]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/ptrace.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma
[mirror_ubuntu-zesty-kernel.git] / kernel / ptrace.c
1 /*
2 * linux/kernel/ptrace.c
3 *
4 * (C) Copyright 1999 Linus Torvalds
5 *
6 * Common interfaces for "ptrace()" which we do not want
7 * to continually duplicate across every architecture.
8 */
9
10 #include <linux/capability.h>
11 #include <linux/export.h>
12 #include <linux/sched.h>
13 #include <linux/errno.h>
14 #include <linux/mm.h>
15 #include <linux/highmem.h>
16 #include <linux/pagemap.h>
17 #include <linux/ptrace.h>
18 #include <linux/security.h>
19 #include <linux/signal.h>
20 #include <linux/uio.h>
21 #include <linux/audit.h>
22 #include <linux/pid_namespace.h>
23 #include <linux/syscalls.h>
24 #include <linux/uaccess.h>
25 #include <linux/regset.h>
26 #include <linux/hw_breakpoint.h>
27 #include <linux/cn_proc.h>
28 #include <linux/compat.h>
29
30 /*
31 * Access another process' address space via ptrace.
32 * Source/target buffer must be kernel space,
33 * Do not walk the page table directly, use get_user_pages
34 */
35 int ptrace_access_vm(struct task_struct *tsk, unsigned long addr,
36 void *buf, int len, unsigned int gup_flags)
37 {
38 struct mm_struct *mm;
39 int ret;
40
41 mm = get_task_mm(tsk);
42 if (!mm)
43 return 0;
44
45 if (!tsk->ptrace ||
46 (current != tsk->parent) ||
47 ((get_dumpable(mm) != SUID_DUMP_USER) &&
48 !ptracer_capable(tsk, mm->user_ns))) {
49 mmput(mm);
50 return 0;
51 }
52
53 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
54 mmput(mm);
55
56 return ret;
57 }
58
59
60 /*
61 * ptrace a task: make the debugger its new parent and
62 * move it to the ptrace list.
63 *
64 * Must be called with the tasklist lock write-held.
65 */
66 void __ptrace_link(struct task_struct *child, struct task_struct *new_parent)
67 {
68 BUG_ON(!list_empty(&child->ptrace_entry));
69 list_add(&child->ptrace_entry, &new_parent->ptraced);
70 child->parent = new_parent;
71 rcu_read_lock();
72 child->ptracer_cred = get_cred(__task_cred(new_parent));
73 rcu_read_unlock();
74 }
75
76 /**
77 * __ptrace_unlink - unlink ptracee and restore its execution state
78 * @child: ptracee to be unlinked
79 *
80 * Remove @child from the ptrace list, move it back to the original parent,
81 * and restore the execution state so that it conforms to the group stop
82 * state.
83 *
84 * Unlinking can happen via two paths - explicit PTRACE_DETACH or ptracer
85 * exiting. For PTRACE_DETACH, unless the ptracee has been killed between
86 * ptrace_check_attach() and here, it's guaranteed to be in TASK_TRACED.
87 * If the ptracer is exiting, the ptracee can be in any state.
88 *
89 * After detach, the ptracee should be in a state which conforms to the
90 * group stop. If the group is stopped or in the process of stopping, the
91 * ptracee should be put into TASK_STOPPED; otherwise, it should be woken
92 * up from TASK_TRACED.
93 *
94 * If the ptracee is in TASK_TRACED and needs to be moved to TASK_STOPPED,
95 * it goes through TRACED -> RUNNING -> STOPPED transition which is similar
96 * to but in the opposite direction of what happens while attaching to a
97 * stopped task. However, in this direction, the intermediate RUNNING
98 * state is not hidden even from the current ptracer and if it immediately
99 * re-attaches and performs a WNOHANG wait(2), it may fail.
100 *
101 * CONTEXT:
102 * write_lock_irq(tasklist_lock)
103 */
104 void __ptrace_unlink(struct task_struct *child)
105 {
106 const struct cred *old_cred;
107 BUG_ON(!child->ptrace);
108
109 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
110
111 child->parent = child->real_parent;
112 list_del_init(&child->ptrace_entry);
113 old_cred = child->ptracer_cred;
114 child->ptracer_cred = NULL;
115 put_cred(old_cred);
116
117 spin_lock(&child->sighand->siglock);
118 child->ptrace = 0;
119 /*
120 * Clear all pending traps and TRAPPING. TRAPPING should be
121 * cleared regardless of JOBCTL_STOP_PENDING. Do it explicitly.
122 */
123 task_clear_jobctl_pending(child, JOBCTL_TRAP_MASK);
124 task_clear_jobctl_trapping(child);
125
126 /*
127 * Reinstate JOBCTL_STOP_PENDING if group stop is in effect and
128 * @child isn't dead.
129 */
130 if (!(child->flags & PF_EXITING) &&
131 (child->signal->flags & SIGNAL_STOP_STOPPED ||
132 child->signal->group_stop_count)) {
133 child->jobctl |= JOBCTL_STOP_PENDING;
134
135 /*
136 * This is only possible if this thread was cloned by the
137 * traced task running in the stopped group, set the signal
138 * for the future reports.
139 * FIXME: we should change ptrace_init_task() to handle this
140 * case.
141 */
142 if (!(child->jobctl & JOBCTL_STOP_SIGMASK))
143 child->jobctl |= SIGSTOP;
144 }
145
146 /*
147 * If transition to TASK_STOPPED is pending or in TASK_TRACED, kick
148 * @child in the butt. Note that @resume should be used iff @child
149 * is in TASK_TRACED; otherwise, we might unduly disrupt
150 * TASK_KILLABLE sleeps.
