]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/rcu/rcu.h
Merge branch 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / kernel / rcu / rcu.h
1 /*
2 * Read-Copy Update definitions shared among RCU implementations.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2011
19 *
20 * Author: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
21 */
22
23 #ifndef __LINUX_RCU_H
24 #define __LINUX_RCU_H
25
26 #include <trace/events/rcu.h>
27 #ifdef CONFIG_RCU_TRACE
28 #define RCU_TRACE(stmt) stmt
29 #else /* #ifdef CONFIG_RCU_TRACE */
30 #define RCU_TRACE(stmt)
31 #endif /* #else #ifdef CONFIG_RCU_TRACE */
32
33 /*
34 * Process-level increment to ->dynticks_nesting field. This allows for
35 * architectures that use half-interrupts and half-exceptions from
36 * process context.
37 *
38 * DYNTICK_TASK_NEST_MASK defines a field of width DYNTICK_TASK_NEST_WIDTH
39 * that counts the number of process-based reasons why RCU cannot
40 * consider the corresponding CPU to be idle, and DYNTICK_TASK_NEST_VALUE
41 * is the value used to increment or decrement this field.
42 *
43 * The rest of the bits could in principle be used to count interrupts,
44 * but this would mean that a negative-one value in the interrupt
45 * field could incorrectly zero out the DYNTICK_TASK_NEST_MASK field.
46 * We therefore provide a two-bit guard field defined by DYNTICK_TASK_MASK
47 * that is set to DYNTICK_TASK_FLAG upon initial exit from idle.
48 * The DYNTICK_TASK_EXIT_IDLE value is thus the combined value used upon
49 * initial exit from idle.
50 */
51 #define DYNTICK_TASK_NEST_WIDTH 7
52 #define DYNTICK_TASK_NEST_VALUE ((LLONG_MAX >> DYNTICK_TASK_NEST_WIDTH) + 1)
53 #define DYNTICK_TASK_NEST_MASK (LLONG_MAX - DYNTICK_TASK_NEST_VALUE + 1)
54 #define DYNTICK_TASK_FLAG ((DYNTICK_TASK_NEST_VALUE / 8) * 2)
55 #define DYNTICK_TASK_MASK ((DYNTICK_TASK_NEST_VALUE / 8) * 3)
56 #define DYNTICK_TASK_EXIT_IDLE (DYNTICK_TASK_NEST_VALUE + \
57 DYNTICK_TASK_FLAG)
58
59
60 /*
61 * Grace-period counter management.
62 */
63
64 #define RCU_SEQ_CTR_SHIFT 2
65 #define RCU_SEQ_STATE_MASK ((1 << RCU_SEQ_CTR_SHIFT) - 1)
66
67 /*
68 * Return the counter portion of a sequence number previously returned
69 * by rcu_seq_snap() or rcu_seq_current().
70 */
71 static inline unsigned long rcu_seq_ctr(unsigned long s)
72 {
73 return s >> RCU_SEQ_CTR_SHIFT;
74 }
75
76 /*
77 * Return the state portion of a sequence number previously returned
78 * by rcu_seq_snap() or rcu_seq_current().
79 */
80 static inline int rcu_seq_state(unsigned long s)
81 {
82 return s & RCU_SEQ_STATE_MASK;
83 }
84
85 /*
86 * Set the state portion of the pointed-to sequence number.
87 * The caller is responsible for preventing conflicting updates.
