spin_unlock_irq(&logbuf_lock);
1557 break;
1558 /* Size of the log buffer */
1559 case SYSLOG_ACTION_SIZE_BUFFER:
1560 error = log_buf_len;
1561 break;
1562 default:
1563 error = -EINVAL;
1564 break;
1565 }
1566 out:
1567 return error;
1568 }
1569
1570 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1571 {
1572 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1573 }
1574
1575 /*
1576 * Call the console drivers, asking them to write out
1577 * log_buf[start] to log_buf[end - 1].
1578 * The console_lock must be held.
1579 */
1580 static void call_console_drivers(int level,
1581 const char *ext_text, size_t ext_len,
1582 const char *text, size_t len)
1583 {
1584 struct console *con;
1585
1586 trace_console(text, len);
1587
1588 if (!console_drivers)
1589 return;
1590
1591 for_each_console(con) {
1592 if (exclusive_console && con != exclusive_console)
1593 continue;
1594 if (!(con->flags & CON_ENABLED))
1595 continue;
1596 if (!con->write)
1597 continue;
1598 if (!cpu_online(smp_processor_id()) &&
1599 !(con->flags & CON_ANYTIME))
1600 continue;
1601 if (con->flags & CON_EXTENDED)
1602 con->write(con, ext_text, ext_len);
1603 else
1604 con->write(con, text, len);
1605 }
1606 }
1607
1608 /*
1609 * Zap console related locks when oopsing.
1610 * To leave time for slow consoles to print a full oops,
1611 * only zap at most once every 30 seconds.
1612 */
1613 static void zap_locks(void)
1614 {
1615 static unsigned long oops_timestamp;
1616
1617 if (time_after_eq(jiffies, oops_timestamp) &&
1618 !time_after(jiffies, oops_timestamp + 30 * HZ))
1619 return;
1620
1621 oops_timestamp = jiffies;
1622
1623 debug_locks_off();
1624 /* If a crash is occurring, make sure we can't deadlock */
1625 raw_spin_lock_init(&logbuf_lock);
1626 /* And make sure that we print immediately */
1627 sema_init(&console_sem, 1);
1628 }
1629
1630 int printk_delay_msec __read_mostly;
1631
1632 static inline void printk_delay(void)
1633 {
1634 if (unlikely(printk_delay_msec)) {
1635 int m = printk_delay_msec;
1636
1637 while (m--) {
1638 mdelay(1);
1639 touch_nmi_watchdog();
1640 }
1641 }
1642 }
1643
1644 /*
1645 * Continuation lines are buffered, and not committed to the record buffer
1646 * until the line is complete, or a race forces it. The line fragments
1647 * though, are printed immediately to the consoles to ensure everything has
1648 * reached the console in case of a kernel crash.
1649 */
1650 static struct cont {
1651 char buf[LOG_LINE_MAX];
1652 size_t len; /* length == 0 means unused buffer */
1653 size_t cons; /* bytes written to console */
1654 struct task_struct *owner; /* task of first print*/
1655 u64 ts_nsec; /* time of first print */
1656 u8 level; /* log level of first message */
1657 u8 facility; /* log facility of first message */
1658 enum log_flags flags; /* prefix, newline flags */
1659 bool flushed:1; /* buffer sealed and committed */
1660 } cont;
1661
1662 static void cont_flush(void)
1663 {
1664 if (cont.flushed)
1665 return;
1666 if (cont.len == 0)
1667 return;
1668 if (cont.cons) {
1669 /*
1670 * If a fragment of this line was directly flushed to the
1671 * console; wait for the console to pick up the rest of the
1672 * line. LOG_NOCONS suppresses a duplicated output.
1673 */
1674 log_store(cont.facility, cont.level, cont.flags | LOG_NOCONS,
1675 cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1676 cont.flushed = true;
1677 } else {
1678 /*
1679 * If no fragment of this line ever reached the console,
1680 * just submit it to the store and free the buffer.
1681 */
1682 log_store(cont.facility, cont.level, cont.flags, 0,
1683 NULL, 0, cont.buf, cont.len);
1684 cont.len = 0;
1685 }
1686 }
1687
1688 static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len)
1689 {
1690 if (cont.len && cont.flushed)
1691 return false;
1692
1693 /*
1694 * If ext consoles are present, flush and skip in-kernel
1695 * continuation. See nr_ext_console_drivers definition. Also, if
1696 * the line gets too long, split it up in separate records.
1697 */
1698 if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1699 cont_flush();
1700 return false;
1701 }
1702
1703 if (!cont.len) {
1704 cont.facility = facility;
1705 cont.level = level;
1706 cont.owner = current;
1707 cont.ts_nsec = local_clock();
1708 cont.flags = flags;
1709 cont.cons = 0;
1710 cont.flushed = false;
1711 }
1712
1713 memcpy(cont.buf + cont.len, text, len);
1714 cont.len += len;
1715
1716 // The original flags come from the first line,
1717 // but later continuations can add a newline.
1718 if (flags & LOG_NEWLINE) {
1719 cont.flags |= LOG_NEWLINE;
1720 cont_flush();
1721 }
1722
1723 if (cont.len > (sizeof(cont.buf) * 80) / 100)
1724 cont_flush();
1725
1726 return true;
1727 }
1728
1729 static size_t cont_print_text(char *text, size_t size)
1730 {
1731 size_t textlen = 0;
1732 size_t len;
1733
1734 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1735 textlen += print_time(cont.ts_nsec, text);
1736 size -= textlen;
1737 }
1738
1739 len = cont.len - cont.cons;
1740 if (len > 0) {
1741 if (len+1 > size)
1742 len = size-1;
1743 memcpy(text + textlen, cont.buf + cont.cons, len);
1744 textlen += len;
1745 cont.cons = cont.len;
1746 }
1747
1748 if (cont.flushed) {
1749 if (cont.flags & LOG_NEWLINE)
1750 text[textlen++] = '\n';
1751 /* got everything, release buffer */
1752 cont.len = 0;
1753 }
1754 return textlen;
1755 }
1756
1757 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1758 {
1759 /*
1760 * If an earlier line was buffered, and we're a continuation
1761 * write from the same process, try to add it to the buffer.
1762 */
1763 if (cont.len) {
1764 if (cont.owner == current && (lflags & LOG_CONT)) {
1765 if (cont_add(facility, level, lflags, text, text_len))
1766 return text_len;
1767 }
1768 /* Otherwise, make sure it's flushed */
1769 cont_flush();
1770 }
1771
1772 /* If it doesn't end in a newline, try to buffer the current line */
1773 if (!(lflags & LOG_NEWLINE)) {
1774 if (cont_add(facility, level, lflags, text, text_len))
1775 return text_len;
1776 }
1777
1778 /* Store it in the record log */
1779 return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len);
1780 }
1781
1782 asmlinkage int vprintk_emit(int facility, int level,
1783 const char *dict, size_t dictlen,
1784 const char *fmt, va_list args)
1785 {
1786 static bool recursion_bug;
1787 static char textbuf[LOG_LINE_MAX];
1788 char *text = textbuf;
1789 size_t text_len = 0;
1790 enum log_flags lflags = 0;
1791 unsigned long flags;
1792 int this_cpu;
1793 int printed_len = 0;
1794 int nmi_message_lost;
1795 bool in_sched = false;
1796 /* cpu currently holding logbuf_lock in this function */
1797 static unsigned int logbuf_cpu = UINT_MAX;
1798
1799 if (level == LOGLEVEL_SCHED) {
1800 level = LOGLEVEL_DEFAULT;
1801 in_sched = true;
1802 }
1803
1804 boot_delay_msec(level);
1805 printk_delay();
1806
1807 local_irq_save(flags);
1808 this_cpu = smp_processor_id();
1809
1810 /*
1811 * Ouch, printk recursed into itself!
