]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/printk/printk.c
Merge branch 'akpm' (patches from Andrew)
[mirror_ubuntu-bionic-kernel.git] / kernel / printk / printk.c
1 /*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h> /* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/syscalls.h>
36 #include <linux/kexec.h>
37 #include <linux/kdb.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/notifier.h>
43 #include <linux/rculist.h>
44 #include <linux/poll.h>
45 #include <linux/irq_work.h>
46 #include <linux/utsname.h>
47 #include <linux/ctype.h>
48 #include <linux/uio.h>
49
50 #include <asm/uaccess.h>
51 #include <asm-generic/sections.h>
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/printk.h>
55
56 #include "console_cmdline.h"
57 #include "braille.h"
58
59 int console_printk[4] = {
60 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */
61 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */
62 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */
63 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */
64 };
65
66 /*
67 * Low level drivers may need that to know if they can schedule in
68 * their unblank() callback or not. So let's export it.
69 */
70 int oops_in_progress;
71 EXPORT_SYMBOL(oops_in_progress);
72
73 /*
74 * console_sem protects the console_drivers list, and also
75 * provides serialisation for access to the entire console
76 * driver system.
77 */
78 static DEFINE_SEMAPHORE(console_sem);
79 struct console *console_drivers;
80 EXPORT_SYMBOL_GPL(console_drivers);
81
82 #ifdef CONFIG_LOCKDEP
83 static struct lockdep_map console_lock_dep_map = {
84 .name = "console_lock"
85 };
86 #endif
87
88 /*
89 * Number of registered extended console drivers.
90 *
91 * If extended consoles are present, in-kernel cont reassembly is disabled
92 * and each fragment is stored as a separate log entry with proper
93 * continuation flag so that every emitted message has full metadata. This
94 * doesn't change the result for regular consoles or /proc/kmsg. For
95 * /dev/kmsg, as long as the reader concatenates messages according to
96 * consecutive continuation flags, the end result should be the same too.
97 */
98 static int nr_ext_console_drivers;
99
100 /*
101 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
102 * macros instead of functions so that _RET_IP_ contains useful information.
103 */
104 #define down_console_sem() do { \
105 down(&console_sem);\
106 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
107 } while (0)
108
109 static int __down_trylock_console_sem(unsigned long ip)
110 {
111 if (down_trylock(&console_sem))
112 return 1;
113 mutex_acquire(&console_lock_dep_map, 0, 1, ip);
114 return 0;
115 }
116 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
117
118 #define up_console_sem() do { \
119 mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
120 up(&console_sem);\
121 } while (0)
122
123 /*
124 * This is used for debugging the mess that is the VT code by
125 * keeping track if we have the console semaphore held. It's
126 * definitely not the perfect debug tool (we don't know if _WE_
127 * hold it and are racing, but it helps tracking those weird code
128 * paths in the console code where we end up in places I want
129 * locked without the console sempahore held).
130 */
131 static int console_locked, console_suspended;
132
133 /*
134 * If exclusive_console is non-NULL then only this console is to be printed to.
135 */
136 static struct console *exclusive_console;
137
138 /*
139 * Array of consoles built from command line options (console=)
140 */
141
142 #define MAX_CMDLINECONSOLES 8
143
144 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
145
146 static int selected_console = -1;
147 static int preferred_console = -1;
148 int console_set_on_cmdline;
149 EXPORT_SYMBOL(console_set_on_cmdline);
150
151 /* Flag: console code may call schedule() */
152 static int console_may_schedule;
153
154 /*
155 * The printk log buffer consists of a chain of concatenated variable
156 * length records. Every record starts with a record header, containing
157 * the overall length of the record.
158 *
159 * The heads to the first and last entry in the buffer, as well as the
160 * sequence numbers of these entries are maintained when messages are
161 * stored.
162 *
163 * If the heads indicate available messages, the length in the header
164 * tells the start next message. A length == 0 for the next message
165 * indicates a wrap-around to the beginning of the buffer.
166 *
167 * Every record carries the monotonic timestamp in microseconds, as well as
168 * the standard userspace syslog level and syslog facility. The usual
169 * kernel messages use LOG_KERN; userspace-injected messages always carry
170 * a matching syslog facility, by default LOG_USER. The origin of every
171 * message can be reliably determined that way.
172 *
173 * The human readable log message directly follows the message header. The
174 * length of the message text is stored in the header, the stored message
175 * is not terminated.
176 *
177 * Optionally, a message can carry a dictionary of properties (key/value pairs),
178 * to provide userspace with a machine-readable message context.
179 *
180 * Examples for well-defined, commonly used property names are:
181 * DEVICE=b12:8 device identifier
182 * b12:8 block dev_t
183 * c127:3 char dev_t
184 * n8 netdev ifindex
185 * +sound:card0 subsystem:devname
186 * SUBSYSTEM=pci driver-core subsystem name
187 *
188 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
189 * follows directly after a '=' character. Every property is terminated by
190 * a '\0' character. The last property is not terminated.
191 *
192 * Example of a message structure:
193 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
194 * 0008 34 00 record is 52 bytes long
195 * 000a 0b 00 text is 11 bytes long
196 * 000c 1f 00 dictionary is 23 bytes long
197 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
198 * 0010 69 74 27 73 20 61 20 6c "it's a l"
199 * 69 6e 65 "ine"
200 * 001b 44 45 56 49 43 "DEVIC"
201 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
202 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
203 * 67 "g"
204 * 0032 00 00 00 padding to next message header
205 *
206 * The 'struct printk_log' buffer header must never be directly exported to
207 * userspace, it is a kernel-private implementation detail that might
208 * need to be changed in the future, when the requirements change.
209 *
210 * /dev/kmsg exports the structured data in the following line format:
211 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
212 *
213 * Users of the export format should ignore possible additional values
214 * separated by ',', and find the message after the ';' character.
215 *
216 * The optional key/value pairs are attached as continuation lines starting
217 * with a space character and terminated by a newline. All possible
218 * non-prinatable characters are escaped in the "\xff" notation.
219 */
220
221 enum log_flags {
222 LOG_NOCONS = 1, /* already flushed, do not print to console */
223 LOG_NEWLINE = 2, /* text ended with a newline */
224 LOG_PREFIX = 4, /* text started with a prefix */
225 LOG_CONT = 8, /* text is a fragment of a continuation line */
226 };
227
228 struct printk_log {
229 u64 ts_nsec; /* timestamp in nanoseconds */
230 u16 len; /* length of entire record */
231 u16 text_len; /* length of text buffer */
232 u16 dict_len; /* length of dictionary buffer */
233 u8 facility; /* syslog facility */
234 u8 flags:5; /* internal record flags */
235 u8 level:3; /* syslog level */
236 };
237
238 /*
239 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken
240 * within the scheduler's rq lock. It must be released before calling
241 * console_unlock() or anything else that might wake up a process.
242 */
243 static DEFINE_RAW_SPINLOCK(logbuf_lock);
244
245 #ifdef CONFIG_PRINTK
246 DECLARE_WAIT_QUEUE_HEAD(log_wait);
247 /* the next printk record to read by syslog(READ) or /proc/kmsg */
248 static u64 syslog_seq;
249 static u32 syslog_idx;
250 static enum log_flags syslog_prev;
251 static size_t syslog_partial;
252
253 /* index and sequence number of the first record stored in the buffer */
254 static u64 log_first_seq;
255 static u32 log_first_idx;
256
257 /* index and sequence number of the next record to store in the buffer */
258 static u64 log_next_seq;
259 static u32 log_next_idx;
260
261 /* the next printk record to write to the console */
262 static u64 console_seq;
263 static u32 console_idx;
264 static enum log_flags console_prev;
265
266 /* the next printk record to read after the last 'clear' command */
267 static u64 clear_seq;
268 static u32 clear_idx;
269
270 #define PREFIX_MAX 32
271 #define LOG_LINE_MAX (1024 - PREFIX_MAX)
272
273 #define LOG_LEVEL(v) ((v) & 0x07)
274 #define LOG_FACILITY(v) ((v) >> 3 & 0xff)
275
276 /* record buffer */
277 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
278 #define LOG_ALIGN 4
279 #else
280 #define LOG_ALIGN __alignof__(struct printk_log)
281 #endif
282 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
283 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
284 static char *log_buf = __log_buf;
285 static u32 log_buf_len = __LOG_BUF_LEN;
286
287 /* Return log buffer address */
288 char *log_buf_addr_get(void)
289 {
290 return log_buf;
291 }
292
293 /* Return log buffer size */
294 u32 log_buf_len_get(void)
295 {
296 return log_buf_len;
297 }
298
299 /* human readable text of the record */
300 static char *log_text(const struct printk_log *msg)
301 {
302 return (char *)msg + sizeof(struct printk_log);
303 }
304
305 /* optional key/value pair dictionary attached to the record */
306 static char *log_dict(const struct printk_log *msg)
307 {
308 return (char *)msg + sizeof(struct printk_log) + msg->text_len;
309 }
310
311 /* get record by index; idx must point to valid msg */
312 static struct printk_log *log_from_idx(u32 idx)
313 {
314 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
315
316 /*
317 * A length == 0 record is the end of buffer marker. Wrap around and
318 * read the message at the start of the buffer.
319 */
320 if (!msg->len)
321 return (struct printk_log *)log_buf;
322 return msg;
323 }
324
325 /* get next record; idx must point to valid msg */
326 static u32 log_next(u32 idx)
327 {
328 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
329
330 /* length == 0 indicates the end of the buffer; wrap */
331 /*
332 * A length == 0 record is the end of buffer marker. Wrap around and
333 * read the message at the start of the buffer as *this* one, and
334 * return the one after that.
335 */
336 if (!msg->len) {
337 msg = (struct printk_log *)log_buf;
338 return msg->len;
339 }
340 return idx + msg->len;
341 }
342
343 /*
344 * Check whether there is enough free space for the given message.
345 *
346 * The same values of first_idx and next_idx mean that the buffer
347 * is either empty or full.
348 *
349 * If the buffer is empty, we must respect the position of the indexes.
350 * They cannot be reset to the beginning of the buffer.
351 */
352 static int logbuf_has_space(u32 msg_size, bool empty)
353 {
354 u32 free;
355
356 if (log_next_idx > log_first_idx || empty)
357 free = max(log_buf_len - log_next_idx, log_first_idx);
358 else
359 free = log_first_idx - log_next_idx;
360
361 /*
362 * We need space also for an empty header that signalizes wrapping
363 * of the buffer.
364 */
365 return free >= msg_size + sizeof(struct printk_log);
366 }
367
368 static int log_make_free_space(u32 msg_size)
369 {
370 while (log_first_seq < log_next_seq) {
371 if (logbuf_has_space(msg_size, false))
372 return 0;
373 /* drop old messages until we have enough contiguous space */
374 log_first_idx = log_next(log_first_idx);
375 log_first_seq++;
376 }
377
378 /* sequence numbers are equal, so the log buffer is empty */
379 if (logbuf_has_space(msg_size, true))
380 return 0;
381
382 return -ENOMEM;
383 }
384
385 /* compute the message size including the padding bytes */
386 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
387 {
388 u32 size;
389
390 size = sizeof(struct printk_log) + text_len + dict_len;
391 *pad_len = (-size) & (LOG_ALIGN - 1);
392 size += *pad_len;
393
394 return size;
395 }
396
397 /*
398 * Define how much of the log buffer we could take at maximum. The value
399 * must be greater than two. Note that only half of the buffer is available
400 * when the index points to the middle.
401 */
402 #define MAX_LOG_TAKE_PART 4
403 static const char trunc_msg[] = "<truncated>";
404
405 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
406 u16 *dict_len, u32 *pad_len)
407 {
408 /*
409 * The message should not take the whole buffer. Otherwise, it might
410 * get removed too soon.