151 */
152 if (child->jobctl & JOBCTL_STOP_PENDING || task_is_traced(child))
153 ptrace_signal_wake_up(child, true);
154
155 spin_unlock(&child->sighand->siglock);
156 }
157
158 /* Ensure that nothing can wake it up, even SIGKILL */
159 static bool ptrace_freeze_traced(struct task_struct *task)
160 {
161 bool ret = false;
162
163 /* Lockless, nobody but us can set this flag */
164 if (task->jobctl & JOBCTL_LISTENING)
165 return ret;
166
167 spin_lock_irq(&task->sighand->siglock);
168 if (task_is_traced(task) && !__fatal_signal_pending(task)) {
169 task->state = __TASK_TRACED;
170 ret = true;
171 }
172 spin_unlock_irq(&task->sighand->siglock);
173
174 return ret;
175 }
176
177 static void ptrace_unfreeze_traced(struct task_struct *task)
178 {
179 if (task->state != __TASK_TRACED)
180 return;
181
182 WARN_ON(!task->ptrace || task->parent != current);
183
184 spin_lock_irq(&task->sighand->siglock);
185 if (__fatal_signal_pending(task))
186 wake_up_state(task, __TASK_TRACED);
187 else
188 task->state = TASK_TRACED;
189 spin_unlock_irq(&task->sighand->siglock);
190 }
191
192 /**
193 * ptrace_check_attach - check whether ptracee is ready for ptrace operation
194 * @child: ptracee to check for
195 * @ignore_state: don't check whether @child is currently %TASK_TRACED
196 *
197 * Check whether @child is being ptraced by %current and ready for further
198 * ptrace operations. If @ignore_state is %false, @child also should be in
199 * %TASK_TRACED state and on return the child is guaranteed to be traced
200 * and not executing. If @ignore_state is %true, @child can be in any
201 * state.
202 *
203 * CONTEXT:
204 * Grabs and releases tasklist_lock and @child->sighand->siglock.
205 *
206 * RETURNS:
207 * 0 on success, -ESRCH if %child is not ready.
208 */
209 static int ptrace_check_attach(struct task_struct *child, bool ignore_state)
210 {
211 int ret = -ESRCH;
212
213 /*
214 * We take the read lock around doing both checks to close a
215 * possible race where someone else was tracing our child and
216 * detached between these two checks. After this locked check,
217 * we are sure that this is our traced child and that can only
218 * be changed by us so it's not changing right after this.
219 */
220 read_lock(&tasklist_lock);
221 if (child->ptrace && child->parent == current) {
222 WARN_ON(child->state == __TASK_TRACED);
223 /*
224 * child->sighand can't be NULL, release_task()
225 * does ptrace_unlink() before __exit_signal().
226 */
227 if (ignore_state || ptrace_freeze_traced(child))
228 ret = 0;
229 }
230 read_unlock(&tasklist_lock);
231
232 if (!ret && !ignore_state) {
233 if (!wait_task_inactive(child, __TASK_TRACED)) {
234 /*
235 * This can only happen if may_ptrace_stop() fails and
236 * ptrace_stop() changes ->state back to TASK_RUNNING,
237 * so we should not worry about leaking __TASK_TRACED.
238 */
239 WARN_ON(child->state == __TASK_TRACED);
240 ret = -ESRCH;
241 }
242 }
243
244 return ret;
245 }
246
247 static int ptrace_has_cap(struct user_namespace *ns, unsigned int mode)
248 {
249 if (mode & PTRACE_MODE_NOAUDIT)
250 return has_ns_capability_noaudit(current, ns, CAP_SYS_PTRACE);
251 else
252 return has_ns_capability(current, ns, CAP_SYS_PTRACE);
253 }
254
255 /* Returns 0 on success, -errno on denial. */
256 static int __ptrace_may_access(struct task_struct *task, unsigned int mode)
257 {
258 const struct cred *cred = current_cred(), *tcred;
259 struct mm_struct *mm;
260 kuid_t caller_uid;
261 kgid_t caller_gid;
262
263 if (!(mode & PTRACE_MODE_FSCREDS) == !(mode & PTRACE_MODE_REALCREDS)) {
264 WARN(1, "denying ptrace access check without PTRACE_MODE_*CREDS\n");
265 return -EPERM;
266 }
267
268 /* May we inspect the given task?
269 * This check is used both for attaching with ptrace
270 * and for allowing access to sensitive information in /proc.
271 *
272 * ptrace_attach denies several cases that /proc allows
273 * because setting up the necessary parent/child relationship
274 * or halting the specified task is impossible.
275 */
276
277 /* Don't let security modules deny introspection */
278 if (same_thread_group(task, current))
279 return 0;
280 rcu_read_lock();
281 if (mode & PTRACE_MODE_FSCREDS) {
282 caller_uid = cred->fsuid;
283 caller_gid = cred->fsgid;
284 } else {
285 /*
286 * Using the euid would make more sense here, but something
287 * in userland might rely on the old behavior, and this
288 * shouldn't be a security problem since
289 * PTRACE_MODE_REALCREDS implies that the caller explicitly
290 * used a syscall that requests access to another process
291 * (and not a filesystem syscall to procfs).