88 */
89 static inline void rcu_seq_set_state(unsigned long *sp, int newstate)
90 {
91 WARN_ON_ONCE(newstate & ~RCU_SEQ_STATE_MASK);
92 WRITE_ONCE(*sp, (*sp & ~RCU_SEQ_STATE_MASK) + newstate);
93 }
94
95 /* Adjust sequence number for start of update-side operation. */
96 static inline void rcu_seq_start(unsigned long *sp)
97 {
98 WRITE_ONCE(*sp, *sp + 1);
99 smp_mb(); /* Ensure update-side operation after counter increment. */
100 WARN_ON_ONCE(rcu_seq_state(*sp) != 1);
101 }
102
103 /* Adjust sequence number for end of update-side operation. */
104 static inline void rcu_seq_end(unsigned long *sp)
105 {
106 smp_mb(); /* Ensure update-side operation before counter increment. */
107 WARN_ON_ONCE(!rcu_seq_state(*sp));
108 WRITE_ONCE(*sp, (*sp | RCU_SEQ_STATE_MASK) + 1);
109 }
110
111 /* Take a snapshot of the update side's sequence number. */
112 static inline unsigned long rcu_seq_snap(unsigned long *sp)
113 {
114 unsigned long s;
115
116 s = (READ_ONCE(*sp) + 2 * RCU_SEQ_STATE_MASK + 1) & ~RCU_SEQ_STATE_MASK;
117 smp_mb(); /* Above access must not bleed into critical section. */
118 return s;
119 }
120
121 /* Return the current value the update side's sequence number, no ordering. */
122 static inline unsigned long rcu_seq_current(unsigned long *sp)
123 {
124 return READ_ONCE(*sp);
125 }
126
127 /*
128 * Given a snapshot from rcu_seq_snap(), determine whether or not a
129 * full update-side operation has occurred.
130 */
131 static inline bool rcu_seq_done(unsigned long *sp, unsigned long s)
132 {
133 return ULONG_CMP_GE(READ_ONCE(*sp), s);
134 }
135
136 /*
137 * debug_rcu_head_queue()/debug_rcu_head_unqueue() are used internally
138 * by call_rcu() and rcu callback execution, and are therefore not part of the
139 * RCU API. Leaving in rcupdate.h because they are used by all RCU flavors.
140 */
141
142 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
143 # define STATE_RCU_HEAD_READY 0
144 # define STATE_RCU_HEAD_QUEUED 1
145
146 extern struct debug_obj_descr rcuhead_debug_descr;
147
148 static inline int debug_rcu_head_queue(struct rcu_head *head)
149 {
150 int r1;
151
152 r1 = debug_object_activate(head, &rcuhead_debug_descr);
153 debug_object_active_state(head, &rcuhead_debug_descr,
154 STATE_RCU_HEAD_READY,
155 STATE_RCU_HEAD_QUEUED);
156 return r1;
157 }
158
159 static inline void debug_rcu_head_unqueue(struct rcu_head *head)
160 {
161 debug_object_active_state(head, &rcuhead_debug_descr,
162 STATE_RCU_HEAD_QUEUED,
163 STATE_RCU_HEAD_READY);
164 debug_object_deactivate(head, &rcuhead_debug_descr);
165 }
166 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
167 static inline int debug_rcu_head_queue(struct rcu_head *head)
168 {
169 return 0;
170 }
171
172 static inline void debug_rcu_head_unqueue(struct rcu_head *head)
173 {
174 }
175 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
176
177 void kfree(const void *);
178
179 /*
180 * Reclaim the specified callback, either by invoking it (non-lazy case)
181 * or freeing it directly (lazy case). Return true if lazy, false otherwise.
182 */
183 static inline bool __rcu_reclaim(const char *rn, struct rcu_head *head)
184 {
185 unsigned long offset = (unsigned long)head->func;
186
187 rcu_lock_acquire(&rcu_callback_map);
188 if (__is_kfree_rcu_offset(offset)) {
189 RCU_TRACE(trace_rcu_invoke_kfree_callback(rn, head, offset);)
190 kfree((void *)head - offset);
191 rcu_lock_release(&rcu_callback_map);
192 return true;
193 } else {
194 RCU_TRACE(trace_rcu_invoke_callback(rn, head);)
195 head->func(head);
196 rcu_lock_release(&rcu_callback_map);
197 return false;
198 }
199 }
200
201 #ifdef CONFIG_RCU_STALL_COMMON
202
203 extern int rcu_cpu_stall_suppress;
204 int rcu_jiffies_till_stall_check(void);
205
206 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
207
208 /*
209 * Strings used in tracepoints need to be exported via the
210 * tracing system such that tools like perf and trace-cmd can
211 * translate the string address pointers to actual text.
