]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/printk/printk.c
Merge branch 'ath-current' of git://github.com/kvalo/ath
[mirror_ubuntu-artful-kernel.git] / kernel / printk / printk.c
1 /*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h> /* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/aio.h>
36 #include <linux/syscalls.h>
37 #include <linux/kexec.h>
38 #include <linux/kdb.h>
39 #include <linux/ratelimit.h>
40 #include <linux/kmsg_dump.h>
41 #include <linux/syslog.h>
42 #include <linux/cpu.h>
43 #include <linux/notifier.h>
44 #include <linux/rculist.h>
45 #include <linux/poll.h>
46 #include <linux/irq_work.h>
47 #include <linux/utsname.h>
48
49 #include <asm/uaccess.h>
50
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/printk.h>
53
54 #include "console_cmdline.h"
55 #include "braille.h"
56
57 int console_printk[4] = {
58 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */
59 DEFAULT_MESSAGE_LOGLEVEL, /* default_message_loglevel */
60 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */
61 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */
62 };
63
64 /* Deferred messaged from sched code are marked by this special level */
65 #define SCHED_MESSAGE_LOGLEVEL -2
66
67 /*
68 * Low level drivers may need that to know if they can schedule in
69 * their unblank() callback or not. So let's export it.
70 */
71 int oops_in_progress;
72 EXPORT_SYMBOL(oops_in_progress);
73
74 /*
75 * console_sem protects the console_drivers list, and also
76 * provides serialisation for access to the entire console
77 * driver system.
78 */
79 static DEFINE_SEMAPHORE(console_sem);
80 struct console *console_drivers;
81 EXPORT_SYMBOL_GPL(console_drivers);
82
83 #ifdef CONFIG_LOCKDEP
84 static struct lockdep_map console_lock_dep_map = {
85 .name = "console_lock"
86 };
87 #endif
88
89 /*
90 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
91 * macros instead of functions so that _RET_IP_ contains useful information.
92 */
93 #define down_console_sem() do { \
94 down(&console_sem);\
95 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
96 } while (0)
97
98 static int __down_trylock_console_sem(unsigned long ip)
99 {
100 if (down_trylock(&console_sem))
101 return 1;
102 mutex_acquire(&console_lock_dep_map, 0, 1, ip);
103 return 0;
104 }
105 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
106
107 #define up_console_sem() do { \
108 mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
109 up(&console_sem);\
110 } while (0)
111
112 /*
113 * This is used for debugging the mess that is the VT code by
114 * keeping track if we have the console semaphore held. It's
115 * definitely not the perfect debug tool (we don't know if _WE_
116 * hold it are racing, but it helps tracking those weird code
117 * path in the console code where we end up in places I want
118 * locked without the console sempahore held
119 */
120 static int console_locked, console_suspended;
121
122 /*
123 * If exclusive_console is non-NULL then only this console is to be printed to.
124 */
125 static struct console *exclusive_console;
126
127 /*
128 * Array of consoles built from command line options (console=)
129 */
130
131 #define MAX_CMDLINECONSOLES 8
132
133 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
134
135 static int selected_console = -1;
136 static int preferred_console = -1;
137 int console_set_on_cmdline;
138 EXPORT_SYMBOL(console_set_on_cmdline);
139
140 /* Flag: console code may call schedule() */
141 static int console_may_schedule;
142
143 /*
144 * The printk log buffer consists of a chain of concatenated variable
145 * length records. Every record starts with a record header, containing
146 * the overall length of the record.
147 *
148 * The heads to the first and last entry in the buffer, as well as the
149 * sequence numbers of these both entries are maintained when messages
150 * are stored..
151 *
152 * If the heads indicate available messages, the length in the header
153 * tells the start next message. A length == 0 for the next message
154 * indicates a wrap-around to the beginning of the buffer.
155 *
156 * Every record carries the monotonic timestamp in microseconds, as well as
157 * the standard userspace syslog level and syslog facility. The usual
158 * kernel messages use LOG_KERN; userspace-injected messages always carry
159 * a matching syslog facility, by default LOG_USER. The origin of every
160 * message can be reliably determined that way.
161 *
162 * The human readable log message directly follows the message header. The
163 * length of the message text is stored in the header, the stored message
164 * is not terminated.
165 *
166 * Optionally, a message can carry a dictionary of properties (key/value pairs),
167 * to provide userspace with a machine-readable message context.
168 *
169 * Examples for well-defined, commonly used property names are:
170 * DEVICE=b12:8 device identifier
171 * b12:8 block dev_t
172 * c127:3 char dev_t
173 * n8 netdev ifindex
174 * +sound:card0 subsystem:devname
175 * SUBSYSTEM=pci driver-core subsystem name
176 *
177 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
178 * follows directly after a '=' character. Every property is terminated by
179 * a '\0' character. The last property is not terminated.
180 *
181 * Example of a message structure:
182 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
183 * 0008 34 00 record is 52 bytes long
184 * 000a 0b 00 text is 11 bytes long
185 * 000c 1f 00 dictionary is 23 bytes long
186 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
187 * 0010 69 74 27 73 20 61 20 6c "it's a l"
188 * 69 6e 65 "ine"
189 * 001b 44 45 56 49 43 "DEVIC"
190 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
191 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
192 * 67 "g"
193 * 0032 00 00 00 padding to next message header
194 *
195 * The 'struct printk_log' buffer header must never be directly exported to
196 * userspace, it is a kernel-private implementation detail that might
197 * need to be changed in the future, when the requirements change.
198 *
199 * /dev/kmsg exports the structured data in the following line format:
200 * "level,sequnum,timestamp;<message text>\n"
201 *
202 * The optional key/value pairs are attached as continuation lines starting
203 * with a space character and terminated by a newline. All possible
204 * non-prinatable characters are escaped in the "\xff" notation.
205 *
206 * Users of the export format should ignore possible additional values
207 * separated by ',', and find the message after the ';' character.
208 */
209
210 enum log_flags {
211 LOG_NOCONS = 1, /* already flushed, do not print to console */
212 LOG_NEWLINE = 2, /* text ended with a newline */
213 LOG_PREFIX = 4, /* text started with a prefix */
214 LOG_CONT = 8, /* text is a fragment of a continuation line */
215 };
216
217 struct printk_log {
218 u64 ts_nsec; /* timestamp in nanoseconds */
219 u16 len; /* length of entire record */
220 u16 text_len; /* length of text buffer */
221 u16 dict_len; /* length of dictionary buffer */
222 u8 facility; /* syslog facility */
223 u8 flags:5; /* internal record flags */
224 u8 level:3; /* syslog level */
225 };
226
227 /*
228 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken
229 * within the scheduler's rq lock. It must be released before calling
230 * console_unlock() or anything else that might wake up a process.
231 */
232 static DEFINE_RAW_SPINLOCK(logbuf_lock);
233
234 #ifdef CONFIG_PRINTK
235 DECLARE_WAIT_QUEUE_HEAD(log_wait);
236 /* the next printk record to read by syslog(READ) or /proc/kmsg */
237 static u64 syslog_seq;
238 static u32 syslog_idx;
239 static enum log_flags syslog_prev;
240 static size_t syslog_partial;
241
242 /* index and sequence number of the first record stored in the buffer */
243 static u64 log_first_seq;
244 static u32 log_first_idx;
245
246 /* index and sequence number of the next record to store in the buffer */
247 static u64 log_next_seq;
248 static u32 log_next_idx;
249
250 /* the next printk record to write to the console */
251 static u64 console_seq;
252 static u32 console_idx;
253 static enum log_flags console_prev;
254
255 /* the next printk record to read after the last 'clear' command */
256 static u64 clear_seq;
257 static u32 clear_idx;
258
259 #define PREFIX_MAX 32
260 #define LOG_LINE_MAX 1024 - PREFIX_MAX
261
262 /* record buffer */
263 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
264 #define LOG_ALIGN 4
265 #else
266 #define LOG_ALIGN __alignof__(struct printk_log)
267 #endif
268 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
269 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
270 static char *log_buf = __log_buf;
271 static u32 log_buf_len = __LOG_BUF_LEN;
272
273 /* human readable text of the record */
274 static char *log_text(const struct printk_log *msg)
275 {
276 return (char *)msg + sizeof(struct printk_log);
277 }
278
279 /* optional key/value pair dictionary attached to the record */
280 static char *log_dict(const struct printk_log *msg)
281 {
282 return (char *)msg + sizeof(struct printk_log) + msg->text_len;
283 }
284
285 /* get record by index; idx must point to valid msg */
286 static struct printk_log *log_from_idx(u32 idx)
287 {
288 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
289
290 /*
291 * A length == 0 record is the end of buffer marker. Wrap around and
292 * read the message at the start of the buffer.
293 */
294 if (!msg->len)
295 return (struct printk_log *)log_buf;
296 return msg;
297 }
298
299 /* get next record; idx must point to valid msg */
300 static u32 log_next(u32 idx)
301 {
302 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
303
304 /* length == 0 indicates the end of the buffer; wrap */
305 /*
306 * A length == 0 record is the end of buffer marker. Wrap around and
307 * read the message at the start of the buffer as *this* one, and
308 * return the one after that.
309 */
310 if (!msg->len) {
311 msg = (struct printk_log *)log_buf;
312 return msg->len;
313 }
314 return idx + msg->len;
315 }
316
317 /*
318 * Check whether there is enough free space for the given message.
319 *
320 * The same values of first_idx and next_idx mean that the buffer
321 * is either empty or full.
322 *
323 * If the buffer is empty, we must respect the position of the indexes.
324 * They cannot be reset to the beginning of the buffer.
325 */
326 static int logbuf_has_space(u32 msg_size, bool empty)
327 {
328 u32 free;
329
330 if (log_next_idx > log_first_idx || empty)
331 free = max(log_buf_len - log_next_idx, log_first_idx);
332 else
333 free = log_first_idx - log_next_idx;
334
335 /*
336 * We need space also for an empty header that signalizes wrapping
337 * of the buffer.
338 */
339 return free >= msg_size + sizeof(struct printk_log);
340 }
341
342 static int log_make_free_space(u32 msg_size)
343 {
344 while (log_first_seq < log_next_seq) {
345 if (logbuf_has_space(msg_size, false))
346 return 0;
347 /* drop old messages until we have enough continuous space */
348 log_first_idx = log_next(log_first_idx);
349 log_first_seq++;
350 }
351
352 /* sequence numbers are equal, so the log buffer is empty */
353 if (logbuf_has_space(msg_size, true))
354 return 0;
355
356 return -ENOMEM;
357 }
358
359 /* compute the message size including the padding bytes */
360 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
361 {
362 u32 size;
363
364 size = sizeof(struct printk_log) + text_len + dict_len;
365 *pad_len = (-size) & (LOG_ALIGN - 1);
366 size += *pad_len;
367
368 return size;
369 }
370
371 /*
372 * Define how much of the log buffer we could take at maximum. The value
373 * must be greater than two. Note that only half of the buffer is available
374 * when the index points to the middle.
375 */
376 #define MAX_LOG_TAKE_PART 4
377 static const char trunc_msg[] = "<truncated>";
378
379 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
380 u16 *dict_len, u32 *pad_len)
381 {
382 /*
383 * The message should not take the whole buffer. Otherwise, it might
384 * get removed too soon.
