]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/printk/printk.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-jammy-kernel.git] / kernel / printk / printk.c
1 /*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/tty.h>
24 #include <linux/tty_driver.h>
25 #include <linux/console.h>
26 #include <linux/init.h>
27 #include <linux/jiffies.h>
28 #include <linux/nmi.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/delay.h>
32 #include <linux/smp.h>
33 #include <linux/security.h>
34 #include <linux/memblock.h>
35 #include <linux/syscalls.h>
36 #include <linux/crash_core.h>
37 #include <linux/kdb.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/ctype.h>
46 #include <linux/uio.h>
47 #include <linux/sched/clock.h>
48 #include <linux/sched/debug.h>
49 #include <linux/sched/task_stack.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/sections.h>
53
54 #include <trace/events/initcall.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/printk.h>
57
58 #include "console_cmdline.h"
59 #include "braille.h"
60 #include "internal.h"
61
62 int console_printk[4] = {
63 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */
64 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */
65 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */
66 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */
67 };
68 EXPORT_SYMBOL_GPL(console_printk);
69
70 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
71 EXPORT_SYMBOL(ignore_console_lock_warning);
72
73 /*
74 * Low level drivers may need that to know if they can schedule in
75 * their unblank() callback or not. So let's export it.
76 */
77 int oops_in_progress;
78 EXPORT_SYMBOL(oops_in_progress);
79
80 /*
81 * console_sem protects the console_drivers list, and also
82 * provides serialisation for access to the entire console
83 * driver system.
84 */
85 static DEFINE_SEMAPHORE(console_sem);
86 struct console *console_drivers;
87 EXPORT_SYMBOL_GPL(console_drivers);
88
89 #ifdef CONFIG_LOCKDEP
90 static struct lockdep_map console_lock_dep_map = {
91 .name = "console_lock"
92 };
93 #endif
94
95 enum devkmsg_log_bits {
96 __DEVKMSG_LOG_BIT_ON = 0,
97 __DEVKMSG_LOG_BIT_OFF,
98 __DEVKMSG_LOG_BIT_LOCK,
99 };
100
101 enum devkmsg_log_masks {
102 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON),
103 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF),
104 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK),
105 };
106
107 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
108 #define DEVKMSG_LOG_MASK_DEFAULT 0
109
110 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
111
112 static int __control_devkmsg(char *str)
113 {
114 if (!str)
115 return -EINVAL;
116
117 if (!strncmp(str, "on", 2)) {
118 devkmsg_log = DEVKMSG_LOG_MASK_ON;
119 return 2;
120 } else if (!strncmp(str, "off", 3)) {
121 devkmsg_log = DEVKMSG_LOG_MASK_OFF;
122 return 3;
123 } else if (!strncmp(str, "ratelimit", 9)) {
124 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
125 return 9;
126 }
127 return -EINVAL;
128 }
129
130 static int __init control_devkmsg(char *str)
131 {
132 if (__control_devkmsg(str) < 0)
133 return 1;
134
135 /*
136 * Set sysctl string accordingly:
137 */
138 if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
139 strcpy(devkmsg_log_str, "on");
140 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
141 strcpy(devkmsg_log_str, "off");
142 /* else "ratelimit" which is set by default. */
143
144 /*
145 * Sysctl cannot change it anymore. The kernel command line setting of
146 * this parameter is to force the setting to be permanent throughout the
147 * runtime of the system. This is a precation measure against userspace
148 * trying to be a smarta** and attempting to change it up on us.
149 */
150 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
151
152 return 0;
153 }
154 __setup("printk.devkmsg=", control_devkmsg);
155
156 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
157
158 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
159 void __user *buffer, size_t *lenp, loff_t *ppos)
160 {
161 char old_str[DEVKMSG_STR_MAX_SIZE];
162 unsigned int old;
163 int err;
164
165 if (write) {
166 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
167 return -EINVAL;
168
169 old = devkmsg_log;
170 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
171 }
172
173 err = proc_dostring(table, write, buffer, lenp, ppos);
174 if (err)
175 return err;
176
177 if (write) {
178 err = __control_devkmsg(devkmsg_log_str);
179
180 /*
181 * Do not accept an unknown string OR a known string with
182 * trailing crap...
183 */
184 if (err < 0 || (err + 1 != *lenp)) {
185
186 /* ... and restore old setting. */
187 devkmsg_log = old;
188 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
189
190 return -EINVAL;
191 }
192 }
193
194 return 0;
195 }
196
197 /* Number of registered extended console drivers. */
198 static int nr_ext_console_drivers;
199
200 /*
201 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
202 * macros instead of functions so that _RET_IP_ contains useful information.
203 */
204 #define down_console_sem() do { \
205 down(&console_sem);\
206 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
207 } while (0)
208
209 static int __down_trylock_console_sem(unsigned long ip)
210 {
211 int lock_failed;
212 unsigned long flags;
213
214 /*
215 * Here and in __up_console_sem() we need to be in safe mode,
216 * because spindump/WARN/etc from under console ->lock will
217 * deadlock in printk()->down_trylock_console_sem() otherwise.
218 */
219 printk_safe_enter_irqsave(flags);
220 lock_failed = down_trylock(&console_sem);
221 printk_safe_exit_irqrestore(flags);
222
223 if (lock_failed)
224 return 1;
225 mutex_acquire(&console_lock_dep_map, 0, 1, ip);
226 return 0;
227 }
228 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
229
230 static void __up_console_sem(unsigned long ip)
231 {
232 unsigned long flags;
233
234 mutex_release(&console_lock_dep_map, 1, ip);
235
236 printk_safe_enter_irqsave(flags);
237 up(&console_sem);
238 printk_safe_exit_irqrestore(flags);
239 }
240 #define up_console_sem() __up_console_sem(_RET_IP_)
241
242 /*
243 * This is used for debugging the mess that is the VT code by
244 * keeping track if we have the console semaphore held. It's
245 * definitely not the perfect debug tool (we don't know if _WE_
246 * hold it and are racing, but it helps tracking those weird code
247 * paths in the console code where we end up in places I want
248 * locked without the console sempahore held).
249 */
250 static int console_locked, console_suspended;
251
252 /*
253 * If exclusive_console is non-NULL then only this console is to be printed to.
254 */
255 static struct console *exclusive_console;
256
257 /*
258 * Array of consoles built from command line options (console=)
259 */
260
261 #define MAX_CMDLINECONSOLES 8
262
263 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
264
265 static int preferred_console = -1;
266 int console_set_on_cmdline;
267 EXPORT_SYMBOL(console_set_on_cmdline);
268
269 /* Flag: console code may call schedule() */
270 static int console_may_schedule;
271
272 enum con_msg_format_flags {
273 MSG_FORMAT_DEFAULT = 0,
274 MSG_FORMAT_SYSLOG = (1 << 0),
275 };
276
277 static int console_msg_format = MSG_FORMAT_DEFAULT;
278
279 /*
280 * The printk log buffer consists of a chain of concatenated variable
281 * length records. Every record starts with a record header, containing
282 * the overall length of the record.
283 *
284 * The heads to the first and last entry in the buffer, as well as the
285 * sequence numbers of these entries are maintained when messages are
286 * stored.
287 *
288 * If the heads indicate available messages, the length in the header
289 * tells the start next message. A length == 0 for the next message
290 * indicates a wrap-around to the beginning of the buffer.
291 *
292 * Every record carries the monotonic timestamp in microseconds, as well as
293 * the standard userspace syslog level and syslog facility. The usual
294 * kernel messages use LOG_KERN; userspace-injected messages always carry
295 * a matching syslog facility, by default LOG_USER. The origin of every
296 * message can be reliably determined that way.
297 *
298 * The human readable log message directly follows the message header. The
299 * length of the message text is stored in the header, the stored message
300 * is not terminated.
301 *
302 * Optionally, a message can carry a dictionary of properties (key/value pairs),
303 * to provide userspace with a machine-readable message context.
304 *
305 * Examples for well-defined, commonly used property names are:
306 * DEVICE=b12:8 device identifier
307 * b12:8 block dev_t
308 * c127:3 char dev_t
309 * n8 netdev ifindex
310 * +sound:card0 subsystem:devname
311 * SUBSYSTEM=pci driver-core subsystem name
312 *
313 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
314 * follows directly after a '=' character. Every property is terminated by
315 * a '\0' character. The last property is not terminated.
316 *
317 * Example of a message structure:
318 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
319 * 0008 34 00 record is 52 bytes long
320 * 000a 0b 00 text is 11 bytes long
321 * 000c 1f 00 dictionary is 23 bytes long
322 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
323 * 0010 69 74 27 73 20 61 20 6c "it's a l"
324 * 69 6e 65 "ine"
325 * 001b 44 45 56 49 43 "DEVIC"
326 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
327 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
328 * 67 "g"
329 * 0032 00 00 00 padding to next message header
330 *
331 * The 'struct printk_log' buffer header must never be directly exported to
332 * userspace, it is a kernel-private implementation detail that might
333 * need to be changed in the future, when the requirements change.
334 *
335 * /dev/kmsg exports the structured data in the following line format:
336 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
337 *
338 * Users of the export format should ignore possible additional values
339 * separated by ',', and find the message after the ';' character.
340 *
341 * The optional key/value pairs are attached as continuation lines starting
342 * with a space character and terminated by a newline. All possible
343 * non-prinatable characters are escaped in the "\xff" notation.
344 */
345
346 enum log_flags {
347 LOG_NEWLINE = 2, /* text ended with a newline */
348 LOG_CONT = 8, /* text is a fragment of a continuation line */
349 };
350
351 struct printk_log {
352 u64 ts_nsec; /* timestamp in nanoseconds */
353 u16 len; /* length of entire record */
354 u16 text_len; /* length of text buffer */
355 u16 dict_len; /* length of dictionary buffer */
356 u8 facility; /* syslog facility */
357 u8 flags:5; /* internal record flags */
358 u8 level:3; /* syslog level */
359 #ifdef CONFIG_PRINTK_CALLER
360 u32 caller_id; /* thread id or processor id */
361 #endif
362 }
363 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
364 __packed __aligned(4)
365 #endif
366 ;
367
368 /*
369 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken
370 * within the scheduler's rq lock. It must be released before calling
371 * console_unlock() or anything else that might wake up a process.
372 */
373 DEFINE_RAW_SPINLOCK(logbuf_lock);
374
375 /*
376 * Helper macros to lock/unlock logbuf_lock and switch between
377 * printk-safe/unsafe modes.
378 */
379 #define logbuf_lock_irq() \
380 do { \
381 printk_safe_enter_irq(); \
382 raw_spin_lock(&logbuf_lock); \
383 } while (0)
384
385 #define logbuf_unlock_irq() \
386 do { \
387 raw_spin_unlock(&logbuf_lock); \
388 printk_safe_exit_irq(); \
389 } while (0)
390
391 #define logbuf_lock_irqsave(flags) \
392 do { \
393 printk_safe_enter_irqsave(flags); \
394 raw_spin_lock(&logbuf_lock); \
395 } while (0)
396
397 #define logbuf_unlock_irqrestore(flags) \
398 do { \
399 raw_spin_unlock(&logbuf_lock); \
400 printk_safe_exit_irqrestore(flags); \
401 } while (0)
402
403 #ifdef CONFIG_PRINTK
404 DECLARE_WAIT_QUEUE_HEAD(log_wait);
405 /* the next printk record to read by syslog(READ) or /proc/kmsg */
406 static u64 syslog_seq;
407 static u32 syslog_idx;
408 static size_t syslog_partial;
409 static bool syslog_time;
410
411 /* index and sequence number of the first record stored in the buffer */
412 static u64 log_first_seq;
413 static u32 log_first_idx;
414
415 /* index and sequence number of the next record to store in the buffer */
416 static u64 log_next_seq;
417 static u32 log_next_idx;
418
419 /* the next printk record to write to the console */
420 static u64 console_seq;
421 static u32 console_idx;
422 static u64 exclusive_console_stop_seq;
423
424 /* the next printk record to read after the last 'clear' command */
425 static u64 clear_seq;
426 static u32 clear_idx;
427
428 #ifdef CONFIG_PRINTK_CALLER
429 #define PREFIX_MAX 48
430 #else
431 #define PREFIX_MAX 32
432 #endif
433 #define LOG_LINE_MAX (1024 - PREFIX_MAX)
434
435 #define LOG_LEVEL(v) ((v) & 0x07)
436 #define LOG_FACILITY(v) ((v) >> 3 & 0xff)
437
438 /* record buffer */
439 #define LOG_ALIGN __alignof__(struct printk_log)
440 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
441 #define LOG_BUF_LEN_MAX (u32)(1 << 31)
442 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
443 static char *log_buf = __log_buf;
444 static u32 log_buf_len = __LOG_BUF_LEN;
445
446 /* Return log buffer address */
447 char *log_buf_addr_get(void)
448 {
449 return log_buf;
450 }
451
452 /* Return log buffer size */
453 u32 log_buf_len_get(void)
454 {
455 return log_buf_len;
456 }
457
458 /* human readable text of the record */
459 static char *log_text(const struct printk_log *msg)
460 {
461 return (char *)msg + sizeof(struct printk_log);
462 }
463
464 /* optional key/value pair dictionary attached to the record */
465 static char *log_dict(const struct printk_log *msg)
466 {
467 return (char *)msg + sizeof(struct printk_log) + msg->text_len;
468 }
469
470 /* get record by index; idx must point to valid msg */
471 static struct printk_log *log_from_idx(u32 idx)
472 {
473 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
474
475 /*
476 * A length == 0 record is the end of buffer marker. Wrap around and
477 * read the message at the start of the buffer.
