]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/printk/printk.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[mirror_ubuntu-artful-kernel.git] / kernel / printk / printk.c
1 /*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/delay.h>
30 #include <linux/smp.h>
31 #include <linux/security.h>
32 #include <linux/bootmem.h>
33 #include <linux/memblock.h>
34 #include <linux/syscalls.h>
35 #include <linux/kexec.h>
36 #include <linux/kdb.h>
37 #include <linux/ratelimit.h>
38 #include <linux/kmsg_dump.h>
39 #include <linux/syslog.h>
40 #include <linux/cpu.h>
41 #include <linux/notifier.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/utsname.h>
46 #include <linux/ctype.h>
47 #include <linux/uio.h>
48 #include <linux/sched/clock.h>
49
50 #include <linux/uaccess.h>
51 #include <asm/sections.h>
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/printk.h>
55
56 #include "console_cmdline.h"
57 #include "braille.h"
58 #include "internal.h"
59
60 int console_printk[4] = {
61 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */
62 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */
63 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */
64 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */
65 };
66
67 /*
68 * Low level drivers may need that to know if they can schedule in
69 * their unblank() callback or not. So let's export it.
70 */
71 int oops_in_progress;
72 EXPORT_SYMBOL(oops_in_progress);
73
74 /*
75 * console_sem protects the console_drivers list, and also
76 * provides serialisation for access to the entire console
77 * driver system.
78 */
79 static DEFINE_SEMAPHORE(console_sem);
80 struct console *console_drivers;
81 EXPORT_SYMBOL_GPL(console_drivers);
82
83 #ifdef CONFIG_LOCKDEP
84 static struct lockdep_map console_lock_dep_map = {
85 .name = "console_lock"
86 };
87 #endif
88
89 enum devkmsg_log_bits {
90 __DEVKMSG_LOG_BIT_ON = 0,
91 __DEVKMSG_LOG_BIT_OFF,
92 __DEVKMSG_LOG_BIT_LOCK,
93 };
94
95 enum devkmsg_log_masks {
96 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON),
97 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF),
98 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK),
99 };
100
101 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
102 #define DEVKMSG_LOG_MASK_DEFAULT 0
103
104 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
105
106 static int __control_devkmsg(char *str)
107 {
108 if (!str)
109 return -EINVAL;
110
111 if (!strncmp(str, "on", 2)) {
112 devkmsg_log = DEVKMSG_LOG_MASK_ON;
113 return 2;
114 } else if (!strncmp(str, "off", 3)) {
115 devkmsg_log = DEVKMSG_LOG_MASK_OFF;
116 return 3;
117 } else if (!strncmp(str, "ratelimit", 9)) {
118 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
119 return 9;
120 }
121 return -EINVAL;
122 }
123
124 static int __init control_devkmsg(char *str)
125 {
126 if (__control_devkmsg(str) < 0)
127 return 1;
128
129 /*
130 * Set sysctl string accordingly:
131 */
132 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) {
133 memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
134 strncpy(devkmsg_log_str, "on", 2);
135 } else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) {
136 memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
137 strncpy(devkmsg_log_str, "off", 3);
138 }
139 /* else "ratelimit" which is set by default. */
140
141 /*
142 * Sysctl cannot change it anymore. The kernel command line setting of
143 * this parameter is to force the setting to be permanent throughout the
144 * runtime of the system. This is a precation measure against userspace
145 * trying to be a smarta** and attempting to change it up on us.
146 */
147 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
148
149 return 0;
150 }
151 __setup("printk.devkmsg=", control_devkmsg);
152
153 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
154
155 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
156 void __user *buffer, size_t *lenp, loff_t *ppos)
157 {
158 char old_str[DEVKMSG_STR_MAX_SIZE];
159 unsigned int old;
160 int err;
161
162 if (write) {
163 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
164 return -EINVAL;
165
166 old = devkmsg_log;
167 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
168 }
169
170 err = proc_dostring(table, write, buffer, lenp, ppos);
171 if (err)
172 return err;
173
174 if (write) {
175 err = __control_devkmsg(devkmsg_log_str);
176
177 /*
178 * Do not accept an unknown string OR a known string with
179 * trailing crap...
180 */
181 if (err < 0 || (err + 1 != *lenp)) {
182
183 /* ... and restore old setting. */
184 devkmsg_log = old;
185 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
186
187 return -EINVAL;
188 }
189 }
190
191 return 0;
192 }
193
194 /*
195 * Number of registered extended console drivers.
196 *
197 * If extended consoles are present, in-kernel cont reassembly is disabled
198 * and each fragment is stored as a separate log entry with proper
199 * continuation flag so that every emitted message has full metadata. This
200 * doesn't change the result for regular consoles or /proc/kmsg. For
201 * /dev/kmsg, as long as the reader concatenates messages according to
202 * consecutive continuation flags, the end result should be the same too.
203 */
204 static int nr_ext_console_drivers;
205
206 /*
207 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
208 * macros instead of functions so that _RET_IP_ contains useful information.
209 */
210 #define down_console_sem() do { \
211 down(&console_sem);\
212 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
213 } while (0)
214
215 static int __down_trylock_console_sem(unsigned long ip)
216 {
217 int lock_failed;
218 unsigned long flags;
219
220 /*
221 * Here and in __up_console_sem() we need to be in safe mode,
222 * because spindump/WARN/etc from under console ->lock will
223 * deadlock in printk()->down_trylock_console_sem() otherwise.
224 */
225 printk_safe_enter_irqsave(flags);
226 lock_failed = down_trylock(&console_sem);
227 printk_safe_exit_irqrestore(flags);
228
229 if (lock_failed)
230 return 1;
231 mutex_acquire(&console_lock_dep_map, 0, 1, ip);
232 return 0;
233 }
234 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
235
236 static void __up_console_sem(unsigned long ip)
237 {
238 unsigned long flags;
239
240 mutex_release(&console_lock_dep_map, 1, ip);
241
242 printk_safe_enter_irqsave(flags);
243 up(&console_sem);
244 printk_safe_exit_irqrestore(flags);
245 }
246 #define up_console_sem() __up_console_sem(_RET_IP_)
247
248 /*
249 * This is used for debugging the mess that is the VT code by
250 * keeping track if we have the console semaphore held. It's
251 * definitely not the perfect debug tool (we don't know if _WE_
252 * hold it and are racing, but it helps tracking those weird code
253 * paths in the console code where we end up in places I want
254 * locked without the console sempahore held).
255 */
256 static int console_locked, console_suspended;
257
258 /*
259 * If exclusive_console is non-NULL then only this console is to be printed to.
260 */
261 static struct console *exclusive_console;
262
263 /*
264 * Array of consoles built from command line options (console=)
265 */
266
267 #define MAX_CMDLINECONSOLES 8
268
269 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
270
271 static int selected_console = -1;
272 static int preferred_console = -1;
273 int console_set_on_cmdline;
274 EXPORT_SYMBOL(console_set_on_cmdline);
275
276 /* Flag: console code may call schedule() */
277 static int console_may_schedule;
278
279 /*
280 * The printk log buffer consists of a chain of concatenated variable
281 * length records. Every record starts with a record header, containing
282 * the overall length of the record.
283 *
284 * The heads to the first and last entry in the buffer, as well as the
285 * sequence numbers of these entries are maintained when messages are
286 * stored.
287 *
288 * If the heads indicate available messages, the length in the header
289 * tells the start next message. A length == 0 for the next message
290 * indicates a wrap-around to the beginning of the buffer.
291 *
292 * Every record carries the monotonic timestamp in microseconds, as well as
293 * the standard userspace syslog level and syslog facility. The usual
294 * kernel messages use LOG_KERN; userspace-injected messages always carry
295 * a matching syslog facility, by default LOG_USER. The origin of every
296 * message can be reliably determined that way.
297 *
298 * The human readable log message directly follows the message header. The
299 * length of the message text is stored in the header, the stored message
300 * is not terminated.
301 *
302 * Optionally, a message can carry a dictionary of properties (key/value pairs),
303 * to provide userspace with a machine-readable message context.
304 *
305 * Examples for well-defined, commonly used property names are:
306 * DEVICE=b12:8 device identifier
307 * b12:8 block dev_t
308 * c127:3 char dev_t
309 * n8 netdev ifindex
310 * +sound:card0 subsystem:devname
311 * SUBSYSTEM=pci driver-core subsystem name
312 *
313 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
314 * follows directly after a '=' character. Every property is terminated by
315 * a '\0' character. The last property is not terminated.
316 *
317 * Example of a message structure:
318 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
319 * 0008 34 00 record is 52 bytes long
320 * 000a 0b 00 text is 11 bytes long
321 * 000c 1f 00 dictionary is 23 bytes long
322 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
323 * 0010 69 74 27 73 20 61 20 6c "it's a l"
324 * 69 6e 65 "ine"
325 * 001b 44 45 56 49 43 "DEVIC"
326 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
327 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
328 * 67 "g"
329 * 0032 00 00 00 padding to next message header
330 *
331 * The 'struct printk_log' buffer header must never be directly exported to
332 * userspace, it is a kernel-private implementation detail that might
333 * need to be changed in the future, when the requirements change.
334 *
335 * /dev/kmsg exports the structured data in the following line format:
336 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
337 *
338 * Users of the export format should ignore possible additional values
339 * separated by ',', and find the message after the ';' character.
340 *
341 * The optional key/value pairs are attached as continuation lines starting
342 * with a space character and terminated by a newline. All possible
343 * non-prinatable characters are escaped in the "\xff" notation.
344 */
345
346 enum log_flags {
347 LOG_NOCONS = 1, /* already flushed, do not print to console */
348 LOG_NEWLINE = 2, /* text ended with a newline */
349 LOG_PREFIX = 4, /* text started with a prefix */
350 LOG_CONT = 8, /* text is a fragment of a continuation line */
351 };
352
353 struct printk_log {
354 u64 ts_nsec; /* timestamp in nanoseconds */
355 u16 len; /* length of entire record */
356 u16 text_len; /* length of text buffer */
357 u16 dict_len; /* length of dictionary buffer */
358 u8 facility; /* syslog facility */
359 u8 flags:5; /* internal record flags */
360 u8 level:3; /* syslog level */
361 }
362 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
363 __packed __aligned(4)
364 #endif
365 ;
366
367 /*
368 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken
369 * within the scheduler's rq lock. It must be released before calling
370 * console_unlock() or anything else that might wake up a process.
371 */
372 DEFINE_RAW_SPINLOCK(logbuf_lock);
373
374 /*
375 * Helper macros to lock/unlock logbuf_lock and switch between
376 * printk-safe/unsafe modes.