385 */
386 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
387 if (*text_len > max_text_len)
388 *text_len = max_text_len;
389 /* enable the warning message */
390 *trunc_msg_len = strlen(trunc_msg);
391 /* disable the "dict" completely */
392 *dict_len = 0;
393 /* compute the size again, count also the warning message */
394 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
395 }
396
397 /* insert record into the buffer, discard old ones, update heads */
398 static int log_store(int facility, int level,
399 enum log_flags flags, u64 ts_nsec,
400 const char *dict, u16 dict_len,
401 const char *text, u16 text_len)
402 {
403 struct printk_log *msg;
404 u32 size, pad_len;
405 u16 trunc_msg_len = 0;
406
407 /* number of '\0' padding bytes to next message */
408 size = msg_used_size(text_len, dict_len, &pad_len);
409
410 if (log_make_free_space(size)) {
411 /* truncate the message if it is too long for empty buffer */
412 size = truncate_msg(&text_len, &trunc_msg_len,
413 &dict_len, &pad_len);
414 /* survive when the log buffer is too small for trunc_msg */
415 if (log_make_free_space(size))
416 return 0;
417 }
418
419 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
420 /*
421 * This message + an additional empty header does not fit
422 * at the end of the buffer. Add an empty header with len == 0
423 * to signify a wrap around.
424 */
425 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
426 log_next_idx = 0;
427 }
428
429 /* fill message */
430 msg = (struct printk_log *)(log_buf + log_next_idx);
431 memcpy(log_text(msg), text, text_len);
432 msg->text_len = text_len;
433 if (trunc_msg_len) {
434 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
435 msg->text_len += trunc_msg_len;
436 }
437 memcpy(log_dict(msg), dict, dict_len);
438 msg->dict_len = dict_len;
439 msg->facility = facility;
440 msg->level = level & 7;
441 msg->flags = flags & 0x1f;
442 if (ts_nsec > 0)
443 msg->ts_nsec = ts_nsec;
444 else
445 msg->ts_nsec = local_clock();
446 memset(log_dict(msg) + dict_len, 0, pad_len);
447 msg->len = size;
448
449 /* insert message */
450 log_next_idx += msg->len;
451 log_next_seq++;
452
453 return msg->text_len;
454 }
455
456 #ifdef CONFIG_SECURITY_DMESG_RESTRICT
457 int dmesg_restrict = 1;
458 #else
459 int dmesg_restrict;
460 #endif
461
462 static int syslog_action_restricted(int type)
463 {
464 if (dmesg_restrict)
465 return 1;
466 /*
467 * Unless restricted, we allow "read all" and "get buffer size"
468 * for everybody.
469 */
470 return type != SYSLOG_ACTION_READ_ALL &&
471 type != SYSLOG_ACTION_SIZE_BUFFER;
472 }
473
474 static int check_syslog_permissions(int type, bool from_file)
475 {
476 /*
477 * If this is from /proc/kmsg and we've already opened it, then we've
478 * already done the capabilities checks at open time.
479 */
480 if (from_file && type != SYSLOG_ACTION_OPEN)
481 return 0;
482
483 if (syslog_action_restricted(type)) {
484 if (capable(CAP_SYSLOG))
485 return 0;
486 /*
487 * For historical reasons, accept CAP_SYS_ADMIN too, with
488 * a warning.
489 */
490 if (capable(CAP_SYS_ADMIN)) {
491 pr_warn_once("%s (%d): Attempt to access syslog with "
492 "CAP_SYS_ADMIN but no CAP_SYSLOG "
493 "(deprecated).\n",
494 current->comm, task_pid_nr(current));
495 return 0;
496 }
497 return -EPERM;
498 }
499 return security_syslog(type);
500 }
501
502
503 /* /dev/kmsg - userspace message inject/listen interface */
504 struct devkmsg_user {
505 u64 seq;
506 u32 idx;
507 enum log_flags prev;
508 struct mutex lock;
509 char buf[8192];
510 };
511
512 static ssize_t devkmsg_writev(struct kiocb *iocb, const struct iovec *iv,
513 unsigned long count, loff_t pos)
514 {
515 char *buf, *line;
516 int i;
517 int level = default_message_loglevel;
518 int facility = 1; /* LOG_USER */
519 size_t len = iov_length(iv, count);
520 ssize_t ret = len;
521
522 if (len > LOG_LINE_MAX)
523 return -EINVAL;
524 buf = kmalloc(len+1, GFP_KERNEL);
525 if (buf == NULL)
526 return -ENOMEM;
527
528 line = buf;
529 for (i = 0; i < count; i++) {
530 if (copy_from_user(line, iv[i].iov_base, iv[i].iov_len)) {
531 ret = -EFAULT;
532 goto out;
533 }
534 line += iv[i].iov_len;
535 }
536
537 /*
538 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
539 * the decimal value represents 32bit, the lower 3 bit are the log
540 * level, the rest are the log facility.
541 *
542 * If no prefix or no userspace facility is specified, we
543 * enforce LOG_USER, to be able to reliably distinguish
544 * kernel-generated messages from userspace-injected ones.
545 */
546 line = buf;
547 if (line[0] == '<') {
548 char *endp = NULL;
549
550 i = simple_strtoul(line+1, &endp, 10);
551 if (endp && endp[0] == '>') {
552 level = i & 7;
553 if (i >> 3)
554 facility = i >> 3;
555 endp++;
556 len -= endp - line;
557 line = endp;
558 }
559 }
560 line[len] = '\0';
561
562 printk_emit(facility, level, NULL, 0, "%s", line);
563 out:
564 kfree(buf);
565 return ret;
566 }
567
568 static ssize_t devkmsg_read(struct file *file, char __user *buf,
569 size_t count, loff_t *ppos)
570 {
571 struct devkmsg_user *user = file->private_data;
572 struct printk_log *msg;
573 u64 ts_usec;
574 size_t i;
575 char cont = '-';
576 size_t len;
577 ssize_t ret;
578
579 if (!user)
580 return -EBADF;
581
582 ret = mutex_lock_interruptible(&user->lock);
583 if (ret)
584 return ret;
585 raw_spin_lock_irq(&logbuf_lock);
586 while (user->seq == log_next_seq) {
587 if (file->f_flags & O_NONBLOCK) {
588 ret = -EAGAIN;
589 raw_spin_unlock_irq(&logbuf_lock);
590 goto out;
591 }
592
593 raw_spin_unlock_irq(&logbuf_lock);
594 ret = wait_event_interruptible(log_wait,
595 user->seq != log_next_seq);
596 if (ret)
597 goto out;
598 raw_spin_lock_irq(&logbuf_lock);
599 }
600
601 if (user->seq < log_first_seq) {
602 /* our last seen message is gone, return error and reset */
603 user->idx = log_first_idx;
604 user->seq = log_first_seq;
605 ret = -EPIPE;
606 raw_spin_unlock_irq(&logbuf_lock);
607 goto out;
608 }
609
610 msg = log_from_idx(user->idx);
611 ts_usec = msg->ts_nsec;
612 do_div(ts_usec, 1000);
613
614 /*
615 * If we couldn't merge continuation line fragments during the print,
616 * export the stored flags to allow an optional external merge of the
617 * records. Merging the records isn't always neccessarily correct, like
618 * when we hit a race during printing. In most cases though, it produces
619 * better readable output. 'c' in the record flags mark the first
620 * fragment of a line, '+' the following.
621 */
622 if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT))
623 cont = 'c';
624 else if ((msg->flags & LOG_CONT) ||
625 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
626 cont = '+';
627
628 len = sprintf(user->buf, "%u,%llu,%llu,%c;",
629 (msg->facility << 3) | msg->level,
630 user->seq, ts_usec, cont);
631 user->prev = msg->flags;
632
633 /* escape non-printable characters */
634 for (i = 0; i < msg->text_len; i++) {
635 unsigned char c = log_text(msg)[i];
636
637 if (c < ' ' || c >= 127 || c == '\\')
638 len += sprintf(user->buf + len, "\\x%02x", c);
639 else
640 user->buf[len++] = c;
641 }
642 user->buf[len++] = '\n';
643
644 if (msg->dict_len) {
645 bool line = true;
646
647 for (i = 0; i < msg->dict_len; i++) {
648 unsigned char c = log_dict(msg)[i];
649
650 if (line) {
651 user->buf[len++] = ' ';
652 line = false;
653 }
654
655 if (c == '\0') {
656 user->buf[len++] = '\n';
657 line = true;
658 continue;
659 }
660
661 if (c < ' ' || c >= 127 || c == '\\') {
662 len += sprintf(user->buf + len, "\\x%02x", c);
663 continue;
664 }
665
666 user->buf[len++] = c;
667 }
668 user->buf[len++] = '\n';
669 }
670
671 user->idx = log_next(user->idx);
672 user->seq++;
673 raw_spin_unlock_irq(&logbuf_lock);
674
675 if (len > count) {
676 ret = -EINVAL;
677 goto out;
678 }
679
680 if (copy_to_user(buf, user->buf, len)) {
681 ret = -EFAULT;
682 goto out;
683 }
684 ret = len;
685 out:
686 mutex_unlock(&user->lock);
687 return ret;
688 }
689
690 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
691 {
692 struct devkmsg_user *user = file->private_data;
693 loff_t ret = 0;
694
695 if (!user)
696 return -EBADF;
697 if (offset)
698 return -ESPIPE;
699
700 raw_spin_lock_irq(&logbuf_lock);
701 switch (whence) {
702 case SEEK_SET:
703 /* the first record */
704 user->idx = log_first_idx;
705 user->seq = log_first_seq;
706 break;
707 case SEEK_DATA:
708 /*
709 * The first record after the last SYSLOG_ACTION_CLEAR,
710 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
711 * changes no global state, and does not clear anything.
712 */
713 user->idx = clear_idx;
714 user->seq = clear_seq;
715 break;
716 case SEEK_END:
717 /* after the last record */
718 user->idx = log_next_idx;
719 user->seq = log_next_seq;
720 break;
721 default:
722 ret = -EINVAL;
723 }
724 raw_spin_unlock_irq(&logbuf_lock);
725 return ret;
726 }
727
728 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
729 {
730 struct devkmsg_user *user = file->private_data;
731 int ret = 0;
732
733 if (!user)
734 return POLLERR|POLLNVAL;
735
736 poll_wait(file, &log_wait, wait);
737
738 raw_spin_lock_irq(&logbuf_lock);
739 if (user->seq < log_next_seq) {
740 /* return error when data has vanished underneath us */
741 if (user->seq < log_first_seq)
742 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
743 else
744 ret = POLLIN|POLLRDNORM;
745 }
746 raw_spin_unlock_irq(&logbuf_lock);
747
748 return ret;
749 }
750
751 static int devkmsg_open(struct inode *inode, struct file *file)
752 {
753 struct devkmsg_user *user;
754 int err;
755
756 /* write-only does not need any file context */
757 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
758 return 0;
759
760 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
761 SYSLOG_FROM_READER);
762 if (err)
763 return err;
764
765 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
766 if (!user)
767 return -ENOMEM;
768
769 mutex_init(&user->lock);
770
771 raw_spin_lock_irq(&logbuf_lock);
772 user->idx = log_first_idx;
773 user->seq = log_first_seq;
774 raw_spin_unlock_irq(&logbuf_lock);
775
776 file->private_data = user;
777 return 0;
778 }
779
780 static int devkmsg_release(struct inode *inode, struct file *file)
781 {
782 struct devkmsg_user *user = file->private_data;
783
784 if (!user)
785 return 0;
786
787 mutex_destroy(&user->lock);
788 kfree(user);
789 return 0;
790 }
791
792 const struct file_operations kmsg_fops = {
793 .open = devkmsg_open,
794 .read = devkmsg_read,
795 .aio_write = devkmsg_writev,
796 .llseek = devkmsg_llseek,
797 .poll = devkmsg_poll,
798 .release = devkmsg_release,
799 };
800
801 #ifdef CONFIG_KEXEC
802 /*
803 * This appends the listed symbols to /proc/vmcore
804 *
805 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
806 * obtain access to symbols that are otherwise very difficult to locate. These
807 * symbols are specifically used so that utilities can access and extract the
808 * dmesg log from a vmcore file after a crash.