478 */
479 if (!msg->len)
480 return (struct printk_log *)log_buf;
481 return msg;
482 }
483
484 /* get next record; idx must point to valid msg */
485 static u32 log_next(u32 idx)
486 {
487 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
488
489 /* length == 0 indicates the end of the buffer; wrap */
490 /*
491 * A length == 0 record is the end of buffer marker. Wrap around and
492 * read the message at the start of the buffer as *this* one, and
493 * return the one after that.
494 */
495 if (!msg->len) {
496 msg = (struct printk_log *)log_buf;
497 return msg->len;
498 }
499 return idx + msg->len;
500 }
501
502 /*
503 * Check whether there is enough free space for the given message.
504 *
505 * The same values of first_idx and next_idx mean that the buffer
506 * is either empty or full.
507 *
508 * If the buffer is empty, we must respect the position of the indexes.
509 * They cannot be reset to the beginning of the buffer.
510 */
511 static int logbuf_has_space(u32 msg_size, bool empty)
512 {
513 u32 free;
514
515 if (log_next_idx > log_first_idx || empty)
516 free = max(log_buf_len - log_next_idx, log_first_idx);
517 else
518 free = log_first_idx - log_next_idx;
519
520 /*
521 * We need space also for an empty header that signalizes wrapping
522 * of the buffer.
523 */
524 return free >= msg_size + sizeof(struct printk_log);
525 }
526
527 static int log_make_free_space(u32 msg_size)
528 {
529 while (log_first_seq < log_next_seq &&
530 !logbuf_has_space(msg_size, false)) {
531 /* drop old messages until we have enough contiguous space */
532 log_first_idx = log_next(log_first_idx);
533 log_first_seq++;
534 }
535
536 if (clear_seq < log_first_seq) {
537 clear_seq = log_first_seq;
538 clear_idx = log_first_idx;
539 }
540
541 /* sequence numbers are equal, so the log buffer is empty */
542 if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
543 return 0;
544
545 return -ENOMEM;
546 }
547
548 /* compute the message size including the padding bytes */
549 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
550 {
551 u32 size;
552
553 size = sizeof(struct printk_log) + text_len + dict_len;
554 *pad_len = (-size) & (LOG_ALIGN - 1);
555 size += *pad_len;
556
557 return size;
558 }
559
560 /*
561 * Define how much of the log buffer we could take at maximum. The value
562 * must be greater than two. Note that only half of the buffer is available
563 * when the index points to the middle.
564 */
565 #define MAX_LOG_TAKE_PART 4
566 static const char trunc_msg[] = "<truncated>";
567
568 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
569 u16 *dict_len, u32 *pad_len)
570 {
571 /*
572 * The message should not take the whole buffer. Otherwise, it might
573 * get removed too soon.
574 */
575 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
576 if (*text_len > max_text_len)
577 *text_len = max_text_len;
578 /* enable the warning message */
579 *trunc_msg_len = strlen(trunc_msg);
580 /* disable the "dict" completely */
581 *dict_len = 0;
582 /* compute the size again, count also the warning message */
583 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
584 }
585
586 /* insert record into the buffer, discard old ones, update heads */
587 static int log_store(u32 caller_id, int facility, int level,
588 enum log_flags flags, u64 ts_nsec,
589 const char *dict, u16 dict_len,
590 const char *text, u16 text_len)
591 {
592 struct printk_log *msg;
593 u32 size, pad_len;
594 u16 trunc_msg_len = 0;
595
596 /* number of '\0' padding bytes to next message */
597 size = msg_used_size(text_len, dict_len, &pad_len);
598
599 if (log_make_free_space(size)) {
600 /* truncate the message if it is too long for empty buffer */
601 size = truncate_msg(&text_len, &trunc_msg_len,
602 &dict_len, &pad_len);
603 /* survive when the log buffer is too small for trunc_msg */
604 if (log_make_free_space(size))
605 return 0;
606 }
607
608 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
609 /*
610 * This message + an additional empty header does not fit
611 * at the end of the buffer. Add an empty header with len == 0
612 * to signify a wrap around.
613 */
614 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
615 log_next_idx = 0;
616 }
617
618 /* fill message */
619 msg = (struct printk_log *)(log_buf + log_next_idx);
620 memcpy(log_text(msg), text, text_len);
621 msg->text_len = text_len;
622 if (trunc_msg_len) {
623 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
624 msg->text_len += trunc_msg_len;
625 }
626 memcpy(log_dict(msg), dict, dict_len);
627 msg->dict_len = dict_len;
628 msg->facility = facility;
629 msg->level = level & 7;
630 msg->flags = flags & 0x1f;
631 if (ts_nsec > 0)
632 msg->ts_nsec = ts_nsec;
633 else
634 msg->ts_nsec = local_clock();
635 #ifdef CONFIG_PRINTK_CALLER
636 msg->caller_id = caller_id;
637 #endif
638 memset(log_dict(msg) + dict_len, 0, pad_len);
639 msg->len = size;
640
641 /* insert message */
642 log_next_idx += msg->len;
643 log_next_seq++;
644
645 return msg->text_len;
646 }
647
648 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
649
650 static int syslog_action_restricted(int type)
651 {
652 if (dmesg_restrict)
653 return 1;
654 /*
655 * Unless restricted, we allow "read all" and "get buffer size"
656 * for everybody.
657 */
658 return type != SYSLOG_ACTION_READ_ALL &&
659 type != SYSLOG_ACTION_SIZE_BUFFER;
660 }
661
662 static int check_syslog_permissions(int type, int source)
663 {
664 /*
665 * If this is from /proc/kmsg and we've already opened it, then we've
666 * already done the capabilities checks at open time.
667 */
668 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
669 goto ok;
670
671 if (syslog_action_restricted(type)) {
672 if (capable(CAP_SYSLOG))
673 goto ok;
674 /*
675 * For historical reasons, accept CAP_SYS_ADMIN too, with
676 * a warning.
677 */
678 if (capable(CAP_SYS_ADMIN)) {
679 pr_warn_once("%s (%d): Attempt to access syslog with "
680 "CAP_SYS_ADMIN but no CAP_SYSLOG "
681 "(deprecated).\n",
682 current->comm, task_pid_nr(current));
683 goto ok;
684 }
685 return -EPERM;
686 }
687 ok:
688 return security_syslog(type);
689 }
690
691 static void append_char(char **pp, char *e, char c)
692 {
693 if (*pp < e)
694 *(*pp)++ = c;
695 }
696
697 static ssize_t msg_print_ext_header(char *buf, size_t size,
698 struct printk_log *msg, u64 seq)
699 {
700 u64 ts_usec = msg->ts_nsec;
701 char caller[20];
702 #ifdef CONFIG_PRINTK_CALLER
703 u32 id = msg->caller_id;
704
705 snprintf(caller, sizeof(caller), ",caller=%c%u",
706 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
707 #else
708 caller[0] = '\0';
709 #endif
710
711 do_div(ts_usec, 1000);
712
713 return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
714 (msg->facility << 3) | msg->level, seq, ts_usec,
715 msg->flags & LOG_CONT ? 'c' : '-', caller);
716 }
717
718 static ssize_t msg_print_ext_body(char *buf, size_t size,
719 char *dict, size_t dict_len,
720 char *text, size_t text_len)
721 {
722 char *p = buf, *e = buf + size;
723 size_t i;
724
725 /* escape non-printable characters */
726 for (i = 0; i < text_len; i++) {
727 unsigned char c = text[i];
728
729 if (c < ' ' || c >= 127 || c == '\\')
730 p += scnprintf(p, e - p, "\\x%02x", c);
731 else
732 append_char(&p, e, c);
733 }
734 append_char(&p, e, '\n');
735
736 if (dict_len) {
737 bool line = true;
738
739 for (i = 0; i < dict_len; i++) {
740 unsigned char c = dict[i];
741
742 if (line) {
743 append_char(&p, e, ' ');
744 line = false;
745 }
746
747 if (c == '\0') {
748 append_char(&p, e, '\n');
749 line = true;
750 continue;
751 }
752
753 if (c < ' ' || c >= 127 || c == '\\') {
754 p += scnprintf(p, e - p, "\\x%02x", c);
755 continue;
756 }
757
758 append_char(&p, e, c);
759 }
760 append_char(&p, e, '\n');
761 }
762
763 return p - buf;
764 }
765
766 /* /dev/kmsg - userspace message inject/listen interface */
767 struct devkmsg_user {
768 u64 seq;
769 u32 idx;
770 struct ratelimit_state rs;
771 struct mutex lock;
772 char buf[CONSOLE_EXT_LOG_MAX];
773 };
774
775 static __printf(3, 4) __cold
776 int devkmsg_emit(int facility, int level, const char *fmt, ...)
777 {
778 va_list args;
779 int r;
780
781 va_start(args, fmt);
782 r = vprintk_emit(facility, level, NULL, 0, fmt, args);
783 va_end(args);
784
785 return r;
786 }
787
788 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
789 {
790 char *buf, *line;
791 int level = default_message_loglevel;
792 int facility = 1; /* LOG_USER */
793 struct file *file = iocb->ki_filp;
794 struct devkmsg_user *user = file->private_data;
795 size_t len = iov_iter_count(from);
796 ssize_t ret = len;
797
798 if (!user || len > LOG_LINE_MAX)
799 return -EINVAL;
800
801 /* Ignore when user logging is disabled. */
802 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
803 return len;
804
805 /* Ratelimit when not explicitly enabled. */
806 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
807 if (!___ratelimit(&user->rs, current->comm))
808 return ret;
809 }
810
811 buf = kmalloc(len+1, GFP_KERNEL);
812 if (buf == NULL)
813 return -ENOMEM;
814
815 buf[len] = '\0';
816 if (!copy_from_iter_full(buf, len, from)) {
817 kfree(buf);
818 return -EFAULT;
819 }
820
821 /*
822 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
823 * the decimal value represents 32bit, the lower 3 bit are the log
824 * level, the rest are the log facility.
825 *
826 * If no prefix or no userspace facility is specified, we
827 * enforce LOG_USER, to be able to reliably distinguish
828 * kernel-generated messages from userspace-injected ones.