292 */
293 caller_uid = cred->uid;
294 caller_gid = cred->gid;
295 }
296 tcred = __task_cred(task);
297 if (uid_eq(caller_uid, tcred->euid) &&
298 uid_eq(caller_uid, tcred->suid) &&
299 uid_eq(caller_uid, tcred->uid) &&
300 gid_eq(caller_gid, tcred->egid) &&
301 gid_eq(caller_gid, tcred->sgid) &&
302 gid_eq(caller_gid, tcred->gid))
303 goto ok;
304 if (ptrace_has_cap(tcred->user_ns, mode))
305 goto ok;
306 rcu_read_unlock();
307 return -EPERM;
308 ok:
309 rcu_read_unlock();
310 mm = task->mm;
311 if (mm &&
312 ((get_dumpable(mm) != SUID_DUMP_USER) &&
313 !ptrace_has_cap(mm->user_ns, mode)))
314 return -EPERM;
315
316 return security_ptrace_access_check(task, mode);
317 }
318
319 bool ptrace_may_access(struct task_struct *task, unsigned int mode)
320 {
321 int err;
322 task_lock(task);
323 err = __ptrace_may_access(task, mode);
324 task_unlock(task);
325 return !err;
326 }
327
328 static int ptrace_attach(struct task_struct *task, long request,
329 unsigned long addr,
330 unsigned long flags)
331 {
332 bool seize = (request == PTRACE_SEIZE);
333 int retval;
334
335 retval = -EIO;
336 if (seize) {
337 if (addr != 0)
338 goto out;
339 if (flags & ~(unsigned long)PTRACE_O_MASK)
340 goto out;
341 flags = PT_PTRACED | PT_SEIZED | (flags << PT_OPT_FLAG_SHIFT);
342 } else {
343 flags = PT_PTRACED;
344 }
345
346 audit_ptrace(task);
347
348 retval = -EPERM;
349 if (unlikely(task->flags & PF_KTHREAD))
350 goto out;
351 if (same_thread_group(task, current))
352 goto out;
353
354 /*
355 * Protect exec's credential calculations against our interference;
356 * SUID, SGID and LSM creds get determined differently
357 * under ptrace.
358 */
359 retval = -ERESTARTNOINTR;
360 if (mutex_lock_interruptible(&task->signal->cred_guard_mutex))
361 goto out;
362
363 task_lock(task);
364 retval = __ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS);
365 task_unlock(task);
366 if (retval)
367 goto unlock_creds;
368
369 write_lock_irq(&tasklist_lock);
370 retval = -EPERM;
371 if (unlikely(task->exit_state))
372 goto unlock_tasklist;
373 if (task->ptrace)
374 goto unlock_tasklist;
375
376 if (seize)
377 flags |= PT_SEIZED;
378 task->ptrace = flags;
379
380 __ptrace_link(task, current);
381
382 /* SEIZE doesn't trap tracee on attach */
383 if (!seize)
384 send_sig_info(SIGSTOP, SEND_SIG_FORCED, task);
385
386 spin_lock(&task->sighand->siglock);
387
388 /*
389 * If the task is already STOPPED, set JOBCTL_TRAP_STOP and
390 * TRAPPING, and kick it so that it transits to TRACED. TRAPPING
391 * will be cleared if the child completes the transition or any
392 * event which clears the group stop states happens. We'll wait
393 * for the transition to complete before returning from this
394 * function.
395 *
396 * This hides STOPPED -> RUNNING -> TRACED transition from the
397 * attaching thread but a different thread in the same group can
398 * still observe the transient RUNNING state. IOW, if another
399 * thread's WNOHANG wait(2) on the stopped tracee races against
400 * ATTACH, the wait(2) may fail due to the transient RUNNING.
401 *
402 * The following task_is_stopped() test is safe as both transitions
403 * in and out of STOPPED are protected by siglock.
404 */
405 if (task_is_stopped(task) &&
406 task_set_jobctl_pending(task, JOBCTL_TRAP_STOP | JOBCTL_TRAPPING))
407 signal_wake_up_state(task, __TASK_STOPPED);
408
409 spin_unlock(&task->sighand->siglock);
410
411 retval = 0;
412 unlock_tasklist:
413 write_unlock_irq(&tasklist_lock);
414 unlock_creds:
415 mutex_unlock(&task->signal->cred_guard_mutex);
416 out:
417 if (!retval) {
418 /*
419 * We do not bother to change retval or clear JOBCTL_TRAPPING
420 * if wait_on_bit() was interrupted by SIGKILL. The tracer will
421 * not return to user-mode, it will exit and clear this bit in
422 * __ptrace_unlink() if it wasn't already cleared by the tracee;
423 * and until then nobody can ptrace this task.
424 */
425 wait_on_bit(&task->jobctl, JOBCTL_TRAPPING_BIT, TASK_KILLABLE);
426 proc_ptrace_connector(task, PTRACE_ATTACH);
427 }
428
429 return retval;
430 }
431
432 /**
433 * ptrace_traceme -- helper for PTRACE_TRACEME
434 *
435 * Performs checks and sets PT_PTRACED.
436 * Should be used by all ptrace implementations for PTRACE_TRACEME.
437 */
438 static int ptrace_traceme(void)
439 {
440 int ret = -EPERM;
441
442 write_lock_irq(&tasklist_lock);
443 /* Are we already being traced? */
444 if (!current->ptrace) {
445 ret = security_ptrace_traceme(current->parent);
446 /*
447 * Check PF_EXITING to ensure ->real_parent has not passed
448 * exit_ptrace(). Otherwise we don't report the error but
449 * pretend ->real_parent untraces us right after return.