809 */
810 void log_buf_kexec_setup(void)
811 {
812 VMCOREINFO_SYMBOL(log_buf);
813 VMCOREINFO_SYMBOL(log_buf_len);
814 VMCOREINFO_SYMBOL(log_first_idx);
815 VMCOREINFO_SYMBOL(log_next_idx);
816 /*
817 * Export struct printk_log size and field offsets. User space tools can
818 * parse it and detect any changes to structure down the line.
819 */
820 VMCOREINFO_STRUCT_SIZE(printk_log);
821 VMCOREINFO_OFFSET(printk_log, ts_nsec);
822 VMCOREINFO_OFFSET(printk_log, len);
823 VMCOREINFO_OFFSET(printk_log, text_len);
824 VMCOREINFO_OFFSET(printk_log, dict_len);
825 }
826 #endif
827
828 /* requested log_buf_len from kernel cmdline */
829 static unsigned long __initdata new_log_buf_len;
830
831 /* save requested log_buf_len since it's too early to process it */
832 static int __init log_buf_len_setup(char *str)
833 {
834 unsigned size = memparse(str, &str);
835
836 if (size)
837 size = roundup_pow_of_two(size);
838 if (size > log_buf_len)
839 new_log_buf_len = size;
840
841 return 0;
842 }
843 early_param("log_buf_len", log_buf_len_setup);
844
845 void __init setup_log_buf(int early)
846 {
847 unsigned long flags;
848 char *new_log_buf;
849 int free;
850
851 if (!new_log_buf_len)
852 return;
853
854 if (early) {
855 new_log_buf =
856 memblock_virt_alloc(new_log_buf_len, PAGE_SIZE);
857 } else {
858 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len, 0);
859 }
860
861 if (unlikely(!new_log_buf)) {
862 pr_err("log_buf_len: %ld bytes not available\n",
863 new_log_buf_len);
864 return;
865 }
866
867 raw_spin_lock_irqsave(&logbuf_lock, flags);
868 log_buf_len = new_log_buf_len;
869 log_buf = new_log_buf;
870 new_log_buf_len = 0;
871 free = __LOG_BUF_LEN - log_next_idx;
872 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
873 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
874
875 pr_info("log_buf_len: %d\n", log_buf_len);
876 pr_info("early log buf free: %d(%d%%)\n",
877 free, (free * 100) / __LOG_BUF_LEN);
878 }
879
880 static bool __read_mostly ignore_loglevel;
881
882 static int __init ignore_loglevel_setup(char *str)
883 {
884 ignore_loglevel = 1;
885 pr_info("debug: ignoring loglevel setting.\n");
886
887 return 0;
888 }
889
890 early_param("ignore_loglevel", ignore_loglevel_setup);
891 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
892 MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to"
893 "print all kernel messages to the console.");
894
895 #ifdef CONFIG_BOOT_PRINTK_DELAY
896
897 static int boot_delay; /* msecs delay after each printk during bootup */
898 static unsigned long long loops_per_msec; /* based on boot_delay */
899
900 static int __init boot_delay_setup(char *str)
901 {
902 unsigned long lpj;
903
904 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
905 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
906
907 get_option(&str, &boot_delay);
908 if (boot_delay > 10 * 1000)
909 boot_delay = 0;
910
911 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
912 "HZ: %d, loops_per_msec: %llu\n",
913 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
914 return 0;
915 }
916 early_param("boot_delay", boot_delay_setup);
917
918 static void boot_delay_msec(int level)
919 {
920 unsigned long long k;
921 unsigned long timeout;
922
923 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
924 || (level >= console_loglevel && !ignore_loglevel)) {
925 return;
926 }
927
928 k = (unsigned long long)loops_per_msec * boot_delay;
929
930 timeout = jiffies + msecs_to_jiffies(boot_delay);
931 while (k) {
932 k--;
933 cpu_relax();
934 /*
935 * use (volatile) jiffies to prevent
936 * compiler reduction; loop termination via jiffies
937 * is secondary and may or may not happen.
938 */
939 if (time_after(jiffies, timeout))
940 break;
941 touch_nmi_watchdog();
942 }
943 }
944 #else
945 static inline void boot_delay_msec(int level)
946 {
947 }
948 #endif
949
950 #if defined(CONFIG_PRINTK_TIME)
951 static bool printk_time = 1;
952 #else
953 static bool printk_time;
954 #endif
955 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
956
957 static size_t print_time(u64 ts, char *buf)
958 {
959 unsigned long rem_nsec;
960
961 if (!printk_time)
962 return 0;
963
964 rem_nsec = do_div(ts, 1000000000);
965
966 if (!buf)
967 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
968
969 return sprintf(buf, "[%5lu.%06lu] ",
970 (unsigned long)ts, rem_nsec / 1000);
971 }
972
973 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
974 {
975 size_t len = 0;
976 unsigned int prefix = (msg->facility << 3) | msg->level;
977
978 if (syslog) {
979 if (buf) {
980 len += sprintf(buf, "<%u>", prefix);
981 } else {
982 len += 3;
983 if (prefix > 999)
984 len += 3;
985 else if (prefix > 99)
986 len += 2;
987 else if (prefix > 9)
988 len++;
989 }
990 }
991
992 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
993 return len;
994 }
995
996 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
997 bool syslog, char *buf, size_t size)
998 {
999 const char *text = log_text(msg);
1000 size_t text_size = msg->text_len;
1001 bool prefix = true;
1002 bool newline = true;
1003 size_t len = 0;
1004
1005 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1006 prefix = false;
1007
1008 if (msg->flags & LOG_CONT) {
1009 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1010 prefix = false;
1011
1012 if (!(msg->flags & LOG_NEWLINE))
1013 newline = false;
1014 }
1015
1016 do {
1017 const char *next = memchr(text, '\n', text_size);
1018 size_t text_len;
1019
1020 if (next) {
1021 text_len = next - text;
1022 next++;
1023 text_size -= next - text;
1024 } else {
1025 text_len = text_size;
1026 }
1027
1028 if (buf) {
1029 if (print_prefix(msg, syslog, NULL) +
1030 text_len + 1 >= size - len)
1031 break;
1032
1033 if (prefix)
1034 len += print_prefix(msg, syslog, buf + len);
1035 memcpy(buf + len, text, text_len);
1036 len += text_len;
1037 if (next || newline)
1038 buf[len++] = '\n';
1039 } else {
1040 /* SYSLOG_ACTION_* buffer size only calculation */
1041 if (prefix)
1042 len += print_prefix(msg, syslog, NULL);
1043 len += text_len;
1044 if (next || newline)
1045 len++;
1046 }
1047
1048 prefix = true;
1049 text = next;
1050 } while (text);
1051
1052 return len;
1053 }
1054
1055 static int syslog_print(char __user *buf, int size)
1056 {
1057 char *text;
1058 struct printk_log *msg;
1059 int len = 0;
1060
1061 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1062 if (!text)
1063 return -ENOMEM;
1064
1065 while (size > 0) {
1066 size_t n;
1067 size_t skip;
1068
1069 raw_spin_lock_irq(&logbuf_lock);
1070 if (syslog_seq < log_first_seq) {
1071 /* messages are gone, move to first one */
1072 syslog_seq = log_first_seq;
1073 syslog_idx = log_first_idx;
1074 syslog_prev = 0;
1075 syslog_partial = 0;
1076 }
1077 if (syslog_seq == log_next_seq) {
1078 raw_spin_unlock_irq(&logbuf_lock);
1079 break;
1080 }
1081
1082 skip = syslog_partial;
1083 msg = log_from_idx(syslog_idx);
1084 n = msg_print_text(msg, syslog_prev, true, text,
1085 LOG_LINE_MAX + PREFIX_MAX);
1086 if (n - syslog_partial <= size) {
1087 /* message fits into buffer, move forward */
1088 syslog_idx = log_next(syslog_idx);
1089 syslog_seq++;
1090 syslog_prev = msg->flags;
1091 n -= syslog_partial;
1092 syslog_partial = 0;
1093 } else if (!len){
1094 /* partial read(), remember position */
1095 n = size;
1096 syslog_partial += n;
1097 } else
1098 n = 0;
1099 raw_spin_unlock_irq(&logbuf_lock);
1100
1101 if (!n)
1102 break;
1103
1104 if (copy_to_user(buf, text + skip, n)) {
1105 if (!len)
1106 len = -EFAULT;
1107 break;
1108 }
1109
1110 len += n;
1111 size -= n;
1112 buf += n;
1113 }
1114
1115 kfree(text);
1116 return len;
1117 }
1118
1119 static int syslog_print_all(char __user *buf, int size, bool clear)
1120 {
1121 char *text;
1122 int len = 0;
1123
1124 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1125 if (!text)
1126 return -ENOMEM;
1127
1128 raw_spin_lock_irq(&logbuf_lock);
1129 if (buf) {
1130 u64 next_seq;
1131 u64 seq;
1132 u32 idx;
1133 enum log_flags prev;
1134
1135 if (clear_seq < log_first_seq) {
1136 /* messages are gone, move to first available one */
1137 clear_seq = log_first_seq;
1138 clear_idx = log_first_idx;
1139 }
1140
1141 /*
1142 * Find first record that fits, including all following records,
1143 * into the user-provided buffer for this dump.