1812 */
1813 if (unlikely(logbuf_cpu == this_cpu)) {
1814 /*
1815 * If a crash is occurring during printk() on this CPU,
1816 * then try to get the crash message out but make sure
1817 * we can't deadlock. Otherwise just return to avoid the
1818 * recursion and return - but flag the recursion so that
1819 * it can be printed at the next appropriate moment:
1820 */
1821 if (!oops_in_progress && !lockdep_recursing(current)) {
1822 recursion_bug = true;
1823 local_irq_restore(flags);
1824 return 0;
1825 }
1826 zap_locks();
1827 }
1828
1829 lockdep_off();
1830 /* This stops the holder of console_sem just where we want him */
1831 raw_spin_lock(&logbuf_lock);
1832 logbuf_cpu = this_cpu;
1833
1834 if (unlikely(recursion_bug)) {
1835 static const char recursion_msg[] =
1836 "BUG: recent printk recursion!";
1837
1838 recursion_bug = false;
1839 /* emit KERN_CRIT message */
1840 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1841 NULL, 0, recursion_msg,
1842 strlen(recursion_msg));
1843 }
1844
1845 nmi_message_lost = get_nmi_message_lost();
1846 if (unlikely(nmi_message_lost)) {
1847 text_len = scnprintf(textbuf, sizeof(textbuf),
1848 "BAD LUCK: lost %d message(s) from NMI context!",
1849 nmi_message_lost);
1850 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1851 NULL, 0, textbuf, text_len);
1852 }
1853
1854 /*
1855 * The printf needs to come first; we need the syslog
1856 * prefix which might be passed-in as a parameter.
1857 */
1858 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1859
1860 /* mark and strip a trailing newline */
1861 if (text_len && text[text_len-1] == '\n') {
1862 text_len--;
1863 lflags |= LOG_NEWLINE;
1864 }
1865
1866 /* strip kernel syslog prefix and extract log level or control flags */
1867 if (facility == 0) {
1868 int kern_level;
1869
1870 while ((kern_level = printk_get_level(text)) != 0) {
1871 switch (kern_level) {
1872 case '0' ... '7':
1873 if (level == LOGLEVEL_DEFAULT)
1874 level = kern_level - '0';
1875 /* fallthrough */
1876 case 'd': /* KERN_DEFAULT */
1877 lflags |= LOG_PREFIX;
1878 break;
1879 case 'c': /* KERN_CONT */
1880 lflags |= LOG_CONT;
1881 }
1882
1883 text_len -= 2;
1884 text += 2;
1885 }
1886 }
1887
1888 if (level == LOGLEVEL_DEFAULT)
1889 level = default_message_loglevel;
1890
1891 if (dict)
1892 lflags |= LOG_PREFIX|LOG_NEWLINE;
1893
1894 printed_len += log_output(facility, level, lflags, dict, dictlen, text, text_len);
1895
1896 logbuf_cpu = UINT_MAX;
1897 raw_spin_unlock(&logbuf_lock);
1898 lockdep_on();
1899 local_irq_restore(flags);
1900
1901 /* If called from the scheduler, we can not call up(). */
1902 if (!in_sched) {
1903 lockdep_off();
1904 /*
1905 * Try to acquire and then immediately release the console
1906 * semaphore. The release will print out buffers and wake up
1907 * /dev/kmsg and syslog() users.
1908 */
1909 if (console_trylock())
1910 console_unlock();
1911 lockdep_on();
1912 }
1913
1914 return printed_len;
1915 }
1916 EXPORT_SYMBOL(vprintk_emit);
1917
1918 asmlinkage int vprintk(const char *fmt, va_list args)
1919 {
1920 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1921 }
1922 EXPORT_SYMBOL(vprintk);
1923
1924 asmlinkage int printk_emit(int facility, int level,
1925 const char *dict, size_t dictlen,
1926 const char *fmt, ...)
1927 {
1928 va_list args;
1929 int r;
1930
1931 va_start(args, fmt);
1932 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1933 va_end(args);
1934
1935 return r;
1936 }
1937 EXPORT_SYMBOL(printk_emit);
1938
1939 int vprintk_default(const char *fmt, va_list args)
1940 {
1941 int r;
1942
1943 #ifdef CONFIG_KGDB_KDB
1944 if (unlikely(kdb_trap_printk)) {
1945 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1946 return r;
1947 }
1948 #endif
1949 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1950
1951 return r;
1952 }
1953 EXPORT_SYMBOL_GPL(vprintk_default);
1954
1955 /**
1956 * printk - print a kernel message
1957 * @fmt: format string
1958 *
1959 * This is printk(). It can be called from any context. We want it to work.
1960 *
1961 * We try to grab the console_lock. If we succeed, it's easy - we log the
1962 * output and call the console drivers. If we fail to get the semaphore, we
1963 * place the output into the log buffer and return. The current holder of
1964 * the console_sem will notice the new output in console_unlock(); and will
1965 * send it to the consoles before releasing the lock.
1966 *
1967 * One effect of this deferred printing is that code which calls printk() and
1968 * then changes console_loglevel may break. This is because console_loglevel
1969 * is inspected when the actual printing occurs.
1970 *
1971 * See also:
1972 * printf(3)
1973 *
1974 * See the vsnprintf() documentation for format string extensions over C99.
1975 */
1976 asmlinkage __visible int printk(const char *fmt, ...)
