]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/printk/printk.c
Merge tag 'staging-3.16-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[mirror_ubuntu-artful-kernel.git] / kernel / printk / printk.c
1 /*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h> /* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/aio.h>
36 #include <linux/syscalls.h>
37 #include <linux/kexec.h>
38 #include <linux/kdb.h>
39 #include <linux/ratelimit.h>
40 #include <linux/kmsg_dump.h>
41 #include <linux/syslog.h>
42 #include <linux/cpu.h>
43 #include <linux/notifier.h>
44 #include <linux/rculist.h>
45 #include <linux/poll.h>
46 #include <linux/irq_work.h>
47 #include <linux/utsname.h>
48
49 #include <asm/uaccess.h>
50
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/printk.h>
53
54 #include "console_cmdline.h"
55 #include "braille.h"
56
57 int console_printk[4] = {
58 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */
59 DEFAULT_MESSAGE_LOGLEVEL, /* default_message_loglevel */
60 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */
61 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */
62 };
63
64 /* Deferred messaged from sched code are marked by this special level */
65 #define SCHED_MESSAGE_LOGLEVEL -2
66
67 /*
68 * Low level drivers may need that to know if they can schedule in
69 * their unblank() callback or not. So let's export it.
70 */
71 int oops_in_progress;
72 EXPORT_SYMBOL(oops_in_progress);
73
74 /*
75 * console_sem protects the console_drivers list, and also
76 * provides serialisation for access to the entire console
77 * driver system.
78 */
79 static DEFINE_SEMAPHORE(console_sem);
80 struct console *console_drivers;
81 EXPORT_SYMBOL_GPL(console_drivers);
82
83 #ifdef CONFIG_LOCKDEP
84 static struct lockdep_map console_lock_dep_map = {
85 .name = "console_lock"
86 };
87 #endif
88
89 /*
90 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
91 * macros instead of functions so that _RET_IP_ contains useful information.
92 */
93 #define down_console_sem() do { \
94 down(&console_sem);\
95 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
96 } while (0)
97
98 static int __down_trylock_console_sem(unsigned long ip)
99 {
100 if (down_trylock(&console_sem))
101 return 1;
102 mutex_acquire(&console_lock_dep_map, 0, 1, ip);
103 return 0;
104 }
105 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
106
107 #define up_console_sem() do { \
108 mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
109 up(&console_sem);\
110 } while (0)
111
112 /*
113 * This is used for debugging the mess that is the VT code by
114 * keeping track if we have the console semaphore held. It's
115 * definitely not the perfect debug tool (we don't know if _WE_
116 * hold it are racing, but it helps tracking those weird code
117 * path in the console code where we end up in places I want
118 * locked without the console sempahore held
119 */
120 static int console_locked, console_suspended;
121
122 /*
123 * If exclusive_console is non-NULL then only this console is to be printed to.
124 */
125 static struct console *exclusive_console;
126
127 /*
128 * Array of consoles built from command line options (console=)
129 */
130
131 #define MAX_CMDLINECONSOLES 8
132
133 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
134
135 static int selected_console = -1;
136 static int preferred_console = -1;
137 int console_set_on_cmdline;
138 EXPORT_SYMBOL(console_set_on_cmdline);
139
140 /* Flag: console code may call schedule() */
141 static int console_may_schedule;
142
143 /*
144 * The printk log buffer consists of a chain of concatenated variable
145 * length records. Every record starts with a record header, containing
146 * the overall length of the record.
147 *
148 * The heads to the first and last entry in the buffer, as well as the
149 * sequence numbers of these both entries are maintained when messages
150 * are stored..
151 *
152 * If the heads indicate available messages, the length in the header
153 * tells the start next message. A length == 0 for the next message
154 * indicates a wrap-around to the beginning of the buffer.
155 *
156 * Every record carries the monotonic timestamp in microseconds, as well as
157 * the standard userspace syslog level and syslog facility. The usual
158 * kernel messages use LOG_KERN; userspace-injected messages always carry
159 * a matching syslog facility, by default LOG_USER. The origin of every
160 * message can be reliably determined that way.
161 *
162 * The human readable log message directly follows the message header. The
163 * length of the message text is stored in the header, the stored message
164 * is not terminated.
165 *
166 * Optionally, a message can carry a dictionary of properties (key/value pairs),
167 * to provide userspace with a machine-readable message context.
168 *
169 * Examples for well-defined, commonly used property names are:
170 * DEVICE=b12:8 device identifier
171 * b12:8 block dev_t
172 * c127:3 char dev_t
173 * n8 netdev ifindex
174 * +sound:card0 subsystem:devname
175 * SUBSYSTEM=pci driver-core subsystem name
176 *
177 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
178 * follows directly after a '=' character. Every property is terminated by
179 * a '\0' character. The last property is not terminated.
180 *
181 * Example of a message structure:
182 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
183 * 0008 34 00 record is 52 bytes long
184 * 000a 0b 00 text is 11 bytes long
185 * 000c 1f 00 dictionary is 23 bytes long
186 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
187 * 0010 69 74 27 73 20 61 20 6c "it's a l"
188 * 69 6e 65 "ine"
189 * 001b 44 45 56 49 43 "DEVIC"
190 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
191 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
192 * 67 "g"
193 * 0032 00 00 00 padding to next message header
194 *
195 * The 'struct printk_log' buffer header must never be directly exported to
196 * userspace, it is a kernel-private implementation detail that might
197 * need to be changed in the future, when the requirements change.
198 *
199 * /dev/kmsg exports the structured data in the following line format:
200 * "level,sequnum,timestamp;<message text>\n"
201 *
202 * The optional key/value pairs are attached as continuation lines starting
203 * with a space character and terminated by a newline. All possible
204 * non-prinatable characters are escaped in the "\xff" notation.
205 *
206 * Users of the export format should ignore possible additional values
207 * separated by ',', and find the message after the ';' character.
208 */
209
210 enum log_flags {
211 LOG_NOCONS = 1, /* already flushed, do not print to console */
212 LOG_NEWLINE = 2, /* text ended with a newline */
213 LOG_PREFIX = 4, /* text started with a prefix */
214 LOG_CONT = 8, /* text is a fragment of a continuation line */
215 };
216
217 struct printk_log {
218 u64 ts_nsec; /* timestamp in nanoseconds */
219 u16 len; /* length of entire record */
220 u16 text_len; /* length of text buffer */
221 u16 dict_len; /* length of dictionary buffer */
222 u8 facility; /* syslog facility */
223 u8 flags:5; /* internal record flags */
224 u8 level:3; /* syslog level */
225 };
226
227 /*
228 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken
229 * within the scheduler's rq lock. It must be released before calling
230 * console_unlock() or anything else that might wake up a process.
231 */
232 static DEFINE_RAW_SPINLOCK(logbuf_lock);
233
234 #ifdef CONFIG_PRINTK
235 DECLARE_WAIT_QUEUE_HEAD(log_wait);
236 /* the next printk record to read by syslog(READ) or /proc/kmsg */
237 static u64 syslog_seq;
238 static u32 syslog_idx;
239 static enum log_flags syslog_prev;
240 static size_t syslog_partial;
241
242 /* index and sequence number of the first record stored in the buffer */
243 static u64 log_first_seq;
244 static u32 log_first_idx;
245
246 /* index and sequence number of the next record to store in the buffer */
247 static u64 log_next_seq;
248 static u32 log_next_idx;
249
250 /* the next printk record to write to the console */
251 static u64 console_seq;
252 static u32 console_idx;
253 static enum log_flags console_prev;
254
255 /* the next printk record to read after the last 'clear' command */
256 static u64 clear_seq;
257 static u32 clear_idx;
258
259 #define PREFIX_MAX 32
260 #define LOG_LINE_MAX 1024 - PREFIX_MAX
261
262 /* record buffer */
263 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
264 #define LOG_ALIGN 4
265 #else
266 #define LOG_ALIGN __alignof__(struct printk_log)
267 #endif
268 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
269 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
270 static char *log_buf = __log_buf;
271 static u32 log_buf_len = __LOG_BUF_LEN;
272
273 /* human readable text of the record */
274 static char *log_text(const struct printk_log *msg)
275 {
276 return (char *)msg + sizeof(struct printk_log);
277 }
278
279 /* optional key/value pair dictionary attached to the record */
280 static char *log_dict(const struct printk_log *msg)
281 {
282 return (char *)msg + sizeof(struct printk_log) + msg->text_len;
283 }
284
285 /* get record by index; idx must point to valid msg */
286 static struct printk_log *log_from_idx(u32 idx)
287 {
288 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
289
290 /*
291 * A length == 0 record is the end of buffer marker. Wrap around and
292 * read the message at the start of the buffer.
293 */
294 if (!msg->len)
295 return (struct printk_log *)log_buf;
296 return msg;
297 }
298
299 /* get next record; idx must point to valid msg */
300 static u32 log_next(u32 idx)
301 {
302 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
303
304 /* length == 0 indicates the end of the buffer; wrap */
305 /*
306 * A length == 0 record is the end of buffer marker. Wrap around and
307 * read the message at the start of the buffer as *this* one, and
308 * return the one after that.
309 */
310 if (!msg->len) {
311 msg = (struct printk_log *)log_buf;
312 return msg->len;
313 }
314 return idx + msg->len;
315 }
316
317 /*
318 * Check whether there is enough free space for the given message.
319 *
320 * The same values of first_idx and next_idx mean that the buffer
321 * is either empty or full.
322 *
323 * If the buffer is empty, we must respect the position of the indexes.
324 * They cannot be reset to the beginning of the buffer.
325 */
326 static int logbuf_has_space(u32 msg_size, bool empty)
327 {
328 u32 free;
329
330 if (log_next_idx > log_first_idx || empty)
331 free = max(log_buf_len - log_next_idx, log_first_idx);
332 else
333 free = log_first_idx - log_next_idx;
334
335 /*
336 * We need space also for an empty header that signalizes wrapping
337 * of the buffer.
338 */
339 return free >= msg_size + sizeof(struct printk_log);
340 }
341
342 static int log_make_free_space(u32 msg_size)
343 {
344 while (log_first_seq < log_next_seq) {
345 if (logbuf_has_space(msg_size, false))
346 return 0;
347 /* drop old messages until we have enough continuous space */
348 log_first_idx = log_next(log_first_idx);
349 log_first_seq++;
350 }
351
352 /* sequence numbers are equal, so the log buffer is empty */
353 if (logbuf_has_space(msg_size, true))
354 return 0;
355
356 return -ENOMEM;
357 }
358
359 /* compute the message size including the padding bytes */
360 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
361 {
362 u32 size;
363
364 size = sizeof(struct printk_log) + text_len + dict_len;
365 *pad_len = (-size) & (LOG_ALIGN - 1);
366 size += *pad_len;
367
368 return size;
369 }
370
371 /*
372 * Define how much of the log buffer we could take at maximum. The value
373 * must be greater than two. Note that only half of the buffer is available
374 * when the index points to the middle.
375 */
376 #define MAX_LOG_TAKE_PART 4
377 static const char trunc_msg[] = "<truncated>";
378
379 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
380 u16 *dict_len, u32 *pad_len)
381 {
382 /*
383 * The message should not take the whole buffer. Otherwise, it might
384 * get removed too soon.