411 */
412 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
413 if (*text_len > max_text_len)
414 *text_len = max_text_len;
415 /* enable the warning message */
416 *trunc_msg_len = strlen(trunc_msg);
417 /* disable the "dict" completely */
418 *dict_len = 0;
419 /* compute the size again, count also the warning message */
420 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
421 }
422
423 /* insert record into the buffer, discard old ones, update heads */
424 static int log_store(int facility, int level,
425 enum log_flags flags, u64 ts_nsec,
426 const char *dict, u16 dict_len,
427 const char *text, u16 text_len)
428 {
429 struct printk_log *msg;
430 u32 size, pad_len;
431 u16 trunc_msg_len = 0;
432
433 /* number of '\0' padding bytes to next message */
434 size = msg_used_size(text_len, dict_len, &pad_len);
435
436 if (log_make_free_space(size)) {
437 /* truncate the message if it is too long for empty buffer */
438 size = truncate_msg(&text_len, &trunc_msg_len,
439 &dict_len, &pad_len);
440 /* survive when the log buffer is too small for trunc_msg */
441 if (log_make_free_space(size))
442 return 0;
443 }
444
445 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
446 /*
447 * This message + an additional empty header does not fit
448 * at the end of the buffer. Add an empty header with len == 0
449 * to signify a wrap around.
450 */
451 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
452 log_next_idx = 0;
453 }
454
455 /* fill message */
456 msg = (struct printk_log *)(log_buf + log_next_idx);
457 memcpy(log_text(msg), text, text_len);
458 msg->text_len = text_len;
459 if (trunc_msg_len) {
460 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
461 msg->text_len += trunc_msg_len;
462 }
463 memcpy(log_dict(msg), dict, dict_len);
464 msg->dict_len = dict_len;
465 msg->facility = facility;
466 msg->level = level & 7;
467 msg->flags = flags & 0x1f;
468 if (ts_nsec > 0)
469 msg->ts_nsec = ts_nsec;
470 else
471 msg->ts_nsec = local_clock();
472 memset(log_dict(msg) + dict_len, 0, pad_len);
473 msg->len = size;
474
475 /* insert message */
476 log_next_idx += msg->len;
477 log_next_seq++;
478
479 return msg->text_len;
480 }
481
482 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
483
484 static int syslog_action_restricted(int type)
485 {
486 if (dmesg_restrict)
487 return 1;
488 /*
489 * Unless restricted, we allow "read all" and "get buffer size"
490 * for everybody.
491 */
492 return type != SYSLOG_ACTION_READ_ALL &&
493 type != SYSLOG_ACTION_SIZE_BUFFER;
494 }
495
496 int check_syslog_permissions(int type, int source)
497 {
498 /*
499 * If this is from /proc/kmsg and we've already opened it, then we've
500 * already done the capabilities checks at open time.
501 */
502 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
503 goto ok;
504
505 if (syslog_action_restricted(type)) {
506 if (capable(CAP_SYSLOG))
507 goto ok;
508 /*
509 * For historical reasons, accept CAP_SYS_ADMIN too, with
510 * a warning.
511 */
512 if (capable(CAP_SYS_ADMIN)) {
513 pr_warn_once("%s (%d): Attempt to access syslog with "
514 "CAP_SYS_ADMIN but no CAP_SYSLOG "
515 "(deprecated).\n",
516 current->comm, task_pid_nr(current));
517 goto ok;
518 }
519 return -EPERM;
520 }
521 ok:
522 return security_syslog(type);
523 }
524 EXPORT_SYMBOL_GPL(check_syslog_permissions);
525
526 static void append_char(char **pp, char *e, char c)
527 {
528 if (*pp < e)
529 *(*pp)++ = c;
530 }
531
532 static ssize_t msg_print_ext_header(char *buf, size_t size,
533 struct printk_log *msg, u64 seq,
534 enum log_flags prev_flags)
535 {
536 u64 ts_usec = msg->ts_nsec;
537 char cont = '-';
538
539 do_div(ts_usec, 1000);
540
541 /*
542 * If we couldn't merge continuation line fragments during the print,
543 * export the stored flags to allow an optional external merge of the
544 * records. Merging the records isn't always neccessarily correct, like
545 * when we hit a race during printing. In most cases though, it produces
546 * better readable output. 'c' in the record flags mark the first
547 * fragment of a line, '+' the following.
548 */
549 if (msg->flags & LOG_CONT && !(prev_flags & LOG_CONT))
550 cont = 'c';
551 else if ((msg->flags & LOG_CONT) ||
552 ((prev_flags & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
553 cont = '+';
554
555 return scnprintf(buf, size, "%u,%llu,%llu,%c;",
556 (msg->facility << 3) | msg->level, seq, ts_usec, cont);
557 }
558
559 static ssize_t msg_print_ext_body(char *buf, size_t size,
560 char *dict, size_t dict_len,
561 char *text, size_t text_len)
562 {
563 char *p = buf, *e = buf + size;
564 size_t i;
565
566 /* escape non-printable characters */
567 for (i = 0; i < text_len; i++) {
568 unsigned char c = text[i];
569
570 if (c < ' ' || c >= 127 || c == '\\')
571 p += scnprintf(p, e - p, "\\x%02x", c);
572 else
573 append_char(&p, e, c);
574 }
575 append_char(&p, e, '\n');
576
577 if (dict_len) {
578 bool line = true;
579
580 for (i = 0; i < dict_len; i++) {
581 unsigned char c = dict[i];
582
583 if (line) {
584 append_char(&p, e, ' ');
585 line = false;
586 }
587
588 if (c == '\0') {
589 append_char(&p, e, '\n');
590 line = true;
591 continue;
592 }
593
594 if (c < ' ' || c >= 127 || c == '\\') {
595 p += scnprintf(p, e - p, "\\x%02x", c);
596 continue;
597 }
598
599 append_char(&p, e, c);
600 }
601 append_char(&p, e, '\n');
602 }
603
604 return p - buf;
605 }
606
607 /* /dev/kmsg - userspace message inject/listen interface */
608 struct devkmsg_user {
609 u64 seq;
610 u32 idx;
611 enum log_flags prev;
612 struct mutex lock;
613 char buf[CONSOLE_EXT_LOG_MAX];
614 };
615
616 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
617 {
618 char *buf, *line;
619 int level = default_message_loglevel;
620 int facility = 1; /* LOG_USER */
621 size_t len = iov_iter_count(from);
622 ssize_t ret = len;
623
624 if (len > LOG_LINE_MAX)
625 return -EINVAL;
626 buf = kmalloc(len+1, GFP_KERNEL);
627 if (buf == NULL)
628 return -ENOMEM;
629
630 buf[len] = '\0';
631 if (copy_from_iter(buf, len, from) != len) {
632 kfree(buf);
633 return -EFAULT;
634 }
635
636 /*
637 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
638 * the decimal value represents 32bit, the lower 3 bit are the log
639 * level, the rest are the log facility.
640 *
641 * If no prefix or no userspace facility is specified, we
642 * enforce LOG_USER, to be able to reliably distinguish
643 * kernel-generated messages from userspace-injected ones.
644 */
645 line = buf;
646 if (line[0] == '<') {
647 char *endp = NULL;
648 unsigned int u;
649
650 u = simple_strtoul(line + 1, &endp, 10);
651 if (endp && endp[0] == '>') {
652 level = LOG_LEVEL(u);
653 if (LOG_FACILITY(u) != 0)
654 facility = LOG_FACILITY(u);
655 endp++;
656 len -= endp - line;
657 line = endp;
658 }
659 }
660
661 printk_emit(facility, level, NULL, 0, "%s", line);
662 kfree(buf);
663 return ret;
664 }
665
666 static ssize_t devkmsg_read(struct file *file, char __user *buf,
667 size_t count, loff_t *ppos)
668 {
669 struct devkmsg_user *user = file->private_data;
670 struct printk_log *msg;
671 size_t len;
672 ssize_t ret;
673
674 if (!user)
675 return -EBADF;
676
677 ret = mutex_lock_interruptible(&user->lock);
678 if (ret)
679 return ret;
680 raw_spin_lock_irq(&logbuf_lock);
681 while (user->seq == log_next_seq) {
682 if (file->f_flags & O_NONBLOCK) {
683 ret = -EAGAIN;
684 raw_spin_unlock_irq(&logbuf_lock);
685 goto out;
686 }
687
688 raw_spin_unlock_irq(&logbuf_lock);
689 ret = wait_event_interruptible(log_wait,
690 user->seq != log_next_seq);
691 if (ret)
692 goto out;
693 raw_spin_lock_irq(&logbuf_lock);
694 }
695
696 if (user->seq < log_first_seq) {
697 /* our last seen message is gone, return error and reset */
698 user->idx = log_first_idx;
699 user->seq = log_first_seq;
700 ret = -EPIPE;
701 raw_spin_unlock_irq(&logbuf_lock);
702 goto out;
703 }
704
705 msg = log_from_idx(user->idx);
706 len = msg_print_ext_header(user->buf, sizeof(user->buf),
707 msg, user->seq, user->prev);
708 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
709 log_dict(msg), msg->dict_len,
710 log_text(msg), msg->text_len);
711
712 user->prev = msg->flags;
713 user->idx = log_next(user->idx);
714 user->seq++;
715 raw_spin_unlock_irq(&logbuf_lock);
716
717 if (len > count) {
718 ret = -EINVAL;
719 goto out;
720 }
721
722 if (copy_to_user(buf, user->buf, len)) {
723 ret = -EFAULT;
724 goto out;
725 }
726 ret = len;
727 out:
728 mutex_unlock(&user->lock);
729 return ret;
730 }
731
732 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
733 {
734 struct devkmsg_user *user = file->private_data;
735 loff_t ret = 0;
736
737 if (!user)
738 return -EBADF;
739 if (offset)
740 return -ESPIPE;
741
742 raw_spin_lock_irq(&logbuf_lock);
743 switch (whence) {
744 case SEEK_SET:
745 /* the first record */
746 user->idx = log_first_idx;
747 user->seq = log_first_seq;
748 break;
749 case SEEK_DATA:
750 /*
751 * The first record after the last SYSLOG_ACTION_CLEAR,
752 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
753 * changes no global state, and does not clear anything.
754 */
755 user->idx = clear_idx;
756 user->seq = clear_seq;
757 break;
758 case SEEK_END:
759 /* after the last record */
760 user->idx = log_next_idx;
761 user->seq = log_next_seq;
762 break;
763 default:
764 ret = -EINVAL;
765 }
766 raw_spin_unlock_irq(&logbuf_lock);
767 return ret;
768 }
769
770 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
771 {
772 struct devkmsg_user *user = file->private_data;
773 int ret = 0;
774
775 if (!user)
776 return POLLERR|POLLNVAL;
777
778 poll_wait(file, &log_wait, wait);
779
780 raw_spin_lock_irq(&logbuf_lock);
781 if (user->seq < log_next_seq) {
782 /* return error when data has vanished underneath us */
783 if (user->seq < log_first_seq)
784 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
785 else
786 ret = POLLIN|POLLRDNORM;
787 }
788 raw_spin_unlock_irq(&logbuf_lock);
789
790 return ret;
791 }
792
793 static int devkmsg_open(struct inode *inode, struct file *file)
794 {
795 struct devkmsg_user *user;
796 int err;
797
798 /* write-only does not need any file context */
799 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
800 return 0;
801
802 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
803 SYSLOG_FROM_READER);
804 if (err)
805 return err;
806
807 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
808 if (!user)
809 return -ENOMEM;
810
811 mutex_init(&user->lock);
812
813 raw_spin_lock_irq(&logbuf_lock);
814 user->idx = log_first_idx;
815 user->seq = log_first_seq;
816 raw_spin_unlock_irq(&logbuf_lock);
817
818 file->private_data = user;
819 return 0;
820 }
821
822 static int devkmsg_release(struct inode *inode, struct file *file)
823 {
824 struct devkmsg_user *user = file->private_data;
825
826 if (!user)
827 return 0;
828
829 mutex_destroy(&user->lock);
830 kfree(user);
831 return 0;
832 }
833
834 const struct file_operations kmsg_fops = {
835 .open = devkmsg_open,
836 .read = devkmsg_read,
837 .write_iter = devkmsg_write,
838 .llseek = devkmsg_llseek,
839 .poll = devkmsg_poll,
840 .release = devkmsg_release,
841 };
842
843 #ifdef CONFIG_KEXEC_CORE
844 /*
845 * This appends the listed symbols to /proc/vmcore
846 *
847 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
848 * obtain access to symbols that are otherwise very difficult to locate. These
849 * symbols are specifically used so that utilities can access and extract the
850 * dmesg log from a vmcore file after a crash.