829 */
830 line = buf;
831 if (line[0] == '<') {
832 char *endp = NULL;
833 unsigned int u;
834
835 u = simple_strtoul(line + 1, &endp, 10);
836 if (endp && endp[0] == '>') {
837 level = LOG_LEVEL(u);
838 if (LOG_FACILITY(u) != 0)
839 facility = LOG_FACILITY(u);
840 endp++;
841 len -= endp - line;
842 line = endp;
843 }
844 }
845
846 devkmsg_emit(facility, level, "%s", line);
847 kfree(buf);
848 return ret;
849 }
850
851 static ssize_t devkmsg_read(struct file *file, char __user *buf,
852 size_t count, loff_t *ppos)
853 {
854 struct devkmsg_user *user = file->private_data;
855 struct printk_log *msg;
856 size_t len;
857 ssize_t ret;
858
859 if (!user)
860 return -EBADF;
861
862 ret = mutex_lock_interruptible(&user->lock);
863 if (ret)
864 return ret;
865
866 logbuf_lock_irq();
867 while (user->seq == log_next_seq) {
868 if (file->f_flags & O_NONBLOCK) {
869 ret = -EAGAIN;
870 logbuf_unlock_irq();
871 goto out;
872 }
873
874 logbuf_unlock_irq();
875 ret = wait_event_interruptible(log_wait,
876 user->seq != log_next_seq);
877 if (ret)
878 goto out;
879 logbuf_lock_irq();
880 }
881
882 if (user->seq < log_first_seq) {
883 /* our last seen message is gone, return error and reset */
884 user->idx = log_first_idx;
885 user->seq = log_first_seq;
886 ret = -EPIPE;
887 logbuf_unlock_irq();
888 goto out;
889 }
890
891 msg = log_from_idx(user->idx);
892 len = msg_print_ext_header(user->buf, sizeof(user->buf),
893 msg, user->seq);
894 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
895 log_dict(msg), msg->dict_len,
896 log_text(msg), msg->text_len);
897
898 user->idx = log_next(user->idx);
899 user->seq++;
900 logbuf_unlock_irq();
901
902 if (len > count) {
903 ret = -EINVAL;
904 goto out;
905 }
906
907 if (copy_to_user(buf, user->buf, len)) {
908 ret = -EFAULT;
909 goto out;
910 }
911 ret = len;
912 out:
913 mutex_unlock(&user->lock);
914 return ret;
915 }
916
917 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
918 {
919 struct devkmsg_user *user = file->private_data;
920 loff_t ret = 0;
921
922 if (!user)
923 return -EBADF;
924 if (offset)
925 return -ESPIPE;
926
927 logbuf_lock_irq();
928 switch (whence) {
929 case SEEK_SET:
930 /* the first record */
931 user->idx = log_first_idx;
932 user->seq = log_first_seq;
933 break;
934 case SEEK_DATA:
935 /*
936 * The first record after the last SYSLOG_ACTION_CLEAR,
937 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
938 * changes no global state, and does not clear anything.
939 */
940 user->idx = clear_idx;
941 user->seq = clear_seq;
942 break;
943 case SEEK_END:
944 /* after the last record */
945 user->idx = log_next_idx;
946 user->seq = log_next_seq;
947 break;
948 default:
949 ret = -EINVAL;
950 }
951 logbuf_unlock_irq();
952 return ret;
953 }
954
955 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
956 {
957 struct devkmsg_user *user = file->private_data;
958 __poll_t ret = 0;
959
960 if (!user)
961 return EPOLLERR|EPOLLNVAL;
962
963 poll_wait(file, &log_wait, wait);
964
965 logbuf_lock_irq();
966 if (user->seq < log_next_seq) {
967 /* return error when data has vanished underneath us */
968 if (user->seq < log_first_seq)
969 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
970 else
971 ret = EPOLLIN|EPOLLRDNORM;
972 }
973 logbuf_unlock_irq();
974
975 return ret;
976 }
977
978 static int devkmsg_open(struct inode *inode, struct file *file)
979 {
980 struct devkmsg_user *user;
981 int err;
982
983 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
984 return -EPERM;
985
986 /* write-only does not need any file context */
987 if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
988 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
989 SYSLOG_FROM_READER);
990 if (err)
991 return err;
992 }
993
994 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
995 if (!user)
996 return -ENOMEM;
997
998 ratelimit_default_init(&user->rs);
999 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
1000
1001 mutex_init(&user->lock);
1002
1003 logbuf_lock_irq();
1004 user->idx = log_first_idx;
1005 user->seq = log_first_seq;
1006 logbuf_unlock_irq();
1007
1008 file->private_data = user;
1009 return 0;
1010 }
1011
1012 static int devkmsg_release(struct inode *inode, struct file *file)
1013 {
1014 struct devkmsg_user *user = file->private_data;
1015
1016 if (!user)
1017 return 0;
1018
1019 ratelimit_state_exit(&user->rs);
1020
1021 mutex_destroy(&user->lock);
1022 kfree(user);
1023 return 0;
1024 }
1025
1026 const struct file_operations kmsg_fops = {
1027 .open = devkmsg_open,
1028 .read = devkmsg_read,
1029 .write_iter = devkmsg_write,
1030 .llseek = devkmsg_llseek,
1031 .poll = devkmsg_poll,
1032 .release = devkmsg_release,
1033 };
1034
1035 #ifdef CONFIG_CRASH_CORE
1036 /*
1037 * This appends the listed symbols to /proc/vmcore
1038 *
1039 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
1040 * obtain access to symbols that are otherwise very difficult to locate. These
1041 * symbols are specifically used so that utilities can access and extract the
1042 * dmesg log from a vmcore file after a crash.
1043 */
1044 void log_buf_vmcoreinfo_setup(void)
1045 {
1046 VMCOREINFO_SYMBOL(log_buf);
1047 VMCOREINFO_SYMBOL(log_buf_len);
1048 VMCOREINFO_SYMBOL(log_first_idx);
1049 VMCOREINFO_SYMBOL(clear_idx);
1050 VMCOREINFO_SYMBOL(log_next_idx);
1051 /*
1052 * Export struct printk_log size and field offsets. User space tools can
1053 * parse it and detect any changes to structure down the line.
1054 */
1055 VMCOREINFO_STRUCT_SIZE(printk_log);
1056 VMCOREINFO_OFFSET(printk_log, ts_nsec);
1057 VMCOREINFO_OFFSET(printk_log, len);
1058 VMCOREINFO_OFFSET(printk_log, text_len);
1059 VMCOREINFO_OFFSET(printk_log, dict_len);
1060 #ifdef CONFIG_PRINTK_CALLER
1061 VMCOREINFO_OFFSET(printk_log, caller_id);
1062 #endif
1063 }
1064 #endif
1065
1066 /* requested log_buf_len from kernel cmdline */
1067 static unsigned long __initdata new_log_buf_len;
1068
1069 /* we practice scaling the ring buffer by powers of 2 */
1070 static void __init log_buf_len_update(u64 size)
1071 {
1072 if (size > (u64)LOG_BUF_LEN_MAX) {
1073 size = (u64)LOG_BUF_LEN_MAX;
1074 pr_err("log_buf over 2G is not supported.\n");
1075 }
1076
1077 if (size)
1078 size = roundup_pow_of_two(size);
1079 if (size > log_buf_len)
1080 new_log_buf_len = (unsigned long)size;
1081 }
1082
1083 /* save requested log_buf_len since it's too early to process it */
1084 static int __init log_buf_len_setup(char *str)
1085 {
1086 u64 size;
1087
1088 if (!str)
1089 return -EINVAL;
1090
1091 size = memparse(str, &str);
1092
1093 log_buf_len_update(size);
1094
1095 return 0;
1096 }
1097 early_param("log_buf_len", log_buf_len_setup);
1098
1099 #ifdef CONFIG_SMP
1100 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1101
1102 static void __init log_buf_add_cpu(void)
1103 {
1104 unsigned int cpu_extra;
1105
1106 /*
1107 * archs should set up cpu_possible_bits properly with
1108 * set_cpu_possible() after setup_arch() but just in
1109 * case lets ensure this is valid.
1110 */
1111 if (num_possible_cpus() == 1)
1112 return;
1113
1114 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1115
1116 /* by default this will only continue through for large > 64 CPUs */
1117 if (cpu_extra <= __LOG_BUF_LEN / 2)
1118 return;
1119
1120 pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1121 __LOG_CPU_MAX_BUF_LEN);
1122 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1123 cpu_extra);
1124 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1125
1126 log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1127 }
1128 #else /* !CONFIG_SMP */
1129 static inline void log_buf_add_cpu(void) {}
1130 #endif /* CONFIG_SMP */
1131
1132 void __init setup_log_buf(int early)
1133 {
1134 unsigned long flags;
1135 char *new_log_buf;
1136 unsigned int free;
1137
1138 if (log_buf != __log_buf)
1139 return;
1140
1141 if (!early && !new_log_buf_len)
1142 log_buf_add_cpu();
1143
1144 if (!new_log_buf_len)
1145 return;
1146
1147 new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1148 if (unlikely(!new_log_buf)) {
1149 pr_err("log_buf_len: %lu bytes not available\n",
1150 new_log_buf_len);
1151 return;
1152 }
1153
1154 logbuf_lock_irqsave(flags);
1155 log_buf_len = new_log_buf_len;
1156 log_buf = new_log_buf;
1157 new_log_buf_len = 0;
1158 free = __LOG_BUF_LEN - log_next_idx;
1159 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1160 logbuf_unlock_irqrestore(flags);
1161
1162 pr_info("log_buf_len: %u bytes\n", log_buf_len);
1163 pr_info("early log buf free: %u(%u%%)\n",
1164 free, (free * 100) / __LOG_BUF_LEN);
1165 }
1166
1167 static bool __read_mostly ignore_loglevel;
1168
1169 static int __init ignore_loglevel_setup(char *str)
1170 {
1171 ignore_loglevel = true;
1172 pr_info("debug: ignoring loglevel setting.\n");
1173
1174 return 0;
1175 }
1176
1177 early_param("ignore_loglevel", ignore_loglevel_setup);
1178 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1179 MODULE_PARM_DESC(ignore_loglevel,
1180 "ignore loglevel setting (prints all kernel messages to the console)");
1181
1182 static bool suppress_message_printing(int level)
1183 {
1184 return (level >= console_loglevel && !ignore_loglevel);
1185 }
1186
1187 #ifdef CONFIG_BOOT_PRINTK_DELAY
1188
1189 static int boot_delay; /* msecs delay after each printk during bootup */
1190 static unsigned long long loops_per_msec; /* based on boot_delay */
1191
1192 static int __init boot_delay_setup(char *str)
1193 {
1194 unsigned long lpj;
1195
1196 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
1197 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1198
1199 get_option(&str, &boot_delay);
1200 if (boot_delay > 10 * 1000)
1201 boot_delay = 0;
1202
1203 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1204 "HZ: %d, loops_per_msec: %llu\n",
1205 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1206 return 0;
1207 }
1208 early_param("boot_delay", boot_delay_setup);
1209
1210 static void boot_delay_msec(int level)
1211 {
1212 unsigned long long k;
1213 unsigned long timeout;
1214
1215 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1216 || suppress_message_printing(level)) {
1217 return;
1218 }
1219
1220 k = (unsigned long long)loops_per_msec * boot_delay;
1221
1222 timeout = jiffies + msecs_to_jiffies(boot_delay);
1223 while (k) {
1224 k--;
1225 cpu_relax();
1226 /*
1227 * use (volatile) jiffies to prevent
1228 * compiler reduction; loop termination via jiffies
1229 * is secondary and may or may not happen.
1230 */
1231 if (time_after(jiffies, timeout))
1232 break;
1233 touch_nmi_watchdog();
1234 }
1235 }
1236 #else
1237 static inline void boot_delay_msec(int level)
1238 {
1239 }
1240 #endif
1241
1242 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1243 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1244
1245 static size_t print_syslog(unsigned int level, char *buf)
1246 {
1247 return sprintf(buf, "<%u>", level);
1248 }
1249
1250 static size_t print_time(u64 ts, char *buf)
1251 {
1252 unsigned long rem_nsec = do_div(ts, 1000000000);
1253
1254 return sprintf(buf, "[%5lu.%06lu]",
1255 (unsigned long)ts, rem_nsec / 1000);
1256 }
1257
1258 #ifdef CONFIG_PRINTK_CALLER
1259 static size_t print_caller(u32 id, char *buf)
1260 {
1261 char caller[12];
1262
1263 snprintf(caller, sizeof(caller), "%c%u",
1264 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1265 return sprintf(buf, "[%6s]", caller);
1266 }
1267 #else
1268 #define print_caller(id, buf) 0
1269 #endif
1270
1271 static size_t print_prefix(const struct printk_log *msg, bool syslog,
1272 bool time, char *buf)
1273 {
1274 size_t len = 0;
1275
1276 if (syslog)
1277 len = print_syslog((msg->facility << 3) | msg->level, buf);
1278
1279 if (time)
1280 len += print_time(msg->ts_nsec, buf + len);
1281
1282 len += print_caller(msg->caller_id, buf + len);
1283
1284 if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1285 buf[len++] = ' ';
1286 buf[len] = '\0';
1287 }
1288
1289 return len;
1290 }
1291
1292 static size_t msg_print_text(const struct printk_log *msg, bool syslog,
1293 bool time, char *buf, size_t size)
1294 {
1295 const char *text = log_text(msg);
1296 size_t text_size = msg->text_len;
1297 size_t len = 0;
1298 char prefix[PREFIX_MAX];
1299 const size_t prefix_len = print_prefix(msg, syslog, time, prefix);
1300
1301 do {
1302 const char *next = memchr(text, '\n', text_size);
1303 size_t text_len;
1304
1305 if (next) {
1306 text_len = next - text;
1307 next++;
1308 text_size -= next - text;
1309 } else {
1310 text_len = text_size;
1311 }
1312
1313 if (buf) {
1314 if (prefix_len + text_len + 1 >= size - len)
1315 break;
1316
1317 memcpy(buf + len, prefix, prefix_len);
1318 len += prefix_len;
1319 memcpy(buf + len, text, text_len);
1320 len += text_len;
1321 buf[len++] = '\n';
1322 } else {
1323 /* SYSLOG_ACTION_* buffer size only calculation */
1324 len += prefix_len + text_len + 1;
1325 }
1326
1327 text = next;
1328 } while (text);
1329
1330 return len;
1331 }
1332
1333 static int syslog_print(char __user *buf, int size)
1334 {
1335 char *text;
1336 struct printk_log *msg;
1337 int len = 0;
1338
1339 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1340 if (!text)
1341 return -ENOMEM;
1342
1343 while (size > 0) {
1344 size_t n;
1345 size_t skip;
1346
1347 logbuf_lock_irq();
1348 if (syslog_seq < log_first_seq) {
1349 /* messages are gone, move to first one */
1350 syslog_seq = log_first_seq;
1351 syslog_idx = log_first_idx;
1352 syslog_partial = 0;
1353 }
1354 if (syslog_seq == log_next_seq) {
1355 logbuf_unlock_irq();
1356 break;
1357 }
1358
1359 /*
1360 * To keep reading/counting partial line consistent,
1361 * use printk_time value as of the beginning of a line.
