]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/printk.c
Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs
[mirror_ubuntu-bionic-kernel.git] / kernel / printk.c
1 /*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h> /* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/syscalls.h>
36 #include <linux/kexec.h>
37 #include <linux/kdb.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/notifier.h>
43 #include <linux/rculist.h>
44 #include <linux/poll.h>
45
46 #include <asm/uaccess.h>
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/printk.h>
50
51 /*
52 * Architectures can override it:
53 */
54 void asmlinkage __attribute__((weak)) early_printk(const char *fmt, ...)
55 {
56 }
57
58 /* printk's without a loglevel use this.. */
59 #define DEFAULT_MESSAGE_LOGLEVEL CONFIG_DEFAULT_MESSAGE_LOGLEVEL
60
61 /* We show everything that is MORE important than this.. */
62 #define MINIMUM_CONSOLE_LOGLEVEL 1 /* Minimum loglevel we let people use */
63 #define DEFAULT_CONSOLE_LOGLEVEL 7 /* anything MORE serious than KERN_DEBUG */
64
65 DECLARE_WAIT_QUEUE_HEAD(log_wait);
66
67 int console_printk[4] = {
68 DEFAULT_CONSOLE_LOGLEVEL, /* console_loglevel */
69 DEFAULT_MESSAGE_LOGLEVEL, /* default_message_loglevel */
70 MINIMUM_CONSOLE_LOGLEVEL, /* minimum_console_loglevel */
71 DEFAULT_CONSOLE_LOGLEVEL, /* default_console_loglevel */
72 };
73
74 /*
75 * Low level drivers may need that to know if they can schedule in
76 * their unblank() callback or not. So let's export it.
77 */
78 int oops_in_progress;
79 EXPORT_SYMBOL(oops_in_progress);
80
81 /*
82 * console_sem protects the console_drivers list, and also
83 * provides serialisation for access to the entire console
84 * driver system.
85 */
86 static DEFINE_SEMAPHORE(console_sem);
87 struct console *console_drivers;
88 EXPORT_SYMBOL_GPL(console_drivers);
89
90 /*
91 * This is used for debugging the mess that is the VT code by
92 * keeping track if we have the console semaphore held. It's
93 * definitely not the perfect debug tool (we don't know if _WE_
94 * hold it are racing, but it helps tracking those weird code
95 * path in the console code where we end up in places I want
96 * locked without the console sempahore held
97 */
98 static int console_locked, console_suspended;
99
100 /*
101 * If exclusive_console is non-NULL then only this console is to be printed to.
102 */
103 static struct console *exclusive_console;
104
105 /*
106 * Array of consoles built from command line options (console=)
107 */
108 struct console_cmdline
109 {
110 char name[8]; /* Name of the driver */
111 int index; /* Minor dev. to use */
112 char *options; /* Options for the driver */
113 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
114 char *brl_options; /* Options for braille driver */
115 #endif
116 };
117
118 #define MAX_CMDLINECONSOLES 8
119
120 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
121 static int selected_console = -1;
122 static int preferred_console = -1;
123 int console_set_on_cmdline;
124 EXPORT_SYMBOL(console_set_on_cmdline);
125
126 /* Flag: console code may call schedule() */
127 static int console_may_schedule;
128
129 /*
130 * The printk log buffer consists of a chain of concatenated variable
131 * length records. Every record starts with a record header, containing
132 * the overall length of the record.
133 *
134 * The heads to the first and last entry in the buffer, as well as the
135 * sequence numbers of these both entries are maintained when messages
136 * are stored..
137 *
138 * If the heads indicate available messages, the length in the header
139 * tells the start next message. A length == 0 for the next message
140 * indicates a wrap-around to the beginning of the buffer.
141 *
142 * Every record carries the monotonic timestamp in microseconds, as well as
143 * the standard userspace syslog level and syslog facility. The usual
144 * kernel messages use LOG_KERN; userspace-injected messages always carry
145 * a matching syslog facility, by default LOG_USER. The origin of every
146 * message can be reliably determined that way.
147 *
148 * The human readable log message directly follows the message header. The
149 * length of the message text is stored in the header, the stored message
150 * is not terminated.
151 *
152 * Optionally, a message can carry a dictionary of properties (key/value pairs),
153 * to provide userspace with a machine-readable message context.
154 *
155 * Examples for well-defined, commonly used property names are:
156 * DEVICE=b12:8 device identifier
157 * b12:8 block dev_t
158 * c127:3 char dev_t
159 * n8 netdev ifindex
160 * +sound:card0 subsystem:devname
161 * SUBSYSTEM=pci driver-core subsystem name
162 *
163 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
164 * follows directly after a '=' character. Every property is terminated by
165 * a '\0' character. The last property is not terminated.
166 *
167 * Example of a message structure:
168 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
169 * 0008 34 00 record is 52 bytes long
170 * 000a 0b 00 text is 11 bytes long
171 * 000c 1f 00 dictionary is 23 bytes long
172 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
173 * 0010 69 74 27 73 20 61 20 6c "it's a l"
174 * 69 6e 65 "ine"
175 * 001b 44 45 56 49 43 "DEVIC"
176 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
177 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
178 * 67 "g"
179 * 0032 00 00 00 padding to next message header
180 *
181 * The 'struct log' buffer header must never be directly exported to
182 * userspace, it is a kernel-private implementation detail that might
183 * need to be changed in the future, when the requirements change.
184 *
185 * /dev/kmsg exports the structured data in the following line format:
186 * "level,sequnum,timestamp;<message text>\n"
187 *
188 * The optional key/value pairs are attached as continuation lines starting
189 * with a space character and terminated by a newline. All possible
190 * non-prinatable characters are escaped in the "\xff" notation.
191 *
192 * Users of the export format should ignore possible additional values
193 * separated by ',', and find the message after the ';' character.
194 */
195
196 struct log {
197 u64 ts_nsec; /* timestamp in nanoseconds */
198 u16 len; /* length of entire record */
199 u16 text_len; /* length of text buffer */
200 u16 dict_len; /* length of dictionary buffer */
201 u16 level; /* syslog level + facility */
202 };
203
204 /*
205 * The logbuf_lock protects kmsg buffer, indices, counters. It is also
206 * used in interesting ways to provide interlocking in console_unlock();
207 */
208 static DEFINE_RAW_SPINLOCK(logbuf_lock);
209
210 /* the next printk record to read by syslog(READ) or /proc/kmsg */
211 static u64 syslog_seq;
212 static u32 syslog_idx;
213
214 /* index and sequence number of the first record stored in the buffer */
215 static u64 log_first_seq;
216 static u32 log_first_idx;
217
218 /* index and sequence number of the next record to store in the buffer */
219 static u64 log_next_seq;
220 #ifdef CONFIG_PRINTK
221 static u32 log_next_idx;
222
223 /* the next printk record to read after the last 'clear' command */
224 static u64 clear_seq;
225 static u32 clear_idx;
226
227 #define LOG_LINE_MAX 1024
228
229 /* record buffer */
230 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
231 #define LOG_ALIGN 4
232 #else
233 #define LOG_ALIGN __alignof__(struct log)
234 #endif
235 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
236 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
237 static char *log_buf = __log_buf;
238 static u32 log_buf_len = __LOG_BUF_LEN;
239
240 /* cpu currently holding logbuf_lock */
241 static volatile unsigned int logbuf_cpu = UINT_MAX;
242
243 /* human readable text of the record */
244 static char *log_text(const struct log *msg)
245 {
246 return (char *)msg + sizeof(struct log);
247 }
248
249 /* optional key/value pair dictionary attached to the record */
250 static char *log_dict(const struct log *msg)
251 {
252 return (char *)msg + sizeof(struct log) + msg->text_len;
253 }
254
255 /* get record by index; idx must point to valid msg */
256 static struct log *log_from_idx(u32 idx)
257 {
258 struct log *msg = (struct log *)(log_buf + idx);
259
260 /*
261 * A length == 0 record is the end of buffer marker. Wrap around and
262 * read the message at the start of the buffer.
263 */
264 if (!msg->len)
265 return (struct log *)log_buf;
266 return msg;
267 }
268
269 /* get next record; idx must point to valid msg */
270 static u32 log_next(u32 idx)
271 {
272 struct log *msg = (struct log *)(log_buf + idx);
273
274 /* length == 0 indicates the end of the buffer; wrap */
275 /*
276 * A length == 0 record is the end of buffer marker. Wrap around and
277 * read the message at the start of the buffer as *this* one, and
278 * return the one after that.
279 */
280 if (!msg->len) {
281 msg = (struct log *)log_buf;
282 return msg->len;
283 }
284 return idx + msg->len;
285 }
286
287 /* insert record into the buffer, discard old ones, update heads */
288 static void log_store(int facility, int level,
289 const char *dict, u16 dict_len,
290 const char *text, u16 text_len)
291 {
292 struct log *msg;
293 u32 size, pad_len;
294
295 /* number of '\0' padding bytes to next message */
296 size = sizeof(struct log) + text_len + dict_len;
297 pad_len = (-size) & (LOG_ALIGN - 1);
298 size += pad_len;
299
300 while (log_first_seq < log_next_seq) {
301 u32 free;
302
303 if (log_next_idx > log_first_idx)
304 free = max(log_buf_len - log_next_idx, log_first_idx);
305 else
306 free = log_first_idx - log_next_idx;
307
308 if (free > size + sizeof(struct log))
309 break;
310
311 /* drop old messages until we have enough contiuous space */
312 log_first_idx = log_next(log_first_idx);
313 log_first_seq++;
314 }
315
316 if (log_next_idx + size + sizeof(struct log) >= log_buf_len) {
317 /*
318 * This message + an additional empty header does not fit
319 * at the end of the buffer. Add an empty header with len == 0
320 * to signify a wrap around.