851 */
852 void log_buf_kexec_setup(void)
853 {
854 VMCOREINFO_SYMBOL(log_buf);
855 VMCOREINFO_SYMBOL(log_buf_len);
856 VMCOREINFO_SYMBOL(log_first_idx);
857 VMCOREINFO_SYMBOL(log_next_idx);
858 /*
859 * Export struct printk_log size and field offsets. User space tools can
860 * parse it and detect any changes to structure down the line.
861 */
862 VMCOREINFO_STRUCT_SIZE(printk_log);
863 VMCOREINFO_OFFSET(printk_log, ts_nsec);
864 VMCOREINFO_OFFSET(printk_log, len);
865 VMCOREINFO_OFFSET(printk_log, text_len);
866 VMCOREINFO_OFFSET(printk_log, dict_len);
867 }
868 #endif
869
870 /* requested log_buf_len from kernel cmdline */
871 static unsigned long __initdata new_log_buf_len;
872
873 /* we practice scaling the ring buffer by powers of 2 */
874 static void __init log_buf_len_update(unsigned size)
875 {
876 if (size)
877 size = roundup_pow_of_two(size);
878 if (size > log_buf_len)
879 new_log_buf_len = size;
880 }
881
882 /* save requested log_buf_len since it's too early to process it */
883 static int __init log_buf_len_setup(char *str)
884 {
885 unsigned size = memparse(str, &str);
886
887 log_buf_len_update(size);
888
889 return 0;
890 }
891 early_param("log_buf_len", log_buf_len_setup);
892
893 #ifdef CONFIG_SMP
894 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
895
896 static void __init log_buf_add_cpu(void)
897 {
898 unsigned int cpu_extra;
899
900 /*
901 * archs should set up cpu_possible_bits properly with
902 * set_cpu_possible() after setup_arch() but just in
903 * case lets ensure this is valid.
904 */
905 if (num_possible_cpus() == 1)
906 return;
907
908 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
909
910 /* by default this will only continue through for large > 64 CPUs */
911 if (cpu_extra <= __LOG_BUF_LEN / 2)
912 return;
913
914 pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
915 __LOG_CPU_MAX_BUF_LEN);
916 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
917 cpu_extra);
918 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
919
920 log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
921 }
922 #else /* !CONFIG_SMP */
923 static inline void log_buf_add_cpu(void) {}
924 #endif /* CONFIG_SMP */
925
926 void __init setup_log_buf(int early)
927 {
928 unsigned long flags;
929 char *new_log_buf;
930 int free;
931
932 if (log_buf != __log_buf)
933 return;
934
935 if (!early && !new_log_buf_len)
936 log_buf_add_cpu();
937
938 if (!new_log_buf_len)
939 return;
940
941 if (early) {
942 new_log_buf =
943 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
944 } else {
945 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
946 LOG_ALIGN);
947 }
948
949 if (unlikely(!new_log_buf)) {
950 pr_err("log_buf_len: %ld bytes not available\n",
951 new_log_buf_len);
952 return;
953 }
954
955 raw_spin_lock_irqsave(&logbuf_lock, flags);
956 log_buf_len = new_log_buf_len;
957 log_buf = new_log_buf;
958 new_log_buf_len = 0;
959 free = __LOG_BUF_LEN - log_next_idx;
960 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
961 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
962
963 pr_info("log_buf_len: %d bytes\n", log_buf_len);
964 pr_info("early log buf free: %d(%d%%)\n",
965 free, (free * 100) / __LOG_BUF_LEN);
966 }
967
968 static bool __read_mostly ignore_loglevel;
969
970 static int __init ignore_loglevel_setup(char *str)
971 {
972 ignore_loglevel = true;
973 pr_info("debug: ignoring loglevel setting.\n");
974
975 return 0;
976 }
977
978 early_param("ignore_loglevel", ignore_loglevel_setup);
979 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
980 MODULE_PARM_DESC(ignore_loglevel,
981 "ignore loglevel setting (prints all kernel messages to the console)");
982
983 #ifdef CONFIG_BOOT_PRINTK_DELAY
984
985 static int boot_delay; /* msecs delay after each printk during bootup */
986 static unsigned long long loops_per_msec; /* based on boot_delay */
987
988 static int __init boot_delay_setup(char *str)
989 {
990 unsigned long lpj;
991
992 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
993 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
994
995 get_option(&str, &boot_delay);
996 if (boot_delay > 10 * 1000)
997 boot_delay = 0;
998
999 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1000 "HZ: %d, loops_per_msec: %llu\n",
1001 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1002 return 0;
1003 }
1004 early_param("boot_delay", boot_delay_setup);
1005
1006 static void boot_delay_msec(int level)
1007 {
1008 unsigned long long k;
1009 unsigned long timeout;
1010
1011 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
1012 || (level >= console_loglevel && !ignore_loglevel)) {
1013 return;
1014 }
1015
1016 k = (unsigned long long)loops_per_msec * boot_delay;
1017
1018 timeout = jiffies + msecs_to_jiffies(boot_delay);
1019 while (k) {
1020 k--;
1021 cpu_relax();
1022 /*
1023 * use (volatile) jiffies to prevent
1024 * compiler reduction; loop termination via jiffies
1025 * is secondary and may or may not happen.
1026 */
1027 if (time_after(jiffies, timeout))
1028 break;
1029 touch_nmi_watchdog();
1030 }
1031 }
1032 #else
1033 static inline void boot_delay_msec(int level)
1034 {
1035 }
1036 #endif
1037
1038 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1039 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1040
1041 static size_t print_time(u64 ts, char *buf)
1042 {
1043 unsigned long rem_nsec;
1044
1045 if (!printk_time)
1046 return 0;
1047
1048 rem_nsec = do_div(ts, 1000000000);
1049
1050 if (!buf)
1051 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1052
1053 return sprintf(buf, "[%5lu.%06lu] ",
1054 (unsigned long)ts, rem_nsec / 1000);
1055 }
1056
1057 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1058 {
1059 size_t len = 0;
1060 unsigned int prefix = (msg->facility << 3) | msg->level;
1061
1062 if (syslog) {
1063 if (buf) {
1064 len += sprintf(buf, "<%u>", prefix);
1065 } else {
1066 len += 3;
1067 if (prefix > 999)
1068 len += 3;
1069 else if (prefix > 99)
1070 len += 2;
1071 else if (prefix > 9)
1072 len++;
1073 }
1074 }
1075
1076 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1077 return len;
1078 }
1079
1080 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1081 bool syslog, char *buf, size_t size)
1082 {
1083 const char *text = log_text(msg);
1084 size_t text_size = msg->text_len;
1085 bool prefix = true;
1086 bool newline = true;
1087 size_t len = 0;
1088
1089 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1090 prefix = false;
1091
1092 if (msg->flags & LOG_CONT) {
1093 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1094 prefix = false;
1095
1096 if (!(msg->flags & LOG_NEWLINE))
1097 newline = false;
1098 }
1099
1100 do {
1101 const char *next = memchr(text, '\n', text_size);
1102 size_t text_len;
1103
1104 if (next) {
1105 text_len = next - text;
1106 next++;
1107 text_size -= next - text;
1108 } else {
1109 text_len = text_size;
1110 }
1111
1112 if (buf) {
1113 if (print_prefix(msg, syslog, NULL) +
1114 text_len + 1 >= size - len)
1115 break;
1116
1117 if (prefix)
1118 len += print_prefix(msg, syslog, buf + len);
1119 memcpy(buf + len, text, text_len);
1120 len += text_len;
1121 if (next || newline)
1122 buf[len++] = '\n';
1123 } else {
1124 /* SYSLOG_ACTION_* buffer size only calculation */
1125 if (prefix)
1126 len += print_prefix(msg, syslog, NULL);
1127 len += text_len;
1128 if (next || newline)
1129 len++;
1130 }
1131
1132 prefix = true;
1133 text = next;
1134 } while (text);
1135
1136 return len;
1137 }
1138
1139 static int syslog_print(char __user *buf, int size)
1140 {
1141 char *text;
1142 struct printk_log *msg;
1143 int len = 0;
1144
1145 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1146 if (!text)
1147 return -ENOMEM;
1148
1149 while (size > 0) {
1150 size_t n;
1151 size_t skip;
1152
1153 raw_spin_lock_irq(&logbuf_lock);
1154 if (syslog_seq < log_first_seq) {
1155 /* messages are gone, move to first one */
1156 syslog_seq = log_first_seq;
1157 syslog_idx = log_first_idx;
1158 syslog_prev = 0;
1159 syslog_partial = 0;
1160 }
1161 if (syslog_seq == log_next_seq) {
1162 raw_spin_unlock_irq(&logbuf_lock);
1163 break;
1164 }
1165
1166 skip = syslog_partial;
1167 msg = log_from_idx(syslog_idx);
1168 n = msg_print_text(msg, syslog_prev, true, text,
1169 LOG_LINE_MAX + PREFIX_MAX);
1170 if (n - syslog_partial <= size) {
1171 /* message fits into buffer, move forward */
1172 syslog_idx = log_next(syslog_idx);
1173 syslog_seq++;
1174 syslog_prev = msg->flags;
1175 n -= syslog_partial;
1176 syslog_partial = 0;
1177 } else if (!len){
1178 /* partial read(), remember position */
1179 n = size;
1180 syslog_partial += n;
1181 } else
1182 n = 0;
1183 raw_spin_unlock_irq(&logbuf_lock);
1184
1185 if (!n)
1186 break;
1187
1188 if (copy_to_user(buf, text + skip, n)) {
1189 if (!len)
1190 len = -EFAULT;
1191 break;
1192 }
1193
1194 len += n;
1195 size -= n;
1196 buf += n;
1197 }
1198
1199 kfree(text);
1200 return len;
1201 }
1202
1203 static int syslog_print_all(char __user *buf, int size, bool clear)
1204 {
1205 char *text;
1206 int len = 0;
1207
1208 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1209 if (!text)
1210 return -ENOMEM;
1211
1212 raw_spin_lock_irq(&logbuf_lock);
1213 if (buf) {
1214 u64 next_seq;
1215 u64 seq;
1216 u32 idx;
1217 enum log_flags prev;
1218
1219 if (clear_seq < log_first_seq) {
1220 /* messages are gone, move to first available one */
1221 clear_seq = log_first_seq;
1222 clear_idx = log_first_idx;
1223 }
1224
1225 /*
1226 * Find first record that fits, including all following records,
1227 * into the user-provided buffer for this dump.
