]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/printk.c
Merge branch 'for-john' of git://git.kernel.org/pub/scm/linux/kernel/git/iwlwifi...
[mirror_ubuntu-bionic-kernel.git] / kernel / printk.c
1 /*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h> /* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/syscalls.h>
36 #include <linux/kexec.h>
37 #include <linux/kdb.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/notifier.h>
43 #include <linux/rculist.h>
44 #include <linux/poll.h>
45
46 #include <asm/uaccess.h>
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/printk.h>
50
51 /*
52 * Architectures can override it:
53 */
54 void asmlinkage __attribute__((weak)) early_printk(const char *fmt, ...)
55 {
56 }
57
58 /* printk's without a loglevel use this.. */
59 #define DEFAULT_MESSAGE_LOGLEVEL CONFIG_DEFAULT_MESSAGE_LOGLEVEL
60
61 /* We show everything that is MORE important than this.. */
62 #define MINIMUM_CONSOLE_LOGLEVEL 1 /* Minimum loglevel we let people use */
63 #define DEFAULT_CONSOLE_LOGLEVEL 7 /* anything MORE serious than KERN_DEBUG */
64
65 DECLARE_WAIT_QUEUE_HEAD(log_wait);
66
67 int console_printk[4] = {
68 DEFAULT_CONSOLE_LOGLEVEL, /* console_loglevel */
69 DEFAULT_MESSAGE_LOGLEVEL, /* default_message_loglevel */
70 MINIMUM_CONSOLE_LOGLEVEL, /* minimum_console_loglevel */
71 DEFAULT_CONSOLE_LOGLEVEL, /* default_console_loglevel */
72 };
73
74 /*
75 * Low level drivers may need that to know if they can schedule in
76 * their unblank() callback or not. So let's export it.
77 */
78 int oops_in_progress;
79 EXPORT_SYMBOL(oops_in_progress);
80
81 /*
82 * console_sem protects the console_drivers list, and also
83 * provides serialisation for access to the entire console
84 * driver system.
85 */
86 static DEFINE_SEMAPHORE(console_sem);
87 struct console *console_drivers;
88 EXPORT_SYMBOL_GPL(console_drivers);
89
90 /*
91 * This is used for debugging the mess that is the VT code by
92 * keeping track if we have the console semaphore held. It's
93 * definitely not the perfect debug tool (we don't know if _WE_
94 * hold it are racing, but it helps tracking those weird code
95 * path in the console code where we end up in places I want
96 * locked without the console sempahore held
97 */
98 static int console_locked, console_suspended;
99
100 /*
101 * If exclusive_console is non-NULL then only this console is to be printed to.
102 */
103 static struct console *exclusive_console;
104
105 /*
106 * Array of consoles built from command line options (console=)
107 */
108 struct console_cmdline
109 {
110 char name[8]; /* Name of the driver */
111 int index; /* Minor dev. to use */
112 char *options; /* Options for the driver */
113 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
114 char *brl_options; /* Options for braille driver */
115 #endif
116 };
117
118 #define MAX_CMDLINECONSOLES 8
119
120 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
121 static int selected_console = -1;
122 static int preferred_console = -1;
123 int console_set_on_cmdline;
124 EXPORT_SYMBOL(console_set_on_cmdline);
125
126 /* Flag: console code may call schedule() */
127 static int console_may_schedule;
128
129 /*
130 * The printk log buffer consists of a chain of concatenated variable
131 * length records. Every record starts with a record header, containing
132 * the overall length of the record.
133 *
134 * The heads to the first and last entry in the buffer, as well as the
135 * sequence numbers of these both entries are maintained when messages
136 * are stored..
137 *
138 * If the heads indicate available messages, the length in the header
139 * tells the start next message. A length == 0 for the next message
140 * indicates a wrap-around to the beginning of the buffer.
141 *
142 * Every record carries the monotonic timestamp in microseconds, as well as
143 * the standard userspace syslog level and syslog facility. The usual
144 * kernel messages use LOG_KERN; userspace-injected messages always carry
145 * a matching syslog facility, by default LOG_USER. The origin of every
146 * message can be reliably determined that way.
147 *
148 * The human readable log message directly follows the message header. The
149 * length of the message text is stored in the header, the stored message
150 * is not terminated.
151 *
152 * Optionally, a message can carry a dictionary of properties (key/value pairs),
153 * to provide userspace with a machine-readable message context.
154 *
155 * Examples for well-defined, commonly used property names are:
156 * DEVICE=b12:8 device identifier
157 * b12:8 block dev_t
158 * c127:3 char dev_t
159 * n8 netdev ifindex
160 * +sound:card0 subsystem:devname
161 * SUBSYSTEM=pci driver-core subsystem name
162 *
163 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
164 * follows directly after a '=' character. Every property is terminated by
165 * a '\0' character. The last property is not terminated.
166 *
167 * Example of a message structure:
168 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
169 * 0008 34 00 record is 52 bytes long
170 * 000a 0b 00 text is 11 bytes long
171 * 000c 1f 00 dictionary is 23 bytes long
172 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
173 * 0010 69 74 27 73 20 61 20 6c "it's a l"
174 * 69 6e 65 "ine"
175 * 001b 44 45 56 49 43 "DEVIC"
176 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
177 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
178 * 67 "g"
179 * 0032 00 00 00 padding to next message header
180 *
181 * The 'struct log' buffer header must never be directly exported to
182 * userspace, it is a kernel-private implementation detail that might
183 * need to be changed in the future, when the requirements change.
184 *
185 * /dev/kmsg exports the structured data in the following line format:
186 * "level,sequnum,timestamp;<message text>\n"
187 *
188 * The optional key/value pairs are attached as continuation lines starting
189 * with a space character and terminated by a newline. All possible
190 * non-prinatable characters are escaped in the "\xff" notation.
191 *
192 * Users of the export format should ignore possible additional values
193 * separated by ',', and find the message after the ';' character.
194 */
195
196 enum log_flags {
197 LOG_NOCONS = 1, /* already flushed, do not print to console */
198 LOG_NEWLINE = 2, /* text ended with a newline */
199 LOG_PREFIX = 4, /* text started with a prefix */
200 LOG_CONT = 8, /* text is a fragment of a continuation line */
201 };
202
203 struct log {
204 u64 ts_nsec; /* timestamp in nanoseconds */
205 u16 len; /* length of entire record */
206 u16 text_len; /* length of text buffer */
207 u16 dict_len; /* length of dictionary buffer */
208 u8 facility; /* syslog facility */
209 u8 flags:5; /* internal record flags */
210 u8 level:3; /* syslog level */
211 };
212
213 /*
214 * The logbuf_lock protects kmsg buffer, indices, counters. It is also
215 * used in interesting ways to provide interlocking in console_unlock();
216 */
217 static DEFINE_RAW_SPINLOCK(logbuf_lock);
218
219 #ifdef CONFIG_PRINTK
220 /* the next printk record to read by syslog(READ) or /proc/kmsg */
221 static u64 syslog_seq;
222 static u32 syslog_idx;
223 static enum log_flags syslog_prev;
224 static size_t syslog_partial;
225
226 /* index and sequence number of the first record stored in the buffer */
227 static u64 log_first_seq;
228 static u32 log_first_idx;
229
230 /* index and sequence number of the next record to store in the buffer */
231 static u64 log_next_seq;
232 static u32 log_next_idx;
233
234 /* the next printk record to write to the console */
235 static u64 console_seq;
236 static u32 console_idx;
237 static enum log_flags console_prev;
238
239 /* the next printk record to read after the last 'clear' command */
240 static u64 clear_seq;
241 static u32 clear_idx;
242
243 #define PREFIX_MAX 32
244 #define LOG_LINE_MAX 1024 - PREFIX_MAX
245
246 /* record buffer */
247 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
248 #define LOG_ALIGN 4
249 #else
250 #define LOG_ALIGN __alignof__(struct log)
251 #endif
252 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
253 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
254 static char *log_buf = __log_buf;
255 static u32 log_buf_len = __LOG_BUF_LEN;
256
257 /* cpu currently holding logbuf_lock */
258 static volatile unsigned int logbuf_cpu = UINT_MAX;
259
260 /* human readable text of the record */
261 static char *log_text(const struct log *msg)
262 {
263 return (char *)msg + sizeof(struct log);
264 }
265
266 /* optional key/value pair dictionary attached to the record */
267 static char *log_dict(const struct log *msg)
268 {
269 return (char *)msg + sizeof(struct log) + msg->text_len;
270 }
271
272 /* get record by index; idx must point to valid msg */
273 static struct log *log_from_idx(u32 idx)
274 {
275 struct log *msg = (struct log *)(log_buf + idx);
276
277 /*
278 * A length == 0 record is the end of buffer marker. Wrap around and
279 * read the message at the start of the buffer.
280 */
281 if (!msg->len)
282 return (struct log *)log_buf;
283 return msg;
284 }
285
286 /* get next record; idx must point to valid msg */
287 static u32 log_next(u32 idx)
288 {
289 struct log *msg = (struct log *)(log_buf + idx);
290
291 /* length == 0 indicates the end of the buffer; wrap */
292 /*
293 * A length == 0 record is the end of buffer marker. Wrap around and
294 * read the message at the start of the buffer as *this* one, and
295 * return the one after that.
296 */
297 if (!msg->len) {
298 msg = (struct log *)log_buf;
299 return msg->len;
300 }
301 return idx + msg->len;
302 }
303
304 /* insert record into the buffer, discard old ones, update heads */
305 static void log_store(int facility, int level,
306 enum log_flags flags, u64 ts_nsec,
307 const char *dict, u16 dict_len,
308 const char *text, u16 text_len)
309 {
310 struct log *msg;
311 u32 size, pad_len;
312
313 /* number of '\0' padding bytes to next message */
314 size = sizeof(struct log) + text_len + dict_len;
315 pad_len = (-size) & (LOG_ALIGN - 1);
316 size += pad_len;
317
318 while (log_first_seq < log_next_seq) {
319 u32 free;
320
321 if (log_next_idx > log_first_idx)
322 free = max(log_buf_len - log_next_idx, log_first_idx);
323 else
324 free = log_first_idx - log_next_idx;
325
326 if (free > size + sizeof(struct log))
327 break;
328
329 /* drop old messages until we have enough contiuous space */
330 log_first_idx = log_next(log_first_idx);
331 log_first_seq++;
332 }
333
334 if (log_next_idx + size + sizeof(struct log) >= log_buf_len) {
335 /*
336 * This message + an additional empty header does not fit
337 * at the end of the buffer. Add an empty header with len == 0
338 * to signify a wrap around.
