2 * Sleepable Read-Copy Update mechanism for mutual exclusion.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
18 * Copyright (C) IBM Corporation, 2006
19 * Copyright (C) Fujitsu, 2012
21 * Author: Paul McKenney <paulmck@us.ibm.com>
22 * Lai Jiangshan <laijs@cn.fujitsu.com>
24 * For detailed explanation of Read-Copy Update mechanism see -
25 * Documentation/RCU/ *.txt
29 #include <linux/export.h>
30 #include <linux/mutex.h>
31 #include <linux/percpu.h>
32 #include <linux/preempt.h>
33 #include <linux/rcupdate_wait.h>
34 #include <linux/sched.h>
35 #include <linux/smp.h>
36 #include <linux/delay.h>
37 #include <linux/module.h>
38 #include <linux/srcu.h>
41 #include "rcu_segcblist.h"
43 /* Holdoff in nanoseconds for auto-expediting. */
44 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000)
45 static ulong exp_holdoff
= DEFAULT_SRCU_EXP_HOLDOFF
;
46 module_param(exp_holdoff
, ulong
, 0444);
48 /* Overflow-check frequency. N bits roughly says every 2**N grace periods. */
49 static ulong counter_wrap_check
= (ULONG_MAX
>> 2);
50 module_param(counter_wrap_check
, ulong
, 0444);
52 static void srcu_invoke_callbacks(struct work_struct
*work
);
53 static void srcu_reschedule(struct srcu_struct
*sp
, unsigned long delay
);
54 static void process_srcu(struct work_struct
*work
);
57 * Initialize SRCU combining tree. Note that statically allocated
58 * srcu_struct structures might already have srcu_read_lock() and
59 * srcu_read_unlock() running against them. So if the is_static parameter
60 * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[].
62 static void init_srcu_struct_nodes(struct srcu_struct
*sp
, bool is_static
)
67 int levelspread
[RCU_NUM_LVLS
];
68 struct srcu_data
*sdp
;
69 struct srcu_node
*snp
;
70 struct srcu_node
*snp_first
;
72 /* Work out the overall tree geometry. */
73 sp
->level
[0] = &sp
->node
[0];
74 for (i
= 1; i
< rcu_num_lvls
; i
++)
75 sp
->level
[i
] = sp
->level
[i
- 1] + num_rcu_lvl
[i
- 1];
76 rcu_init_levelspread(levelspread
, num_rcu_lvl
);
78 /* Each pass through this loop initializes one srcu_node structure. */
79 rcu_for_each_node_breadth_first(sp
, snp
) {
80 raw_spin_lock_init(&ACCESS_PRIVATE(snp
, lock
));
81 WARN_ON_ONCE(ARRAY_SIZE(snp
->srcu_have_cbs
) !=
82 ARRAY_SIZE(snp
->srcu_data_have_cbs
));
83 for (i
= 0; i
< ARRAY_SIZE(snp
->srcu_have_cbs
); i
++) {
84 snp
->srcu_have_cbs
[i
] = 0;
85 snp
->srcu_data_have_cbs
[i
] = 0;
87 snp
->srcu_gp_seq_needed_exp
= 0;
90 if (snp
== &sp
->node
[0]) {
91 /* Root node, special case. */
92 snp
->srcu_parent
= NULL
;
97 if (snp
== sp
->level
[level
+ 1])
99 snp
->srcu_parent
= sp
->level
[level
- 1] +
100 (snp
- sp
->level
[level
]) /
101 levelspread
[level
- 1];
105 * Initialize the per-CPU srcu_data array, which feeds into the
106 * leaves of the srcu_node tree.