321 */
322 memset(log_buf + log_next_idx, 0, sizeof(struct log));
323 log_next_idx = 0;
324 }
325
326 /* fill message */
327 msg = (struct log *)(log_buf + log_next_idx);
328 memcpy(log_text(msg), text, text_len);
329 msg->text_len = text_len;
330 memcpy(log_dict(msg), dict, dict_len);
331 msg->dict_len = dict_len;
332 msg->level = (facility << 3) | (level & 7);
333 msg->ts_nsec = local_clock();
334 memset(log_dict(msg) + dict_len, 0, pad_len);
335 msg->len = sizeof(struct log) + text_len + dict_len + pad_len;
336
337 /* insert message */
338 log_next_idx += msg->len;
339 log_next_seq++;
340 }
341
342 /* /dev/kmsg - userspace message inject/listen interface */
343 struct devkmsg_user {
344 u64 seq;
345 u32 idx;
346 struct mutex lock;
347 char buf[8192];
348 };
349
350 static ssize_t devkmsg_writev(struct kiocb *iocb, const struct iovec *iv,
351 unsigned long count, loff_t pos)
352 {
353 char *buf, *line;
354 int i;
355 int level = default_message_loglevel;
356 int facility = 1; /* LOG_USER */
357 size_t len = iov_length(iv, count);
358 ssize_t ret = len;
359
360 if (len > LOG_LINE_MAX)
361 return -EINVAL;
362 buf = kmalloc(len+1, GFP_KERNEL);
363 if (buf == NULL)
364 return -ENOMEM;
365
366 line = buf;
367 for (i = 0; i < count; i++) {
368 if (copy_from_user(line, iv[i].iov_base, iv[i].iov_len))
369 goto out;
370 line += iv[i].iov_len;
371 }
372
373 /*
374 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
375 * the decimal value represents 32bit, the lower 3 bit are the log
376 * level, the rest are the log facility.
377 *
378 * If no prefix or no userspace facility is specified, we
379 * enforce LOG_USER, to be able to reliably distinguish
380 * kernel-generated messages from userspace-injected ones.
381 */
382 line = buf;
383 if (line[0] == '<') {
384 char *endp = NULL;
385
386 i = simple_strtoul(line+1, &endp, 10);
387 if (endp && endp[0] == '>') {
388 level = i & 7;
389 if (i >> 3)
390 facility = i >> 3;
391 endp++;
392 len -= endp - line;
393 line = endp;
394 }
395 }
396 line[len] = '\0';
397
398 printk_emit(facility, level, NULL, 0, "%s", line);
399 out:
400 kfree(buf);
401 return ret;
402 }
403
404 static ssize_t devkmsg_read(struct file *file, char __user *buf,
405 size_t count, loff_t *ppos)
406 {
407 struct devkmsg_user *user = file->private_data;
408 struct log *msg;
409 u64 ts_usec;
410 size_t i;
411 size_t len;
412 ssize_t ret;
413
414 if (!user)
415 return -EBADF;
416
417 ret = mutex_lock_interruptible(&user->lock);
418 if (ret)
419 return ret;
420 raw_spin_lock(&logbuf_lock);
421 while (user->seq == log_next_seq) {
422 if (file->f_flags & O_NONBLOCK) {
423 ret = -EAGAIN;
424 raw_spin_unlock(&logbuf_lock);
425 goto out;
426 }
427
428 raw_spin_unlock(&logbuf_lock);
429 ret = wait_event_interruptible(log_wait,
430 user->seq != log_next_seq);
431 if (ret)
432 goto out;
433 raw_spin_lock(&logbuf_lock);
434 }
435
436 if (user->seq < log_first_seq) {
437 /* our last seen message is gone, return error and reset */
438 user->idx = log_first_idx;
439 user->seq = log_first_seq;
440 ret = -EPIPE;
441 raw_spin_unlock(&logbuf_lock);
442 goto out;
443 }
444
445 msg = log_from_idx(user->idx);
446 ts_usec = msg->ts_nsec;
447 do_div(ts_usec, 1000);
448 len = sprintf(user->buf, "%u,%llu,%llu;",
449 msg->level, user->seq, ts_usec);
450
451 /* escape non-printable characters */
452 for (i = 0; i < msg->text_len; i++) {
453 unsigned char c = log_text(msg)[i];
454
455 if (c < ' ' || c >= 128)
456 len += sprintf(user->buf + len, "\\x%02x", c);
457 else
458 user->buf[len++] = c;
459 }
460 user->buf[len++] = '\n';
461
462 if (msg->dict_len) {
463 bool line = true;
464
465 for (i = 0; i < msg->dict_len; i++) {
466 unsigned char c = log_dict(msg)[i];
467
468 if (line) {
469 user->buf[len++] = ' ';
470 line = false;
471 }
472
473 if (c == '\0') {
474 user->buf[len++] = '\n';
475 line = true;
476 continue;
477 }
478
479 if (c < ' ' || c >= 128) {
480 len += sprintf(user->buf + len, "\\x%02x", c);
481 continue;
482 }
483
484 user->buf[len++] = c;
485 }
486 user->buf[len++] = '\n';
487 }
488
489 user->idx = log_next(user->idx);
490 user->seq++;
491 raw_spin_unlock(&logbuf_lock);
492
493 if (len > count) {
494 ret = -EINVAL;
495 goto out;
496 }
497
498 if (copy_to_user(buf, user->buf, len)) {
499 ret = -EFAULT;
500 goto out;
501 }
502 ret = len;
503 out:
504 mutex_unlock(&user->lock);
505 return ret;
506 }
507
508 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
509 {
510 struct devkmsg_user *user = file->private_data;
511 loff_t ret = 0;
512
513 if (!user)
514 return -EBADF;
515 if (offset)
516 return -ESPIPE;
517
518 raw_spin_lock(&logbuf_lock);
519 switch (whence) {
520 case SEEK_SET:
521 /* the first record */
522 user->idx = log_first_idx;
523 user->seq = log_first_seq;
524 break;
525 case SEEK_DATA:
526 /*
527 * The first record after the last SYSLOG_ACTION_CLEAR,
528 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
529 * changes no global state, and does not clear anything.
530 */
531 user->idx = clear_idx;
532 user->seq = clear_seq;
533 break;
534 case SEEK_END:
535 /* after the last record */
536 user->idx = log_next_idx;
537 user->seq = log_next_seq;
538 break;
539 default:
540 ret = -EINVAL;
541 }
542 raw_spin_unlock(&logbuf_lock);
543 return ret;
544 }
545
546 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
547 {
548 struct devkmsg_user *user = file->private_data;
549 int ret = 0;
550
551 if (!user)
552 return POLLERR|POLLNVAL;
553
554 poll_wait(file, &log_wait, wait);
555
556 raw_spin_lock(&logbuf_lock);
557 if (user->seq < log_next_seq) {
558 /* return error when data has vanished underneath us */
559 if (user->seq < log_first_seq)
560 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
561 ret = POLLIN|POLLRDNORM;
562 }
563 raw_spin_unlock(&logbuf_lock);
564
565 return ret;
566 }
567
568 static int devkmsg_open(struct inode *inode, struct file *file)
569 {
570 struct devkmsg_user *user;
571 int err;
572
573 /* write-only does not need any file context */
574 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
575 return 0;
576
577 err = security_syslog(SYSLOG_ACTION_READ_ALL);
578 if (err)
579 return err;
580
581 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
582 if (!user)
583 return -ENOMEM;
584
585 mutex_init(&user->lock);
586
587 raw_spin_lock(&logbuf_lock);
588 user->idx = log_first_idx;
589 user->seq = log_first_seq;
590 raw_spin_unlock(&logbuf_lock);
591
592 file->private_data = user;
593 return 0;
594 }
595
596 static int devkmsg_release(struct inode *inode, struct file *file)
597 {
598 struct devkmsg_user *user = file->private_data;
599
600 if (!user)
601 return 0;
602
603 mutex_destroy(&user->lock);
604 kfree(user);
605 return 0;
606 }
607
608 const struct file_operations kmsg_fops = {
609 .open = devkmsg_open,
610 .read = devkmsg_read,
611 .aio_write = devkmsg_writev,
612 .llseek = devkmsg_llseek,
613 .poll = devkmsg_poll,
614 .release = devkmsg_release,
615 };
616
617 #ifdef CONFIG_KEXEC
618 /*
619 * This appends the listed symbols to /proc/vmcoreinfo
620 *
621 * /proc/vmcoreinfo is used by various utiilties, like crash and makedumpfile to
622 * obtain access to symbols that are otherwise very difficult to locate. These
623 * symbols are specifically used so that utilities can access and extract the
624 * dmesg log from a vmcore file after a crash.