212 */
213 #define TPS(x) tracepoint_string(x)
214
215 /*
216 * Dump the ftrace buffer, but only one time per callsite per boot.
217 */
218 #define rcu_ftrace_dump(oops_dump_mode) \
219 do { \
220 static atomic_t ___rfd_beenhere = ATOMIC_INIT(0); \
221 \
222 if (!atomic_read(&___rfd_beenhere) && \
223 !atomic_xchg(&___rfd_beenhere, 1)) \
224 ftrace_dump(oops_dump_mode); \
225 } while (0)
226
227 void rcu_early_boot_tests(void);
228 void rcu_test_sync_prims(void);
229
230 /*
231 * This function really isn't for public consumption, but RCU is special in
232 * that context switches can allow the state machine to make progress.
233 */
234 extern void resched_cpu(int cpu);
235
236 #if defined(SRCU) || !defined(TINY_RCU)
237
238 #include <linux/rcu_node_tree.h>
239
240 extern int rcu_num_lvls;
241 extern int num_rcu_lvl[];
242 extern int rcu_num_nodes;
243 static bool rcu_fanout_exact;
244 static int rcu_fanout_leaf;
245
246 /*
247 * Compute the per-level fanout, either using the exact fanout specified
248 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
249 */
250 static inline void rcu_init_levelspread(int *levelspread, const int *levelcnt)
251 {
252 int i;
253
254 if (rcu_fanout_exact) {
255 levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
256 for (i = rcu_num_lvls - 2; i >= 0; i--)
257 levelspread[i] = RCU_FANOUT;
258 } else {
259 int ccur;
260 int cprv;
261
262 cprv = nr_cpu_ids;
263 for (i = rcu_num_lvls - 1; i >= 0; i--) {
264 ccur = levelcnt[i];
265 levelspread[i] = (cprv + ccur - 1) / ccur;
266 cprv = ccur;
267 }
268 }
269 }
270
271 /*
272 * Do a full breadth-first scan of the rcu_node structures for the
273 * specified rcu_state structure.
274 */
275 #define rcu_for_each_node_breadth_first(rsp, rnp) \
276 for ((rnp) = &(rsp)->node[0]; \
277 (rnp) < &(rsp)->node[rcu_num_nodes]; (rnp)++)
278
279 /*
280 * Do a breadth-first scan of the non-leaf rcu_node structures for the
281 * specified rcu_state structure. Note that if there is a singleton
282 * rcu_node tree with but one rcu_node structure, this loop is a no-op.
283 */
284 #define rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) \
285 for ((rnp) = &(rsp)->node[0]; \
286 (rnp) < (rsp)->level[rcu_num_lvls - 1]; (rnp)++)
287
288 /*
289 * Scan the leaves of the rcu_node hierarchy for the specified rcu_state
290 * structure. Note that if there is a singleton rcu_node tree with but
291 * one rcu_node structure, this loop -will- visit the rcu_node structure.
292 * It is still a leaf node, even if it is also the root node.
293 */
294 #define rcu_for_each_leaf_node(rsp, rnp) \
295 for ((rnp) = (rsp)->level[rcu_num_lvls - 1]; \
296 (rnp) < &(rsp)->node[rcu_num_nodes]; (rnp)++)
297
298 /*
299 * Iterate over all possible CPUs in a leaf RCU node.
300 */
301 #define for_each_leaf_node_possible_cpu(rnp, cpu) \
302 for ((cpu) = cpumask_next(rnp->grplo - 1, cpu_possible_mask); \
303 cpu <= rnp->grphi; \
304 cpu = cpumask_next((cpu), cpu_possible_mask))
305
306 /*
307 * Wrappers for the rcu_node::lock acquire and release.