339 */
340 memset(log_buf + log_next_idx, 0, sizeof(struct log));
341 log_next_idx = 0;
342 }
343
344 /* fill message */
345 msg = (struct log *)(log_buf + log_next_idx);
346 memcpy(log_text(msg), text, text_len);
347 msg->text_len = text_len;
348 memcpy(log_dict(msg), dict, dict_len);
349 msg->dict_len = dict_len;
350 msg->facility = facility;
351 msg->level = level & 7;
352 msg->flags = flags & 0x1f;
353 if (ts_nsec > 0)
354 msg->ts_nsec = ts_nsec;
355 else
356 msg->ts_nsec = local_clock();
357 memset(log_dict(msg) + dict_len, 0, pad_len);
358 msg->len = sizeof(struct log) + text_len + dict_len + pad_len;
359
360 /* insert message */
361 log_next_idx += msg->len;
362 log_next_seq++;
363 }
364
365 /* /dev/kmsg - userspace message inject/listen interface */
366 struct devkmsg_user {
367 u64 seq;
368 u32 idx;
369 enum log_flags prev;
370 struct mutex lock;
371 char buf[8192];
372 };
373
374 static ssize_t devkmsg_writev(struct kiocb *iocb, const struct iovec *iv,
375 unsigned long count, loff_t pos)
376 {
377 char *buf, *line;
378 int i;
379 int level = default_message_loglevel;
380 int facility = 1; /* LOG_USER */
381 size_t len = iov_length(iv, count);
382 ssize_t ret = len;
383
384 if (len > LOG_LINE_MAX)
385 return -EINVAL;
386 buf = kmalloc(len+1, GFP_KERNEL);
387 if (buf == NULL)
388 return -ENOMEM;
389
390 line = buf;
391 for (i = 0; i < count; i++) {
392 if (copy_from_user(line, iv[i].iov_base, iv[i].iov_len)) {
393 ret = -EFAULT;
394 goto out;
395 }
396 line += iv[i].iov_len;
397 }
398
399 /*
400 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
401 * the decimal value represents 32bit, the lower 3 bit are the log
402 * level, the rest are the log facility.
403 *
404 * If no prefix or no userspace facility is specified, we
405 * enforce LOG_USER, to be able to reliably distinguish
406 * kernel-generated messages from userspace-injected ones.
407 */
408 line = buf;
409 if (line[0] == '<') {
410 char *endp = NULL;
411
412 i = simple_strtoul(line+1, &endp, 10);
413 if (endp && endp[0] == '>') {
414 level = i & 7;
415 if (i >> 3)
416 facility = i >> 3;
417 endp++;
418 len -= endp - line;
419 line = endp;
420 }
421 }
422 line[len] = '\0';
423
424 printk_emit(facility, level, NULL, 0, "%s", line);
425 out:
426 kfree(buf);
427 return ret;
428 }
429
430 static ssize_t devkmsg_read(struct file *file, char __user *buf,
431 size_t count, loff_t *ppos)
432 {
433 struct devkmsg_user *user = file->private_data;
434 struct log *msg;
435 u64 ts_usec;
436 size_t i;
437 char cont = '-';
438 size_t len;
439 ssize_t ret;
440
441 if (!user)
442 return -EBADF;
443
444 ret = mutex_lock_interruptible(&user->lock);
445 if (ret)
446 return ret;
447 raw_spin_lock_irq(&logbuf_lock);
448 while (user->seq == log_next_seq) {
449 if (file->f_flags & O_NONBLOCK) {
450 ret = -EAGAIN;
451 raw_spin_unlock_irq(&logbuf_lock);
452 goto out;
453 }
454
455 raw_spin_unlock_irq(&logbuf_lock);
456 ret = wait_event_interruptible(log_wait,
457 user->seq != log_next_seq);
458 if (ret)
459 goto out;
460 raw_spin_lock_irq(&logbuf_lock);
461 }
462
463 if (user->seq < log_first_seq) {
464 /* our last seen message is gone, return error and reset */
465 user->idx = log_first_idx;
466 user->seq = log_first_seq;
467 ret = -EPIPE;
468 raw_spin_unlock_irq(&logbuf_lock);
469 goto out;
470 }
471
472 msg = log_from_idx(user->idx);
473 ts_usec = msg->ts_nsec;
474 do_div(ts_usec, 1000);
475
476 /*
477 * If we couldn't merge continuation line fragments during the print,
478 * export the stored flags to allow an optional external merge of the
479 * records. Merging the records isn't always neccessarily correct, like
480 * when we hit a race during printing. In most cases though, it produces
481 * better readable output. 'c' in the record flags mark the first
482 * fragment of a line, '+' the following.
483 */
484 if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT))
485 cont = 'c';
486 else if ((msg->flags & LOG_CONT) ||
487 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
488 cont = '+';
489
490 len = sprintf(user->buf, "%u,%llu,%llu,%c;",
491 (msg->facility << 3) | msg->level,
492 user->seq, ts_usec, cont);
493 user->prev = msg->flags;
494
495 /* escape non-printable characters */
496 for (i = 0; i < msg->text_len; i++) {
497 unsigned char c = log_text(msg)[i];
498
499 if (c < ' ' || c >= 127 || c == '\\')
500 len += sprintf(user->buf + len, "\\x%02x", c);
501 else
502 user->buf[len++] = c;
503 }
504 user->buf[len++] = '\n';
505
506 if (msg->dict_len) {
507 bool line = true;
508
509 for (i = 0; i < msg->dict_len; i++) {
510 unsigned char c = log_dict(msg)[i];
511
512 if (line) {
513 user->buf[len++] = ' ';
514 line = false;
515 }
516
517 if (c == '\0') {
518 user->buf[len++] = '\n';
519 line = true;
520 continue;
521 }
522
523 if (c < ' ' || c >= 127 || c == '\\') {
524 len += sprintf(user->buf + len, "\\x%02x", c);
525 continue;
526 }
527
528 user->buf[len++] = c;
529 }
530 user->buf[len++] = '\n';
531 }
532
533 user->idx = log_next(user->idx);
534 user->seq++;
535 raw_spin_unlock_irq(&logbuf_lock);
536
537 if (len > count) {
538 ret = -EINVAL;
539 goto out;
540 }
541
542 if (copy_to_user(buf, user->buf, len)) {
543 ret = -EFAULT;
544 goto out;
545 }
546 ret = len;
547 out:
548 mutex_unlock(&user->lock);
549 return ret;
550 }
551
552 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
553 {
554 struct devkmsg_user *user = file->private_data;
555 loff_t ret = 0;
556
557 if (!user)
558 return -EBADF;
559 if (offset)
560 return -ESPIPE;
561
562 raw_spin_lock_irq(&logbuf_lock);
563 switch (whence) {
564 case SEEK_SET:
565 /* the first record */
566 user->idx = log_first_idx;
567 user->seq = log_first_seq;
568 break;
569 case SEEK_DATA:
570 /*
571 * The first record after the last SYSLOG_ACTION_CLEAR,
572 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
573 * changes no global state, and does not clear anything.
574 */
575 user->idx = clear_idx;
576 user->seq = clear_seq;
577 break;
578 case SEEK_END:
579 /* after the last record */
580 user->idx = log_next_idx;
581 user->seq = log_next_seq;
582 break;
583 default:
584 ret = -EINVAL;
585 }
586 raw_spin_unlock_irq(&logbuf_lock);
587 return ret;
588 }
589
590 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
591 {
592 struct devkmsg_user *user = file->private_data;
593 int ret = 0;
594
595 if (!user)
596 return POLLERR|POLLNVAL;
597
598 poll_wait(file, &log_wait, wait);
599
600 raw_spin_lock_irq(&logbuf_lock);
601 if (user->seq < log_next_seq) {
602 /* return error when data has vanished underneath us */
603 if (user->seq < log_first_seq)
604 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
605 ret = POLLIN|POLLRDNORM;
606 }
607 raw_spin_unlock_irq(&logbuf_lock);
608
609 return ret;
610 }
611
612 static int devkmsg_open(struct inode *inode, struct file *file)
613 {
614 struct devkmsg_user *user;
615 int err;
616
617 /* write-only does not need any file context */
618 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
619 return 0;
620
621 err = security_syslog(SYSLOG_ACTION_READ_ALL);
622 if (err)
623 return err;
624
625 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
626 if (!user)
627 return -ENOMEM;
628
629 mutex_init(&user->lock);
630
631 raw_spin_lock_irq(&logbuf_lock);
632 user->idx = log_first_idx;
633 user->seq = log_first_seq;
634 raw_spin_unlock_irq(&logbuf_lock);
635
636 file->private_data = user;
637 return 0;
638 }
639
640 static int devkmsg_release(struct inode *inode, struct file *file)
641 {
642 struct devkmsg_user *user = file->private_data;
643
644 if (!user)
645 return 0;
646
647 mutex_destroy(&user->lock);
648 kfree(user);
649 return 0;
650 }
651
652 const struct file_operations kmsg_fops = {
653 .open = devkmsg_open,
654 .read = devkmsg_read,
655 .aio_write = devkmsg_writev,
656 .llseek = devkmsg_llseek,
657 .poll = devkmsg_poll,
658 .release = devkmsg_release,
659 };
660
661 #ifdef CONFIG_KEXEC
662 /*
663 * This appends the listed symbols to /proc/vmcoreinfo
664 *
665 * /proc/vmcoreinfo is used by various utiilties, like crash and makedumpfile to
666 * obtain access to symbols that are otherwise very difficult to locate. These
667 * symbols are specifically used so that utilities can access and extract the
668 * dmesg log from a vmcore file after a crash.
669 */
670 void log_buf_kexec_setup(void)
671 {
672 VMCOREINFO_SYMBOL(log_buf);
673 VMCOREINFO_SYMBOL(log_buf_len);
674 VMCOREINFO_SYMBOL(log_first_idx);
675 VMCOREINFO_SYMBOL(log_next_idx);
676 /*
677 * Export struct log size and field offsets. User space tools can
678 * parse it and detect any changes to structure down the line.