625 */
626 void log_buf_kexec_setup(void)
627 {
628 VMCOREINFO_SYMBOL(log_buf);
629 VMCOREINFO_SYMBOL(log_buf_len);
630 VMCOREINFO_SYMBOL(log_first_idx);
631 VMCOREINFO_SYMBOL(log_next_idx);
632 }
633 #endif
634
635 /* requested log_buf_len from kernel cmdline */
636 static unsigned long __initdata new_log_buf_len;
637
638 /* save requested log_buf_len since it's too early to process it */
639 static int __init log_buf_len_setup(char *str)
640 {
641 unsigned size = memparse(str, &str);
642
643 if (size)
644 size = roundup_pow_of_two(size);
645 if (size > log_buf_len)
646 new_log_buf_len = size;
647
648 return 0;
649 }
650 early_param("log_buf_len", log_buf_len_setup);
651
652 void __init setup_log_buf(int early)
653 {
654 unsigned long flags;
655 char *new_log_buf;
656 int free;
657
658 if (!new_log_buf_len)
659 return;
660
661 if (early) {
662 unsigned long mem;
663
664 mem = memblock_alloc(new_log_buf_len, PAGE_SIZE);
665 if (!mem)
666 return;
667 new_log_buf = __va(mem);
668 } else {
669 new_log_buf = alloc_bootmem_nopanic(new_log_buf_len);
670 }
671
672 if (unlikely(!new_log_buf)) {
673 pr_err("log_buf_len: %ld bytes not available\n",
674 new_log_buf_len);
675 return;
676 }
677
678 raw_spin_lock_irqsave(&logbuf_lock, flags);
679 log_buf_len = new_log_buf_len;
680 log_buf = new_log_buf;
681 new_log_buf_len = 0;
682 free = __LOG_BUF_LEN - log_next_idx;
683 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
684 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
685
686 pr_info("log_buf_len: %d\n", log_buf_len);
687 pr_info("early log buf free: %d(%d%%)\n",
688 free, (free * 100) / __LOG_BUF_LEN);
689 }
690
691 #ifdef CONFIG_BOOT_PRINTK_DELAY
692
693 static int boot_delay; /* msecs delay after each printk during bootup */
694 static unsigned long long loops_per_msec; /* based on boot_delay */
695
696 static int __init boot_delay_setup(char *str)
697 {
698 unsigned long lpj;
699
700 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
701 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
702
703 get_option(&str, &boot_delay);
704 if (boot_delay > 10 * 1000)
705 boot_delay = 0;
706
707 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
708 "HZ: %d, loops_per_msec: %llu\n",
709 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
710 return 1;
711 }
712 __setup("boot_delay=", boot_delay_setup);
713
714 static void boot_delay_msec(void)
715 {
716 unsigned long long k;
717 unsigned long timeout;
718
719 if (boot_delay == 0 || system_state != SYSTEM_BOOTING)
720 return;
721
722 k = (unsigned long long)loops_per_msec * boot_delay;
723
724 timeout = jiffies + msecs_to_jiffies(boot_delay);
725 while (k) {
726 k--;
727 cpu_relax();
728 /*
729 * use (volatile) jiffies to prevent
730 * compiler reduction; loop termination via jiffies
731 * is secondary and may or may not happen.
732 */
733 if (time_after(jiffies, timeout))
734 break;
735 touch_nmi_watchdog();
736 }
737 }
738 #else
739 static inline void boot_delay_msec(void)
740 {
741 }
742 #endif
743
744 #ifdef CONFIG_SECURITY_DMESG_RESTRICT
745 int dmesg_restrict = 1;
746 #else
747 int dmesg_restrict;
748 #endif
749
750 static int syslog_action_restricted(int type)
751 {
752 if (dmesg_restrict)
753 return 1;
754 /* Unless restricted, we allow "read all" and "get buffer size" for everybody */
755 return type != SYSLOG_ACTION_READ_ALL && type != SYSLOG_ACTION_SIZE_BUFFER;
756 }
757
758 static int check_syslog_permissions(int type, bool from_file)
759 {
760 /*
761 * If this is from /proc/kmsg and we've already opened it, then we've
762 * already done the capabilities checks at open time.
763 */
764 if (from_file && type != SYSLOG_ACTION_OPEN)
765 return 0;
766
767 if (syslog_action_restricted(type)) {
768 if (capable(CAP_SYSLOG))
769 return 0;
770 /* For historical reasons, accept CAP_SYS_ADMIN too, with a warning */
771 if (capable(CAP_SYS_ADMIN)) {
772 printk_once(KERN_WARNING "%s (%d): "
773 "Attempt to access syslog with CAP_SYS_ADMIN "
774 "but no CAP_SYSLOG (deprecated).\n",
775 current->comm, task_pid_nr(current));
776 return 0;
777 }
778 return -EPERM;
779 }
780 return 0;
781 }
782
783 #if defined(CONFIG_PRINTK_TIME)
784 static bool printk_time = 1;
785 #else
786 static bool printk_time;
787 #endif
788 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
789
790 static size_t print_prefix(const struct log *msg, bool syslog, char *buf)
791 {
792 size_t len = 0;
793
794 if (syslog) {
795 if (buf) {
796 len += sprintf(buf, "<%u>", msg->level);
797 } else {
798 len += 3;
799 if (msg->level > 9)
800 len++;
801 if (msg->level > 99)
802 len++;
803 }
804 }
805
806 if (printk_time) {
807 if (buf) {
808 unsigned long long ts = msg->ts_nsec;
809 unsigned long rem_nsec = do_div(ts, 1000000000);
810
811 len += sprintf(buf + len, "[%5lu.%06lu] ",
812 (unsigned long) ts, rem_nsec / 1000);
813 } else {
814 len += 15;
815 }
816 }
817
818 return len;
819 }
820
821 static size_t msg_print_text(const struct log *msg, bool syslog,
822 char *buf, size_t size)
823 {
824 const char *text = log_text(msg);
825 size_t text_size = msg->text_len;
826 size_t len = 0;
827
828 do {
829 const char *next = memchr(text, '\n', text_size);
830 size_t text_len;
831
832 if (next) {
833 text_len = next - text;
834 next++;
835 text_size -= next - text;
836 } else {
837 text_len = text_size;
838 }
839
840 if (buf) {
841 if (print_prefix(msg, syslog, NULL) +
842 text_len + 1>= size - len)
843 break;
844
845 len += print_prefix(msg, syslog, buf + len);
846 memcpy(buf + len, text, text_len);
847 len += text_len;
848 buf[len++] = '\n';
849 } else {
850 /* SYSLOG_ACTION_* buffer size only calculation */
851 len += print_prefix(msg, syslog, NULL);
852 len += text_len + 1;
853 }
854
855 text = next;
856 } while (text);
857
858 return len;
859 }
860
861 static int syslog_print(char __user *buf, int size)
862 {
863 char *text;
864 struct log *msg;
865 int len;
866
867 text = kmalloc(LOG_LINE_MAX, GFP_KERNEL);
868 if (!text)
869 return -ENOMEM;
870
871 raw_spin_lock_irq(&logbuf_lock);
872 if (syslog_seq < log_first_seq) {
873 /* messages are gone, move to first one */
874 syslog_seq = log_first_seq;
875 syslog_idx = log_first_idx;
876 }
877 msg = log_from_idx(syslog_idx);
878 len = msg_print_text(msg, true, text, LOG_LINE_MAX);
879 syslog_idx = log_next(syslog_idx);
880 syslog_seq++;
881 raw_spin_unlock_irq(&logbuf_lock);
882
883 if (len > size)
884 len = -EINVAL;
885 else if (len > 0 && copy_to_user(buf, text, len))
886 len = -EFAULT;
887
888 kfree(text);
889 return len;
890 }
891
892 static int syslog_print_all(char __user *buf, int size, bool clear)
893 {
894 char *text;
895 int len = 0;
896
897 text = kmalloc(LOG_LINE_MAX, GFP_KERNEL);
898 if (!text)
899 return -ENOMEM;
900
901 raw_spin_lock_irq(&logbuf_lock);
902 if (buf) {
903 u64 next_seq;
904 u64 seq;
905 u32 idx;
906
907 if (clear_seq < log_first_seq) {
908 /* messages are gone, move to first available one */
909 clear_seq = log_first_seq;
910 clear_idx = log_first_idx;
911 }
912
913 /*
914 * Find first record that fits, including all following records,
915 * into the user-provided buffer for this dump.