308 *
309 * Because the rcu_nodes form a tree, the tree traversal locking will observe
310 * different lock values, this in turn means that an UNLOCK of one level
311 * followed by a LOCK of another level does not imply a full memory barrier;
312 * and most importantly transitivity is lost.
313 *
314 * In order to restore full ordering between tree levels, augment the regular
315 * lock acquire functions with smp_mb__after_unlock_lock().
316 *
317 * As ->lock of struct rcu_node is a __private field, therefore one should use
318 * these wrappers rather than directly call raw_spin_{lock,unlock}* on ->lock.
319 */
320 #define raw_spin_lock_rcu_node(p) \
321 do { \
322 raw_spin_lock(&ACCESS_PRIVATE(p, lock)); \
323 smp_mb__after_unlock_lock(); \
324 } while (0)
325
326 #define raw_spin_unlock_rcu_node(p) raw_spin_unlock(&ACCESS_PRIVATE(p, lock))
327
328 #define raw_spin_lock_irq_rcu_node(p) \
329 do { \
330 raw_spin_lock_irq(&ACCESS_PRIVATE(p, lock)); \
331 smp_mb__after_unlock_lock(); \
332 } while (0)
333
334 #define raw_spin_unlock_irq_rcu_node(p) \
335 raw_spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
336
337 #define raw_spin_lock_irqsave_rcu_node(p, flags) \
338 do { \
339 raw_spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \
340 smp_mb__after_unlock_lock(); \
341 } while (0)
342
343 #define raw_spin_unlock_irqrestore_rcu_node(p, flags) \
344 raw_spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags) \
345
346 #define raw_spin_trylock_rcu_node(p) \
347 ({ \
348 bool ___locked = raw_spin_trylock(&ACCESS_PRIVATE(p, lock)); \
349 \
350 if (___locked) \
351 smp_mb__after_unlock_lock(); \
352 ___locked; \
353 })
354
355 #endif /* #if defined(SRCU) || !defined(TINY_RCU) */
356
357 #ifdef CONFIG_TINY_RCU
358 /* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
359 static inline bool rcu_gp_is_normal(void) { return true; }
360 static inline bool rcu_gp_is_expedited(void) { return false; }
361 static inline void rcu_expedite_gp(void) { }
362 static inline void rcu_unexpedite_gp(void) { }
363 #else /* #ifdef CONFIG_TINY_RCU */
364 bool rcu_gp_is_normal(void); /* Internal RCU use. */
365 bool rcu_gp_is_expedited(void); /* Internal RCU use. */
366 void rcu_expedite_gp(void);
367 void rcu_unexpedite_gp(void);
368 void rcupdate_announce_bootup_oddness(void);
369 #endif /* #else #ifdef CONFIG_TINY_RCU */
370
371 #define RCU_SCHEDULER_INACTIVE 0
372 #define RCU_SCHEDULER_INIT 1
373 #define RCU_SCHEDULER_RUNNING 2
374
375 #ifdef CONFIG_TINY_RCU
376 static inline void rcu_request_urgent_qs_task(struct task_struct *t) { }
377 #else /* #ifdef CONFIG_TINY_RCU */
378 void rcu_request_urgent_qs_task(struct task_struct *t);
379 #endif /* #else #ifdef CONFIG_TINY_RCU */
380
381 enum rcutorture_type {
382 RCU_FLAVOR,
383 RCU_BH_FLAVOR,
384 RCU_SCHED_FLAVOR,
385 RCU_TASKS_FLAVOR,
386 SRCU_FLAVOR,
387 INVALID_RCU_FLAVOR
388 };
389
390 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
391 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
392 unsigned long *gpnum, unsigned long *completed);
393 void rcutorture_record_test_transition(void);
394 void rcutorture_record_progress(unsigned long vernum);
395 void do_trace_rcu_torture_read(const char *rcutorturename,
396 struct rcu_head *rhp,