377 */
378 #define logbuf_lock_irq() \
379 do { \
380 printk_safe_enter_irq(); \
381 raw_spin_lock(&logbuf_lock); \
382 } while (0)
383
384 #define logbuf_unlock_irq() \
385 do { \
386 raw_spin_unlock(&logbuf_lock); \
387 printk_safe_exit_irq(); \
388 } while (0)
389
390 #define logbuf_lock_irqsave(flags) \
391 do { \
392 printk_safe_enter_irqsave(flags); \
393 raw_spin_lock(&logbuf_lock); \
394 } while (0)
395
396 #define logbuf_unlock_irqrestore(flags) \
397 do { \
398 raw_spin_unlock(&logbuf_lock); \
399 printk_safe_exit_irqrestore(flags); \
400 } while (0)
401
402 #ifdef CONFIG_PRINTK
403 DECLARE_WAIT_QUEUE_HEAD(log_wait);
404 /* the next printk record to read by syslog(READ) or /proc/kmsg */
405 static u64 syslog_seq;
406 static u32 syslog_idx;
407 static size_t syslog_partial;
408
409 /* index and sequence number of the first record stored in the buffer */
410 static u64 log_first_seq;
411 static u32 log_first_idx;
412
413 /* index and sequence number of the next record to store in the buffer */
414 static u64 log_next_seq;
415 static u32 log_next_idx;
416
417 /* the next printk record to write to the console */
418 static u64 console_seq;
419 static u32 console_idx;
420
421 /* the next printk record to read after the last 'clear' command */
422 static u64 clear_seq;
423 static u32 clear_idx;
424
425 #define PREFIX_MAX 32
426 #define LOG_LINE_MAX (1024 - PREFIX_MAX)
427
428 #define LOG_LEVEL(v) ((v) & 0x07)
429 #define LOG_FACILITY(v) ((v) >> 3 & 0xff)
430
431 /* record buffer */
432 #define LOG_ALIGN __alignof__(struct printk_log)
433 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
434 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
435 static char *log_buf = __log_buf;
436 static u32 log_buf_len = __LOG_BUF_LEN;
437
438 /* Return log buffer address */
439 char *log_buf_addr_get(void)
440 {
441 return log_buf;
442 }
443
444 /* Return log buffer size */
445 u32 log_buf_len_get(void)
446 {
447 return log_buf_len;
448 }
449
450 /* human readable text of the record */
451 static char *log_text(const struct printk_log *msg)
452 {
453 return (char *)msg + sizeof(struct printk_log);
454 }
455
456 /* optional key/value pair dictionary attached to the record */
457 static char *log_dict(const struct printk_log *msg)
458 {
459 return (char *)msg + sizeof(struct printk_log) + msg->text_len;
460 }
461
462 /* get record by index; idx must point to valid msg */
463 static struct printk_log *log_from_idx(u32 idx)
464 {
465 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
466
467 /*
468 * A length == 0 record is the end of buffer marker. Wrap around and
469 * read the message at the start of the buffer.
470 */
471 if (!msg->len)
472 return (struct printk_log *)log_buf;
473 return msg;
474 }
475
476 /* get next record; idx must point to valid msg */
477 static u32 log_next(u32 idx)
478 {
479 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
480
481 /* length == 0 indicates the end of the buffer; wrap */
482 /*
483 * A length == 0 record is the end of buffer marker. Wrap around and
484 * read the message at the start of the buffer as *this* one, and
485 * return the one after that.
486 */
487 if (!msg->len) {
488 msg = (struct printk_log *)log_buf;
489 return msg->len;
490 }
491 return idx + msg->len;
492 }
493
494 /*
495 * Check whether there is enough free space for the given message.
496 *
497 * The same values of first_idx and next_idx mean that the buffer
498 * is either empty or full.
499 *
500 * If the buffer is empty, we must respect the position of the indexes.
501 * They cannot be reset to the beginning of the buffer.
502 */
503 static int logbuf_has_space(u32 msg_size, bool empty)
504 {
505 u32 free;
506
507 if (log_next_idx > log_first_idx || empty)
508 free = max(log_buf_len - log_next_idx, log_first_idx);
509 else
510 free = log_first_idx - log_next_idx;
511
512 /*
513 * We need space also for an empty header that signalizes wrapping
514 * of the buffer.
515 */
516 return free >= msg_size + sizeof(struct printk_log);
517 }
518
519 static int log_make_free_space(u32 msg_size)
520 {
521 while (log_first_seq < log_next_seq &&
522 !logbuf_has_space(msg_size, false)) {
523 /* drop old messages until we have enough contiguous space */
524 log_first_idx = log_next(log_first_idx);
525 log_first_seq++;
526 }
527
528 if (clear_seq < log_first_seq) {
529 clear_seq = log_first_seq;
530 clear_idx = log_first_idx;
531 }
532
533 /* sequence numbers are equal, so the log buffer is empty */
534 if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
535 return 0;
536
537 return -ENOMEM;
538 }
539
540 /* compute the message size including the padding bytes */
541 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
542 {
543 u32 size;
544
545 size = sizeof(struct printk_log) + text_len + dict_len;
546 *pad_len = (-size) & (LOG_ALIGN - 1);
547 size += *pad_len;
548
549 return size;
550 }
551
552 /*
553 * Define how much of the log buffer we could take at maximum. The value
554 * must be greater than two. Note that only half of the buffer is available
555 * when the index points to the middle.
556 */
557 #define MAX_LOG_TAKE_PART 4
558 static const char trunc_msg[] = "<truncated>";
559
560 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
561 u16 *dict_len, u32 *pad_len)
562 {
563 /*
564 * The message should not take the whole buffer. Otherwise, it might
565 * get removed too soon.
566 */
567 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
568 if (*text_len > max_text_len)
569 *text_len = max_text_len;
570 /* enable the warning message */
571 *trunc_msg_len = strlen(trunc_msg);
572 /* disable the "dict" completely */
573 *dict_len = 0;
574 /* compute the size again, count also the warning message */
575 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
576 }
577
578 /* insert record into the buffer, discard old ones, update heads */
579 static int log_store(int facility, int level,
580 enum log_flags flags, u64 ts_nsec,
581 const char *dict, u16 dict_len,
582 const char *text, u16 text_len)
583 {
584 struct printk_log *msg;
585 u32 size, pad_len;
586 u16 trunc_msg_len = 0;
587
588 /* number of '\0' padding bytes to next message */
589 size = msg_used_size(text_len, dict_len, &pad_len);
590
591 if (log_make_free_space(size)) {
592 /* truncate the message if it is too long for empty buffer */
593 size = truncate_msg(&text_len, &trunc_msg_len,
594 &dict_len, &pad_len);
595 /* survive when the log buffer is too small for trunc_msg */
596 if (log_make_free_space(size))
597 return 0;
598 }
599
600 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
601 /*
602 * This message + an additional empty header does not fit
603 * at the end of the buffer. Add an empty header with len == 0
604 * to signify a wrap around.
605 */
606 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
607 log_next_idx = 0;
608 }
609
610 /* fill message */
611 msg = (struct printk_log *)(log_buf + log_next_idx);
612 memcpy(log_text(msg), text, text_len);
613 msg->text_len = text_len;
614 if (trunc_msg_len) {
615 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
616 msg->text_len += trunc_msg_len;
617 }
618 memcpy(log_dict(msg), dict, dict_len);
619 msg->dict_len = dict_len;
620 msg->facility = facility;
621 msg->level = level & 7;
622 msg->flags = flags & 0x1f;
623 if (ts_nsec > 0)
624 msg->ts_nsec = ts_nsec;
625 else
626 msg->ts_nsec = local_clock();
627 memset(log_dict(msg) + dict_len, 0, pad_len);
628 msg->len = size;
629
630 /* insert message */
631 log_next_idx += msg->len;
632 log_next_seq++;
633
634 return msg->text_len;
635 }
636
637 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
638
639 static int syslog_action_restricted(int type)
640 {
641 if (dmesg_restrict)
642 return 1;
643 /*
644 * Unless restricted, we allow "read all" and "get buffer size"
645 * for everybody.
646 */
647 return type != SYSLOG_ACTION_READ_ALL &&
648 type != SYSLOG_ACTION_SIZE_BUFFER;
649 }
650
651 int check_syslog_permissions(int type, int source)
652 {
653 /*
654 * If this is from /proc/kmsg and we've already opened it, then we've
655 * already done the capabilities checks at open time.
656 */
657 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
658 goto ok;
659
660 if (syslog_action_restricted(type)) {
661 if (capable(CAP_SYSLOG))
662 goto ok;
663 /*
664 * For historical reasons, accept CAP_SYS_ADMIN too, with
665 * a warning.
666 */
667 if (capable(CAP_SYS_ADMIN)) {
668 pr_warn_once("%s (%d): Attempt to access syslog with "
669 "CAP_SYS_ADMIN but no CAP_SYSLOG "
670 "(deprecated).\n",
671 current->comm, task_pid_nr(current));
672 goto ok;
673 }
674 return -EPERM;
675 }
676 ok:
677 return security_syslog(type);
678 }
679 EXPORT_SYMBOL_GPL(check_syslog_permissions);
680
681 static void append_char(char **pp, char *e, char c)
682 {
683 if (*pp < e)
684 *(*pp)++ = c;
685 }
686
687 static ssize_t msg_print_ext_header(char *buf, size_t size,
688 struct printk_log *msg, u64 seq)
689 {
690 u64 ts_usec = msg->ts_nsec;
691
692 do_div(ts_usec, 1000);
693
694 return scnprintf(buf, size, "%u,%llu,%llu,%c;",
695 (msg->facility << 3) | msg->level, seq, ts_usec,
696 msg->flags & LOG_CONT ? 'c' : '-');
697 }
698
699 static ssize_t msg_print_ext_body(char *buf, size_t size,
700 char *dict, size_t dict_len,
701 char *text, size_t text_len)
702 {
703 char *p = buf, *e = buf + size;
704 size_t i;
705
706 /* escape non-printable characters */
707 for (i = 0; i < text_len; i++) {
708 unsigned char c = text[i];
709
710 if (c < ' ' || c >= 127 || c == '\\')
711 p += scnprintf(p, e - p, "\\x%02x", c);
712 else
713 append_char(&p, e, c);
714 }
715 append_char(&p, e, '\n');
716
717 if (dict_len) {
718 bool line = true;
719
720 for (i = 0; i < dict_len; i++) {
721 unsigned char c = dict[i];
722
723 if (line) {
724 append_char(&p, e, ' ');
725 line = false;
726 }
727
728 if (c == '\0') {
729 append_char(&p, e, '\n');
730 line = true;
731 continue;
732 }
733
734 if (c < ' ' || c >= 127 || c == '\\') {
735 p += scnprintf(p, e - p, "\\x%02x", c);
736 continue;
737 }
738
739 append_char(&p, e, c);
740 }
741 append_char(&p, e, '\n');
742 }
743
744 return p - buf;
745 }
746
747 /* /dev/kmsg - userspace message inject/listen interface */
748 struct devkmsg_user {
749 u64 seq;
750 u32 idx;
751 struct ratelimit_state rs;
752 struct mutex lock;
753 char buf[CONSOLE_EXT_LOG_MAX];
754 };
755
756 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
757 {
758 char *buf, *line;
759 int level = default_message_loglevel;
760 int facility = 1; /* LOG_USER */
761 struct file *file = iocb->ki_filp;
762 struct devkmsg_user *user = file->private_data;
763 size_t len = iov_iter_count(from);
764 ssize_t ret = len;
765
766 if (!user || len > LOG_LINE_MAX)
767 return -EINVAL;
768
769 /* Ignore when user logging is disabled. */
770 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
771 return len;
772
773 /* Ratelimit when not explicitly enabled. */
774 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
775 if (!___ratelimit(&user->rs, current->comm))
776 return ret;
777 }
778
779 buf = kmalloc(len+1, GFP_KERNEL);
780 if (buf == NULL)
781 return -ENOMEM;
782
783 buf[len] = '\0';
784 if (!copy_from_iter_full(buf, len, from)) {
785 kfree(buf);
786 return -EFAULT;
787 }
788
789 /*
790 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
791 * the decimal value represents 32bit, the lower 3 bit are the log
792 * level, the rest are the log facility.
793 *
794 * If no prefix or no userspace facility is specified, we
795 * enforce LOG_USER, to be able to reliably distinguish
796 * kernel-generated messages from userspace-injected ones.