679 */
680 VMCOREINFO_STRUCT_SIZE(log);
681 VMCOREINFO_OFFSET(log, ts_nsec);
682 VMCOREINFO_OFFSET(log, len);
683 VMCOREINFO_OFFSET(log, text_len);
684 VMCOREINFO_OFFSET(log, dict_len);
685 }
686 #endif
687
688 /* requested log_buf_len from kernel cmdline */
689 static unsigned long __initdata new_log_buf_len;
690
691 /* save requested log_buf_len since it's too early to process it */
692 static int __init log_buf_len_setup(char *str)
693 {
694 unsigned size = memparse(str, &str);
695
696 if (size)
697 size = roundup_pow_of_two(size);
698 if (size > log_buf_len)
699 new_log_buf_len = size;
700
701 return 0;
702 }
703 early_param("log_buf_len", log_buf_len_setup);
704
705 void __init setup_log_buf(int early)
706 {
707 unsigned long flags;
708 char *new_log_buf;
709 int free;
710
711 if (!new_log_buf_len)
712 return;
713
714 if (early) {
715 unsigned long mem;
716
717 mem = memblock_alloc(new_log_buf_len, PAGE_SIZE);
718 if (!mem)
719 return;
720 new_log_buf = __va(mem);
721 } else {
722 new_log_buf = alloc_bootmem_nopanic(new_log_buf_len);
723 }
724
725 if (unlikely(!new_log_buf)) {
726 pr_err("log_buf_len: %ld bytes not available\n",
727 new_log_buf_len);
728 return;
729 }
730
731 raw_spin_lock_irqsave(&logbuf_lock, flags);
732 log_buf_len = new_log_buf_len;
733 log_buf = new_log_buf;
734 new_log_buf_len = 0;
735 free = __LOG_BUF_LEN - log_next_idx;
736 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
737 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
738
739 pr_info("log_buf_len: %d\n", log_buf_len);
740 pr_info("early log buf free: %d(%d%%)\n",
741 free, (free * 100) / __LOG_BUF_LEN);
742 }
743
744 #ifdef CONFIG_BOOT_PRINTK_DELAY
745
746 static int boot_delay; /* msecs delay after each printk during bootup */
747 static unsigned long long loops_per_msec; /* based on boot_delay */
748
749 static int __init boot_delay_setup(char *str)
750 {
751 unsigned long lpj;
752
753 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
754 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
755
756 get_option(&str, &boot_delay);
757 if (boot_delay > 10 * 1000)
758 boot_delay = 0;
759
760 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
761 "HZ: %d, loops_per_msec: %llu\n",
762 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
763 return 1;
764 }
765 __setup("boot_delay=", boot_delay_setup);
766
767 static void boot_delay_msec(void)
768 {
769 unsigned long long k;
770 unsigned long timeout;
771
772 if (boot_delay == 0 || system_state != SYSTEM_BOOTING)
773 return;
774
775 k = (unsigned long long)loops_per_msec * boot_delay;
776
777 timeout = jiffies + msecs_to_jiffies(boot_delay);
778 while (k) {
779 k--;
780 cpu_relax();
781 /*
782 * use (volatile) jiffies to prevent
783 * compiler reduction; loop termination via jiffies
784 * is secondary and may or may not happen.
785 */
786 if (time_after(jiffies, timeout))
787 break;
788 touch_nmi_watchdog();
789 }
790 }
791 #else
792 static inline void boot_delay_msec(void)
793 {
794 }
795 #endif
796
797 #ifdef CONFIG_SECURITY_DMESG_RESTRICT
798 int dmesg_restrict = 1;
799 #else
800 int dmesg_restrict;
801 #endif
802
803 static int syslog_action_restricted(int type)
804 {
805 if (dmesg_restrict)
806 return 1;
807 /* Unless restricted, we allow "read all" and "get buffer size" for everybody */
808 return type != SYSLOG_ACTION_READ_ALL && type != SYSLOG_ACTION_SIZE_BUFFER;
809 }
810
811 static int check_syslog_permissions(int type, bool from_file)
812 {
813 /*
814 * If this is from /proc/kmsg and we've already opened it, then we've
815 * already done the capabilities checks at open time.
816 */
817 if (from_file && type != SYSLOG_ACTION_OPEN)
818 return 0;
819
820 if (syslog_action_restricted(type)) {
821 if (capable(CAP_SYSLOG))
822 return 0;
823 /* For historical reasons, accept CAP_SYS_ADMIN too, with a warning */
824 if (capable(CAP_SYS_ADMIN)) {
825 printk_once(KERN_WARNING "%s (%d): "
826 "Attempt to access syslog with CAP_SYS_ADMIN "
827 "but no CAP_SYSLOG (deprecated).\n",
828 current->comm, task_pid_nr(current));
829 return 0;
830 }
831 return -EPERM;
832 }
833 return 0;
834 }
835
836 #if defined(CONFIG_PRINTK_TIME)
837 static bool printk_time = 1;
838 #else
839 static bool printk_time;
840 #endif
841 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
842
843 static size_t print_time(u64 ts, char *buf)
844 {
845 unsigned long rem_nsec;
846
847 if (!printk_time)
848 return 0;
849
850 if (!buf)
851 return 15;
852
853 rem_nsec = do_div(ts, 1000000000);
854 return sprintf(buf, "[%5lu.%06lu] ",
855 (unsigned long)ts, rem_nsec / 1000);
856 }
857
858 static size_t print_prefix(const struct log *msg, bool syslog, char *buf)
859 {
860 size_t len = 0;
861 unsigned int prefix = (msg->facility << 3) | msg->level;
862
863 if (syslog) {
864 if (buf) {
865 len += sprintf(buf, "<%u>", prefix);
866 } else {
867 len += 3;
868 if (prefix > 999)
869 len += 3;
870 else if (prefix > 99)
871 len += 2;
872 else if (prefix > 9)
873 len++;
874 }
875 }
876
877 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
878 return len;
879 }
880
881 static size_t msg_print_text(const struct log *msg, enum log_flags prev,
882 bool syslog, char *buf, size_t size)
883 {
884 const char *text = log_text(msg);
885 size_t text_size = msg->text_len;
886 bool prefix = true;
887 bool newline = true;
888 size_t len = 0;
889
890 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
891 prefix = false;
892
893 if (msg->flags & LOG_CONT) {
894 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
895 prefix = false;
896
897 if (!(msg->flags & LOG_NEWLINE))
898 newline = false;
899 }
900
901 do {
902 const char *next = memchr(text, '\n', text_size);
903 size_t text_len;
904
905 if (next) {
906 text_len = next - text;
907 next++;
908 text_size -= next - text;
909 } else {
910 text_len = text_size;
911 }
912
913 if (buf) {
914 if (print_prefix(msg, syslog, NULL) +
915 text_len + 1 >= size - len)
916 break;
917
918 if (prefix)
919 len += print_prefix(msg, syslog, buf + len);
920 memcpy(buf + len, text, text_len);
921 len += text_len;
922 if (next || newline)
923 buf[len++] = '\n';
924 } else {
925 /* SYSLOG_ACTION_* buffer size only calculation */
926 if (prefix)
927 len += print_prefix(msg, syslog, NULL);
928 len += text_len;
929 if (next || newline)
930 len++;
931 }
932
933 prefix = true;
934 text = next;
935 } while (text);
936
937 return len;
938 }
939
940 static int syslog_print(char __user *buf, int size)
941 {
942 char *text;
943 struct log *msg;
944 int len = 0;
945
946 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
947 if (!text)
948 return -ENOMEM;
949
950 while (size > 0) {
951 size_t n;
952 size_t skip;
953
954 raw_spin_lock_irq(&logbuf_lock);
955 if (syslog_seq < log_first_seq) {
956 /* messages are gone, move to first one */
957 syslog_seq = log_first_seq;
958 syslog_idx = log_first_idx;
959 syslog_prev = 0;
960 syslog_partial = 0;
961 }
962 if (syslog_seq == log_next_seq) {
963 raw_spin_unlock_irq(&logbuf_lock);
964 break;
965 }
966
967 skip = syslog_partial;
968 msg = log_from_idx(syslog_idx);
969 n = msg_print_text(msg, syslog_prev, true, text,
970 LOG_LINE_MAX + PREFIX_MAX);
971 if (n - syslog_partial <= size) {
972 /* message fits into buffer, move forward */
973 syslog_idx = log_next(syslog_idx);
974 syslog_seq++;
975 syslog_prev = msg->flags;
976 n -= syslog_partial;
977 syslog_partial = 0;
978 } else if (!len){
979 /* partial read(), remember position */
980 n = size;
981 syslog_partial += n;
982 } else
983 n = 0;
984 raw_spin_unlock_irq(&logbuf_lock);
985
986 if (!n)
987 break;
988
989 if (copy_to_user(buf, text + skip, n)) {
990 if (!len)
991 len = -EFAULT;
992 break;
993 }
994
995 len += n;
996 size -= n;
997 buf += n;
998 }
999
1000 kfree(text);
1001 return len;
1002 }
1003
1004 static int syslog_print_all(char __user *buf, int size, bool clear)
1005 {
1006 char *text;
1007 int len = 0;
1008
1009 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1010 if (!text)
1011 return -ENOMEM;
1012
1013 raw_spin_lock_irq(&logbuf_lock);
1014 if (buf) {
1015 u64 next_seq;
1016 u64 seq;
1017 u32 idx;
1018 enum log_flags prev;
1019
1020 if (clear_seq < log_first_seq) {
1021 /* messages are gone, move to first available one */
1022 clear_seq = log_first_seq;
1023 clear_idx = log_first_idx;
1024 }
1025
1026 /*
1027 * Find first record that fits, including all following records,
1028 * into the user-provided buffer for this dump.