1144 */
1145 seq = clear_seq;
1146 idx = clear_idx;
1147 prev = 0;
1148 while (seq < log_next_seq) {
1149 struct printk_log *msg = log_from_idx(idx);
1150
1151 len += msg_print_text(msg, prev, true, NULL, 0);
1152 prev = msg->flags;
1153 idx = log_next(idx);
1154 seq++;
1155 }
1156
1157 /* move first record forward until length fits into the buffer */
1158 seq = clear_seq;
1159 idx = clear_idx;
1160 prev = 0;
1161 while (len > size && seq < log_next_seq) {
1162 struct printk_log *msg = log_from_idx(idx);
1163
1164 len -= msg_print_text(msg, prev, true, NULL, 0);
1165 prev = msg->flags;
1166 idx = log_next(idx);
1167 seq++;
1168 }
1169
1170 /* last message fitting into this dump */
1171 next_seq = log_next_seq;
1172
1173 len = 0;
1174 while (len >= 0 && seq < next_seq) {
1175 struct printk_log *msg = log_from_idx(idx);
1176 int textlen;
1177
1178 textlen = msg_print_text(msg, prev, true, text,
1179 LOG_LINE_MAX + PREFIX_MAX);
1180 if (textlen < 0) {
1181 len = textlen;
1182 break;
1183 }
1184 idx = log_next(idx);
1185 seq++;
1186 prev = msg->flags;
1187
1188 raw_spin_unlock_irq(&logbuf_lock);
1189 if (copy_to_user(buf + len, text, textlen))
1190 len = -EFAULT;
1191 else
1192 len += textlen;
1193 raw_spin_lock_irq(&logbuf_lock);
1194
1195 if (seq < log_first_seq) {
1196 /* messages are gone, move to next one */
1197 seq = log_first_seq;
1198 idx = log_first_idx;
1199 prev = 0;
1200 }
1201 }
1202 }
1203
1204 if (clear) {
1205 clear_seq = log_next_seq;
1206 clear_idx = log_next_idx;
1207 }
1208 raw_spin_unlock_irq(&logbuf_lock);
1209
1210 kfree(text);
1211 return len;
1212 }
1213
1214 int do_syslog(int type, char __user *buf, int len, bool from_file)
1215 {
1216 bool clear = false;
1217 static int saved_console_loglevel = -1;
1218 int error;
1219
1220 error = check_syslog_permissions(type, from_file);
1221 if (error)
1222 goto out;
1223
1224 error = security_syslog(type);
1225 if (error)
1226 return error;
1227
1228 switch (type) {
1229 case SYSLOG_ACTION_CLOSE: /* Close log */
1230 break;
1231 case SYSLOG_ACTION_OPEN: /* Open log */
1232 break;
1233 case SYSLOG_ACTION_READ: /* Read from log */
1234 error = -EINVAL;
1235 if (!buf || len < 0)
1236 goto out;
1237 error = 0;
1238 if (!len)
1239 goto out;
1240 if (!access_ok(VERIFY_WRITE, buf, len)) {
1241 error = -EFAULT;
1242 goto out;
1243 }
1244 error = wait_event_interruptible(log_wait,
1245 syslog_seq != log_next_seq);
1246 if (error)
1247 goto out;
1248 error = syslog_print(buf, len);
1249 break;
1250 /* Read/clear last kernel messages */
1251 case SYSLOG_ACTION_READ_CLEAR:
1252 clear = true;
1253 /* FALL THRU */
1254 /* Read last kernel messages */
1255 case SYSLOG_ACTION_READ_ALL:
1256 error = -EINVAL;
1257 if (!buf || len < 0)
1258 goto out;
1259 error = 0;
1260 if (!len)
1261 goto out;
1262 if (!access_ok(VERIFY_WRITE, buf, len)) {
1263 error = -EFAULT;
1264 goto out;
1265 }
1266 error = syslog_print_all(buf, len, clear);
1267 break;
1268 /* Clear ring buffer */
1269 case SYSLOG_ACTION_CLEAR:
1270 syslog_print_all(NULL, 0, true);
1271 break;
1272 /* Disable logging to console */
1273 case SYSLOG_ACTION_CONSOLE_OFF:
1274 if (saved_console_loglevel == -1)
1275 saved_console_loglevel = console_loglevel;
1276 console_loglevel = minimum_console_loglevel;
1277 break;
1278 /* Enable logging to console */
1279 case SYSLOG_ACTION_CONSOLE_ON:
1280 if (saved_console_loglevel != -1) {
1281 console_loglevel = saved_console_loglevel;
1282 saved_console_loglevel = -1;
1283 }
1284 break;
1285 /* Set level of messages printed to console */
1286 case SYSLOG_ACTION_CONSOLE_LEVEL:
1287 error = -EINVAL;
1288 if (len < 1 || len > 8)
1289 goto out;
1290 if (len < minimum_console_loglevel)
1291 len = minimum_console_loglevel;
1292 console_loglevel = len;
1293 /* Implicitly re-enable logging to console */
1294 saved_console_loglevel = -1;
1295 error = 0;
1296 break;
1297 /* Number of chars in the log buffer */
1298 case SYSLOG_ACTION_SIZE_UNREAD:
1299 raw_spin_lock_irq(&logbuf_lock);
1300 if (syslog_seq < log_first_seq) {
1301 /* messages are gone, move to first one */
1302 syslog_seq = log_first_seq;
1303 syslog_idx = log_first_idx;
1304 syslog_prev = 0;
1305 syslog_partial = 0;
1306 }
1307 if (from_file) {
1308 /*
1309 * Short-cut for poll(/"proc/kmsg") which simply checks
1310 * for pending data, not the size; return the count of
1311 * records, not the length.
1312 */
1313 error = log_next_idx - syslog_idx;
1314 } else {
1315 u64 seq = syslog_seq;
1316 u32 idx = syslog_idx;
1317 enum log_flags prev = syslog_prev;
1318
1319 error = 0;
1320 while (seq < log_next_seq) {
1321 struct printk_log *msg = log_from_idx(idx);
1322
1323 error += msg_print_text(msg, prev, true, NULL, 0);
1324 idx = log_next(idx);
1325 seq++;
1326 prev = msg->flags;
1327 }
1328 error -= syslog_partial;
1329 }
1330 raw_spin_unlock_irq(&logbuf_lock);
1331 break;
1332 /* Size of the log buffer */
1333 case SYSLOG_ACTION_SIZE_BUFFER:
1334 error = log_buf_len;
1335 break;
1336 default:
1337 error = -EINVAL;
1338 break;
1339 }
1340 out:
1341 return error;
1342 }
1343
1344 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1345 {
1346 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1347 }
1348
1349 /*
1350 * Call the console drivers, asking them to write out
1351 * log_buf[start] to log_buf[end - 1].
1352 * The console_lock must be held.
1353 */
1354 static void call_console_drivers(int level, const char *text, size_t len)
1355 {
1356 struct console *con;
1357
1358 trace_console(text, len);
1359
1360 if (level >= console_loglevel && !ignore_loglevel)
1361 return;
1362 if (!console_drivers)
1363 return;
1364
1365 for_each_console(con) {
1366 if (exclusive_console && con != exclusive_console)
1367 continue;
1368 if (!(con->flags & CON_ENABLED))
1369 continue;
1370 if (!con->write)
1371 continue;
1372 if (!cpu_online(smp_processor_id()) &&
1373 !(con->flags & CON_ANYTIME))
1374 continue;
1375 con->write(con, text, len);
1376 }
1377 }
1378
1379 /*
1380 * Zap console related locks when oopsing. Only zap at most once
1381 * every 10 seconds, to leave time for slow consoles to print a
1382 * full oops.
1383 */
1384 static void zap_locks(void)
1385 {
1386 static unsigned long oops_timestamp;
1387
1388 if (time_after_eq(jiffies, oops_timestamp) &&
1389 !time_after(jiffies, oops_timestamp + 30 * HZ))
1390 return;
1391
1392 oops_timestamp = jiffies;
1393
1394 debug_locks_off();
1395 /* If a crash is occurring, make sure we can't deadlock */
1396 raw_spin_lock_init(&logbuf_lock);
1397 /* And make sure that we print immediately */
1398 sema_init(&console_sem, 1);
1399 }
1400
1401 /*
1402 * Check if we have any console that is capable of printing while cpu is
1403 * booting or shutting down. Requires console_sem.
1404 */
1405 static int have_callable_console(void)
1406 {
1407 struct console *con;
1408
1409 for_each_console(con)
1410 if (con->flags & CON_ANYTIME)
1411 return 1;
1412
1413 return 0;
1414 }
1415
1416 /*
1417 * Can we actually use the console at this time on this cpu?
1418 *
1419 * Console drivers may assume that per-cpu resources have been allocated. So
1420 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
1421 * call them until this CPU is officially up.
1422 */
1423 static inline int can_use_console(unsigned int cpu)
1424 {
1425 return cpu_online(cpu) || have_callable_console();
1426 }
1427
1428 /*
1429 * Try to get console ownership to actually show the kernel
1430 * messages from a 'printk'. Return true (and with the
1431 * console_lock held, and 'console_locked' set) if it
1432 * is successful, false otherwise.
1433 */
1434 static int console_trylock_for_printk(void)
1435 {
1436 unsigned int cpu = smp_processor_id();
1437
1438 if (!console_trylock())
1439 return 0;
1440 /*
1441 * If we can't use the console, we need to release the console
1442 * semaphore by hand to avoid flushing the buffer. We need to hold the
1443 * console semaphore in order to do this test safely.
1444 */
1445 if (!can_use_console(cpu)) {
1446 console_locked = 0;
1447 up_console_sem();
1448 return 0;
1449 }
1450 return 1;
1451 }
1452
1453 int printk_delay_msec __read_mostly;
1454
1455 static inline void printk_delay(void)
1456 {
1457 if (unlikely(printk_delay_msec)) {
1458 int m = printk_delay_msec;
1459
1460 while (m--) {
1461 mdelay(1);
1462 touch_nmi_watchdog();
1463 }
1464 }
1465 }
1466
1467 /*
1468 * Continuation lines are buffered, and not committed to the record buffer
1469 * until the line is complete, or a race forces it. The line fragments
1470 * though, are printed immediately to the consoles to ensure everything has
1471 * reached the console in case of a kernel crash.
1472 */
1473 static struct cont {
1474 char buf[LOG_LINE_MAX];
1475 size_t len; /* length == 0 means unused buffer */
1476 size_t cons; /* bytes written to console */
1477 struct task_struct *owner; /* task of first print*/
1478 u64 ts_nsec; /* time of first print */
1479 u8 level; /* log level of first message */
1480 u8 facility; /* log level of first message */
1481 enum log_flags flags; /* prefix, newline flags */
1482 bool flushed:1; /* buffer sealed and committed */
1483 } cont;
1484
1485 static void cont_flush(enum log_flags flags)
1486 {
1487 if (cont.flushed)
1488 return;
1489 if (cont.len == 0)
1490 return;
1491
1492 if (cont.cons) {
1493 /*
1494 * If a fragment of this line was directly flushed to the
1495 * console; wait for the console to pick up the rest of the
1496 * line. LOG_NOCONS suppresses a duplicated output.
1497 */
1498 log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1499 cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1500 cont.flags = flags;
1501 cont.flushed = true;
1502 } else {
1503 /*
1504 * If no fragment of this line ever reached the console,
1505 * just submit it to the store and free the buffer.