385 */
386 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
387 if (*text_len > max_text_len)
388 *text_len = max_text_len;
389 /* enable the warning message */
390 *trunc_msg_len = strlen(trunc_msg);
391 /* disable the "dict" completely */
392 *dict_len = 0;
393 /* compute the size again, count also the warning message */
394 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
395 }
396
397 /* insert record into the buffer, discard old ones, update heads */
398 static int log_store(int facility, int level,
399 enum log_flags flags, u64 ts_nsec,
400 const char *dict, u16 dict_len,
401 const char *text, u16 text_len)
402 {
403 struct printk_log *msg;
404 u32 size, pad_len;
405 u16 trunc_msg_len = 0;
406
407 /* number of '\0' padding bytes to next message */
408 size = msg_used_size(text_len, dict_len, &pad_len);
409
410 if (log_make_free_space(size)) {
411 /* truncate the message if it is too long for empty buffer */
412 size = truncate_msg(&text_len, &trunc_msg_len,
413 &dict_len, &pad_len);
414 /* survive when the log buffer is too small for trunc_msg */
415 if (log_make_free_space(size))
416 return 0;
417 }
418
419 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
420 /*
421 * This message + an additional empty header does not fit
422 * at the end of the buffer. Add an empty header with len == 0
423 * to signify a wrap around.
424 */
425 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
426 log_next_idx = 0;
427 }
428
429 /* fill message */
430 msg = (struct printk_log *)(log_buf + log_next_idx);
431 memcpy(log_text(msg), text, text_len);
432 msg->text_len = text_len;
433 if (trunc_msg_len) {
434 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
435 msg->text_len += trunc_msg_len;
436 }
437 memcpy(log_dict(msg), dict, dict_len);
438 msg->dict_len = dict_len;
439 msg->facility = facility;
440 msg->level = level & 7;
441 msg->flags = flags & 0x1f;
442 if (ts_nsec > 0)
443 msg->ts_nsec = ts_nsec;
444 else
445 msg->ts_nsec = local_clock();
446 memset(log_dict(msg) + dict_len, 0, pad_len);
447 msg->len = size;
448
449 /* insert message */
450 log_next_idx += msg->len;
451 log_next_seq++;
452
453 return msg->text_len;
454 }
455
456 #ifdef CONFIG_SECURITY_DMESG_RESTRICT
457 int dmesg_restrict = 1;
458 #else
459 int dmesg_restrict;
460 #endif
461
462 static int syslog_action_restricted(int type)
463 {
464 if (dmesg_restrict)
465 return 1;
466 /*
467 * Unless restricted, we allow "read all" and "get buffer size"
468 * for everybody.
469 */
470 return type != SYSLOG_ACTION_READ_ALL &&
471 type != SYSLOG_ACTION_SIZE_BUFFER;
472 }
473
474 static int check_syslog_permissions(int type, bool from_file)
475 {
476 /*
477 * If this is from /proc/kmsg and we've already opened it, then we've
478 * already done the capabilities checks at open time.
479 */
480 if (from_file && type != SYSLOG_ACTION_OPEN)
481 return 0;
482
483 if (syslog_action_restricted(type)) {
484 if (capable(CAP_SYSLOG))
485 return 0;
486 /*
487 * For historical reasons, accept CAP_SYS_ADMIN too, with
488 * a warning.
489 */
490 if (capable(CAP_SYS_ADMIN)) {
491 pr_warn_once("%s (%d): Attempt to access syslog with "
492 "CAP_SYS_ADMIN but no CAP_SYSLOG "
493 "(deprecated).\n",
494 current->comm, task_pid_nr(current));
495 return 0;
496 }
497 return -EPERM;
498 }
499 return security_syslog(type);
500 }
501
502
503 /* /dev/kmsg - userspace message inject/listen interface */
504 struct devkmsg_user {
505 u64 seq;
506 u32 idx;
507 enum log_flags prev;
508 struct mutex lock;
509 char buf[8192];
510 };
511
512 static ssize_t devkmsg_writev(struct kiocb *iocb, const struct iovec *iv,
513 unsigned long count, loff_t pos)
514 {
515 char *buf, *line;
516 int i;
517 int level = default_message_loglevel;
518 int facility = 1; /* LOG_USER */
519 size_t len = iov_length(iv, count);
520 ssize_t ret = len;
521
522 if (len > LOG_LINE_MAX)
523 return -EINVAL;
524 buf = kmalloc(len+1, GFP_KERNEL);
525 if (buf == NULL)
526 return -ENOMEM;
527
528 line = buf;
529 for (i = 0; i < count; i++) {
530 if (copy_from_user(line, iv[i].iov_base, iv[i].iov_len)) {
531 ret = -EFAULT;
532 goto out;
533 }
534 line += iv[i].iov_len;
535 }
536
537 /*
538 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
539 * the decimal value represents 32bit, the lower 3 bit are the log
540 * level, the rest are the log facility.
541 *
542 * If no prefix or no userspace facility is specified, we
543 * enforce LOG_USER, to be able to reliably distinguish
544 * kernel-generated messages from userspace-injected ones.
545 */
546 line = buf;
547 if (line[0] == '<') {
548 char *endp = NULL;
549
550 i = simple_strtoul(line+1, &endp, 10);
551 if (endp && endp[0] == '>') {
552 level = i & 7;
553 if (i >> 3)
554 facility = i >> 3;
555 endp++;
556 len -= endp - line;
557 line = endp;
558 }
559 }
560 line[len] = '\0';
561
562 printk_emit(facility, level, NULL, 0, "%s", line);
563 out:
564 kfree(buf);
565 return ret;
566 }
567
568 static ssize_t devkmsg_read(struct file *file, char __user *buf,
569 size_t count, loff_t *ppos)
570 {
571 struct devkmsg_user *user = file->private_data;
572 struct printk_log *msg;
573 u64 ts_usec;
574 size_t i;
575 char cont = '-';
576 size_t len;
577 ssize_t ret;
578
579 if (!user)
580 return -EBADF;
581
582 ret = mutex_lock_interruptible(&user->lock);
583 if (ret)
584 return ret;
585 raw_spin_lock_irq(&logbuf_lock);
586 while (user->seq == log_next_seq) {
587 if (file->f_flags & O_NONBLOCK) {
588 ret = -EAGAIN;
589 raw_spin_unlock_irq(&logbuf_lock);
590 goto out;
591 }
592
593 raw_spin_unlock_irq(&logbuf_lock);
594 ret = wait_event_interruptible(log_wait,
595 user->seq != log_next_seq);
596 if (ret)
597 goto out;
598 raw_spin_lock_irq(&logbuf_lock);
599 }
600
601 if (user->seq < log_first_seq) {
602 /* our last seen message is gone, return error and reset */
603 user->idx = log_first_idx;
604 user->seq = log_first_seq;
605 ret = -EPIPE;
606 raw_spin_unlock_irq(&logbuf_lock);
607 goto out;
608 }
609
610 msg = log_from_idx(user->idx);
611 ts_usec = msg->ts_nsec;
612 do_div(ts_usec, 1000);
613
614 /*
615 * If we couldn't merge continuation line fragments during the print,
616 * export the stored flags to allow an optional external merge of the
617 * records. Merging the records isn't always neccessarily correct, like
618 * when we hit a race during printing. In most cases though, it produces
619 * better readable output. 'c' in the record flags mark the first
620 * fragment of a line, '+' the following.
621 */
622 if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT))
623 cont = 'c';
624 else if ((msg->flags & LOG_CONT) ||
625 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
626 cont = '+';
627
628 len = sprintf(user->buf, "%u,%llu,%llu,%c;",
629 (msg->facility << 3) | msg->level,
630 user->seq, ts_usec, cont);
631 user->prev = msg->flags;
632
633 /* escape non-printable characters */
634 for (i = 0; i < msg->text_len; i++) {
635 unsigned char c = log_text(msg)[i];
636
637 if (c < ' ' || c >= 127 || c == '\\')
638 len += sprintf(user->buf + len, "\\x%02x", c);
639 else
640 user->buf[len++] = c;
641 }
642 user->buf[len++] = '\n';
643
644 if (msg->dict_len) {
645 bool line = true;
646
647 for (i = 0; i < msg->dict_len; i++) {
648 unsigned char c = log_dict(msg)[i];
649
650 if (line) {
651 user->buf[len++] = ' ';
652 line = false;
653 }
654
655 if (c == '\0') {
656 user->buf[len++] = '\n';
657 line = true;
658 continue;
659 }
660
661 if (c < ' ' || c >= 127 || c == '\\') {
662 len += sprintf(user->buf + len, "\\x%02x", c);
663 continue;
664 }
665
666 user->buf[len++] = c;
667 }
668 user->buf[len++] = '\n';
669 }
670
671 user->idx = log_next(user->idx);
672 user->seq++;
673 raw_spin_unlock_irq(&logbuf_lock);
674
675 if (len > count) {
676 ret = -EINVAL;
677 goto out;
678 }
679
680 if (copy_to_user(buf, user->buf, len)) {
681 ret = -EFAULT;
682 goto out;
683 }
684 ret = len;
685 out:
686 mutex_unlock(&user->lock);
687 return ret;
688 }
689
690 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
691 {
692 struct devkmsg_user *user = file->private_data;
693 loff_t ret = 0;
694
695 if (!user)
696 return -EBADF;
697 if (offset)
698 return -ESPIPE;
699
700 raw_spin_lock_irq(&logbuf_lock);
701 switch (whence) {
702 case SEEK_SET:
703 /* the first record */
704 user->idx = log_first_idx;
705 user->seq = log_first_seq;
706 break;
707 case SEEK_DATA:
708 /*
709 * The first record after the last SYSLOG_ACTION_CLEAR,
710 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
711 * changes no global state, and does not clear anything.
712 */
713 user->idx = clear_idx;
714 user->seq = clear_seq;
715 break;
716 case SEEK_END:
717 /* after the last record */
718 user->idx = log_next_idx;
719 user->seq = log_next_seq;
720 break;
721 default:
722 ret = -EINVAL;
723 }
724 raw_spin_unlock_irq(&logbuf_lock);
725 return ret;
726 }
727
728 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
729 {
730 struct devkmsg_user *user = file->private_data;
731 int ret = 0;
732
733 if (!user)
734 return POLLERR|POLLNVAL;
735
736 poll_wait(file, &log_wait, wait);
737
738 raw_spin_lock_irq(&logbuf_lock);
739 if (user->seq < log_next_seq) {
740 /* return error when data has vanished underneath us */
741 if (user->seq < log_first_seq)
742 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
743 else
744 ret = POLLIN|POLLRDNORM;
745 }
746 raw_spin_unlock_irq(&logbuf_lock);
747
748 return ret;
749 }
750
751 static int devkmsg_open(struct inode *inode, struct file *file)
752 {
753 struct devkmsg_user *user;
754 int err;
755
756 /* write-only does not need any file context */
757 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
758 return 0;
759
760 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
761 SYSLOG_FROM_READER);
762 if (err)
763 return err;
764
765 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
766 if (!user)
767 return -ENOMEM;
768
769 mutex_init(&user->lock);
770
771 raw_spin_lock_irq(&logbuf_lock);
772 user->idx = log_first_idx;
773 user->seq = log_first_seq;
774 raw_spin_unlock_irq(&logbuf_lock);
775
776 file->private_data = user;
777 return 0;
778 }
779
780 static int devkmsg_release(struct inode *inode, struct file *file)
781 {
782 struct devkmsg_user *user = file->private_data;
783
784 if (!user)
785 return 0;
786
787 mutex_destroy(&user->lock);
788 kfree(user);
789 return 0;
790 }
791
792 const struct file_operations kmsg_fops = {
793 .open = devkmsg_open,
794 .read = devkmsg_read,
795 .aio_write = devkmsg_writev,
796 .llseek = devkmsg_llseek,
797 .poll = devkmsg_poll,
798 .release = devkmsg_release,
799 };
800
801 #ifdef CONFIG_KEXEC
802 /*
803 * This appends the listed symbols to /proc/vmcore
804 *
805 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
806 * obtain access to symbols that are otherwise very difficult to locate. These
807 * symbols are specifically used so that utilities can access and extract the
808 * dmesg log from a vmcore file after a crash.