1362 */
1363 if (!syslog_partial)
1364 syslog_time = printk_time;
1365
1366 skip = syslog_partial;
1367 msg = log_from_idx(syslog_idx);
1368 n = msg_print_text(msg, true, syslog_time, text,
1369 LOG_LINE_MAX + PREFIX_MAX);
1370 if (n - syslog_partial <= size) {
1371 /* message fits into buffer, move forward */
1372 syslog_idx = log_next(syslog_idx);
1373 syslog_seq++;
1374 n -= syslog_partial;
1375 syslog_partial = 0;
1376 } else if (!len){
1377 /* partial read(), remember position */
1378 n = size;
1379 syslog_partial += n;
1380 } else
1381 n = 0;
1382 logbuf_unlock_irq();
1383
1384 if (!n)
1385 break;
1386
1387 if (copy_to_user(buf, text + skip, n)) {
1388 if (!len)
1389 len = -EFAULT;
1390 break;
1391 }
1392
1393 len += n;
1394 size -= n;
1395 buf += n;
1396 }
1397
1398 kfree(text);
1399 return len;
1400 }
1401
1402 static int syslog_print_all(char __user *buf, int size, bool clear)
1403 {
1404 char *text;
1405 int len = 0;
1406 u64 next_seq;
1407 u64 seq;
1408 u32 idx;
1409 bool time;
1410
1411 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1412 if (!text)
1413 return -ENOMEM;
1414
1415 time = printk_time;
1416 logbuf_lock_irq();
1417 /*
1418 * Find first record that fits, including all following records,
1419 * into the user-provided buffer for this dump.
1420 */
1421 seq = clear_seq;
1422 idx = clear_idx;
1423 while (seq < log_next_seq) {
1424 struct printk_log *msg = log_from_idx(idx);
1425
1426 len += msg_print_text(msg, true, time, NULL, 0);
1427 idx = log_next(idx);
1428 seq++;
1429 }
1430
1431 /* move first record forward until length fits into the buffer */
1432 seq = clear_seq;
1433 idx = clear_idx;
1434 while (len > size && seq < log_next_seq) {
1435 struct printk_log *msg = log_from_idx(idx);
1436
1437 len -= msg_print_text(msg, true, time, NULL, 0);
1438 idx = log_next(idx);
1439 seq++;
1440 }
1441
1442 /* last message fitting into this dump */
1443 next_seq = log_next_seq;
1444
1445 len = 0;
1446 while (len >= 0 && seq < next_seq) {
1447 struct printk_log *msg = log_from_idx(idx);
1448 int textlen = msg_print_text(msg, true, time, text,
1449 LOG_LINE_MAX + PREFIX_MAX);
1450
1451 idx = log_next(idx);
1452 seq++;
1453
1454 logbuf_unlock_irq();
1455 if (copy_to_user(buf + len, text, textlen))
1456 len = -EFAULT;
1457 else
1458 len += textlen;
1459 logbuf_lock_irq();
1460
1461 if (seq < log_first_seq) {
1462 /* messages are gone, move to next one */
1463 seq = log_first_seq;
1464 idx = log_first_idx;
1465 }
1466 }
1467
1468 if (clear) {
1469 clear_seq = log_next_seq;
1470 clear_idx = log_next_idx;
1471 }
1472 logbuf_unlock_irq();
1473
1474 kfree(text);
1475 return len;
1476 }
1477
1478 static void syslog_clear(void)
1479 {
1480 logbuf_lock_irq();
1481 clear_seq = log_next_seq;
1482 clear_idx = log_next_idx;
1483 logbuf_unlock_irq();
1484 }
1485
1486 int do_syslog(int type, char __user *buf, int len, int source)
1487 {
1488 bool clear = false;
1489 static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1490 int error;
1491
1492 error = check_syslog_permissions(type, source);
1493 if (error)
1494 return error;
1495
1496 switch (type) {
1497 case SYSLOG_ACTION_CLOSE: /* Close log */
1498 break;
1499 case SYSLOG_ACTION_OPEN: /* Open log */
1500 break;
1501 case SYSLOG_ACTION_READ: /* Read from log */
1502 if (!buf || len < 0)
1503 return -EINVAL;
1504 if (!len)
1505 return 0;
1506 if (!access_ok(buf, len))
1507 return -EFAULT;
1508 error = wait_event_interruptible(log_wait,
1509 syslog_seq != log_next_seq);
1510 if (error)
1511 return error;
1512 error = syslog_print(buf, len);
1513 break;
1514 /* Read/clear last kernel messages */
1515 case SYSLOG_ACTION_READ_CLEAR:
1516 clear = true;
1517 /* FALL THRU */
1518 /* Read last kernel messages */
1519 case SYSLOG_ACTION_READ_ALL:
1520 if (!buf || len < 0)
1521 return -EINVAL;
1522 if (!len)
1523 return 0;
1524 if (!access_ok(buf, len))
1525 return -EFAULT;
1526 error = syslog_print_all(buf, len, clear);
1527 break;
1528 /* Clear ring buffer */
1529 case SYSLOG_ACTION_CLEAR:
1530 syslog_clear();
1531 break;
1532 /* Disable logging to console */
1533 case SYSLOG_ACTION_CONSOLE_OFF:
1534 if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1535 saved_console_loglevel = console_loglevel;
1536 console_loglevel = minimum_console_loglevel;
1537 break;
1538 /* Enable logging to console */
1539 case SYSLOG_ACTION_CONSOLE_ON:
1540 if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1541 console_loglevel = saved_console_loglevel;
1542 saved_console_loglevel = LOGLEVEL_DEFAULT;
1543 }
1544 break;
1545 /* Set level of messages printed to console */
1546 case SYSLOG_ACTION_CONSOLE_LEVEL:
1547 if (len < 1 || len > 8)
1548 return -EINVAL;
1549 if (len < minimum_console_loglevel)
1550 len = minimum_console_loglevel;
1551 console_loglevel = len;
1552 /* Implicitly re-enable logging to console */
1553 saved_console_loglevel = LOGLEVEL_DEFAULT;
1554 break;
1555 /* Number of chars in the log buffer */
1556 case SYSLOG_ACTION_SIZE_UNREAD:
1557 logbuf_lock_irq();
1558 if (syslog_seq < log_first_seq) {
1559 /* messages are gone, move to first one */
1560 syslog_seq = log_first_seq;
1561 syslog_idx = log_first_idx;
1562 syslog_partial = 0;
1563 }
1564 if (source == SYSLOG_FROM_PROC) {
1565 /*
1566 * Short-cut for poll(/"proc/kmsg") which simply checks
1567 * for pending data, not the size; return the count of
1568 * records, not the length.
1569 */
1570 error = log_next_seq - syslog_seq;
1571 } else {
1572 u64 seq = syslog_seq;
1573 u32 idx = syslog_idx;
1574 bool time = syslog_partial ? syslog_time : printk_time;
1575
1576 while (seq < log_next_seq) {
1577 struct printk_log *msg = log_from_idx(idx);
1578
1579 error += msg_print_text(msg, true, time, NULL,
1580 0);
1581 time = printk_time;
1582 idx = log_next(idx);
1583 seq++;
1584 }
1585 error -= syslog_partial;
1586 }
1587 logbuf_unlock_irq();
1588 break;
1589 /* Size of the log buffer */
1590 case SYSLOG_ACTION_SIZE_BUFFER:
1591 error = log_buf_len;
1592 break;
1593 default:
1594 error = -EINVAL;
1595 break;
1596 }
1597
1598 return error;
1599 }
1600
1601 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1602 {
1603 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1604 }
1605
1606 /*
1607 * Special console_lock variants that help to reduce the risk of soft-lockups.
1608 * They allow to pass console_lock to another printk() call using a busy wait.
1609 */
1610
1611 #ifdef CONFIG_LOCKDEP
1612 static struct lockdep_map console_owner_dep_map = {
1613 .name = "console_owner"
1614 };
1615 #endif
1616
1617 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1618 static struct task_struct *console_owner;
1619 static bool console_waiter;
1620
1621 /**
1622 * console_lock_spinning_enable - mark beginning of code where another
1623 * thread might safely busy wait
1624 *
1625 * This basically converts console_lock into a spinlock. This marks
1626 * the section where the console_lock owner can not sleep, because
1627 * there may be a waiter spinning (like a spinlock). Also it must be
1628 * ready to hand over the lock at the end of the section.
1629 */
1630 static void console_lock_spinning_enable(void)
1631 {
1632 raw_spin_lock(&console_owner_lock);
1633 console_owner = current;
1634 raw_spin_unlock(&console_owner_lock);
1635
1636 /* The waiter may spin on us after setting console_owner */
1637 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1638 }
1639
1640 /**
1641 * console_lock_spinning_disable_and_check - mark end of code where another
1642 * thread was able to busy wait and check if there is a waiter
1643 *
1644 * This is called at the end of the section where spinning is allowed.
1645 * It has two functions. First, it is a signal that it is no longer
1646 * safe to start busy waiting for the lock. Second, it checks if
1647 * there is a busy waiter and passes the lock rights to her.
1648 *
1649 * Important: Callers lose the lock if there was a busy waiter.
1650 * They must not touch items synchronized by console_lock
1651 * in this case.
1652 *
1653 * Return: 1 if the lock rights were passed, 0 otherwise.
1654 */
1655 static int console_lock_spinning_disable_and_check(void)
1656 {
1657 int waiter;
1658
1659 raw_spin_lock(&console_owner_lock);
1660 waiter = READ_ONCE(console_waiter);
1661 console_owner = NULL;
1662 raw_spin_unlock(&console_owner_lock);
1663
1664 if (!waiter) {
1665 spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1666 return 0;
1667 }
1668
1669 /* The waiter is now free to continue */
1670 WRITE_ONCE(console_waiter, false);
1671
1672 spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1673
1674 /*
1675 * Hand off console_lock to waiter. The waiter will perform
1676 * the up(). After this, the waiter is the console_lock owner.
1677 */
1678 mutex_release(&console_lock_dep_map, 1, _THIS_IP_);
1679 return 1;
1680 }
1681
1682 /**
1683 * console_trylock_spinning - try to get console_lock by busy waiting
1684 *
1685 * This allows to busy wait for the console_lock when the current
1686 * owner is running in specially marked sections. It means that
1687 * the current owner is running and cannot reschedule until it
1688 * is ready to lose the lock.
1689 *
1690 * Return: 1 if we got the lock, 0 othrewise
1691 */
1692 static int console_trylock_spinning(void)
1693 {
1694 struct task_struct *owner = NULL;
1695 bool waiter;
1696 bool spin = false;
1697 unsigned long flags;
1698
1699 if (console_trylock())
1700 return 1;
1701
1702 printk_safe_enter_irqsave(flags);
1703
1704 raw_spin_lock(&console_owner_lock);
1705 owner = READ_ONCE(console_owner);
1706 waiter = READ_ONCE(console_waiter);
1707 if (!waiter && owner && owner != current) {
1708 WRITE_ONCE(console_waiter, true);
1709 spin = true;
1710 }
1711 raw_spin_unlock(&console_owner_lock);
1712
1713 /*
1714 * If there is an active printk() writing to the
1715 * consoles, instead of having it write our data too,
1716 * see if we can offload that load from the active
1717 * printer, and do some printing ourselves.