108 WARN_ON_ONCE(ARRAY_SIZE(sdp
->srcu_lock_count
) !=
109 ARRAY_SIZE(sdp
->srcu_unlock_count
));
110 level
= rcu_num_lvls
- 1;
111 snp_first
= sp
->level
[level
];
112 for_each_possible_cpu(cpu
) {
113 sdp
= per_cpu_ptr(sp
->sda
, cpu
);
114 raw_spin_lock_init(&ACCESS_PRIVATE(sdp
, lock
));
115 rcu_segcblist_init(&sdp
->srcu_cblist
);
116 sdp
->srcu_cblist_invoking
= false;
117 sdp
->srcu_gp_seq_needed
= sp
->srcu_gp_seq
;
118 sdp
->srcu_gp_seq_needed_exp
= sp
->srcu_gp_seq
;
119 sdp
->mynode
= &snp_first
[cpu
/ levelspread
[level
]];
120 for (snp
= sdp
->mynode
; snp
!= NULL
; snp
= snp
->srcu_parent
) {
126 INIT_DELAYED_WORK(&sdp
->work
, srcu_invoke_callbacks
);
128 sdp
->grpmask
= 1 << (cpu
- sdp
->mynode
->grplo
);
132 /* Dynamically allocated, better be no srcu_read_locks()! */
133 for (i
= 0; i
< ARRAY_SIZE(sdp
->srcu_lock_count
); i
++) {
134 sdp
->srcu_lock_count
[i
] = 0;
135 sdp
->srcu_unlock_count
[i
] = 0;
141 * Initialize non-compile-time initialized fields, including the
142 * associated srcu_node and srcu_data structures. The is_static
143 * parameter is passed through to init_srcu_struct_nodes(), and
144 * also tells us that ->sda has already been wired up to srcu_data.
146 static int init_srcu_struct_fields(struct srcu_struct
*sp
, bool is_static
)
148 mutex_init(&sp
->srcu_cb_mutex
);
149 mutex_init(&sp
->srcu_gp_mutex
);
152 sp
->srcu_barrier_seq
= 0;
153 mutex_init(&sp
->srcu_barrier_mutex
);
154 atomic_set(&sp
->srcu_barrier_cpu_cnt
, 0);
155 INIT_DELAYED_WORK(&sp
->work
, process_srcu
);
157 sp
->sda
= alloc_percpu(struct srcu_data
);
158 init_srcu_struct_nodes(sp
, is_static
);
159 sp
->srcu_gp_seq_needed_exp
= 0;
160 sp
->srcu_last_gp_end
= ktime_get_mono_fast_ns();
161 smp_store_release(&sp
->srcu_gp_seq_needed
, 0); /* Init done. */
162 return sp
->sda
? 0 : -ENOMEM
;
165 #ifdef CONFIG_DEBUG_LOCK_ALLOC
167 int __init_srcu_struct(struct srcu_struct
*sp
, const char *name
,
168 struct lock_class_key
*key
)
170 /* Don't re-initialize a lock while it is held. */
171 debug_check_no_locks_freed((void *)sp
, sizeof(*sp
));
172 lockdep_init_map(&sp
->dep_map
, name
, key
, 0);
173 raw_spin_lock_init(&ACCESS_PRIVATE(sp
, lock
));
174 return init_srcu_struct_fields(sp
, false);
176 EXPORT_SYMBOL_GPL(__init_srcu_struct
);
178 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
181 * init_srcu_struct - initialize a sleep-RCU structure
182 * @sp: structure to initialize.
184 * Must invoke this on a given srcu_struct before passing that srcu_struct
185 * to any other function. Each srcu_struct represents a separate domain
186 * of SRCU protection.
188 int init_srcu_struct(struct srcu_struct
*sp
)
190 raw_spin_lock_init(&ACCESS_PRIVATE(sp
, lock
));
191 return init_srcu_struct_fields(sp
, false);
193 EXPORT_SYMBOL_GPL(init_srcu_struct
);
195 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
198 * First-use initialization of statically allocated srcu_struct
199 * structure. Wiring up the combining tree is more than can be
200 * done with compile-time initialization, so this check is added
201 * to each update-side SRCU primitive. Use sp->lock, which -is-
202 * compile-time initialized, to resolve races involving multiple
203 * CPUs trying to garner first-use privileges.