450 */
451 if (!ret && !(current->real_parent->flags & PF_EXITING)) {
452 current->ptrace = PT_PTRACED;
453 __ptrace_link(current, current->real_parent);
454 }
455 }
456 write_unlock_irq(&tasklist_lock);
457
458 return ret;
459 }
460
461 /*
462 * Called with irqs disabled, returns true if childs should reap themselves.
463 */
464 static int ignoring_children(struct sighand_struct *sigh)
465 {
466 int ret;
467 spin_lock(&sigh->siglock);
468 ret = (sigh->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) ||
469 (sigh->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT);
470 spin_unlock(&sigh->siglock);
471 return ret;
472 }
473
474 /*
475 * Called with tasklist_lock held for writing.
476 * Unlink a traced task, and clean it up if it was a traced zombie.
477 * Return true if it needs to be reaped with release_task().
478 * (We can't call release_task() here because we already hold tasklist_lock.)
479 *
480 * If it's a zombie, our attachedness prevented normal parent notification
481 * or self-reaping. Do notification now if it would have happened earlier.
482 * If it should reap itself, return true.
483 *
484 * If it's our own child, there is no notification to do. But if our normal
485 * children self-reap, then this child was prevented by ptrace and we must
486 * reap it now, in that case we must also wake up sub-threads sleeping in
487 * do_wait().
488 */
489 static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p)
490 {
491 bool dead;
492
493 __ptrace_unlink(p);
494
495 if (p->exit_state != EXIT_ZOMBIE)
496 return false;
497
498 dead = !thread_group_leader(p);
499
500 if (!dead && thread_group_empty(p)) {
501 if (!same_thread_group(p->real_parent, tracer))
502 dead = do_notify_parent(p, p->exit_signal);
503 else if (ignoring_children(tracer->sighand)) {
504 __wake_up_parent(p, tracer);
505 dead = true;
506 }
507 }
508 /* Mark it as in the process of being reaped. */
509 if (dead)
510 p->exit_state = EXIT_DEAD;
511 return dead;
512 }
513
514 static int ptrace_detach(struct task_struct *child, unsigned int data)
515 {
516 if (!valid_signal(data))
517 return -EIO;
518
519 /* Architecture-specific hardware disable .. */
520 ptrace_disable(child);
521
522 write_lock_irq(&tasklist_lock);
523 /*
524 * We rely on ptrace_freeze_traced(). It can't be killed and
525 * untraced by another thread, it can't be a zombie.
526 */
527 WARN_ON(!child->ptrace || child->exit_state);
528 /*
529 * tasklist_lock avoids the race with wait_task_stopped(), see
530 * the comment in ptrace_resume().
531 */
532 child->exit_code = data;
533 __ptrace_detach(current, child);
534 write_unlock_irq(&tasklist_lock);
535
536 proc_ptrace_connector(child, PTRACE_DETACH);
537
538 return 0;
539 }
540
541 /*
542 * Detach all tasks we were using ptrace on. Called with tasklist held
543 * for writing.
544 */
545 void exit_ptrace(struct task_struct *tracer, struct list_head *dead)
546 {
547 struct task_struct *p, *n;
548
549 list_for_each_entry_safe(p, n, &tracer->ptraced, ptrace_entry) {
550 if (unlikely(p->ptrace & PT_EXITKILL))
551 send_sig_info(SIGKILL, SEND_SIG_FORCED, p);
552
553 if (__ptrace_detach(tracer, p))
554 list_add(&p->ptrace_entry, dead);
555 }
556 }
557
558 int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len)
559 {
560 int copied = 0;
561
562 while (len > 0) {
563 char buf[128];
564 int this_len, retval;
565
566 this_len = (len > sizeof(buf)) ? sizeof(buf) : len;
567 retval = ptrace_access_vm(tsk, src, buf, this_len, FOLL_FORCE);
568
569 if (!retval) {
570 if (copied)
571 break;
572 return -EIO;
573 }
574 if (copy_to_user(dst, buf, retval))
575 return -EFAULT;
576 copied += retval;
577 src += retval;
578 dst += retval;
579 len -= retval;
580 }
581 return copied;
582 }
583
584 int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len)
585 {
586 int copied = 0;
587
588 while (len > 0) {
589 char buf[128];
590 int this_len, retval;
591
592 this_len = (len > sizeof(buf)) ? sizeof(buf) : len;
593 if (copy_from_user(buf, src, this_len))
594 return -EFAULT;
595 retval = ptrace_access_vm(tsk, dst, buf, this_len,
596 FOLL_FORCE | FOLL_WRITE);
597 if (!retval) {
598 if (copied)
599 break;
600 return -EIO;
601 }
602 copied += retval;
603 src += retval;
604 dst += retval;
605 len -= retval;
606 }
607 return copied;
608 }
609
610 static int ptrace_setoptions(struct task_struct *child, unsigned long data)
611 {
612 unsigned flags;
613
614 if (data & ~(unsigned long)PTRACE_O_MASK)
615 return -EINVAL;
616
617 if (unlikely(data & PTRACE_O_SUSPEND_SECCOMP)) {
618 if (!IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) ||
619 !IS_ENABLED(CONFIG_SECCOMP))
620 return -EINVAL;
621
622 if (!capable(CAP_SYS_ADMIN))