797 */
798 line = buf;
799 if (line[0] == '<') {
800 char *endp = NULL;
801 unsigned int u;
802
803 u = simple_strtoul(line + 1, &endp, 10);
804 if (endp && endp[0] == '>') {
805 level = LOG_LEVEL(u);
806 if (LOG_FACILITY(u) != 0)
807 facility = LOG_FACILITY(u);
808 endp++;
809 len -= endp - line;
810 line = endp;
811 }
812 }
813
814 printk_emit(facility, level, NULL, 0, "%s", line);
815 kfree(buf);
816 return ret;
817 }
818
819 static ssize_t devkmsg_read(struct file *file, char __user *buf,
820 size_t count, loff_t *ppos)
821 {
822 struct devkmsg_user *user = file->private_data;
823 struct printk_log *msg;
824 size_t len;
825 ssize_t ret;
826
827 if (!user)
828 return -EBADF;
829
830 ret = mutex_lock_interruptible(&user->lock);
831 if (ret)
832 return ret;
833
834 logbuf_lock_irq();
835 while (user->seq == log_next_seq) {
836 if (file->f_flags & O_NONBLOCK) {
837 ret = -EAGAIN;
838 logbuf_unlock_irq();
839 goto out;
840 }
841
842 logbuf_unlock_irq();
843 ret = wait_event_interruptible(log_wait,
844 user->seq != log_next_seq);
845 if (ret)
846 goto out;
847 logbuf_lock_irq();
848 }
849
850 if (user->seq < log_first_seq) {
851 /* our last seen message is gone, return error and reset */
852 user->idx = log_first_idx;
853 user->seq = log_first_seq;
854 ret = -EPIPE;
855 logbuf_unlock_irq();
856 goto out;
857 }
858
859 msg = log_from_idx(user->idx);
860 len = msg_print_ext_header(user->buf, sizeof(user->buf),
861 msg, user->seq);
862 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
863 log_dict(msg), msg->dict_len,
864 log_text(msg), msg->text_len);
865
866 user->idx = log_next(user->idx);
867 user->seq++;
868 logbuf_unlock_irq();
869
870 if (len > count) {
871 ret = -EINVAL;
872 goto out;
873 }
874
875 if (copy_to_user(buf, user->buf, len)) {
876 ret = -EFAULT;
877 goto out;
878 }
879 ret = len;
880 out:
881 mutex_unlock(&user->lock);
882 return ret;
883 }
884
885 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
886 {
887 struct devkmsg_user *user = file->private_data;
888 loff_t ret = 0;
889
890 if (!user)
891 return -EBADF;
892 if (offset)
893 return -ESPIPE;
894
895 logbuf_lock_irq();
896 switch (whence) {
897 case SEEK_SET:
898 /* the first record */
899 user->idx = log_first_idx;
900 user->seq = log_first_seq;
901 break;
902 case SEEK_DATA:
903 /*
904 * The first record after the last SYSLOG_ACTION_CLEAR,
905 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
906 * changes no global state, and does not clear anything.
907 */
908 user->idx = clear_idx;
909 user->seq = clear_seq;
910 break;
911 case SEEK_END:
912 /* after the last record */
913 user->idx = log_next_idx;
914 user->seq = log_next_seq;
915 break;
916 default:
917 ret = -EINVAL;
918 }
919 logbuf_unlock_irq();
920 return ret;
921 }
922
923 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
924 {
925 struct devkmsg_user *user = file->private_data;
926 int ret = 0;
927
928 if (!user)
929 return POLLERR|POLLNVAL;
930
931 poll_wait(file, &log_wait, wait);
932
933 logbuf_lock_irq();
934 if (user->seq < log_next_seq) {
935 /* return error when data has vanished underneath us */
936 if (user->seq < log_first_seq)
937 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
938 else
939 ret = POLLIN|POLLRDNORM;
940 }
941 logbuf_unlock_irq();
942
943 return ret;
944 }
945
946 static int devkmsg_open(struct inode *inode, struct file *file)
947 {
948 struct devkmsg_user *user;
949 int err;
950
951 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
952 return -EPERM;
953
954 /* write-only does not need any file context */
955 if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
956 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
957 SYSLOG_FROM_READER);
958 if (err)
959 return err;
960 }
961
962 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
963 if (!user)
964 return -ENOMEM;
965
966 ratelimit_default_init(&user->rs);
967 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
968
969 mutex_init(&user->lock);
970
971 logbuf_lock_irq();
972 user->idx = log_first_idx;
973 user->seq = log_first_seq;
974 logbuf_unlock_irq();
975
976 file->private_data = user;
977 return 0;
978 }
979
980 static int devkmsg_release(struct inode *inode, struct file *file)
981 {
982 struct devkmsg_user *user = file->private_data;
983
984 if (!user)
985 return 0;
986
987 ratelimit_state_exit(&user->rs);
988
989 mutex_destroy(&user->lock);
990 kfree(user);
991 return 0;
992 }
993
994 const struct file_operations kmsg_fops = {
995 .open = devkmsg_open,
996 .read = devkmsg_read,
997 .write_iter = devkmsg_write,
998 .llseek = devkmsg_llseek,
999 .poll = devkmsg_poll,
1000 .release = devkmsg_release,
1001 };
1002
1003 #ifdef CONFIG_KEXEC_CORE
1004 /*
1005 * This appends the listed symbols to /proc/vmcore
1006 *
1007 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
1008 * obtain access to symbols that are otherwise very difficult to locate. These
1009 * symbols are specifically used so that utilities can access and extract the
1010 * dmesg log from a vmcore file after a crash.
1011 */
1012 void log_buf_kexec_setup(void)
1013 {
1014 VMCOREINFO_SYMBOL(log_buf);
1015 VMCOREINFO_SYMBOL(log_buf_len);
1016 VMCOREINFO_SYMBOL(log_first_idx);
1017 VMCOREINFO_SYMBOL(clear_idx);
1018 VMCOREINFO_SYMBOL(log_next_idx);
1019 /*
1020 * Export struct printk_log size and field offsets. User space tools can
1021 * parse it and detect any changes to structure down the line.
1022 */
1023 VMCOREINFO_STRUCT_SIZE(printk_log);
1024 VMCOREINFO_OFFSET(printk_log, ts_nsec);
1025 VMCOREINFO_OFFSET(printk_log, len);
1026 VMCOREINFO_OFFSET(printk_log, text_len);
1027 VMCOREINFO_OFFSET(printk_log, dict_len);
1028 }
1029 #endif
1030
1031 /* requested log_buf_len from kernel cmdline */
1032 static unsigned long __initdata new_log_buf_len;
1033
1034 /* we practice scaling the ring buffer by powers of 2 */
1035 static void __init log_buf_len_update(unsigned size)
1036 {
1037 if (size)
1038 size = roundup_pow_of_two(size);
1039 if (size > log_buf_len)
1040 new_log_buf_len = size;
1041 }
1042
1043 /* save requested log_buf_len since it's too early to process it */
1044 static int __init log_buf_len_setup(char *str)
1045 {
1046 unsigned size = memparse(str, &str);
1047
1048 log_buf_len_update(size);
1049
1050 return 0;
1051 }
1052 early_param("log_buf_len", log_buf_len_setup);
1053
1054 #ifdef CONFIG_SMP
1055 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1056
1057 static void __init log_buf_add_cpu(void)
1058 {
1059 unsigned int cpu_extra;
1060
1061 /*
1062 * archs should set up cpu_possible_bits properly with
1063 * set_cpu_possible() after setup_arch() but just in
1064 * case lets ensure this is valid.
1065 */
1066 if (num_possible_cpus() == 1)
1067 return;
1068
1069 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1070
1071 /* by default this will only continue through for large > 64 CPUs */
1072 if (cpu_extra <= __LOG_BUF_LEN / 2)
1073 return;
1074
1075 pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1076 __LOG_CPU_MAX_BUF_LEN);
1077 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1078 cpu_extra);
1079 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1080
1081 log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1082 }
1083 #else /* !CONFIG_SMP */
1084 static inline void log_buf_add_cpu(void) {}
1085 #endif /* CONFIG_SMP */
1086
1087 void __init setup_log_buf(int early)
1088 {
1089 unsigned long flags;
1090 char *new_log_buf;
1091 int free;
1092
1093 if (log_buf != __log_buf)
1094 return;
1095
1096 if (!early && !new_log_buf_len)
1097 log_buf_add_cpu();
1098
1099 if (!new_log_buf_len)
1100 return;
1101
1102 if (early) {
1103 new_log_buf =
1104 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
1105 } else {
1106 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
1107 LOG_ALIGN);
1108 }
1109
1110 if (unlikely(!new_log_buf)) {
1111 pr_err("log_buf_len: %ld bytes not available\n",
1112 new_log_buf_len);
1113 return;
1114 }
1115
1116 logbuf_lock_irqsave(flags);
1117 log_buf_len = new_log_buf_len;
1118 log_buf = new_log_buf;
1119 new_log_buf_len = 0;
1120 free = __LOG_BUF_LEN - log_next_idx;
1121 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1122 logbuf_unlock_irqrestore(flags);
1123
1124 pr_info("log_buf_len: %d bytes\n", log_buf_len);
1125 pr_info("early log buf free: %d(%d%%)\n",
1126 free, (free * 100) / __LOG_BUF_LEN);
1127 }
1128
1129 static bool __read_mostly ignore_loglevel;
1130
1131 static int __init ignore_loglevel_setup(char *str)
1132 {
1133 ignore_loglevel = true;
1134 pr_info("debug: ignoring loglevel setting.\n");
1135
1136 return 0;
1137 }
1138
1139 early_param("ignore_loglevel", ignore_loglevel_setup);
1140 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1141 MODULE_PARM_DESC(ignore_loglevel,
1142 "ignore loglevel setting (prints all kernel messages to the console)");
1143
1144 static bool suppress_message_printing(int level)
1145 {
1146 return (level >= console_loglevel && !ignore_loglevel);
1147 }
1148
1149 #ifdef CONFIG_BOOT_PRINTK_DELAY
1150
1151 static int boot_delay; /* msecs delay after each printk during bootup */
1152 static unsigned long long loops_per_msec; /* based on boot_delay */
1153
1154 static int __init boot_delay_setup(char *str)
1155 {
1156 unsigned long lpj;
1157
1158 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
1159 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1160
1161 get_option(&str, &boot_delay);
1162 if (boot_delay > 10 * 1000)
1163 boot_delay = 0;
1164
1165 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1166 "HZ: %d, loops_per_msec: %llu\n",
1167 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1168 return 0;
1169 }
1170 early_param("boot_delay", boot_delay_setup);
1171
1172 static void boot_delay_msec(int level)
1173 {
1174 unsigned long long k;
1175 unsigned long timeout;
1176
1177 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
1178 || suppress_message_printing(level)) {
1179 return;
1180 }
1181
1182 k = (unsigned long long)loops_per_msec * boot_delay;
1183
1184 timeout = jiffies + msecs_to_jiffies(boot_delay);
1185 while (k) {
1186 k--;
1187 cpu_relax();
1188 /*
1189 * use (volatile) jiffies to prevent
1190 * compiler reduction; loop termination via jiffies
1191 * is secondary and may or may not happen.