1029 */
1030 seq = clear_seq;
1031 idx = clear_idx;
1032 prev = 0;
1033 while (seq < log_next_seq) {
1034 struct log *msg = log_from_idx(idx);
1035
1036 len += msg_print_text(msg, prev, true, NULL, 0);
1037 idx = log_next(idx);
1038 seq++;
1039 }
1040
1041 /* move first record forward until length fits into the buffer */
1042 seq = clear_seq;
1043 idx = clear_idx;
1044 prev = 0;
1045 while (len > size && seq < log_next_seq) {
1046 struct log *msg = log_from_idx(idx);
1047
1048 len -= msg_print_text(msg, prev, true, NULL, 0);
1049 idx = log_next(idx);
1050 seq++;
1051 }
1052
1053 /* last message fitting into this dump */
1054 next_seq = log_next_seq;
1055
1056 len = 0;
1057 prev = 0;
1058 while (len >= 0 && seq < next_seq) {
1059 struct log *msg = log_from_idx(idx);
1060 int textlen;
1061
1062 textlen = msg_print_text(msg, prev, true, text,
1063 LOG_LINE_MAX + PREFIX_MAX);
1064 if (textlen < 0) {
1065 len = textlen;
1066 break;
1067 }
1068 idx = log_next(idx);
1069 seq++;
1070 prev = msg->flags;
1071
1072 raw_spin_unlock_irq(&logbuf_lock);
1073 if (copy_to_user(buf + len, text, textlen))
1074 len = -EFAULT;
1075 else
1076 len += textlen;
1077 raw_spin_lock_irq(&logbuf_lock);
1078
1079 if (seq < log_first_seq) {
1080 /* messages are gone, move to next one */
1081 seq = log_first_seq;
1082 idx = log_first_idx;
1083 prev = 0;
1084 }
1085 }
1086 }
1087
1088 if (clear) {
1089 clear_seq = log_next_seq;
1090 clear_idx = log_next_idx;
1091 }
1092 raw_spin_unlock_irq(&logbuf_lock);
1093
1094 kfree(text);
1095 return len;
1096 }
1097
1098 int do_syslog(int type, char __user *buf, int len, bool from_file)
1099 {
1100 bool clear = false;
1101 static int saved_console_loglevel = -1;
1102 int error;
1103
1104 error = check_syslog_permissions(type, from_file);
1105 if (error)
1106 goto out;
1107
1108 error = security_syslog(type);
1109 if (error)
1110 return error;
1111
1112 switch (type) {
1113 case SYSLOG_ACTION_CLOSE: /* Close log */
1114 break;
1115 case SYSLOG_ACTION_OPEN: /* Open log */
1116 break;
1117 case SYSLOG_ACTION_READ: /* Read from log */
1118 error = -EINVAL;
1119 if (!buf || len < 0)
1120 goto out;
1121 error = 0;
1122 if (!len)
1123 goto out;
1124 if (!access_ok(VERIFY_WRITE, buf, len)) {
1125 error = -EFAULT;
1126 goto out;
1127 }
1128 error = wait_event_interruptible(log_wait,
1129 syslog_seq != log_next_seq);
1130 if (error)
1131 goto out;
1132 error = syslog_print(buf, len);
1133 break;
1134 /* Read/clear last kernel messages */
1135 case SYSLOG_ACTION_READ_CLEAR:
1136 clear = true;
1137 /* FALL THRU */
1138 /* Read last kernel messages */
1139 case SYSLOG_ACTION_READ_ALL:
1140 error = -EINVAL;
1141 if (!buf || len < 0)
1142 goto out;
1143 error = 0;
1144 if (!len)
1145 goto out;
1146 if (!access_ok(VERIFY_WRITE, buf, len)) {
1147 error = -EFAULT;
1148 goto out;
1149 }
1150 error = syslog_print_all(buf, len, clear);
1151 break;
1152 /* Clear ring buffer */
1153 case SYSLOG_ACTION_CLEAR:
1154 syslog_print_all(NULL, 0, true);
1155 break;
1156 /* Disable logging to console */
1157 case SYSLOG_ACTION_CONSOLE_OFF:
1158 if (saved_console_loglevel == -1)
1159 saved_console_loglevel = console_loglevel;
1160 console_loglevel = minimum_console_loglevel;
1161 break;
1162 /* Enable logging to console */
1163 case SYSLOG_ACTION_CONSOLE_ON:
1164 if (saved_console_loglevel != -1) {
1165 console_loglevel = saved_console_loglevel;
1166 saved_console_loglevel = -1;
1167 }
1168 break;
1169 /* Set level of messages printed to console */
1170 case SYSLOG_ACTION_CONSOLE_LEVEL:
1171 error = -EINVAL;
1172 if (len < 1 || len > 8)
1173 goto out;
1174 if (len < minimum_console_loglevel)
1175 len = minimum_console_loglevel;
1176 console_loglevel = len;
1177 /* Implicitly re-enable logging to console */
1178 saved_console_loglevel = -1;
1179 error = 0;
1180 break;
1181 /* Number of chars in the log buffer */
1182 case SYSLOG_ACTION_SIZE_UNREAD:
1183 raw_spin_lock_irq(&logbuf_lock);
1184 if (syslog_seq < log_first_seq) {
1185 /* messages are gone, move to first one */
1186 syslog_seq = log_first_seq;
1187 syslog_idx = log_first_idx;
1188 syslog_prev = 0;
1189 syslog_partial = 0;
1190 }
1191 if (from_file) {
1192 /*
1193 * Short-cut for poll(/"proc/kmsg") which simply checks
1194 * for pending data, not the size; return the count of
1195 * records, not the length.
1196 */
1197 error = log_next_idx - syslog_idx;
1198 } else {
1199 u64 seq = syslog_seq;
1200 u32 idx = syslog_idx;
1201 enum log_flags prev = syslog_prev;
1202
1203 error = 0;
1204 while (seq < log_next_seq) {
1205 struct log *msg = log_from_idx(idx);
1206
1207 error += msg_print_text(msg, prev, true, NULL, 0);
1208 idx = log_next(idx);
1209 seq++;
1210 prev = msg->flags;
1211 }
1212 error -= syslog_partial;
1213 }
1214 raw_spin_unlock_irq(&logbuf_lock);
1215 break;
1216 /* Size of the log buffer */
1217 case SYSLOG_ACTION_SIZE_BUFFER:
1218 error = log_buf_len;
1219 break;
1220 default:
1221 error = -EINVAL;
1222 break;
1223 }
1224 out:
1225 return error;
1226 }
1227
1228 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1229 {
1230 return do_syslog(type, buf, len, SYSLOG_FROM_CALL);
1231 }
1232
1233 static bool __read_mostly ignore_loglevel;
1234
1235 static int __init ignore_loglevel_setup(char *str)
1236 {
1237 ignore_loglevel = 1;
1238 printk(KERN_INFO "debug: ignoring loglevel setting.\n");
1239
1240 return 0;
1241 }
1242
1243 early_param("ignore_loglevel", ignore_loglevel_setup);
1244 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1245 MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to"
1246 "print all kernel messages to the console.");
1247
1248 /*
1249 * Call the console drivers, asking them to write out
1250 * log_buf[start] to log_buf[end - 1].
1251 * The console_lock must be held.
1252 */
1253 static void call_console_drivers(int level, const char *text, size_t len)
1254 {
1255 struct console *con;
1256
1257 trace_console(text, 0, len, len);
1258
1259 if (level >= console_loglevel && !ignore_loglevel)
1260 return;
1261 if (!console_drivers)
1262 return;
1263
1264 for_each_console(con) {
1265 if (exclusive_console && con != exclusive_console)
1266 continue;
1267 if (!(con->flags & CON_ENABLED))
1268 continue;
1269 if (!con->write)
1270 continue;
1271 if (!cpu_online(smp_processor_id()) &&
1272 !(con->flags & CON_ANYTIME))
1273 continue;
1274 con->write(con, text, len);
1275 }
1276 }
1277
1278 /*
1279 * Zap console related locks when oopsing. Only zap at most once
1280 * every 10 seconds, to leave time for slow consoles to print a
1281 * full oops.
1282 */
1283 static void zap_locks(void)
1284 {
1285 static unsigned long oops_timestamp;
1286
1287 if (time_after_eq(jiffies, oops_timestamp) &&
1288 !time_after(jiffies, oops_timestamp + 30 * HZ))
1289 return;
1290
1291 oops_timestamp = jiffies;
1292
1293 debug_locks_off();
1294 /* If a crash is occurring, make sure we can't deadlock */
1295 raw_spin_lock_init(&logbuf_lock);
1296 /* And make sure that we print immediately */
1297 sema_init(&console_sem, 1);
1298 }
1299
1300 /* Check if we have any console registered that can be called early in boot. */
1301 static int have_callable_console(void)
1302 {
1303 struct console *con;
1304
1305 for_each_console(con)
1306 if (con->flags & CON_ANYTIME)
1307 return 1;
1308
1309 return 0;
1310 }
1311
1312 /*
1313 * Can we actually use the console at this time on this cpu?
1314 *
1315 * Console drivers may assume that per-cpu resources have
1316 * been allocated. So unless they're explicitly marked as
1317 * being able to cope (CON_ANYTIME) don't call them until
1318 * this CPU is officially up.
1319 */
1320 static inline int can_use_console(unsigned int cpu)
1321 {
1322 return cpu_online(cpu) || have_callable_console();
1323 }
1324
1325 /*
1326 * Try to get console ownership to actually show the kernel
1327 * messages from a 'printk'. Return true (and with the
1328 * console_lock held, and 'console_locked' set) if it
1329 * is successful, false otherwise.
1330 *
1331 * This gets called with the 'logbuf_lock' spinlock held and
1332 * interrupts disabled. It should return with 'lockbuf_lock'
1333 * released but interrupts still disabled.
1334 */
1335 static int console_trylock_for_printk(unsigned int cpu)
1336 __releases(&logbuf_lock)
1337 {
1338 int retval = 0, wake = 0;
1339
1340 if (console_trylock()) {
1341 retval = 1;
1342
1343 /*
1344 * If we can't use the console, we need to release
1345 * the console semaphore by hand to avoid flushing
1346 * the buffer. We need to hold the console semaphore
1347 * in order to do this test safely.
1348 */
1349 if (!can_use_console(cpu)) {
1350 console_locked = 0;
1351 wake = 1;
1352 retval = 0;
1353 }
1354 }
1355 logbuf_cpu = UINT_MAX;
1356 if (wake)
1357 up(&console_sem);
1358 raw_spin_unlock(&logbuf_lock);
1359 return retval;
1360 }
1361
1362 int printk_delay_msec __read_mostly;
1363
1364 static inline void printk_delay(void)
1365 {
1366 if (unlikely(printk_delay_msec)) {
1367 int m = printk_delay_msec;
1368
1369 while (m--) {
1370 mdelay(1);
1371 touch_nmi_watchdog();
1372 }
1373 }
1374 }
1375
1376 /*
1377 * Continuation lines are buffered, and not committed to the record buffer
1378 * until the line is complete, or a race forces it. The line fragments
1379 * though, are printed immediately to the consoles to ensure everything has
1380 * reached the console in case of a kernel crash.
1381 */
1382 static struct cont {
1383 char buf[LOG_LINE_MAX];
1384 size_t len; /* length == 0 means unused buffer */
1385 size_t cons; /* bytes written to console */
1386 struct task_struct *owner; /* task of first print*/
1387 u64 ts_nsec; /* time of first print */
1388 u8 level; /* log level of first message */
1389 u8 facility; /* log level of first message */
1390 enum log_flags flags; /* prefix, newline flags */
1391 bool flushed:1; /* buffer sealed and committed */
1392 } cont;
1393
1394 static void cont_flush(enum log_flags flags)
1395 {
1396 if (cont.flushed)
1397 return;
1398 if (cont.len == 0)
1399 return;
1400
1401 if (cont.cons) {
1402 /*
1403 * If a fragment of this line was directly flushed to the
1404 * console; wait for the console to pick up the rest of the
1405 * line. LOG_NOCONS suppresses a duplicated output.
1406 */
1407 log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1408 cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1409 cont.flags = flags;
1410 cont.flushed = true;
1411 } else {
1412 /*
1413 * If no fragment of this line ever reached the console,
1414 * just submit it to the store and free the buffer.