623 return -EPERM;
624
625 if (seccomp_mode(&current->seccomp) != SECCOMP_MODE_DISABLED ||
626 current->ptrace & PT_SUSPEND_SECCOMP)
627 return -EPERM;
628 }
629
630 /* Avoid intermediate state when all opts are cleared */
631 flags = child->ptrace;
632 flags &= ~(PTRACE_O_MASK << PT_OPT_FLAG_SHIFT);
633 flags |= (data << PT_OPT_FLAG_SHIFT);
634 child->ptrace = flags;
635
636 return 0;
637 }
638
639 static int ptrace_getsiginfo(struct task_struct *child, siginfo_t *info)
640 {
641 unsigned long flags;
642 int error = -ESRCH;
643
644 if (lock_task_sighand(child, &flags)) {
645 error = -EINVAL;
646 if (likely(child->last_siginfo != NULL)) {
647 *info = *child->last_siginfo;
648 error = 0;
649 }
650 unlock_task_sighand(child, &flags);
651 }
652 return error;
653 }
654
655 static int ptrace_setsiginfo(struct task_struct *child, const siginfo_t *info)
656 {
657 unsigned long flags;
658 int error = -ESRCH;
659
660 if (lock_task_sighand(child, &flags)) {
661 error = -EINVAL;
662 if (likely(child->last_siginfo != NULL)) {
663 *child->last_siginfo = *info;
664 error = 0;
665 }
666 unlock_task_sighand(child, &flags);
667 }
668 return error;
669 }
670
671 static int ptrace_peek_siginfo(struct task_struct *child,
672 unsigned long addr,
673 unsigned long data)
674 {
675 struct ptrace_peeksiginfo_args arg;
676 struct sigpending *pending;
677 struct sigqueue *q;
678 int ret, i;
679
680 ret = copy_from_user(&arg, (void __user *) addr,
681 sizeof(struct ptrace_peeksiginfo_args));
682 if (ret)
683 return -EFAULT;
684
685 if (arg.flags & ~PTRACE_PEEKSIGINFO_SHARED)
686 return -EINVAL; /* unknown flags */
687
688 if (arg.nr < 0)
689 return -EINVAL;
690
691 if (arg.flags & PTRACE_PEEKSIGINFO_SHARED)
692 pending = &child->signal->shared_pending;
693 else
694 pending = &child->pending;
695
696 for (i = 0; i < arg.nr; ) {
697 siginfo_t info;
698 s32 off = arg.off + i;
699
700 spin_lock_irq(&child->sighand->siglock);
701 list_for_each_entry(q, &pending->list, list) {
702 if (!off--) {
703 copy_siginfo(&info, &q->info);
704 break;
705 }
706 }
707 spin_unlock_irq(&child->sighand->siglock);
708
709 if (off >= 0) /* beyond the end of the list */
710 break;
711
712 #ifdef CONFIG_COMPAT
713 if (unlikely(in_compat_syscall())) {
714 compat_siginfo_t __user *uinfo = compat_ptr(data);
715
716 if (copy_siginfo_to_user32(uinfo, &info) ||
717 __put_user(info.si_code, &uinfo->si_code)) {
718 ret = -EFAULT;
719 break;
720 }
721
722 } else
723 #endif
724 {
725 siginfo_t __user *uinfo = (siginfo_t __user *) data;
726
727 if (copy_siginfo_to_user(uinfo, &info) ||
728 __put_user(info.si_code, &uinfo->si_code)) {
729 ret = -EFAULT;
730 break;
731 }
732 }
733
734 data += sizeof(siginfo_t);
735 i++;
736
737 if (signal_pending(current))
738 break;
739
740 cond_resched();
741 }
742
743 if (i > 0)
744 return i;
745
746 return ret;
747 }
748
749 #ifdef PTRACE_SINGLESTEP
750 #define is_singlestep(request) ((request) == PTRACE_SINGLESTEP)
751 #else
752 #define is_singlestep(request) 0
753 #endif
754
755 #ifdef PTRACE_SINGLEBLOCK
756 #define is_singleblock(request) ((request) == PTRACE_SINGLEBLOCK)
757 #else
758 #define is_singleblock(request) 0
759 #endif
760
761 #ifdef PTRACE_SYSEMU
762 #define is_sysemu_singlestep(request) ((request) == PTRACE_SYSEMU_SINGLESTEP)
763 #else
764 #define is_sysemu_singlestep(request) 0
765 #endif
766
767 static int ptrace_resume(struct task_struct *child, long request,
768 unsigned long data)
769 {
770 bool need_siglock;
771
772 if (!valid_signal(data))
773 return -EIO;
774
775 if (request == PTRACE_SYSCALL)
776 set_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
777 else
778 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
779
780 #ifdef TIF_SYSCALL_EMU
781 if (request == PTRACE_SYSEMU || request == PTRACE_SYSEMU_SINGLESTEP)
782 set_tsk_thread_flag(child, TIF_SYSCALL_EMU);
783 else
784 clear_tsk_thread_flag(child, TIF_SYSCALL_EMU);
785 #endif
786
787 if (is_singleblock(request)) {
788 if (unlikely(!arch_has_block_step()))
789 return -EIO;
790 user_enable_block_step(child);
791 } else if (is_singlestep(request) || is_sysemu_singlestep(request)) {
792 if (unlikely(!arch_has_single_step()))
793 return -EIO;
794 user_enable_single_step(child);
795 } else {
796 user_disable_single_step(child);
797 }
798
799 /*
800 * Change ->exit_code and ->state under siglock to avoid the race
801 * with wait_task_stopped() in between; a non-zero ->exit_code will
802 * wrongly look like another report from tracee.
803 *
804 * Note that we need siglock even if ->exit_code == data and/or this
805 * status was not reported yet, the new status must not be cleared by
806 * wait_task_stopped() after resume.