1192 */
1193 if (time_after(jiffies, timeout))
1194 break;
1195 touch_nmi_watchdog();
1196 }
1197 }
1198 #else
1199 static inline void boot_delay_msec(int level)
1200 {
1201 }
1202 #endif
1203
1204 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1205 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1206
1207 static size_t print_time(u64 ts, char *buf)
1208 {
1209 unsigned long rem_nsec;
1210
1211 if (!printk_time)
1212 return 0;
1213
1214 rem_nsec = do_div(ts, 1000000000);
1215
1216 if (!buf)
1217 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1218
1219 return sprintf(buf, "[%5lu.%06lu] ",
1220 (unsigned long)ts, rem_nsec / 1000);
1221 }
1222
1223 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1224 {
1225 size_t len = 0;
1226 unsigned int prefix = (msg->facility << 3) | msg->level;
1227
1228 if (syslog) {
1229 if (buf) {
1230 len += sprintf(buf, "<%u>", prefix);
1231 } else {
1232 len += 3;
1233 if (prefix > 999)
1234 len += 3;
1235 else if (prefix > 99)
1236 len += 2;
1237 else if (prefix > 9)
1238 len++;
1239 }
1240 }
1241
1242 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1243 return len;
1244 }
1245
1246 static size_t msg_print_text(const struct printk_log *msg, bool syslog, char *buf, size_t size)
1247 {
1248 const char *text = log_text(msg);
1249 size_t text_size = msg->text_len;
1250 size_t len = 0;
1251
1252 do {
1253 const char *next = memchr(text, '\n', text_size);
1254 size_t text_len;
1255
1256 if (next) {
1257 text_len = next - text;
1258 next++;
1259 text_size -= next - text;
1260 } else {
1261 text_len = text_size;
1262 }
1263
1264 if (buf) {
1265 if (print_prefix(msg, syslog, NULL) +
1266 text_len + 1 >= size - len)
1267 break;
1268
1269 len += print_prefix(msg, syslog, buf + len);
1270 memcpy(buf + len, text, text_len);
1271 len += text_len;
1272 buf[len++] = '\n';
1273 } else {
1274 /* SYSLOG_ACTION_* buffer size only calculation */
1275 len += print_prefix(msg, syslog, NULL);
1276 len += text_len;
1277 len++;
1278 }
1279
1280 text = next;
1281 } while (text);
1282
1283 return len;
1284 }
1285
1286 static int syslog_print(char __user *buf, int size)
1287 {
1288 char *text;
1289 struct printk_log *msg;
1290 int len = 0;
1291
1292 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1293 if (!text)
1294 return -ENOMEM;
1295
1296 while (size > 0) {
1297 size_t n;
1298 size_t skip;
1299
1300 logbuf_lock_irq();
1301 if (syslog_seq < log_first_seq) {
1302 /* messages are gone, move to first one */
1303 syslog_seq = log_first_seq;
1304 syslog_idx = log_first_idx;
1305 syslog_partial = 0;
1306 }
1307 if (syslog_seq == log_next_seq) {
1308 logbuf_unlock_irq();
1309 break;
1310 }
1311
1312 skip = syslog_partial;
1313 msg = log_from_idx(syslog_idx);
1314 n = msg_print_text(msg, true, text, LOG_LINE_MAX + PREFIX_MAX);
1315 if (n - syslog_partial <= size) {
1316 /* message fits into buffer, move forward */
1317 syslog_idx = log_next(syslog_idx);
1318 syslog_seq++;
1319 n -= syslog_partial;
1320 syslog_partial = 0;
1321 } else if (!len){
1322 /* partial read(), remember position */
1323 n = size;
1324 syslog_partial += n;
1325 } else
1326 n = 0;
1327 logbuf_unlock_irq();
1328
1329 if (!n)
1330 break;
1331
1332 if (copy_to_user(buf, text + skip, n)) {
1333 if (!len)
1334 len = -EFAULT;
1335 break;
1336 }
1337
1338 len += n;
1339 size -= n;
1340 buf += n;
1341 }
1342
1343 kfree(text);
1344 return len;
1345 }
1346
1347 static int syslog_print_all(char __user *buf, int size, bool clear)
1348 {
1349 char *text;
1350 int len = 0;
1351
1352 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1353 if (!text)
1354 return -ENOMEM;
1355
1356 logbuf_lock_irq();
1357 if (buf) {
1358 u64 next_seq;
1359 u64 seq;
1360 u32 idx;
1361
1362 /*
1363 * Find first record that fits, including all following records,
1364 * into the user-provided buffer for this dump.
1365 */
1366 seq = clear_seq;
1367 idx = clear_idx;
1368 while (seq < log_next_seq) {
1369 struct printk_log *msg = log_from_idx(idx);
1370
1371 len += msg_print_text(msg, true, NULL, 0);
1372 idx = log_next(idx);
1373 seq++;
1374 }
1375
1376 /* move first record forward until length fits into the buffer */
1377 seq = clear_seq;
1378 idx = clear_idx;
1379 while (len > size && seq < log_next_seq) {
1380 struct printk_log *msg = log_from_idx(idx);
1381
1382 len -= msg_print_text(msg, true, NULL, 0);
1383 idx = log_next(idx);
1384 seq++;
1385 }
1386
1387 /* last message fitting into this dump */
1388 next_seq = log_next_seq;
1389
1390 len = 0;
1391 while (len >= 0 && seq < next_seq) {
1392 struct printk_log *msg = log_from_idx(idx);
1393 int textlen;
1394
1395 textlen = msg_print_text(msg, true, text,
1396 LOG_LINE_MAX + PREFIX_MAX);
1397 if (textlen < 0) {
1398 len = textlen;
1399 break;
1400 }
1401 idx = log_next(idx);
1402 seq++;
1403
1404 logbuf_unlock_irq();
1405 if (copy_to_user(buf + len, text, textlen))
1406 len = -EFAULT;
1407 else
1408 len += textlen;
1409 logbuf_lock_irq();
1410
1411 if (seq < log_first_seq) {
1412 /* messages are gone, move to next one */
1413 seq = log_first_seq;
1414 idx = log_first_idx;
1415 }
1416 }
1417 }
1418
1419 if (clear) {
1420 clear_seq = log_next_seq;
1421 clear_idx = log_next_idx;
1422 }
1423 logbuf_unlock_irq();
1424
1425 kfree(text);
1426 return len;
1427 }
1428
1429 int do_syslog(int type, char __user *buf, int len, int source)
1430 {
1431 bool clear = false;
1432 static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1433 int error;
1434
1435 error = check_syslog_permissions(type, source);
1436 if (error)
1437 goto out;
1438
1439 switch (type) {
1440 case SYSLOG_ACTION_CLOSE: /* Close log */
1441 break;
1442 case SYSLOG_ACTION_OPEN: /* Open log */
1443 break;
1444 case SYSLOG_ACTION_READ: /* Read from log */
1445 error = -EINVAL;
1446 if (!buf || len < 0)
1447 goto out;
1448 error = 0;
1449 if (!len)
1450 goto out;
1451 if (!access_ok(VERIFY_WRITE, buf, len)) {
1452 error = -EFAULT;
1453 goto out;
1454 }
1455 error = wait_event_interruptible(log_wait,
1456 syslog_seq != log_next_seq);
1457 if (error)
1458 goto out;
1459 error = syslog_print(buf, len);
1460 break;
1461 /* Read/clear last kernel messages */
1462 case SYSLOG_ACTION_READ_CLEAR:
1463 clear = true;
1464 /* FALL THRU */
1465 /* Read last kernel messages */
1466 case SYSLOG_ACTION_READ_ALL:
1467 error = -EINVAL;
1468 if (!buf || len < 0)
1469 goto out;
1470 error = 0;
1471 if (!len)
1472 goto out;
1473 if (!access_ok(VERIFY_WRITE, buf, len)) {
1474 error = -EFAULT;
1475 goto out;
1476 }
1477 error = syslog_print_all(buf, len, clear);
1478 break;
1479 /* Clear ring buffer */
1480 case SYSLOG_ACTION_CLEAR:
1481 syslog_print_all(NULL, 0, true);
1482 break;
1483 /* Disable logging to console */
1484 case SYSLOG_ACTION_CONSOLE_OFF:
1485 if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1486 saved_console_loglevel = console_loglevel;
1487 console_loglevel = minimum_console_loglevel;
1488 break;
1489 /* Enable logging to console */
1490 case SYSLOG_ACTION_CONSOLE_ON:
1491 if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1492 console_loglevel = saved_console_loglevel;
1493 saved_console_loglevel = LOGLEVEL_DEFAULT;
1494 }
1495 break;
1496 /* Set level of messages printed to console */
1497 case SYSLOG_ACTION_CONSOLE_LEVEL:
1498 error = -EINVAL;
1499 if (len < 1 || len > 8)
1500 goto out;
1501 if (len < minimum_console_loglevel)
1502 len = minimum_console_loglevel;
1503 console_loglevel = len;
1504 /* Implicitly re-enable logging to console */
1505 saved_console_loglevel = LOGLEVEL_DEFAULT;
1506 error = 0;
1507 break;
1508 /* Number of chars in the log buffer */
1509 case SYSLOG_ACTION_SIZE_UNREAD:
1510 logbuf_lock_irq();
1511 if (syslog_seq < log_first_seq) {
1512 /* messages are gone, move to first one */
1513 syslog_seq = log_first_seq;
1514 syslog_idx = log_first_idx;
1515 syslog_partial = 0;
1516 }
1517 if (source == SYSLOG_FROM_PROC) {
1518 /*
1519 * Short-cut for poll(/"proc/kmsg") which simply checks
1520 * for pending data, not the size; return the count of
1521 * records, not the length.
1522 */
1523 error = log_next_seq - syslog_seq;
1524 } else {
1525 u64 seq = syslog_seq;
1526 u32 idx = syslog_idx;
1527
1528 error = 0;
1529 while (seq < log_next_seq) {
1530 struct printk_log *msg = log_from_idx(idx);
1531
1532 error += msg_print_text(msg, true, NULL, 0);
1533 idx = log_next(idx);
1534 seq++;
1535 }
1536 error -= syslog_partial;
1537 }
1538 logbuf_unlock_irq();
1539 break;
1540 /* Size of the log buffer */
1541 case SYSLOG_ACTION_SIZE_BUFFER:
1542 error = log_buf_len;
1543 break;
1544 default:
1545 error = -EINVAL;
1546 break;
1547 }
1548 out:
1549 return error;
1550 }
1551
1552 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1553 {
1554 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1555 }
1556
1557 /*
1558 * Call the console drivers, asking them to write out
1559 * log_buf[start] to log_buf[end - 1].
1560 * The console_lock must be held.
1561 */
1562 static void call_console_drivers(const char *ext_text, size_t ext_len,
1563 const char *text, size_t len)
1564 {
1565 struct console *con;
1566
1567 trace_console_rcuidle(text, len);
1568
1569 if (!console_drivers)
1570 return;
1571
1572 for_each_console(con) {
1573 if (exclusive_console && con != exclusive_console)
1574 continue;
1575 if (!(con->flags & CON_ENABLED))
1576 continue;
1577 if (!con->write)
1578 continue;
1579 if (!cpu_online(smp_processor_id()) &&
1580 !(con->flags & CON_ANYTIME))
1581 continue;
1582 if (con->flags & CON_EXTENDED)
1583 con->write(con, ext_text, ext_len);
1584 else
1585 con->write(con, text, len);
1586 }
1587 }
1588
1589 int printk_delay_msec __read_mostly;
1590
1591 static inline void printk_delay(void)
1592 {
1593 if (unlikely(printk_delay_msec)) {
1594 int m = printk_delay_msec;
1595
1596 while (m--) {
1597 mdelay(1);
1598 touch_nmi_watchdog();
1599 }
1600 }
1601 }
1602
1603 /*
1604 * Continuation lines are buffered, and not committed to the record buffer
1605 * until the line is complete, or a race forces it. The line fragments
1606 * though, are printed immediately to the consoles to ensure everything has
1607 * reached the console in case of a kernel crash.