1415 */
1416 log_store(cont.facility, cont.level, flags, 0,
1417 NULL, 0, cont.buf, cont.len);
1418 cont.len = 0;
1419 }
1420 }
1421
1422 static bool cont_add(int facility, int level, const char *text, size_t len)
1423 {
1424 if (cont.len && cont.flushed)
1425 return false;
1426
1427 if (cont.len + len > sizeof(cont.buf)) {
1428 /* the line gets too long, split it up in separate records */
1429 cont_flush(LOG_CONT);
1430 return false;
1431 }
1432
1433 if (!cont.len) {
1434 cont.facility = facility;
1435 cont.level = level;
1436 cont.owner = current;
1437 cont.ts_nsec = local_clock();
1438 cont.flags = 0;
1439 cont.cons = 0;
1440 cont.flushed = false;
1441 }
1442
1443 memcpy(cont.buf + cont.len, text, len);
1444 cont.len += len;
1445
1446 if (cont.len > (sizeof(cont.buf) * 80) / 100)
1447 cont_flush(LOG_CONT);
1448
1449 return true;
1450 }
1451
1452 static size_t cont_print_text(char *text, size_t size)
1453 {
1454 size_t textlen = 0;
1455 size_t len;
1456
1457 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1458 textlen += print_time(cont.ts_nsec, text);
1459 size -= textlen;
1460 }
1461
1462 len = cont.len - cont.cons;
1463 if (len > 0) {
1464 if (len+1 > size)
1465 len = size-1;
1466 memcpy(text + textlen, cont.buf + cont.cons, len);
1467 textlen += len;
1468 cont.cons = cont.len;
1469 }
1470
1471 if (cont.flushed) {
1472 if (cont.flags & LOG_NEWLINE)
1473 text[textlen++] = '\n';
1474 /* got everything, release buffer */
1475 cont.len = 0;
1476 }
1477 return textlen;
1478 }
1479
1480 asmlinkage int vprintk_emit(int facility, int level,
1481 const char *dict, size_t dictlen,
1482 const char *fmt, va_list args)
1483 {
1484 static int recursion_bug;
1485 static char textbuf[LOG_LINE_MAX];
1486 char *text = textbuf;
1487 size_t text_len;
1488 enum log_flags lflags = 0;
1489 unsigned long flags;
1490 int this_cpu;
1491 int printed_len = 0;
1492
1493 boot_delay_msec();
1494 printk_delay();
1495
1496 /* This stops the holder of console_sem just where we want him */
1497 local_irq_save(flags);
1498 this_cpu = smp_processor_id();
1499
1500 /*
1501 * Ouch, printk recursed into itself!
1502 */
1503 if (unlikely(logbuf_cpu == this_cpu)) {
1504 /*
1505 * If a crash is occurring during printk() on this CPU,
1506 * then try to get the crash message out but make sure
1507 * we can't deadlock. Otherwise just return to avoid the
1508 * recursion and return - but flag the recursion so that
1509 * it can be printed at the next appropriate moment:
1510 */
1511 if (!oops_in_progress && !lockdep_recursing(current)) {
1512 recursion_bug = 1;
1513 goto out_restore_irqs;
1514 }
1515 zap_locks();
1516 }
1517
1518 lockdep_off();
1519 raw_spin_lock(&logbuf_lock);
1520 logbuf_cpu = this_cpu;
1521
1522 if (recursion_bug) {
1523 static const char recursion_msg[] =
1524 "BUG: recent printk recursion!";
1525
1526 recursion_bug = 0;
1527 printed_len += strlen(recursion_msg);
1528 /* emit KERN_CRIT message */
1529 log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1530 NULL, 0, recursion_msg, printed_len);
1531 }
1532
1533 /*
1534 * The printf needs to come first; we need the syslog
1535 * prefix which might be passed-in as a parameter.
1536 */
1537 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1538
1539 /* mark and strip a trailing newline */
1540 if (text_len && text[text_len-1] == '\n') {
1541 text_len--;
1542 lflags |= LOG_NEWLINE;
1543 }
1544
1545 /* strip kernel syslog prefix and extract log level or control flags */
1546 if (facility == 0) {
1547 int kern_level = printk_get_level(text);
1548
1549 if (kern_level) {
1550 const char *end_of_header = printk_skip_level(text);
1551 switch (kern_level) {
1552 case '0' ... '7':
1553 if (level == -1)
1554 level = kern_level - '0';
1555 case 'd': /* KERN_DEFAULT */
1556 lflags |= LOG_PREFIX;
1557 case 'c': /* KERN_CONT */
1558 break;
1559 }
1560 text_len -= end_of_header - text;
1561 text = (char *)end_of_header;
1562 }
1563 }
1564
1565 if (level == -1)
1566 level = default_message_loglevel;
1567
1568 if (dict)
1569 lflags |= LOG_PREFIX|LOG_NEWLINE;
1570
1571 if (!(lflags & LOG_NEWLINE)) {
1572 /*
1573 * Flush the conflicting buffer. An earlier newline was missing,
1574 * or another task also prints continuation lines.
1575 */
1576 if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1577 cont_flush(LOG_NEWLINE);
1578
1579 /* buffer line if possible, otherwise store it right away */
1580 if (!cont_add(facility, level, text, text_len))
1581 log_store(facility, level, lflags | LOG_CONT, 0,
1582 dict, dictlen, text, text_len);
1583 } else {
1584 bool stored = false;
1585
1586 /*
1587 * If an earlier newline was missing and it was the same task,
1588 * either merge it with the current buffer and flush, or if
1589 * there was a race with interrupts (prefix == true) then just
1590 * flush it out and store this line separately.
1591 */
1592 if (cont.len && cont.owner == current) {
1593 if (!(lflags & LOG_PREFIX))
1594 stored = cont_add(facility, level, text, text_len);
1595 cont_flush(LOG_NEWLINE);
1596 }
1597
1598 if (!stored)
1599 log_store(facility, level, lflags, 0,
1600 dict, dictlen, text, text_len);
1601 }
1602 printed_len += text_len;
1603
1604 /*
1605 * Try to acquire and then immediately release the console semaphore.
1606 * The release will print out buffers and wake up /dev/kmsg and syslog()
1607 * users.
1608 *
1609 * The console_trylock_for_printk() function will release 'logbuf_lock'
1610 * regardless of whether it actually gets the console semaphore or not.
1611 */
1612 if (console_trylock_for_printk(this_cpu))
1613 console_unlock();
1614
1615 lockdep_on();
1616 out_restore_irqs:
1617 local_irq_restore(flags);
1618
1619 return printed_len;
1620 }
1621 EXPORT_SYMBOL(vprintk_emit);
1622
1623 asmlinkage int vprintk(const char *fmt, va_list args)
1624 {
1625 return vprintk_emit(0, -1, NULL, 0, fmt, args);
1626 }
1627 EXPORT_SYMBOL(vprintk);
1628
1629 asmlinkage int printk_emit(int facility, int level,
1630 const char *dict, size_t dictlen,
1631 const char *fmt, ...)
1632 {
1633 va_list args;
1634 int r;
1635
1636 va_start(args, fmt);
1637 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1638 va_end(args);
1639
1640 return r;
1641 }
1642 EXPORT_SYMBOL(printk_emit);
1643
1644 /**
1645 * printk - print a kernel message
1646 * @fmt: format string
1647 *
1648 * This is printk(). It can be called from any context. We want it to work.
1649 *
1650 * We try to grab the console_lock. If we succeed, it's easy - we log the
1651 * output and call the console drivers. If we fail to get the semaphore, we
1652 * place the output into the log buffer and return. The current holder of
1653 * the console_sem will notice the new output in console_unlock(); and will
1654 * send it to the consoles before releasing the lock.
1655 *
1656 * One effect of this deferred printing is that code which calls printk() and
1657 * then changes console_loglevel may break. This is because console_loglevel
1658 * is inspected when the actual printing occurs.
1659 *
1660 * See also:
1661 * printf(3)
1662 *
1663 * See the vsnprintf() documentation for format string extensions over C99.
1664 */
1665 asmlinkage int printk(const char *fmt, ...)
1666 {
1667 va_list args;
1668 int r;
1669
1670 #ifdef CONFIG_KGDB_KDB
1671 if (unlikely(kdb_trap_printk)) {
1672 va_start(args, fmt);
1673 r = vkdb_printf(fmt, args);
1674 va_end(args);
1675 return r;
1676 }
1677 #endif
1678 va_start(args, fmt);
1679 r = vprintk_emit(0, -1, NULL, 0, fmt, args);
1680 va_end(args);
1681
1682 return r;
1683 }
1684 EXPORT_SYMBOL(printk);
1685
1686 #else /* CONFIG_PRINTK */
1687
1688 #define LOG_LINE_MAX 0
1689 #define PREFIX_MAX 0
1690 #define LOG_LINE_MAX 0
1691 static u64 syslog_seq;
1692 static u32 syslog_idx;
1693 static u64 console_seq;
1694 static u32 console_idx;
1695 static enum log_flags syslog_prev;
1696 static u64 log_first_seq;
1697 static u32 log_first_idx;
1698 static u64 log_next_seq;
1699 static enum log_flags console_prev;
1700 static struct cont {
1701 size_t len;
1702 size_t cons;
1703 u8 level;
1704 bool flushed:1;
1705 } cont;
1706 static struct log *log_from_idx(u32 idx) { return NULL; }
1707 static u32 log_next(u32 idx) { return 0; }
1708 static void call_console_drivers(int level, const char *text, size_t len) {}
1709 static size_t msg_print_text(const struct log *msg, enum log_flags prev,
1710 bool syslog, char *buf, size_t size) { return 0; }
1711 static size_t cont_print_text(char *text, size_t size) { return 0; }
1712
1713 #endif /* CONFIG_PRINTK */
1714
1715 static int __add_preferred_console(char *name, int idx, char *options,
1716 char *brl_options)
1717 {
1718 struct console_cmdline *c;
1719 int i;
1720
1721 /*
1722 * See if this tty is not yet registered, and
1723 * if we have a slot free.
1724 */
1725 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0]; i++)
1726 if (strcmp(console_cmdline[i].name, name) == 0 &&
1727 console_cmdline[i].index == idx) {
1728 if (!brl_options)
1729 selected_console = i;
1730 return 0;
1731 }
1732 if (i == MAX_CMDLINECONSOLES)
1733 return -E2BIG;
1734 if (!brl_options)
1735 selected_console = i;
1736 c = &console_cmdline[i];
1737 strlcpy(c->name, name, sizeof(c->name));
1738 c->options = options;
1739 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
1740 c->brl_options = brl_options;
1741 #endif
1742 c->index = idx;
1743 return 0;
1744 }
1745 /*
1746 * Set up a list of consoles. Called from init/main.c
1747 */
1748 static int __init console_setup(char *str)
1749 {
1750 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for index */
1751 char *s, *options, *brl_options = NULL;
1752 int idx;
1753
1754 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
1755 if (!memcmp(str, "brl,", 4)) {
1756 brl_options = "";
1757 str += 4;
1758 } else if (!memcmp(str, "brl=", 4)) {
1759 brl_options = str + 4;
1760 str = strchr(brl_options, ',');
1761 if (!str) {
1762 printk(KERN_ERR "need port name after brl=\n");
1763 return 1;
1764 }
1765 *(str++) = 0;
1766 }
1767 #endif
1768
1769 /*
1770 * Decode str into name, index, options.