1718 * Go into a spin only if there isn't already a waiter
1719 * spinning, and there is an active printer, and
1720 * that active printer isn't us (recursive printk?).
1721 */
1722 if (!spin) {
1723 printk_safe_exit_irqrestore(flags);
1724 return 0;
1725 }
1726
1727 /* We spin waiting for the owner to release us */
1728 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1729 /* Owner will clear console_waiter on hand off */
1730 while (READ_ONCE(console_waiter))
1731 cpu_relax();
1732 spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1733
1734 printk_safe_exit_irqrestore(flags);
1735 /*
1736 * The owner passed the console lock to us.
1737 * Since we did not spin on console lock, annotate
1738 * this as a trylock. Otherwise lockdep will
1739 * complain.
1740 */
1741 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1742
1743 return 1;
1744 }
1745
1746 /*
1747 * Call the console drivers, asking them to write out
1748 * log_buf[start] to log_buf[end - 1].
1749 * The console_lock must be held.
1750 */
1751 static void call_console_drivers(const char *ext_text, size_t ext_len,
1752 const char *text, size_t len)
1753 {
1754 struct console *con;
1755
1756 trace_console_rcuidle(text, len);
1757
1758 if (!console_drivers)
1759 return;
1760
1761 for_each_console(con) {
1762 if (exclusive_console && con != exclusive_console)
1763 continue;
1764 if (!(con->flags & CON_ENABLED))
1765 continue;
1766 if (!con->write)
1767 continue;
1768 if (!cpu_online(smp_processor_id()) &&
1769 !(con->flags & CON_ANYTIME))
1770 continue;
1771 if (con->flags & CON_EXTENDED)
1772 con->write(con, ext_text, ext_len);
1773 else
1774 con->write(con, text, len);
1775 }
1776 }
1777
1778 int printk_delay_msec __read_mostly;
1779
1780 static inline void printk_delay(void)
1781 {
1782 if (unlikely(printk_delay_msec)) {
1783 int m = printk_delay_msec;
1784
1785 while (m--) {
1786 mdelay(1);
1787 touch_nmi_watchdog();
1788 }
1789 }
1790 }
1791
1792 static inline u32 printk_caller_id(void)
1793 {
1794 return in_task() ? task_pid_nr(current) :
1795 0x80000000 + raw_smp_processor_id();
1796 }
1797
1798 /*
1799 * Continuation lines are buffered, and not committed to the record buffer
1800 * until the line is complete, or a race forces it. The line fragments
1801 * though, are printed immediately to the consoles to ensure everything has
1802 * reached the console in case of a kernel crash.
1803 */
1804 static struct cont {
1805 char buf[LOG_LINE_MAX];
1806 size_t len; /* length == 0 means unused buffer */
1807 u32 caller_id; /* printk_caller_id() of first print */
1808 u64 ts_nsec; /* time of first print */
1809 u8 level; /* log level of first message */
1810 u8 facility; /* log facility of first message */
1811 enum log_flags flags; /* prefix, newline flags */
1812 } cont;
1813
1814 static void cont_flush(void)
1815 {
1816 if (cont.len == 0)
1817 return;
1818
1819 log_store(cont.caller_id, cont.facility, cont.level, cont.flags,
1820 cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1821 cont.len = 0;
1822 }
1823
1824 static bool cont_add(u32 caller_id, int facility, int level,
1825 enum log_flags flags, const char *text, size_t len)
1826 {
1827 /* If the line gets too long, split it up in separate records. */
1828 if (cont.len + len > sizeof(cont.buf)) {
1829 cont_flush();
1830 return false;
1831 }
1832
1833 if (!cont.len) {
1834 cont.facility = facility;
1835 cont.level = level;
1836 cont.caller_id = caller_id;
1837 cont.ts_nsec = local_clock();
1838 cont.flags = flags;
1839 }
1840
1841 memcpy(cont.buf + cont.len, text, len);
1842 cont.len += len;
1843
1844 // The original flags come from the first line,
1845 // but later continuations can add a newline.
1846 if (flags & LOG_NEWLINE) {
1847 cont.flags |= LOG_NEWLINE;
1848 cont_flush();
1849 }
1850
1851 return true;
1852 }
1853
1854 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1855 {
1856 const u32 caller_id = printk_caller_id();
1857
1858 /*
1859 * If an earlier line was buffered, and we're a continuation
1860 * write from the same context, try to add it to the buffer.
1861 */
1862 if (cont.len) {
1863 if (cont.caller_id == caller_id && (lflags & LOG_CONT)) {
1864 if (cont_add(caller_id, facility, level, lflags, text, text_len))
1865 return text_len;
1866 }
1867 /* Otherwise, make sure it's flushed */
1868 cont_flush();
1869 }
1870
1871 /* Skip empty continuation lines that couldn't be added - they just flush */
1872 if (!text_len && (lflags & LOG_CONT))
1873 return 0;
1874
1875 /* If it doesn't end in a newline, try to buffer the current line */
1876 if (!(lflags & LOG_NEWLINE)) {
1877 if (cont_add(caller_id, facility, level, lflags, text, text_len))
1878 return text_len;
1879 }
1880
1881 /* Store it in the record log */
1882 return log_store(caller_id, facility, level, lflags, 0,
1883 dict, dictlen, text, text_len);
1884 }
1885
1886 /* Must be called under logbuf_lock. */
1887 int vprintk_store(int facility, int level,
1888 const char *dict, size_t dictlen,
1889 const char *fmt, va_list args)
1890 {
1891 static char textbuf[LOG_LINE_MAX];
1892 char *text = textbuf;
1893 size_t text_len;
1894 enum log_flags lflags = 0;
1895
1896 /*
1897 * The printf needs to come first; we need the syslog
1898 * prefix which might be passed-in as a parameter.
1899 */
1900 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1901
1902 /* mark and strip a trailing newline */
1903 if (text_len && text[text_len-1] == '\n') {
1904 text_len--;
1905 lflags |= LOG_NEWLINE;
1906 }
1907
1908 /* strip kernel syslog prefix and extract log level or control flags */
1909 if (facility == 0) {
1910 int kern_level;
1911
1912 while ((kern_level = printk_get_level(text)) != 0) {
1913 switch (kern_level) {
1914 case '0' ... '7':
1915 if (level == LOGLEVEL_DEFAULT)
1916 level = kern_level - '0';
1917 break;
1918 case 'c': /* KERN_CONT */
1919 lflags |= LOG_CONT;
1920 }
1921
1922 text_len -= 2;
1923 text += 2;
1924 }
1925 }
1926
1927 if (level == LOGLEVEL_DEFAULT)
1928 level = default_message_loglevel;
1929
1930 if (dict)
1931 lflags |= LOG_NEWLINE;
1932
1933 return log_output(facility, level, lflags,
1934 dict, dictlen, text, text_len);
1935 }
1936
1937 asmlinkage int vprintk_emit(int facility, int level,
1938 const char *dict, size_t dictlen,
1939 const char *fmt, va_list args)
1940 {
1941 int printed_len;
1942 bool in_sched = false, pending_output;
1943 unsigned long flags;
1944 u64 curr_log_seq;
1945
1946 if (level == LOGLEVEL_SCHED) {
1947 level = LOGLEVEL_DEFAULT;
1948 in_sched = true;
1949 }
1950
1951 boot_delay_msec(level);
1952 printk_delay();
1953
1954 /* This stops the holder of console_sem just where we want him */
1955 logbuf_lock_irqsave(flags);
1956 curr_log_seq = log_next_seq;
1957 printed_len = vprintk_store(facility, level, dict, dictlen, fmt, args);
1958 pending_output = (curr_log_seq != log_next_seq);
1959 logbuf_unlock_irqrestore(flags);
1960
1961 /* If called from the scheduler, we can not call up(). */
1962 if (!in_sched && pending_output) {
1963 /*
1964 * Disable preemption to avoid being preempted while holding
1965 * console_sem which would prevent anyone from printing to
1966 * console
1967 */
1968 preempt_disable();
1969 /*
1970 * Try to acquire and then immediately release the console
1971 * semaphore. The release will print out buffers and wake up
1972 * /dev/kmsg and syslog() users.
1973 */
1974 if (console_trylock_spinning())
1975 console_unlock();
1976 preempt_enable();
1977 }
1978
1979 if (pending_output)
1980 wake_up_klogd();
1981 return printed_len;
1982 }
1983 EXPORT_SYMBOL(vprintk_emit);
1984
1985 asmlinkage int vprintk(const char *fmt, va_list args)
1986 {
1987 return vprintk_func(fmt, args);
1988 }
1989 EXPORT_SYMBOL(vprintk);
1990
1991 int vprintk_default(const char *fmt, va_list args)
1992 {
1993 int r;
1994
1995 #ifdef CONFIG_KGDB_KDB
1996 /* Allow to pass printk() to kdb but avoid a recursion. */
1997 if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) {
1998 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1999 return r;
2000 }
2001 #endif
2002 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
2003
2004 return r;
2005 }
2006 EXPORT_SYMBOL_GPL(vprintk_default);
2007
2008 /**
2009 * printk - print a kernel message
2010 * @fmt: format string
2011 *
2012 * This is printk(). It can be called from any context. We want it to work.
2013 *
2014 * We try to grab the console_lock. If we succeed, it's easy - we log the
2015 * output and call the console drivers. If we fail to get the semaphore, we
2016 * place the output into the log buffer and return. The current holder of
2017 * the console_sem will notice the new output in console_unlock(); and will
2018 * send it to the consoles before releasing the lock.
2019 *
2020 * One effect of this deferred printing is that code which calls printk() and
2021 * then changes console_loglevel may break. This is because console_loglevel
2022 * is inspected when the actual printing occurs.
2023 *
2024 * See also:
2025 * printf(3)
2026 *
2027 * See the vsnprintf() documentation for format string extensions over C99.
2028 */
2029 asmlinkage __visible int printk(const char *fmt, ...)
2030 {
2031 va_list args;
2032 int r;
2033
2034 va_start(args, fmt);
2035 r = vprintk_func(fmt, args);
2036 va_end(args);
2037
2038 return r;
2039 }
2040 EXPORT_SYMBOL(printk);
2041
2042 #else /* CONFIG_PRINTK */
2043
2044 #define LOG_LINE_MAX 0
2045 #define PREFIX_MAX 0
2046 #define printk_time false
2047
2048 static u64 syslog_seq;
2049 static u32 syslog_idx;
2050 static u64 console_seq;
2051 static u32 console_idx;
2052 static u64 exclusive_console_stop_seq;
2053 static u64 log_first_seq;
2054 static u32 log_first_idx;
2055 static u64 log_next_seq;
2056 static char *log_text(const struct printk_log *msg) { return NULL; }
2057 static char *log_dict(const struct printk_log *msg) { return NULL; }
2058 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
2059 static u32 log_next(u32 idx) { return 0; }
2060 static ssize_t msg_print_ext_header(char *buf, size_t size,
2061 struct printk_log *msg,
2062 u64 seq) { return 0; }
2063 static ssize_t msg_print_ext_body(char *buf, size_t size,
2064 char *dict, size_t dict_len,
2065 char *text, size_t text_len) { return 0; }
2066 static void console_lock_spinning_enable(void) { }
2067 static int console_lock_spinning_disable_and_check(void) { return 0; }
2068 static void call_console_drivers(const char *ext_text, size_t ext_len,
2069 const char *text, size_t len) {}
2070 static size_t msg_print_text(const struct printk_log *msg, bool syslog,
2071 bool time, char *buf, size_t size) { return 0; }
2072 static bool suppress_message_printing(int level) { return false; }
2073
2074 #endif /* CONFIG_PRINTK */
2075
2076 #ifdef CONFIG_EARLY_PRINTK
2077 struct console *early_console;
2078
2079 asmlinkage __visible void early_printk(const char *fmt, ...)
2080 {
2081 va_list ap;
2082 char buf[512];
2083 int n;
2084
2085 if (!early_console)
2086 return;
2087
2088 va_start(ap, fmt);
2089 n = vscnprintf(buf, sizeof(buf), fmt, ap);
2090 va_end(ap);
2091
2092 early_console->write(early_console, buf, n);
2093 }
2094 #endif
2095
2096 static int __add_preferred_console(char *name, int idx, char *options,
2097 char *brl_options)
2098 {
2099 struct console_cmdline *c;
2100 int i;
2101
2102 /*
2103 * See if this tty is not yet registered, and
2104 * if we have a slot free.