1608 */
1609 static struct cont {
1610 char buf[LOG_LINE_MAX];
1611 size_t len; /* length == 0 means unused buffer */
1612 struct task_struct *owner; /* task of first print*/
1613 u64 ts_nsec; /* time of first print */
1614 u8 level; /* log level of first message */
1615 u8 facility; /* log facility of first message */
1616 enum log_flags flags; /* prefix, newline flags */
1617 } cont;
1618
1619 static void cont_flush(void)
1620 {
1621 if (cont.len == 0)
1622 return;
1623
1624 log_store(cont.facility, cont.level, cont.flags, cont.ts_nsec,
1625 NULL, 0, cont.buf, cont.len);
1626 cont.len = 0;
1627 }
1628
1629 static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len)
1630 {
1631 /*
1632 * If ext consoles are present, flush and skip in-kernel
1633 * continuation. See nr_ext_console_drivers definition. Also, if
1634 * the line gets too long, split it up in separate records.
1635 */
1636 if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1637 cont_flush();
1638 return false;
1639 }
1640
1641 if (!cont.len) {
1642 cont.facility = facility;
1643 cont.level = level;
1644 cont.owner = current;
1645 cont.ts_nsec = local_clock();
1646 cont.flags = flags;
1647 }
1648
1649 memcpy(cont.buf + cont.len, text, len);
1650 cont.len += len;
1651
1652 // The original flags come from the first line,
1653 // but later continuations can add a newline.
1654 if (flags & LOG_NEWLINE) {
1655 cont.flags |= LOG_NEWLINE;
1656 cont_flush();
1657 }
1658
1659 if (cont.len > (sizeof(cont.buf) * 80) / 100)
1660 cont_flush();
1661
1662 return true;
1663 }
1664
1665 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1666 {
1667 /*
1668 * If an earlier line was buffered, and we're a continuation
1669 * write from the same process, try to add it to the buffer.
1670 */
1671 if (cont.len) {
1672 if (cont.owner == current && (lflags & LOG_CONT)) {
1673 if (cont_add(facility, level, lflags, text, text_len))
1674 return text_len;
1675 }
1676 /* Otherwise, make sure it's flushed */
1677 cont_flush();
1678 }
1679
1680 /* Skip empty continuation lines that couldn't be added - they just flush */
1681 if (!text_len && (lflags & LOG_CONT))
1682 return 0;
1683
1684 /* If it doesn't end in a newline, try to buffer the current line */
1685 if (!(lflags & LOG_NEWLINE)) {
1686 if (cont_add(facility, level, lflags, text, text_len))
1687 return text_len;
1688 }
1689
1690 /* Store it in the record log */
1691 return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len);
1692 }
1693
1694 asmlinkage int vprintk_emit(int facility, int level,
1695 const char *dict, size_t dictlen,
1696 const char *fmt, va_list args)
1697 {
1698 static char textbuf[LOG_LINE_MAX];
1699 char *text = textbuf;
1700 size_t text_len = 0;
1701 enum log_flags lflags = 0;
1702 unsigned long flags;
1703 int printed_len = 0;
1704 bool in_sched = false;
1705
1706 if (level == LOGLEVEL_SCHED) {
1707 level = LOGLEVEL_DEFAULT;
1708 in_sched = true;
1709 }
1710
1711 boot_delay_msec(level);
1712 printk_delay();
1713
1714 /* This stops the holder of console_sem just where we want him */
1715 logbuf_lock_irqsave(flags);
1716 /*
1717 * The printf needs to come first; we need the syslog
1718 * prefix which might be passed-in as a parameter.
1719 */
1720 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1721
1722 /* mark and strip a trailing newline */
1723 if (text_len && text[text_len-1] == '\n') {
1724 text_len--;
1725 lflags |= LOG_NEWLINE;
1726 }
1727
1728 /* strip kernel syslog prefix and extract log level or control flags */
1729 if (facility == 0) {
1730 int kern_level;
1731
1732 while ((kern_level = printk_get_level(text)) != 0) {
1733 switch (kern_level) {
1734 case '0' ... '7':
1735 if (level == LOGLEVEL_DEFAULT)
1736 level = kern_level - '0';
1737 /* fallthrough */
1738 case 'd': /* KERN_DEFAULT */
1739 lflags |= LOG_PREFIX;
1740 break;
1741 case 'c': /* KERN_CONT */
1742 lflags |= LOG_CONT;
1743 }
1744
1745 text_len -= 2;
1746 text += 2;
1747 }
1748 }
1749
1750 if (level == LOGLEVEL_DEFAULT)
1751 level = default_message_loglevel;
1752
1753 if (dict)
1754 lflags |= LOG_PREFIX|LOG_NEWLINE;
1755
1756 printed_len += log_output(facility, level, lflags, dict, dictlen, text, text_len);
1757
1758 logbuf_unlock_irqrestore(flags);
1759
1760 /* If called from the scheduler, we can not call up(). */
1761 if (!in_sched) {
1762 /*
1763 * Try to acquire and then immediately release the console
1764 * semaphore. The release will print out buffers and wake up
1765 * /dev/kmsg and syslog() users.
1766 */
1767 if (console_trylock())
1768 console_unlock();
1769 }
1770
1771 return printed_len;
1772 }
1773 EXPORT_SYMBOL(vprintk_emit);
1774
1775 asmlinkage int vprintk(const char *fmt, va_list args)
1776 {
1777 return vprintk_func(fmt, args);
1778 }
1779 EXPORT_SYMBOL(vprintk);
1780
1781 asmlinkage int printk_emit(int facility, int level,
1782 const char *dict, size_t dictlen,
1783 const char *fmt, ...)
1784 {
1785 va_list args;
1786 int r;
1787
1788 va_start(args, fmt);
1789 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1790 va_end(args);
1791
1792 return r;
1793 }
1794 EXPORT_SYMBOL(printk_emit);
1795
1796 int vprintk_default(const char *fmt, va_list args)
1797 {
1798 int r;
1799
1800 #ifdef CONFIG_KGDB_KDB
1801 /* Allow to pass printk() to kdb but avoid a recursion. */
1802 if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) {
1803 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1804 return r;
1805 }
1806 #endif
1807 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1808
1809 return r;
1810 }
1811 EXPORT_SYMBOL_GPL(vprintk_default);
1812
1813 /**
1814 * printk - print a kernel message
1815 * @fmt: format string
1816 *
1817 * This is printk(). It can be called from any context. We want it to work.
1818 *
1819 * We try to grab the console_lock. If we succeed, it's easy - we log the
1820 * output and call the console drivers. If we fail to get the semaphore, we
1821 * place the output into the log buffer and return. The current holder of
1822 * the console_sem will notice the new output in console_unlock(); and will
1823 * send it to the consoles before releasing the lock.
1824 *
1825 * One effect of this deferred printing is that code which calls printk() and
1826 * then changes console_loglevel may break. This is because console_loglevel
1827 * is inspected when the actual printing occurs.
1828 *
1829 * See also:
1830 * printf(3)
1831 *
1832 * See the vsnprintf() documentation for format string extensions over C99.
1833 */
1834 asmlinkage __visible int printk(const char *fmt, ...)
1835 {
1836 va_list args;
1837 int r;
1838
1839 va_start(args, fmt);
1840 r = vprintk_func(fmt, args);
1841 va_end(args);
1842
1843 return r;
1844 }
1845 EXPORT_SYMBOL(printk);
1846
1847 #else /* CONFIG_PRINTK */
1848
1849 #define LOG_LINE_MAX 0
1850 #define PREFIX_MAX 0
1851
1852 static u64 syslog_seq;
1853 static u32 syslog_idx;
1854 static u64 console_seq;
1855 static u32 console_idx;
1856 static u64 log_first_seq;
1857 static u32 log_first_idx;
1858 static u64 log_next_seq;
1859 static char *log_text(const struct printk_log *msg) { return NULL; }
1860 static char *log_dict(const struct printk_log *msg) { return NULL; }
1861 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1862 static u32 log_next(u32 idx) { return 0; }
1863 static ssize_t msg_print_ext_header(char *buf, size_t size,
1864 struct printk_log *msg,
1865 u64 seq) { return 0; }
1866 static ssize_t msg_print_ext_body(char *buf, size_t size,
1867 char *dict, size_t dict_len,
1868 char *text, size_t text_len) { return 0; }
1869 static void call_console_drivers(const char *ext_text, size_t ext_len,
1870 const char *text, size_t len) {}
1871 static size_t msg_print_text(const struct printk_log *msg,
1872 bool syslog, char *buf, size_t size) { return 0; }
1873 static bool suppress_message_printing(int level) { return false; }
1874
1875 #endif /* CONFIG_PRINTK */
1876
1877 #ifdef CONFIG_EARLY_PRINTK
1878 struct console *early_console;
1879
1880 asmlinkage __visible void early_printk(const char *fmt, ...)
1881 {
1882 va_list ap;
1883 char buf[512];
1884 int n;
1885
1886 if (!early_console)
1887 return;
1888
1889 va_start(ap, fmt);
1890 n = vscnprintf(buf, sizeof(buf), fmt, ap);
1891 va_end(ap);
1892
1893 early_console->write(early_console, buf, n);
1894 }
1895 #endif
1896
1897 static int __add_preferred_console(char *name, int idx, char *options,
1898 char *brl_options)
1899 {
1900 struct console_cmdline *c;
1901 int i;
1902
1903 /*
1904 * See if this tty is not yet registered, and
1905 * if we have a slot free.
1906 */
1907 for (i = 0, c = console_cmdline;
1908 i < MAX_CMDLINECONSOLES && c->name[0];
1909 i++, c++) {
1910 if (strcmp(c->name, name) == 0 && c->index == idx) {
1911 if (!brl_options)
1912 selected_console = i;
1913 return 0;
1914 }
1915 }
1916 if (i == MAX_CMDLINECONSOLES)
1917 return -E2BIG;
1918 if (!brl_options)
1919 selected_console = i;
1920 strlcpy(c->name, name, sizeof(c->name));
1921 c->options = options;
1922 braille_set_options(c, brl_options);
1923
1924 c->index = idx;
1925 return 0;
1926 }
1927 /*
1928 * Set up a console. Called via do_early_param() in init/main.c
1929 * for each "console=" parameter in the boot command line.
1930 */
1931 static int __init console_setup(char *str)
1932 {
1933 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
1934 char *s, *options, *brl_options = NULL;
1935 int idx;
1936
1937 if (_braille_console_setup(&str, &brl_options))
1938 return 1;
1939
1940 /*
1941 * Decode str into name, index, options.
1942 */
1943 if (str[0] >= '0' && str[0] <= '9') {
1944 strcpy(buf, "ttyS");
1945 strncpy(buf + 4, str, sizeof(buf) - 5);
1946 } else {
1947 strncpy(buf, str, sizeof(buf) - 1);
1948 }
1949 buf[sizeof(buf) - 1] = 0;
1950 options = strchr(str, ',');
1951 if (options)
1952 *(options++) = 0;
1953 #ifdef __sparc__
1954 if (!strcmp(str, "ttya"))
1955 strcpy(buf, "ttyS0");
1956 if (!strcmp(str, "ttyb"))
1957 strcpy(buf, "ttyS1");
1958 #endif
1959 for (s = buf; *s; s++)
1960 if (isdigit(*s) || *s == ',')
1961 break;
1962 idx = simple_strtoul(s, NULL, 10);
1963 *s = 0;
1964
1965 __add_preferred_console(buf, idx, options, brl_options);
1966 console_set_on_cmdline = 1;
1967 return 1;
1968 }
1969 __setup("console=", console_setup);
1970
1971 /**
1972 * add_preferred_console - add a device to the list of preferred consoles.
1973 * @name: device name
1974 * @idx: device index
1975 * @options: options for this console
1976 *
1977 * The last preferred console added will be used for kernel messages
1978 * and stdin/out/err for init. Normally this is used by console_setup
1979 * above to handle user-supplied console arguments; however it can also
1980 * be used by arch-specific code either to override the user or more
1981 * commonly to provide a default console (ie from PROM variables) when
1982 * the user has not supplied one.