1771 */
1772 if (str[0] >= '0' && str[0] <= '9') {
1773 strcpy(buf, "ttyS");
1774 strncpy(buf + 4, str, sizeof(buf) - 5);
1775 } else {
1776 strncpy(buf, str, sizeof(buf) - 1);
1777 }
1778 buf[sizeof(buf) - 1] = 0;
1779 if ((options = strchr(str, ',')) != NULL)
1780 *(options++) = 0;
1781 #ifdef __sparc__
1782 if (!strcmp(str, "ttya"))
1783 strcpy(buf, "ttyS0");
1784 if (!strcmp(str, "ttyb"))
1785 strcpy(buf, "ttyS1");
1786 #endif
1787 for (s = buf; *s; s++)
1788 if ((*s >= '0' && *s <= '9') || *s == ',')
1789 break;
1790 idx = simple_strtoul(s, NULL, 10);
1791 *s = 0;
1792
1793 __add_preferred_console(buf, idx, options, brl_options);
1794 console_set_on_cmdline = 1;
1795 return 1;
1796 }
1797 __setup("console=", console_setup);
1798
1799 /**
1800 * add_preferred_console - add a device to the list of preferred consoles.
1801 * @name: device name
1802 * @idx: device index
1803 * @options: options for this console
1804 *
1805 * The last preferred console added will be used for kernel messages
1806 * and stdin/out/err for init. Normally this is used by console_setup
1807 * above to handle user-supplied console arguments; however it can also
1808 * be used by arch-specific code either to override the user or more
1809 * commonly to provide a default console (ie from PROM variables) when
1810 * the user has not supplied one.
1811 */
1812 int add_preferred_console(char *name, int idx, char *options)
1813 {
1814 return __add_preferred_console(name, idx, options, NULL);
1815 }
1816
1817 int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options)
1818 {
1819 struct console_cmdline *c;
1820 int i;
1821
1822 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0]; i++)
1823 if (strcmp(console_cmdline[i].name, name) == 0 &&
1824 console_cmdline[i].index == idx) {
1825 c = &console_cmdline[i];
1826 strlcpy(c->name, name_new, sizeof(c->name));
1827 c->name[sizeof(c->name) - 1] = 0;
1828 c->options = options;
1829 c->index = idx_new;
1830 return i;
1831 }
1832 /* not found */
1833 return -1;
1834 }
1835
1836 bool console_suspend_enabled = 1;
1837 EXPORT_SYMBOL(console_suspend_enabled);
1838
1839 static int __init console_suspend_disable(char *str)
1840 {
1841 console_suspend_enabled = 0;
1842 return 1;
1843 }
1844 __setup("no_console_suspend", console_suspend_disable);
1845 module_param_named(console_suspend, console_suspend_enabled,
1846 bool, S_IRUGO | S_IWUSR);
1847 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
1848 " and hibernate operations");
1849
1850 /**
1851 * suspend_console - suspend the console subsystem
1852 *
1853 * This disables printk() while we go into suspend states
1854 */
1855 void suspend_console(void)
1856 {
1857 if (!console_suspend_enabled)
1858 return;
1859 printk("Suspending console(s) (use no_console_suspend to debug)\n");
1860 console_lock();
1861 console_suspended = 1;
1862 up(&console_sem);
1863 }
1864
1865 void resume_console(void)
1866 {
1867 if (!console_suspend_enabled)
1868 return;
1869 down(&console_sem);
1870 console_suspended = 0;
1871 console_unlock();
1872 }
1873
1874 /**
1875 * console_cpu_notify - print deferred console messages after CPU hotplug
1876 * @self: notifier struct
1877 * @action: CPU hotplug event
1878 * @hcpu: unused
1879 *
1880 * If printk() is called from a CPU that is not online yet, the messages
1881 * will be spooled but will not show up on the console. This function is
1882 * called when a new CPU comes online (or fails to come up), and ensures
1883 * that any such output gets printed.
1884 */
1885 static int __cpuinit console_cpu_notify(struct notifier_block *self,
1886 unsigned long action, void *hcpu)
1887 {
1888 switch (action) {
1889 case CPU_ONLINE:
1890 case CPU_DEAD:
1891 case CPU_DYING:
1892 case CPU_DOWN_FAILED:
1893 case CPU_UP_CANCELED:
1894 console_lock();
1895 console_unlock();
1896 }
1897 return NOTIFY_OK;
1898 }
1899
1900 /**
1901 * console_lock - lock the console system for exclusive use.
1902 *
1903 * Acquires a lock which guarantees that the caller has
1904 * exclusive access to the console system and the console_drivers list.
1905 *
1906 * Can sleep, returns nothing.
1907 */
1908 void console_lock(void)
1909 {
1910 BUG_ON(in_interrupt());
1911 down(&console_sem);
1912 if (console_suspended)
1913 return;
1914 console_locked = 1;
1915 console_may_schedule = 1;
1916 }
1917 EXPORT_SYMBOL(console_lock);
1918
1919 /**
1920 * console_trylock - try to lock the console system for exclusive use.
1921 *
1922 * Tried to acquire a lock which guarantees that the caller has
1923 * exclusive access to the console system and the console_drivers list.
1924 *
1925 * returns 1 on success, and 0 on failure to acquire the lock.
1926 */
1927 int console_trylock(void)
1928 {
1929 if (down_trylock(&console_sem))
1930 return 0;
1931 if (console_suspended) {
1932 up(&console_sem);
1933 return 0;
1934 }
1935 console_locked = 1;
1936 console_may_schedule = 0;
1937 return 1;
1938 }
1939 EXPORT_SYMBOL(console_trylock);
1940
1941 int is_console_locked(void)
1942 {
1943 return console_locked;
1944 }
1945
1946 /*
1947 * Delayed printk version, for scheduler-internal messages:
1948 */
1949 #define PRINTK_BUF_SIZE 512
1950
1951 #define PRINTK_PENDING_WAKEUP 0x01
1952 #define PRINTK_PENDING_SCHED 0x02
1953
1954 static DEFINE_PER_CPU(int, printk_pending);
1955 static DEFINE_PER_CPU(char [PRINTK_BUF_SIZE], printk_sched_buf);
1956
1957 void printk_tick(void)
1958 {
1959 if (__this_cpu_read(printk_pending)) {
1960 int pending = __this_cpu_xchg(printk_pending, 0);
1961 if (pending & PRINTK_PENDING_SCHED) {
1962 char *buf = __get_cpu_var(printk_sched_buf);
1963 printk(KERN_WARNING "[sched_delayed] %s", buf);
1964 }
1965 if (pending & PRINTK_PENDING_WAKEUP)
1966 wake_up_interruptible(&log_wait);
1967 }
1968 }
1969
1970 int printk_needs_cpu(int cpu)
1971 {
1972 if (cpu_is_offline(cpu))
1973 printk_tick();
1974 return __this_cpu_read(printk_pending);
1975 }
1976
1977 void wake_up_klogd(void)
1978 {
1979 if (waitqueue_active(&log_wait))
1980 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
1981 }
1982
1983 static void console_cont_flush(char *text, size_t size)
1984 {
1985 unsigned long flags;
1986 size_t len;
1987
1988 raw_spin_lock_irqsave(&logbuf_lock, flags);
1989
1990 if (!cont.len)
1991 goto out;
1992
1993 /*
1994 * We still queue earlier records, likely because the console was
1995 * busy. The earlier ones need to be printed before this one, we
1996 * did not flush any fragment so far, so just let it queue up.
1997 */
1998 if (console_seq < log_next_seq && !cont.cons)
1999 goto out;
2000
2001 len = cont_print_text(text, size);
2002 raw_spin_unlock(&logbuf_lock);
2003 stop_critical_timings();
2004 call_console_drivers(cont.level, text, len);
2005 start_critical_timings();
2006 local_irq_restore(flags);
2007 return;
2008 out:
2009 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2010 }
2011
2012 /**
2013 * console_unlock - unlock the console system
2014 *
2015 * Releases the console_lock which the caller holds on the console system
2016 * and the console driver list.
2017 *
2018 * While the console_lock was held, console output may have been buffered
2019 * by printk(). If this is the case, console_unlock(); emits
2020 * the output prior to releasing the lock.
2021 *
2022 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2023 *
2024 * console_unlock(); may be called from any context.
2025 */
2026 void console_unlock(void)
2027 {
2028 static char text[LOG_LINE_MAX + PREFIX_MAX];
2029 static u64 seen_seq;
2030 unsigned long flags;
2031 bool wake_klogd = false;
2032 bool retry;
2033
2034 if (console_suspended) {
2035 up(&console_sem);
2036 return;
2037 }
2038
2039 console_may_schedule = 0;
2040
2041 /* flush buffered message fragment immediately to console */
2042 console_cont_flush(text, sizeof(text));
2043 again:
2044 for (;;) {
2045 struct log *msg;
2046 size_t len;
2047 int level;
2048
2049 raw_spin_lock_irqsave(&logbuf_lock, flags);
2050 if (seen_seq != log_next_seq) {
2051 wake_klogd = true;
2052 seen_seq = log_next_seq;
2053 }
2054
2055 if (console_seq < log_first_seq) {
2056 /* messages are gone, move to first one */
2057 console_seq = log_first_seq;
2058 console_idx = log_first_idx;
2059 console_prev = 0;
2060 }
2061 skip:
2062 if (console_seq == log_next_seq)
2063 break;
2064
2065 msg = log_from_idx(console_idx);
2066 if (msg->flags & LOG_NOCONS) {
2067 /*
2068 * Skip record we have buffered and already printed
2069 * directly to the console when we received it.
2070 */
2071 console_idx = log_next(console_idx);
2072 console_seq++;
2073 /*
2074 * We will get here again when we register a new
2075 * CON_PRINTBUFFER console. Clear the flag so we
2076 * will properly dump everything later.
2077 */
2078 msg->flags &= ~LOG_NOCONS;
2079 console_prev = msg->flags;
2080 goto skip;
2081 }
2082
2083 level = msg->level;
2084 len = msg_print_text(msg, console_prev, false,
2085 text, sizeof(text));
2086 console_idx = log_next(console_idx);
2087 console_seq++;
2088 console_prev = msg->flags;
2089 raw_spin_unlock(&logbuf_lock);
2090
2091 stop_critical_timings(); /* don't trace print latency */
2092 call_console_drivers(level, text, len);
2093 start_critical_timings();
2094 local_irq_restore(flags);
2095 }
2096 console_locked = 0;
2097
2098 /* Release the exclusive_console once it is used */
2099 if (unlikely(exclusive_console))
2100 exclusive_console = NULL;
2101
2102 raw_spin_unlock(&logbuf_lock);
2103
2104 up(&console_sem);
2105
2106 /*
2107 * Someone could have filled up the buffer again, so re-check if there's
2108 * something to flush. In case we cannot trylock the console_sem again,
2109 * there's a new owner and the console_unlock() from them will do the
2110 * flush, no worries.