916 */
917 seq = clear_seq;
918 idx = clear_idx;
919 while (seq < log_next_seq) {
920 struct log *msg = log_from_idx(idx);
921
922 len += msg_print_text(msg, true, NULL, 0);
923 idx = log_next(idx);
924 seq++;
925 }
926
927 /* move first record forward until length fits into the buffer */
928 seq = clear_seq;
929 idx = clear_idx;
930 while (len > size && seq < log_next_seq) {
931 struct log *msg = log_from_idx(idx);
932
933 len -= msg_print_text(msg, true, NULL, 0);
934 idx = log_next(idx);
935 seq++;
936 }
937
938 /* last message fitting into this dump */
939 next_seq = log_next_seq;
940
941 len = 0;
942 while (len >= 0 && seq < next_seq) {
943 struct log *msg = log_from_idx(idx);
944 int textlen;
945
946 textlen = msg_print_text(msg, true, text, LOG_LINE_MAX);
947 if (textlen < 0) {
948 len = textlen;
949 break;
950 }
951 idx = log_next(idx);
952 seq++;
953
954 raw_spin_unlock_irq(&logbuf_lock);
955 if (copy_to_user(buf + len, text, textlen))
956 len = -EFAULT;
957 else
958 len += textlen;
959 raw_spin_lock_irq(&logbuf_lock);
960
961 if (seq < log_first_seq) {
962 /* messages are gone, move to next one */
963 seq = log_first_seq;
964 idx = log_first_idx;
965 }
966 }
967 }
968
969 if (clear) {
970 clear_seq = log_next_seq;
971 clear_idx = log_next_idx;
972 }
973 raw_spin_unlock_irq(&logbuf_lock);
974
975 kfree(text);
976 return len;
977 }
978
979 int do_syslog(int type, char __user *buf, int len, bool from_file)
980 {
981 bool clear = false;
982 static int saved_console_loglevel = -1;
983 static DEFINE_MUTEX(syslog_mutex);
984 int error;
985
986 error = check_syslog_permissions(type, from_file);
987 if (error)
988 goto out;
989
990 error = security_syslog(type);
991 if (error)
992 return error;
993
994 switch (type) {
995 case SYSLOG_ACTION_CLOSE: /* Close log */
996 break;
997 case SYSLOG_ACTION_OPEN: /* Open log */
998 break;
999 case SYSLOG_ACTION_READ: /* Read from log */
1000 error = -EINVAL;
1001 if (!buf || len < 0)
1002 goto out;
1003 error = 0;
1004 if (!len)
1005 goto out;
1006 if (!access_ok(VERIFY_WRITE, buf, len)) {
1007 error = -EFAULT;
1008 goto out;
1009 }
1010 error = mutex_lock_interruptible(&syslog_mutex);
1011 if (error)
1012 goto out;
1013 error = wait_event_interruptible(log_wait,
1014 syslog_seq != log_next_seq);
1015 if (error) {
1016 mutex_unlock(&syslog_mutex);
1017 goto out;
1018 }
1019 error = syslog_print(buf, len);
1020 mutex_unlock(&syslog_mutex);
1021 break;
1022 /* Read/clear last kernel messages */
1023 case SYSLOG_ACTION_READ_CLEAR:
1024 clear = true;
1025 /* FALL THRU */
1026 /* Read last kernel messages */
1027 case SYSLOG_ACTION_READ_ALL:
1028 error = -EINVAL;
1029 if (!buf || len < 0)
1030 goto out;
1031 error = 0;
1032 if (!len)
1033 goto out;
1034 if (!access_ok(VERIFY_WRITE, buf, len)) {
1035 error = -EFAULT;
1036 goto out;
1037 }
1038 error = syslog_print_all(buf, len, clear);
1039 break;
1040 /* Clear ring buffer */
1041 case SYSLOG_ACTION_CLEAR:
1042 syslog_print_all(NULL, 0, true);
1043 /* Disable logging to console */
1044 case SYSLOG_ACTION_CONSOLE_OFF:
1045 if (saved_console_loglevel == -1)
1046 saved_console_loglevel = console_loglevel;
1047 console_loglevel = minimum_console_loglevel;
1048 break;
1049 /* Enable logging to console */
1050 case SYSLOG_ACTION_CONSOLE_ON:
1051 if (saved_console_loglevel != -1) {
1052 console_loglevel = saved_console_loglevel;
1053 saved_console_loglevel = -1;
1054 }
1055 break;
1056 /* Set level of messages printed to console */
1057 case SYSLOG_ACTION_CONSOLE_LEVEL:
1058 error = -EINVAL;
1059 if (len < 1 || len > 8)
1060 goto out;
1061 if (len < minimum_console_loglevel)
1062 len = minimum_console_loglevel;
1063 console_loglevel = len;
1064 /* Implicitly re-enable logging to console */
1065 saved_console_loglevel = -1;
1066 error = 0;
1067 break;
1068 /* Number of chars in the log buffer */
1069 case SYSLOG_ACTION_SIZE_UNREAD:
1070 raw_spin_lock_irq(&logbuf_lock);
1071 if (syslog_seq < log_first_seq) {
1072 /* messages are gone, move to first one */
1073 syslog_seq = log_first_seq;
1074 syslog_idx = log_first_idx;
1075 }
1076 if (from_file) {
1077 /*
1078 * Short-cut for poll(/"proc/kmsg") which simply checks
1079 * for pending data, not the size; return the count of
1080 * records, not the length.
1081 */
1082 error = log_next_idx - syslog_idx;
1083 } else {
1084 u64 seq;
1085 u32 idx;
1086
1087 error = 0;
1088 seq = syslog_seq;
1089 idx = syslog_idx;
1090 while (seq < log_next_seq) {
1091 struct log *msg = log_from_idx(idx);
1092
1093 error += msg_print_text(msg, true, NULL, 0);
1094 idx = log_next(idx);
1095 seq++;
1096 }
1097 }
1098 raw_spin_unlock_irq(&logbuf_lock);
1099 break;
1100 /* Size of the log buffer */
1101 case SYSLOG_ACTION_SIZE_BUFFER:
1102 error = log_buf_len;
1103 break;
1104 default:
1105 error = -EINVAL;
1106 break;
1107 }
1108 out:
1109 return error;
1110 }
1111
1112 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1113 {
1114 return do_syslog(type, buf, len, SYSLOG_FROM_CALL);
1115 }
1116
1117 #ifdef CONFIG_KGDB_KDB
1118 /* kdb dmesg command needs access to the syslog buffer. do_syslog()
1119 * uses locks so it cannot be used during debugging. Just tell kdb
1120 * where the start and end of the physical and logical logs are. This
1121 * is equivalent to do_syslog(3).
1122 */
1123 void kdb_syslog_data(char *syslog_data[4])
1124 {
1125 syslog_data[0] = log_buf;
1126 syslog_data[1] = log_buf + log_buf_len;
1127 syslog_data[2] = log_buf + log_first_idx;
1128 syslog_data[3] = log_buf + log_next_idx;
1129 }
1130 #endif /* CONFIG_KGDB_KDB */
1131
1132 static bool __read_mostly ignore_loglevel;
1133
1134 static int __init ignore_loglevel_setup(char *str)
1135 {
1136 ignore_loglevel = 1;
1137 printk(KERN_INFO "debug: ignoring loglevel setting.\n");
1138
1139 return 0;
1140 }
1141
1142 early_param("ignore_loglevel", ignore_loglevel_setup);
1143 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1144 MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to"
1145 "print all kernel messages to the console.");
1146
1147 /*
1148 * Call the console drivers, asking them to write out
1149 * log_buf[start] to log_buf[end - 1].
1150 * The console_lock must be held.
1151 */
1152 static void call_console_drivers(int level, const char *text, size_t len)
1153 {
1154 struct console *con;
1155
1156 trace_console(text, 0, len, len);
1157
1158 if (level >= console_loglevel && !ignore_loglevel)
1159 return;
1160 if (!console_drivers)
1161 return;
1162
1163 for_each_console(con) {
1164 if (exclusive_console && con != exclusive_console)
1165 continue;
1166 if (!(con->flags & CON_ENABLED))
1167 continue;
1168 if (!con->write)
1169 continue;
1170 if (!cpu_online(smp_processor_id()) &&
1171 !(con->flags & CON_ANYTIME))
1172 continue;
1173 con->write(con, text, len);
1174 }
1175 }
1176
1177 /*
1178 * Zap console related locks when oopsing. Only zap at most once
1179 * every 10 seconds, to leave time for slow consoles to print a
1180 * full oops.
1181 */
1182 static void zap_locks(void)
1183 {
1184 static unsigned long oops_timestamp;
1185
1186 if (time_after_eq(jiffies, oops_timestamp) &&
1187 !time_after(jiffies, oops_timestamp + 30 * HZ))
1188 return;
1189
1190 oops_timestamp = jiffies;
1191
1192 debug_locks_off();
1193 /* If a crash is occurring, make sure we can't deadlock */
1194 raw_spin_lock_init(&logbuf_lock);
1195 /* And make sure that we print immediately */
1196 sema_init(&console_sem, 1);
1197 }
1198
1199 /* Check if we have any console registered that can be called early in boot. */
1200 static int have_callable_console(void)
1201 {
1202 struct console *con;
1203
1204 for_each_console(con)
1205 if (con->flags & CON_ANYTIME)
1206 return 1;
1207
1208 return 0;
1209 }
1210
1211 /*
1212 * Can we actually use the console at this time on this cpu?
1213 *
1214 * Console drivers may assume that per-cpu resources have
1215 * been allocated. So unless they're explicitly marked as
1216 * being able to cope (CON_ANYTIME) don't call them until
1217 * this CPU is officially up.
1218 */
1219 static inline int can_use_console(unsigned int cpu)
1220 {
1221 return cpu_online(cpu) || have_callable_console();
1222 }
1223
1224 /*
1225 * Try to get console ownership to actually show the kernel
1226 * messages from a 'printk'. Return true (and with the
1227 * console_lock held, and 'console_locked' set) if it
1228 * is successful, false otherwise.
1229 *
1230 * This gets called with the 'logbuf_lock' spinlock held and
1231 * interrupts disabled. It should return with 'lockbuf_lock'
1232 * released but interrupts still disabled.
1233 */
1234 static int console_trylock_for_printk(unsigned int cpu)
1235 __releases(&logbuf_lock)
1236 {
1237 int retval = 0, wake = 0;
1238
1239 if (console_trylock()) {
1240 retval = 1;
1241
1242 /*
1243 * If we can't use the console, we need to release
1244 * the console semaphore by hand to avoid flushing
1245 * the buffer. We need to hold the console semaphore
1246 * in order to do this test safely.
1247 */
1248 if (!can_use_console(cpu)) {
1249 console_locked = 0;
1250 wake = 1;
1251 retval = 0;
1252 }
1253 }
1254 logbuf_cpu = UINT_MAX;
1255 if (wake)
1256 up(&console_sem);
1257 raw_spin_unlock(&logbuf_lock);
1258 return retval;
1259 }
1260
1261 int printk_delay_msec __read_mostly;
1262
1263 static inline void printk_delay(void)
1264 {
1265 if (unlikely(printk_delay_msec)) {
1266 int m = printk_delay_msec;
1267
1268 while (m--) {
1269 mdelay(1);
1270 touch_nmi_watchdog();
1271 }
1272 }
1273 }
1274
1275 asmlinkage int vprintk_emit(int facility, int level,
1276 const char *dict, size_t dictlen,
1277 const char *fmt, va_list args)
1278 {
1279 static int recursion_bug;
1280 static char cont_buf[LOG_LINE_MAX];
1281 static size_t cont_len;
1282 static int cont_level;
1283 static struct task_struct *cont_task;
1284 static char textbuf[LOG_LINE_MAX];
1285 char *text = textbuf;
1286 size_t text_len;
1287 unsigned long flags;
1288 int this_cpu;
1289 bool newline = false;
1290 bool prefix = false;
1291 int printed_len = 0;
1292
1293 boot_delay_msec();
1294 printk_delay();
1295
1296 /* This stops the holder of console_sem just where we want him */
1297 local_irq_save(flags);
1298 this_cpu = smp_processor_id();
1299
1300 /*
1301 * Ouch, printk recursed into itself!