1228 */
1229 seq = clear_seq;
1230 idx = clear_idx;
1231 prev = 0;
1232 while (seq < log_next_seq) {
1233 struct printk_log *msg = log_from_idx(idx);
1234
1235 len += msg_print_text(msg, prev, true, NULL, 0);
1236 prev = msg->flags;
1237 idx = log_next(idx);
1238 seq++;
1239 }
1240
1241 /* move first record forward until length fits into the buffer */
1242 seq = clear_seq;
1243 idx = clear_idx;
1244 prev = 0;
1245 while (len > size && seq < log_next_seq) {
1246 struct printk_log *msg = log_from_idx(idx);
1247
1248 len -= msg_print_text(msg, prev, true, NULL, 0);
1249 prev = msg->flags;
1250 idx = log_next(idx);
1251 seq++;
1252 }
1253
1254 /* last message fitting into this dump */
1255 next_seq = log_next_seq;
1256
1257 len = 0;
1258 while (len >= 0 && seq < next_seq) {
1259 struct printk_log *msg = log_from_idx(idx);
1260 int textlen;
1261
1262 textlen = msg_print_text(msg, prev, true, text,
1263 LOG_LINE_MAX + PREFIX_MAX);
1264 if (textlen < 0) {
1265 len = textlen;
1266 break;
1267 }
1268 idx = log_next(idx);
1269 seq++;
1270 prev = msg->flags;
1271
1272 raw_spin_unlock_irq(&logbuf_lock);
1273 if (copy_to_user(buf + len, text, textlen))
1274 len = -EFAULT;
1275 else
1276 len += textlen;
1277 raw_spin_lock_irq(&logbuf_lock);
1278
1279 if (seq < log_first_seq) {
1280 /* messages are gone, move to next one */
1281 seq = log_first_seq;
1282 idx = log_first_idx;
1283 prev = 0;
1284 }
1285 }
1286 }
1287
1288 if (clear) {
1289 clear_seq = log_next_seq;
1290 clear_idx = log_next_idx;
1291 }
1292 raw_spin_unlock_irq(&logbuf_lock);
1293
1294 kfree(text);
1295 return len;
1296 }
1297
1298 int do_syslog(int type, char __user *buf, int len, int source)
1299 {
1300 bool clear = false;
1301 static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1302 int error;
1303
1304 error = check_syslog_permissions(type, source);
1305 if (error)
1306 goto out;
1307
1308 switch (type) {
1309 case SYSLOG_ACTION_CLOSE: /* Close log */
1310 break;
1311 case SYSLOG_ACTION_OPEN: /* Open log */
1312 break;
1313 case SYSLOG_ACTION_READ: /* Read from log */
1314 error = -EINVAL;
1315 if (!buf || len < 0)
1316 goto out;
1317 error = 0;
1318 if (!len)
1319 goto out;
1320 if (!access_ok(VERIFY_WRITE, buf, len)) {
1321 error = -EFAULT;
1322 goto out;
1323 }
1324 error = wait_event_interruptible(log_wait,
1325 syslog_seq != log_next_seq);
1326 if (error)
1327 goto out;
1328 error = syslog_print(buf, len);
1329 break;
1330 /* Read/clear last kernel messages */
1331 case SYSLOG_ACTION_READ_CLEAR:
1332 clear = true;
1333 /* FALL THRU */
1334 /* Read last kernel messages */
1335 case SYSLOG_ACTION_READ_ALL:
1336 error = -EINVAL;
1337 if (!buf || len < 0)
1338 goto out;
1339 error = 0;
1340 if (!len)
1341 goto out;
1342 if (!access_ok(VERIFY_WRITE, buf, len)) {
1343 error = -EFAULT;
1344 goto out;
1345 }
1346 error = syslog_print_all(buf, len, clear);
1347 break;
1348 /* Clear ring buffer */
1349 case SYSLOG_ACTION_CLEAR:
1350 syslog_print_all(NULL, 0, true);
1351 break;
1352 /* Disable logging to console */
1353 case SYSLOG_ACTION_CONSOLE_OFF:
1354 if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1355 saved_console_loglevel = console_loglevel;
1356 console_loglevel = minimum_console_loglevel;
1357 break;
1358 /* Enable logging to console */
1359 case SYSLOG_ACTION_CONSOLE_ON:
1360 if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1361 console_loglevel = saved_console_loglevel;
1362 saved_console_loglevel = LOGLEVEL_DEFAULT;
1363 }
1364 break;
1365 /* Set level of messages printed to console */
1366 case SYSLOG_ACTION_CONSOLE_LEVEL:
1367 error = -EINVAL;
1368 if (len < 1 || len > 8)
1369 goto out;
1370 if (len < minimum_console_loglevel)
1371 len = minimum_console_loglevel;
1372 console_loglevel = len;
1373 /* Implicitly re-enable logging to console */
1374 saved_console_loglevel = LOGLEVEL_DEFAULT;
1375 error = 0;
1376 break;
1377 /* Number of chars in the log buffer */
1378 case SYSLOG_ACTION_SIZE_UNREAD:
1379 raw_spin_lock_irq(&logbuf_lock);
1380 if (syslog_seq < log_first_seq) {
1381 /* messages are gone, move to first one */
1382 syslog_seq = log_first_seq;
1383 syslog_idx = log_first_idx;
1384 syslog_prev = 0;
1385 syslog_partial = 0;
1386 }
1387 if (source == SYSLOG_FROM_PROC) {
1388 /*
1389 * Short-cut for poll(/"proc/kmsg") which simply checks
1390 * for pending data, not the size; return the count of
1391 * records, not the length.
1392 */
1393 error = log_next_seq - syslog_seq;
1394 } else {
1395 u64 seq = syslog_seq;
1396 u32 idx = syslog_idx;
1397 enum log_flags prev = syslog_prev;
1398
1399 error = 0;
1400 while (seq < log_next_seq) {
1401 struct printk_log *msg = log_from_idx(idx);
1402
1403 error += msg_print_text(msg, prev, true, NULL, 0);
1404 idx = log_next(idx);
1405 seq++;
1406 prev = msg->flags;
1407 }
1408 error -= syslog_partial;
1409 }
1410 raw_spin_unlock_irq(&logbuf_lock);
1411 break;
1412 /* Size of the log buffer */
1413 case SYSLOG_ACTION_SIZE_BUFFER:
1414 error = log_buf_len;
1415 break;
1416 default:
1417 error = -EINVAL;
1418 break;
1419 }
1420 out:
1421 return error;
1422 }
1423
1424 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1425 {
1426 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1427 }
1428
1429 /*
1430 * Call the console drivers, asking them to write out
1431 * log_buf[start] to log_buf[end - 1].
1432 * The console_lock must be held.
1433 */
1434 static void call_console_drivers(int level,
1435 const char *ext_text, size_t ext_len,
1436 const char *text, size_t len)
1437 {
1438 struct console *con;
1439
1440 trace_console(text, len);
1441
1442 if (level >= console_loglevel && !ignore_loglevel)
1443 return;
1444 if (!console_drivers)
1445 return;
1446
1447 for_each_console(con) {
1448 if (exclusive_console && con != exclusive_console)
1449 continue;
1450 if (!(con->flags & CON_ENABLED))
1451 continue;
1452 if (!con->write)
1453 continue;
1454 if (!cpu_online(smp_processor_id()) &&
1455 !(con->flags & CON_ANYTIME))
1456 continue;
1457 if (con->flags & CON_EXTENDED)
1458 con->write(con, ext_text, ext_len);
1459 else
1460 con->write(con, text, len);
1461 }
1462 }
1463
1464 /*
1465 * Zap console related locks when oopsing.
1466 * To leave time for slow consoles to print a full oops,
1467 * only zap at most once every 30 seconds.
1468 */
1469 static void zap_locks(void)
1470 {
1471 static unsigned long oops_timestamp;
1472
1473 if (time_after_eq(jiffies, oops_timestamp) &&
1474 !time_after(jiffies, oops_timestamp + 30 * HZ))
1475 return;
1476
1477 oops_timestamp = jiffies;
1478
1479 debug_locks_off();
1480 /* If a crash is occurring, make sure we can't deadlock */
1481 raw_spin_lock_init(&logbuf_lock);
1482 /* And make sure that we print immediately */
1483 sema_init(&console_sem, 1);
1484 }
1485
1486 /*
1487 * Check if we have any console that is capable of printing while cpu is
1488 * booting or shutting down. Requires console_sem.
1489 */
1490 static int have_callable_console(void)
1491 {
1492 struct console *con;
1493
1494 for_each_console(con)
1495 if (con->flags & CON_ANYTIME)
1496 return 1;
1497
1498 return 0;
1499 }
1500
1501 /*
1502 * Can we actually use the console at this time on this cpu?
1503 *
1504 * Console drivers may assume that per-cpu resources have been allocated. So
1505 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
1506 * call them until this CPU is officially up.
1507 */
1508 static inline int can_use_console(unsigned int cpu)
1509 {
1510 return cpu_online(cpu) || have_callable_console();
1511 }
1512
1513 /*
1514 * Try to get console ownership to actually show the kernel
1515 * messages from a 'printk'. Return true (and with the
1516 * console_lock held, and 'console_locked' set) if it
1517 * is successful, false otherwise.
1518 */
1519 static int console_trylock_for_printk(void)
1520 {
1521 unsigned int cpu = smp_processor_id();
1522
1523 if (!console_trylock())
1524 return 0;
1525 /*
1526 * If we can't use the console, we need to release the console
1527 * semaphore by hand to avoid flushing the buffer. We need to hold the
1528 * console semaphore in order to do this test safely.
1529 */
1530 if (!can_use_console(cpu)) {
1531 console_locked = 0;
1532 up_console_sem();
1533 return 0;
1534 }
1535 return 1;
1536 }
1537
1538 int printk_delay_msec __read_mostly;
1539
1540 static inline void printk_delay(void)
1541 {
1542 if (unlikely(printk_delay_msec)) {
1543 int m = printk_delay_msec;
1544
1545 while (m--) {
1546 mdelay(1);
1547 touch_nmi_watchdog();
1548 }
1549 }
1550 }
1551
1552 /*
1553 * Continuation lines are buffered, and not committed to the record buffer
1554 * until the line is complete, or a race forces it. The line fragments
1555 * though, are printed immediately to the consoles to ensure everything has
1556 * reached the console in case of a kernel crash.
1557 */
1558 static struct cont {
1559 char buf[LOG_LINE_MAX];
1560 size_t len; /* length == 0 means unused buffer */
1561 size_t cons; /* bytes written to console */
1562 struct task_struct *owner; /* task of first print*/
1563 u64 ts_nsec; /* time of first print */
1564 u8 level; /* log level of first message */
1565 u8 facility; /* log facility of first message */
1566 enum log_flags flags; /* prefix, newline flags */
1567 bool flushed:1; /* buffer sealed and committed */
1568 } cont;
1569
1570 static void cont_flush(enum log_flags flags)
1571 {
1572 if (cont.flushed)
1573 return;
1574 if (cont.len == 0)
1575 return;
1576
1577 if (cont.cons) {
1578 /*
1579 * If a fragment of this line was directly flushed to the
1580 * console; wait for the console to pick up the rest of the
1581 * line. LOG_NOCONS suppresses a duplicated output.
1582 */
1583 log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1584 cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1585 cont.flags = flags;
1586 cont.flushed = true;
1587 } else {
1588 /*
1589 * If no fragment of this line ever reached the console,
1590 * just submit it to the store and free the buffer.
1591 */
1592 log_store(cont.facility, cont.level, flags, 0,
1593 NULL, 0, cont.buf, cont.len);
1594 cont.len = 0;
1595 }
1596 }
1597
1598 static bool cont_add(int facility, int level, const char *text, size_t len)
1599 {
1600 if (cont.len && cont.flushed)
1601 return false;
1602
1603 /*
1604 * If ext consoles are present, flush and skip in-kernel
1605 * continuation. See nr_ext_console_drivers definition. Also, if
1606 * the line gets too long, split it up in separate records.
1607 */
1608 if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1609 cont_flush(LOG_CONT);
1610 return false;
1611 }
1612
1613 if (!cont.len) {
1614 cont.facility = facility;
1615 cont.level = level;
1616 cont.owner = current;
1617 cont.ts_nsec = local_clock();
1618 cont.flags = 0;
1619 cont.cons = 0;
1620 cont.flushed = false;
1621 }
1622
1623 memcpy(cont.buf + cont.len, text, len);
1624 cont.len += len;
1625
1626 if (cont.len > (sizeof(cont.buf) * 80) / 100)
1627 cont_flush(LOG_CONT);
1628
1629 return true;
1630 }
1631
1632 static size_t cont_print_text(char *text, size_t size)
1633 {
1634 size_t textlen = 0;
1635 size_t len;
1636
1637 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1638 textlen += print_time(cont.ts_nsec, text);
1639 size -= textlen;
1640 }
1641
1642 len = cont.len - cont.cons;
1643 if (len > 0) {
1644 if (len+1 > size)
1645 len = size-1;
1646 memcpy(text + textlen, cont.buf + cont.cons, len);
1647 textlen += len;
1648 cont.cons = cont.len;
1649 }
1650
1651 if (cont.flushed) {
1652 if (cont.flags & LOG_NEWLINE)
1653 text[textlen++] = '\n';
1654 /* got everything, release buffer */
1655 cont.len = 0;
1656 }
1657 return textlen;
1658 }
1659
1660 asmlinkage int vprintk_emit(int facility, int level,
1661 const char *dict, size_t dictlen,
1662 const char *fmt, va_list args)
1663 {
1664 static bool recursion_bug;
1665 static char textbuf[LOG_LINE_MAX];
1666 char *text = textbuf;
1667 size_t text_len = 0;
1668 enum log_flags lflags = 0;
1669 unsigned long flags;
1670 int this_cpu;
1671 int printed_len = 0;
1672 bool in_sched = false;
1673 /* cpu currently holding logbuf_lock in this function */
1674 static unsigned int logbuf_cpu = UINT_MAX;
1675
1676 if (level == LOGLEVEL_SCHED) {
1677 level = LOGLEVEL_DEFAULT;
1678 in_sched = true;
1679 }
1680
1681 boot_delay_msec(level);
1682 printk_delay();
1683
1684 /* This stops the holder of console_sem just where we want him */
1685 local_irq_save(flags);
1686 this_cpu = smp_processor_id();
1687
1688 /*
1689 * Ouch, printk recursed into itself!