1506 */
1507 log_store(cont.facility, cont.level, flags, 0,
1508 NULL, 0, cont.buf, cont.len);
1509 cont.len = 0;
1510 }
1511 }
1512
1513 static bool cont_add(int facility, int level, const char *text, size_t len)
1514 {
1515 if (cont.len && cont.flushed)
1516 return false;
1517
1518 if (cont.len + len > sizeof(cont.buf)) {
1519 /* the line gets too long, split it up in separate records */
1520 cont_flush(LOG_CONT);
1521 return false;
1522 }
1523
1524 if (!cont.len) {
1525 cont.facility = facility;
1526 cont.level = level;
1527 cont.owner = current;
1528 cont.ts_nsec = local_clock();
1529 cont.flags = 0;
1530 cont.cons = 0;
1531 cont.flushed = false;
1532 }
1533
1534 memcpy(cont.buf + cont.len, text, len);
1535 cont.len += len;
1536
1537 if (cont.len > (sizeof(cont.buf) * 80) / 100)
1538 cont_flush(LOG_CONT);
1539
1540 return true;
1541 }
1542
1543 static size_t cont_print_text(char *text, size_t size)
1544 {
1545 size_t textlen = 0;
1546 size_t len;
1547
1548 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1549 textlen += print_time(cont.ts_nsec, text);
1550 size -= textlen;
1551 }
1552
1553 len = cont.len - cont.cons;
1554 if (len > 0) {
1555 if (len+1 > size)
1556 len = size-1;
1557 memcpy(text + textlen, cont.buf + cont.cons, len);
1558 textlen += len;
1559 cont.cons = cont.len;
1560 }
1561
1562 if (cont.flushed) {
1563 if (cont.flags & LOG_NEWLINE)
1564 text[textlen++] = '\n';
1565 /* got everything, release buffer */
1566 cont.len = 0;
1567 }
1568 return textlen;
1569 }
1570
1571 asmlinkage int vprintk_emit(int facility, int level,
1572 const char *dict, size_t dictlen,
1573 const char *fmt, va_list args)
1574 {
1575 static int recursion_bug;
1576 static char textbuf[LOG_LINE_MAX];
1577 char *text = textbuf;
1578 size_t text_len = 0;
1579 enum log_flags lflags = 0;
1580 unsigned long flags;
1581 int this_cpu;
1582 int printed_len = 0;
1583 bool in_sched = false;
1584 /* cpu currently holding logbuf_lock in this function */
1585 static volatile unsigned int logbuf_cpu = UINT_MAX;
1586
1587 if (level == SCHED_MESSAGE_LOGLEVEL) {
1588 level = -1;
1589 in_sched = true;
1590 }
1591
1592 boot_delay_msec(level);
1593 printk_delay();
1594
1595 /* This stops the holder of console_sem just where we want him */
1596 local_irq_save(flags);
1597 this_cpu = smp_processor_id();
1598
1599 /*
1600 * Ouch, printk recursed into itself!
1601 */
1602 if (unlikely(logbuf_cpu == this_cpu)) {
1603 /*
1604 * If a crash is occurring during printk() on this CPU,
1605 * then try to get the crash message out but make sure
1606 * we can't deadlock. Otherwise just return to avoid the
1607 * recursion and return - but flag the recursion so that
1608 * it can be printed at the next appropriate moment:
1609 */
1610 if (!oops_in_progress && !lockdep_recursing(current)) {
1611 recursion_bug = 1;
1612 local_irq_restore(flags);
1613 return 0;
1614 }
1615 zap_locks();
1616 }
1617
1618 lockdep_off();
1619 raw_spin_lock(&logbuf_lock);
1620 logbuf_cpu = this_cpu;
1621
1622 if (recursion_bug) {
1623 static const char recursion_msg[] =
1624 "BUG: recent printk recursion!";
1625
1626 recursion_bug = 0;
1627 text_len = strlen(recursion_msg);
1628 /* emit KERN_CRIT message */
1629 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1630 NULL, 0, recursion_msg, text_len);
1631 }
1632
1633 /*
1634 * The printf needs to come first; we need the syslog
1635 * prefix which might be passed-in as a parameter.
1636 */
1637 if (in_sched)
1638 text_len = scnprintf(text, sizeof(textbuf),
1639 KERN_WARNING "[sched_delayed] ");
1640
1641 text_len += vscnprintf(text + text_len,
1642 sizeof(textbuf) - text_len, fmt, args);
1643
1644 /* mark and strip a trailing newline */
1645 if (text_len && text[text_len-1] == '\n') {
1646 text_len--;
1647 lflags |= LOG_NEWLINE;
1648 }
1649
1650 /* strip kernel syslog prefix and extract log level or control flags */
1651 if (facility == 0) {
1652 int kern_level = printk_get_level(text);
1653
1654 if (kern_level) {
1655 const char *end_of_header = printk_skip_level(text);
1656 switch (kern_level) {
1657 case '0' ... '7':
1658 if (level == -1)
1659 level = kern_level - '0';
1660 case 'd': /* KERN_DEFAULT */
1661 lflags |= LOG_PREFIX;
1662 }
1663 /*
1664 * No need to check length here because vscnprintf
1665 * put '\0' at the end of the string. Only valid and
1666 * newly printed level is detected.
1667 */
1668 text_len -= end_of_header - text;
1669 text = (char *)end_of_header;
1670 }
1671 }
1672
1673 if (level == -1)
1674 level = default_message_loglevel;
1675
1676 if (dict)
1677 lflags |= LOG_PREFIX|LOG_NEWLINE;
1678
1679 if (!(lflags & LOG_NEWLINE)) {
1680 /*
1681 * Flush the conflicting buffer. An earlier newline was missing,
1682 * or another task also prints continuation lines.
1683 */
1684 if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1685 cont_flush(LOG_NEWLINE);
1686
1687 /* buffer line if possible, otherwise store it right away */
1688 if (cont_add(facility, level, text, text_len))
1689 printed_len += text_len;
1690 else
1691 printed_len += log_store(facility, level,
1692 lflags | LOG_CONT, 0,
1693 dict, dictlen, text, text_len);
1694 } else {
1695 bool stored = false;
1696
1697 /*
1698 * If an earlier newline was missing and it was the same task,
1699 * either merge it with the current buffer and flush, or if
1700 * there was a race with interrupts (prefix == true) then just
1701 * flush it out and store this line separately.
1702 * If the preceding printk was from a different task and missed
1703 * a newline, flush and append the newline.
1704 */
1705 if (cont.len) {
1706 if (cont.owner == current && !(lflags & LOG_PREFIX))
1707 stored = cont_add(facility, level, text,
1708 text_len);
1709 cont_flush(LOG_NEWLINE);
1710 }
1711
1712 if (stored)
1713 printed_len += text_len;
1714 else
1715 printed_len += log_store(facility, level, lflags, 0,
1716 dict, dictlen, text, text_len);
1717 }
1718
1719 logbuf_cpu = UINT_MAX;
1720 raw_spin_unlock(&logbuf_lock);
1721 lockdep_on();
1722 local_irq_restore(flags);
1723
1724 /* If called from the scheduler, we can not call up(). */
1725 if (in_sched)
1726 return printed_len;
1727
1728 /*
1729 * Disable preemption to avoid being preempted while holding
1730 * console_sem which would prevent anyone from printing to console
1731 */
1732 preempt_disable();
1733 /*
1734 * Try to acquire and then immediately release the console semaphore.
1735 * The release will print out buffers and wake up /dev/kmsg and syslog()
1736 * users.
1737 */
1738 if (console_trylock_for_printk())
1739 console_unlock();
1740 preempt_enable();
1741
1742 return printed_len;
1743 }
1744 EXPORT_SYMBOL(vprintk_emit);
1745
1746 asmlinkage int vprintk(const char *fmt, va_list args)
1747 {
1748 return vprintk_emit(0, -1, NULL, 0, fmt, args);
1749 }
1750 EXPORT_SYMBOL(vprintk);
1751
1752 asmlinkage int printk_emit(int facility, int level,
1753 const char *dict, size_t dictlen,
1754 const char *fmt, ...)
1755 {
1756 va_list args;
1757 int r;
1758
1759 va_start(args, fmt);
1760 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1761 va_end(args);
1762
1763 return r;
1764 }
1765 EXPORT_SYMBOL(printk_emit);
1766
1767 /**
1768 * printk - print a kernel message
1769 * @fmt: format string
1770 *
1771 * This is printk(). It can be called from any context. We want it to work.
1772 *
1773 * We try to grab the console_lock. If we succeed, it's easy - we log the
1774 * output and call the console drivers. If we fail to get the semaphore, we
1775 * place the output into the log buffer and return. The current holder of
1776 * the console_sem will notice the new output in console_unlock(); and will
1777 * send it to the consoles before releasing the lock.
1778 *
1779 * One effect of this deferred printing is that code which calls printk() and
1780 * then changes console_loglevel may break. This is because console_loglevel
1781 * is inspected when the actual printing occurs.
1782 *
1783 * See also:
1784 * printf(3)
1785 *
1786 * See the vsnprintf() documentation for format string extensions over C99.
1787 */
1788 asmlinkage __visible int printk(const char *fmt, ...)
1789 {
1790 va_list args;
1791 int r;
1792
1793 #ifdef CONFIG_KGDB_KDB
1794 if (unlikely(kdb_trap_printk)) {
1795 va_start(args, fmt);
1796 r = vkdb_printf(fmt, args);
1797 va_end(args);
1798 return r;
1799 }
1800 #endif
1801 va_start(args, fmt);
1802 r = vprintk_emit(0, -1, NULL, 0, fmt, args);
1803 va_end(args);
1804
1805 return r;
1806 }
1807 EXPORT_SYMBOL(printk);
1808
1809 #else /* CONFIG_PRINTK */
1810
1811 #define LOG_LINE_MAX 0
1812 #define PREFIX_MAX 0
1813 #define LOG_LINE_MAX 0
1814 static u64 syslog_seq;
1815 static u32 syslog_idx;
1816 static u64 console_seq;
1817 static u32 console_idx;
1818 static enum log_flags syslog_prev;
1819 static u64 log_first_seq;
1820 static u32 log_first_idx;
1821 static u64 log_next_seq;
1822 static enum log_flags console_prev;
1823 static struct cont {
1824 size_t len;
1825 size_t cons;
1826 u8 level;
1827 bool flushed:1;
1828 } cont;
1829 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1830 static u32 log_next(u32 idx) { return 0; }
1831 static void call_console_drivers(int level, const char *text, size_t len) {}
1832 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1833 bool syslog, char *buf, size_t size) { return 0; }
1834 static size_t cont_print_text(char *text, size_t size) { return 0; }
1835
1836 #endif /* CONFIG_PRINTK */
1837
1838 #ifdef CONFIG_EARLY_PRINTK
1839 struct console *early_console;
1840
1841 void early_vprintk(const char *fmt, va_list ap)
1842 {
1843 if (early_console) {
1844 char buf[512];
1845 int n = vscnprintf(buf, sizeof(buf), fmt, ap);
1846
1847 early_console->write(early_console, buf, n);
1848 }
1849 }
1850
1851 asmlinkage __visible void early_printk(const char *fmt, ...)
1852 {
1853 va_list ap;
1854
1855 va_start(ap, fmt);
1856 early_vprintk(fmt, ap);
1857 va_end(ap);
1858 }
1859 #endif
1860
1861 static int __add_preferred_console(char *name, int idx, char *options,
1862 char *brl_options)
1863 {
1864 struct console_cmdline *c;
1865 int i;
1866
1867 /*
1868 * See if this tty is not yet registered, and
1869 * if we have a slot free.
1870 */
1871 for (i = 0, c = console_cmdline;
1872 i < MAX_CMDLINECONSOLES && c->name[0];
1873 i++, c++) {
1874 if (strcmp(c->name, name) == 0 && c->index == idx) {
1875 if (!brl_options)
1876 selected_console = i;
1877 return 0;
1878 }
1879 }
1880 if (i == MAX_CMDLINECONSOLES)
1881 return -E2BIG;
1882 if (!brl_options)
1883 selected_console = i;
1884 strlcpy(c->name, name, sizeof(c->name));
1885 c->options = options;
1886 braille_set_options(c, brl_options);
1887
1888 c->index = idx;
1889 return 0;
1890 }
1891 /*
1892 * Set up a list of consoles. Called from init/main.c
1893 */
1894 static int __init console_setup(char *str)
1895 {
1896 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for index */
1897 char *s, *options, *brl_options = NULL;
1898 int idx;
1899
1900 if (_braille_console_setup(&str, &brl_options))
1901 return 1;
1902
1903 /*
1904 * Decode str into name, index, options.