397 unsigned long secs,
398 unsigned long c_old,
399 unsigned long c);
400 #else
401 static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
402 int *flags,
403 unsigned long *gpnum,
404 unsigned long *completed)
405 {
406 *flags = 0;
407 *gpnum = 0;
408 *completed = 0;
409 }
410 static inline void rcutorture_record_test_transition(void) { }
411 static inline void rcutorture_record_progress(unsigned long vernum) { }
412 #ifdef CONFIG_RCU_TRACE
413 void do_trace_rcu_torture_read(const char *rcutorturename,
414 struct rcu_head *rhp,
415 unsigned long secs,
416 unsigned long c_old,
417 unsigned long c);
418 #else
419 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
420 do { } while (0)
421 #endif
422 #endif
423
424 #ifdef CONFIG_TINY_SRCU
425
426 static inline void srcutorture_get_gp_data(enum rcutorture_type test_type,
427 struct srcu_struct *sp, int *flags,
428 unsigned long *gpnum,
429 unsigned long *completed)
430 {
431 if (test_type != SRCU_FLAVOR)
432 return;
433 *flags = 0;
434 *completed = sp->srcu_idx;
435 *gpnum = *completed;
436 }
437
438 #elif defined(CONFIG_TREE_SRCU)
439
440 void srcutorture_get_gp_data(enum rcutorture_type test_type,
441 struct srcu_struct *sp, int *flags,
442 unsigned long *gpnum, unsigned long *completed);
443
444 #endif
445
446 #ifdef CONFIG_TINY_RCU
447 static inline unsigned long rcu_batches_started(void) { return 0; }
448 static inline unsigned long rcu_batches_started_bh(void) { return 0; }
449 static inline unsigned long rcu_batches_started_sched(void) { return 0; }
450 static inline unsigned long rcu_batches_completed(void) { return 0; }
451 static inline unsigned long rcu_batches_completed_bh(void) { return 0; }
452 static inline unsigned long rcu_batches_completed_sched(void) { return 0; }
453 static inline unsigned long rcu_exp_batches_completed(void) { return 0; }
454 static inline unsigned long rcu_exp_batches_completed_sched(void) { return 0; }
455 static inline unsigned long
456 srcu_batches_completed(struct srcu_struct *sp) { return 0; }
457 static inline void rcu_force_quiescent_state(void) { }
458 static inline void rcu_bh_force_quiescent_state(void) { }
459 static inline void rcu_sched_force_quiescent_state(void) { }
460 static inline void show_rcu_gp_kthreads(void) { }
461 #else /* #ifdef CONFIG_TINY_RCU */
462 extern unsigned long rcutorture_testseq;
463 extern unsigned long rcutorture_vernum;
464 unsigned long rcu_batches_started(void);
465 unsigned long rcu_batches_started_bh(void);
466 unsigned long rcu_batches_started_sched(void);
467 unsigned long rcu_batches_completed(void);
468 unsigned long rcu_batches_completed_bh(void);
469 unsigned long rcu_batches_completed_sched(void);
470 unsigned long rcu_exp_batches_completed(void);
471 unsigned long rcu_exp_batches_completed_sched(void);
472 unsigned long srcu_batches_completed(struct srcu_struct *sp);
473 void show_rcu_gp_kthreads(void);
474 void rcu_force_quiescent_state(void);
475 void rcu_bh_force_quiescent_state(void);
476 void rcu_sched_force_quiescent_state(void);
477 #endif /* #else #ifdef CONFIG_TINY_RCU */
478
479 #ifdef CONFIG_RCU_NOCB_CPU
480 bool rcu_is_nocb_cpu(int cpu);
481 #else
482 static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
483 #endif
484
485 #endif /* __LINUX_RCU_H */