1690 */
1691 if (unlikely(logbuf_cpu == this_cpu)) {
1692 /*
1693 * If a crash is occurring during printk() on this CPU,
1694 * then try to get the crash message out but make sure
1695 * we can't deadlock. Otherwise just return to avoid the
1696 * recursion and return - but flag the recursion so that
1697 * it can be printed at the next appropriate moment:
1698 */
1699 if (!oops_in_progress && !lockdep_recursing(current)) {
1700 recursion_bug = true;
1701 local_irq_restore(flags);
1702 return 0;
1703 }
1704 zap_locks();
1705 }
1706
1707 lockdep_off();
1708 raw_spin_lock(&logbuf_lock);
1709 logbuf_cpu = this_cpu;
1710
1711 if (unlikely(recursion_bug)) {
1712 static const char recursion_msg[] =
1713 "BUG: recent printk recursion!";
1714
1715 recursion_bug = false;
1716 /* emit KERN_CRIT message */
1717 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1718 NULL, 0, recursion_msg,
1719 strlen(recursion_msg));
1720 }
1721
1722 /*
1723 * The printf needs to come first; we need the syslog
1724 * prefix which might be passed-in as a parameter.
1725 */
1726 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1727
1728 /* mark and strip a trailing newline */
1729 if (text_len && text[text_len-1] == '\n') {
1730 text_len--;
1731 lflags |= LOG_NEWLINE;
1732 }
1733
1734 /* strip kernel syslog prefix and extract log level or control flags */
1735 if (facility == 0) {
1736 int kern_level = printk_get_level(text);
1737
1738 if (kern_level) {
1739 const char *end_of_header = printk_skip_level(text);
1740 switch (kern_level) {
1741 case '0' ... '7':
1742 if (level == LOGLEVEL_DEFAULT)
1743 level = kern_level - '0';
1744 /* fallthrough */
1745 case 'd': /* KERN_DEFAULT */
1746 lflags |= LOG_PREFIX;
1747 }
1748 /*
1749 * No need to check length here because vscnprintf
1750 * put '\0' at the end of the string. Only valid and
1751 * newly printed level is detected.
1752 */
1753 text_len -= end_of_header - text;
1754 text = (char *)end_of_header;
1755 }
1756 }
1757
1758 if (level == LOGLEVEL_DEFAULT)
1759 level = default_message_loglevel;
1760
1761 if (dict)
1762 lflags |= LOG_PREFIX|LOG_NEWLINE;
1763
1764 if (!(lflags & LOG_NEWLINE)) {
1765 /*
1766 * Flush the conflicting buffer. An earlier newline was missing,
1767 * or another task also prints continuation lines.
1768 */
1769 if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1770 cont_flush(LOG_NEWLINE);
1771
1772 /* buffer line if possible, otherwise store it right away */
1773 if (cont_add(facility, level, text, text_len))
1774 printed_len += text_len;
1775 else
1776 printed_len += log_store(facility, level,
1777 lflags | LOG_CONT, 0,
1778 dict, dictlen, text, text_len);
1779 } else {
1780 bool stored = false;
1781
1782 /*
1783 * If an earlier newline was missing and it was the same task,
1784 * either merge it with the current buffer and flush, or if
1785 * there was a race with interrupts (prefix == true) then just
1786 * flush it out and store this line separately.
1787 * If the preceding printk was from a different task and missed
1788 * a newline, flush and append the newline.
1789 */
1790 if (cont.len) {
1791 if (cont.owner == current && !(lflags & LOG_PREFIX))
1792 stored = cont_add(facility, level, text,
1793 text_len);
1794 cont_flush(LOG_NEWLINE);
1795 }
1796
1797 if (stored)
1798 printed_len += text_len;
1799 else
1800 printed_len += log_store(facility, level, lflags, 0,
1801 dict, dictlen, text, text_len);
1802 }
1803
1804 logbuf_cpu = UINT_MAX;
1805 raw_spin_unlock(&logbuf_lock);
1806 lockdep_on();
1807 local_irq_restore(flags);
1808
1809 /* If called from the scheduler, we can not call up(). */
1810 if (!in_sched) {
1811 lockdep_off();
1812 /*
1813 * Disable preemption to avoid being preempted while holding
1814 * console_sem which would prevent anyone from printing to
1815 * console
1816 */
1817 preempt_disable();
1818
1819 /*
1820 * Try to acquire and then immediately release the console
1821 * semaphore. The release will print out buffers and wake up
1822 * /dev/kmsg and syslog() users.
1823 */
1824 if (console_trylock_for_printk())
1825 console_unlock();
1826 preempt_enable();
1827 lockdep_on();
1828 }
1829
1830 return printed_len;
1831 }
1832 EXPORT_SYMBOL(vprintk_emit);
1833
1834 asmlinkage int vprintk(const char *fmt, va_list args)
1835 {
1836 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1837 }
1838 EXPORT_SYMBOL(vprintk);
1839
1840 asmlinkage int printk_emit(int facility, int level,
1841 const char *dict, size_t dictlen,
1842 const char *fmt, ...)
1843 {
1844 va_list args;
1845 int r;
1846
1847 va_start(args, fmt);
1848 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1849 va_end(args);
1850
1851 return r;
1852 }
1853 EXPORT_SYMBOL(printk_emit);
1854
1855 int vprintk_default(const char *fmt, va_list args)
1856 {
1857 int r;
1858
1859 #ifdef CONFIG_KGDB_KDB
1860 if (unlikely(kdb_trap_printk)) {
1861 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1862 return r;
1863 }
1864 #endif
1865 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1866
1867 return r;
1868 }
1869 EXPORT_SYMBOL_GPL(vprintk_default);
1870
1871 /*
1872 * This allows printk to be diverted to another function per cpu.
1873 * This is useful for calling printk functions from within NMI
1874 * without worrying about race conditions that can lock up the
1875 * box.
1876 */
1877 DEFINE_PER_CPU(printk_func_t, printk_func) = vprintk_default;
1878
1879 /**
1880 * printk - print a kernel message
1881 * @fmt: format string
1882 *
1883 * This is printk(). It can be called from any context. We want it to work.
1884 *
1885 * We try to grab the console_lock. If we succeed, it's easy - we log the
1886 * output and call the console drivers. If we fail to get the semaphore, we
1887 * place the output into the log buffer and return. The current holder of
1888 * the console_sem will notice the new output in console_unlock(); and will
1889 * send it to the consoles before releasing the lock.
1890 *
1891 * One effect of this deferred printing is that code which calls printk() and
1892 * then changes console_loglevel may break. This is because console_loglevel
1893 * is inspected when the actual printing occurs.
1894 *
1895 * See also:
1896 * printf(3)
1897 *
1898 * See the vsnprintf() documentation for format string extensions over C99.
1899 */
1900 asmlinkage __visible int printk(const char *fmt, ...)
1901 {
1902 printk_func_t vprintk_func;
1903 va_list args;
1904 int r;
1905
1906 va_start(args, fmt);
1907
1908 /*
1909 * If a caller overrides the per_cpu printk_func, then it needs
1910 * to disable preemption when calling printk(). Otherwise
1911 * the printk_func should be set to the default. No need to
1912 * disable preemption here.
1913 */
1914 vprintk_func = this_cpu_read(printk_func);
1915 r = vprintk_func(fmt, args);
1916
1917 va_end(args);
1918
1919 return r;
1920 }
1921 EXPORT_SYMBOL(printk);
1922
1923 #else /* CONFIG_PRINTK */
1924
1925 #define LOG_LINE_MAX 0
1926 #define PREFIX_MAX 0
1927
1928 static u64 syslog_seq;
1929 static u32 syslog_idx;
1930 static u64 console_seq;
1931 static u32 console_idx;
1932 static enum log_flags syslog_prev;
1933 static u64 log_first_seq;
1934 static u32 log_first_idx;
1935 static u64 log_next_seq;
1936 static enum log_flags console_prev;
1937 static struct cont {
1938 size_t len;
1939 size_t cons;
1940 u8 level;
1941 bool flushed:1;
1942 } cont;
1943 static char *log_text(const struct printk_log *msg) { return NULL; }
1944 static char *log_dict(const struct printk_log *msg) { return NULL; }
1945 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1946 static u32 log_next(u32 idx) { return 0; }
1947 static ssize_t msg_print_ext_header(char *buf, size_t size,
1948 struct printk_log *msg, u64 seq,
1949 enum log_flags prev_flags) { return 0; }
1950 static ssize_t msg_print_ext_body(char *buf, size_t size,
1951 char *dict, size_t dict_len,
1952 char *text, size_t text_len) { return 0; }
1953 static void call_console_drivers(int level,
1954 const char *ext_text, size_t ext_len,
1955 const char *text, size_t len) {}
1956 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1957 bool syslog, char *buf, size_t size) { return 0; }
1958 static size_t cont_print_text(char *text, size_t size) { return 0; }
1959
1960 /* Still needs to be defined for users */
1961 DEFINE_PER_CPU(printk_func_t, printk_func);
1962
1963 #endif /* CONFIG_PRINTK */
1964
1965 #ifdef CONFIG_EARLY_PRINTK
1966 struct console *early_console;
1967
1968 asmlinkage __visible void early_printk(const char *fmt, ...)
1969 {
1970 va_list ap;
1971 char buf[512];
1972 int n;
1973
1974 if (!early_console)
1975 return;
1976
1977 va_start(ap, fmt);
1978 n = vscnprintf(buf, sizeof(buf), fmt, ap);
1979 va_end(ap);
1980
1981 early_console->write(early_console, buf, n);
1982 }
1983 #endif
1984
1985 static int __add_preferred_console(char *name, int idx, char *options,
1986 char *brl_options)
1987 {
1988 struct console_cmdline *c;
1989 int i;
1990
1991 /*
1992 * See if this tty is not yet registered, and
1993 * if we have a slot free.
1994 */
1995 for (i = 0, c = console_cmdline;
1996 i < MAX_CMDLINECONSOLES && c->name[0];
1997 i++, c++) {
1998 if (strcmp(c->name, name) == 0 && c->index == idx) {
1999 if (!brl_options)
2000 selected_console = i;
2001 return 0;
2002 }
2003 }
2004 if (i == MAX_CMDLINECONSOLES)
2005 return -E2BIG;
2006 if (!brl_options)
2007 selected_console = i;
2008 strlcpy(c->name, name, sizeof(c->name));
2009 c->options = options;
2010 braille_set_options(c, brl_options);
2011
2012 c->index = idx;
2013 return 0;
2014 }
2015 /*
2016 * Set up a console. Called via do_early_param() in init/main.c
2017 * for each "console=" parameter in the boot command line.
2018 */
2019 static int __init console_setup(char *str)
2020 {
2021 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2022 char *s, *options, *brl_options = NULL;
2023 int idx;
2024
2025 if (_braille_console_setup(&str, &brl_options))
2026 return 1;
2027
2028 /*
2029 * Decode str into name, index, options.