809 */
810 void log_buf_kexec_setup(void)
811 {
812 VMCOREINFO_SYMBOL(log_buf);
813 VMCOREINFO_SYMBOL(log_buf_len);
814 VMCOREINFO_SYMBOL(log_first_idx);
815 VMCOREINFO_SYMBOL(log_next_idx);
816 /*
817 * Export struct printk_log size and field offsets. User space tools can
818 * parse it and detect any changes to structure down the line.
819 */
820 VMCOREINFO_STRUCT_SIZE(printk_log);
821 VMCOREINFO_OFFSET(printk_log, ts_nsec);
822 VMCOREINFO_OFFSET(printk_log, len);
823 VMCOREINFO_OFFSET(printk_log, text_len);
824 VMCOREINFO_OFFSET(printk_log, dict_len);
825 }
826 #endif
827
828 /* requested log_buf_len from kernel cmdline */
829 static unsigned long __initdata new_log_buf_len;
830
831 /* save requested log_buf_len since it's too early to process it */
832 static int __init log_buf_len_setup(char *str)
833 {
834 unsigned size = memparse(str, &str);
835
836 if (size)
837 size = roundup_pow_of_two(size);
838 if (size > log_buf_len)
839 new_log_buf_len = size;
840
841 return 0;
842 }
843 early_param("log_buf_len", log_buf_len_setup);
844
845 void __init setup_log_buf(int early)
846 {
847 unsigned long flags;
848 char *new_log_buf;
849 int free;
850
851 if (!new_log_buf_len)
852 return;
853
854 if (early) {
855 new_log_buf =
856 memblock_virt_alloc(new_log_buf_len, PAGE_SIZE);
857 } else {
858 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len, 0);
859 }
860
861 if (unlikely(!new_log_buf)) {
862 pr_err("log_buf_len: %ld bytes not available\n",
863 new_log_buf_len);
864 return;
865 }
866
867 raw_spin_lock_irqsave(&logbuf_lock, flags);
868 log_buf_len = new_log_buf_len;
869 log_buf = new_log_buf;
870 new_log_buf_len = 0;
871 free = __LOG_BUF_LEN - log_next_idx;
872 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
873 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
874
875 pr_info("log_buf_len: %d\n", log_buf_len);
876 pr_info("early log buf free: %d(%d%%)\n",
877 free, (free * 100) / __LOG_BUF_LEN);
878 }
879
880 static bool __read_mostly ignore_loglevel;
881
882 static int __init ignore_loglevel_setup(char *str)
883 {
884 ignore_loglevel = 1;
885 pr_info("debug: ignoring loglevel setting.\n");
886
887 return 0;
888 }
889
890 early_param("ignore_loglevel", ignore_loglevel_setup);
891 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
892 MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to"
893 "print all kernel messages to the console.");
894
895 #ifdef CONFIG_BOOT_PRINTK_DELAY
896
897 static int boot_delay; /* msecs delay after each printk during bootup */
898 static unsigned long long loops_per_msec; /* based on boot_delay */
899
900 static int __init boot_delay_setup(char *str)
901 {
902 unsigned long lpj;
903
904 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
905 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
906
907 get_option(&str, &boot_delay);
908 if (boot_delay > 10 * 1000)
909 boot_delay = 0;
910
911 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
912 "HZ: %d, loops_per_msec: %llu\n",
913 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
914 return 0;
915 }
916 early_param("boot_delay", boot_delay_setup);
917
918 static void boot_delay_msec(int level)
919 {
920 unsigned long long k;
921 unsigned long timeout;
922
923 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
924 || (level >= console_loglevel && !ignore_loglevel)) {
925 return;
926 }
927
928 k = (unsigned long long)loops_per_msec * boot_delay;
929
930 timeout = jiffies + msecs_to_jiffies(boot_delay);
931 while (k) {
932 k--;
933 cpu_relax();
934 /*
935 * use (volatile) jiffies to prevent
936 * compiler reduction; loop termination via jiffies
937 * is secondary and may or may not happen.
938 */
939 if (time_after(jiffies, timeout))
940 break;
941 touch_nmi_watchdog();
942 }
943 }
944 #else
945 static inline void boot_delay_msec(int level)
946 {
947 }
948 #endif
949
950 #if defined(CONFIG_PRINTK_TIME)
951 static bool printk_time = 1;
952 #else
953 static bool printk_time;
954 #endif
955 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
956
957 static size_t print_time(u64 ts, char *buf)
958 {
959 unsigned long rem_nsec;
960
961 if (!printk_time)
962 return 0;
963
964 rem_nsec = do_div(ts, 1000000000);
965
966 if (!buf)
967 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
968
969 return sprintf(buf, "[%5lu.%06lu] ",
970 (unsigned long)ts, rem_nsec / 1000);
971 }
972
973 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
974 {
975 size_t len = 0;
976 unsigned int prefix = (msg->facility << 3) | msg->level;
977
978 if (syslog) {
979 if (buf) {
980 len += sprintf(buf, "<%u>", prefix);
981 } else {
982 len += 3;
983 if (prefix > 999)
984 len += 3;
985 else if (prefix > 99)
986 len += 2;
987 else if (prefix > 9)
988 len++;
989 }
990 }
991
992 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
993 return len;
994 }
995
996 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
997 bool syslog, char *buf, size_t size)
998 {
999 const char *text = log_text(msg);
1000 size_t text_size = msg->text_len;
1001 bool prefix = true;
1002 bool newline = true;
1003 size_t len = 0;
1004
1005 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1006 prefix = false;
1007
1008 if (msg->flags & LOG_CONT) {
1009 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1010 prefix = false;
1011
1012 if (!(msg->flags & LOG_NEWLINE))
1013 newline = false;
1014 }
1015
1016 do {
1017 const char *next = memchr(text, '\n', text_size);
1018 size_t text_len;
1019
1020 if (next) {
1021 text_len = next - text;
1022 next++;
1023 text_size -= next - text;
1024 } else {
1025 text_len = text_size;
1026 }
1027
1028 if (buf) {
1029 if (print_prefix(msg, syslog, NULL) +
1030 text_len + 1 >= size - len)
1031 break;
1032
1033 if (prefix)
1034 len += print_prefix(msg, syslog, buf + len);
1035 memcpy(buf + len, text, text_len);
1036 len += text_len;
1037 if (next || newline)
1038 buf[len++] = '\n';
1039 } else {
1040 /* SYSLOG_ACTION_* buffer size only calculation */
1041 if (prefix)
1042 len += print_prefix(msg, syslog, NULL);
1043 len += text_len;
1044 if (next || newline)
1045 len++;
1046 }
1047
1048 prefix = true;
1049 text = next;
1050 } while (text);
1051
1052 return len;
1053 }
1054
1055 static int syslog_print(char __user *buf, int size)
1056 {
1057 char *text;
1058 struct printk_log *msg;
1059 int len = 0;
1060
1061 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1062 if (!text)
1063 return -ENOMEM;
1064
1065 while (size > 0) {
1066 size_t n;
1067 size_t skip;
1068
1069 raw_spin_lock_irq(&logbuf_lock);
1070 if (syslog_seq < log_first_seq) {
1071 /* messages are gone, move to first one */
1072 syslog_seq = log_first_seq;
1073 syslog_idx = log_first_idx;
1074 syslog_prev = 0;
1075 syslog_partial = 0;
1076 }
1077 if (syslog_seq == log_next_seq) {
1078 raw_spin_unlock_irq(&logbuf_lock);
1079 break;
1080 }
1081
1082 skip = syslog_partial;
1083 msg = log_from_idx(syslog_idx);
1084 n = msg_print_text(msg, syslog_prev, true, text,
1085 LOG_LINE_MAX + PREFIX_MAX);
1086 if (n - syslog_partial <= size) {
1087 /* message fits into buffer, move forward */
1088 syslog_idx = log_next(syslog_idx);
1089 syslog_seq++;
1090 syslog_prev = msg->flags;
1091 n -= syslog_partial;
1092 syslog_partial = 0;
1093 } else if (!len){
1094 /* partial read(), remember position */
1095 n = size;
1096 syslog_partial += n;
1097 } else
1098 n = 0;
1099 raw_spin_unlock_irq(&logbuf_lock);
1100
1101 if (!n)
1102 break;
1103
1104 if (copy_to_user(buf, text + skip, n)) {
1105 if (!len)
1106 len = -EFAULT;
1107 break;
1108 }
1109
1110 len += n;
1111 size -= n;
1112 buf += n;
1113 }
1114
1115 kfree(text);
1116 return len;
1117 }
1118
1119 static int syslog_print_all(char __user *buf, int size, bool clear)
1120 {
1121 char *text;
1122 int len = 0;
1123
1124 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1125 if (!text)
1126 return -ENOMEM;
1127
1128 raw_spin_lock_irq(&logbuf_lock);
1129 if (buf) {
1130 u64 next_seq;
1131 u64 seq;
1132 u32 idx;
1133 enum log_flags prev;
1134
1135 if (clear_seq < log_first_seq) {
1136 /* messages are gone, move to first available one */
1137 clear_seq = log_first_seq;
1138 clear_idx = log_first_idx;
1139 }
1140
1141 /*
1142 * Find first record that fits, including all following records,
1143 * into the user-provided buffer for this dump.