205 static void check_init_srcu_struct(struct srcu_struct
*sp
)
209 WARN_ON_ONCE(rcu_scheduler_active
== RCU_SCHEDULER_INIT
);
210 /* The smp_load_acquire() pairs with the smp_store_release(). */
211 if (!rcu_seq_state(smp_load_acquire(&sp
->srcu_gp_seq_needed
))) /*^^^*/
212 return; /* Already initialized. */
213 raw_spin_lock_irqsave_rcu_node(sp
, flags
);
214 if (!rcu_seq_state(sp
->srcu_gp_seq_needed
)) {
215 raw_spin_unlock_irqrestore_rcu_node(sp
, flags
);
218 init_srcu_struct_fields(sp
, true);
219 raw_spin_unlock_irqrestore_rcu_node(sp
, flags
);
223 * Returns approximate total of the readers' ->srcu_lock_count[] values
224 * for the rank of per-CPU counters specified by idx.
226 static unsigned long srcu_readers_lock_idx(struct srcu_struct
*sp
, int idx
)
229 unsigned long sum
= 0;
231 for_each_possible_cpu(cpu
) {
232 struct srcu_data
*cpuc
= per_cpu_ptr(sp
->sda
, cpu
);
234 sum
+= READ_ONCE(cpuc
->srcu_lock_count
[idx
]);
240 * Returns approximate total of the readers' ->srcu_unlock_count[] values
241 * for the rank of per-CPU counters specified by idx.
243 static unsigned long srcu_readers_unlock_idx(struct srcu_struct
*sp
, int idx
)
246 unsigned long sum
= 0;
248 for_each_possible_cpu(cpu
) {
249 struct srcu_data
*cpuc
= per_cpu_ptr(sp
->sda
, cpu
);
251 sum
+= READ_ONCE(cpuc
->srcu_unlock_count
[idx
]);
257 * Return true if the number of pre-existing readers is determined to
260 static bool srcu_readers_active_idx_check(struct srcu_struct
*sp
, int idx
)
262 unsigned long unlocks
;
264 unlocks
= srcu_readers_unlock_idx(sp
, idx
);
267 * Make sure that a lock is always counted if the corresponding
268 * unlock is counted. Needs to be a smp_mb() as the read side may
269 * contain a read from a variable that is written to before the
270 * synchronize_srcu() in the write side. In this case smp_mb()s
271 * A and B act like the store buffering pattern.
273 * This smp_mb() also pairs with smp_mb() C to prevent accesses
274 * after the synchronize_srcu() from being executed before the
280 * If the locks are the same as the unlocks, then there must have
281 * been no readers on this index at some time in between. This does
282 * not mean that there are no more readers, as one could have read
283 * the current index but not have incremented the lock counter yet.
285 * So suppose that the updater is preempted here for so long
286 * that more than ULONG_MAX non-nested readers come and go in
287 * the meantime. It turns out that this cannot result in overflow
288 * because if a reader modifies its unlock count after we read it
289 * above, then that reader's next load of ->srcu_idx is guaranteed
290 * to get the new value, which will cause it to operate on the
291 * other bank of counters, where it cannot contribute to the
292 * overflow of these counters. This means that there is a maximum
293 * of 2*NR_CPUS increments, which cannot overflow given current
294 * systems, especially not on 64-bit systems.
296 * OK, how about nesting? This does impose a limit on nesting
297 * of floor(ULONG_MAX/NR_CPUS/2), which should be sufficient,
298 * especially on 64-bit systems.
300 return srcu_readers_lock_idx(sp
, idx
) == unlocks
;
304 * srcu_readers_active - returns true if there are readers. and false
306 * @sp: which srcu_struct to count active readers (holding srcu_read_lock).
308 * Note that this is not an atomic primitive, and can therefore suffer
309 * severe errors when invoked on an active srcu_struct. That said, it
310 * can be useful as an error check at cleanup time.