2030 */
2031 if (str[0] >= '0' && str[0] <= '9') {
2032 strcpy(buf, "ttyS");
2033 strncpy(buf + 4, str, sizeof(buf) - 5);
2034 } else {
2035 strncpy(buf, str, sizeof(buf) - 1);
2036 }
2037 buf[sizeof(buf) - 1] = 0;
2038 options = strchr(str, ',');
2039 if (options)
2040 *(options++) = 0;
2041 #ifdef __sparc__
2042 if (!strcmp(str, "ttya"))
2043 strcpy(buf, "ttyS0");
2044 if (!strcmp(str, "ttyb"))
2045 strcpy(buf, "ttyS1");
2046 #endif
2047 for (s = buf; *s; s++)
2048 if (isdigit(*s) || *s == ',')
2049 break;
2050 idx = simple_strtoul(s, NULL, 10);
2051 *s = 0;
2052
2053 __add_preferred_console(buf, idx, options, brl_options);
2054 console_set_on_cmdline = 1;
2055 return 1;
2056 }
2057 __setup("console=", console_setup);
2058
2059 /**
2060 * add_preferred_console - add a device to the list of preferred consoles.
2061 * @name: device name
2062 * @idx: device index
2063 * @options: options for this console
2064 *
2065 * The last preferred console added will be used for kernel messages
2066 * and stdin/out/err for init. Normally this is used by console_setup
2067 * above to handle user-supplied console arguments; however it can also
2068 * be used by arch-specific code either to override the user or more
2069 * commonly to provide a default console (ie from PROM variables) when
2070 * the user has not supplied one.
2071 */
2072 int add_preferred_console(char *name, int idx, char *options)
2073 {
2074 return __add_preferred_console(name, idx, options, NULL);
2075 }
2076
2077 bool console_suspend_enabled = true;
2078 EXPORT_SYMBOL(console_suspend_enabled);
2079
2080 static int __init console_suspend_disable(char *str)
2081 {
2082 console_suspend_enabled = false;
2083 return 1;
2084 }
2085 __setup("no_console_suspend", console_suspend_disable);
2086 module_param_named(console_suspend, console_suspend_enabled,
2087 bool, S_IRUGO | S_IWUSR);
2088 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2089 " and hibernate operations");
2090
2091 /**
2092 * suspend_console - suspend the console subsystem
2093 *
2094 * This disables printk() while we go into suspend states
2095 */
2096 void suspend_console(void)
2097 {
2098 if (!console_suspend_enabled)
2099 return;
2100 printk("Suspending console(s) (use no_console_suspend to debug)\n");
2101 console_lock();
2102 console_suspended = 1;
2103 up_console_sem();
2104 }
2105
2106 void resume_console(void)
2107 {
2108 if (!console_suspend_enabled)
2109 return;
2110 down_console_sem();
2111 console_suspended = 0;
2112 console_unlock();
2113 }
2114
2115 /**
2116 * console_cpu_notify - print deferred console messages after CPU hotplug
2117 * @self: notifier struct
2118 * @action: CPU hotplug event
2119 * @hcpu: unused
2120 *
2121 * If printk() is called from a CPU that is not online yet, the messages
2122 * will be spooled but will not show up on the console. This function is
2123 * called when a new CPU comes online (or fails to come up), and ensures
2124 * that any such output gets printed.
2125 */
2126 static int console_cpu_notify(struct notifier_block *self,
2127 unsigned long action, void *hcpu)
2128 {
2129 switch (action) {
2130 case CPU_ONLINE:
2131 case CPU_DEAD:
2132 case CPU_DOWN_FAILED:
2133 case CPU_UP_CANCELED:
2134 console_lock();
2135 console_unlock();
2136 }
2137 return NOTIFY_OK;
2138 }
2139
2140 /**
2141 * console_lock - lock the console system for exclusive use.
2142 *
2143 * Acquires a lock which guarantees that the caller has
2144 * exclusive access to the console system and the console_drivers list.
2145 *
2146 * Can sleep, returns nothing.
2147 */
2148 void console_lock(void)
2149 {
2150 might_sleep();
2151
2152 down_console_sem();
2153 if (console_suspended)
2154 return;
2155 console_locked = 1;
2156 console_may_schedule = 1;
2157 }
2158 EXPORT_SYMBOL(console_lock);
2159
2160 /**
2161 * console_trylock - try to lock the console system for exclusive use.
2162 *
2163 * Try to acquire a lock which guarantees that the caller has exclusive
2164 * access to the console system and the console_drivers list.
2165 *
2166 * returns 1 on success, and 0 on failure to acquire the lock.
2167 */
2168 int console_trylock(void)
2169 {
2170 if (down_trylock_console_sem())
2171 return 0;
2172 if (console_suspended) {
2173 up_console_sem();
2174 return 0;
2175 }
2176 console_locked = 1;
2177 console_may_schedule = 0;
2178 return 1;
2179 }
2180 EXPORT_SYMBOL(console_trylock);
2181
2182 int is_console_locked(void)
2183 {
2184 return console_locked;
2185 }
2186
2187 static void console_cont_flush(char *text, size_t size)
2188 {
2189 unsigned long flags;
2190 size_t len;
2191
2192 raw_spin_lock_irqsave(&logbuf_lock, flags);
2193
2194 if (!cont.len)
2195 goto out;
2196
2197 /*
2198 * We still queue earlier records, likely because the console was
2199 * busy. The earlier ones need to be printed before this one, we
2200 * did not flush any fragment so far, so just let it queue up.
2201 */
2202 if (console_seq < log_next_seq && !cont.cons)
2203 goto out;
2204
2205 len = cont_print_text(text, size);
2206 raw_spin_unlock(&logbuf_lock);
2207 stop_critical_timings();
2208 call_console_drivers(cont.level, NULL, 0, text, len);
2209 start_critical_timings();
2210 local_irq_restore(flags);
2211 return;
2212 out:
2213 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2214 }
2215
2216 /**
2217 * console_unlock - unlock the console system
2218 *
2219 * Releases the console_lock which the caller holds on the console system
2220 * and the console driver list.
2221 *
2222 * While the console_lock was held, console output may have been buffered
2223 * by printk(). If this is the case, console_unlock(); emits
2224 * the output prior to releasing the lock.
2225 *
2226 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2227 *
2228 * console_unlock(); may be called from any context.
2229 */
2230 void console_unlock(void)
2231 {
2232 static char ext_text[CONSOLE_EXT_LOG_MAX];
2233 static char text[LOG_LINE_MAX + PREFIX_MAX];
2234 static u64 seen_seq;
2235 unsigned long flags;
2236 bool wake_klogd = false;
2237 bool do_cond_resched, retry;
2238
2239 if (console_suspended) {
2240 up_console_sem();
2241 return;
2242 }
2243
2244 /*
2245 * Console drivers are called under logbuf_lock, so
2246 * @console_may_schedule should be cleared before; however, we may
2247 * end up dumping a lot of lines, for example, if called from
2248 * console registration path, and should invoke cond_resched()
2249 * between lines if allowable. Not doing so can cause a very long
2250 * scheduling stall on a slow console leading to RCU stall and
2251 * softlockup warnings which exacerbate the issue with more
2252 * messages practically incapacitating the system.
2253 */
2254 do_cond_resched = console_may_schedule;
2255 console_may_schedule = 0;
2256
2257 /* flush buffered message fragment immediately to console */
2258 console_cont_flush(text, sizeof(text));
2259 again:
2260 for (;;) {
2261 struct printk_log *msg;
2262 size_t ext_len = 0;
2263 size_t len;
2264 int level;
2265
2266 raw_spin_lock_irqsave(&logbuf_lock, flags);
2267 if (seen_seq != log_next_seq) {
2268 wake_klogd = true;
2269 seen_seq = log_next_seq;
2270 }
2271
2272 if (console_seq < log_first_seq) {
2273 len = sprintf(text, "** %u printk messages dropped ** ",
2274 (unsigned)(log_first_seq - console_seq));
2275
2276 /* messages are gone, move to first one */
2277 console_seq = log_first_seq;
2278 console_idx = log_first_idx;
2279 console_prev = 0;
2280 } else {
2281 len = 0;
2282 }
2283 skip:
2284 if (console_seq == log_next_seq)
2285 break;
2286
2287 msg = log_from_idx(console_idx);
2288 if (msg->flags & LOG_NOCONS) {
2289 /*
2290 * Skip record we have buffered and already printed
2291 * directly to the console when we received it.
2292 */
2293 console_idx = log_next(console_idx);
2294 console_seq++;
2295 /*
2296 * We will get here again when we register a new
2297 * CON_PRINTBUFFER console. Clear the flag so we
2298 * will properly dump everything later.
2299 */
2300 msg->flags &= ~LOG_NOCONS;
2301 console_prev = msg->flags;
2302 goto skip;
2303 }
2304
2305 level = msg->level;
2306 len += msg_print_text(msg, console_prev, false,
2307 text + len, sizeof(text) - len);
2308 if (nr_ext_console_drivers) {
2309 ext_len = msg_print_ext_header(ext_text,
2310 sizeof(ext_text),
2311 msg, console_seq, console_prev);
2312 ext_len += msg_print_ext_body(ext_text + ext_len,
2313 sizeof(ext_text) - ext_len,
2314 log_dict(msg), msg->dict_len,
2315 log_text(msg), msg->text_len);
2316 }
2317 console_idx = log_next(console_idx);
2318 console_seq++;
2319 console_prev = msg->flags;
2320 raw_spin_unlock(&logbuf_lock);
2321
2322 stop_critical_timings(); /* don't trace print latency */
2323 call_console_drivers(level, ext_text, ext_len, text, len);
2324 start_critical_timings();
2325 local_irq_restore(flags);
2326
2327 if (do_cond_resched)
2328 cond_resched();
2329 }
2330 console_locked = 0;
2331
2332 /* Release the exclusive_console once it is used */
2333 if (unlikely(exclusive_console))
2334 exclusive_console = NULL;
2335
2336 raw_spin_unlock(&logbuf_lock);
2337
2338 up_console_sem();
2339
2340 /*
2341 * Someone could have filled up the buffer again, so re-check if there's
2342 * something to flush. In case we cannot trylock the console_sem again,
2343 * there's a new owner and the console_unlock() from them will do the
2344 * flush, no worries.
2345 */
2346 raw_spin_lock(&logbuf_lock);
2347 retry = console_seq != log_next_seq;
2348 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2349
2350 if (retry && console_trylock())
2351 goto again;
2352
2353 if (wake_klogd)
2354 wake_up_klogd();
2355 }
2356 EXPORT_SYMBOL(console_unlock);
2357
2358 /**
2359 * console_conditional_schedule - yield the CPU if required
2360 *
2361 * If the console code is currently allowed to sleep, and
2362 * if this CPU should yield the CPU to another task, do
2363 * so here.
2364 *
2365 * Must be called within console_lock();.
2366 */
2367 void __sched console_conditional_schedule(void)
2368 {
2369 if (console_may_schedule)
2370 cond_resched();
2371 }
2372 EXPORT_SYMBOL(console_conditional_schedule);
2373
2374 void console_unblank(void)
2375 {
2376 struct console *c;
2377
2378 /*
2379 * console_unblank can no longer be called in interrupt context unless
2380 * oops_in_progress is set to 1..
2381 */
2382 if (oops_in_progress) {
2383 if (down_trylock_console_sem() != 0)
2384 return;
2385 } else
2386 console_lock();
2387
2388 console_locked = 1;
2389 console_may_schedule = 0;
2390 for_each_console(c)
2391 if ((c->flags & CON_ENABLED) && c->unblank)
2392 c->unblank();
2393 console_unlock();
2394 }
2395
2396 /**
2397 * console_flush_on_panic - flush console content on panic
2398 *
2399 * Immediately output all pending messages no matter what.
2400 */
2401 void console_flush_on_panic(void)
2402 {
2403 /*
2404 * If someone else is holding the console lock, trylock will fail
2405 * and may_schedule may be set. Ignore and proceed to unlock so
2406 * that messages are flushed out. As this can be called from any
2407 * context and we don't want to get preempted while flushing,
2408 * ensure may_schedule is cleared.