1977 {
1978 va_list args;
1979 int r;
1980
1981 va_start(args, fmt);
1982 r = vprintk_func(fmt, args);
1983 va_end(args);
1984
1985 return r;
1986 }
1987 EXPORT_SYMBOL(printk);
1988
1989 #else /* CONFIG_PRINTK */
1990
1991 #define LOG_LINE_MAX 0
1992 #define PREFIX_MAX 0
1993
1994 static u64 syslog_seq;
1995 static u32 syslog_idx;
1996 static u64 console_seq;
1997 static u32 console_idx;
1998 static enum log_flags syslog_prev;
1999 static u64 log_first_seq;
2000 static u32 log_first_idx;
2001 static u64 log_next_seq;
2002 static enum log_flags console_prev;
2003 static struct cont {
2004 size_t len;
2005 size_t cons;
2006 u8 level;
2007 bool flushed:1;
2008 } cont;
2009 static char *log_text(const struct printk_log *msg) { return NULL; }
2010 static char *log_dict(const struct printk_log *msg) { return NULL; }
2011 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
2012 static u32 log_next(u32 idx) { return 0; }
2013 static ssize_t msg_print_ext_header(char *buf, size_t size,
2014 struct printk_log *msg, u64 seq,
2015 enum log_flags prev_flags) { return 0; }
2016 static ssize_t msg_print_ext_body(char *buf, size_t size,
2017 char *dict, size_t dict_len,
2018 char *text, size_t text_len) { return 0; }
2019 static void call_console_drivers(int level,
2020 const char *ext_text, size_t ext_len,
2021 const char *text, size_t len) {}
2022 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
2023 bool syslog, char *buf, size_t size) { return 0; }
2024 static size_t cont_print_text(char *text, size_t size) { return 0; }
2025 static bool suppress_message_printing(int level) { return false; }
2026
2027 /* Still needs to be defined for users */
2028 DEFINE_PER_CPU(printk_func_t, printk_func);
2029
2030 #endif /* CONFIG_PRINTK */
2031
2032 #ifdef CONFIG_EARLY_PRINTK
2033 struct console *early_console;
2034
2035 asmlinkage __visible void early_printk(const char *fmt, ...)
2036 {
2037 va_list ap;
2038 char buf[512];
2039 int n;
2040
2041 if (!early_console)
2042 return;
2043
2044 va_start(ap, fmt);
2045 n = vscnprintf(buf, sizeof(buf), fmt, ap);
2046 va_end(ap);
2047
2048 early_console->write(early_console, buf, n);
2049 }
2050 #endif
2051
2052 static int __add_preferred_console(char *name, int idx, char *options,
2053 char *brl_options)
2054 {
2055 struct console_cmdline *c;
2056 int i;
2057
2058 /*
2059 * See if this tty is not yet registered, and
2060 * if we have a slot free.
2061 */
2062 for (i = 0, c = console_cmdline;
2063 i < MAX_CMDLINECONSOLES && c->name[0];
2064 i++, c++) {
2065 if (strcmp(c->name, name) == 0 && c->index == idx) {
2066 if (!brl_options)
2067 selected_console = i;
2068 return 0;
2069 }
2070 }
2071 if (i == MAX_CMDLINECONSOLES)
2072 return -E2BIG;
2073 if (!brl_options)
2074 selected_console = i;
2075 strlcpy(c->name, name, sizeof(c->name));
2076 c->options = options;
2077 braille_set_options(c, brl_options);
2078
2079 c->index = idx;
2080 return 0;
2081 }
2082 /*
2083 * Set up a console. Called via do_early_param() in init/main.c
2084 * for each "console=" parameter in the boot command line.
2085 */
2086 static int __init console_setup(char *str)
2087 {
2088 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2089 char *s, *options, *brl_options = NULL;
2090 int idx;
2091
2092 if (_braille_console_setup(&str, &brl_options))
2093 return 1;
2094
2095 /*
2096 * Decode str into name, index, options.
2097 */
2098 if (str[0] >= '0' && str[0] <= '9') {
2099 strcpy(buf, "ttyS");
2100 strncpy(buf + 4, str, sizeof(buf) - 5);
2101 } else {
2102 strncpy(buf, str, sizeof(buf) - 1);
2103 }
2104 buf[sizeof(buf) - 1] = 0;
2105 options = strchr(str, ',');
2106 if (options)
2107 *(options++) = 0;
2108 #ifdef __sparc__
2109 if (!strcmp(str, "ttya"))
2110 strcpy(buf, "ttyS0");
2111 if (!strcmp(str, "ttyb"))
2112 strcpy(buf, "ttyS1");
2113 #endif
2114 for (s = buf; *s; s++)
2115 if (isdigit(*s) || *s == ',')
2116 break;
2117 idx = simple_strtoul(s, NULL, 10);
2118 *s = 0;
2119
2120 __add_preferred_console(buf, idx, options, brl_options);
2121 console_set_on_cmdline = 1;
2122 return 1;
2123 }
2124 __setup("console=", console_setup);
2125
2126 /**
2127 * add_preferred_console - add a device to the list of preferred consoles.
2128 * @name: device name
2129 * @idx: device index
2130 * @options: options for this console
2131 *
2132 * The last preferred console added will be used for kernel messages
2133 * and stdin/out/err for init. Normally this is used by console_setup
2134 * above to handle user-supplied console arguments; however it can also
2135 * be used by arch-specific code either to override the user or more
2136 * commonly to provide a default console (ie from PROM variables) when
2137 * the user has not supplied one.
2138 */
2139 int add_preferred_console(char *name, int idx, char *options)
2140 {
2141 return __add_preferred_console(name, idx, options, NULL);
2142 }
2143
2144 bool console_suspend_enabled = true;
2145 EXPORT_SYMBOL(console_suspend_enabled);
2146
2147 static int __init console_suspend_disable(char *str)
2148 {
2149 console_suspend_enabled = false;
2150 return 1;
2151 }
2152 __setup("no_console_suspend", console_suspend_disable);
2153 module_param_named(console_suspend, console_suspend_enabled,
2154 bool, S_IRUGO | S_IWUSR);
2155 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2156 " and hibernate operations");
2157
2158 /**
2159 * suspend_console - suspend the console subsystem
2160 *
2161 * This disables printk() while we go into suspend states
2162 */
2163 void suspend_console(void)
2164 {
2165 if (!console_suspend_enabled)
2166 return;
2167 printk("Suspending console(s) (use no_console_suspend to debug)\n");
2168 console_lock();
2169 console_suspended = 1;
2170 up_console_sem();
2171 }
2172
2173 void resume_console(void)
2174 {
2175 if (!console_suspend_enabled)
2176 return;
2177 down_console_sem();
2178 console_suspended = 0;
2179 console_unlock();
2180 }
2181
2182 /**
2183 * console_cpu_notify - print deferred console messages after CPU hotplug
2184 * @self: notifier struct
2185 * @action: CPU hotplug event
2186 * @hcpu: unused
2187 *
2188 * If printk() is called from a CPU that is not online yet, the messages
2189 * will be spooled but will not show up on the console. This function is
2190 * called when a new CPU comes online (or fails to come up), and ensures
2191 * that any such output gets printed.
2192 */
2193 static int console_cpu_notify(struct notifier_block *self,
2194 unsigned long action, void *hcpu)
2195 {
2196 switch (action) {
2197 case CPU_ONLINE:
2198 case CPU_DEAD:
2199 case CPU_DOWN_FAILED:
2200 case CPU_UP_CANCELED:
2201 console_lock();
2202 console_unlock();
2203 }
2204 return NOTIFY_OK;
2205 }
2206
2207 /**
2208 * console_lock - lock the console system for exclusive use.
2209 *
2210 * Acquires a lock which guarantees that the caller has
2211 * exclusive access to the console system and the console_drivers list.