1144 */
1145 seq = clear_seq;
1146 idx = clear_idx;
1147 prev = 0;
1148 while (seq < log_next_seq) {
1149 struct printk_log *msg = log_from_idx(idx);
1150
1151 len += msg_print_text(msg, prev, true, NULL, 0);
1152 prev = msg->flags;
1153 idx = log_next(idx);
1154 seq++;
1155 }
1156
1157 /* move first record forward until length fits into the buffer */
1158 seq = clear_seq;
1159 idx = clear_idx;
1160 prev = 0;
1161 while (len > size && seq < log_next_seq) {
1162 struct printk_log *msg = log_from_idx(idx);
1163
1164 len -= msg_print_text(msg, prev, true, NULL, 0);
1165 prev = msg->flags;
1166 idx = log_next(idx);
1167 seq++;
1168 }
1169
1170 /* last message fitting into this dump */
1171 next_seq = log_next_seq;
1172
1173 len = 0;
1174 while (len >= 0 && seq < next_seq) {
1175 struct printk_log *msg = log_from_idx(idx);
1176 int textlen;
1177
1178 textlen = msg_print_text(msg, prev, true, text,
1179 LOG_LINE_MAX + PREFIX_MAX);
1180 if (textlen < 0) {
1181 len = textlen;
1182 break;
1183 }
1184 idx = log_next(idx);
1185 seq++;
1186 prev = msg->flags;
1187
1188 raw_spin_unlock_irq(&logbuf_lock);
1189 if (copy_to_user(buf + len, text, textlen))
1190 len = -EFAULT;
1191 else
1192 len += textlen;
1193 raw_spin_lock_irq(&logbuf_lock);
1194
1195 if (seq < log_first_seq) {
1196 /* messages are gone, move to next one */
1197 seq = log_first_seq;
1198 idx = log_first_idx;
1199 prev = 0;
1200 }
1201 }
1202 }
1203
1204 if (clear) {
1205 clear_seq = log_next_seq;
1206 clear_idx = log_next_idx;
1207 }
1208 raw_spin_unlock_irq(&logbuf_lock);
1209
1210 kfree(text);
1211 return len;
1212 }
1213
1214 int do_syslog(int type, char __user *buf, int len, bool from_file)
1215 {
1216 bool clear = false;
1217 static int saved_console_loglevel = -1;
1218 int error;
1219
1220 error = check_syslog_permissions(type, from_file);
1221 if (error)
1222 goto out;
1223
1224 error = security_syslog(type);
1225 if (error)
1226 return error;
1227
1228 switch (type) {
1229 case SYSLOG_ACTION_CLOSE: /* Close log */
1230 break;
1231 case SYSLOG_ACTION_OPEN: /* Open log */
1232 break;
1233 case SYSLOG_ACTION_READ: /* Read from log */
1234 error = -EINVAL;
1235 if (!buf || len < 0)
1236 goto out;
1237 error = 0;
1238 if (!len)
1239 goto out;
1240 if (!access_ok(VERIFY_WRITE, buf, len)) {
1241 error = -EFAULT;
1242 goto out;
1243 }
1244 error = wait_event_interruptible(log_wait,
1245 syslog_seq != log_next_seq);
1246 if (error)
1247 goto out;
1248 error = syslog_print(buf, len);
1249 break;
1250 /* Read/clear last kernel messages */
1251 case SYSLOG_ACTION_READ_CLEAR:
1252 clear = true;
1253 /* FALL THRU */
1254 /* Read last kernel messages */
1255 case SYSLOG_ACTION_READ_ALL:
1256 error = -EINVAL;
1257 if (!buf || len < 0)
1258 goto out;
1259 error = 0;
1260 if (!len)
1261 goto out;
1262 if (!access_ok(VERIFY_WRITE, buf, len)) {
1263 error = -EFAULT;
1264 goto out;
1265 }
1266 error = syslog_print_all(buf, len, clear);
1267 break;
1268 /* Clear ring buffer */
1269 case SYSLOG_ACTION_CLEAR:
1270 syslog_print_all(NULL, 0, true);
1271 break;
1272 /* Disable logging to console */
1273 case SYSLOG_ACTION_CONSOLE_OFF:
1274 if (saved_console_loglevel == -1)
1275 saved_console_loglevel = console_loglevel;
1276 console_loglevel = minimum_console_loglevel;
1277 break;
1278 /* Enable logging to console */
1279 case SYSLOG_ACTION_CONSOLE_ON:
1280 if (saved_console_loglevel != -1) {
1281 console_loglevel = saved_console_loglevel;
1282 saved_console_loglevel = -1;
1283 }
1284 break;
1285 /* Set level of messages printed to console */
1286 case SYSLOG_ACTION_CONSOLE_LEVEL:
1287 error = -EINVAL;
1288 if (len < 1 || len > 8)
1289 goto out;
1290 if (len < minimum_console_loglevel)
1291 len = minimum_console_loglevel;
1292 console_loglevel = len;
1293 /* Implicitly re-enable logging to console */
1294 saved_console_loglevel = -1;
1295 error = 0;
1296 break;
1297 /* Number of chars in the log buffer */
1298 case SYSLOG_ACTION_SIZE_UNREAD:
1299 raw_spin_lock_irq(&logbuf_lock);
1300 if (syslog_seq < log_first_seq) {
1301 /* messages are gone, move to first one */
1302 syslog_seq = log_first_seq;
1303 syslog_idx = log_first_idx;
1304 syslog_prev = 0;
1305 syslog_partial = 0;
1306 }
1307 if (from_file) {
1308 /*
1309 * Short-cut for poll(/"proc/kmsg") which simply checks
1310 * for pending data, not the size; return the count of
1311 * records, not the length.
1312 */
1313 error = log_next_idx - syslog_idx;
1314 } else {
1315 u64 seq = syslog_seq;
1316 u32 idx = syslog_idx;
1317 enum log_flags prev = syslog_prev;
1318
1319 error = 0;
1320 while (seq < log_next_seq) {
1321 struct printk_log *msg = log_from_idx(idx);
1322
1323 error += msg_print_text(msg, prev, true, NULL, 0);
1324 idx = log_next(idx);
1325 seq++;
1326 prev = msg->flags;
1327 }
1328 error -= syslog_partial;
1329 }
1330 raw_spin_unlock_irq(&logbuf_lock);
1331 break;
1332 /* Size of the log buffer */
1333 case SYSLOG_ACTION_SIZE_BUFFER:
1334 error = log_buf_len;
1335 break;
1336 default:
1337 error = -EINVAL;
1338 break;
1339 }
1340 out:
1341 return error;
1342 }
1343
1344 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1345 {
1346 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1347 }
1348
1349 /*
1350 * Call the console drivers, asking them to write out
1351 * log_buf[start] to log_buf[end - 1].
1352 * The console_lock must be held.
1353 */
1354 static void call_console_drivers(int level, const char *text, size_t len)
1355 {
1356 struct console *con;
1357
1358 trace_console(text, len);
1359
1360 if (level >= console_loglevel && !ignore_loglevel)
1361 return;
1362 if (!console_drivers)
1363 return;
1364
1365 for_each_console(con) {
1366 if (exclusive_console && con != exclusive_console)
1367 continue;
1368 if (!(con->flags & CON_ENABLED))
1369 continue;
1370 if (!con->write)
1371 continue;
1372 if (!cpu_online(smp_processor_id()) &&
1373 !(con->flags & CON_ANYTIME))
1374 continue;
1375 con->write(con, text, len);
1376 }
1377 }
1378
1379 /*
1380 * Zap console related locks when oopsing. Only zap at most once
1381 * every 10 seconds, to leave time for slow consoles to print a
1382 * full oops.
1383 */
1384 static void zap_locks(void)
1385 {
1386 static unsigned long oops_timestamp;
1387
1388 if (time_after_eq(jiffies, oops_timestamp) &&
1389 !time_after(jiffies, oops_timestamp + 30 * HZ))
1390 return;
1391
1392 oops_timestamp = jiffies;
1393
1394 debug_locks_off();
1395 /* If a crash is occurring, make sure we can't deadlock */
1396 raw_spin_lock_init(&logbuf_lock);
1397 /* And make sure that we print immediately */
1398 sema_init(&console_sem, 1);
1399 }
1400
1401 /*
1402 * Check if we have any console that is capable of printing while cpu is
1403 * booting or shutting down. Requires console_sem.
1404 */
1405 static int have_callable_console(void)
1406 {
1407 struct console *con;
1408
1409 for_each_console(con)
1410 if (con->flags & CON_ANYTIME)
1411 return 1;
1412
1413 return 0;
1414 }
1415
1416 /*
1417 * Can we actually use the console at this time on this cpu?
1418 *
1419 * Console drivers may assume that per-cpu resources have
1420 * been allocated. So unless they're explicitly marked as
1421 * being able to cope (CON_ANYTIME) don't call them until
1422 * this CPU is officially up.
1423 */
1424 static inline int can_use_console(unsigned int cpu)
1425 {
1426 return cpu_online(cpu) || have_callable_console();
1427 }
1428
1429 /*
1430 * Try to get console ownership to actually show the kernel
1431 * messages from a 'printk'. Return true (and with the
1432 * console_lock held, and 'console_locked' set) if it
1433 * is successful, false otherwise.
1434 */
1435 static int console_trylock_for_printk(unsigned int cpu)
1436 {
1437 if (!console_trylock())
1438 return 0;
1439 /*
1440 * If we can't use the console, we need to release the console
1441 * semaphore by hand to avoid flushing the buffer. We need to hold the
1442 * console semaphore in order to do this test safely.
1443 */
1444 if (!can_use_console(cpu)) {
1445 console_locked = 0;
1446 up_console_sem();
1447 return 0;
1448 }
1449 return 1;
1450 }
1451
1452 int printk_delay_msec __read_mostly;
1453
1454 static inline void printk_delay(void)
1455 {
1456 if (unlikely(printk_delay_msec)) {
1457 int m = printk_delay_msec;
1458
1459 while (m--) {
1460 mdelay(1);
1461 touch_nmi_watchdog();
1462 }
1463 }
1464 }
1465
1466 /*
1467 * Continuation lines are buffered, and not committed to the record buffer
1468 * until the line is complete, or a race forces it. The line fragments
1469 * though, are printed immediately to the consoles to ensure everything has
1470 * reached the console in case of a kernel crash.
1471 */
1472 static struct cont {
1473 char buf[LOG_LINE_MAX];
1474 size_t len; /* length == 0 means unused buffer */
1475 size_t cons; /* bytes written to console */
1476 struct task_struct *owner; /* task of first print*/
1477 u64 ts_nsec; /* time of first print */
1478 u8 level; /* log level of first message */
1479 u8 facility; /* log level of first message */
1480 enum log_flags flags; /* prefix, newline flags */
1481 bool flushed:1; /* buffer sealed and committed */
1482 } cont;
1483
1484 static void cont_flush(enum log_flags flags)
1485 {
1486 if (cont.flushed)
1487 return;
1488 if (cont.len == 0)
1489 return;
1490
1491 if (cont.cons) {
1492 /*
1493 * If a fragment of this line was directly flushed to the
1494 * console; wait for the console to pick up the rest of the
1495 * line. LOG_NOCONS suppresses a duplicated output.
1496 */
1497 log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1498 cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1499 cont.flags = flags;
1500 cont.flushed = true;
1501 } else {
1502 /*
1503 * If no fragment of this line ever reached the console,
1504 * just submit it to the store and free the buffer.