1302 */
1303 if (unlikely(logbuf_cpu == this_cpu)) {
1304 /*
1305 * If a crash is occurring during printk() on this CPU,
1306 * then try to get the crash message out but make sure
1307 * we can't deadlock. Otherwise just return to avoid the
1308 * recursion and return - but flag the recursion so that
1309 * it can be printed at the next appropriate moment:
1310 */
1311 if (!oops_in_progress && !lockdep_recursing(current)) {
1312 recursion_bug = 1;
1313 goto out_restore_irqs;
1314 }
1315 zap_locks();
1316 }
1317
1318 lockdep_off();
1319 raw_spin_lock(&logbuf_lock);
1320 logbuf_cpu = this_cpu;
1321
1322 if (recursion_bug) {
1323 static const char recursion_msg[] =
1324 "BUG: recent printk recursion!";
1325
1326 recursion_bug = 0;
1327 printed_len += strlen(recursion_msg);
1328 /* emit KERN_CRIT message */
1329 log_store(0, 2, NULL, 0, recursion_msg, printed_len);
1330 }
1331
1332 /*
1333 * The printf needs to come first; we need the syslog
1334 * prefix which might be passed-in as a parameter.
1335 */
1336 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1337
1338 /* mark and strip a trailing newline */
1339 if (text_len && text[text_len-1] == '\n') {
1340 text_len--;
1341 newline = true;
1342 }
1343
1344 /* strip syslog prefix and extract log level or control flags */
1345 if (text[0] == '<' && text[1] && text[2] == '>') {
1346 switch (text[1]) {
1347 case '0' ... '7':
1348 if (level == -1)
1349 level = text[1] - '0';
1350 case 'd': /* KERN_DEFAULT */
1351 prefix = true;
1352 case 'c': /* KERN_CONT */
1353 text += 3;
1354 text_len -= 3;
1355 }
1356 }
1357
1358 if (level == -1)
1359 level = default_message_loglevel;
1360
1361 if (dict) {
1362 prefix = true;
1363 newline = true;
1364 }
1365
1366 if (!newline) {
1367 if (cont_len && (prefix || cont_task != current)) {
1368 /*
1369 * Flush earlier buffer, which is either from a
1370 * different thread, or when we got a new prefix.
1371 */
1372 log_store(facility, cont_level, NULL, 0, cont_buf, cont_len);
1373 cont_len = 0;
1374 }
1375
1376 if (!cont_len) {
1377 cont_level = level;
1378 cont_task = current;
1379 }
1380
1381 /* buffer or append to earlier buffer from the same thread */
1382 if (cont_len + text_len > sizeof(cont_buf))
1383 text_len = sizeof(cont_buf) - cont_len;
1384 memcpy(cont_buf + cont_len, text, text_len);
1385 cont_len += text_len;
1386 } else {
1387 if (cont_len && cont_task == current) {
1388 if (prefix) {
1389 /*
1390 * New prefix from the same thread; flush. We
1391 * either got no earlier newline, or we race
1392 * with an interrupt.
1393 */
1394 log_store(facility, cont_level,
1395 NULL, 0, cont_buf, cont_len);
1396 cont_len = 0;
1397 }
1398
1399 /* append to the earlier buffer and flush */
1400 if (cont_len + text_len > sizeof(cont_buf))
1401 text_len = sizeof(cont_buf) - cont_len;
1402 memcpy(cont_buf + cont_len, text, text_len);
1403 cont_len += text_len;
1404 log_store(facility, cont_level,
1405 NULL, 0, cont_buf, cont_len);
1406 cont_len = 0;
1407 cont_task = NULL;
1408 printed_len = cont_len;
1409 } else {
1410 /* ordinary single and terminated line */
1411 log_store(facility, level,
1412 dict, dictlen, text, text_len);
1413 printed_len = text_len;
1414 }
1415 }
1416
1417 /*
1418 * Try to acquire and then immediately release the console semaphore.
1419 * The release will print out buffers and wake up /dev/kmsg and syslog()
1420 * users.
1421 *
1422 * The console_trylock_for_printk() function will release 'logbuf_lock'
1423 * regardless of whether it actually gets the console semaphore or not.
1424 */
1425 if (console_trylock_for_printk(this_cpu))
1426 console_unlock();
1427
1428 lockdep_on();
1429 out_restore_irqs:
1430 local_irq_restore(flags);
1431
1432 return printed_len;
1433 }
1434 EXPORT_SYMBOL(vprintk_emit);
1435
1436 asmlinkage int vprintk(const char *fmt, va_list args)
1437 {
1438 return vprintk_emit(0, -1, NULL, 0, fmt, args);
1439 }
1440 EXPORT_SYMBOL(vprintk);
1441
1442 asmlinkage int printk_emit(int facility, int level,
1443 const char *dict, size_t dictlen,
1444 const char *fmt, ...)
1445 {
1446 va_list args;
1447 int r;
1448
1449 va_start(args, fmt);
1450 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1451 va_end(args);
1452
1453 return r;
1454 }
1455 EXPORT_SYMBOL(printk_emit);
1456
1457 /**
1458 * printk - print a kernel message
1459 * @fmt: format string
1460 *
1461 * This is printk(). It can be called from any context. We want it to work.
1462 *
1463 * We try to grab the console_lock. If we succeed, it's easy - we log the
1464 * output and call the console drivers. If we fail to get the semaphore, we
1465 * place the output into the log buffer and return. The current holder of
1466 * the console_sem will notice the new output in console_unlock(); and will
1467 * send it to the consoles before releasing the lock.
1468 *
1469 * One effect of this deferred printing is that code which calls printk() and
1470 * then changes console_loglevel may break. This is because console_loglevel
1471 * is inspected when the actual printing occurs.
1472 *
1473 * See also:
1474 * printf(3)
1475 *
1476 * See the vsnprintf() documentation for format string extensions over C99.
1477 */
1478 asmlinkage int printk(const char *fmt, ...)
1479 {
1480 va_list args;
1481 int r;
1482
1483 #ifdef CONFIG_KGDB_KDB
1484 if (unlikely(kdb_trap_printk)) {
1485 va_start(args, fmt);
1486 r = vkdb_printf(fmt, args);
1487 va_end(args);
1488 return r;
1489 }
1490 #endif
1491 va_start(args, fmt);
1492 r = vprintk_emit(0, -1, NULL, 0, fmt, args);
1493 va_end(args);
1494
1495 return r;
1496 }
1497 EXPORT_SYMBOL(printk);
1498
1499 #else
1500
1501 #define LOG_LINE_MAX 0
1502 static struct log *log_from_idx(u32 idx) { return NULL; }
1503 static u32 log_next(u32 idx) { return 0; }
1504 static void call_console_drivers(int level, const char *text, size_t len) {}
1505 static size_t msg_print_text(const struct log *msg, bool syslog,
1506 char *buf, size_t size) { return 0; }
1507
1508 #endif /* CONFIG_PRINTK */
1509
1510 static int __add_preferred_console(char *name, int idx, char *options,
1511 char *brl_options)
1512 {
1513 struct console_cmdline *c;
1514 int i;
1515
1516 /*
1517 * See if this tty is not yet registered, and
1518 * if we have a slot free.
1519 */
1520 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0]; i++)
1521 if (strcmp(console_cmdline[i].name, name) == 0 &&
1522 console_cmdline[i].index == idx) {
1523 if (!brl_options)
1524 selected_console = i;
1525 return 0;
1526 }
1527 if (i == MAX_CMDLINECONSOLES)
1528 return -E2BIG;
1529 if (!brl_options)
1530 selected_console = i;
1531 c = &console_cmdline[i];
1532 strlcpy(c->name, name, sizeof(c->name));
1533 c->options = options;
1534 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
1535 c->brl_options = brl_options;
1536 #endif
1537 c->index = idx;
1538 return 0;
1539 }
1540 /*
1541 * Set up a list of consoles. Called from init/main.c
1542 */
1543 static int __init console_setup(char *str)
1544 {
1545 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for index */
1546 char *s, *options, *brl_options = NULL;
1547 int idx;
1548
1549 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
1550 if (!memcmp(str, "brl,", 4)) {
1551 brl_options = "";
1552 str += 4;
1553 } else if (!memcmp(str, "brl=", 4)) {
1554 brl_options = str + 4;
1555 str = strchr(brl_options, ',');
1556 if (!str) {
1557 printk(KERN_ERR "need port name after brl=\n");
1558 return 1;
1559 }
1560 *(str++) = 0;
1561 }
1562 #endif
1563
1564 /*
1565 * Decode str into name, index, options.
1566 */
1567 if (str[0] >= '0' && str[0] <= '9') {
1568 strcpy(buf, "ttyS");
1569 strncpy(buf + 4, str, sizeof(buf) - 5);
1570 } else {
1571 strncpy(buf, str, sizeof(buf) - 1);
1572 }
1573 buf[sizeof(buf) - 1] = 0;
1574 if ((options = strchr(str, ',')) != NULL)
1575 *(options++) = 0;
1576 #ifdef __sparc__
1577 if (!strcmp(str, "ttya"))
1578 strcpy(buf, "ttyS0");
1579 if (!strcmp(str, "ttyb"))
1580 strcpy(buf, "ttyS1");
1581 #endif
1582 for (s = buf; *s; s++)
1583 if ((*s >= '0' && *s <= '9') || *s == ',')
1584 break;
1585 idx = simple_strtoul(s, NULL, 10);
1586 *s = 0;
1587
1588 __add_preferred_console(buf, idx, options, brl_options);
1589 console_set_on_cmdline = 1;
1590 return 1;
1591 }
1592 __setup("console=", console_setup);
1593
1594 /**
1595 * add_preferred_console - add a device to the list of preferred consoles.