2212 *
2213 * Can sleep, returns nothing.
2214 */
2215 void console_lock(void)
2216 {
2217 might_sleep();
2218
2219 down_console_sem();
2220 if (console_suspended)
2221 return;
2222 console_locked = 1;
2223 console_may_schedule = 1;
2224 }
2225 EXPORT_SYMBOL(console_lock);
2226
2227 /**
2228 * console_trylock - try to lock the console system for exclusive use.
2229 *
2230 * Try to acquire a lock which guarantees that the caller has exclusive
2231 * access to the console system and the console_drivers list.
2232 *
2233 * returns 1 on success, and 0 on failure to acquire the lock.
2234 */
2235 int console_trylock(void)
2236 {
2237 if (down_trylock_console_sem())
2238 return 0;
2239 if (console_suspended) {
2240 up_console_sem();
2241 return 0;
2242 }
2243 console_locked = 1;
2244 /*
2245 * When PREEMPT_COUNT disabled we can't reliably detect if it's
2246 * safe to schedule (e.g. calling printk while holding a spin_lock),
2247 * because preempt_disable()/preempt_enable() are just barriers there
2248 * and preempt_count() is always 0.
2249 *
2250 * RCU read sections have a separate preemption counter when
2251 * PREEMPT_RCU enabled thus we must take extra care and check
2252 * rcu_preempt_depth(), otherwise RCU read sections modify
2253 * preempt_count().
2254 */
2255 console_may_schedule = !oops_in_progress &&
2256 preemptible() &&
2257 !rcu_preempt_depth();
2258 return 1;
2259 }
2260 EXPORT_SYMBOL(console_trylock);
2261
2262 int is_console_locked(void)
2263 {
2264 return console_locked;
2265 }
2266
2267 /*
2268 * Check if we have any console that is capable of printing while cpu is
2269 * booting or shutting down. Requires console_sem.
2270 */
2271 static int have_callable_console(void)
2272 {
2273 struct console *con;
2274
2275 for_each_console(con)
2276 if ((con->flags & CON_ENABLED) &&
2277 (con->flags & CON_ANYTIME))
2278 return 1;
2279
2280 return 0;
2281 }
2282
2283 /*
2284 * Can we actually use the console at this time on this cpu?
2285 *
2286 * Console drivers may assume that per-cpu resources have been allocated. So
2287 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2288 * call them until this CPU is officially up.
2289 */
2290 static inline int can_use_console(void)
2291 {
2292 return cpu_online(raw_smp_processor_id()) || have_callable_console();
2293 }
2294
2295 static void console_cont_flush(char *text, size_t size)
2296 {
2297 unsigned long flags;
2298 size_t len;
2299
2300 raw_spin_lock_irqsave(&logbuf_lock, flags);
2301
2302 if (!cont.len)
2303 goto out;
2304
2305 if (suppress_message_printing(cont.level)) {
2306 cont.cons = cont.len;
2307 if (cont.flushed)
2308 cont.len = 0;
2309 goto out;
2310 }
2311
2312 /*
2313 * We still queue earlier records, likely because the console was
2314 * busy. The earlier ones need to be printed before this one, we
2315 * did not flush any fragment so far, so just let it queue up.
2316 */
2317 if (console_seq < log_next_seq && !cont.cons)
2318 goto out;
2319
2320 len = cont_print_text(text, size);
2321 raw_spin_unlock(&logbuf_lock);
2322 stop_critical_timings();
2323 call_console_drivers(cont.level, NULL, 0, text, len);
2324 start_critical_timings();
2325 local_irq_restore(flags);
2326 return;
2327 out:
2328 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2329 }
2330
2331 /**
2332 * console_unlock - unlock the console system
2333 *
2334 * Releases the console_lock which the caller holds on the console system
2335 * and the console driver list.
2336 *
2337 * While the console_lock was held, console output may have been buffered
2338 * by printk(). If this is the case, console_unlock(); emits
2339 * the output prior to releasing the lock.
2340 *
2341 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2342 *
2343 * console_unlock(); may be called from any context.
2344 */
2345 void console_unlock(void)
2346 {
2347 static char ext_text[CONSOLE_EXT_LOG_MAX];
2348 static char text[LOG_LINE_MAX + PREFIX_MAX];
2349 static u64 seen_seq;
2350 unsigned long flags;
2351 bool wake_klogd = false;
2352 bool do_cond_resched, retry;
2353
2354 if (console_suspended) {
2355 up_console_sem();
2356 return;
2357 }
2358
2359 /*
2360 * Console drivers are called under logbuf_lock, so
2361 * @console_may_schedule should be cleared before; however, we may
2362 * end up dumping a lot of lines, for example, if called from
2363 * console registration path, and should invoke cond_resched()
2364 * between lines if allowable. Not doing so can cause a very long
2365 * scheduling stall on a slow console leading to RCU stall and
2366 * softlockup warnings which exacerbate the issue with more
2367 * messages practically incapacitating the system.
2368 */
2369 do_cond_resched = console_may_schedule;
2370 console_may_schedule = 0;
2371
2372 again:
2373 /*
2374 * We released the console_sem lock, so we need to recheck if
2375 * cpu is online and (if not) is there at least one CON_ANYTIME
2376 * console.
2377 */
2378 if (!can_use_console()) {
2379 console_locked = 0;
2380 up_console_sem();
2381 return;
2382 }
2383
2384 /* flush buffered message fragment immediately to console */
2385 console_cont_flush(text, sizeof(text));
2386
2387 for (;;) {
2388 struct printk_log *msg;
2389 size_t ext_len = 0;
2390 size_t len;
2391 int level;
2392
2393 raw_spin_lock_irqsave(&logbuf_lock, flags);
2394 if (seen_seq != log_next_seq) {
2395 wake_klogd = true;
2396 seen_seq = log_next_seq;
2397 }
2398
2399 if (console_seq < log_first_seq) {
2400 len = sprintf(text, "** %u printk messages dropped ** ",
2401 (unsigned)(log_first_seq - console_seq));
2402
2403 /* messages are gone, move to first one */
2404 console_seq = log_first_seq;
2405 console_idx = log_first_idx;
2406 console_prev = 0;
2407 } else {
2408 len = 0;
2409 }
2410 skip:
2411 if (console_seq == log_next_seq)
2412 break;
2413
2414 msg = log_from_idx(console_idx);
2415 level = msg->level;
2416 if ((msg->flags & LOG_NOCONS) ||
2417 suppress_message_printing(level)) {
2418 /*
2419 * Skip record we have buffered and already printed
2420 * directly to the console when we received it, and
2421 * record that has level above the console loglevel.
2422 */
2423 console_idx = log_next(console_idx);
2424 console_seq++;
2425 /*
2426 * We will get here again when we register a new
2427 * CON_PRINTBUFFER console. Clear the flag so we
2428 * will properly dump everything later.