1905 */
1906 if (str[0] >= '0' && str[0] <= '9') {
1907 strcpy(buf, "ttyS");
1908 strncpy(buf + 4, str, sizeof(buf) - 5);
1909 } else {
1910 strncpy(buf, str, sizeof(buf) - 1);
1911 }
1912 buf[sizeof(buf) - 1] = 0;
1913 if ((options = strchr(str, ',')) != NULL)
1914 *(options++) = 0;
1915 #ifdef __sparc__
1916 if (!strcmp(str, "ttya"))
1917 strcpy(buf, "ttyS0");
1918 if (!strcmp(str, "ttyb"))
1919 strcpy(buf, "ttyS1");
1920 #endif
1921 for (s = buf; *s; s++)
1922 if ((*s >= '0' && *s <= '9') || *s == ',')
1923 break;
1924 idx = simple_strtoul(s, NULL, 10);
1925 *s = 0;
1926
1927 __add_preferred_console(buf, idx, options, brl_options);
1928 console_set_on_cmdline = 1;
1929 return 1;
1930 }
1931 __setup("console=", console_setup);
1932
1933 /**
1934 * add_preferred_console - add a device to the list of preferred consoles.
1935 * @name: device name
1936 * @idx: device index
1937 * @options: options for this console
1938 *
1939 * The last preferred console added will be used for kernel messages
1940 * and stdin/out/err for init. Normally this is used by console_setup
1941 * above to handle user-supplied console arguments; however it can also
1942 * be used by arch-specific code either to override the user or more
1943 * commonly to provide a default console (ie from PROM variables) when
1944 * the user has not supplied one.
1945 */
1946 int add_preferred_console(char *name, int idx, char *options)
1947 {
1948 return __add_preferred_console(name, idx, options, NULL);
1949 }
1950
1951 int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options)
1952 {
1953 struct console_cmdline *c;
1954 int i;
1955
1956 for (i = 0, c = console_cmdline;
1957 i < MAX_CMDLINECONSOLES && c->name[0];
1958 i++, c++)
1959 if (strcmp(c->name, name) == 0 && c->index == idx) {
1960 strlcpy(c->name, name_new, sizeof(c->name));
1961 c->name[sizeof(c->name) - 1] = 0;
1962 c->options = options;
1963 c->index = idx_new;
1964 return i;
1965 }
1966 /* not found */
1967 return -1;
1968 }
1969
1970 bool console_suspend_enabled = 1;
1971 EXPORT_SYMBOL(console_suspend_enabled);
1972
1973 static int __init console_suspend_disable(char *str)
1974 {
1975 console_suspend_enabled = 0;
1976 return 1;
1977 }
1978 __setup("no_console_suspend", console_suspend_disable);
1979 module_param_named(console_suspend, console_suspend_enabled,
1980 bool, S_IRUGO | S_IWUSR);
1981 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
1982 " and hibernate operations");
1983
1984 /**
1985 * suspend_console - suspend the console subsystem
1986 *
1987 * This disables printk() while we go into suspend states
1988 */
1989 void suspend_console(void)
1990 {
1991 if (!console_suspend_enabled)
1992 return;
1993 printk("Suspending console(s) (use no_console_suspend to debug)\n");
1994 console_lock();
1995 console_suspended = 1;
1996 up_console_sem();
1997 }
1998
1999 void resume_console(void)
2000 {
2001 if (!console_suspend_enabled)
2002 return;
2003 down_console_sem();
2004 console_suspended = 0;
2005 console_unlock();
2006 }
2007
2008 /**
2009 * console_cpu_notify - print deferred console messages after CPU hotplug
2010 * @self: notifier struct
2011 * @action: CPU hotplug event
2012 * @hcpu: unused
2013 *
2014 * If printk() is called from a CPU that is not online yet, the messages
2015 * will be spooled but will not show up on the console. This function is
2016 * called when a new CPU comes online (or fails to come up), and ensures
2017 * that any such output gets printed.
2018 */
2019 static int console_cpu_notify(struct notifier_block *self,
2020 unsigned long action, void *hcpu)
2021 {
2022 switch (action) {
2023 case CPU_ONLINE:
2024 case CPU_DEAD:
2025 case CPU_DOWN_FAILED:
2026 case CPU_UP_CANCELED:
2027 console_lock();
2028 console_unlock();
2029 }
2030 return NOTIFY_OK;
2031 }
2032
2033 /**
2034 * console_lock - lock the console system for exclusive use.
2035 *
2036 * Acquires a lock which guarantees that the caller has
2037 * exclusive access to the console system and the console_drivers list.
2038 *
2039 * Can sleep, returns nothing.
2040 */
2041 void console_lock(void)
2042 {
2043 might_sleep();
2044
2045 down_console_sem();
2046 if (console_suspended)
2047 return;
2048 console_locked = 1;
2049 console_may_schedule = 1;
2050 }
2051 EXPORT_SYMBOL(console_lock);
2052
2053 /**
2054 * console_trylock - try to lock the console system for exclusive use.
2055 *
2056 * Tried to acquire a lock which guarantees that the caller has
2057 * exclusive access to the console system and the console_drivers list.
2058 *
2059 * returns 1 on success, and 0 on failure to acquire the lock.
2060 */
2061 int console_trylock(void)
2062 {
2063 if (down_trylock_console_sem())
2064 return 0;
2065 if (console_suspended) {
2066 up_console_sem();
2067 return 0;
2068 }
2069 console_locked = 1;
2070 console_may_schedule = 0;
2071 return 1;
2072 }
2073 EXPORT_SYMBOL(console_trylock);
2074
2075 int is_console_locked(void)
2076 {
2077 return console_locked;
2078 }
2079
2080 static void console_cont_flush(char *text, size_t size)
2081 {
2082 unsigned long flags;
2083 size_t len;
2084
2085 raw_spin_lock_irqsave(&logbuf_lock, flags);
2086
2087 if (!cont.len)
2088 goto out;
2089
2090 /*
2091 * We still queue earlier records, likely because the console was
2092 * busy. The earlier ones need to be printed before this one, we
2093 * did not flush any fragment so far, so just let it queue up.
2094 */
2095 if (console_seq < log_next_seq && !cont.cons)
2096 goto out;
2097
2098 len = cont_print_text(text, size);
2099 raw_spin_unlock(&logbuf_lock);
2100 stop_critical_timings();
2101 call_console_drivers(cont.level, text, len);
2102 start_critical_timings();
2103 local_irq_restore(flags);
2104 return;
2105 out:
2106 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2107 }
2108
2109 /**
2110 * console_unlock - unlock the console system
2111 *
2112 * Releases the console_lock which the caller holds on the console system
2113 * and the console driver list.
2114 *
2115 * While the console_lock was held, console output may have been buffered
2116 * by printk(). If this is the case, console_unlock(); emits
2117 * the output prior to releasing the lock.
2118 *
2119 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2120 *
2121 * console_unlock(); may be called from any context.
2122 */
2123 void console_unlock(void)
2124 {
2125 static char text[LOG_LINE_MAX + PREFIX_MAX];
2126 static u64 seen_seq;
2127 unsigned long flags;
2128 bool wake_klogd = false;
2129 bool retry;
2130
2131 if (console_suspended) {
2132 up_console_sem();
2133 return;
2134 }
2135
2136 console_may_schedule = 0;
2137
2138 /* flush buffered message fragment immediately to console */
2139 console_cont_flush(text, sizeof(text));
2140 again:
2141 for (;;) {
2142 struct printk_log *msg;
2143 size_t len;
2144 int level;
2145
2146 raw_spin_lock_irqsave(&logbuf_lock, flags);
2147 if (seen_seq != log_next_seq) {
2148 wake_klogd = true;
2149 seen_seq = log_next_seq;
2150 }
2151
2152 if (console_seq < log_first_seq) {
2153 len = sprintf(text, "** %u printk messages dropped ** ",
2154 (unsigned)(log_first_seq - console_seq));
2155
2156 /* messages are gone, move to first one */
2157 console_seq = log_first_seq;
2158 console_idx = log_first_idx;
2159 console_prev = 0;
2160 } else {
2161 len = 0;
2162 }
2163 skip:
2164 if (console_seq == log_next_seq)
2165 break;
2166
2167 msg = log_from_idx(console_idx);
2168 if (msg->flags & LOG_NOCONS) {
2169 /*
2170 * Skip record we have buffered and already printed
2171 * directly to the console when we received it.
2172 */
2173 console_idx = log_next(console_idx);
2174 console_seq++;
2175 /*
2176 * We will get here again when we register a new
2177 * CON_PRINTBUFFER console. Clear the flag so we
2178 * will properly dump everything later.
2179 */
2180 msg->flags &= ~LOG_NOCONS;
2181 console_prev = msg->flags;
2182 goto skip;
2183 }
2184
2185 level = msg->level;
2186 len += msg_print_text(msg, console_prev, false,
2187 text + len, sizeof(text) - len);
2188 console_idx = log_next(console_idx);
2189 console_seq++;
2190 console_prev = msg->flags;
2191 raw_spin_unlock(&logbuf_lock);
2192
2193 stop_critical_timings(); /* don't trace print latency */
2194 call_console_drivers(level, text, len);
2195 start_critical_timings();
2196 local_irq_restore(flags);
2197 }
2198 console_locked = 0;
2199
2200 /* Release the exclusive_console once it is used */
2201 if (unlikely(exclusive_console))
2202 exclusive_console = NULL;
2203
2204 raw_spin_unlock(&logbuf_lock);
2205
2206 up_console_sem();
2207
2208 /*
2209 * Someone could have filled up the buffer again, so re-check if there's
2210 * something to flush. In case we cannot trylock the console_sem again,
2211 * there's a new owner and the console_unlock() from them will do the
2212 * flush, no worries.
2213 */
2214 raw_spin_lock(&logbuf_lock);
2215 retry = console_seq != log_next_seq;
2216 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2217
2218 if (retry && console_trylock())
2219 goto again;
2220
2221 if (wake_klogd)
2222 wake_up_klogd();
2223 }
2224 EXPORT_SYMBOL(console_unlock);
2225
2226 /**
2227 * console_conditional_schedule - yield the CPU if required
2228 *
2229 * If the console code is currently allowed to sleep, and
2230 * if this CPU should yield the CPU to another task, do
2231 * so here.
2232 *
2233 * Must be called within console_lock();.
2234 */
2235 void __sched console_conditional_schedule(void)
2236 {
2237 if (console_may_schedule)
2238 cond_resched();
2239 }
2240 EXPORT_SYMBOL(console_conditional_schedule);
2241
2242 void console_unblank(void)
2243 {
2244 struct console *c;
2245
2246 /*
2247 * console_unblank can no longer be called in interrupt context unless
2248 * oops_in_progress is set to 1..
2249 */
2250 if (oops_in_progress) {
2251 if (down_trylock_console_sem() != 0)
2252 return;
2253 } else
2254 console_lock();
2255
2256 console_locked = 1;
2257 console_may_schedule = 0;
2258 for_each_console(c)
2259 if ((c->flags & CON_ENABLED) && c->unblank)
2260 c->unblank();
2261 console_unlock();
2262 }
2263
2264 /*
2265 * Return the console tty driver structure and its associated index
2266 */
2267 struct tty_driver *console_device(int *index)
2268 {
2269 struct console *c;
2270 struct tty_driver *driver = NULL;
2271
2272 console_lock();
2273 for_each_console(c) {
2274 if (!c->device)
2275 continue;
2276 driver = c->device(c, index);
2277 if (driver)
2278 break;
2279 }
2280 console_unlock();
2281 return driver;
2282 }
2283
2284 /*
2285 * Prevent further output on the passed console device so that (for example)
2286 * serial drivers can disable console output before suspending a port, and can
2287 * re-enable output afterwards.