807 *
808 * If data == 0 we do not care if wait_task_stopped() reports the old
809 * status and clears the code too; this can't race with the tracee, it
810 * takes siglock after resume.
811 */
812 need_siglock = data && !thread_group_empty(current);
813 if (need_siglock)
814 spin_lock_irq(&child->sighand->siglock);
815 child->exit_code = data;
816 wake_up_state(child, __TASK_TRACED);
817 if (need_siglock)
818 spin_unlock_irq(&child->sighand->siglock);
819
820 return 0;
821 }
822
823 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
824
825 static const struct user_regset *
826 find_regset(const struct user_regset_view *view, unsigned int type)
827 {
828 const struct user_regset *regset;
829 int n;
830
831 for (n = 0; n < view->n; ++n) {
832 regset = view->regsets + n;
833 if (regset->core_note_type == type)
834 return regset;
835 }
836
837 return NULL;
838 }
839
840 static int ptrace_regset(struct task_struct *task, int req, unsigned int type,
841 struct iovec *kiov)
842 {
843 const struct user_regset_view *view = task_user_regset_view(task);
844 const struct user_regset *regset = find_regset(view, type);
845 int regset_no;
846
847 if (!regset || (kiov->iov_len % regset->size) != 0)
848 return -EINVAL;
849
850 regset_no = regset - view->regsets;
851 kiov->iov_len = min(kiov->iov_len,
852 (__kernel_size_t) (regset->n * regset->size));
853
854 if (req == PTRACE_GETREGSET)
855 return copy_regset_to_user(task, view, regset_no, 0,
856 kiov->iov_len, kiov->iov_base);
857 else
858 return copy_regset_from_user(task, view, regset_no, 0,
859 kiov->iov_len, kiov->iov_base);
860 }
861
862 /*
863 * This is declared in linux/regset.h and defined in machine-dependent
864 * code. We put the export here, near the primary machine-neutral use,
865 * to ensure no machine forgets it.
866 */
867 EXPORT_SYMBOL_GPL(task_user_regset_view);
868 #endif
869
870 int ptrace_request(struct task_struct *child, long request,
871 unsigned long addr, unsigned long data)
872 {
873 bool seized = child->ptrace & PT_SEIZED;
874 int ret = -EIO;
875 siginfo_t siginfo, *si;
876 void __user *datavp = (void __user *) data;
877 unsigned long __user *datalp = datavp;
878 unsigned long flags;
879
880 switch (request) {
881 case PTRACE_PEEKTEXT:
882 case PTRACE_PEEKDATA:
883 return generic_ptrace_peekdata(child, addr, data);
884 case PTRACE_POKETEXT:
885 case PTRACE_POKEDATA:
886 return generic_ptrace_pokedata(child, addr, data);
887
888 #ifdef PTRACE_OLDSETOPTIONS
889 case PTRACE_OLDSETOPTIONS:
890 #endif
891 case PTRACE_SETOPTIONS:
892 ret = ptrace_setoptions(child, data);
893 break;
894 case PTRACE_GETEVENTMSG:
895 ret = put_user(child->ptrace_message, datalp);
896 break;
897
898 case PTRACE_PEEKSIGINFO:
899 ret = ptrace_peek_siginfo(child, addr, data);
900 break;
901
902 case PTRACE_GETSIGINFO:
903 ret = ptrace_getsiginfo(child, &siginfo);
904 if (!ret)
905 ret = copy_siginfo_to_user(datavp, &siginfo);
906 break;
907
908 case PTRACE_SETSIGINFO:
909 if (copy_from_user(&siginfo, datavp, sizeof siginfo))
910 ret = -EFAULT;
911 else
912 ret = ptrace_setsiginfo(child, &siginfo);
913 break;
914
915 case PTRACE_GETSIGMASK:
916 if (addr != sizeof(sigset_t)) {
917 ret = -EINVAL;
918 break;
919 }
920
921 if (copy_to_user(datavp, &child->blocked, sizeof(sigset_t)))
922 ret = -EFAULT;
923 else
924 ret = 0;
925
926 break;
927
928 case PTRACE_SETSIGMASK: {
929 sigset_t new_set;
930
931 if (addr != sizeof(sigset_t)) {
932 ret = -EINVAL;
933 break;
934 }
935
936 if (copy_from_user(&new_set, datavp, sizeof(sigset_t))) {
937 ret = -EFAULT;
938 break;
939 }
940
941 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
942
943 /*
944 * Every thread does recalc_sigpending() after resume, so
945 * retarget_shared_pending() and recalc_sigpending() are not
946 * called here.
947 */
948 spin_lock_irq(&child->sighand->siglock);
949 child->blocked = new_set;
950 spin_unlock_irq(&child->sighand->siglock);
951
952 ret = 0;
953 break;
954 }
955
956 case PTRACE_INTERRUPT:
957 /*
958 * Stop tracee without any side-effect on signal or job
959 * control. At least one trap is guaranteed to happen
960 * after this request. If @child is already trapped, the
961 * current trap is not disturbed and another trap will
962 * happen after the current trap is ended with PTRACE_CONT.
963 *
964 * The actual trap might not be PTRACE_EVENT_STOP trap but
965 * the pending condition is cleared regardless.
966 */
967 if (unlikely(!seized || !lock_task_sighand(child, &flags)))
968 break;
969
970 /*
971 * INTERRUPT doesn't disturb existing trap sans one
972 * exception. If ptracer issued LISTEN for the current
973 * STOP, this INTERRUPT should clear LISTEN and re-trap
974 * tracee into STOP.