2429 */
2430 msg->flags &= ~LOG_NOCONS;
2431 console_prev = msg->flags;
2432 goto skip;
2433 }
2434
2435 len += msg_print_text(msg, console_prev, false,
2436 text + len, sizeof(text) - len);
2437 if (nr_ext_console_drivers) {
2438 ext_len = msg_print_ext_header(ext_text,
2439 sizeof(ext_text),
2440 msg, console_seq, console_prev);
2441 ext_len += msg_print_ext_body(ext_text + ext_len,
2442 sizeof(ext_text) - ext_len,
2443 log_dict(msg), msg->dict_len,
2444 log_text(msg), msg->text_len);
2445 }
2446 console_idx = log_next(console_idx);
2447 console_seq++;
2448 console_prev = msg->flags;
2449 raw_spin_unlock(&logbuf_lock);
2450
2451 stop_critical_timings(); /* don't trace print latency */
2452 call_console_drivers(level, ext_text, ext_len, text, len);
2453 start_critical_timings();
2454 local_irq_restore(flags);
2455
2456 if (do_cond_resched)
2457 cond_resched();
2458 }
2459 console_locked = 0;
2460
2461 /* Release the exclusive_console once it is used */
2462 if (unlikely(exclusive_console))
2463 exclusive_console = NULL;
2464
2465 raw_spin_unlock(&logbuf_lock);
2466
2467 up_console_sem();
2468
2469 /*
2470 * Someone could have filled up the buffer again, so re-check if there's
2471 * something to flush. In case we cannot trylock the console_sem again,
2472 * there's a new owner and the console_unlock() from them will do the
2473 * flush, no worries.
2474 */
2475 raw_spin_lock(&logbuf_lock);
2476 retry = console_seq != log_next_seq;
2477 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2478
2479 if (retry && console_trylock())
2480 goto again;
2481
2482 if (wake_klogd)
2483 wake_up_klogd();
2484 }
2485 EXPORT_SYMBOL(console_unlock);
2486
2487 /**
2488 * console_conditional_schedule - yield the CPU if required
2489 *
2490 * If the console code is currently allowed to sleep, and
2491 * if this CPU should yield the CPU to another task, do
2492 * so here.
2493 *
2494 * Must be called within console_lock();.
2495 */
2496 void __sched console_conditional_schedule(void)
2497 {
2498 if (console_may_schedule)
2499 cond_resched();
2500 }
2501 EXPORT_SYMBOL(console_conditional_schedule);
2502
2503 void console_unblank(void)
2504 {
2505 struct console *c;
2506
2507 /*
2508 * console_unblank can no longer be called in interrupt context unless
2509 * oops_in_progress is set to 1..
2510 */
2511 if (oops_in_progress) {
2512 if (down_trylock_console_sem() != 0)
2513 return;
2514 } else
2515 console_lock();
2516
2517 console_locked = 1;
2518 console_may_schedule = 0;
2519 for_each_console(c)
2520 if ((c->flags & CON_ENABLED) && c->unblank)
2521 c->unblank();
2522 console_unlock();
2523 }
2524
2525 /**
2526 * console_flush_on_panic - flush console content on panic
2527 *
2528 * Immediately output all pending messages no matter what.
2529 */
2530 void console_flush_on_panic(void)
2531 {
2532 /*
2533 * If someone else is holding the console lock, trylock will fail
2534 * and may_schedule may be set. Ignore and proceed to unlock so
2535 * that messages are flushed out. As this can be called from any
2536 * context and we don't want to get preempted while flushing,
2537 * ensure may_schedule is cleared.
2538 */
2539 console_trylock();
2540 console_may_schedule = 0;
2541 console_unlock();
2542 }
2543
2544 /*
2545 * Return the console tty driver structure and its associated index
2546 */
2547 struct tty_driver *console_device(int *index)
2548 {
2549 struct console *c;
2550 struct tty_driver *driver = NULL;
2551
2552 console_lock();
2553 for_each_console(c) {
2554 if (!c->device)
2555 continue;
2556 driver = c->device(c, index);
2557 if (driver)
2558 break;
2559 }
2560 console_unlock();
2561 return driver;
2562 }
2563
2564 /*
2565 * Prevent further output on the passed console device so that (for example)
2566 * serial drivers can disable console output before suspending a port, and can
2567 * re-enable output afterwards.
2568 */
2569 void console_stop(struct console *console)
2570 {
2571 console_lock();
2572 console->flags &= ~CON_ENABLED;
2573 console_unlock();
2574 }
2575 EXPORT_SYMBOL(console_stop);
2576
2577 void console_start(struct console *console)
2578 {
2579 console_lock();
2580 console->flags |= CON_ENABLED;
2581 console_unlock();
2582 }
2583 EXPORT_SYMBOL(console_start);
2584
2585 static int __read_mostly keep_bootcon;
2586
2587 static int __init keep_bootcon_setup(char *str)
2588 {
2589 keep_bootcon = 1;
2590 pr_info("debug: skip boot console de-registration.\n");
2591
2592 return 0;
2593 }
2594
2595 early_param("keep_bootcon", keep_bootcon_setup);
2596
2597 /*
2598 * The console driver calls this routine during kernel initialization
2599 * to register the console printing procedure with printk() and to
2600 * print any messages that were printed by the kernel before the
2601 * console driver was initialized.
2602 *
2603 * This can happen pretty early during the boot process (because of
2604 * early_printk) - sometimes before setup_arch() completes - be careful
2605 * of what kernel features are used - they may not be initialised yet.
2606 *
2607 * There are two types of consoles - bootconsoles (early_printk) and
2608 * "real" consoles (everything which is not a bootconsole) which are
2609 * handled differently.
2610 * - Any number of bootconsoles can be registered at any time.
2611 * - As soon as a "real" console is registered, all bootconsoles
2612 * will be unregistered automatically.
2613 * - Once a "real" console is registered, any attempt to register a
2614 * bootconsoles will be rejected
2615 */
2616 void register_console(struct console *newcon)
2617 {
2618 int i;
2619 unsigned long flags;
2620 struct console *bcon = NULL;
2621 struct console_cmdline *c;
2622
2623 if (console_drivers)
2624 for_each_console(bcon)
2625 if (WARN(bcon == newcon,
2626 "console '%s%d' already registered\n",
2627 bcon->name, bcon->index))
2628 return;
2629
2630 /*
2631 * before we register a new CON_BOOT console, make sure we don't
2632 * already have a valid console
2633 */
2634 if (console_drivers && newcon->flags & CON_BOOT) {
2635 /* find the last or real console */
2636 for_each_console(bcon) {
2637 if (!(bcon->flags & CON_BOOT)) {
2638 pr_info("Too late to register bootconsole %s%d\n",
2639 newcon->name, newcon->index);
2640 return;
2641 }
2642 }
2643 }
2644
2645 if (console_drivers && console_drivers->flags & CON_BOOT)
2646 bcon = console_drivers;
2647
2648 if (preferred_console < 0 || bcon || !console_drivers)
2649 preferred_console = selected_console;
2650
2651 /*
2652 * See if we want to use this console driver. If we
2653 * didn't select a console we take the first one
2654 * that registers here.