1505 */
1506 log_store(cont.facility, cont.level, flags, 0,
1507 NULL, 0, cont.buf, cont.len);
1508 cont.len = 0;
1509 }
1510 }
1511
1512 static bool cont_add(int facility, int level, const char *text, size_t len)
1513 {
1514 if (cont.len && cont.flushed)
1515 return false;
1516
1517 if (cont.len + len > sizeof(cont.buf)) {
1518 /* the line gets too long, split it up in separate records */
1519 cont_flush(LOG_CONT);
1520 return false;
1521 }
1522
1523 if (!cont.len) {
1524 cont.facility = facility;
1525 cont.level = level;
1526 cont.owner = current;
1527 cont.ts_nsec = local_clock();
1528 cont.flags = 0;
1529 cont.cons = 0;
1530 cont.flushed = false;
1531 }
1532
1533 memcpy(cont.buf + cont.len, text, len);
1534 cont.len += len;
1535
1536 if (cont.len > (sizeof(cont.buf) * 80) / 100)
1537 cont_flush(LOG_CONT);
1538
1539 return true;
1540 }
1541
1542 static size_t cont_print_text(char *text, size_t size)
1543 {
1544 size_t textlen = 0;
1545 size_t len;
1546
1547 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1548 textlen += print_time(cont.ts_nsec, text);
1549 size -= textlen;
1550 }
1551
1552 len = cont.len - cont.cons;
1553 if (len > 0) {
1554 if (len+1 > size)
1555 len = size-1;
1556 memcpy(text + textlen, cont.buf + cont.cons, len);
1557 textlen += len;
1558 cont.cons = cont.len;
1559 }
1560
1561 if (cont.flushed) {
1562 if (cont.flags & LOG_NEWLINE)
1563 text[textlen++] = '\n';
1564 /* got everything, release buffer */
1565 cont.len = 0;
1566 }
1567 return textlen;
1568 }
1569
1570 asmlinkage int vprintk_emit(int facility, int level,
1571 const char *dict, size_t dictlen,
1572 const char *fmt, va_list args)
1573 {
1574 static int recursion_bug;
1575 static char textbuf[LOG_LINE_MAX];
1576 char *text = textbuf;
1577 size_t text_len = 0;
1578 enum log_flags lflags = 0;
1579 unsigned long flags;
1580 int this_cpu;
1581 int printed_len = 0;
1582 bool in_sched = false;
1583 /* cpu currently holding logbuf_lock in this function */
1584 static volatile unsigned int logbuf_cpu = UINT_MAX;
1585
1586 if (level == SCHED_MESSAGE_LOGLEVEL) {
1587 level = -1;
1588 in_sched = true;
1589 }
1590
1591 boot_delay_msec(level);
1592 printk_delay();
1593
1594 /* This stops the holder of console_sem just where we want him */
1595 local_irq_save(flags);
1596 this_cpu = smp_processor_id();
1597
1598 /*
1599 * Ouch, printk recursed into itself!
1600 */
1601 if (unlikely(logbuf_cpu == this_cpu)) {
1602 /*
1603 * If a crash is occurring during printk() on this CPU,
1604 * then try to get the crash message out but make sure
1605 * we can't deadlock. Otherwise just return to avoid the
1606 * recursion and return - but flag the recursion so that
1607 * it can be printed at the next appropriate moment:
1608 */
1609 if (!oops_in_progress && !lockdep_recursing(current)) {
1610 recursion_bug = 1;
1611 goto out_restore_irqs;
1612 }
1613 zap_locks();
1614 }
1615
1616 lockdep_off();
1617 raw_spin_lock(&logbuf_lock);
1618 logbuf_cpu = this_cpu;
1619
1620 if (recursion_bug) {
1621 static const char recursion_msg[] =
1622 "BUG: recent printk recursion!";
1623
1624 recursion_bug = 0;
1625 text_len = strlen(recursion_msg);
1626 /* emit KERN_CRIT message */
1627 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1628 NULL, 0, recursion_msg, text_len);
1629 }
1630
1631 /*
1632 * The printf needs to come first; we need the syslog
1633 * prefix which might be passed-in as a parameter.
1634 */
1635 if (in_sched)
1636 text_len = scnprintf(text, sizeof(textbuf),
1637 KERN_WARNING "[sched_delayed] ");
1638
1639 text_len += vscnprintf(text + text_len,
1640 sizeof(textbuf) - text_len, fmt, args);
1641
1642 /* mark and strip a trailing newline */
1643 if (text_len && text[text_len-1] == '\n') {
1644 text_len--;
1645 lflags |= LOG_NEWLINE;
1646 }
1647
1648 /* strip kernel syslog prefix and extract log level or control flags */
1649 if (facility == 0) {
1650 int kern_level = printk_get_level(text);
1651
1652 if (kern_level) {
1653 const char *end_of_header = printk_skip_level(text);
1654 switch (kern_level) {
1655 case '0' ... '7':
1656 if (level == -1)
1657 level = kern_level - '0';
1658 case 'd': /* KERN_DEFAULT */
1659 lflags |= LOG_PREFIX;
1660 }
1661 /*
1662 * No need to check length here because vscnprintf
1663 * put '\0' at the end of the string. Only valid and
1664 * newly printed level is detected.
1665 */
1666 text_len -= end_of_header - text;
1667 text = (char *)end_of_header;
1668 }
1669 }
1670
1671 if (level == -1)
1672 level = default_message_loglevel;
1673
1674 if (dict)
1675 lflags |= LOG_PREFIX|LOG_NEWLINE;
1676
1677 if (!(lflags & LOG_NEWLINE)) {
1678 /*
1679 * Flush the conflicting buffer. An earlier newline was missing,
1680 * or another task also prints continuation lines.
1681 */
1682 if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1683 cont_flush(LOG_NEWLINE);
1684
1685 /* buffer line if possible, otherwise store it right away */
1686 if (cont_add(facility, level, text, text_len))
1687 printed_len += text_len;
1688 else
1689 printed_len += log_store(facility, level,
1690 lflags | LOG_CONT, 0,
1691 dict, dictlen, text, text_len);
1692 } else {
1693 bool stored = false;
1694
1695 /*
1696 * If an earlier newline was missing and it was the same task,
1697 * either merge it with the current buffer and flush, or if
1698 * there was a race with interrupts (prefix == true) then just
1699 * flush it out and store this line separately.
1700 * If the preceding printk was from a different task and missed
1701 * a newline, flush and append the newline.
1702 */
1703 if (cont.len) {
1704 if (cont.owner == current && !(lflags & LOG_PREFIX))
1705 stored = cont_add(facility, level, text,
1706 text_len);
1707 cont_flush(LOG_NEWLINE);
1708 }
1709
1710 if (stored)
1711 printed_len += text_len;
1712 else
1713 printed_len += log_store(facility, level, lflags, 0,
1714 dict, dictlen, text, text_len);
1715 }
1716
1717 logbuf_cpu = UINT_MAX;
1718 raw_spin_unlock(&logbuf_lock);
1719
1720 /* If called from the scheduler, we can not call up(). */
1721 if (!in_sched) {
1722 /*
1723 * Try to acquire and then immediately release the console
1724 * semaphore. The release will print out buffers and wake up
1725 * /dev/kmsg and syslog() users.
1726 */
1727 if (console_trylock_for_printk(this_cpu))
1728 console_unlock();
1729 }
1730
1731 lockdep_on();
1732 out_restore_irqs:
1733 local_irq_restore(flags);
1734 return printed_len;
1735 }
1736 EXPORT_SYMBOL(vprintk_emit);
1737
1738 asmlinkage int vprintk(const char *fmt, va_list args)
1739 {
1740 return vprintk_emit(0, -1, NULL, 0, fmt, args);
1741 }
1742 EXPORT_SYMBOL(vprintk);
1743
1744 asmlinkage int printk_emit(int facility, int level,
1745 const char *dict, size_t dictlen,
1746 const char *fmt, ...)
1747 {
1748 va_list args;
1749 int r;
1750
1751 va_start(args, fmt);
1752 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1753 va_end(args);
1754
1755 return r;
1756 }
1757 EXPORT_SYMBOL(printk_emit);
1758
1759 /**
1760 * printk - print a kernel message
1761 * @fmt: format string
1762 *
1763 * This is printk(). It can be called from any context. We want it to work.
1764 *
1765 * We try to grab the console_lock. If we succeed, it's easy - we log the
1766 * output and call the console drivers. If we fail to get the semaphore, we
1767 * place the output into the log buffer and return. The current holder of
1768 * the console_sem will notice the new output in console_unlock(); and will
1769 * send it to the consoles before releasing the lock.
1770 *
1771 * One effect of this deferred printing is that code which calls printk() and
1772 * then changes console_loglevel may break. This is because console_loglevel
1773 * is inspected when the actual printing occurs.
1774 *
1775 * See also:
1776 * printf(3)
1777 *
1778 * See the vsnprintf() documentation for format string extensions over C99.
1779 */
1780 asmlinkage __visible int printk(const char *fmt, ...)
1781 {
1782 va_list args;
1783 int r;
1784
1785 #ifdef CONFIG_KGDB_KDB
1786 if (unlikely(kdb_trap_printk)) {
1787 va_start(args, fmt);
1788 r = vkdb_printf(fmt, args);
1789 va_end(args);
1790 return r;
1791 }
1792 #endif
1793 va_start(args, fmt);
1794 r = vprintk_emit(0, -1, NULL, 0, fmt, args);
1795 va_end(args);
1796
1797 return r;
1798 }
1799 EXPORT_SYMBOL(printk);
1800
1801 #else /* CONFIG_PRINTK */
1802
1803 #define LOG_LINE_MAX 0
1804 #define PREFIX_MAX 0
1805 #define LOG_LINE_MAX 0
1806 static u64 syslog_seq;
1807 static u32 syslog_idx;
1808 static u64 console_seq;
1809 static u32 console_idx;
1810 static enum log_flags syslog_prev;
1811 static u64 log_first_seq;
1812 static u32 log_first_idx;
1813 static u64 log_next_seq;
1814 static enum log_flags console_prev;
1815 static struct cont {
1816 size_t len;
1817 size_t cons;
1818 u8 level;
1819 bool flushed:1;
1820 } cont;
1821 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1822 static u32 log_next(u32 idx) { return 0; }
1823 static void call_console_drivers(int level, const char *text, size_t len) {}
1824 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1825 bool syslog, char *buf, size_t size) { return 0; }
1826 static size_t cont_print_text(char *text, size_t size) { return 0; }
1827
1828 #endif /* CONFIG_PRINTK */
1829
1830 #ifdef CONFIG_EARLY_PRINTK
1831 struct console *early_console;
1832
1833 void early_vprintk(const char *fmt, va_list ap)
1834 {
1835 if (early_console) {
1836 char buf[512];
1837 int n = vscnprintf(buf, sizeof(buf), fmt, ap);
1838
1839 early_console->write(early_console, buf, n);
1840 }
1841 }
1842
1843 asmlinkage __visible void early_printk(const char *fmt, ...)
1844 {
1845 va_list ap;
1846
1847 va_start(ap, fmt);
1848 early_vprintk(fmt, ap);
1849 va_end(ap);
1850 }
1851 #endif
1852
1853 static int __add_preferred_console(char *name, int idx, char *options,
1854 char *brl_options)
1855 {
1856 struct console_cmdline *c;
1857 int i;
1858
1859 /*
1860 * See if this tty is not yet registered, and
1861 * if we have a slot free.
1862 */
1863 for (i = 0, c = console_cmdline;
1864 i < MAX_CMDLINECONSOLES && c->name[0];
1865 i++, c++) {
1866 if (strcmp(c->name, name) == 0 && c->index == idx) {
1867 if (!brl_options)
1868 selected_console = i;
1869 return 0;
1870 }
1871 }
1872 if (i == MAX_CMDLINECONSOLES)
1873 return -E2BIG;
1874 if (!brl_options)
1875 selected_console = i;
1876 strlcpy(c->name, name, sizeof(c->name));
1877 c->options = options;
1878 braille_set_options(c, brl_options);
1879
1880 c->index = idx;
1881 return 0;
1882 }
1883 /*
1884 * Set up a list of consoles. Called from init/main.c
1885 */
1886 static int __init console_setup(char *str)
1887 {
1888 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for index */
1889 char *s, *options, *brl_options = NULL;
1890 int idx;
1891
1892 if (_braille_console_setup(&str, &brl_options))
1893 return 1;
1894
1895 /*
1896 * Decode str into name, index, options.