975 */
976 if (likely(task_set_jobctl_pending(child, JOBCTL_TRAP_STOP)))
977 ptrace_signal_wake_up(child, child->jobctl & JOBCTL_LISTENING);
978
979 unlock_task_sighand(child, &flags);
980 ret = 0;
981 break;
982
983 case PTRACE_LISTEN:
984 /*
985 * Listen for events. Tracee must be in STOP. It's not
986 * resumed per-se but is not considered to be in TRACED by
987 * wait(2) or ptrace(2). If an async event (e.g. group
988 * stop state change) happens, tracee will enter STOP trap
989 * again. Alternatively, ptracer can issue INTERRUPT to
990 * finish listening and re-trap tracee into STOP.
991 */
992 if (unlikely(!seized || !lock_task_sighand(child, &flags)))
993 break;
994
995 si = child->last_siginfo;
996 if (likely(si && (si->si_code >> 8) == PTRACE_EVENT_STOP)) {
997 child->jobctl |= JOBCTL_LISTENING;
998 /*
999 * If NOTIFY is set, it means event happened between
1000 * start of this trap and now. Trigger re-trap.
1001 */
1002 if (child->jobctl & JOBCTL_TRAP_NOTIFY)
1003 ptrace_signal_wake_up(child, true);
1004 ret = 0;
1005 }
1006 unlock_task_sighand(child, &flags);
1007 break;
1008
1009 case PTRACE_DETACH: /* detach a process that was attached. */
1010 ret = ptrace_detach(child, data);
1011 break;
1012
1013 #ifdef CONFIG_BINFMT_ELF_FDPIC
1014 case PTRACE_GETFDPIC: {
1015 struct mm_struct *mm = get_task_mm(child);
1016 unsigned long tmp = 0;
1017
1018 ret = -ESRCH;
1019 if (!mm)
1020 break;
1021
1022 switch (addr) {
1023 case PTRACE_GETFDPIC_EXEC:
1024 tmp = mm->context.exec_fdpic_loadmap;
1025 break;
1026 case PTRACE_GETFDPIC_INTERP:
1027 tmp = mm->context.interp_fdpic_loadmap;
1028 break;
1029 default:
1030 break;
1031 }
1032 mmput(mm);
1033
1034 ret = put_user(tmp, datalp);
1035 break;
1036 }
1037 #endif
1038
1039 #ifdef PTRACE_SINGLESTEP
1040 case PTRACE_SINGLESTEP:
1041 #endif
1042 #ifdef PTRACE_SINGLEBLOCK
1043 case PTRACE_SINGLEBLOCK:
1044 #endif
1045 #ifdef PTRACE_SYSEMU
1046 case PTRACE_SYSEMU:
1047 case PTRACE_SYSEMU_SINGLESTEP:
1048 #endif
1049 case PTRACE_SYSCALL:
1050 case PTRACE_CONT:
1051 return ptrace_resume(child, request, data);
1052
1053 case PTRACE_KILL:
1054 if (child->exit_state) /* already dead */
1055 return 0;
1056 return ptrace_resume(child, request, SIGKILL);
1057
1058 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
1059 case PTRACE_GETREGSET:
1060 case PTRACE_SETREGSET: {
1061 struct iovec kiov;
1062 struct iovec __user *uiov = datavp;
1063
1064 if (!access_ok(VERIFY_WRITE, uiov, sizeof(*uiov)))
1065 return -EFAULT;
1066
1067 if (__get_user(kiov.iov_base, &uiov->iov_base) ||
1068 __get_user(kiov.iov_len, &uiov->iov_len))
1069 return -EFAULT;
1070
1071 ret = ptrace_regset(child, request, addr, &kiov);
1072 if (!ret)
1073 ret = __put_user(kiov.iov_len, &uiov->iov_len);
1074 break;
1075 }
1076 #endif
1077
1078 case PTRACE_SECCOMP_GET_FILTER:
1079 ret = seccomp_get_filter(child, addr, datavp);
1080 break;
1081
1082 default:
1083 break;
1084 }
1085
1086 return ret;
1087 }
1088
1089 static struct task_struct *ptrace_get_task_struct(pid_t pid)
1090 {
1091 struct task_struct *child;
1092
1093 rcu_read_lock();
1094 child = find_task_by_vpid(pid);
1095 if (child)
1096 get_task_struct(child);
1097 rcu_read_unlock();
1098
1099 if (!child)
1100 return ERR_PTR(-ESRCH);
1101 return child;
1102 }
1103
1104 #ifndef arch_ptrace_attach
1105 #define arch_ptrace_attach(child) do { } while (0)
1106 #endif
1107
1108 SYSCALL_DEFINE4(ptrace, long, request, long, pid, unsigned long, addr,
1109 unsigned long, data)
1110 {
1111 struct task_struct *child;
1112 long ret;
1113
1114 if (request == PTRACE_TRACEME) {
1115 ret = ptrace_traceme();
1116 if (!ret)
1117 arch_ptrace_attach(current);
1118 goto out;
1119 }
1120
1121 child = ptrace_get_task_struct(pid);
1122 if (IS_ERR(child)) {
1123 ret = PTR_ERR(child);
1124 goto out;
1125 }
1126
1127 if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) {
1128 ret = ptrace_attach(child, request, addr, data);
1129 /*
1130 * Some architectures need to do book-keeping after
1131 * a ptrace attach.