1983 */
1984 int add_preferred_console(char *name, int idx, char *options)
1985 {
1986 return __add_preferred_console(name, idx, options, NULL);
1987 }
1988
1989 bool console_suspend_enabled = true;
1990 EXPORT_SYMBOL(console_suspend_enabled);
1991
1992 static int __init console_suspend_disable(char *str)
1993 {
1994 console_suspend_enabled = false;
1995 return 1;
1996 }
1997 __setup("no_console_suspend", console_suspend_disable);
1998 module_param_named(console_suspend, console_suspend_enabled,
1999 bool, S_IRUGO | S_IWUSR);
2000 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2001 " and hibernate operations");
2002
2003 /**
2004 * suspend_console - suspend the console subsystem
2005 *
2006 * This disables printk() while we go into suspend states
2007 */
2008 void suspend_console(void)
2009 {
2010 if (!console_suspend_enabled)
2011 return;
2012 printk("Suspending console(s) (use no_console_suspend to debug)\n");
2013 console_lock();
2014 console_suspended = 1;
2015 up_console_sem();
2016 }
2017
2018 void resume_console(void)
2019 {
2020 if (!console_suspend_enabled)
2021 return;
2022 down_console_sem();
2023 console_suspended = 0;
2024 console_unlock();
2025 }
2026
2027 /**
2028 * console_cpu_notify - print deferred console messages after CPU hotplug
2029 * @cpu: unused
2030 *
2031 * If printk() is called from a CPU that is not online yet, the messages
2032 * will be spooled but will not show up on the console. This function is
2033 * called when a new CPU comes online (or fails to come up), and ensures
2034 * that any such output gets printed.
2035 */
2036 static int console_cpu_notify(unsigned int cpu)
2037 {
2038 if (!cpuhp_tasks_frozen) {
2039 console_lock();
2040 console_unlock();
2041 }
2042 return 0;
2043 }
2044
2045 /**
2046 * console_lock - lock the console system for exclusive use.
2047 *
2048 * Acquires a lock which guarantees that the caller has
2049 * exclusive access to the console system and the console_drivers list.
2050 *
2051 * Can sleep, returns nothing.
2052 */
2053 void console_lock(void)
2054 {
2055 might_sleep();
2056
2057 down_console_sem();
2058 if (console_suspended)
2059 return;
2060 console_locked = 1;
2061 console_may_schedule = 1;
2062 }
2063 EXPORT_SYMBOL(console_lock);
2064
2065 /**
2066 * console_trylock - try to lock the console system for exclusive use.
2067 *
2068 * Try to acquire a lock which guarantees that the caller has exclusive
2069 * access to the console system and the console_drivers list.
2070 *
2071 * returns 1 on success, and 0 on failure to acquire the lock.
2072 */
2073 int console_trylock(void)
2074 {
2075 if (down_trylock_console_sem())
2076 return 0;
2077 if (console_suspended) {
2078 up_console_sem();
2079 return 0;
2080 }
2081 console_locked = 1;
2082 /*
2083 * When PREEMPT_COUNT disabled we can't reliably detect if it's
2084 * safe to schedule (e.g. calling printk while holding a spin_lock),
2085 * because preempt_disable()/preempt_enable() are just barriers there
2086 * and preempt_count() is always 0.
2087 *
2088 * RCU read sections have a separate preemption counter when
2089 * PREEMPT_RCU enabled thus we must take extra care and check
2090 * rcu_preempt_depth(), otherwise RCU read sections modify
2091 * preempt_count().
2092 */
2093 console_may_schedule = !oops_in_progress &&
2094 preemptible() &&
2095 !rcu_preempt_depth();
2096 return 1;
2097 }
2098 EXPORT_SYMBOL(console_trylock);
2099
2100 int is_console_locked(void)
2101 {
2102 return console_locked;
2103 }
2104
2105 /*
2106 * Check if we have any console that is capable of printing while cpu is
2107 * booting or shutting down. Requires console_sem.
2108 */
2109 static int have_callable_console(void)
2110 {
2111 struct console *con;
2112
2113 for_each_console(con)
2114 if ((con->flags & CON_ENABLED) &&
2115 (con->flags & CON_ANYTIME))
2116 return 1;
2117
2118 return 0;
2119 }
2120
2121 /*
2122 * Can we actually use the console at this time on this cpu?
2123 *
2124 * Console drivers may assume that per-cpu resources have been allocated. So
2125 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2126 * call them until this CPU is officially up.
2127 */
2128 static inline int can_use_console(void)
2129 {
2130 return cpu_online(raw_smp_processor_id()) || have_callable_console();
2131 }
2132
2133 /**
2134 * console_unlock - unlock the console system
2135 *
2136 * Releases the console_lock which the caller holds on the console system
2137 * and the console driver list.
2138 *
2139 * While the console_lock was held, console output may have been buffered
2140 * by printk(). If this is the case, console_unlock(); emits
2141 * the output prior to releasing the lock.
2142 *
2143 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2144 *
2145 * console_unlock(); may be called from any context.
2146 */
2147 void console_unlock(void)
2148 {
2149 static char ext_text[CONSOLE_EXT_LOG_MAX];
2150 static char text[LOG_LINE_MAX + PREFIX_MAX];
2151 static u64 seen_seq;
2152 unsigned long flags;
2153 bool wake_klogd = false;
2154 bool do_cond_resched, retry;
2155
2156 if (console_suspended) {
2157 up_console_sem();
2158 return;
2159 }
2160
2161 /*
2162 * Console drivers are called under logbuf_lock, so
2163 * @console_may_schedule should be cleared before; however, we may
2164 * end up dumping a lot of lines, for example, if called from
2165 * console registration path, and should invoke cond_resched()
2166 * between lines if allowable. Not doing so can cause a very long
2167 * scheduling stall on a slow console leading to RCU stall and
2168 * softlockup warnings which exacerbate the issue with more
2169 * messages practically incapacitating the system.
2170 */
2171 do_cond_resched = console_may_schedule;
2172 console_may_schedule = 0;
2173
2174 again:
2175 /*
2176 * We released the console_sem lock, so we need to recheck if
2177 * cpu is online and (if not) is there at least one CON_ANYTIME
2178 * console.
2179 */
2180 if (!can_use_console()) {
2181 console_locked = 0;
2182 up_console_sem();
2183 return;
2184 }
2185
2186 for (;;) {
2187 struct printk_log *msg;
2188 size_t ext_len = 0;
2189 size_t len;
2190
2191 printk_safe_enter_irqsave(flags);
2192 raw_spin_lock(&logbuf_lock);
2193 if (seen_seq != log_next_seq) {
2194 wake_klogd = true;
2195 seen_seq = log_next_seq;
2196 }
2197
2198 if (console_seq < log_first_seq) {
2199 len = sprintf(text, "** %u printk messages dropped ** ",
2200 (unsigned)(log_first_seq - console_seq));
2201
2202 /* messages are gone, move to first one */
2203 console_seq = log_first_seq;
2204 console_idx = log_first_idx;
2205 } else {
2206 len = 0;
2207 }
2208 skip:
2209 if (console_seq == log_next_seq)
2210 break;
2211
2212 msg = log_from_idx(console_idx);
2213 if (suppress_message_printing(msg->level)) {
2214 /*
2215 * Skip record we have buffered and already printed
2216 * directly to the console when we received it, and
2217 * record that has level above the console loglevel.
2218 */
2219 console_idx = log_next(console_idx);
2220 console_seq++;
2221 goto skip;
2222 }
2223
2224 len += msg_print_text(msg, false, text + len, sizeof(text) - len);
2225 if (nr_ext_console_drivers) {
2226 ext_len = msg_print_ext_header(ext_text,
2227 sizeof(ext_text),
2228 msg, console_seq);
2229 ext_len += msg_print_ext_body(ext_text + ext_len,
2230 sizeof(ext_text) - ext_len,
2231 log_dict(msg), msg->dict_len,
2232 log_text(msg), msg->text_len);
2233 }
2234 console_idx = log_next(console_idx);
2235 console_seq++;
2236 raw_spin_unlock(&logbuf_lock);
2237
2238 stop_critical_timings(); /* don't trace print latency */
2239 call_console_drivers(ext_text, ext_len, text, len);
2240 start_critical_timings();
2241 printk_safe_exit_irqrestore(flags);
2242
2243 if (do_cond_resched)
2244 cond_resched();
2245 }
2246 console_locked = 0;
2247
2248 /* Release the exclusive_console once it is used */
2249 if (unlikely(exclusive_console))
2250 exclusive_console = NULL;
2251
2252 raw_spin_unlock(&logbuf_lock);
2253
2254 up_console_sem();
2255
2256 /*
2257 * Someone could have filled up the buffer again, so re-check if there's
2258 * something to flush. In case we cannot trylock the console_sem again,
2259 * there's a new owner and the console_unlock() from them will do the
2260 * flush, no worries.
2261 */
2262 raw_spin_lock(&logbuf_lock);
2263 retry = console_seq != log_next_seq;
2264 raw_spin_unlock(&logbuf_lock);
2265 printk_safe_exit_irqrestore(flags);
2266
2267 if (retry && console_trylock())
2268 goto again;
2269
2270 if (wake_klogd)
2271 wake_up_klogd();
2272 }
2273 EXPORT_SYMBOL(console_unlock);
2274
2275 /**
2276 * console_conditional_schedule - yield the CPU if required
2277 *
2278 * If the console code is currently allowed to sleep, and
2279 * if this CPU should yield the CPU to another task, do
2280 * so here.
2281 *
2282 * Must be called within console_lock();.
2283 */
2284 void __sched console_conditional_schedule(void)
2285 {
2286 if (console_may_schedule)
2287 cond_resched();
2288 }
2289 EXPORT_SYMBOL(console_conditional_schedule);
2290
2291 void console_unblank(void)
2292 {
2293 struct console *c;
2294
2295 /*
2296 * console_unblank can no longer be called in interrupt context unless
2297 * oops_in_progress is set to 1..
2298 */
2299 if (oops_in_progress) {
2300 if (down_trylock_console_sem() != 0)
2301 return;
2302 } else
2303 console_lock();
2304
2305 console_locked = 1;
2306 console_may_schedule = 0;
2307 for_each_console(c)
2308 if ((c->flags & CON_ENABLED) && c->unblank)
2309 c->unblank();
2310 console_unlock();
2311 }
2312
2313 /**
2314 * console_flush_on_panic - flush console content on panic
2315 *
2316 * Immediately output all pending messages no matter what.
2317 */
2318 void console_flush_on_panic(void)
2319 {
2320 /*
2321 * If someone else is holding the console lock, trylock will fail
2322 * and may_schedule may be set. Ignore and proceed to unlock so
2323 * that messages are flushed out. As this can be called from any
2324 * context and we don't want to get preempted while flushing,
2325 * ensure may_schedule is cleared.
2326 */
2327 console_trylock();
2328 console_may_schedule = 0;
2329 console_unlock();
2330 }
2331
2332 /*
2333 * Return the console tty driver structure and its associated index
2334 */
2335 struct tty_driver *console_device(int *index)
2336 {
2337 struct console *c;
2338 struct tty_driver *driver = NULL;
2339
2340 console_lock();
2341 for_each_console(c) {
2342 if (!c->device)
2343 continue;
2344 driver = c->device(c, index);
2345 if (driver)
2346 break;
2347 }
2348 console_unlock();
2349 return driver;
2350 }
2351
2352 /*
2353 * Prevent further output on the passed console device so that (for example)
2354 * serial drivers can disable console output before suspending a port, and can
2355 * re-enable output afterwards.