2105 */
2106 for (i = 0, c = console_cmdline;
2107 i < MAX_CMDLINECONSOLES && c->name[0];
2108 i++, c++) {
2109 if (strcmp(c->name, name) == 0 && c->index == idx) {
2110 if (!brl_options)
2111 preferred_console = i;
2112 return 0;
2113 }
2114 }
2115 if (i == MAX_CMDLINECONSOLES)
2116 return -E2BIG;
2117 if (!brl_options)
2118 preferred_console = i;
2119 strlcpy(c->name, name, sizeof(c->name));
2120 c->options = options;
2121 braille_set_options(c, brl_options);
2122
2123 c->index = idx;
2124 return 0;
2125 }
2126
2127 static int __init console_msg_format_setup(char *str)
2128 {
2129 if (!strcmp(str, "syslog"))
2130 console_msg_format = MSG_FORMAT_SYSLOG;
2131 if (!strcmp(str, "default"))
2132 console_msg_format = MSG_FORMAT_DEFAULT;
2133 return 1;
2134 }
2135 __setup("console_msg_format=", console_msg_format_setup);
2136
2137 /*
2138 * Set up a console. Called via do_early_param() in init/main.c
2139 * for each "console=" parameter in the boot command line.
2140 */
2141 static int __init console_setup(char *str)
2142 {
2143 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2144 char *s, *options, *brl_options = NULL;
2145 int idx;
2146
2147 if (_braille_console_setup(&str, &brl_options))
2148 return 1;
2149
2150 /*
2151 * Decode str into name, index, options.
2152 */
2153 if (str[0] >= '0' && str[0] <= '9') {
2154 strcpy(buf, "ttyS");
2155 strncpy(buf + 4, str, sizeof(buf) - 5);
2156 } else {
2157 strncpy(buf, str, sizeof(buf) - 1);
2158 }
2159 buf[sizeof(buf) - 1] = 0;
2160 options = strchr(str, ',');
2161 if (options)
2162 *(options++) = 0;
2163 #ifdef __sparc__
2164 if (!strcmp(str, "ttya"))
2165 strcpy(buf, "ttyS0");
2166 if (!strcmp(str, "ttyb"))
2167 strcpy(buf, "ttyS1");
2168 #endif
2169 for (s = buf; *s; s++)
2170 if (isdigit(*s) || *s == ',')
2171 break;
2172 idx = simple_strtoul(s, NULL, 10);
2173 *s = 0;
2174
2175 __add_preferred_console(buf, idx, options, brl_options);
2176 console_set_on_cmdline = 1;
2177 return 1;
2178 }
2179 __setup("console=", console_setup);
2180
2181 /**
2182 * add_preferred_console - add a device to the list of preferred consoles.
2183 * @name: device name
2184 * @idx: device index
2185 * @options: options for this console
2186 *
2187 * The last preferred console added will be used for kernel messages
2188 * and stdin/out/err for init. Normally this is used by console_setup
2189 * above to handle user-supplied console arguments; however it can also
2190 * be used by arch-specific code either to override the user or more
2191 * commonly to provide a default console (ie from PROM variables) when
2192 * the user has not supplied one.
2193 */
2194 int add_preferred_console(char *name, int idx, char *options)
2195 {
2196 return __add_preferred_console(name, idx, options, NULL);
2197 }
2198
2199 bool console_suspend_enabled = true;
2200 EXPORT_SYMBOL(console_suspend_enabled);
2201
2202 static int __init console_suspend_disable(char *str)
2203 {
2204 console_suspend_enabled = false;
2205 return 1;
2206 }
2207 __setup("no_console_suspend", console_suspend_disable);
2208 module_param_named(console_suspend, console_suspend_enabled,
2209 bool, S_IRUGO | S_IWUSR);
2210 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2211 " and hibernate operations");
2212
2213 /**
2214 * suspend_console - suspend the console subsystem
2215 *
2216 * This disables printk() while we go into suspend states
2217 */
2218 void suspend_console(void)
2219 {
2220 if (!console_suspend_enabled)
2221 return;
2222 pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2223 console_lock();
2224 console_suspended = 1;
2225 up_console_sem();
2226 }
2227
2228 void resume_console(void)
2229 {
2230 if (!console_suspend_enabled)
2231 return;
2232 down_console_sem();
2233 console_suspended = 0;
2234 console_unlock();
2235 }
2236
2237 /**
2238 * console_cpu_notify - print deferred console messages after CPU hotplug
2239 * @cpu: unused
2240 *
2241 * If printk() is called from a CPU that is not online yet, the messages
2242 * will be printed on the console only if there are CON_ANYTIME consoles.
2243 * This function is called when a new CPU comes online (or fails to come
2244 * up) or goes offline.
2245 */
2246 static int console_cpu_notify(unsigned int cpu)
2247 {
2248 if (!cpuhp_tasks_frozen) {
2249 /* If trylock fails, someone else is doing the printing */
2250 if (console_trylock())
2251 console_unlock();
2252 }
2253 return 0;
2254 }
2255
2256 /**
2257 * console_lock - lock the console system for exclusive use.
2258 *
2259 * Acquires a lock which guarantees that the caller has
2260 * exclusive access to the console system and the console_drivers list.
2261 *
2262 * Can sleep, returns nothing.
2263 */
2264 void console_lock(void)
2265 {
2266 might_sleep();
2267
2268 down_console_sem();
2269 if (console_suspended)
2270 return;
2271 console_locked = 1;
2272 console_may_schedule = 1;
2273 }
2274 EXPORT_SYMBOL(console_lock);
2275
2276 /**
2277 * console_trylock - try to lock the console system for exclusive use.
2278 *
2279 * Try to acquire a lock which guarantees that the caller has exclusive
2280 * access to the console system and the console_drivers list.
2281 *
2282 * returns 1 on success, and 0 on failure to acquire the lock.
2283 */
2284 int console_trylock(void)
2285 {
2286 if (down_trylock_console_sem())
2287 return 0;
2288 if (console_suspended) {
2289 up_console_sem();
2290 return 0;
2291 }
2292 console_locked = 1;
2293 console_may_schedule = 0;
2294 return 1;
2295 }
2296 EXPORT_SYMBOL(console_trylock);
2297
2298 int is_console_locked(void)
2299 {
2300 return console_locked;
2301 }
2302 EXPORT_SYMBOL(is_console_locked);
2303
2304 /*
2305 * Check if we have any console that is capable of printing while cpu is
2306 * booting or shutting down. Requires console_sem.
2307 */
2308 static int have_callable_console(void)
2309 {
2310 struct console *con;
2311
2312 for_each_console(con)
2313 if ((con->flags & CON_ENABLED) &&
2314 (con->flags & CON_ANYTIME))
2315 return 1;
2316
2317 return 0;
2318 }
2319
2320 /*
2321 * Can we actually use the console at this time on this cpu?
2322 *
2323 * Console drivers may assume that per-cpu resources have been allocated. So
2324 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2325 * call them until this CPU is officially up.
2326 */
2327 static inline int can_use_console(void)
2328 {
2329 return cpu_online(raw_smp_processor_id()) || have_callable_console();
2330 }
2331
2332 /**
2333 * console_unlock - unlock the console system
2334 *
2335 * Releases the console_lock which the caller holds on the console system
2336 * and the console driver list.
2337 *
2338 * While the console_lock was held, console output may have been buffered
2339 * by printk(). If this is the case, console_unlock(); emits
2340 * the output prior to releasing the lock.
2341 *
2342 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2343 *
2344 * console_unlock(); may be called from any context.
2345 */
2346 void console_unlock(void)
2347 {
2348 static char ext_text[CONSOLE_EXT_LOG_MAX];
2349 static char text[LOG_LINE_MAX + PREFIX_MAX];
2350 unsigned long flags;
2351 bool do_cond_resched, retry;
2352
2353 if (console_suspended) {
2354 up_console_sem();
2355 return;
2356 }
2357
2358 /*
2359 * Console drivers are called with interrupts disabled, so
2360 * @console_may_schedule should be cleared before; however, we may
2361 * end up dumping a lot of lines, for example, if called from
2362 * console registration path, and should invoke cond_resched()
2363 * between lines if allowable. Not doing so can cause a very long
2364 * scheduling stall on a slow console leading to RCU stall and
2365 * softlockup warnings which exacerbate the issue with more
2366 * messages practically incapacitating the system.
2367 *
2368 * console_trylock() is not able to detect the preemptive
2369 * context reliably. Therefore the value must be stored before
2370 * and cleared after the the "again" goto label.
2371 */
2372 do_cond_resched = console_may_schedule;
2373 again:
2374 console_may_schedule = 0;
2375
2376 /*
2377 * We released the console_sem lock, so we need to recheck if
2378 * cpu is online and (if not) is there at least one CON_ANYTIME
2379 * console.
2380 */
2381 if (!can_use_console()) {
2382 console_locked = 0;
2383 up_console_sem();
2384 return;
2385 }
2386
2387 for (;;) {
2388 struct printk_log *msg;
2389 size_t ext_len = 0;
2390 size_t len;
2391
2392 printk_safe_enter_irqsave(flags);
2393 raw_spin_lock(&logbuf_lock);
2394 if (console_seq < log_first_seq) {
2395 len = sprintf(text,
2396 "** %llu printk messages dropped **\n",
2397 log_first_seq - console_seq);
2398
2399 /* messages are gone, move to first one */
2400 console_seq = log_first_seq;
2401 console_idx = log_first_idx;
2402 } else {
2403 len = 0;
2404 }
2405 skip:
2406 if (console_seq == log_next_seq)
2407 break;
2408
2409 msg = log_from_idx(console_idx);
2410 if (suppress_message_printing(msg->level)) {
2411 /*
2412 * Skip record we have buffered and already printed
2413 * directly to the console when we received it, and
2414 * record that has level above the console loglevel.
2415 */
2416 console_idx = log_next(console_idx);
2417 console_seq++;
2418 goto skip;
2419 }
2420
2421 /* Output to all consoles once old messages replayed. */
2422 if (unlikely(exclusive_console &&
2423 console_seq >= exclusive_console_stop_seq)) {
2424 exclusive_console = NULL;
2425 }
2426
2427 len += msg_print_text(msg,
2428 console_msg_format & MSG_FORMAT_SYSLOG,
2429 printk_time, text + len, sizeof(text) - len);
2430 if (nr_ext_console_drivers) {
2431 ext_len = msg_print_ext_header(ext_text,
2432 sizeof(ext_text),
2433 msg, console_seq);
2434 ext_len += msg_print_ext_body(ext_text + ext_len,
2435 sizeof(ext_text) - ext_len,
2436 log_dict(msg), msg->dict_len,
2437 log_text(msg), msg->text_len);
2438 }
2439 console_idx = log_next(console_idx);
2440 console_seq++;
2441 raw_spin_unlock(&logbuf_lock);
2442
2443 /*
2444 * While actively printing out messages, if another printk()
2445 * were to occur on another CPU, it may wait for this one to
2446 * finish. This task can not be preempted if there is a
2447 * waiter waiting to take over.
2448 */
2449 console_lock_spinning_enable();
2450
2451 stop_critical_timings(); /* don't trace print latency */
2452 call_console_drivers(ext_text, ext_len, text, len);
2453 start_critical_timings();
2454
2455 if (console_lock_spinning_disable_and_check()) {
2456 printk_safe_exit_irqrestore(flags);
2457 return;
2458 }
2459
2460 printk_safe_exit_irqrestore(flags);
2461
2462 if (do_cond_resched)
2463 cond_resched();
2464 }
2465
2466 console_locked = 0;
2467
2468 raw_spin_unlock(&logbuf_lock);
2469
2470 up_console_sem();
2471
2472 /*
2473 * Someone could have filled up the buffer again, so re-check if there's
2474 * something to flush. In case we cannot trylock the console_sem again,
2475 * there's a new owner and the console_unlock() from them will do the
2476 * flush, no worries.
2477 */
2478 raw_spin_lock(&logbuf_lock);
2479 retry = console_seq != log_next_seq;
2480 raw_spin_unlock(&logbuf_lock);
2481 printk_safe_exit_irqrestore(flags);
2482
2483 if (retry && console_trylock())
2484 goto again;
2485 }
2486 EXPORT_SYMBOL(console_unlock);
2487
2488 /**
2489 * console_conditional_schedule - yield the CPU if required
2490 *
2491 * If the console code is currently allowed to sleep, and
2492 * if this CPU should yield the CPU to another task, do
2493 * so here.
2494 *
2495 * Must be called within console_lock();.
2496 */
2497 void __sched console_conditional_schedule(void)
2498 {
2499 if (console_may_schedule)
2500 cond_resched();
2501 }
2502 EXPORT_SYMBOL(console_conditional_schedule);
2503
2504 void console_unblank(void)
2505 {
2506 struct console *c;
2507
2508 /*
2509 * console_unblank can no longer be called in interrupt context unless
2510 * oops_in_progress is set to 1..