2655 */
2656 if (preferred_console < 0 && !of_specified_console) {
2657 if (newcon->index < 0)
2658 newcon->index = 0;
2659 if (newcon->setup == NULL ||
2660 newcon->setup(newcon, NULL) == 0) {
2661 newcon->flags |= CON_ENABLED;
2662 if (newcon->device) {
2663 newcon->flags |= CON_CONSDEV;
2664 preferred_console = 0;
2665 }
2666 }
2667 }
2668
2669 /*
2670 * See if this console matches one we selected on
2671 * the command line.
2672 */
2673 for (i = 0, c = console_cmdline;
2674 i < MAX_CMDLINECONSOLES && c->name[0];
2675 i++, c++) {
2676 if (!newcon->match ||
2677 newcon->match(newcon, c->name, c->index, c->options) != 0) {
2678 /* default matching */
2679 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2680 if (strcmp(c->name, newcon->name) != 0)
2681 continue;
2682 if (newcon->index >= 0 &&
2683 newcon->index != c->index)
2684 continue;
2685 if (newcon->index < 0)
2686 newcon->index = c->index;
2687
2688 if (_braille_register_console(newcon, c))
2689 return;
2690
2691 if (newcon->setup &&
2692 newcon->setup(newcon, c->options) != 0)
2693 break;
2694 }
2695
2696 newcon->flags |= CON_ENABLED;
2697 if (i == selected_console) {
2698 newcon->flags |= CON_CONSDEV;
2699 preferred_console = selected_console;
2700 }
2701 break;
2702 }
2703
2704 if (!(newcon->flags & CON_ENABLED))
2705 return;
2706
2707 /*
2708 * If we have a bootconsole, and are switching to a real console,
2709 * don't print everything out again, since when the boot console, and
2710 * the real console are the same physical device, it's annoying to
2711 * see the beginning boot messages twice
2712 */
2713 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2714 newcon->flags &= ~CON_PRINTBUFFER;
2715
2716 /*
2717 * Put this console in the list - keep the
2718 * preferred driver at the head of the list.
2719 */
2720 console_lock();
2721 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2722 newcon->next = console_drivers;
2723 console_drivers = newcon;
2724 if (newcon->next)
2725 newcon->next->flags &= ~CON_CONSDEV;
2726 } else {
2727 newcon->next = console_drivers->next;
2728 console_drivers->next = newcon;
2729 }
2730
2731 if (newcon->flags & CON_EXTENDED)
2732 if (!nr_ext_console_drivers++)
2733 pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2734
2735 if (newcon->flags & CON_PRINTBUFFER) {
2736 /*
2737 * console_unlock(); will print out the buffered messages
2738 * for us.
2739 */
2740 raw_spin_lock_irqsave(&logbuf_lock, flags);
2741 console_seq = syslog_seq;
2742 console_idx = syslog_idx;
2743 console_prev = syslog_prev;
2744 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2745 /*
2746 * We're about to replay the log buffer. Only do this to the
2747 * just-registered console to avoid excessive message spam to
2748 * the already-registered consoles.
2749 */
2750 exclusive_console = newcon;
2751 }
2752 console_unlock();
2753 console_sysfs_notify();
2754
2755 /*
2756 * By unregistering the bootconsoles after we enable the real console
2757 * we get the "console xxx enabled" message on all the consoles -
2758 * boot consoles, real consoles, etc - this is to ensure that end
2759 * users know there might be something in the kernel's log buffer that
2760 * went to the bootconsole (that they do not see on the real console)
2761 */
2762 pr_info("%sconsole [%s%d] enabled\n",
2763 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2764 newcon->name, newcon->index);
2765 if (bcon &&
2766 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2767 !keep_bootcon) {
2768 /* We need to iterate through all boot consoles, to make
2769 * sure we print everything out, before we unregister them.
2770 */
2771 for_each_console(bcon)
2772 if (bcon->flags & CON_BOOT)
2773 unregister_console(bcon);
2774 }
2775 }
2776 EXPORT_SYMBOL(register_console);
2777
2778 int unregister_console(struct console *console)
2779 {
2780 struct console *a, *b;
2781 int res;
2782
2783 pr_info("%sconsole [%s%d] disabled\n",
2784 (console->flags & CON_BOOT) ? "boot" : "" ,
2785 console->name, console->index);
2786
2787 res = _braille_unregister_console(console);
2788 if (res)
2789 return res;
2790
2791 res = 1;
2792 console_lock();
2793 if (console_drivers == console) {
2794 console_drivers=console->next;
2795 res = 0;
2796 } else if (console_drivers) {
2797 for (a=console_drivers->next, b=console_drivers ;
2798 a; b=a, a=b->next) {
2799 if (a == console) {
2800 b->next = a->next;
2801 res = 0;
2802 break;
2803 }
2804 }
2805 }
2806
2807 if (!res && (console->flags & CON_EXTENDED))
2808 nr_ext_console_drivers--;
2809
2810 /*
2811 * If this isn't the last console and it has CON_CONSDEV set, we
2812 * need to set it on the next preferred console.
2813 */
2814 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2815 console_drivers->flags |= CON_CONSDEV;
2816
2817 console->flags &= ~CON_ENABLED;
2818 console_unlock();
2819 console_sysfs_notify();
2820 return res;
2821 }
2822 EXPORT_SYMBOL(unregister_console);
2823
2824 /*
2825 * Some boot consoles access data that is in the init section and which will
2826 * be discarded after the initcalls have been run. To make sure that no code
2827 * will access this data, unregister the boot consoles in a late initcall.
2828 *
2829 * If for some reason, such as deferred probe or the driver being a loadable
2830 * module, the real console hasn't registered yet at this point, there will
2831 * be a brief interval in which no messages are logged to the console, which
2832 * makes it difficult to diagnose problems that occur during this time.
2833 *
2834 * To mitigate this problem somewhat, only unregister consoles whose memory
2835 * intersects with the init section. Note that code exists elsewhere to get
2836 * rid of the boot console as soon as the proper console shows up, so there
2837 * won't be side-effects from postponing the removal.
2838 */
2839 static int __init printk_late_init(void)
2840 {
2841 struct console *con;
2842
2843 for_each_console(con) {
2844 if (!keep_bootcon && con->flags & CON_BOOT) {
2845 /*
2846 * Make sure to unregister boot consoles whose data
2847 * resides in the init section before the init section
2848 * is discarded. Boot consoles whose data will stick
2849 * around will automatically be unregistered when the
2850 * proper console replaces them.