2409 */
2410 console_trylock();
2411 console_may_schedule = 0;
2412 console_unlock();
2413 }
2414
2415 /*
2416 * Return the console tty driver structure and its associated index
2417 */
2418 struct tty_driver *console_device(int *index)
2419 {
2420 struct console *c;
2421 struct tty_driver *driver = NULL;
2422
2423 console_lock();
2424 for_each_console(c) {
2425 if (!c->device)
2426 continue;
2427 driver = c->device(c, index);
2428 if (driver)
2429 break;
2430 }
2431 console_unlock();
2432 return driver;
2433 }
2434
2435 /*
2436 * Prevent further output on the passed console device so that (for example)
2437 * serial drivers can disable console output before suspending a port, and can
2438 * re-enable output afterwards.
2439 */
2440 void console_stop(struct console *console)
2441 {
2442 console_lock();
2443 console->flags &= ~CON_ENABLED;
2444 console_unlock();
2445 }
2446 EXPORT_SYMBOL(console_stop);
2447
2448 void console_start(struct console *console)
2449 {
2450 console_lock();
2451 console->flags |= CON_ENABLED;
2452 console_unlock();
2453 }
2454 EXPORT_SYMBOL(console_start);
2455
2456 static int __read_mostly keep_bootcon;
2457
2458 static int __init keep_bootcon_setup(char *str)
2459 {
2460 keep_bootcon = 1;
2461 pr_info("debug: skip boot console de-registration.\n");
2462
2463 return 0;
2464 }
2465
2466 early_param("keep_bootcon", keep_bootcon_setup);
2467
2468 /*
2469 * The console driver calls this routine during kernel initialization
2470 * to register the console printing procedure with printk() and to
2471 * print any messages that were printed by the kernel before the
2472 * console driver was initialized.
2473 *
2474 * This can happen pretty early during the boot process (because of
2475 * early_printk) - sometimes before setup_arch() completes - be careful
2476 * of what kernel features are used - they may not be initialised yet.
2477 *
2478 * There are two types of consoles - bootconsoles (early_printk) and
2479 * "real" consoles (everything which is not a bootconsole) which are
2480 * handled differently.
2481 * - Any number of bootconsoles can be registered at any time.
2482 * - As soon as a "real" console is registered, all bootconsoles
2483 * will be unregistered automatically.
2484 * - Once a "real" console is registered, any attempt to register a
2485 * bootconsoles will be rejected
2486 */
2487 void register_console(struct console *newcon)
2488 {
2489 int i;
2490 unsigned long flags;
2491 struct console *bcon = NULL;
2492 struct console_cmdline *c;
2493
2494 if (console_drivers)
2495 for_each_console(bcon)
2496 if (WARN(bcon == newcon,
2497 "console '%s%d' already registered\n",
2498 bcon->name, bcon->index))
2499 return;
2500
2501 /*
2502 * before we register a new CON_BOOT console, make sure we don't
2503 * already have a valid console
2504 */
2505 if (console_drivers && newcon->flags & CON_BOOT) {
2506 /* find the last or real console */
2507 for_each_console(bcon) {
2508 if (!(bcon->flags & CON_BOOT)) {
2509 pr_info("Too late to register bootconsole %s%d\n",
2510 newcon->name, newcon->index);
2511 return;
2512 }
2513 }
2514 }
2515
2516 if (console_drivers && console_drivers->flags & CON_BOOT)
2517 bcon = console_drivers;
2518
2519 if (preferred_console < 0 || bcon || !console_drivers)
2520 preferred_console = selected_console;
2521
2522 /*
2523 * See if we want to use this console driver. If we
2524 * didn't select a console we take the first one
2525 * that registers here.
2526 */
2527 if (preferred_console < 0) {
2528 if (newcon->index < 0)
2529 newcon->index = 0;
2530 if (newcon->setup == NULL ||
2531 newcon->setup(newcon, NULL) == 0) {
2532 newcon->flags |= CON_ENABLED;
2533 if (newcon->device) {
2534 newcon->flags |= CON_CONSDEV;
2535 preferred_console = 0;
2536 }
2537 }
2538 }
2539
2540 /*
2541 * See if this console matches one we selected on
2542 * the command line.
2543 */
2544 for (i = 0, c = console_cmdline;
2545 i < MAX_CMDLINECONSOLES && c->name[0];
2546 i++, c++) {
2547 if (!newcon->match ||
2548 newcon->match(newcon, c->name, c->index, c->options) != 0) {
2549 /* default matching */
2550 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2551 if (strcmp(c->name, newcon->name) != 0)
2552 continue;
2553 if (newcon->index >= 0 &&
2554 newcon->index != c->index)
2555 continue;
2556 if (newcon->index < 0)
2557 newcon->index = c->index;
2558
2559 if (_braille_register_console(newcon, c))
2560 return;
2561
2562 if (newcon->setup &&
2563 newcon->setup(newcon, c->options) != 0)
2564 break;
2565 }
2566
2567 newcon->flags |= CON_ENABLED;
2568 if (i == selected_console) {
2569 newcon->flags |= CON_CONSDEV;
2570 preferred_console = selected_console;
2571 }
2572 break;
2573 }
2574
2575 if (!(newcon->flags & CON_ENABLED))
2576 return;
2577
2578 /*
2579 * If we have a bootconsole, and are switching to a real console,
2580 * don't print everything out again, since when the boot console, and
2581 * the real console are the same physical device, it's annoying to
2582 * see the beginning boot messages twice
2583 */
2584 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2585 newcon->flags &= ~CON_PRINTBUFFER;
2586
2587 /*
2588 * Put this console in the list - keep the
2589 * preferred driver at the head of the list.
2590 */
2591 console_lock();
2592 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2593 newcon->next = console_drivers;
2594 console_drivers = newcon;
2595 if (newcon->next)
2596 newcon->next->flags &= ~CON_CONSDEV;
2597 } else {
2598 newcon->next = console_drivers->next;
2599 console_drivers->next = newcon;
2600 }
2601
2602 if (newcon->flags & CON_EXTENDED)
2603 if (!nr_ext_console_drivers++)
2604 pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2605
2606 if (newcon->flags & CON_PRINTBUFFER) {
2607 /*
2608 * console_unlock(); will print out the buffered messages
2609 * for us.
2610 */
2611 raw_spin_lock_irqsave(&logbuf_lock, flags);
2612 console_seq = syslog_seq;
2613 console_idx = syslog_idx;
2614 console_prev = syslog_prev;
2615 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2616 /*
2617 * We're about to replay the log buffer. Only do this to the
2618 * just-registered console to avoid excessive message spam to
2619 * the already-registered consoles.
2620 */
2621 exclusive_console = newcon;
2622 }
2623 console_unlock();
2624 console_sysfs_notify();
2625
2626 /*
2627 * By unregistering the bootconsoles after we enable the real console
2628 * we get the "console xxx enabled" message on all the consoles -
2629 * boot consoles, real consoles, etc - this is to ensure that end
2630 * users know there might be something in the kernel's log buffer that
2631 * went to the bootconsole (that they do not see on the real console)
2632 */
2633 pr_info("%sconsole [%s%d] enabled\n",
2634 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2635 newcon->name, newcon->index);
2636 if (bcon &&
2637 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2638 !keep_bootcon) {
2639 /* We need to iterate through all boot consoles, to make
2640 * sure we print everything out, before we unregister them.
2641 */
2642 for_each_console(bcon)
2643 if (bcon->flags & CON_BOOT)
2644 unregister_console(bcon);
2645 }
2646 }
2647 EXPORT_SYMBOL(register_console);
2648
2649 int unregister_console(struct console *console)
2650 {
2651 struct console *a, *b;
2652 int res;
2653
2654 pr_info("%sconsole [%s%d] disabled\n",
2655 (console->flags & CON_BOOT) ? "boot" : "" ,
2656 console->name, console->index);
2657
2658 res = _braille_unregister_console(console);
2659 if (res)
2660 return res;
2661
2662 res = 1;
2663 console_lock();
2664 if (console_drivers == console) {
2665 console_drivers=console->next;
2666 res = 0;
2667 } else if (console_drivers) {
2668 for (a=console_drivers->next, b=console_drivers ;
2669 a; b=a, a=b->next) {
2670 if (a == console) {
2671 b->next = a->next;
2672 res = 0;
2673 break;
2674 }
2675 }
2676 }
2677
2678 if (!res && (console->flags & CON_EXTENDED))
2679 nr_ext_console_drivers--;
2680
2681 /*
2682 * If this isn't the last console and it has CON_CONSDEV set, we
2683 * need to set it on the next preferred console.
2684 */
2685 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2686 console_drivers->flags |= CON_CONSDEV;
2687
2688 console->flags &= ~CON_ENABLED;
2689 console_unlock();
2690 console_sysfs_notify();
2691 return res;
2692 }
2693 EXPORT_SYMBOL(unregister_console);
2694
2695 /*
2696 * Some boot consoles access data that is in the init section and which will
2697 * be discarded after the initcalls have been run. To make sure that no code
2698 * will access this data, unregister the boot consoles in a late initcall.
2699 *
2700 * If for some reason, such as deferred probe or the driver being a loadable
2701 * module, the real console hasn't registered yet at this point, there will
2702 * be a brief interval in which no messages are logged to the console, which
2703 * makes it difficult to diagnose problems that occur during this time.
2704 *
2705 * To mitigate this problem somewhat, only unregister consoles whose memory
2706 * intersects with the init section. Note that code exists elsewhere to get
2707 * rid of the boot console as soon as the proper console shows up, so there
2708 * won't be side-effects from postponing the removal.
2709 */
2710 static int __init printk_late_init(void)
2711 {
2712 struct console *con;
2713
2714 for_each_console(con) {
2715 if (!keep_bootcon && con->flags & CON_BOOT) {
2716 /*
2717 * Make sure to unregister boot consoles whose data
2718 * resides in the init section before the init section
2719 * is discarded. Boot consoles whose data will stick
2720 * around will automatically be unregistered when the
2721 * proper console replaces them.
2722 */
2723 if (init_section_intersects(con, sizeof(*con)))
2724 unregister_console(con);
2725 }
2726 }
2727 hotcpu_notifier(console_cpu_notify, 0);
2728 return 0;
2729 }
2730 late_initcall(printk_late_init);
2731
2732 #if defined CONFIG_PRINTK
2733 /*
2734 * Delayed printk version, for scheduler-internal messages:
2735 */
2736 #define PRINTK_PENDING_WAKEUP 0x01
2737 #define PRINTK_PENDING_OUTPUT 0x02
2738
2739 static DEFINE_PER_CPU(int, printk_pending);
2740
2741 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2742 {
2743 int pending = __this_cpu_xchg(printk_pending, 0);
2744
2745 if (pending & PRINTK_PENDING_OUTPUT) {
2746 /* If trylock fails, someone else is doing the printing */
2747 if (console_trylock())
2748 console_unlock();
2749 }
2750
2751 if (pending & PRINTK_PENDING_WAKEUP)
2752 wake_up_interruptible(&log_wait);
2753 }
2754
2755 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2756 .func = wake_up_klogd_work_func,
2757 .flags = IRQ_WORK_LAZY,
2758 };
2759
2760 void wake_up_klogd(void)
2761 {
2762 preempt_disable();
2763 if (waitqueue_active(&log_wait)) {
2764 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2765 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2766 }
2767 preempt_enable();
2768 }
2769
2770 int printk_deferred(const char *fmt, ...)
2771 {
2772 va_list args;
2773 int r;
2774
2775 preempt_disable();
2776 va_start(args, fmt);
2777 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2778 va_end(args);
2779
2780 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2781 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2782 preempt_enable();
2783
2784 return r;
2785 }
2786
2787 /*
2788 * printk rate limiting, lifted from the networking subsystem.
2789 *
2790 * This enforces a rate limit: not more than 10 kernel messages
2791 * every 5s to make a denial-of-service attack impossible.
2792 */
2793 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2794
2795 int __printk_ratelimit(const char *func)
2796 {
2797 return ___ratelimit(&printk_ratelimit_state, func);
2798 }
2799 EXPORT_SYMBOL(__printk_ratelimit);
2800
2801 /**
2802 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2803 * @caller_jiffies: pointer to caller's state
2804 * @interval_msecs: minimum interval between prints
2805 *
2806 * printk_timed_ratelimit() returns true if more than @interval_msecs
2807 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2808 * returned true.