2511 */
2512 if (oops_in_progress) {
2513 if (down_trylock_console_sem() != 0)
2514 return;
2515 } else
2516 console_lock();
2517
2518 console_locked = 1;
2519 console_may_schedule = 0;
2520 for_each_console(c)
2521 if ((c->flags & CON_ENABLED) && c->unblank)
2522 c->unblank();
2523 console_unlock();
2524 }
2525
2526 /**
2527 * console_flush_on_panic - flush console content on panic
2528 *
2529 * Immediately output all pending messages no matter what.
2530 */
2531 void console_flush_on_panic(void)
2532 {
2533 /*
2534 * If someone else is holding the console lock, trylock will fail
2535 * and may_schedule may be set. Ignore and proceed to unlock so
2536 * that messages are flushed out. As this can be called from any
2537 * context and we don't want to get preempted while flushing,
2538 * ensure may_schedule is cleared.
2539 */
2540 console_trylock();
2541 console_may_schedule = 0;
2542 console_unlock();
2543 }
2544
2545 /*
2546 * Return the console tty driver structure and its associated index
2547 */
2548 struct tty_driver *console_device(int *index)
2549 {
2550 struct console *c;
2551 struct tty_driver *driver = NULL;
2552
2553 console_lock();
2554 for_each_console(c) {
2555 if (!c->device)
2556 continue;
2557 driver = c->device(c, index);
2558 if (driver)
2559 break;
2560 }
2561 console_unlock();
2562 return driver;
2563 }
2564
2565 /*
2566 * Prevent further output on the passed console device so that (for example)
2567 * serial drivers can disable console output before suspending a port, and can
2568 * re-enable output afterwards.
2569 */
2570 void console_stop(struct console *console)
2571 {
2572 console_lock();
2573 console->flags &= ~CON_ENABLED;
2574 console_unlock();
2575 }
2576 EXPORT_SYMBOL(console_stop);
2577
2578 void console_start(struct console *console)
2579 {
2580 console_lock();
2581 console->flags |= CON_ENABLED;
2582 console_unlock();
2583 }
2584 EXPORT_SYMBOL(console_start);
2585
2586 static int __read_mostly keep_bootcon;
2587
2588 static int __init keep_bootcon_setup(char *str)
2589 {
2590 keep_bootcon = 1;
2591 pr_info("debug: skip boot console de-registration.\n");
2592
2593 return 0;
2594 }
2595
2596 early_param("keep_bootcon", keep_bootcon_setup);
2597
2598 /*
2599 * The console driver calls this routine during kernel initialization
2600 * to register the console printing procedure with printk() and to
2601 * print any messages that were printed by the kernel before the
2602 * console driver was initialized.
2603 *
2604 * This can happen pretty early during the boot process (because of
2605 * early_printk) - sometimes before setup_arch() completes - be careful
2606 * of what kernel features are used - they may not be initialised yet.
2607 *
2608 * There are two types of consoles - bootconsoles (early_printk) and
2609 * "real" consoles (everything which is not a bootconsole) which are
2610 * handled differently.
2611 * - Any number of bootconsoles can be registered at any time.
2612 * - As soon as a "real" console is registered, all bootconsoles
2613 * will be unregistered automatically.
2614 * - Once a "real" console is registered, any attempt to register a
2615 * bootconsoles will be rejected
2616 */
2617 void register_console(struct console *newcon)
2618 {
2619 int i;
2620 unsigned long flags;
2621 struct console *bcon = NULL;
2622 struct console_cmdline *c;
2623 static bool has_preferred;
2624
2625 if (console_drivers)
2626 for_each_console(bcon)
2627 if (WARN(bcon == newcon,
2628 "console '%s%d' already registered\n",
2629 bcon->name, bcon->index))
2630 return;
2631
2632 /*
2633 * before we register a new CON_BOOT console, make sure we don't
2634 * already have a valid console
2635 */
2636 if (console_drivers && newcon->flags & CON_BOOT) {
2637 /* find the last or real console */
2638 for_each_console(bcon) {
2639 if (!(bcon->flags & CON_BOOT)) {
2640 pr_info("Too late to register bootconsole %s%d\n",
2641 newcon->name, newcon->index);
2642 return;
2643 }
2644 }
2645 }
2646
2647 if (console_drivers && console_drivers->flags & CON_BOOT)
2648 bcon = console_drivers;
2649
2650 if (!has_preferred || bcon || !console_drivers)
2651 has_preferred = preferred_console >= 0;
2652
2653 /*
2654 * See if we want to use this console driver. If we
2655 * didn't select a console we take the first one
2656 * that registers here.
2657 */
2658 if (!has_preferred) {
2659 if (newcon->index < 0)
2660 newcon->index = 0;
2661 if (newcon->setup == NULL ||
2662 newcon->setup(newcon, NULL) == 0) {
2663 newcon->flags |= CON_ENABLED;
2664 if (newcon->device) {
2665 newcon->flags |= CON_CONSDEV;
2666 has_preferred = true;
2667 }
2668 }
2669 }
2670
2671 /*
2672 * See if this console matches one we selected on
2673 * the command line.
2674 */
2675 for (i = 0, c = console_cmdline;
2676 i < MAX_CMDLINECONSOLES && c->name[0];
2677 i++, c++) {
2678 if (!newcon->match ||
2679 newcon->match(newcon, c->name, c->index, c->options) != 0) {
2680 /* default matching */
2681 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2682 if (strcmp(c->name, newcon->name) != 0)
2683 continue;
2684 if (newcon->index >= 0 &&
2685 newcon->index != c->index)
2686 continue;
2687 if (newcon->index < 0)
2688 newcon->index = c->index;
2689
2690 if (_braille_register_console(newcon, c))
2691 return;
2692
2693 if (newcon->setup &&
2694 newcon->setup(newcon, c->options) != 0)
2695 break;
2696 }
2697
2698 newcon->flags |= CON_ENABLED;
2699 if (i == preferred_console) {
2700 newcon->flags |= CON_CONSDEV;
2701 has_preferred = true;
2702 }
2703 break;
2704 }
2705
2706 if (!(newcon->flags & CON_ENABLED))
2707 return;
2708
2709 /*
2710 * If we have a bootconsole, and are switching to a real console,
2711 * don't print everything out again, since when the boot console, and
2712 * the real console are the same physical device, it's annoying to
2713 * see the beginning boot messages twice
2714 */
2715 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2716 newcon->flags &= ~CON_PRINTBUFFER;
2717
2718 /*
2719 * Put this console in the list - keep the
2720 * preferred driver at the head of the list.
2721 */
2722 console_lock();
2723 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2724 newcon->next = console_drivers;
2725 console_drivers = newcon;
2726 if (newcon->next)
2727 newcon->next->flags &= ~CON_CONSDEV;
2728 } else {
2729 newcon->next = console_drivers->next;
2730 console_drivers->next = newcon;
2731 }
2732
2733 if (newcon->flags & CON_EXTENDED)
2734 nr_ext_console_drivers++;
2735
2736 if (newcon->flags & CON_PRINTBUFFER) {
2737 /*
2738 * console_unlock(); will print out the buffered messages
2739 * for us.
2740 */
2741 logbuf_lock_irqsave(flags);
2742 console_seq = syslog_seq;
2743 console_idx = syslog_idx;
2744 /*
2745 * We're about to replay the log buffer. Only do this to the
2746 * just-registered console to avoid excessive message spam to
2747 * the already-registered consoles.
2748 *
2749 * Set exclusive_console with disabled interrupts to reduce
2750 * race window with eventual console_flush_on_panic() that
2751 * ignores console_lock.
2752 */
2753 exclusive_console = newcon;
2754 exclusive_console_stop_seq = console_seq;
2755 logbuf_unlock_irqrestore(flags);
2756 }
2757 console_unlock();
2758 console_sysfs_notify();
2759
2760 /*
2761 * By unregistering the bootconsoles after we enable the real console
2762 * we get the "console xxx enabled" message on all the consoles -
2763 * boot consoles, real consoles, etc - this is to ensure that end
2764 * users know there might be something in the kernel's log buffer that
2765 * went to the bootconsole (that they do not see on the real console)
2766 */
2767 pr_info("%sconsole [%s%d] enabled\n",
2768 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2769 newcon->name, newcon->index);
2770 if (bcon &&
2771 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2772 !keep_bootcon) {
2773 /* We need to iterate through all boot consoles, to make
2774 * sure we print everything out, before we unregister them.
2775 */
2776 for_each_console(bcon)
2777 if (bcon->flags & CON_BOOT)
2778 unregister_console(bcon);
2779 }
2780 }
2781 EXPORT_SYMBOL(register_console);
2782
2783 int unregister_console(struct console *console)
2784 {
2785 struct console *a, *b;
2786 int res;
2787
2788 pr_info("%sconsole [%s%d] disabled\n",
2789 (console->flags & CON_BOOT) ? "boot" : "" ,
2790 console->name, console->index);
2791
2792 res = _braille_unregister_console(console);
2793 if (res)
2794 return res;
2795
2796 res = 1;
2797 console_lock();
2798 if (console_drivers == console) {
2799 console_drivers=console->next;
2800 res = 0;
2801 } else if (console_drivers) {
2802 for (a=console_drivers->next, b=console_drivers ;
2803 a; b=a, a=b->next) {
2804 if (a == console) {
2805 b->next = a->next;
2806 res = 0;
2807 break;
2808 }
2809 }
2810 }
2811
2812 if (!res && (console->flags & CON_EXTENDED))
2813 nr_ext_console_drivers--;
2814
2815 /*
2816 * If this isn't the last console and it has CON_CONSDEV set, we
2817 * need to set it on the next preferred console.
2818 */
2819 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2820 console_drivers->flags |= CON_CONSDEV;
2821
2822 console->flags &= ~CON_ENABLED;
2823 console_unlock();
2824 console_sysfs_notify();
2825 return res;
2826 }
2827 EXPORT_SYMBOL(unregister_console);
2828
2829 /*
2830 * Initialize the console device. This is called *early*, so
2831 * we can't necessarily depend on lots of kernel help here.
2832 * Just do some early initializations, and do the complex setup
2833 * later.
2834 */
2835 void __init console_init(void)
2836 {
2837 int ret;
2838 initcall_t call;
2839 initcall_entry_t *ce;
2840
2841 /* Setup the default TTY line discipline. */
2842 n_tty_init();
2843
2844 /*
2845 * set up the console device so that later boot sequences can
2846 * inform about problems etc..
2847 */
2848 ce = __con_initcall_start;
2849 trace_initcall_level("console");
2850 while (ce < __con_initcall_end) {
2851 call = initcall_from_entry(ce);
2852 trace_initcall_start(call);
2853 ret = call();
2854 trace_initcall_finish(call, ret);
2855 ce++;
2856 }
2857 }
2858
2859 /*
2860 * Some boot consoles access data that is in the init section and which will
2861 * be discarded after the initcalls have been run. To make sure that no code
2862 * will access this data, unregister the boot consoles in a late initcall.
2863 *
2864 * If for some reason, such as deferred probe or the driver being a loadable
2865 * module, the real console hasn't registered yet at this point, there will
2866 * be a brief interval in which no messages are logged to the console, which
2867 * makes it difficult to diagnose problems that occur during this time.
2868 *
2869 * To mitigate this problem somewhat, only unregister consoles whose memory
2870 * intersects with the init section. Note that all other boot consoles will
2871 * get unregistred when the real preferred console is registered.
2872 */
2873 static int __init printk_late_init(void)
2874 {
2875 struct console *con;
2876 int ret;
2877
2878 for_each_console(con) {
2879 if (!(con->flags & CON_BOOT))
2880 continue;
2881
2882 /* Check addresses that might be used for enabled consoles. */
2883 if (init_section_intersects(con, sizeof(*con)) ||
2884 init_section_contains(con->write, 0) ||
2885 init_section_contains(con->read, 0) ||
2886 init_section_contains(con->device, 0) ||
2887 init_section_contains(con->unblank, 0) ||
2888 init_section_contains(con->data, 0)) {
2889 /*
2890 * Please, consider moving the reported consoles out
2891 * of the init section.