2111 */
2112 raw_spin_lock(&logbuf_lock);
2113 retry = console_seq != log_next_seq;
2114 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2115
2116 if (retry && console_trylock())
2117 goto again;
2118
2119 if (wake_klogd)
2120 wake_up_klogd();
2121 }
2122 EXPORT_SYMBOL(console_unlock);
2123
2124 /**
2125 * console_conditional_schedule - yield the CPU if required
2126 *
2127 * If the console code is currently allowed to sleep, and
2128 * if this CPU should yield the CPU to another task, do
2129 * so here.
2130 *
2131 * Must be called within console_lock();.
2132 */
2133 void __sched console_conditional_schedule(void)
2134 {
2135 if (console_may_schedule)
2136 cond_resched();
2137 }
2138 EXPORT_SYMBOL(console_conditional_schedule);
2139
2140 void console_unblank(void)
2141 {
2142 struct console *c;
2143
2144 /*
2145 * console_unblank can no longer be called in interrupt context unless
2146 * oops_in_progress is set to 1..
2147 */
2148 if (oops_in_progress) {
2149 if (down_trylock(&console_sem) != 0)
2150 return;
2151 } else
2152 console_lock();
2153
2154 console_locked = 1;
2155 console_may_schedule = 0;
2156 for_each_console(c)
2157 if ((c->flags & CON_ENABLED) && c->unblank)
2158 c->unblank();
2159 console_unlock();
2160 }
2161
2162 /*
2163 * Return the console tty driver structure and its associated index
2164 */
2165 struct tty_driver *console_device(int *index)
2166 {
2167 struct console *c;
2168 struct tty_driver *driver = NULL;
2169
2170 console_lock();
2171 for_each_console(c) {
2172 if (!c->device)
2173 continue;
2174 driver = c->device(c, index);
2175 if (driver)
2176 break;
2177 }
2178 console_unlock();
2179 return driver;
2180 }
2181
2182 /*
2183 * Prevent further output on the passed console device so that (for example)
2184 * serial drivers can disable console output before suspending a port, and can
2185 * re-enable output afterwards.
2186 */
2187 void console_stop(struct console *console)
2188 {
2189 console_lock();
2190 console->flags &= ~CON_ENABLED;
2191 console_unlock();
2192 }
2193 EXPORT_SYMBOL(console_stop);
2194
2195 void console_start(struct console *console)
2196 {
2197 console_lock();
2198 console->flags |= CON_ENABLED;
2199 console_unlock();
2200 }
2201 EXPORT_SYMBOL(console_start);
2202
2203 static int __read_mostly keep_bootcon;
2204
2205 static int __init keep_bootcon_setup(char *str)
2206 {
2207 keep_bootcon = 1;
2208 printk(KERN_INFO "debug: skip boot console de-registration.\n");
2209
2210 return 0;
2211 }
2212
2213 early_param("keep_bootcon", keep_bootcon_setup);
2214
2215 /*
2216 * The console driver calls this routine during kernel initialization
2217 * to register the console printing procedure with printk() and to
2218 * print any messages that were printed by the kernel before the
2219 * console driver was initialized.
2220 *
2221 * This can happen pretty early during the boot process (because of
2222 * early_printk) - sometimes before setup_arch() completes - be careful
2223 * of what kernel features are used - they may not be initialised yet.
2224 *
2225 * There are two types of consoles - bootconsoles (early_printk) and
2226 * "real" consoles (everything which is not a bootconsole) which are
2227 * handled differently.
2228 * - Any number of bootconsoles can be registered at any time.
2229 * - As soon as a "real" console is registered, all bootconsoles
2230 * will be unregistered automatically.
2231 * - Once a "real" console is registered, any attempt to register a
2232 * bootconsoles will be rejected
2233 */
2234 void register_console(struct console *newcon)
2235 {
2236 int i;
2237 unsigned long flags;
2238 struct console *bcon = NULL;
2239
2240 /*
2241 * before we register a new CON_BOOT console, make sure we don't
2242 * already have a valid console
2243 */
2244 if (console_drivers && newcon->flags & CON_BOOT) {
2245 /* find the last or real console */
2246 for_each_console(bcon) {
2247 if (!(bcon->flags & CON_BOOT)) {
2248 printk(KERN_INFO "Too late to register bootconsole %s%d\n",
2249 newcon->name, newcon->index);
2250 return;
2251 }
2252 }
2253 }
2254
2255 if (console_drivers && console_drivers->flags & CON_BOOT)
2256 bcon = console_drivers;
2257
2258 if (preferred_console < 0 || bcon || !console_drivers)
2259 preferred_console = selected_console;
2260
2261 if (newcon->early_setup)
2262 newcon->early_setup();
2263
2264 /*
2265 * See if we want to use this console driver. If we
2266 * didn't select a console we take the first one
2267 * that registers here.
2268 */
2269 if (preferred_console < 0) {
2270 if (newcon->index < 0)
2271 newcon->index = 0;
2272 if (newcon->setup == NULL ||
2273 newcon->setup(newcon, NULL) == 0) {
2274 newcon->flags |= CON_ENABLED;
2275 if (newcon->device) {
2276 newcon->flags |= CON_CONSDEV;
2277 preferred_console = 0;
2278 }
2279 }
2280 }
2281
2282 /*
2283 * See if this console matches one we selected on
2284 * the command line.
2285 */
2286 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0];
2287 i++) {
2288 if (strcmp(console_cmdline[i].name, newcon->name) != 0)
2289 continue;
2290 if (newcon->index >= 0 &&
2291 newcon->index != console_cmdline[i].index)
2292 continue;
2293 if (newcon->index < 0)
2294 newcon->index = console_cmdline[i].index;
2295 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
2296 if (console_cmdline[i].brl_options) {
2297 newcon->flags |= CON_BRL;
2298 braille_register_console(newcon,
2299 console_cmdline[i].index,
2300 console_cmdline[i].options,
2301 console_cmdline[i].brl_options);
2302 return;
2303 }
2304 #endif
2305 if (newcon->setup &&
2306 newcon->setup(newcon, console_cmdline[i].options) != 0)
2307 break;
2308 newcon->flags |= CON_ENABLED;
2309 newcon->index = console_cmdline[i].index;
2310 if (i == selected_console) {
2311 newcon->flags |= CON_CONSDEV;
2312 preferred_console = selected_console;
2313 }
2314 break;
2315 }
2316
2317 if (!(newcon->flags & CON_ENABLED))
2318 return;
2319
2320 /*
2321 * If we have a bootconsole, and are switching to a real console,
2322 * don't print everything out again, since when the boot console, and
2323 * the real console are the same physical device, it's annoying to
2324 * see the beginning boot messages twice
2325 */
2326 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2327 newcon->flags &= ~CON_PRINTBUFFER;
2328
2329 /*
2330 * Put this console in the list - keep the
2331 * preferred driver at the head of the list.
2332 */
2333 console_lock();
2334 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2335 newcon->next = console_drivers;
2336 console_drivers = newcon;
2337 if (newcon->next)
2338 newcon->next->flags &= ~CON_CONSDEV;
2339 } else {
2340 newcon->next = console_drivers->next;
2341 console_drivers->next = newcon;
2342 }
2343 if (newcon->flags & CON_PRINTBUFFER) {
2344 /*
2345 * console_unlock(); will print out the buffered messages
2346 * for us.
2347 */
2348 raw_spin_lock_irqsave(&logbuf_lock, flags);
2349 console_seq = syslog_seq;
2350 console_idx = syslog_idx;
2351 console_prev = syslog_prev;
2352 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2353 /*
2354 * We're about to replay the log buffer. Only do this to the
2355 * just-registered console to avoid excessive message spam to
2356 * the already-registered consoles.
2357 */
2358 exclusive_console = newcon;
2359 }
2360 console_unlock();
2361 console_sysfs_notify();
2362
2363 /*
2364 * By unregistering the bootconsoles after we enable the real console
2365 * we get the "console xxx enabled" message on all the consoles -
2366 * boot consoles, real consoles, etc - this is to ensure that end
2367 * users know there might be something in the kernel's log buffer that
2368 * went to the bootconsole (that they do not see on the real console)
2369 */
2370 if (bcon &&
2371 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2372 !keep_bootcon) {
2373 /* we need to iterate through twice, to make sure we print
2374 * everything out, before we unregister the console(s)
2375 */
2376 printk(KERN_INFO "console [%s%d] enabled, bootconsole disabled\n",
2377 newcon->name, newcon->index);
2378 for_each_console(bcon)
2379 if (bcon->flags & CON_BOOT)
2380 unregister_console(bcon);
2381 } else {
2382 printk(KERN_INFO "%sconsole [%s%d] enabled\n",
2383 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2384 newcon->name, newcon->index);
2385 }
2386 }
2387 EXPORT_SYMBOL(register_console);
2388
2389 int unregister_console(struct console *console)
2390 {
2391 struct console *a, *b;
2392 int res = 1;
2393
2394 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
2395 if (console->flags & CON_BRL)
2396 return braille_unregister_console(console);
2397 #endif
2398
2399 console_lock();
2400 if (console_drivers == console) {
2401 console_drivers=console->next;
2402 res = 0;
2403 } else if (console_drivers) {
2404 for (a=console_drivers->next, b=console_drivers ;
2405 a; b=a, a=b->next) {
2406 if (a == console) {
2407 b->next = a->next;
2408 res = 0;
2409 break;
2410 }
2411 }
2412 }
2413
2414 /*
2415 * If this isn't the last console and it has CON_CONSDEV set, we
2416 * need to set it on the next preferred console.
2417 */
2418 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2419 console_drivers->flags |= CON_CONSDEV;
2420
2421 console_unlock();
2422 console_sysfs_notify();
2423 return res;
2424 }
2425 EXPORT_SYMBOL(unregister_console);
2426
2427 static int __init printk_late_init(void)
2428 {
2429 struct console *con;
2430
2431 for_each_console(con) {
2432 if (!keep_bootcon && con->flags & CON_BOOT) {
2433 printk(KERN_INFO "turn off boot console %s%d\n",
2434 con->name, con->index);
2435 unregister_console(con);
2436 }
2437 }
2438 hotcpu_notifier(console_cpu_notify, 0);
2439 return 0;
2440 }
2441 late_initcall(printk_late_init);
2442
2443 #if defined CONFIG_PRINTK
2444
2445 int printk_sched(const char *fmt, ...)
2446 {
2447 unsigned long flags;
2448 va_list args;
2449 char *buf;
2450 int r;
2451
2452 local_irq_save(flags);
2453 buf = __get_cpu_var(printk_sched_buf);
2454
2455 va_start(args, fmt);
2456 r = vsnprintf(buf, PRINTK_BUF_SIZE, fmt, args);
2457 va_end(args);
2458
2459 __this_cpu_or(printk_pending, PRINTK_PENDING_SCHED);
2460 local_irq_restore(flags);
2461
2462 return r;
2463 }
2464
2465 /*
2466 * printk rate limiting, lifted from the networking subsystem.