1897 */
1898 if (str[0] >= '0' && str[0] <= '9') {
1899 strcpy(buf, "ttyS");
1900 strncpy(buf + 4, str, sizeof(buf) - 5);
1901 } else {
1902 strncpy(buf, str, sizeof(buf) - 1);
1903 }
1904 buf[sizeof(buf) - 1] = 0;
1905 if ((options = strchr(str, ',')) != NULL)
1906 *(options++) = 0;
1907 #ifdef __sparc__
1908 if (!strcmp(str, "ttya"))
1909 strcpy(buf, "ttyS0");
1910 if (!strcmp(str, "ttyb"))
1911 strcpy(buf, "ttyS1");
1912 #endif
1913 for (s = buf; *s; s++)
1914 if ((*s >= '0' && *s <= '9') || *s == ',')
1915 break;
1916 idx = simple_strtoul(s, NULL, 10);
1917 *s = 0;
1918
1919 __add_preferred_console(buf, idx, options, brl_options);
1920 console_set_on_cmdline = 1;
1921 return 1;
1922 }
1923 __setup("console=", console_setup);
1924
1925 /**
1926 * add_preferred_console - add a device to the list of preferred consoles.
1927 * @name: device name
1928 * @idx: device index
1929 * @options: options for this console
1930 *
1931 * The last preferred console added will be used for kernel messages
1932 * and stdin/out/err for init. Normally this is used by console_setup
1933 * above to handle user-supplied console arguments; however it can also
1934 * be used by arch-specific code either to override the user or more
1935 * commonly to provide a default console (ie from PROM variables) when
1936 * the user has not supplied one.
1937 */
1938 int add_preferred_console(char *name, int idx, char *options)
1939 {
1940 return __add_preferred_console(name, idx, options, NULL);
1941 }
1942
1943 int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options)
1944 {
1945 struct console_cmdline *c;
1946 int i;
1947
1948 for (i = 0, c = console_cmdline;
1949 i < MAX_CMDLINECONSOLES && c->name[0];
1950 i++, c++)
1951 if (strcmp(c->name, name) == 0 && c->index == idx) {
1952 strlcpy(c->name, name_new, sizeof(c->name));
1953 c->name[sizeof(c->name) - 1] = 0;
1954 c->options = options;
1955 c->index = idx_new;
1956 return i;
1957 }
1958 /* not found */
1959 return -1;
1960 }
1961
1962 bool console_suspend_enabled = 1;
1963 EXPORT_SYMBOL(console_suspend_enabled);
1964
1965 static int __init console_suspend_disable(char *str)
1966 {
1967 console_suspend_enabled = 0;
1968 return 1;
1969 }
1970 __setup("no_console_suspend", console_suspend_disable);
1971 module_param_named(console_suspend, console_suspend_enabled,
1972 bool, S_IRUGO | S_IWUSR);
1973 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
1974 " and hibernate operations");
1975
1976 /**
1977 * suspend_console - suspend the console subsystem
1978 *
1979 * This disables printk() while we go into suspend states
1980 */
1981 void suspend_console(void)
1982 {
1983 if (!console_suspend_enabled)
1984 return;
1985 printk("Suspending console(s) (use no_console_suspend to debug)\n");
1986 console_lock();
1987 console_suspended = 1;
1988 up_console_sem();
1989 }
1990
1991 void resume_console(void)
1992 {
1993 if (!console_suspend_enabled)
1994 return;
1995 down_console_sem();
1996 console_suspended = 0;
1997 console_unlock();
1998 }
1999
2000 /**
2001 * console_cpu_notify - print deferred console messages after CPU hotplug
2002 * @self: notifier struct
2003 * @action: CPU hotplug event
2004 * @hcpu: unused
2005 *
2006 * If printk() is called from a CPU that is not online yet, the messages
2007 * will be spooled but will not show up on the console. This function is
2008 * called when a new CPU comes online (or fails to come up), and ensures
2009 * that any such output gets printed.
2010 */
2011 static int console_cpu_notify(struct notifier_block *self,
2012 unsigned long action, void *hcpu)
2013 {
2014 switch (action) {
2015 case CPU_ONLINE:
2016 case CPU_DEAD:
2017 case CPU_DOWN_FAILED:
2018 case CPU_UP_CANCELED:
2019 console_lock();
2020 console_unlock();
2021 }
2022 return NOTIFY_OK;
2023 }
2024
2025 /**
2026 * console_lock - lock the console system for exclusive use.
2027 *
2028 * Acquires a lock which guarantees that the caller has
2029 * exclusive access to the console system and the console_drivers list.
2030 *
2031 * Can sleep, returns nothing.
2032 */
2033 void console_lock(void)
2034 {
2035 might_sleep();
2036
2037 down_console_sem();
2038 if (console_suspended)
2039 return;
2040 console_locked = 1;
2041 console_may_schedule = 1;
2042 }
2043 EXPORT_SYMBOL(console_lock);
2044
2045 /**
2046 * console_trylock - try to lock the console system for exclusive use.
2047 *
2048 * Tried to acquire a lock which guarantees that the caller has
2049 * exclusive access to the console system and the console_drivers list.
2050 *
2051 * returns 1 on success, and 0 on failure to acquire the lock.
2052 */
2053 int console_trylock(void)
2054 {
2055 if (down_trylock_console_sem())
2056 return 0;
2057 if (console_suspended) {
2058 up_console_sem();
2059 return 0;
2060 }
2061 console_locked = 1;
2062 console_may_schedule = 0;
2063 return 1;
2064 }
2065 EXPORT_SYMBOL(console_trylock);
2066
2067 int is_console_locked(void)
2068 {
2069 return console_locked;
2070 }
2071
2072 static void console_cont_flush(char *text, size_t size)
2073 {
2074 unsigned long flags;
2075 size_t len;
2076
2077 raw_spin_lock_irqsave(&logbuf_lock, flags);
2078
2079 if (!cont.len)
2080 goto out;
2081
2082 /*
2083 * We still queue earlier records, likely because the console was
2084 * busy. The earlier ones need to be printed before this one, we
2085 * did not flush any fragment so far, so just let it queue up.
2086 */
2087 if (console_seq < log_next_seq && !cont.cons)
2088 goto out;
2089
2090 len = cont_print_text(text, size);
2091 raw_spin_unlock(&logbuf_lock);
2092 stop_critical_timings();
2093 call_console_drivers(cont.level, text, len);
2094 start_critical_timings();
2095 local_irq_restore(flags);
2096 return;
2097 out:
2098 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2099 }
2100
2101 /**
2102 * console_unlock - unlock the console system
2103 *
2104 * Releases the console_lock which the caller holds on the console system
2105 * and the console driver list.
2106 *
2107 * While the console_lock was held, console output may have been buffered
2108 * by printk(). If this is the case, console_unlock(); emits
2109 * the output prior to releasing the lock.
2110 *
2111 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2112 *
2113 * console_unlock(); may be called from any context.
2114 */
2115 void console_unlock(void)
2116 {
2117 static char text[LOG_LINE_MAX + PREFIX_MAX];
2118 static u64 seen_seq;
2119 unsigned long flags;
2120 bool wake_klogd = false;
2121 bool retry;
2122
2123 if (console_suspended) {
2124 up_console_sem();
2125 return;
2126 }
2127
2128 console_may_schedule = 0;
2129
2130 /* flush buffered message fragment immediately to console */
2131 console_cont_flush(text, sizeof(text));
2132 again:
2133 for (;;) {
2134 struct printk_log *msg;
2135 size_t len;
2136 int level;
2137
2138 raw_spin_lock_irqsave(&logbuf_lock, flags);
2139 if (seen_seq != log_next_seq) {
2140 wake_klogd = true;
2141 seen_seq = log_next_seq;
2142 }
2143
2144 if (console_seq < log_first_seq) {
2145 len = sprintf(text, "** %u printk messages dropped ** ",
2146 (unsigned)(log_first_seq - console_seq));
2147
2148 /* messages are gone, move to first one */
2149 console_seq = log_first_seq;
2150 console_idx = log_first_idx;
2151 console_prev = 0;
2152 } else {
2153 len = 0;
2154 }
2155 skip:
2156 if (console_seq == log_next_seq)
2157 break;
2158
2159 msg = log_from_idx(console_idx);
2160 if (msg->flags & LOG_NOCONS) {
2161 /*
2162 * Skip record we have buffered and already printed
2163 * directly to the console when we received it.
2164 */
2165 console_idx = log_next(console_idx);
2166 console_seq++;
2167 /*
2168 * We will get here again when we register a new
2169 * CON_PRINTBUFFER console. Clear the flag so we
2170 * will properly dump everything later.
2171 */
2172 msg->flags &= ~LOG_NOCONS;
2173 console_prev = msg->flags;
2174 goto skip;
2175 }
2176
2177 level = msg->level;
2178 len += msg_print_text(msg, console_prev, false,
2179 text + len, sizeof(text) - len);
2180 console_idx = log_next(console_idx);
2181 console_seq++;
2182 console_prev = msg->flags;
2183 raw_spin_unlock(&logbuf_lock);
2184
2185 stop_critical_timings(); /* don't trace print latency */
2186 call_console_drivers(level, text, len);
2187 start_critical_timings();
2188 local_irq_restore(flags);
2189 }
2190 console_locked = 0;
2191
2192 /* Release the exclusive_console once it is used */
2193 if (unlikely(exclusive_console))
2194 exclusive_console = NULL;
2195
2196 raw_spin_unlock(&logbuf_lock);
2197
2198 up_console_sem();
2199
2200 /*
2201 * Someone could have filled up the buffer again, so re-check if there's
2202 * something to flush. In case we cannot trylock the console_sem again,
2203 * there's a new owner and the console_unlock() from them will do the
2204 * flush, no worries.
2205 */
2206 raw_spin_lock(&logbuf_lock);
2207 retry = console_seq != log_next_seq;
2208 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2209
2210 if (retry && console_trylock())
2211 goto again;
2212
2213 if (wake_klogd)
2214 wake_up_klogd();
2215 }
2216 EXPORT_SYMBOL(console_unlock);
2217
2218 /**
2219 * console_conditional_schedule - yield the CPU if required
2220 *
2221 * If the console code is currently allowed to sleep, and
2222 * if this CPU should yield the CPU to another task, do
2223 * so here.
2224 *
2225 * Must be called within console_lock();.
2226 */
2227 void __sched console_conditional_schedule(void)
2228 {
2229 if (console_may_schedule)
2230 cond_resched();
2231 }
2232 EXPORT_SYMBOL(console_conditional_schedule);
2233
2234 void console_unblank(void)
2235 {
2236 struct console *c;
2237
2238 /*
2239 * console_unblank can no longer be called in interrupt context unless
2240 * oops_in_progress is set to 1..
2241 */
2242 if (oops_in_progress) {
2243 if (down_trylock_console_sem() != 0)
2244 return;
2245 } else
2246 console_lock();
2247
2248 console_locked = 1;
2249 console_may_schedule = 0;
2250 for_each_console(c)
2251 if ((c->flags & CON_ENABLED) && c->unblank)
2252 c->unblank();
2253 console_unlock();
2254 }
2255
2256 /*
2257 * Return the console tty driver structure and its associated index
2258 */
2259 struct tty_driver *console_device(int *index)
2260 {
2261 struct console *c;
2262 struct tty_driver *driver = NULL;
2263
2264 console_lock();
2265 for_each_console(c) {
2266 if (!c->device)
2267 continue;
2268 driver = c->device(c, index);
2269 if (driver)
2270 break;
2271 }
2272 console_unlock();
2273 return driver;
2274 }
2275
2276 /*
2277 * Prevent further output on the passed console device so that (for example)
2278 * serial drivers can disable console output before suspending a port, and can
2279 * re-enable output afterwards.