2809 */
2810 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2811 unsigned int interval_msecs)
2812 {
2813 unsigned long elapsed = jiffies - *caller_jiffies;
2814
2815 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2816 return false;
2817
2818 *caller_jiffies = jiffies;
2819 return true;
2820 }
2821 EXPORT_SYMBOL(printk_timed_ratelimit);
2822
2823 static DEFINE_SPINLOCK(dump_list_lock);
2824 static LIST_HEAD(dump_list);
2825
2826 /**
2827 * kmsg_dump_register - register a kernel log dumper.
2828 * @dumper: pointer to the kmsg_dumper structure
2829 *
2830 * Adds a kernel log dumper to the system. The dump callback in the
2831 * structure will be called when the kernel oopses or panics and must be
2832 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2833 */
2834 int kmsg_dump_register(struct kmsg_dumper *dumper)
2835 {
2836 unsigned long flags;
2837 int err = -EBUSY;
2838
2839 /* The dump callback needs to be set */
2840 if (!dumper->dump)
2841 return -EINVAL;
2842
2843 spin_lock_irqsave(&dump_list_lock, flags);
2844 /* Don't allow registering multiple times */
2845 if (!dumper->registered) {
2846 dumper->registered = 1;
2847 list_add_tail_rcu(&dumper->list, &dump_list);
2848 err = 0;
2849 }
2850 spin_unlock_irqrestore(&dump_list_lock, flags);
2851
2852 return err;
2853 }
2854 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2855
2856 /**
2857 * kmsg_dump_unregister - unregister a kmsg dumper.
2858 * @dumper: pointer to the kmsg_dumper structure
2859 *
2860 * Removes a dump device from the system. Returns zero on success and
2861 * %-EINVAL otherwise.
2862 */
2863 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2864 {
2865 unsigned long flags;
2866 int err = -EINVAL;
2867
2868 spin_lock_irqsave(&dump_list_lock, flags);
2869 if (dumper->registered) {
2870 dumper->registered = 0;
2871 list_del_rcu(&dumper->list);
2872 err = 0;
2873 }
2874 spin_unlock_irqrestore(&dump_list_lock, flags);
2875 synchronize_rcu();
2876
2877 return err;
2878 }
2879 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2880
2881 static bool always_kmsg_dump;
2882 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2883
2884 /**
2885 * kmsg_dump - dump kernel log to kernel message dumpers.
2886 * @reason: the reason (oops, panic etc) for dumping
2887 *
2888 * Call each of the registered dumper's dump() callback, which can
2889 * retrieve the kmsg records with kmsg_dump_get_line() or
2890 * kmsg_dump_get_buffer().
2891 */
2892 void kmsg_dump(enum kmsg_dump_reason reason)
2893 {
2894 struct kmsg_dumper *dumper;
2895 unsigned long flags;
2896
2897 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2898 return;
2899
2900 rcu_read_lock();
2901 list_for_each_entry_rcu(dumper, &dump_list, list) {
2902 if (dumper->max_reason && reason > dumper->max_reason)
2903 continue;
2904
2905 /* initialize iterator with data about the stored records */
2906 dumper->active = true;
2907
2908 raw_spin_lock_irqsave(&logbuf_lock, flags);
2909 dumper->cur_seq = clear_seq;
2910 dumper->cur_idx = clear_idx;
2911 dumper->next_seq = log_next_seq;
2912 dumper->next_idx = log_next_idx;
2913 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2914
2915 /* invoke dumper which will iterate over records */
2916 dumper->dump(dumper, reason);
2917
2918 /* reset iterator */
2919 dumper->active = false;
2920 }
2921 rcu_read_unlock();
2922 }
2923
2924 /**
2925 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2926 * @dumper: registered kmsg dumper
2927 * @syslog: include the "<4>" prefixes
2928 * @line: buffer to copy the line to
2929 * @size: maximum size of the buffer
2930 * @len: length of line placed into buffer
2931 *
2932 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2933 * record, and copy one record into the provided buffer.
2934 *
2935 * Consecutive calls will return the next available record moving
2936 * towards the end of the buffer with the youngest messages.
2937 *
2938 * A return value of FALSE indicates that there are no more records to
2939 * read.
2940 *
2941 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2942 */
2943 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2944 char *line, size_t size, size_t *len)
2945 {
2946 struct printk_log *msg;
2947 size_t l = 0;
2948 bool ret = false;
2949
2950 if (!dumper->active)
2951 goto out;
2952
2953 if (dumper->cur_seq < log_first_seq) {
2954 /* messages are gone, move to first available one */
2955 dumper->cur_seq = log_first_seq;
2956 dumper->cur_idx = log_first_idx;
2957 }
2958
2959 /* last entry */
2960 if (dumper->cur_seq >= log_next_seq)
2961 goto out;
2962
2963 msg = log_from_idx(dumper->cur_idx);
2964 l = msg_print_text(msg, 0, syslog, line, size);
2965
2966 dumper->cur_idx = log_next(dumper->cur_idx);
2967 dumper->cur_seq++;
2968 ret = true;
2969 out:
2970 if (len)
2971 *len = l;
2972 return ret;
2973 }
2974
2975 /**
2976 * kmsg_dump_get_line - retrieve one kmsg log line
2977 * @dumper: registered kmsg dumper
2978 * @syslog: include the "<4>" prefixes
2979 * @line: buffer to copy the line to
2980 * @size: maximum size of the buffer
2981 * @len: length of line placed into buffer
2982 *
2983 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2984 * record, and copy one record into the provided buffer.
2985 *
2986 * Consecutive calls will return the next available record moving
2987 * towards the end of the buffer with the youngest messages.
2988 *
2989 * A return value of FALSE indicates that there are no more records to
2990 * read.
2991 */
2992 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2993 char *line, size_t size, size_t *len)
2994 {
2995 unsigned long flags;
2996 bool ret;
2997
2998 raw_spin_lock_irqsave(&logbuf_lock, flags);
2999 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3000 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3001
3002 return ret;
3003 }
3004 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3005
3006 /**
3007 * kmsg_dump_get_buffer - copy kmsg log lines
3008 * @dumper: registered kmsg dumper
3009 * @syslog: include the "<4>" prefixes
3010 * @buf: buffer to copy the line to
3011 * @size: maximum size of the buffer
3012 * @len: length of line placed into buffer
3013 *
3014 * Start at the end of the kmsg buffer and fill the provided buffer
3015 * with as many of the the *youngest* kmsg records that fit into it.
3016 * If the buffer is large enough, all available kmsg records will be
3017 * copied with a single call.
3018 *
3019 * Consecutive calls will fill the buffer with the next block of
3020 * available older records, not including the earlier retrieved ones.
3021 *
3022 * A return value of FALSE indicates that there are no more records to
3023 * read.
3024 */
3025 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3026 char *buf, size_t size, size_t *len)
3027 {
3028 unsigned long flags;
3029 u64 seq;
3030 u32 idx;
3031 u64 next_seq;
3032 u32 next_idx;
3033 enum log_flags prev;
3034 size_t l = 0;
3035 bool ret = false;
3036
3037 if (!dumper->active)
3038 goto out;
3039
3040 raw_spin_lock_irqsave(&logbuf_lock, flags);
3041 if (dumper->cur_seq < log_first_seq) {
3042 /* messages are gone, move to first available one */
3043 dumper->cur_seq = log_first_seq;
3044 dumper->cur_idx = log_first_idx;
3045 }
3046
3047 /* last entry */
3048 if (dumper->cur_seq >= dumper->next_seq) {
3049 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3050 goto out;
3051 }
3052
3053 /* calculate length of entire buffer */
3054 seq = dumper->cur_seq;
3055 idx = dumper->cur_idx;
3056 prev = 0;
3057 while (seq < dumper->next_seq) {
3058 struct printk_log *msg = log_from_idx(idx);
3059
3060 l += msg_print_text(msg, prev, true, NULL, 0);
3061 idx = log_next(idx);
3062 seq++;
3063 prev = msg->flags;
3064 }
3065
3066 /* move first record forward until length fits into the buffer */
3067 seq = dumper->cur_seq;
3068 idx = dumper->cur_idx;
3069 prev = 0;
3070 while (l > size && seq < dumper->next_seq) {
3071 struct printk_log *msg = log_from_idx(idx);
3072
3073 l -= msg_print_text(msg, prev, true, NULL, 0);
3074 idx = log_next(idx);
3075 seq++;
3076 prev = msg->flags;
3077 }
3078
3079 /* last message in next interation */
3080 next_seq = seq;
3081 next_idx = idx;
3082
3083 l = 0;
3084 while (seq < dumper->next_seq) {
3085 struct printk_log *msg = log_from_idx(idx);
3086
3087 l += msg_print_text(msg, prev, syslog, buf + l, size - l);
3088 idx = log_next(idx);
3089 seq++;
3090 prev = msg->flags;
3091 }
3092
3093 dumper->next_seq = next_seq;
3094 dumper->next_idx = next_idx;
3095 ret = true;
3096 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3097 out:
3098 if (len)
3099 *len = l;
3100 return ret;
3101 }
3102 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3103
3104 /**
3105 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3106 * @dumper: registered kmsg dumper
3107 *
3108 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3109 * kmsg_dump_get_buffer() can be called again and used multiple
3110 * times within the same dumper.dump() callback.
3111 *
3112 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3113 */
3114 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3115 {
3116 dumper->cur_seq = clear_seq;
3117 dumper->cur_idx = clear_idx;
3118 dumper->next_seq = log_next_seq;
3119 dumper->next_idx = log_next_idx;
3120 }
3121
3122 /**
3123 * kmsg_dump_rewind - reset the interator
3124 * @dumper: registered kmsg dumper
3125 *
3126 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3127 * kmsg_dump_get_buffer() can be called again and used multiple
3128 * times within the same dumper.dump() callback.
3129 */
3130 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3131 {
3132 unsigned long flags;
3133
3134 raw_spin_lock_irqsave(&logbuf_lock, flags);
3135 kmsg_dump_rewind_nolock(dumper);
3136 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3137 }
3138 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3139
3140 static char dump_stack_arch_desc_str[128];
3141
3142 /**
3143 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3144 * @fmt: printf-style format string
3145 * @...: arguments for the format string
3146 *
3147 * The configured string will be printed right after utsname during task
3148 * dumps. Usually used to add arch-specific system identifiers. If an
3149 * arch wants to make use of such an ID string, it should initialize this
3150 * as soon as possible during boot.
3151 */
3152 void __init dump_stack_set_arch_desc(const char *fmt, ...)
3153 {
3154 va_list args;
3155
3156 va_start(args, fmt);
3157 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3158 fmt, args);
3159 va_end(args);
3160 }
3161
3162 /**
3163 * dump_stack_print_info - print generic debug info for dump_stack()
3164 * @log_lvl: log level
3165 *
3166 * Arch-specific dump_stack() implementations can use this function to
3167 * print out the same debug information as the generic dump_stack().
3168 */
3169 void dump_stack_print_info(const char *log_lvl)
3170 {
3171 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3172 log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3173 print_tainted(), init_utsname()->release,
3174 (int)strcspn(init_utsname()->version, " "),
3175 init_utsname()->version);
3176
3177 if (dump_stack_arch_desc_str[0] != '\0')
3178 printk("%sHardware name: %s\n",
3179 log_lvl, dump_stack_arch_desc_str);
3180
3181 print_worker_info(log_lvl, current);
3182 }
3183
3184 /**
3185 * show_regs_print_info - print generic debug info for show_regs()
3186 * @log_lvl: log level
3187 *
3188 * show_regs() implementations can use this function to print out generic
3189 * debug information.
3190 */
3191 void show_regs_print_info(const char *log_lvl)
3192 {
3193 dump_stack_print_info(log_lvl);
3194
3195 printk("%stask: %p ti: %p task.ti: %p\n",
3196 log_lvl, current, current_thread_info(),
3197 task_thread_info(current));
3198 }
3199
3200 #endif