2467 *
2468 * This enforces a rate limit: not more than 10 kernel messages
2469 * every 5s to make a denial-of-service attack impossible.
2470 */
2471 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2472
2473 int __printk_ratelimit(const char *func)
2474 {
2475 return ___ratelimit(&printk_ratelimit_state, func);
2476 }
2477 EXPORT_SYMBOL(__printk_ratelimit);
2478
2479 /**
2480 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2481 * @caller_jiffies: pointer to caller's state
2482 * @interval_msecs: minimum interval between prints
2483 *
2484 * printk_timed_ratelimit() returns true if more than @interval_msecs
2485 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2486 * returned true.
2487 */
2488 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2489 unsigned int interval_msecs)
2490 {
2491 if (*caller_jiffies == 0
2492 || !time_in_range(jiffies, *caller_jiffies,
2493 *caller_jiffies
2494 + msecs_to_jiffies(interval_msecs))) {
2495 *caller_jiffies = jiffies;
2496 return true;
2497 }
2498 return false;
2499 }
2500 EXPORT_SYMBOL(printk_timed_ratelimit);
2501
2502 static DEFINE_SPINLOCK(dump_list_lock);
2503 static LIST_HEAD(dump_list);
2504
2505 /**
2506 * kmsg_dump_register - register a kernel log dumper.
2507 * @dumper: pointer to the kmsg_dumper structure
2508 *
2509 * Adds a kernel log dumper to the system. The dump callback in the
2510 * structure will be called when the kernel oopses or panics and must be
2511 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2512 */
2513 int kmsg_dump_register(struct kmsg_dumper *dumper)
2514 {
2515 unsigned long flags;
2516 int err = -EBUSY;
2517
2518 /* The dump callback needs to be set */
2519 if (!dumper->dump)
2520 return -EINVAL;
2521
2522 spin_lock_irqsave(&dump_list_lock, flags);
2523 /* Don't allow registering multiple times */
2524 if (!dumper->registered) {
2525 dumper->registered = 1;
2526 list_add_tail_rcu(&dumper->list, &dump_list);
2527 err = 0;
2528 }
2529 spin_unlock_irqrestore(&dump_list_lock, flags);
2530
2531 return err;
2532 }
2533 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2534
2535 /**
2536 * kmsg_dump_unregister - unregister a kmsg dumper.
2537 * @dumper: pointer to the kmsg_dumper structure
2538 *
2539 * Removes a dump device from the system. Returns zero on success and
2540 * %-EINVAL otherwise.
2541 */
2542 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2543 {
2544 unsigned long flags;
2545 int err = -EINVAL;
2546
2547 spin_lock_irqsave(&dump_list_lock, flags);
2548 if (dumper->registered) {
2549 dumper->registered = 0;
2550 list_del_rcu(&dumper->list);
2551 err = 0;
2552 }
2553 spin_unlock_irqrestore(&dump_list_lock, flags);
2554 synchronize_rcu();
2555
2556 return err;
2557 }
2558 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2559
2560 static bool always_kmsg_dump;
2561 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2562
2563 /**
2564 * kmsg_dump - dump kernel log to kernel message dumpers.
2565 * @reason: the reason (oops, panic etc) for dumping
2566 *
2567 * Call each of the registered dumper's dump() callback, which can
2568 * retrieve the kmsg records with kmsg_dump_get_line() or
2569 * kmsg_dump_get_buffer().
2570 */
2571 void kmsg_dump(enum kmsg_dump_reason reason)
2572 {
2573 struct kmsg_dumper *dumper;
2574 unsigned long flags;
2575
2576 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2577 return;
2578
2579 rcu_read_lock();
2580 list_for_each_entry_rcu(dumper, &dump_list, list) {
2581 if (dumper->max_reason && reason > dumper->max_reason)
2582 continue;
2583
2584 /* initialize iterator with data about the stored records */
2585 dumper->active = true;
2586
2587 raw_spin_lock_irqsave(&logbuf_lock, flags);
2588 dumper->cur_seq = clear_seq;
2589 dumper->cur_idx = clear_idx;
2590 dumper->next_seq = log_next_seq;
2591 dumper->next_idx = log_next_idx;
2592 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2593
2594 /* invoke dumper which will iterate over records */
2595 dumper->dump(dumper, reason);
2596
2597 /* reset iterator */
2598 dumper->active = false;
2599 }
2600 rcu_read_unlock();
2601 }
2602
2603 /**
2604 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2605 * @dumper: registered kmsg dumper
2606 * @syslog: include the "<4>" prefixes
2607 * @line: buffer to copy the line to
2608 * @size: maximum size of the buffer
2609 * @len: length of line placed into buffer
2610 *
2611 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2612 * record, and copy one record into the provided buffer.
2613 *
2614 * Consecutive calls will return the next available record moving
2615 * towards the end of the buffer with the youngest messages.
2616 *
2617 * A return value of FALSE indicates that there are no more records to
2618 * read.
2619 *
2620 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2621 */
2622 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2623 char *line, size_t size, size_t *len)
2624 {
2625 struct log *msg;
2626 size_t l = 0;
2627 bool ret = false;
2628
2629 if (!dumper->active)
2630 goto out;
2631
2632 if (dumper->cur_seq < log_first_seq) {
2633 /* messages are gone, move to first available one */
2634 dumper->cur_seq = log_first_seq;
2635 dumper->cur_idx = log_first_idx;
2636 }
2637
2638 /* last entry */
2639 if (dumper->cur_seq >= log_next_seq)
2640 goto out;
2641
2642 msg = log_from_idx(dumper->cur_idx);
2643 l = msg_print_text(msg, 0, syslog, line, size);
2644
2645 dumper->cur_idx = log_next(dumper->cur_idx);
2646 dumper->cur_seq++;
2647 ret = true;
2648 out:
2649 if (len)
2650 *len = l;
2651 return ret;
2652 }
2653
2654 /**
2655 * kmsg_dump_get_line - retrieve one kmsg log line
2656 * @dumper: registered kmsg dumper
2657 * @syslog: include the "<4>" prefixes
2658 * @line: buffer to copy the line to
2659 * @size: maximum size of the buffer
2660 * @len: length of line placed into buffer
2661 *
2662 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2663 * record, and copy one record into the provided buffer.
2664 *
2665 * Consecutive calls will return the next available record moving
2666 * towards the end of the buffer with the youngest messages.
2667 *
2668 * A return value of FALSE indicates that there are no more records to
2669 * read.
2670 */
2671 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2672 char *line, size_t size, size_t *len)
2673 {
2674 unsigned long flags;
2675 bool ret;
2676
2677 raw_spin_lock_irqsave(&logbuf_lock, flags);
2678 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2679 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2680
2681 return ret;
2682 }
2683 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2684
2685 /**
2686 * kmsg_dump_get_buffer - copy kmsg log lines
2687 * @dumper: registered kmsg dumper
2688 * @syslog: include the "<4>" prefixes
2689 * @buf: buffer to copy the line to
2690 * @size: maximum size of the buffer
2691 * @len: length of line placed into buffer
2692 *
2693 * Start at the end of the kmsg buffer and fill the provided buffer
2694 * with as many of the the *youngest* kmsg records that fit into it.
2695 * If the buffer is large enough, all available kmsg records will be
2696 * copied with a single call.
2697 *
2698 * Consecutive calls will fill the buffer with the next block of
2699 * available older records, not including the earlier retrieved ones.
2700 *
2701 * A return value of FALSE indicates that there are no more records to
2702 * read.
2703 */
2704 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2705 char *buf, size_t size, size_t *len)
2706 {
2707 unsigned long flags;
2708 u64 seq;
2709 u32 idx;
2710 u64 next_seq;
2711 u32 next_idx;
2712 enum log_flags prev;
2713 size_t l = 0;
2714 bool ret = false;
2715
2716 if (!dumper->active)
2717 goto out;
2718
2719 raw_spin_lock_irqsave(&logbuf_lock, flags);
2720 if (dumper->cur_seq < log_first_seq) {
2721 /* messages are gone, move to first available one */
2722 dumper->cur_seq = log_first_seq;
2723 dumper->cur_idx = log_first_idx;
2724 }
2725
2726 /* last entry */
2727 if (dumper->cur_seq >= dumper->next_seq) {
2728 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2729 goto out;
2730 }
2731
2732 /* calculate length of entire buffer */
2733 seq = dumper->cur_seq;
2734 idx = dumper->cur_idx;
2735 prev = 0;
2736 while (seq < dumper->next_seq) {
2737 struct log *msg = log_from_idx(idx);
2738
2739 l += msg_print_text(msg, prev, true, NULL, 0);
2740 idx = log_next(idx);
2741 seq++;
2742 prev = msg->flags;
2743 }
2744
2745 /* move first record forward until length fits into the buffer */
2746 seq = dumper->cur_seq;
2747 idx = dumper->cur_idx;
2748 prev = 0;
2749 while (l > size && seq < dumper->next_seq) {
2750 struct log *msg = log_from_idx(idx);
2751
2752 l -= msg_print_text(msg, prev, true, NULL, 0);
2753 idx = log_next(idx);
2754 seq++;
2755 prev = msg->flags;
2756 }
2757
2758 /* last message in next interation */
2759 next_seq = seq;
2760 next_idx = idx;
2761
2762 l = 0;
2763 prev = 0;
2764 while (seq < dumper->next_seq) {
2765 struct log *msg = log_from_idx(idx);
2766
2767 l += msg_print_text(msg, prev, syslog, buf + l, size - l);
2768 idx = log_next(idx);
2769 seq++;
2770 prev = msg->flags;
2771 }
2772
2773 dumper->next_seq = next_seq;
2774 dumper->next_idx = next_idx;
2775 ret = true;
2776 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2777 out:
2778 if (len)
2779 *len = l;
2780 return ret;
2781 }
2782 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
2783
2784 /**
2785 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
2786 * @dumper: registered kmsg dumper
2787 *
2788 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2789 * kmsg_dump_get_buffer() can be called again and used multiple
2790 * times within the same dumper.dump() callback.
2791 *
2792 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
2793 */
2794 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
2795 {
2796 dumper->cur_seq = clear_seq;
2797 dumper->cur_idx = clear_idx;
2798 dumper->next_seq = log_next_seq;
2799 dumper->next_idx = log_next_idx;
2800 }
2801
2802 /**
2803 * kmsg_dump_rewind - reset the interator
2804 * @dumper: registered kmsg dumper
2805 *
2806 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2807 * kmsg_dump_get_buffer() can be called again and used multiple
2808 * times within the same dumper.dump() callback.
2809 */
2810 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
2811 {
2812 unsigned long flags;
2813
2814 raw_spin_lock_irqsave(&logbuf_lock, flags);
2815 kmsg_dump_rewind_nolock(dumper);
2816 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2817 }
2818 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
2819 #endif