1596 * @name: device name
1597 * @idx: device index
1598 * @options: options for this console
1599 *
1600 * The last preferred console added will be used for kernel messages
1601 * and stdin/out/err for init. Normally this is used by console_setup
1602 * above to handle user-supplied console arguments; however it can also
1603 * be used by arch-specific code either to override the user or more
1604 * commonly to provide a default console (ie from PROM variables) when
1605 * the user has not supplied one.
1606 */
1607 int add_preferred_console(char *name, int idx, char *options)
1608 {
1609 return __add_preferred_console(name, idx, options, NULL);
1610 }
1611
1612 int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options)
1613 {
1614 struct console_cmdline *c;
1615 int i;
1616
1617 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0]; i++)
1618 if (strcmp(console_cmdline[i].name, name) == 0 &&
1619 console_cmdline[i].index == idx) {
1620 c = &console_cmdline[i];
1621 strlcpy(c->name, name_new, sizeof(c->name));
1622 c->name[sizeof(c->name) - 1] = 0;
1623 c->options = options;
1624 c->index = idx_new;
1625 return i;
1626 }
1627 /* not found */
1628 return -1;
1629 }
1630
1631 bool console_suspend_enabled = 1;
1632 EXPORT_SYMBOL(console_suspend_enabled);
1633
1634 static int __init console_suspend_disable(char *str)
1635 {
1636 console_suspend_enabled = 0;
1637 return 1;
1638 }
1639 __setup("no_console_suspend", console_suspend_disable);
1640 module_param_named(console_suspend, console_suspend_enabled,
1641 bool, S_IRUGO | S_IWUSR);
1642 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
1643 " and hibernate operations");
1644
1645 /**
1646 * suspend_console - suspend the console subsystem
1647 *
1648 * This disables printk() while we go into suspend states
1649 */
1650 void suspend_console(void)
1651 {
1652 if (!console_suspend_enabled)
1653 return;
1654 printk("Suspending console(s) (use no_console_suspend to debug)\n");
1655 console_lock();
1656 console_suspended = 1;
1657 up(&console_sem);
1658 }
1659
1660 void resume_console(void)
1661 {
1662 if (!console_suspend_enabled)
1663 return;
1664 down(&console_sem);
1665 console_suspended = 0;
1666 console_unlock();
1667 }
1668
1669 /**
1670 * console_cpu_notify - print deferred console messages after CPU hotplug
1671 * @self: notifier struct
1672 * @action: CPU hotplug event
1673 * @hcpu: unused
1674 *
1675 * If printk() is called from a CPU that is not online yet, the messages
1676 * will be spooled but will not show up on the console. This function is
1677 * called when a new CPU comes online (or fails to come up), and ensures
1678 * that any such output gets printed.
1679 */
1680 static int __cpuinit console_cpu_notify(struct notifier_block *self,
1681 unsigned long action, void *hcpu)
1682 {
1683 switch (action) {
1684 case CPU_ONLINE:
1685 case CPU_DEAD:
1686 case CPU_DYING:
1687 case CPU_DOWN_FAILED:
1688 case CPU_UP_CANCELED:
1689 console_lock();
1690 console_unlock();
1691 }
1692 return NOTIFY_OK;
1693 }
1694
1695 /**
1696 * console_lock - lock the console system for exclusive use.
1697 *
1698 * Acquires a lock which guarantees that the caller has
1699 * exclusive access to the console system and the console_drivers list.
1700 *
1701 * Can sleep, returns nothing.
1702 */
1703 void console_lock(void)
1704 {
1705 BUG_ON(in_interrupt());
1706 down(&console_sem);
1707 if (console_suspended)
1708 return;
1709 console_locked = 1;
1710 console_may_schedule = 1;
1711 }
1712 EXPORT_SYMBOL(console_lock);
1713
1714 /**
1715 * console_trylock - try to lock the console system for exclusive use.
1716 *
1717 * Tried to acquire a lock which guarantees that the caller has
1718 * exclusive access to the console system and the console_drivers list.
1719 *
1720 * returns 1 on success, and 0 on failure to acquire the lock.
1721 */
1722 int console_trylock(void)
1723 {
1724 if (down_trylock(&console_sem))
1725 return 0;
1726 if (console_suspended) {
1727 up(&console_sem);
1728 return 0;
1729 }
1730 console_locked = 1;
1731 console_may_schedule = 0;
1732 return 1;
1733 }
1734 EXPORT_SYMBOL(console_trylock);
1735
1736 int is_console_locked(void)
1737 {
1738 return console_locked;
1739 }
1740
1741 /*
1742 * Delayed printk version, for scheduler-internal messages:
1743 */
1744 #define PRINTK_BUF_SIZE 512
1745
1746 #define PRINTK_PENDING_WAKEUP 0x01
1747 #define PRINTK_PENDING_SCHED 0x02
1748
1749 static DEFINE_PER_CPU(int, printk_pending);
1750 static DEFINE_PER_CPU(char [PRINTK_BUF_SIZE], printk_sched_buf);
1751
1752 void printk_tick(void)
1753 {
1754 if (__this_cpu_read(printk_pending)) {
1755 int pending = __this_cpu_xchg(printk_pending, 0);
1756 if (pending & PRINTK_PENDING_SCHED) {
1757 char *buf = __get_cpu_var(printk_sched_buf);
1758 printk(KERN_WARNING "[sched_delayed] %s", buf);
1759 }
1760 if (pending & PRINTK_PENDING_WAKEUP)
1761 wake_up_interruptible(&log_wait);
1762 }
1763 }
1764
1765 int printk_needs_cpu(int cpu)
1766 {
1767 if (cpu_is_offline(cpu))
1768 printk_tick();
1769 return __this_cpu_read(printk_pending);
1770 }
1771
1772 void wake_up_klogd(void)
1773 {
1774 if (waitqueue_active(&log_wait))
1775 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
1776 }
1777
1778 /* the next printk record to write to the console */
1779 static u64 console_seq;
1780 static u32 console_idx;
1781
1782 /**
1783 * console_unlock - unlock the console system
1784 *
1785 * Releases the console_lock which the caller holds on the console system
1786 * and the console driver list.
1787 *
1788 * While the console_lock was held, console output may have been buffered
1789 * by printk(). If this is the case, console_unlock(); emits
1790 * the output prior to releasing the lock.
1791 *
1792 * If there is output waiting, we wake /dev/kmsg and syslog() users.
1793 *
1794 * console_unlock(); may be called from any context.
1795 */
1796 void console_unlock(void)
1797 {
1798 static u64 seen_seq;
1799 unsigned long flags;
1800 bool wake_klogd = false;
1801 bool retry;
1802
1803 if (console_suspended) {
1804 up(&console_sem);
1805 return;
1806 }
1807
1808 console_may_schedule = 0;
1809
1810 again:
1811 for (;;) {
1812 struct log *msg;
1813 static char text[LOG_LINE_MAX];
1814 size_t len;
1815 int level;
1816
1817 raw_spin_lock_irqsave(&logbuf_lock, flags);
1818 if (seen_seq != log_next_seq) {
1819 wake_klogd = true;
1820 seen_seq = log_next_seq;
1821 }
1822
1823 if (console_seq < log_first_seq) {
1824 /* messages are gone, move to first one */
1825 console_seq = log_first_seq;
1826 console_idx = log_first_idx;
1827 }
1828
1829 if (console_seq == log_next_seq)
1830 break;
1831
1832 msg = log_from_idx(console_idx);
1833 level = msg->level & 7;
1834
1835 len = msg_print_text(msg, false, text, sizeof(text));
1836
1837 console_idx = log_next(console_idx);
1838 console_seq++;
1839 raw_spin_unlock(&logbuf_lock);
1840
1841 stop_critical_timings(); /* don't trace print latency */
1842 call_console_drivers(level, text, len);
1843 start_critical_timings();
1844 local_irq_restore(flags);
1845 }
1846 console_locked = 0;
1847
1848 /* Release the exclusive_console once it is used */
1849 if (unlikely(exclusive_console))
1850 exclusive_console = NULL;
1851
1852 raw_spin_unlock(&logbuf_lock);
1853
1854 up(&console_sem);
1855
1856 /*
1857 * Someone could have filled up the buffer again, so re-check if there's
1858 * something to flush. In case we cannot trylock the console_sem again,
1859 * there's a new owner and the console_unlock() from them will do the
1860 * flush, no worries.
1861 */
1862 raw_spin_lock(&logbuf_lock);
1863 retry = console_seq != log_next_seq;
1864 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
1865
1866 if (retry && console_trylock())
1867 goto again;
1868
1869 if (wake_klogd)
1870 wake_up_klogd();
1871 }
1872 EXPORT_SYMBOL(console_unlock);
1873
1874 /**
1875 * console_conditional_schedule - yield the CPU if required
1876 *
1877 * If the console code is currently allowed to sleep, and
1878 * if this CPU should yield the CPU to another task, do
1879 * so here.
1880 *
1881 * Must be called within console_lock();.
1882 */
1883 void __sched console_conditional_schedule(void)
1884 {
1885 if (console_may_schedule)
1886 cond_resched();
1887 }
1888 EXPORT_SYMBOL(console_conditional_schedule);
1889
1890 void console_unblank(void)
1891 {
1892 struct console *c;
1893
1894 /*
1895 * console_unblank can no longer be called in interrupt context unless
1896 * oops_in_progress is set to 1..