2892 */
2893 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
2894 con->name, con->index);
2895 unregister_console(con);
2896 }
2897 }
2898 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
2899 console_cpu_notify);
2900 WARN_ON(ret < 0);
2901 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
2902 console_cpu_notify, NULL);
2903 WARN_ON(ret < 0);
2904 return 0;
2905 }
2906 late_initcall(printk_late_init);
2907
2908 #if defined CONFIG_PRINTK
2909 /*
2910 * Delayed printk version, for scheduler-internal messages:
2911 */
2912 #define PRINTK_PENDING_WAKEUP 0x01
2913 #define PRINTK_PENDING_OUTPUT 0x02
2914
2915 static DEFINE_PER_CPU(int, printk_pending);
2916
2917 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2918 {
2919 int pending = __this_cpu_xchg(printk_pending, 0);
2920
2921 if (pending & PRINTK_PENDING_OUTPUT) {
2922 /* If trylock fails, someone else is doing the printing */
2923 if (console_trylock())
2924 console_unlock();
2925 }
2926
2927 if (pending & PRINTK_PENDING_WAKEUP)
2928 wake_up_interruptible(&log_wait);
2929 }
2930
2931 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2932 .func = wake_up_klogd_work_func,
2933 .flags = IRQ_WORK_LAZY,
2934 };
2935
2936 void wake_up_klogd(void)
2937 {
2938 preempt_disable();
2939 if (waitqueue_active(&log_wait)) {
2940 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2941 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2942 }
2943 preempt_enable();
2944 }
2945
2946 void defer_console_output(void)
2947 {
2948 preempt_disable();
2949 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2950 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2951 preempt_enable();
2952 }
2953
2954 int vprintk_deferred(const char *fmt, va_list args)
2955 {
2956 int r;
2957
2958 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2959 defer_console_output();
2960
2961 return r;
2962 }
2963
2964 int printk_deferred(const char *fmt, ...)
2965 {
2966 va_list args;
2967 int r;
2968
2969 va_start(args, fmt);
2970 r = vprintk_deferred(fmt, args);
2971 va_end(args);
2972
2973 return r;
2974 }
2975
2976 /*
2977 * printk rate limiting, lifted from the networking subsystem.
2978 *
2979 * This enforces a rate limit: not more than 10 kernel messages
2980 * every 5s to make a denial-of-service attack impossible.
2981 */
2982 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2983
2984 int __printk_ratelimit(const char *func)
2985 {
2986 return ___ratelimit(&printk_ratelimit_state, func);
2987 }
2988 EXPORT_SYMBOL(__printk_ratelimit);
2989
2990 /**
2991 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2992 * @caller_jiffies: pointer to caller's state
2993 * @interval_msecs: minimum interval between prints
2994 *
2995 * printk_timed_ratelimit() returns true if more than @interval_msecs
2996 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2997 * returned true.
2998 */
2999 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
3000 unsigned int interval_msecs)
3001 {
3002 unsigned long elapsed = jiffies - *caller_jiffies;
3003
3004 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
3005 return false;
3006
3007 *caller_jiffies = jiffies;
3008 return true;
3009 }
3010 EXPORT_SYMBOL(printk_timed_ratelimit);
3011
3012 static DEFINE_SPINLOCK(dump_list_lock);
3013 static LIST_HEAD(dump_list);
3014
3015 /**
3016 * kmsg_dump_register - register a kernel log dumper.
3017 * @dumper: pointer to the kmsg_dumper structure
3018 *
3019 * Adds a kernel log dumper to the system. The dump callback in the
3020 * structure will be called when the kernel oopses or panics and must be
3021 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
3022 */
3023 int kmsg_dump_register(struct kmsg_dumper *dumper)
3024 {
3025 unsigned long flags;
3026 int err = -EBUSY;
3027
3028 /* The dump callback needs to be set */
3029 if (!dumper->dump)
3030 return -EINVAL;
3031
3032 spin_lock_irqsave(&dump_list_lock, flags);
3033 /* Don't allow registering multiple times */
3034 if (!dumper->registered) {
3035 dumper->registered = 1;
3036 list_add_tail_rcu(&dumper->list, &dump_list);
3037 err = 0;
3038 }
3039 spin_unlock_irqrestore(&dump_list_lock, flags);
3040
3041 return err;
3042 }
3043 EXPORT_SYMBOL_GPL(kmsg_dump_register);
3044
3045 /**
3046 * kmsg_dump_unregister - unregister a kmsg dumper.
3047 * @dumper: pointer to the kmsg_dumper structure
3048 *
3049 * Removes a dump device from the system. Returns zero on success and
3050 * %-EINVAL otherwise.
3051 */
3052 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
3053 {
3054 unsigned long flags;
3055 int err = -EINVAL;
3056
3057 spin_lock_irqsave(&dump_list_lock, flags);
3058 if (dumper->registered) {
3059 dumper->registered = 0;
3060 list_del_rcu(&dumper->list);
3061 err = 0;
3062 }
3063 spin_unlock_irqrestore(&dump_list_lock, flags);
3064 synchronize_rcu();
3065
3066 return err;
3067 }
3068 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3069
3070 static bool always_kmsg_dump;
3071 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3072
3073 /**
3074 * kmsg_dump - dump kernel log to kernel message dumpers.
3075 * @reason: the reason (oops, panic etc) for dumping
3076 *
3077 * Call each of the registered dumper's dump() callback, which can
3078 * retrieve the kmsg records with kmsg_dump_get_line() or
3079 * kmsg_dump_get_buffer().
3080 */
3081 void kmsg_dump(enum kmsg_dump_reason reason)
3082 {
3083 struct kmsg_dumper *dumper;
3084 unsigned long flags;
3085
3086 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
3087 return;
3088
3089 rcu_read_lock();
3090 list_for_each_entry_rcu(dumper, &dump_list, list) {
3091 if (dumper->max_reason && reason > dumper->max_reason)
3092 continue;
3093
3094 /* initialize iterator with data about the stored records */
3095 dumper->active = true;
3096
3097 logbuf_lock_irqsave(flags);
3098 dumper->cur_seq = clear_seq;
3099 dumper->cur_idx = clear_idx;
3100 dumper->next_seq = log_next_seq;
3101 dumper->next_idx = log_next_idx;
3102 logbuf_unlock_irqrestore(flags);
3103
3104 /* invoke dumper which will iterate over records */
3105 dumper->dump(dumper, reason);
3106
3107 /* reset iterator */
3108 dumper->active = false;
3109 }
3110 rcu_read_unlock();
3111 }
3112
3113 /**
3114 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
3115 * @dumper: registered kmsg dumper
3116 * @syslog: include the "<4>" prefixes
3117 * @line: buffer to copy the line to
3118 * @size: maximum size of the buffer
3119 * @len: length of line placed into buffer
3120 *
3121 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3122 * record, and copy one record into the provided buffer.
3123 *
3124 * Consecutive calls will return the next available record moving
3125 * towards the end of the buffer with the youngest messages.
3126 *
3127 * A return value of FALSE indicates that there are no more records to
3128 * read.
3129 *
3130 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
3131 */
3132 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
3133 char *line, size_t size, size_t *len)
3134 {
3135 struct printk_log *msg;
3136 size_t l = 0;
3137 bool ret = false;
3138
3139 if (!dumper->active)
3140 goto out;
3141
3142 if (dumper->cur_seq < log_first_seq) {
3143 /* messages are gone, move to first available one */
3144 dumper->cur_seq = log_first_seq;
3145 dumper->cur_idx = log_first_idx;
3146 }
3147
3148 /* last entry */
3149 if (dumper->cur_seq >= log_next_seq)
3150 goto out;
3151
3152 msg = log_from_idx(dumper->cur_idx);
3153 l = msg_print_text(msg, syslog, printk_time, line, size);
3154
3155 dumper->cur_idx = log_next(dumper->cur_idx);
3156 dumper->cur_seq++;
3157 ret = true;
3158 out:
3159 if (len)
3160 *len = l;
3161 return ret;
3162 }
3163
3164 /**
3165 * kmsg_dump_get_line - retrieve one kmsg log line
3166 * @dumper: registered kmsg dumper
3167 * @syslog: include the "<4>" prefixes
3168 * @line: buffer to copy the line to
3169 * @size: maximum size of the buffer
3170 * @len: length of line placed into buffer
3171 *
3172 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3173 * record, and copy one record into the provided buffer.
3174 *
3175 * Consecutive calls will return the next available record moving
3176 * towards the end of the buffer with the youngest messages.
3177 *
3178 * A return value of FALSE indicates that there are no more records to
3179 * read.
3180 */
3181 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3182 char *line, size_t size, size_t *len)
3183 {
3184 unsigned long flags;
3185 bool ret;
3186
3187 logbuf_lock_irqsave(flags);
3188 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3189 logbuf_unlock_irqrestore(flags);
3190
3191 return ret;
3192 }
3193 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3194
3195 /**
3196 * kmsg_dump_get_buffer - copy kmsg log lines
3197 * @dumper: registered kmsg dumper
3198 * @syslog: include the "<4>" prefixes
3199 * @buf: buffer to copy the line to
3200 * @size: maximum size of the buffer
3201 * @len: length of line placed into buffer
3202 *
3203 * Start at the end of the kmsg buffer and fill the provided buffer
3204 * with as many of the the *youngest* kmsg records that fit into it.
3205 * If the buffer is large enough, all available kmsg records will be
3206 * copied with a single call.
3207 *
3208 * Consecutive calls will fill the buffer with the next block of
3209 * available older records, not including the earlier retrieved ones.
3210 *
3211 * A return value of FALSE indicates that there are no more records to
3212 * read.
3213 */
3214 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3215 char *buf, size_t size, size_t *len)
3216 {
3217 unsigned long flags;
3218 u64 seq;
3219 u32 idx;
3220 u64 next_seq;
3221 u32 next_idx;
3222 size_t l = 0;
3223 bool ret = false;
3224 bool time = printk_time;
3225
3226 if (!dumper->active)
3227 goto out;
3228
3229 logbuf_lock_irqsave(flags);
3230 if (dumper->cur_seq < log_first_seq) {
3231 /* messages are gone, move to first available one */
3232 dumper->cur_seq = log_first_seq;
3233 dumper->cur_idx = log_first_idx;
3234 }
3235
3236 /* last entry */
3237 if (dumper->cur_seq >= dumper->next_seq) {
3238 logbuf_unlock_irqrestore(flags);
3239 goto out;
3240 }
3241
3242 /* calculate length of entire buffer */
3243 seq = dumper->cur_seq;
3244 idx = dumper->cur_idx;
3245 while (seq < dumper->next_seq) {
3246 struct printk_log *msg = log_from_idx(idx);
3247
3248 l += msg_print_text(msg, true, time, NULL, 0);
3249 idx = log_next(idx);
3250 seq++;
3251 }
3252
3253 /* move first record forward until length fits into the buffer */
3254 seq = dumper->cur_seq;
3255 idx = dumper->cur_idx;
3256 while (l > size && seq < dumper->next_seq) {
3257 struct printk_log *msg = log_from_idx(idx);
3258
3259 l -= msg_print_text(msg, true, time, NULL, 0);
3260 idx = log_next(idx);
3261 seq++;
3262 }
3263
3264 /* last message in next interation */
3265 next_seq = seq;
3266 next_idx = idx;
3267
3268 l = 0;
3269 while (seq < dumper->next_seq) {
3270 struct printk_log *msg = log_from_idx(idx);
3271
3272 l += msg_print_text(msg, syslog, time, buf + l, size - l);
3273 idx = log_next(idx);
3274 seq++;
3275 }
3276
3277 dumper->next_seq = next_seq;
3278 dumper->next_idx = next_idx;
3279 ret = true;
3280 logbuf_unlock_irqrestore(flags);
3281 out:
3282 if (len)
3283 *len = l;
3284 return ret;
3285 }
3286 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3287
3288 /**
3289 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3290 * @dumper: registered kmsg dumper
3291 *
3292 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3293 * kmsg_dump_get_buffer() can be called again and used multiple
3294 * times within the same dumper.dump() callback.
3295 *
3296 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3297 */
3298 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3299 {
3300 dumper->cur_seq = clear_seq;
3301 dumper->cur_idx = clear_idx;
3302 dumper->next_seq = log_next_seq;
3303 dumper->next_idx = log_next_idx;
3304 }
3305
3306 /**
3307 * kmsg_dump_rewind - reset the interator
3308 * @dumper: registered kmsg dumper
3309 *
3310 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3311 * kmsg_dump_get_buffer() can be called again and used multiple
3312 * times within the same dumper.dump() callback.
3313 */
3314 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3315 {
3316 unsigned long flags;
3317
3318 logbuf_lock_irqsave(flags);
3319 kmsg_dump_rewind_nolock(dumper);
3320 logbuf_unlock_irqrestore(flags);
3321 }
3322 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3323
3324 #endif