1132 */
1133 if (!ret)
1134 arch_ptrace_attach(child);
1135 goto out_put_task_struct;
1136 }
1137
1138 ret = ptrace_check_attach(child, request == PTRACE_KILL ||
1139 request == PTRACE_INTERRUPT);
1140 if (ret < 0)
1141 goto out_put_task_struct;
1142
1143 ret = arch_ptrace(child, request, addr, data);
1144 if (ret || request != PTRACE_DETACH)
1145 ptrace_unfreeze_traced(child);
1146
1147 out_put_task_struct:
1148 put_task_struct(child);
1149 out:
1150 return ret;
1151 }
1152
1153 int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
1154 unsigned long data)
1155 {
1156 unsigned long tmp;
1157 int copied;
1158
1159 copied = ptrace_access_vm(tsk, addr, &tmp, sizeof(tmp), FOLL_FORCE);
1160 if (copied != sizeof(tmp))
1161 return -EIO;
1162 return put_user(tmp, (unsigned long __user *)data);
1163 }
1164
1165 int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
1166 unsigned long data)
1167 {
1168 int copied;
1169
1170 copied = ptrace_access_vm(tsk, addr, &data, sizeof(data),
1171 FOLL_FORCE | FOLL_WRITE);
1172 return (copied == sizeof(data)) ? 0 : -EIO;
1173 }
1174
1175 #if defined CONFIG_COMPAT
1176
1177 int compat_ptrace_request(struct task_struct *child, compat_long_t request,
1178 compat_ulong_t addr, compat_ulong_t data)
1179 {
1180 compat_ulong_t __user *datap = compat_ptr(data);
1181 compat_ulong_t word;
1182 siginfo_t siginfo;
1183 int ret;
1184
1185 switch (request) {
1186 case PTRACE_PEEKTEXT:
1187 case PTRACE_PEEKDATA:
1188 ret = ptrace_access_vm(child, addr, &word, sizeof(word),
1189 FOLL_FORCE);
1190 if (ret != sizeof(word))
1191 ret = -EIO;
1192 else
1193 ret = put_user(word, datap);
1194 break;
1195
1196 case PTRACE_POKETEXT:
1197 case PTRACE_POKEDATA:
1198 ret = ptrace_access_vm(child, addr, &data, sizeof(data),
1199 FOLL_FORCE | FOLL_WRITE);
1200 ret = (ret != sizeof(data) ? -EIO : 0);
1201 break;
1202
1203 case PTRACE_GETEVENTMSG:
1204 ret = put_user((compat_ulong_t) child->ptrace_message, datap);
1205 break;
1206
1207 case PTRACE_GETSIGINFO:
1208 ret = ptrace_getsiginfo(child, &siginfo);
1209 if (!ret)
1210 ret = copy_siginfo_to_user32(
1211 (struct compat_siginfo __user *) datap,
1212 &siginfo);
1213 break;
1214
1215 case PTRACE_SETSIGINFO:
1216 memset(&siginfo, 0, sizeof siginfo);
1217 if (copy_siginfo_from_user32(
1218 &siginfo, (struct compat_siginfo __user *) datap))
1219 ret = -EFAULT;
1220 else
1221 ret = ptrace_setsiginfo(child, &siginfo);
1222 break;
1223 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
1224 case PTRACE_GETREGSET:
1225 case PTRACE_SETREGSET:
1226 {
1227 struct iovec kiov;
1228 struct compat_iovec __user *uiov =
1229 (struct compat_iovec __user *) datap;
1230 compat_uptr_t ptr;
1231 compat_size_t len;
1232
1233 if (!access_ok(VERIFY_WRITE, uiov, sizeof(*uiov)))
1234 return -EFAULT;
1235
1236 if (__get_user(ptr, &uiov->iov_base) ||
1237 __get_user(len, &uiov->iov_len))
1238 return -EFAULT;
1239
1240 kiov.iov_base = compat_ptr(ptr);
1241 kiov.iov_len = len;
1242
1243 ret = ptrace_regset(child, request, addr, &kiov);
1244 if (!ret)
1245 ret = __put_user(kiov.iov_len, &uiov->iov_len);
1246 break;
1247 }
1248 #endif
1249
1250 default:
1251 ret = ptrace_request(child, request, addr, data);
1252 }
1253
1254 return ret;
1255 }
1256
1257 COMPAT_SYSCALL_DEFINE4(ptrace, compat_long_t, request, compat_long_t, pid,
1258 compat_long_t, addr, compat_long_t, data)
1259 {
1260 struct task_struct *child;
1261 long ret;
1262
1263 if (request == PTRACE_TRACEME) {
1264 ret = ptrace_traceme();
1265 goto out;
1266 }
1267
1268 child = ptrace_get_task_struct(pid);
1269 if (IS_ERR(child)) {
1270 ret = PTR_ERR(child);
1271 goto out;
1272 }
1273
1274 if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) {
1275 ret = ptrace_attach(child, request, addr, data);
1276 /*
1277 * Some architectures need to do book-keeping after
1278 * a ptrace attach.
1279 */
1280 if (!ret)
1281 arch_ptrace_attach(child);
1282 goto out_put_task_struct;
1283 }
1284
1285 ret = ptrace_check_attach(child, request == PTRACE_KILL ||
1286 request == PTRACE_INTERRUPT);
1287 if (!ret) {
1288 ret = compat_arch_ptrace(child, request, addr, data);
1289 if (ret || request != PTRACE_DETACH)
1290 ptrace_unfreeze_traced(child);
1291 }
1292
1293 out_put_task_struct:
1294 put_task_struct(child);
1295 out:
1296 return ret;
1297 }
1298 #endif /* CONFIG_COMPAT */