2280 */
2281 void console_stop(struct console *console)
2282 {
2283 console_lock();
2284 console->flags &= ~CON_ENABLED;
2285 console_unlock();
2286 }
2287 EXPORT_SYMBOL(console_stop);
2288
2289 void console_start(struct console *console)
2290 {
2291 console_lock();
2292 console->flags |= CON_ENABLED;
2293 console_unlock();
2294 }
2295 EXPORT_SYMBOL(console_start);
2296
2297 static int __read_mostly keep_bootcon;
2298
2299 static int __init keep_bootcon_setup(char *str)
2300 {
2301 keep_bootcon = 1;
2302 pr_info("debug: skip boot console de-registration.\n");
2303
2304 return 0;
2305 }
2306
2307 early_param("keep_bootcon", keep_bootcon_setup);
2308
2309 /*
2310 * The console driver calls this routine during kernel initialization
2311 * to register the console printing procedure with printk() and to
2312 * print any messages that were printed by the kernel before the
2313 * console driver was initialized.
2314 *
2315 * This can happen pretty early during the boot process (because of
2316 * early_printk) - sometimes before setup_arch() completes - be careful
2317 * of what kernel features are used - they may not be initialised yet.
2318 *
2319 * There are two types of consoles - bootconsoles (early_printk) and
2320 * "real" consoles (everything which is not a bootconsole) which are
2321 * handled differently.
2322 * - Any number of bootconsoles can be registered at any time.
2323 * - As soon as a "real" console is registered, all bootconsoles
2324 * will be unregistered automatically.
2325 * - Once a "real" console is registered, any attempt to register a
2326 * bootconsoles will be rejected
2327 */
2328 void register_console(struct console *newcon)
2329 {
2330 int i;
2331 unsigned long flags;
2332 struct console *bcon = NULL;
2333 struct console_cmdline *c;
2334
2335 if (console_drivers)
2336 for_each_console(bcon)
2337 if (WARN(bcon == newcon,
2338 "console '%s%d' already registered\n",
2339 bcon->name, bcon->index))
2340 return;
2341
2342 /*
2343 * before we register a new CON_BOOT console, make sure we don't
2344 * already have a valid console
2345 */
2346 if (console_drivers && newcon->flags & CON_BOOT) {
2347 /* find the last or real console */
2348 for_each_console(bcon) {
2349 if (!(bcon->flags & CON_BOOT)) {
2350 pr_info("Too late to register bootconsole %s%d\n",
2351 newcon->name, newcon->index);
2352 return;
2353 }
2354 }
2355 }
2356
2357 if (console_drivers && console_drivers->flags & CON_BOOT)
2358 bcon = console_drivers;
2359
2360 if (preferred_console < 0 || bcon || !console_drivers)
2361 preferred_console = selected_console;
2362
2363 if (newcon->early_setup)
2364 newcon->early_setup();
2365
2366 /*
2367 * See if we want to use this console driver. If we
2368 * didn't select a console we take the first one
2369 * that registers here.
2370 */
2371 if (preferred_console < 0) {
2372 if (newcon->index < 0)
2373 newcon->index = 0;
2374 if (newcon->setup == NULL ||
2375 newcon->setup(newcon, NULL) == 0) {
2376 newcon->flags |= CON_ENABLED;
2377 if (newcon->device) {
2378 newcon->flags |= CON_CONSDEV;
2379 preferred_console = 0;
2380 }
2381 }
2382 }
2383
2384 /*
2385 * See if this console matches one we selected on
2386 * the command line.
2387 */
2388 for (i = 0, c = console_cmdline;
2389 i < MAX_CMDLINECONSOLES && c->name[0];
2390 i++, c++) {
2391 if (strcmp(c->name, newcon->name) != 0)
2392 continue;
2393 if (newcon->index >= 0 &&
2394 newcon->index != c->index)
2395 continue;
2396 if (newcon->index < 0)
2397 newcon->index = c->index;
2398
2399 if (_braille_register_console(newcon, c))
2400 return;
2401
2402 if (newcon->setup &&
2403 newcon->setup(newcon, console_cmdline[i].options) != 0)
2404 break;
2405 newcon->flags |= CON_ENABLED;
2406 newcon->index = c->index;
2407 if (i == selected_console) {
2408 newcon->flags |= CON_CONSDEV;
2409 preferred_console = selected_console;
2410 }
2411 break;
2412 }
2413
2414 if (!(newcon->flags & CON_ENABLED))
2415 return;
2416
2417 /*
2418 * If we have a bootconsole, and are switching to a real console,
2419 * don't print everything out again, since when the boot console, and
2420 * the real console are the same physical device, it's annoying to
2421 * see the beginning boot messages twice
2422 */
2423 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2424 newcon->flags &= ~CON_PRINTBUFFER;
2425
2426 /*
2427 * Put this console in the list - keep the
2428 * preferred driver at the head of the list.
2429 */
2430 console_lock();
2431 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2432 newcon->next = console_drivers;
2433 console_drivers = newcon;
2434 if (newcon->next)
2435 newcon->next->flags &= ~CON_CONSDEV;
2436 } else {
2437 newcon->next = console_drivers->next;
2438 console_drivers->next = newcon;
2439 }
2440 if (newcon->flags & CON_PRINTBUFFER) {
2441 /*
2442 * console_unlock(); will print out the buffered messages
2443 * for us.
2444 */
2445 raw_spin_lock_irqsave(&logbuf_lock, flags);
2446 console_seq = syslog_seq;
2447 console_idx = syslog_idx;
2448 console_prev = syslog_prev;
2449 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2450 /*
2451 * We're about to replay the log buffer. Only do this to the
2452 * just-registered console to avoid excessive message spam to
2453 * the already-registered consoles.
2454 */
2455 exclusive_console = newcon;
2456 }
2457 console_unlock();
2458 console_sysfs_notify();
2459
2460 /*
2461 * By unregistering the bootconsoles after we enable the real console
2462 * we get the "console xxx enabled" message on all the consoles -
2463 * boot consoles, real consoles, etc - this is to ensure that end
2464 * users know there might be something in the kernel's log buffer that
2465 * went to the bootconsole (that they do not see on the real console)
2466 */
2467 pr_info("%sconsole [%s%d] enabled\n",
2468 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2469 newcon->name, newcon->index);
2470 if (bcon &&
2471 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2472 !keep_bootcon) {
2473 /* We need to iterate through all boot consoles, to make
2474 * sure we print everything out, before we unregister them.
2475 */
2476 for_each_console(bcon)
2477 if (bcon->flags & CON_BOOT)
2478 unregister_console(bcon);
2479 }
2480 }
2481 EXPORT_SYMBOL(register_console);
2482
2483 int unregister_console(struct console *console)
2484 {
2485 struct console *a, *b;
2486 int res;
2487
2488 pr_info("%sconsole [%s%d] disabled\n",
2489 (console->flags & CON_BOOT) ? "boot" : "" ,
2490 console->name, console->index);
2491
2492 res = _braille_unregister_console(console);
2493 if (res)
2494 return res;
2495
2496 res = 1;
2497 console_lock();
2498 if (console_drivers == console) {
2499 console_drivers=console->next;
2500 res = 0;
2501 } else if (console_drivers) {
2502 for (a=console_drivers->next, b=console_drivers ;
2503 a; b=a, a=b->next) {
2504 if (a == console) {
2505 b->next = a->next;
2506 res = 0;
2507 break;
2508 }
2509 }
2510 }
2511
2512 /*
2513 * If this isn't the last console and it has CON_CONSDEV set, we
2514 * need to set it on the next preferred console.
2515 */
2516 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2517 console_drivers->flags |= CON_CONSDEV;
2518
2519 console->flags &= ~CON_ENABLED;
2520 console_unlock();
2521 console_sysfs_notify();
2522 return res;
2523 }
2524 EXPORT_SYMBOL(unregister_console);
2525
2526 static int __init printk_late_init(void)
2527 {
2528 struct console *con;
2529
2530 for_each_console(con) {
2531 if (!keep_bootcon && con->flags & CON_BOOT) {
2532 unregister_console(con);
2533 }
2534 }
2535 hotcpu_notifier(console_cpu_notify, 0);
2536 return 0;
2537 }
2538 late_initcall(printk_late_init);
2539
2540 #if defined CONFIG_PRINTK
2541 /*
2542 * Delayed printk version, for scheduler-internal messages:
2543 */
2544 #define PRINTK_PENDING_WAKEUP 0x01
2545 #define PRINTK_PENDING_OUTPUT 0x02
2546
2547 static DEFINE_PER_CPU(int, printk_pending);
2548
2549 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2550 {
2551 int pending = __this_cpu_xchg(printk_pending, 0);
2552
2553 if (pending & PRINTK_PENDING_OUTPUT) {
2554 /* If trylock fails, someone else is doing the printing */
2555 if (console_trylock())
2556 console_unlock();
2557 }
2558
2559 if (pending & PRINTK_PENDING_WAKEUP)
2560 wake_up_interruptible(&log_wait);
2561 }
2562
2563 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2564 .func = wake_up_klogd_work_func,
2565 .flags = IRQ_WORK_LAZY,
2566 };
2567
2568 void wake_up_klogd(void)
2569 {
2570 preempt_disable();
2571 if (waitqueue_active(&log_wait)) {
2572 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2573 irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2574 }
2575 preempt_enable();
2576 }
2577
2578 int printk_deferred(const char *fmt, ...)
2579 {
2580 va_list args;
2581 int r;
2582
2583 preempt_disable();
2584 va_start(args, fmt);
2585 r = vprintk_emit(0, SCHED_MESSAGE_LOGLEVEL, NULL, 0, fmt, args);
2586 va_end(args);
2587
2588 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2589 irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2590 preempt_enable();
2591
2592 return r;
2593 }
2594
2595 /*
2596 * printk rate limiting, lifted from the networking subsystem.
2597 *
2598 * This enforces a rate limit: not more than 10 kernel messages
2599 * every 5s to make a denial-of-service attack impossible.
2600 */
2601 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2602
2603 int __printk_ratelimit(const char *func)
2604 {
2605 return ___ratelimit(&printk_ratelimit_state, func);
2606 }
2607 EXPORT_SYMBOL(__printk_ratelimit);
2608
2609 /**
2610 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2611 * @caller_jiffies: pointer to caller's state
2612 * @interval_msecs: minimum interval between prints
2613 *
2614 * printk_timed_ratelimit() returns true if more than @interval_msecs
2615 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2616 * returned true.
2617 */
2618 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2619 unsigned int interval_msecs)
2620 {
2621 if (*caller_jiffies == 0
2622 || !time_in_range(jiffies, *caller_jiffies,
2623 *caller_jiffies
2624 + msecs_to_jiffies(interval_msecs))) {
2625 *caller_jiffies = jiffies;
2626 return true;
2627 }
2628 return false;
2629 }
2630 EXPORT_SYMBOL(printk_timed_ratelimit);
2631
2632 static DEFINE_SPINLOCK(dump_list_lock);
2633 static LIST_HEAD(dump_list);
2634
2635 /**
2636 * kmsg_dump_register - register a kernel log dumper.