1897 */
1898 if (oops_in_progress) {
1899 if (down_trylock(&console_sem) != 0)
1900 return;
1901 } else
1902 console_lock();
1903
1904 console_locked = 1;
1905 console_may_schedule = 0;
1906 for_each_console(c)
1907 if ((c->flags & CON_ENABLED) && c->unblank)
1908 c->unblank();
1909 console_unlock();
1910 }
1911
1912 /*
1913 * Return the console tty driver structure and its associated index
1914 */
1915 struct tty_driver *console_device(int *index)
1916 {
1917 struct console *c;
1918 struct tty_driver *driver = NULL;
1919
1920 console_lock();
1921 for_each_console(c) {
1922 if (!c->device)
1923 continue;
1924 driver = c->device(c, index);
1925 if (driver)
1926 break;
1927 }
1928 console_unlock();
1929 return driver;
1930 }
1931
1932 /*
1933 * Prevent further output on the passed console device so that (for example)
1934 * serial drivers can disable console output before suspending a port, and can
1935 * re-enable output afterwards.
1936 */
1937 void console_stop(struct console *console)
1938 {
1939 console_lock();
1940 console->flags &= ~CON_ENABLED;
1941 console_unlock();
1942 }
1943 EXPORT_SYMBOL(console_stop);
1944
1945 void console_start(struct console *console)
1946 {
1947 console_lock();
1948 console->flags |= CON_ENABLED;
1949 console_unlock();
1950 }
1951 EXPORT_SYMBOL(console_start);
1952
1953 static int __read_mostly keep_bootcon;
1954
1955 static int __init keep_bootcon_setup(char *str)
1956 {
1957 keep_bootcon = 1;
1958 printk(KERN_INFO "debug: skip boot console de-registration.\n");
1959
1960 return 0;
1961 }
1962
1963 early_param("keep_bootcon", keep_bootcon_setup);
1964
1965 /*
1966 * The console driver calls this routine during kernel initialization
1967 * to register the console printing procedure with printk() and to
1968 * print any messages that were printed by the kernel before the
1969 * console driver was initialized.
1970 *
1971 * This can happen pretty early during the boot process (because of
1972 * early_printk) - sometimes before setup_arch() completes - be careful
1973 * of what kernel features are used - they may not be initialised yet.
1974 *
1975 * There are two types of consoles - bootconsoles (early_printk) and
1976 * "real" consoles (everything which is not a bootconsole) which are
1977 * handled differently.
1978 * - Any number of bootconsoles can be registered at any time.
1979 * - As soon as a "real" console is registered, all bootconsoles
1980 * will be unregistered automatically.
1981 * - Once a "real" console is registered, any attempt to register a
1982 * bootconsoles will be rejected
1983 */
1984 void register_console(struct console *newcon)
1985 {
1986 int i;
1987 unsigned long flags;
1988 struct console *bcon = NULL;
1989
1990 /*
1991 * before we register a new CON_BOOT console, make sure we don't
1992 * already have a valid console
1993 */
1994 if (console_drivers && newcon->flags & CON_BOOT) {
1995 /* find the last or real console */
1996 for_each_console(bcon) {
1997 if (!(bcon->flags & CON_BOOT)) {
1998 printk(KERN_INFO "Too late to register bootconsole %s%d\n",
1999 newcon->name, newcon->index);
2000 return;
2001 }
2002 }
2003 }
2004
2005 if (console_drivers && console_drivers->flags & CON_BOOT)
2006 bcon = console_drivers;
2007
2008 if (preferred_console < 0 || bcon || !console_drivers)
2009 preferred_console = selected_console;
2010
2011 if (newcon->early_setup)
2012 newcon->early_setup();
2013
2014 /*
2015 * See if we want to use this console driver. If we
2016 * didn't select a console we take the first one
2017 * that registers here.
2018 */
2019 if (preferred_console < 0) {
2020 if (newcon->index < 0)
2021 newcon->index = 0;
2022 if (newcon->setup == NULL ||
2023 newcon->setup(newcon, NULL) == 0) {
2024 newcon->flags |= CON_ENABLED;
2025 if (newcon->device) {
2026 newcon->flags |= CON_CONSDEV;
2027 preferred_console = 0;
2028 }
2029 }
2030 }
2031
2032 /*
2033 * See if this console matches one we selected on
2034 * the command line.
2035 */
2036 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0];
2037 i++) {
2038 if (strcmp(console_cmdline[i].name, newcon->name) != 0)
2039 continue;
2040 if (newcon->index >= 0 &&
2041 newcon->index != console_cmdline[i].index)
2042 continue;
2043 if (newcon->index < 0)
2044 newcon->index = console_cmdline[i].index;
2045 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
2046 if (console_cmdline[i].brl_options) {
2047 newcon->flags |= CON_BRL;
2048 braille_register_console(newcon,
2049 console_cmdline[i].index,
2050 console_cmdline[i].options,
2051 console_cmdline[i].brl_options);
2052 return;
2053 }
2054 #endif
2055 if (newcon->setup &&
2056 newcon->setup(newcon, console_cmdline[i].options) != 0)
2057 break;
2058 newcon->flags |= CON_ENABLED;
2059 newcon->index = console_cmdline[i].index;
2060 if (i == selected_console) {
2061 newcon->flags |= CON_CONSDEV;
2062 preferred_console = selected_console;
2063 }
2064 break;
2065 }
2066
2067 if (!(newcon->flags & CON_ENABLED))
2068 return;
2069
2070 /*
2071 * If we have a bootconsole, and are switching to a real console,
2072 * don't print everything out again, since when the boot console, and
2073 * the real console are the same physical device, it's annoying to
2074 * see the beginning boot messages twice
2075 */
2076 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2077 newcon->flags &= ~CON_PRINTBUFFER;
2078
2079 /*
2080 * Put this console in the list - keep the
2081 * preferred driver at the head of the list.
2082 */
2083 console_lock();
2084 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2085 newcon->next = console_drivers;
2086 console_drivers = newcon;
2087 if (newcon->next)
2088 newcon->next->flags &= ~CON_CONSDEV;
2089 } else {
2090 newcon->next = console_drivers->next;
2091 console_drivers->next = newcon;
2092 }
2093 if (newcon->flags & CON_PRINTBUFFER) {
2094 /*
2095 * console_unlock(); will print out the buffered messages
2096 * for us.
2097 */
2098 raw_spin_lock_irqsave(&logbuf_lock, flags);
2099 console_seq = syslog_seq;
2100 console_idx = syslog_idx;
2101 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2102 /*
2103 * We're about to replay the log buffer. Only do this to the
2104 * just-registered console to avoid excessive message spam to
2105 * the already-registered consoles.
2106 */
2107 exclusive_console = newcon;
2108 }
2109 console_unlock();
2110 console_sysfs_notify();
2111
2112 /*
2113 * By unregistering the bootconsoles after we enable the real console
2114 * we get the "console xxx enabled" message on all the consoles -
2115 * boot consoles, real consoles, etc - this is to ensure that end
2116 * users know there might be something in the kernel's log buffer that
2117 * went to the bootconsole (that they do not see on the real console)
2118 */
2119 if (bcon &&
2120 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2121 !keep_bootcon) {
2122 /* we need to iterate through twice, to make sure we print
2123 * everything out, before we unregister the console(s)
2124 */
2125 printk(KERN_INFO "console [%s%d] enabled, bootconsole disabled\n",
2126 newcon->name, newcon->index);
2127 for_each_console(bcon)
2128 if (bcon->flags & CON_BOOT)
2129 unregister_console(bcon);
2130 } else {
2131 printk(KERN_INFO "%sconsole [%s%d] enabled\n",
2132 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2133 newcon->name, newcon->index);
2134 }
2135 }
2136 EXPORT_SYMBOL(register_console);
2137
2138 int unregister_console(struct console *console)
2139 {
2140 struct console *a, *b;
2141 int res = 1;
2142
2143 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
2144 if (console->flags & CON_BRL)
2145 return braille_unregister_console(console);
2146 #endif
2147
2148 console_lock();
2149 if (console_drivers == console) {
2150 console_drivers=console->next;
2151 res = 0;
2152 } else if (console_drivers) {
2153 for (a=console_drivers->next, b=console_drivers ;
2154 a; b=a, a=b->next) {
2155 if (a == console) {
2156 b->next = a->next;
2157 res = 0;
2158 break;
2159 }
2160 }
2161 }
2162
2163 /*
2164 * If this isn't the last console and it has CON_CONSDEV set, we
2165 * need to set it on the next preferred console.
2166 */
2167 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2168 console_drivers->flags |= CON_CONSDEV;
2169
2170 console_unlock();
2171 console_sysfs_notify();
2172 return res;
2173 }
2174 EXPORT_SYMBOL(unregister_console);
2175
2176 static int __init printk_late_init(void)
2177 {
2178 struct console *con;
2179
2180 for_each_console(con) {
2181 if (!keep_bootcon && con->flags & CON_BOOT) {
2182 printk(KERN_INFO "turn off boot console %s%d\n",
2183 con->name, con->index);
2184 unregister_console(con);
2185 }
2186 }
2187 hotcpu_notifier(console_cpu_notify, 0);
2188 return 0;
2189 }
2190 late_initcall(printk_late_init);
2191
2192 #if defined CONFIG_PRINTK
2193
2194 int printk_sched(const char *fmt, ...)
2195 {
2196 unsigned long flags;
2197 va_list args;
2198 char *buf;
2199 int r;
2200
2201 local_irq_save(flags);
2202 buf = __get_cpu_var(printk_sched_buf);
2203
2204 va_start(args, fmt);
2205 r = vsnprintf(buf, PRINTK_BUF_SIZE, fmt, args);
2206 va_end(args);
2207
2208 __this_cpu_or(printk_pending, PRINTK_PENDING_SCHED);
2209 local_irq_restore(flags);
2210
2211 return r;
2212 }
2213
2214 /*
2215 * printk rate limiting, lifted from the networking subsystem.