2851 */
2852 if (init_section_intersects(con, sizeof(*con)))
2853 unregister_console(con);
2854 }
2855 }
2856 hotcpu_notifier(console_cpu_notify, 0);
2857 return 0;
2858 }
2859 late_initcall(printk_late_init);
2860
2861 #if defined CONFIG_PRINTK
2862 /*
2863 * Delayed printk version, for scheduler-internal messages:
2864 */
2865 #define PRINTK_PENDING_WAKEUP 0x01
2866 #define PRINTK_PENDING_OUTPUT 0x02
2867
2868 static DEFINE_PER_CPU(int, printk_pending);
2869
2870 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2871 {
2872 int pending = __this_cpu_xchg(printk_pending, 0);
2873
2874 if (pending & PRINTK_PENDING_OUTPUT) {
2875 /* If trylock fails, someone else is doing the printing */
2876 if (console_trylock())
2877 console_unlock();
2878 }
2879
2880 if (pending & PRINTK_PENDING_WAKEUP)
2881 wake_up_interruptible(&log_wait);
2882 }
2883
2884 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2885 .func = wake_up_klogd_work_func,
2886 .flags = IRQ_WORK_LAZY,
2887 };
2888
2889 void wake_up_klogd(void)
2890 {
2891 preempt_disable();
2892 if (waitqueue_active(&log_wait)) {
2893 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2894 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2895 }
2896 preempt_enable();
2897 }
2898
2899 int printk_deferred(const char *fmt, ...)
2900 {
2901 va_list args;
2902 int r;
2903
2904 preempt_disable();
2905 va_start(args, fmt);
2906 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2907 va_end(args);
2908
2909 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2910 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2911 preempt_enable();
2912
2913 return r;
2914 }
2915
2916 /*
2917 * printk rate limiting, lifted from the networking subsystem.
2918 *
2919 * This enforces a rate limit: not more than 10 kernel messages
2920 * every 5s to make a denial-of-service attack impossible.
2921 */
2922 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2923
2924 int __printk_ratelimit(const char *func)
2925 {
2926 return ___ratelimit(&printk_ratelimit_state, func);
2927 }
2928 EXPORT_SYMBOL(__printk_ratelimit);
2929
2930 /**
2931 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2932 * @caller_jiffies: pointer to caller's state
2933 * @interval_msecs: minimum interval between prints
2934 *
2935 * printk_timed_ratelimit() returns true if more than @interval_msecs
2936 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2937 * returned true.
2938 */
2939 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2940 unsigned int interval_msecs)
2941 {
2942 unsigned long elapsed = jiffies - *caller_jiffies;
2943
2944 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2945 return false;
2946
2947 *caller_jiffies = jiffies;
2948 return true;
2949 }
2950 EXPORT_SYMBOL(printk_timed_ratelimit);
2951
2952 static DEFINE_SPINLOCK(dump_list_lock);
2953 static LIST_HEAD(dump_list);
2954
2955 /**
2956 * kmsg_dump_register - register a kernel log dumper.
2957 * @dumper: pointer to the kmsg_dumper structure
2958 *
2959 * Adds a kernel log dumper to the system. The dump callback in the
2960 * structure will be called when the kernel oopses or panics and must be
2961 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2962 */
2963 int kmsg_dump_register(struct kmsg_dumper *dumper)
2964 {
2965 unsigned long flags;
2966 int err = -EBUSY;
2967
2968 /* The dump callback needs to be set */
2969 if (!dumper->dump)
2970 return -EINVAL;
2971
2972 spin_lock_irqsave(&dump_list_lock, flags);
2973 /* Don't allow registering multiple times */
2974 if (!dumper->registered) {
2975 dumper->registered = 1;
2976 list_add_tail_rcu(&dumper->list, &dump_list);
2977 err = 0;
2978 }
2979 spin_unlock_irqrestore(&dump_list_lock, flags);
2980
2981 return err;
2982 }
2983 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2984
2985 /**
2986 * kmsg_dump_unregister - unregister a kmsg dumper.
2987 * @dumper: pointer to the kmsg_dumper structure
2988 *
2989 * Removes a dump device from the system. Returns zero on success and
2990 * %-EINVAL otherwise.
2991 */
2992 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2993 {
2994 unsigned long flags;
2995 int err = -EINVAL;
2996
2997 spin_lock_irqsave(&dump_list_lock, flags);
2998 if (dumper->registered) {
2999 dumper->registered = 0;
3000 list_del_rcu(&dumper->list);
3001 err = 0;
3002 }
3003 spin_unlock_irqrestore(&dump_list_lock, flags);
3004 synchronize_rcu();
3005
3006 return err;
3007 }
3008 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3009
3010 static bool always_kmsg_dump;
3011 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3012
3013 /**
3014 * kmsg_dump - dump kernel log to kernel message dumpers.
3015 * @reason: the reason (oops, panic etc) for dumping
3016 *
3017 * Call each of the registered dumper's dump() callback, which can
3018 * retrieve the kmsg records with kmsg_dump_get_line() or
3019 * kmsg_dump_get_buffer().
3020 */
3021 void kmsg_dump(enum kmsg_dump_reason reason)
3022 {
3023 struct kmsg_dumper *dumper;
3024 unsigned long flags;
3025
3026 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
3027 return;
3028
3029 rcu_read_lock();
3030 list_for_each_entry_rcu(dumper, &dump_list, list) {
3031 if (dumper->max_reason && reason > dumper->max_reason)
3032 continue;
3033
3034 /* initialize iterator with data about the stored records */
3035 dumper->active = true;
3036
3037 raw_spin_lock_irqsave(&logbuf_lock, flags);
3038 cont_flush();
3039 dumper->cur_seq = clear_seq;
3040 dumper->cur_idx = clear_idx;
3041 dumper->next_seq = log_next_seq;
3042 dumper->next_idx = log_next_idx;
3043 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3044
3045 /* invoke dumper which will iterate over records */
3046 dumper->dump(dumper, reason);
3047
3048 /* reset iterator */
3049 dumper->active = false;
3050 }
3051 rcu_read_unlock();
3052 }
3053
3054 /**
3055 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
3056 * @dumper: registered kmsg dumper
3057 * @syslog: include the "<4>" prefixes
3058 * @line: buffer to copy the line to
3059 * @size: maximum size of the buffer
3060 * @len: length of line placed into buffer
3061 *
3062 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3063 * record, and copy one record into the provided buffer.
3064 *
3065 * Consecutive calls will return the next available record moving
3066 * towards the end of the buffer with the youngest messages.
3067 *
3068 * A return value of FALSE indicates that there are no more records to
3069 * read.
3070 *
3071 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
3072 */
3073 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
3074 char *line, size_t size, size_t *len)
3075 {
3076 struct printk_log *msg;
3077 size_t l = 0;
3078 bool ret = false;
3079
3080 if (!dumper->active)
3081 goto out;
3082
3083 if (dumper->cur_seq < log_first_seq) {
3084 /* messages are gone, move to first available one */
3085 dumper->cur_seq = log_first_seq;
3086 dumper->cur_idx = log_first_idx;
3087 }
3088
3089 /* last entry */
3090 if (dumper->cur_seq >= log_next_seq)
3091 goto out;
3092
3093 msg = log_from_idx(dumper->cur_idx);
3094 l = msg_print_text(msg, 0, syslog, line, size);
3095
3096 dumper->cur_idx = log_next(dumper->cur_idx);
3097 dumper->cur_seq++;
3098 ret = true;
3099 out:
3100 if (len)
3101 *len = l;
3102 return ret;
3103 }
3104
3105 /**
3106 * kmsg_dump_get_line - retrieve one kmsg log line
3107 * @dumper: registered kmsg dumper
3108 * @syslog: include the "<4>" prefixes
3109 * @line: buffer to copy the line to
3110 * @size: maximum size of the buffer
3111 * @len: length of line placed into buffer
3112 *
3113 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3114 * record, and copy one record into the provided buffer.