2356 */
2357 void console_stop(struct console *console)
2358 {
2359 console_lock();
2360 console->flags &= ~CON_ENABLED;
2361 console_unlock();
2362 }
2363 EXPORT_SYMBOL(console_stop);
2364
2365 void console_start(struct console *console)
2366 {
2367 console_lock();
2368 console->flags |= CON_ENABLED;
2369 console_unlock();
2370 }
2371 EXPORT_SYMBOL(console_start);
2372
2373 static int __read_mostly keep_bootcon;
2374
2375 static int __init keep_bootcon_setup(char *str)
2376 {
2377 keep_bootcon = 1;
2378 pr_info("debug: skip boot console de-registration.\n");
2379
2380 return 0;
2381 }
2382
2383 early_param("keep_bootcon", keep_bootcon_setup);
2384
2385 /*
2386 * The console driver calls this routine during kernel initialization
2387 * to register the console printing procedure with printk() and to
2388 * print any messages that were printed by the kernel before the
2389 * console driver was initialized.
2390 *
2391 * This can happen pretty early during the boot process (because of
2392 * early_printk) - sometimes before setup_arch() completes - be careful
2393 * of what kernel features are used - they may not be initialised yet.
2394 *
2395 * There are two types of consoles - bootconsoles (early_printk) and
2396 * "real" consoles (everything which is not a bootconsole) which are
2397 * handled differently.
2398 * - Any number of bootconsoles can be registered at any time.
2399 * - As soon as a "real" console is registered, all bootconsoles
2400 * will be unregistered automatically.
2401 * - Once a "real" console is registered, any attempt to register a
2402 * bootconsoles will be rejected
2403 */
2404 void register_console(struct console *newcon)
2405 {
2406 int i;
2407 unsigned long flags;
2408 struct console *bcon = NULL;
2409 struct console_cmdline *c;
2410
2411 if (console_drivers)
2412 for_each_console(bcon)
2413 if (WARN(bcon == newcon,
2414 "console '%s%d' already registered\n",
2415 bcon->name, bcon->index))
2416 return;
2417
2418 /*
2419 * before we register a new CON_BOOT console, make sure we don't
2420 * already have a valid console
2421 */
2422 if (console_drivers && newcon->flags & CON_BOOT) {
2423 /* find the last or real console */
2424 for_each_console(bcon) {
2425 if (!(bcon->flags & CON_BOOT)) {
2426 pr_info("Too late to register bootconsole %s%d\n",
2427 newcon->name, newcon->index);
2428 return;
2429 }
2430 }
2431 }
2432
2433 if (console_drivers && console_drivers->flags & CON_BOOT)
2434 bcon = console_drivers;
2435
2436 if (preferred_console < 0 || bcon || !console_drivers)
2437 preferred_console = selected_console;
2438
2439 /*
2440 * See if we want to use this console driver. If we
2441 * didn't select a console we take the first one
2442 * that registers here.
2443 */
2444 if (preferred_console < 0) {
2445 if (newcon->index < 0)
2446 newcon->index = 0;
2447 if (newcon->setup == NULL ||
2448 newcon->setup(newcon, NULL) == 0) {
2449 newcon->flags |= CON_ENABLED;
2450 if (newcon->device) {
2451 newcon->flags |= CON_CONSDEV;
2452 preferred_console = 0;
2453 }
2454 }
2455 }
2456
2457 /*
2458 * See if this console matches one we selected on
2459 * the command line.
2460 */
2461 for (i = 0, c = console_cmdline;
2462 i < MAX_CMDLINECONSOLES && c->name[0];
2463 i++, c++) {
2464 if (!newcon->match ||
2465 newcon->match(newcon, c->name, c->index, c->options) != 0) {
2466 /* default matching */
2467 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2468 if (strcmp(c->name, newcon->name) != 0)
2469 continue;
2470 if (newcon->index >= 0 &&
2471 newcon->index != c->index)
2472 continue;
2473 if (newcon->index < 0)
2474 newcon->index = c->index;
2475
2476 if (_braille_register_console(newcon, c))
2477 return;
2478
2479 if (newcon->setup &&
2480 newcon->setup(newcon, c->options) != 0)
2481 break;
2482 }
2483
2484 newcon->flags |= CON_ENABLED;
2485 if (i == selected_console) {
2486 newcon->flags |= CON_CONSDEV;
2487 preferred_console = selected_console;
2488 }
2489 break;
2490 }
2491
2492 if (!(newcon->flags & CON_ENABLED))
2493 return;
2494
2495 /*
2496 * If we have a bootconsole, and are switching to a real console,
2497 * don't print everything out again, since when the boot console, and
2498 * the real console are the same physical device, it's annoying to
2499 * see the beginning boot messages twice
2500 */
2501 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2502 newcon->flags &= ~CON_PRINTBUFFER;
2503
2504 /*
2505 * Put this console in the list - keep the
2506 * preferred driver at the head of the list.
2507 */
2508 console_lock();
2509 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2510 newcon->next = console_drivers;
2511 console_drivers = newcon;
2512 if (newcon->next)
2513 newcon->next->flags &= ~CON_CONSDEV;
2514 } else {
2515 newcon->next = console_drivers->next;
2516 console_drivers->next = newcon;
2517 }
2518
2519 if (newcon->flags & CON_EXTENDED)
2520 if (!nr_ext_console_drivers++)
2521 pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2522
2523 if (newcon->flags & CON_PRINTBUFFER) {
2524 /*
2525 * console_unlock(); will print out the buffered messages
2526 * for us.
2527 */
2528 logbuf_lock_irqsave(flags);
2529 console_seq = syslog_seq;
2530 console_idx = syslog_idx;
2531 logbuf_unlock_irqrestore(flags);
2532 /*
2533 * We're about to replay the log buffer. Only do this to the
2534 * just-registered console to avoid excessive message spam to
2535 * the already-registered consoles.
2536 */
2537 exclusive_console = newcon;
2538 }
2539 console_unlock();
2540 console_sysfs_notify();
2541
2542 /*
2543 * By unregistering the bootconsoles after we enable the real console
2544 * we get the "console xxx enabled" message on all the consoles -
2545 * boot consoles, real consoles, etc - this is to ensure that end
2546 * users know there might be something in the kernel's log buffer that
2547 * went to the bootconsole (that they do not see on the real console)
2548 */
2549 pr_info("%sconsole [%s%d] enabled\n",
2550 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2551 newcon->name, newcon->index);
2552 if (bcon &&
2553 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2554 !keep_bootcon) {
2555 /* We need to iterate through all boot consoles, to make
2556 * sure we print everything out, before we unregister them.
2557 */
2558 for_each_console(bcon)
2559 if (bcon->flags & CON_BOOT)
2560 unregister_console(bcon);
2561 }
2562 }
2563 EXPORT_SYMBOL(register_console);
2564
2565 int unregister_console(struct console *console)
2566 {
2567 struct console *a, *b;
2568 int res;
2569
2570 pr_info("%sconsole [%s%d] disabled\n",
2571 (console->flags & CON_BOOT) ? "boot" : "" ,
2572 console->name, console->index);
2573
2574 res = _braille_unregister_console(console);
2575 if (res)
2576 return res;
2577
2578 res = 1;
2579 console_lock();
2580 if (console_drivers == console) {
2581 console_drivers=console->next;
2582 res = 0;
2583 } else if (console_drivers) {
2584 for (a=console_drivers->next, b=console_drivers ;
2585 a; b=a, a=b->next) {
2586 if (a == console) {
2587 b->next = a->next;
2588 res = 0;
2589 break;
2590 }
2591 }
2592 }
2593
2594 if (!res && (console->flags & CON_EXTENDED))
2595 nr_ext_console_drivers--;
2596
2597 /*
2598 * If this isn't the last console and it has CON_CONSDEV set, we
2599 * need to set it on the next preferred console.
2600 */
2601 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2602 console_drivers->flags |= CON_CONSDEV;
2603
2604 console->flags &= ~CON_ENABLED;
2605 console_unlock();
2606 console_sysfs_notify();
2607 return res;
2608 }
2609 EXPORT_SYMBOL(unregister_console);
2610
2611 /*
2612 * Some boot consoles access data that is in the init section and which will
2613 * be discarded after the initcalls have been run. To make sure that no code
2614 * will access this data, unregister the boot consoles in a late initcall.
2615 *
2616 * If for some reason, such as deferred probe or the driver being a loadable
2617 * module, the real console hasn't registered yet at this point, there will
2618 * be a brief interval in which no messages are logged to the console, which
2619 * makes it difficult to diagnose problems that occur during this time.
2620 *
2621 * To mitigate this problem somewhat, only unregister consoles whose memory
2622 * intersects with the init section. Note that code exists elsewhere to get
2623 * rid of the boot console as soon as the proper console shows up, so there
2624 * won't be side-effects from postponing the removal.
2625 */
2626 static int __init printk_late_init(void)
2627 {
2628 struct console *con;
2629 int ret;
2630
2631 for_each_console(con) {
2632 if (!keep_bootcon && con->flags & CON_BOOT) {
2633 /*
2634 * Make sure to unregister boot consoles whose data
2635 * resides in the init section before the init section
2636 * is discarded. Boot consoles whose data will stick
2637 * around will automatically be unregistered when the
2638 * proper console replaces them.
2639 */
2640 if (init_section_intersects(con, sizeof(*con)))
2641 unregister_console(con);
2642 }
2643 }
2644 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
2645 console_cpu_notify);
2646 WARN_ON(ret < 0);
2647 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
2648 console_cpu_notify, NULL);
2649 WARN_ON(ret < 0);
2650 return 0;
2651 }
2652 late_initcall(printk_late_init);
2653
2654 #if defined CONFIG_PRINTK
2655 /*
2656 * Delayed printk version, for scheduler-internal messages:
2657 */
2658 #define PRINTK_PENDING_WAKEUP 0x01
2659 #define PRINTK_PENDING_OUTPUT 0x02
2660
2661 static DEFINE_PER_CPU(int, printk_pending);
2662
2663 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2664 {
2665 int pending = __this_cpu_xchg(printk_pending, 0);
2666
2667 if (pending & PRINTK_PENDING_OUTPUT) {
2668 /* If trylock fails, someone else is doing the printing */
2669 if (console_trylock())
2670 console_unlock();
2671 }
2672
2673 if (pending & PRINTK_PENDING_WAKEUP)
2674 wake_up_interruptible(&log_wait);
2675 }
2676
2677 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2678 .func = wake_up_klogd_work_func,
2679 .flags = IRQ_WORK_LAZY,
2680 };
2681
2682 void wake_up_klogd(void)
2683 {
2684 preempt_disable();
2685 if (waitqueue_active(&log_wait)) {
2686 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2687 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2688 }
2689 preempt_enable();
2690 }
2691
2692 int printk_deferred(const char *fmt, ...)
2693 {
2694 va_list args;
2695 int r;
2696
2697 preempt_disable();
2698 va_start(args, fmt);
2699 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2700 va_end(args);
2701
2702 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2703 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2704 preempt_enable();
2705
2706 return r;
2707 }
2708
2709 /*
2710 * printk rate limiting, lifted from the networking subsystem.
2711 *
2712 * This enforces a rate limit: not more than 10 kernel messages
2713 * every 5s to make a denial-of-service attack impossible.
2714 */
2715 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2716
2717 int __printk_ratelimit(const char *func)
2718 {
2719 return ___ratelimit(&printk_ratelimit_state, func);
2720 }
2721 EXPORT_SYMBOL(__printk_ratelimit);
2722
2723 /**
2724 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2725 * @caller_jiffies: pointer to caller's state
2726 * @interval_msecs: minimum interval between prints
2727 *
2728 * printk_timed_ratelimit() returns true if more than @interval_msecs
2729 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2730 * returned true.