2288 */
2289 void console_stop(struct console *console)
2290 {
2291 console_lock();
2292 console->flags &= ~CON_ENABLED;
2293 console_unlock();
2294 }
2295 EXPORT_SYMBOL(console_stop);
2296
2297 void console_start(struct console *console)
2298 {
2299 console_lock();
2300 console->flags |= CON_ENABLED;
2301 console_unlock();
2302 }
2303 EXPORT_SYMBOL(console_start);
2304
2305 static int __read_mostly keep_bootcon;
2306
2307 static int __init keep_bootcon_setup(char *str)
2308 {
2309 keep_bootcon = 1;
2310 pr_info("debug: skip boot console de-registration.\n");
2311
2312 return 0;
2313 }
2314
2315 early_param("keep_bootcon", keep_bootcon_setup);
2316
2317 /*
2318 * The console driver calls this routine during kernel initialization
2319 * to register the console printing procedure with printk() and to
2320 * print any messages that were printed by the kernel before the
2321 * console driver was initialized.
2322 *
2323 * This can happen pretty early during the boot process (because of
2324 * early_printk) - sometimes before setup_arch() completes - be careful
2325 * of what kernel features are used - they may not be initialised yet.
2326 *
2327 * There are two types of consoles - bootconsoles (early_printk) and
2328 * "real" consoles (everything which is not a bootconsole) which are
2329 * handled differently.
2330 * - Any number of bootconsoles can be registered at any time.
2331 * - As soon as a "real" console is registered, all bootconsoles
2332 * will be unregistered automatically.
2333 * - Once a "real" console is registered, any attempt to register a
2334 * bootconsoles will be rejected
2335 */
2336 void register_console(struct console *newcon)
2337 {
2338 int i;
2339 unsigned long flags;
2340 struct console *bcon = NULL;
2341 struct console_cmdline *c;
2342
2343 if (console_drivers)
2344 for_each_console(bcon)
2345 if (WARN(bcon == newcon,
2346 "console '%s%d' already registered\n",
2347 bcon->name, bcon->index))
2348 return;
2349
2350 /*
2351 * before we register a new CON_BOOT console, make sure we don't
2352 * already have a valid console
2353 */
2354 if (console_drivers && newcon->flags & CON_BOOT) {
2355 /* find the last or real console */
2356 for_each_console(bcon) {
2357 if (!(bcon->flags & CON_BOOT)) {
2358 pr_info("Too late to register bootconsole %s%d\n",
2359 newcon->name, newcon->index);
2360 return;
2361 }
2362 }
2363 }
2364
2365 if (console_drivers && console_drivers->flags & CON_BOOT)
2366 bcon = console_drivers;
2367
2368 if (preferred_console < 0 || bcon || !console_drivers)
2369 preferred_console = selected_console;
2370
2371 if (newcon->early_setup)
2372 newcon->early_setup();
2373
2374 /*
2375 * See if we want to use this console driver. If we
2376 * didn't select a console we take the first one
2377 * that registers here.
2378 */
2379 if (preferred_console < 0) {
2380 if (newcon->index < 0)
2381 newcon->index = 0;
2382 if (newcon->setup == NULL ||
2383 newcon->setup(newcon, NULL) == 0) {
2384 newcon->flags |= CON_ENABLED;
2385 if (newcon->device) {
2386 newcon->flags |= CON_CONSDEV;
2387 preferred_console = 0;
2388 }
2389 }
2390 }
2391
2392 /*
2393 * See if this console matches one we selected on
2394 * the command line.
2395 */
2396 for (i = 0, c = console_cmdline;
2397 i < MAX_CMDLINECONSOLES && c->name[0];
2398 i++, c++) {
2399 if (strcmp(c->name, newcon->name) != 0)
2400 continue;
2401 if (newcon->index >= 0 &&
2402 newcon->index != c->index)
2403 continue;
2404 if (newcon->index < 0)
2405 newcon->index = c->index;
2406
2407 if (_braille_register_console(newcon, c))
2408 return;
2409
2410 if (newcon->setup &&
2411 newcon->setup(newcon, console_cmdline[i].options) != 0)
2412 break;
2413 newcon->flags |= CON_ENABLED;
2414 newcon->index = c->index;
2415 if (i == selected_console) {
2416 newcon->flags |= CON_CONSDEV;
2417 preferred_console = selected_console;
2418 }
2419 break;
2420 }
2421
2422 if (!(newcon->flags & CON_ENABLED))
2423 return;
2424
2425 /*
2426 * If we have a bootconsole, and are switching to a real console,
2427 * don't print everything out again, since when the boot console, and
2428 * the real console are the same physical device, it's annoying to
2429 * see the beginning boot messages twice
2430 */
2431 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2432 newcon->flags &= ~CON_PRINTBUFFER;
2433
2434 /*
2435 * Put this console in the list - keep the
2436 * preferred driver at the head of the list.
2437 */
2438 console_lock();
2439 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2440 newcon->next = console_drivers;
2441 console_drivers = newcon;
2442 if (newcon->next)
2443 newcon->next->flags &= ~CON_CONSDEV;
2444 } else {
2445 newcon->next = console_drivers->next;
2446 console_drivers->next = newcon;
2447 }
2448 if (newcon->flags & CON_PRINTBUFFER) {
2449 /*
2450 * console_unlock(); will print out the buffered messages
2451 * for us.
2452 */
2453 raw_spin_lock_irqsave(&logbuf_lock, flags);
2454 console_seq = syslog_seq;
2455 console_idx = syslog_idx;
2456 console_prev = syslog_prev;
2457 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2458 /*
2459 * We're about to replay the log buffer. Only do this to the
2460 * just-registered console to avoid excessive message spam to
2461 * the already-registered consoles.
2462 */
2463 exclusive_console = newcon;
2464 }
2465 console_unlock();
2466 console_sysfs_notify();
2467
2468 /*
2469 * By unregistering the bootconsoles after we enable the real console
2470 * we get the "console xxx enabled" message on all the consoles -
2471 * boot consoles, real consoles, etc - this is to ensure that end
2472 * users know there might be something in the kernel's log buffer that
2473 * went to the bootconsole (that they do not see on the real console)
2474 */
2475 pr_info("%sconsole [%s%d] enabled\n",
2476 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2477 newcon->name, newcon->index);
2478 if (bcon &&
2479 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2480 !keep_bootcon) {
2481 /* We need to iterate through all boot consoles, to make
2482 * sure we print everything out, before we unregister them.
2483 */
2484 for_each_console(bcon)
2485 if (bcon->flags & CON_BOOT)
2486 unregister_console(bcon);
2487 }
2488 }
2489 EXPORT_SYMBOL(register_console);
2490
2491 int unregister_console(struct console *console)
2492 {
2493 struct console *a, *b;
2494 int res;
2495
2496 pr_info("%sconsole [%s%d] disabled\n",
2497 (console->flags & CON_BOOT) ? "boot" : "" ,
2498 console->name, console->index);
2499
2500 res = _braille_unregister_console(console);
2501 if (res)
2502 return res;
2503
2504 res = 1;
2505 console_lock();
2506 if (console_drivers == console) {
2507 console_drivers=console->next;
2508 res = 0;
2509 } else if (console_drivers) {
2510 for (a=console_drivers->next, b=console_drivers ;
2511 a; b=a, a=b->next) {
2512 if (a == console) {
2513 b->next = a->next;
2514 res = 0;
2515 break;
2516 }
2517 }
2518 }
2519
2520 /*
2521 * If this isn't the last console and it has CON_CONSDEV set, we
2522 * need to set it on the next preferred console.
2523 */
2524 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2525 console_drivers->flags |= CON_CONSDEV;
2526
2527 console->flags &= ~CON_ENABLED;
2528 console_unlock();
2529 console_sysfs_notify();
2530 return res;
2531 }
2532 EXPORT_SYMBOL(unregister_console);
2533
2534 static int __init printk_late_init(void)
2535 {
2536 struct console *con;
2537
2538 for_each_console(con) {
2539 if (!keep_bootcon && con->flags & CON_BOOT) {
2540 unregister_console(con);
2541 }
2542 }
2543 hotcpu_notifier(console_cpu_notify, 0);
2544 return 0;
2545 }
2546 late_initcall(printk_late_init);
2547
2548 #if defined CONFIG_PRINTK
2549 /*
2550 * Delayed printk version, for scheduler-internal messages:
2551 */
2552 #define PRINTK_PENDING_WAKEUP 0x01
2553 #define PRINTK_PENDING_OUTPUT 0x02
2554
2555 static DEFINE_PER_CPU(int, printk_pending);
2556
2557 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2558 {
2559 int pending = __this_cpu_xchg(printk_pending, 0);
2560
2561 if (pending & PRINTK_PENDING_OUTPUT) {
2562 /* If trylock fails, someone else is doing the printing */
2563 if (console_trylock())
2564 console_unlock();
2565 }
2566
2567 if (pending & PRINTK_PENDING_WAKEUP)
2568 wake_up_interruptible(&log_wait);
2569 }
2570
2571 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2572 .func = wake_up_klogd_work_func,
2573 .flags = IRQ_WORK_LAZY,
2574 };
2575
2576 void wake_up_klogd(void)
2577 {
2578 preempt_disable();
2579 if (waitqueue_active(&log_wait)) {
2580 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2581 irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2582 }
2583 preempt_enable();
2584 }
2585
2586 int printk_deferred(const char *fmt, ...)
2587 {
2588 va_list args;
2589 int r;
2590
2591 preempt_disable();
2592 va_start(args, fmt);
2593 r = vprintk_emit(0, SCHED_MESSAGE_LOGLEVEL, NULL, 0, fmt, args);
2594 va_end(args);
2595
2596 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2597 irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2598 preempt_enable();
2599
2600 return r;
2601 }
2602
2603 /*
2604 * printk rate limiting, lifted from the networking subsystem.
2605 *
2606 * This enforces a rate limit: not more than 10 kernel messages
2607 * every 5s to make a denial-of-service attack impossible.
2608 */
2609 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2610
2611 int __printk_ratelimit(const char *func)
2612 {
2613 return ___ratelimit(&printk_ratelimit_state, func);
2614 }
2615 EXPORT_SYMBOL(__printk_ratelimit);
2616
2617 /**
2618 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2619 * @caller_jiffies: pointer to caller's state
2620 * @interval_msecs: minimum interval between prints
2621 *
2622 * printk_timed_ratelimit() returns true if more than @interval_msecs
2623 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2624 * returned true.
2625 */
2626 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2627 unsigned int interval_msecs)
2628 {
2629 if (*caller_jiffies == 0
2630 || !time_in_range(jiffies, *caller_jiffies,
2631 *caller_jiffies
2632 + msecs_to_jiffies(interval_msecs))) {
2633 *caller_jiffies = jiffies;
2634 return true;
2635 }
2636 return false;
2637 }
2638 EXPORT_SYMBOL(printk_timed_ratelimit);
2639
2640 static DEFINE_SPINLOCK(dump_list_lock);
2641 static LIST_HEAD(dump_list);
2642
2643 /**
2644 * kmsg_dump_register - register a kernel log dumper.