2637 * @dumper: pointer to the kmsg_dumper structure
2638 *
2639 * Adds a kernel log dumper to the system. The dump callback in the
2640 * structure will be called when the kernel oopses or panics and must be
2641 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2642 */
2643 int kmsg_dump_register(struct kmsg_dumper *dumper)
2644 {
2645 unsigned long flags;
2646 int err = -EBUSY;
2647
2648 /* The dump callback needs to be set */
2649 if (!dumper->dump)
2650 return -EINVAL;
2651
2652 spin_lock_irqsave(&dump_list_lock, flags);
2653 /* Don't allow registering multiple times */
2654 if (!dumper->registered) {
2655 dumper->registered = 1;
2656 list_add_tail_rcu(&dumper->list, &dump_list);
2657 err = 0;
2658 }
2659 spin_unlock_irqrestore(&dump_list_lock, flags);
2660
2661 return err;
2662 }
2663 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2664
2665 /**
2666 * kmsg_dump_unregister - unregister a kmsg dumper.
2667 * @dumper: pointer to the kmsg_dumper structure
2668 *
2669 * Removes a dump device from the system. Returns zero on success and
2670 * %-EINVAL otherwise.
2671 */
2672 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2673 {
2674 unsigned long flags;
2675 int err = -EINVAL;
2676
2677 spin_lock_irqsave(&dump_list_lock, flags);
2678 if (dumper->registered) {
2679 dumper->registered = 0;
2680 list_del_rcu(&dumper->list);
2681 err = 0;
2682 }
2683 spin_unlock_irqrestore(&dump_list_lock, flags);
2684 synchronize_rcu();
2685
2686 return err;
2687 }
2688 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2689
2690 static bool always_kmsg_dump;
2691 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2692
2693 /**
2694 * kmsg_dump - dump kernel log to kernel message dumpers.
2695 * @reason: the reason (oops, panic etc) for dumping
2696 *
2697 * Call each of the registered dumper's dump() callback, which can
2698 * retrieve the kmsg records with kmsg_dump_get_line() or
2699 * kmsg_dump_get_buffer().
2700 */
2701 void kmsg_dump(enum kmsg_dump_reason reason)
2702 {
2703 struct kmsg_dumper *dumper;
2704 unsigned long flags;
2705
2706 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2707 return;
2708
2709 rcu_read_lock();
2710 list_for_each_entry_rcu(dumper, &dump_list, list) {
2711 if (dumper->max_reason && reason > dumper->max_reason)
2712 continue;
2713
2714 /* initialize iterator with data about the stored records */
2715 dumper->active = true;
2716
2717 raw_spin_lock_irqsave(&logbuf_lock, flags);
2718 dumper->cur_seq = clear_seq;
2719 dumper->cur_idx = clear_idx;
2720 dumper->next_seq = log_next_seq;
2721 dumper->next_idx = log_next_idx;
2722 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2723
2724 /* invoke dumper which will iterate over records */
2725 dumper->dump(dumper, reason);
2726
2727 /* reset iterator */
2728 dumper->active = false;
2729 }
2730 rcu_read_unlock();
2731 }
2732
2733 /**
2734 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2735 * @dumper: registered kmsg dumper
2736 * @syslog: include the "<4>" prefixes
2737 * @line: buffer to copy the line to
2738 * @size: maximum size of the buffer
2739 * @len: length of line placed into buffer
2740 *
2741 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2742 * record, and copy one record into the provided buffer.
2743 *
2744 * Consecutive calls will return the next available record moving
2745 * towards the end of the buffer with the youngest messages.
2746 *
2747 * A return value of FALSE indicates that there are no more records to
2748 * read.
2749 *
2750 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2751 */
2752 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2753 char *line, size_t size, size_t *len)
2754 {
2755 struct printk_log *msg;
2756 size_t l = 0;
2757 bool ret = false;
2758
2759 if (!dumper->active)
2760 goto out;
2761
2762 if (dumper->cur_seq < log_first_seq) {
2763 /* messages are gone, move to first available one */
2764 dumper->cur_seq = log_first_seq;
2765 dumper->cur_idx = log_first_idx;
2766 }
2767
2768 /* last entry */
2769 if (dumper->cur_seq >= log_next_seq)
2770 goto out;
2771
2772 msg = log_from_idx(dumper->cur_idx);
2773 l = msg_print_text(msg, 0, syslog, line, size);
2774
2775 dumper->cur_idx = log_next(dumper->cur_idx);
2776 dumper->cur_seq++;
2777 ret = true;
2778 out:
2779 if (len)
2780 *len = l;
2781 return ret;
2782 }
2783
2784 /**
2785 * kmsg_dump_get_line - retrieve one kmsg log line
2786 * @dumper: registered kmsg dumper
2787 * @syslog: include the "<4>" prefixes
2788 * @line: buffer to copy the line to
2789 * @size: maximum size of the buffer
2790 * @len: length of line placed into buffer
2791 *
2792 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2793 * record, and copy one record into the provided buffer.
2794 *
2795 * Consecutive calls will return the next available record moving
2796 * towards the end of the buffer with the youngest messages.
2797 *
2798 * A return value of FALSE indicates that there are no more records to
2799 * read.
2800 */
2801 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2802 char *line, size_t size, size_t *len)
2803 {
2804 unsigned long flags;
2805 bool ret;
2806
2807 raw_spin_lock_irqsave(&logbuf_lock, flags);
2808 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2809 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2810
2811 return ret;
2812 }
2813 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2814
2815 /**
2816 * kmsg_dump_get_buffer - copy kmsg log lines
2817 * @dumper: registered kmsg dumper
2818 * @syslog: include the "<4>" prefixes
2819 * @buf: buffer to copy the line to
2820 * @size: maximum size of the buffer
2821 * @len: length of line placed into buffer
2822 *
2823 * Start at the end of the kmsg buffer and fill the provided buffer
2824 * with as many of the the *youngest* kmsg records that fit into it.
2825 * If the buffer is large enough, all available kmsg records will be
2826 * copied with a single call.
2827 *
2828 * Consecutive calls will fill the buffer with the next block of
2829 * available older records, not including the earlier retrieved ones.
2830 *
2831 * A return value of FALSE indicates that there are no more records to
2832 * read.
2833 */
2834 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2835 char *buf, size_t size, size_t *len)
2836 {
2837 unsigned long flags;
2838 u64 seq;
2839 u32 idx;
2840 u64 next_seq;
2841 u32 next_idx;
2842 enum log_flags prev;
2843 size_t l = 0;
2844 bool ret = false;
2845
2846 if (!dumper->active)
2847 goto out;
2848
2849 raw_spin_lock_irqsave(&logbuf_lock, flags);
2850 if (dumper->cur_seq < log_first_seq) {
2851 /* messages are gone, move to first available one */
2852 dumper->cur_seq = log_first_seq;
2853 dumper->cur_idx = log_first_idx;
2854 }
2855
2856 /* last entry */
2857 if (dumper->cur_seq >= dumper->next_seq) {
2858 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2859 goto out;
2860 }
2861
2862 /* calculate length of entire buffer */
2863 seq = dumper->cur_seq;
2864 idx = dumper->cur_idx;
2865 prev = 0;
2866 while (seq < dumper->next_seq) {
2867 struct printk_log *msg = log_from_idx(idx);
2868
2869 l += msg_print_text(msg, prev, true, NULL, 0);
2870 idx = log_next(idx);
2871 seq++;
2872 prev = msg->flags;
2873 }
2874
2875 /* move first record forward until length fits into the buffer */
2876 seq = dumper->cur_seq;
2877 idx = dumper->cur_idx;
2878 prev = 0;
2879 while (l > size && seq < dumper->next_seq) {
2880 struct printk_log *msg = log_from_idx(idx);
2881
2882 l -= msg_print_text(msg, prev, true, NULL, 0);
2883 idx = log_next(idx);
2884 seq++;
2885 prev = msg->flags;
2886 }
2887
2888 /* last message in next interation */
2889 next_seq = seq;
2890 next_idx = idx;
2891
2892 l = 0;
2893 while (seq < dumper->next_seq) {
2894 struct printk_log *msg = log_from_idx(idx);
2895
2896 l += msg_print_text(msg, prev, syslog, buf + l, size - l);
2897 idx = log_next(idx);
2898 seq++;
2899 prev = msg->flags;
2900 }
2901
2902 dumper->next_seq = next_seq;
2903 dumper->next_idx = next_idx;
2904 ret = true;
2905 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2906 out:
2907 if (len)
2908 *len = l;
2909 return ret;
2910 }
2911 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
2912
2913 /**
2914 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
2915 * @dumper: registered kmsg dumper
2916 *
2917 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2918 * kmsg_dump_get_buffer() can be called again and used multiple
2919 * times within the same dumper.dump() callback.
2920 *
2921 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
2922 */
2923 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
2924 {
2925 dumper->cur_seq = clear_seq;
2926 dumper->cur_idx = clear_idx;
2927 dumper->next_seq = log_next_seq;
2928 dumper->next_idx = log_next_idx;
2929 }
2930
2931 /**
2932 * kmsg_dump_rewind - reset the interator
2933 * @dumper: registered kmsg dumper
2934 *
2935 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2936 * kmsg_dump_get_buffer() can be called again and used multiple
2937 * times within the same dumper.dump() callback.
2938 */
2939 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
2940 {
2941 unsigned long flags;
2942
2943 raw_spin_lock_irqsave(&logbuf_lock, flags);
2944 kmsg_dump_rewind_nolock(dumper);
2945 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2946 }
2947 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
2948
2949 static char dump_stack_arch_desc_str[128];
2950
2951 /**
2952 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
2953 * @fmt: printf-style format string
2954 * @...: arguments for the format string
2955 *
2956 * The configured string will be printed right after utsname during task
2957 * dumps. Usually used to add arch-specific system identifiers. If an
2958 * arch wants to make use of such an ID string, it should initialize this
2959 * as soon as possible during boot.
2960 */
2961 void __init dump_stack_set_arch_desc(const char *fmt, ...)
2962 {
2963 va_list args;
2964
2965 va_start(args, fmt);
2966 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
2967 fmt, args);
2968 va_end(args);
2969 }
2970
2971 /**
2972 * dump_stack_print_info - print generic debug info for dump_stack()
2973 * @log_lvl: log level
2974 *
2975 * Arch-specific dump_stack() implementations can use this function to
2976 * print out the same debug information as the generic dump_stack().
2977 */
2978 void dump_stack_print_info(const char *log_lvl)
2979 {
2980 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
2981 log_lvl, raw_smp_processor_id(), current->pid, current->comm,
2982 print_tainted(), init_utsname()->release,
2983 (int)strcspn(init_utsname()->version, " "),
2984 init_utsname()->version);
2985
2986 if (dump_stack_arch_desc_str[0] != '\0')
2987 printk("%sHardware name: %s\n",
2988 log_lvl, dump_stack_arch_desc_str);
2989
2990 print_worker_info(log_lvl, current);
2991 }
2992
2993 /**
2994 * show_regs_print_info - print generic debug info for show_regs()
2995 * @log_lvl: log level
2996 *
2997 * show_regs() implementations can use this function to print out generic
2998 * debug information.
2999 */
3000 void show_regs_print_info(const char *log_lvl)
3001 {
3002 dump_stack_print_info(log_lvl);
3003
3004 printk("%stask: %p ti: %p task.ti: %p\n",
3005 log_lvl, current, current_thread_info(),
3006 task_thread_info(current));
3007 }
3008
3009 #endif