2731 */
2732 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2733 unsigned int interval_msecs)
2734 {
2735 unsigned long elapsed = jiffies - *caller_jiffies;
2736
2737 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2738 return false;
2739
2740 *caller_jiffies = jiffies;
2741 return true;
2742 }
2743 EXPORT_SYMBOL(printk_timed_ratelimit);
2744
2745 static DEFINE_SPINLOCK(dump_list_lock);
2746 static LIST_HEAD(dump_list);
2747
2748 /**
2749 * kmsg_dump_register - register a kernel log dumper.
2750 * @dumper: pointer to the kmsg_dumper structure
2751 *
2752 * Adds a kernel log dumper to the system. The dump callback in the
2753 * structure will be called when the kernel oopses or panics and must be
2754 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2755 */
2756 int kmsg_dump_register(struct kmsg_dumper *dumper)
2757 {
2758 unsigned long flags;
2759 int err = -EBUSY;
2760
2761 /* The dump callback needs to be set */
2762 if (!dumper->dump)
2763 return -EINVAL;
2764
2765 spin_lock_irqsave(&dump_list_lock, flags);
2766 /* Don't allow registering multiple times */
2767 if (!dumper->registered) {
2768 dumper->registered = 1;
2769 list_add_tail_rcu(&dumper->list, &dump_list);
2770 err = 0;
2771 }
2772 spin_unlock_irqrestore(&dump_list_lock, flags);
2773
2774 return err;
2775 }
2776 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2777
2778 /**
2779 * kmsg_dump_unregister - unregister a kmsg dumper.
2780 * @dumper: pointer to the kmsg_dumper structure
2781 *
2782 * Removes a dump device from the system. Returns zero on success and
2783 * %-EINVAL otherwise.
2784 */
2785 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2786 {
2787 unsigned long flags;
2788 int err = -EINVAL;
2789
2790 spin_lock_irqsave(&dump_list_lock, flags);
2791 if (dumper->registered) {
2792 dumper->registered = 0;
2793 list_del_rcu(&dumper->list);
2794 err = 0;
2795 }
2796 spin_unlock_irqrestore(&dump_list_lock, flags);
2797 synchronize_rcu();
2798
2799 return err;
2800 }
2801 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2802
2803 static bool always_kmsg_dump;
2804 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2805
2806 /**
2807 * kmsg_dump - dump kernel log to kernel message dumpers.
2808 * @reason: the reason (oops, panic etc) for dumping
2809 *
2810 * Call each of the registered dumper's dump() callback, which can
2811 * retrieve the kmsg records with kmsg_dump_get_line() or
2812 * kmsg_dump_get_buffer().
2813 */
2814 void kmsg_dump(enum kmsg_dump_reason reason)
2815 {
2816 struct kmsg_dumper *dumper;
2817 unsigned long flags;
2818
2819 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2820 return;
2821
2822 rcu_read_lock();
2823 list_for_each_entry_rcu(dumper, &dump_list, list) {
2824 if (dumper->max_reason && reason > dumper->max_reason)
2825 continue;
2826
2827 /* initialize iterator with data about the stored records */
2828 dumper->active = true;
2829
2830 logbuf_lock_irqsave(flags);
2831 dumper->cur_seq = clear_seq;
2832 dumper->cur_idx = clear_idx;
2833 dumper->next_seq = log_next_seq;
2834 dumper->next_idx = log_next_idx;
2835 logbuf_unlock_irqrestore(flags);
2836
2837 /* invoke dumper which will iterate over records */
2838 dumper->dump(dumper, reason);
2839
2840 /* reset iterator */
2841 dumper->active = false;
2842 }
2843 rcu_read_unlock();
2844 }
2845
2846 /**
2847 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2848 * @dumper: registered kmsg dumper
2849 * @syslog: include the "<4>" prefixes
2850 * @line: buffer to copy the line to
2851 * @size: maximum size of the buffer
2852 * @len: length of line placed into buffer
2853 *
2854 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2855 * record, and copy one record into the provided buffer.
2856 *
2857 * Consecutive calls will return the next available record moving
2858 * towards the end of the buffer with the youngest messages.
2859 *
2860 * A return value of FALSE indicates that there are no more records to
2861 * read.
2862 *
2863 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2864 */
2865 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2866 char *line, size_t size, size_t *len)
2867 {
2868 struct printk_log *msg;
2869 size_t l = 0;
2870 bool ret = false;
2871
2872 if (!dumper->active)
2873 goto out;
2874
2875 if (dumper->cur_seq < log_first_seq) {
2876 /* messages are gone, move to first available one */
2877 dumper->cur_seq = log_first_seq;
2878 dumper->cur_idx = log_first_idx;
2879 }
2880
2881 /* last entry */
2882 if (dumper->cur_seq >= log_next_seq)
2883 goto out;
2884
2885 msg = log_from_idx(dumper->cur_idx);
2886 l = msg_print_text(msg, syslog, line, size);
2887
2888 dumper->cur_idx = log_next(dumper->cur_idx);
2889 dumper->cur_seq++;
2890 ret = true;
2891 out:
2892 if (len)
2893 *len = l;
2894 return ret;
2895 }
2896
2897 /**
2898 * kmsg_dump_get_line - retrieve one kmsg log line
2899 * @dumper: registered kmsg dumper
2900 * @syslog: include the "<4>" prefixes
2901 * @line: buffer to copy the line to
2902 * @size: maximum size of the buffer
2903 * @len: length of line placed into buffer
2904 *
2905 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2906 * record, and copy one record into the provided buffer.
2907 *
2908 * Consecutive calls will return the next available record moving
2909 * towards the end of the buffer with the youngest messages.
2910 *
2911 * A return value of FALSE indicates that there are no more records to
2912 * read.
2913 */
2914 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2915 char *line, size_t size, size_t *len)
2916 {
2917 unsigned long flags;
2918 bool ret;
2919
2920 logbuf_lock_irqsave(flags);
2921 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2922 logbuf_unlock_irqrestore(flags);
2923
2924 return ret;
2925 }
2926 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2927
2928 /**
2929 * kmsg_dump_get_buffer - copy kmsg log lines
2930 * @dumper: registered kmsg dumper
2931 * @syslog: include the "<4>" prefixes
2932 * @buf: buffer to copy the line to
2933 * @size: maximum size of the buffer
2934 * @len: length of line placed into buffer
2935 *
2936 * Start at the end of the kmsg buffer and fill the provided buffer
2937 * with as many of the the *youngest* kmsg records that fit into it.
2938 * If the buffer is large enough, all available kmsg records will be
2939 * copied with a single call.
2940 *
2941 * Consecutive calls will fill the buffer with the next block of
2942 * available older records, not including the earlier retrieved ones.
2943 *
2944 * A return value of FALSE indicates that there are no more records to
2945 * read.
2946 */
2947 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2948 char *buf, size_t size, size_t *len)
2949 {
2950 unsigned long flags;
2951 u64 seq;
2952 u32 idx;
2953 u64 next_seq;
2954 u32 next_idx;
2955 size_t l = 0;
2956 bool ret = false;
2957
2958 if (!dumper->active)
2959 goto out;
2960
2961 logbuf_lock_irqsave(flags);
2962 if (dumper->cur_seq < log_first_seq) {
2963 /* messages are gone, move to first available one */
2964 dumper->cur_seq = log_first_seq;
2965 dumper->cur_idx = log_first_idx;
2966 }
2967
2968 /* last entry */
2969 if (dumper->cur_seq >= dumper->next_seq) {
2970 logbuf_unlock_irqrestore(flags);
2971 goto out;
2972 }
2973
2974 /* calculate length of entire buffer */
2975 seq = dumper->cur_seq;
2976 idx = dumper->cur_idx;
2977 while (seq < dumper->next_seq) {
2978 struct printk_log *msg = log_from_idx(idx);
2979
2980 l += msg_print_text(msg, true, NULL, 0);
2981 idx = log_next(idx);
2982 seq++;
2983 }
2984
2985 /* move first record forward until length fits into the buffer */
2986 seq = dumper->cur_seq;
2987 idx = dumper->cur_idx;
2988 while (l > size && seq < dumper->next_seq) {
2989 struct printk_log *msg = log_from_idx(idx);
2990
2991 l -= msg_print_text(msg, true, NULL, 0);
2992 idx = log_next(idx);
2993 seq++;
2994 }
2995
2996 /* last message in next interation */
2997 next_seq = seq;
2998 next_idx = idx;
2999
3000 l = 0;
3001 while (seq < dumper->next_seq) {
3002 struct printk_log *msg = log_from_idx(idx);
3003
3004 l += msg_print_text(msg, syslog, buf + l, size - l);
3005 idx = log_next(idx);
3006 seq++;
3007 }
3008
3009 dumper->next_seq = next_seq;
3010 dumper->next_idx = next_idx;
3011 ret = true;
3012 logbuf_unlock_irqrestore(flags);
3013 out:
3014 if (len)
3015 *len = l;
3016 return ret;
3017 }
3018 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3019
3020 /**
3021 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3022 * @dumper: registered kmsg dumper
3023 *
3024 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3025 * kmsg_dump_get_buffer() can be called again and used multiple
3026 * times within the same dumper.dump() callback.
3027 *
3028 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3029 */
3030 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3031 {
3032 dumper->cur_seq = clear_seq;
3033 dumper->cur_idx = clear_idx;
3034 dumper->next_seq = log_next_seq;
3035 dumper->next_idx = log_next_idx;
3036 }
3037
3038 /**
3039 * kmsg_dump_rewind - reset the interator
3040 * @dumper: registered kmsg dumper
3041 *
3042 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3043 * kmsg_dump_get_buffer() can be called again and used multiple
3044 * times within the same dumper.dump() callback.
3045 */
3046 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3047 {
3048 unsigned long flags;
3049
3050 logbuf_lock_irqsave(flags);
3051 kmsg_dump_rewind_nolock(dumper);
3052 logbuf_unlock_irqrestore(flags);
3053 }
3054 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3055
3056 static char dump_stack_arch_desc_str[128];
3057
3058 /**
3059 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3060 * @fmt: printf-style format string
3061 * @...: arguments for the format string
3062 *
3063 * The configured string will be printed right after utsname during task
3064 * dumps. Usually used to add arch-specific system identifiers. If an
3065 * arch wants to make use of such an ID string, it should initialize this
3066 * as soon as possible during boot.
3067 */
3068 void __init dump_stack_set_arch_desc(const char *fmt, ...)
3069 {
3070 va_list args;
3071
3072 va_start(args, fmt);
3073 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3074 fmt, args);
3075 va_end(args);
3076 }
3077
3078 /**
3079 * dump_stack_print_info - print generic debug info for dump_stack()
3080 * @log_lvl: log level
3081 *
3082 * Arch-specific dump_stack() implementations can use this function to
3083 * print out the same debug information as the generic dump_stack().
3084 */
3085 void dump_stack_print_info(const char *log_lvl)
3086 {
3087 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3088 log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3089 print_tainted(), init_utsname()->release,
3090 (int)strcspn(init_utsname()->version, " "),
3091 init_utsname()->version);
3092
3093 if (dump_stack_arch_desc_str[0] != '\0')
3094 printk("%sHardware name: %s\n",
3095 log_lvl, dump_stack_arch_desc_str);
3096
3097 print_worker_info(log_lvl, current);
3098 }
3099
3100 /**
3101 * show_regs_print_info - print generic debug info for show_regs()
3102 * @log_lvl: log level
3103 *
3104 * show_regs() implementations can use this function to print out generic
3105 * debug information.
3106 */
3107 void show_regs_print_info(const char *log_lvl)
3108 {
3109 dump_stack_print_info(log_lvl);
3110
3111 printk("%stask: %p task.stack: %p\n",
3112 log_lvl, current, task_stack_page(current));
3113 }
3114
3115 #endif