2645 * @dumper: pointer to the kmsg_dumper structure
2646 *
2647 * Adds a kernel log dumper to the system. The dump callback in the
2648 * structure will be called when the kernel oopses or panics and must be
2649 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2650 */
2651 int kmsg_dump_register(struct kmsg_dumper *dumper)
2652 {
2653 unsigned long flags;
2654 int err = -EBUSY;
2655
2656 /* The dump callback needs to be set */
2657 if (!dumper->dump)
2658 return -EINVAL;
2659
2660 spin_lock_irqsave(&dump_list_lock, flags);
2661 /* Don't allow registering multiple times */
2662 if (!dumper->registered) {
2663 dumper->registered = 1;
2664 list_add_tail_rcu(&dumper->list, &dump_list);
2665 err = 0;
2666 }
2667 spin_unlock_irqrestore(&dump_list_lock, flags);
2668
2669 return err;
2670 }
2671 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2672
2673 /**
2674 * kmsg_dump_unregister - unregister a kmsg dumper.
2675 * @dumper: pointer to the kmsg_dumper structure
2676 *
2677 * Removes a dump device from the system. Returns zero on success and
2678 * %-EINVAL otherwise.
2679 */
2680 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2681 {
2682 unsigned long flags;
2683 int err = -EINVAL;
2684
2685 spin_lock_irqsave(&dump_list_lock, flags);
2686 if (dumper->registered) {
2687 dumper->registered = 0;
2688 list_del_rcu(&dumper->list);
2689 err = 0;
2690 }
2691 spin_unlock_irqrestore(&dump_list_lock, flags);
2692 synchronize_rcu();
2693
2694 return err;
2695 }
2696 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2697
2698 static bool always_kmsg_dump;
2699 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2700
2701 /**
2702 * kmsg_dump - dump kernel log to kernel message dumpers.
2703 * @reason: the reason (oops, panic etc) for dumping
2704 *
2705 * Call each of the registered dumper's dump() callback, which can
2706 * retrieve the kmsg records with kmsg_dump_get_line() or
2707 * kmsg_dump_get_buffer().
2708 */
2709 void kmsg_dump(enum kmsg_dump_reason reason)
2710 {
2711 struct kmsg_dumper *dumper;
2712 unsigned long flags;
2713
2714 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2715 return;
2716
2717 rcu_read_lock();
2718 list_for_each_entry_rcu(dumper, &dump_list, list) {
2719 if (dumper->max_reason && reason > dumper->max_reason)
2720 continue;
2721
2722 /* initialize iterator with data about the stored records */
2723 dumper->active = true;
2724
2725 raw_spin_lock_irqsave(&logbuf_lock, flags);
2726 dumper->cur_seq = clear_seq;
2727 dumper->cur_idx = clear_idx;
2728 dumper->next_seq = log_next_seq;
2729 dumper->next_idx = log_next_idx;
2730 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2731
2732 /* invoke dumper which will iterate over records */
2733 dumper->dump(dumper, reason);
2734
2735 /* reset iterator */
2736 dumper->active = false;
2737 }
2738 rcu_read_unlock();
2739 }
2740
2741 /**
2742 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2743 * @dumper: registered kmsg dumper
2744 * @syslog: include the "<4>" prefixes
2745 * @line: buffer to copy the line to
2746 * @size: maximum size of the buffer
2747 * @len: length of line placed into buffer
2748 *
2749 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2750 * record, and copy one record into the provided buffer.
2751 *
2752 * Consecutive calls will return the next available record moving
2753 * towards the end of the buffer with the youngest messages.
2754 *
2755 * A return value of FALSE indicates that there are no more records to
2756 * read.
2757 *
2758 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2759 */
2760 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2761 char *line, size_t size, size_t *len)
2762 {
2763 struct printk_log *msg;
2764 size_t l = 0;
2765 bool ret = false;
2766
2767 if (!dumper->active)
2768 goto out;
2769
2770 if (dumper->cur_seq < log_first_seq) {
2771 /* messages are gone, move to first available one */
2772 dumper->cur_seq = log_first_seq;
2773 dumper->cur_idx = log_first_idx;
2774 }
2775
2776 /* last entry */
2777 if (dumper->cur_seq >= log_next_seq)
2778 goto out;
2779
2780 msg = log_from_idx(dumper->cur_idx);
2781 l = msg_print_text(msg, 0, syslog, line, size);
2782
2783 dumper->cur_idx = log_next(dumper->cur_idx);
2784 dumper->cur_seq++;
2785 ret = true;
2786 out:
2787 if (len)
2788 *len = l;
2789 return ret;
2790 }
2791
2792 /**
2793 * kmsg_dump_get_line - retrieve one kmsg log line
2794 * @dumper: registered kmsg dumper
2795 * @syslog: include the "<4>" prefixes
2796 * @line: buffer to copy the line to
2797 * @size: maximum size of the buffer
2798 * @len: length of line placed into buffer
2799 *
2800 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2801 * record, and copy one record into the provided buffer.
2802 *
2803 * Consecutive calls will return the next available record moving
2804 * towards the end of the buffer with the youngest messages.
2805 *
2806 * A return value of FALSE indicates that there are no more records to
2807 * read.
2808 */
2809 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2810 char *line, size_t size, size_t *len)
2811 {
2812 unsigned long flags;
2813 bool ret;
2814
2815 raw_spin_lock_irqsave(&logbuf_lock, flags);
2816 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2817 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2818
2819 return ret;
2820 }
2821 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2822
2823 /**
2824 * kmsg_dump_get_buffer - copy kmsg log lines
2825 * @dumper: registered kmsg dumper
2826 * @syslog: include the "<4>" prefixes
2827 * @buf: buffer to copy the line to
2828 * @size: maximum size of the buffer
2829 * @len: length of line placed into buffer
2830 *
2831 * Start at the end of the kmsg buffer and fill the provided buffer
2832 * with as many of the the *youngest* kmsg records that fit into it.
2833 * If the buffer is large enough, all available kmsg records will be
2834 * copied with a single call.
2835 *
2836 * Consecutive calls will fill the buffer with the next block of
2837 * available older records, not including the earlier retrieved ones.
2838 *
2839 * A return value of FALSE indicates that there are no more records to
2840 * read.
2841 */
2842 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2843 char *buf, size_t size, size_t *len)
2844 {
2845 unsigned long flags;
2846 u64 seq;
2847 u32 idx;
2848 u64 next_seq;
2849 u32 next_idx;
2850 enum log_flags prev;
2851 size_t l = 0;
2852 bool ret = false;
2853
2854 if (!dumper->active)
2855 goto out;
2856
2857 raw_spin_lock_irqsave(&logbuf_lock, flags);
2858 if (dumper->cur_seq < log_first_seq) {
2859 /* messages are gone, move to first available one */
2860 dumper->cur_seq = log_first_seq;
2861 dumper->cur_idx = log_first_idx;
2862 }
2863
2864 /* last entry */
2865 if (dumper->cur_seq >= dumper->next_seq) {
2866 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2867 goto out;
2868 }
2869
2870 /* calculate length of entire buffer */
2871 seq = dumper->cur_seq;
2872 idx = dumper->cur_idx;
2873 prev = 0;
2874 while (seq < dumper->next_seq) {
2875 struct printk_log *msg = log_from_idx(idx);
2876
2877 l += msg_print_text(msg, prev, true, NULL, 0);
2878 idx = log_next(idx);
2879 seq++;
2880 prev = msg->flags;
2881 }
2882
2883 /* move first record forward until length fits into the buffer */
2884 seq = dumper->cur_seq;
2885 idx = dumper->cur_idx;
2886 prev = 0;
2887 while (l > size && seq < dumper->next_seq) {
2888 struct printk_log *msg = log_from_idx(idx);
2889
2890 l -= msg_print_text(msg, prev, true, NULL, 0);
2891 idx = log_next(idx);
2892 seq++;
2893 prev = msg->flags;
2894 }
2895
2896 /* last message in next interation */
2897 next_seq = seq;
2898 next_idx = idx;
2899
2900 l = 0;
2901 while (seq < dumper->next_seq) {
2902 struct printk_log *msg = log_from_idx(idx);
2903
2904 l += msg_print_text(msg, prev, syslog, buf + l, size - l);
2905 idx = log_next(idx);
2906 seq++;
2907 prev = msg->flags;
2908 }
2909
2910 dumper->next_seq = next_seq;
2911 dumper->next_idx = next_idx;
2912 ret = true;
2913 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2914 out:
2915 if (len)
2916 *len = l;
2917 return ret;
2918 }
2919 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
2920
2921 /**
2922 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
2923 * @dumper: registered kmsg dumper
2924 *
2925 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2926 * kmsg_dump_get_buffer() can be called again and used multiple
2927 * times within the same dumper.dump() callback.
2928 *
2929 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
2930 */
2931 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
2932 {
2933 dumper->cur_seq = clear_seq;
2934 dumper->cur_idx = clear_idx;
2935 dumper->next_seq = log_next_seq;
2936 dumper->next_idx = log_next_idx;
2937 }
2938
2939 /**
2940 * kmsg_dump_rewind - reset the interator
2941 * @dumper: registered kmsg dumper
2942 *
2943 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2944 * kmsg_dump_get_buffer() can be called again and used multiple
2945 * times within the same dumper.dump() callback.
2946 */
2947 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
2948 {
2949 unsigned long flags;
2950
2951 raw_spin_lock_irqsave(&logbuf_lock, flags);
2952 kmsg_dump_rewind_nolock(dumper);
2953 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2954 }
2955 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
2956
2957 static char dump_stack_arch_desc_str[128];
2958
2959 /**
2960 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
2961 * @fmt: printf-style format string
2962 * @...: arguments for the format string
2963 *
2964 * The configured string will be printed right after utsname during task
2965 * dumps. Usually used to add arch-specific system identifiers. If an
2966 * arch wants to make use of such an ID string, it should initialize this
2967 * as soon as possible during boot.
2968 */
2969 void __init dump_stack_set_arch_desc(const char *fmt, ...)
2970 {
2971 va_list args;
2972
2973 va_start(args, fmt);
2974 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
2975 fmt, args);
2976 va_end(args);
2977 }
2978
2979 /**
2980 * dump_stack_print_info - print generic debug info for dump_stack()
2981 * @log_lvl: log level
2982 *
2983 * Arch-specific dump_stack() implementations can use this function to
2984 * print out the same debug information as the generic dump_stack().
2985 */
2986 void dump_stack_print_info(const char *log_lvl)
2987 {
2988 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
2989 log_lvl, raw_smp_processor_id(), current->pid, current->comm,
2990 print_tainted(), init_utsname()->release,
2991 (int)strcspn(init_utsname()->version, " "),
2992 init_utsname()->version);
2993
2994 if (dump_stack_arch_desc_str[0] != '\0')
2995 printk("%sHardware name: %s\n",
2996 log_lvl, dump_stack_arch_desc_str);
2997
2998 print_worker_info(log_lvl, current);
2999 }
3000
3001 /**
3002 * show_regs_print_info - print generic debug info for show_regs()
3003 * @log_lvl: log level
3004 *
3005 * show_regs() implementations can use this function to print out generic
3006 * debug information.
3007 */
3008 void show_regs_print_info(const char *log_lvl)
3009 {
3010 dump_stack_print_info(log_lvl);
3011
3012 printk("%stask: %p ti: %p task.ti: %p\n",
3013 log_lvl, current, current_thread_info(),
3014 task_thread_info(current));
3015 }
3016
3017 #endif