2216 *
2217 * This enforces a rate limit: not more than 10 kernel messages
2218 * every 5s to make a denial-of-service attack impossible.
2219 */
2220 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2221
2222 int __printk_ratelimit(const char *func)
2223 {
2224 return ___ratelimit(&printk_ratelimit_state, func);
2225 }
2226 EXPORT_SYMBOL(__printk_ratelimit);
2227
2228 /**
2229 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2230 * @caller_jiffies: pointer to caller's state
2231 * @interval_msecs: minimum interval between prints
2232 *
2233 * printk_timed_ratelimit() returns true if more than @interval_msecs
2234 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2235 * returned true.
2236 */
2237 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2238 unsigned int interval_msecs)
2239 {
2240 if (*caller_jiffies == 0
2241 || !time_in_range(jiffies, *caller_jiffies,
2242 *caller_jiffies
2243 + msecs_to_jiffies(interval_msecs))) {
2244 *caller_jiffies = jiffies;
2245 return true;
2246 }
2247 return false;
2248 }
2249 EXPORT_SYMBOL(printk_timed_ratelimit);
2250
2251 static DEFINE_SPINLOCK(dump_list_lock);
2252 static LIST_HEAD(dump_list);
2253
2254 /**
2255 * kmsg_dump_register - register a kernel log dumper.
2256 * @dumper: pointer to the kmsg_dumper structure
2257 *
2258 * Adds a kernel log dumper to the system. The dump callback in the
2259 * structure will be called when the kernel oopses or panics and must be
2260 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2261 */
2262 int kmsg_dump_register(struct kmsg_dumper *dumper)
2263 {
2264 unsigned long flags;
2265 int err = -EBUSY;
2266
2267 /* The dump callback needs to be set */
2268 if (!dumper->dump)
2269 return -EINVAL;
2270
2271 spin_lock_irqsave(&dump_list_lock, flags);
2272 /* Don't allow registering multiple times */
2273 if (!dumper->registered) {
2274 dumper->registered = 1;
2275 list_add_tail_rcu(&dumper->list, &dump_list);
2276 err = 0;
2277 }
2278 spin_unlock_irqrestore(&dump_list_lock, flags);
2279
2280 return err;
2281 }
2282 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2283
2284 /**
2285 * kmsg_dump_unregister - unregister a kmsg dumper.
2286 * @dumper: pointer to the kmsg_dumper structure
2287 *
2288 * Removes a dump device from the system. Returns zero on success and
2289 * %-EINVAL otherwise.
2290 */
2291 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2292 {
2293 unsigned long flags;
2294 int err = -EINVAL;
2295
2296 spin_lock_irqsave(&dump_list_lock, flags);
2297 if (dumper->registered) {
2298 dumper->registered = 0;
2299 list_del_rcu(&dumper->list);
2300 err = 0;
2301 }
2302 spin_unlock_irqrestore(&dump_list_lock, flags);
2303 synchronize_rcu();
2304
2305 return err;
2306 }
2307 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2308
2309 static bool always_kmsg_dump;
2310 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2311
2312 /**
2313 * kmsg_dump - dump kernel log to kernel message dumpers.
2314 * @reason: the reason (oops, panic etc) for dumping
2315 *
2316 * Call each of the registered dumper's dump() callback, which can
2317 * retrieve the kmsg records with kmsg_dump_get_line() or
2318 * kmsg_dump_get_buffer().
2319 */
2320 void kmsg_dump(enum kmsg_dump_reason reason)
2321 {
2322 struct kmsg_dumper *dumper;
2323 unsigned long flags;
2324
2325 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2326 return;
2327
2328 rcu_read_lock();
2329 list_for_each_entry_rcu(dumper, &dump_list, list) {
2330 if (dumper->max_reason && reason > dumper->max_reason)
2331 continue;
2332
2333 /* initialize iterator with data about the stored records */
2334 dumper->active = true;
2335
2336 raw_spin_lock_irqsave(&logbuf_lock, flags);
2337 dumper->cur_seq = clear_seq;
2338 dumper->cur_idx = clear_idx;
2339 dumper->next_seq = log_next_seq;
2340 dumper->next_idx = log_next_idx;
2341 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2342
2343 /* invoke dumper which will iterate over records */
2344 dumper->dump(dumper, reason);
2345
2346 /* reset iterator */
2347 dumper->active = false;
2348 }
2349 rcu_read_unlock();
2350 }
2351
2352 /**
2353 * kmsg_dump_get_line - retrieve one kmsg log line
2354 * @dumper: registered kmsg dumper
2355 * @syslog: include the "<4>" prefixes
2356 * @line: buffer to copy the line to
2357 * @size: maximum size of the buffer
2358 * @len: length of line placed into buffer
2359 *
2360 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2361 * record, and copy one record into the provided buffer.
2362 *
2363 * Consecutive calls will return the next available record moving
2364 * towards the end of the buffer with the youngest messages.
2365 *
2366 * A return value of FALSE indicates that there are no more records to
2367 * read.
2368 */
2369 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2370 char *line, size_t size, size_t *len)
2371 {
2372 unsigned long flags;
2373 struct log *msg;
2374 size_t l = 0;
2375 bool ret = false;
2376
2377 if (!dumper->active)
2378 goto out;
2379
2380 raw_spin_lock_irqsave(&logbuf_lock, flags);
2381 if (dumper->cur_seq < log_first_seq) {
2382 /* messages are gone, move to first available one */
2383 dumper->cur_seq = log_first_seq;
2384 dumper->cur_idx = log_first_idx;
2385 }
2386
2387 /* last entry */
2388 if (dumper->cur_seq >= log_next_seq) {
2389 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2390 goto out;
2391 }
2392
2393 msg = log_from_idx(dumper->cur_idx);
2394 l = msg_print_text(msg, syslog,
2395 line, size);
2396
2397 dumper->cur_idx = log_next(dumper->cur_idx);
2398 dumper->cur_seq++;
2399 ret = true;
2400 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2401 out:
2402 if (len)
2403 *len = l;
2404 return ret;
2405 }
2406 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2407
2408 /**
2409 * kmsg_dump_get_buffer - copy kmsg log lines
2410 * @dumper: registered kmsg dumper
2411 * @syslog: include the "<4>" prefixes
2412 * @line: buffer to copy the line to
2413 * @size: maximum size of the buffer
2414 * @len: length of line placed into buffer
2415 *
2416 * Start at the end of the kmsg buffer and fill the provided buffer
2417 * with as many of the the *youngest* kmsg records that fit into it.
2418 * If the buffer is large enough, all available kmsg records will be
2419 * copied with a single call.
2420 *
2421 * Consecutive calls will fill the buffer with the next block of
2422 * available older records, not including the earlier retrieved ones.
2423 *
2424 * A return value of FALSE indicates that there are no more records to
2425 * read.
2426 */
2427 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2428 char *buf, size_t size, size_t *len)
2429 {
2430 unsigned long flags;
2431 u64 seq;
2432 u32 idx;
2433 u64 next_seq;
2434 u32 next_idx;
2435 size_t l = 0;
2436 bool ret = false;
2437
2438 if (!dumper->active)
2439 goto out;
2440
2441 raw_spin_lock_irqsave(&logbuf_lock, flags);
2442 if (dumper->cur_seq < log_first_seq) {
2443 /* messages are gone, move to first available one */
2444 dumper->cur_seq = log_first_seq;
2445 dumper->cur_idx = log_first_idx;
2446 }
2447
2448 /* last entry */
2449 if (dumper->cur_seq >= dumper->next_seq) {
2450 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2451 goto out;
2452 }
2453
2454 /* calculate length of entire buffer */
2455 seq = dumper->cur_seq;
2456 idx = dumper->cur_idx;
2457 while (seq < dumper->next_seq) {
2458 struct log *msg = log_from_idx(idx);
2459
2460 l += msg_print_text(msg, true, NULL, 0);
2461 idx = log_next(idx);
2462 seq++;
2463 }
2464
2465 /* move first record forward until length fits into the buffer */
2466 seq = dumper->cur_seq;
2467 idx = dumper->cur_idx;
2468 while (l > size && seq < dumper->next_seq) {
2469 struct log *msg = log_from_idx(idx);
2470
2471 l -= msg_print_text(msg, true, NULL, 0);
2472 idx = log_next(idx);
2473 seq++;
2474 }
2475
2476 /* last message in next interation */
2477 next_seq = seq;
2478 next_idx = idx;
2479
2480 l = 0;
2481 while (seq < dumper->next_seq) {
2482 struct log *msg = log_from_idx(idx);
2483
2484 l += msg_print_text(msg, syslog,
2485 buf + l, size - l);
2486
2487 idx = log_next(idx);
2488 seq++;
2489 }
2490
2491 dumper->next_seq = next_seq;
2492 dumper->next_idx = next_idx;
2493 ret = true;
2494 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2495 out:
2496 if (len)
2497 *len = l;
2498 return ret;
2499 }
2500 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
2501
2502 /**
2503 * kmsg_dump_rewind - reset the interator
2504 * @dumper: registered kmsg dumper
2505 *
2506 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2507 * kmsg_dump_get_buffer() can be called again and used multiple
2508 * times within the same dumper.dump() callback.
2509 */
2510 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
2511 {
2512 unsigned long flags;
2513
2514 raw_spin_lock_irqsave(&logbuf_lock, flags);
2515 dumper->cur_seq = clear_seq;
2516 dumper->cur_idx = clear_idx;
2517 dumper->next_seq = log_next_seq;
2518 dumper->next_idx = log_next_idx;
2519 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2520 }
2521 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
2522 #endif