3115 *
3116 * Consecutive calls will return the next available record moving
3117 * towards the end of the buffer with the youngest messages.
3118 *
3119 * A return value of FALSE indicates that there are no more records to
3120 * read.
3121 */
3122 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3123 char *line, size_t size, size_t *len)
3124 {
3125 unsigned long flags;
3126 bool ret;
3127
3128 raw_spin_lock_irqsave(&logbuf_lock, flags);
3129 cont_flush();
3130 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3131 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3132
3133 return ret;
3134 }
3135 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3136
3137 /**
3138 * kmsg_dump_get_buffer - copy kmsg log lines
3139 * @dumper: registered kmsg dumper
3140 * @syslog: include the "<4>" prefixes
3141 * @buf: buffer to copy the line to
3142 * @size: maximum size of the buffer
3143 * @len: length of line placed into buffer
3144 *
3145 * Start at the end of the kmsg buffer and fill the provided buffer
3146 * with as many of the the *youngest* kmsg records that fit into it.
3147 * If the buffer is large enough, all available kmsg records will be
3148 * copied with a single call.
3149 *
3150 * Consecutive calls will fill the buffer with the next block of
3151 * available older records, not including the earlier retrieved ones.
3152 *
3153 * A return value of FALSE indicates that there are no more records to
3154 * read.
3155 */
3156 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3157 char *buf, size_t size, size_t *len)
3158 {
3159 unsigned long flags;
3160 u64 seq;
3161 u32 idx;
3162 u64 next_seq;
3163 u32 next_idx;
3164 enum log_flags prev;
3165 size_t l = 0;
3166 bool ret = false;
3167
3168 if (!dumper->active)
3169 goto out;
3170
3171 raw_spin_lock_irqsave(&logbuf_lock, flags);
3172 cont_flush();
3173 if (dumper->cur_seq < log_first_seq) {
3174 /* messages are gone, move to first available one */
3175 dumper->cur_seq = log_first_seq;
3176 dumper->cur_idx = log_first_idx;
3177 }
3178
3179 /* last entry */
3180 if (dumper->cur_seq >= dumper->next_seq) {
3181 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3182 goto out;
3183 }
3184
3185 /* calculate length of entire buffer */
3186 seq = dumper->cur_seq;
3187 idx = dumper->cur_idx;
3188 prev = 0;
3189 while (seq < dumper->next_seq) {
3190 struct printk_log *msg = log_from_idx(idx);
3191
3192 l += msg_print_text(msg, prev, true, NULL, 0);
3193 idx = log_next(idx);
3194 seq++;
3195 prev = msg->flags;
3196 }
3197
3198 /* move first record forward until length fits into the buffer */
3199 seq = dumper->cur_seq;
3200 idx = dumper->cur_idx;
3201 prev = 0;
3202 while (l > size && seq < dumper->next_seq) {
3203 struct printk_log *msg = log_from_idx(idx);
3204
3205 l -= msg_print_text(msg, prev, true, NULL, 0);
3206 idx = log_next(idx);
3207 seq++;
3208 prev = msg->flags;
3209 }
3210
3211 /* last message in next interation */
3212 next_seq = seq;
3213 next_idx = idx;
3214
3215 l = 0;
3216 while (seq < dumper->next_seq) {
3217 struct printk_log *msg = log_from_idx(idx);
3218
3219 l += msg_print_text(msg, prev, syslog, buf + l, size - l);
3220 idx = log_next(idx);
3221 seq++;
3222 prev = msg->flags;
3223 }
3224
3225 dumper->next_seq = next_seq;
3226 dumper->next_idx = next_idx;
3227 ret = true;
3228 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3229 out:
3230 if (len)
3231 *len = l;
3232 return ret;
3233 }
3234 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3235
3236 /**
3237 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3238 * @dumper: registered kmsg dumper
3239 *
3240 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3241 * kmsg_dump_get_buffer() can be called again and used multiple
3242 * times within the same dumper.dump() callback.
3243 *
3244 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3245 */
3246 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3247 {
3248 dumper->cur_seq = clear_seq;
3249 dumper->cur_idx = clear_idx;
3250 dumper->next_seq = log_next_seq;
3251 dumper->next_idx = log_next_idx;
3252 }
3253
3254 /**
3255 * kmsg_dump_rewind - reset the interator
3256 * @dumper: registered kmsg dumper
3257 *
3258 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3259 * kmsg_dump_get_buffer() can be called again and used multiple
3260 * times within the same dumper.dump() callback.
3261 */
3262 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3263 {
3264 unsigned long flags;
3265
3266 raw_spin_lock_irqsave(&logbuf_lock, flags);
3267 kmsg_dump_rewind_nolock(dumper);
3268 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3269 }
3270 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3271
3272 static char dump_stack_arch_desc_str[128];
3273
3274 /**
3275 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3276 * @fmt: printf-style format string
3277 * @...: arguments for the format string
3278 *
3279 * The configured string will be printed right after utsname during task
3280 * dumps. Usually used to add arch-specific system identifiers. If an
3281 * arch wants to make use of such an ID string, it should initialize this
3282 * as soon as possible during boot.
3283 */
3284 void __init dump_stack_set_arch_desc(const char *fmt, ...)
3285 {
3286 va_list args;
3287
3288 va_start(args, fmt);
3289 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3290 fmt, args);
3291 va_end(args);
3292 }
3293
3294 /**
3295 * dump_stack_print_info - print generic debug info for dump_stack()
3296 * @log_lvl: log level
3297 *
3298 * Arch-specific dump_stack() implementations can use this function to
3299 * print out the same debug information as the generic dump_stack().
3300 */
3301 void dump_stack_print_info(const char *log_lvl)
3302 {
3303 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3304 log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3305 print_tainted(), init_utsname()->release,
3306 (int)strcspn(init_utsname()->version, " "),
3307 init_utsname()->version);
3308
3309 if (dump_stack_arch_desc_str[0] != '\0')
3310 printk("%sHardware name: %s\n",
3311 log_lvl, dump_stack_arch_desc_str);
3312
3313 print_worker_info(log_lvl, current);
3314 }
3315
3316 /**
3317 * show_regs_print_info - print generic debug info for show_regs()
3318 * @log_lvl: log level
3319 *
3320 * show_regs() implementations can use this function to print out generic
3321 * debug information.
3322 */
3323 void show_regs_print_info(const char *log_lvl)
3324 {
3325 dump_stack_print_info(log_lvl);
3326
3327 printk("%stask: %p task.stack: %p\n",
3328 log_lvl, current, task_stack_page(current));
3329 }
3330
3331 #endif