312 static bool srcu_readers_active(struct srcu_struct
*sp
)
315 unsigned long sum
= 0;
317 for_each_possible_cpu(cpu
) {
318 struct srcu_data
*cpuc
= per_cpu_ptr(sp
->sda
, cpu
);
320 sum
+= READ_ONCE(cpuc
->srcu_lock_count
[0]);
321 sum
+= READ_ONCE(cpuc
->srcu_lock_count
[1]);
322 sum
-= READ_ONCE(cpuc
->srcu_unlock_count
[0]);
323 sum
-= READ_ONCE(cpuc
->srcu_unlock_count
[1]);
328 #define SRCU_INTERVAL 1
331 * Return grace-period delay, zero if there are expedited grace
332 * periods pending, SRCU_INTERVAL otherwise.
334 static unsigned long srcu_get_delay(struct srcu_struct
*sp
)
336 if (ULONG_CMP_LT(READ_ONCE(sp
->srcu_gp_seq
),
337 READ_ONCE(sp
->srcu_gp_seq_needed_exp
)))
339 return SRCU_INTERVAL
;
343 * cleanup_srcu_struct - deconstruct a sleep-RCU structure
344 * @sp: structure to clean up.
346 * Must invoke this after you are finished using a given srcu_struct that
347 * was initialized via init_srcu_struct(), else you leak memory.
349 void cleanup_srcu_struct(struct srcu_struct
*sp
)
353 if (WARN_ON(!srcu_get_delay(sp
)))
354 return; /* Leakage unless caller handles error. */
355 if (WARN_ON(srcu_readers_active(sp
)))
356 return; /* Leakage unless caller handles error. */
357 flush_delayed_work(&sp
->work
);
358 for_each_possible_cpu(cpu
)
359 flush_delayed_work(&per_cpu_ptr(sp
->sda
, cpu
)->work
);
360 if (WARN_ON(rcu_seq_state(READ_ONCE(sp
->srcu_gp_seq
)) != SRCU_STATE_IDLE
) ||
361 WARN_ON(srcu_readers_active(sp
))) {
362 pr_info("cleanup_srcu_struct: Active srcu_struct %p state: %d\n", sp
, rcu_seq_state(READ_ONCE(sp
->srcu_gp_seq
)));
363 return; /* Caller forgot to stop doing call_srcu()? */
365 free_percpu(sp
->sda
);
368 EXPORT_SYMBOL_GPL(cleanup_srcu_struct
);
371 * Counts the new reader in the appropriate per-CPU element of the
373 * Returns an index that must be passed to the matching srcu_read_unlock().
375 int __srcu_read_lock(struct srcu_struct
*sp
)
379 idx
= READ_ONCE(sp
->srcu_idx
) & 0x1;
380 this_cpu_inc(sp
->sda
->srcu_lock_count
[idx
]);
381 smp_mb(); /* B */ /* Avoid leaking the critical section. */
384 EXPORT_SYMBOL_GPL(__srcu_read_lock
);
387 * Removes the count for the old reader from the appropriate per-CPU
388 * element of the srcu_struct. Note that this may well be a different
389 * CPU than that which was incremented by the corresponding srcu_read_lock().
391 void __srcu_read_unlock(struct srcu_struct
*sp
, int idx
)
393 smp_mb(); /* C */ /* Avoid leaking the critical section. */
394 this_cpu_inc(sp
->sda
->srcu_unlock_count
[idx
]);
396 EXPORT_SYMBOL_GPL(__srcu_read_unlock
);
399 * We use an adaptive strategy for synchronize_srcu() and especially for
400 * synchronize_srcu_expedited(). We spin for a fixed time period
401 * (defined below) to allow SRCU readers to exit their read-side critical
402 * sections. If there are still some readers after a few microseconds,
403 * we repeatedly block for 1-millisecond time periods.
405 #define SRCU_RETRY_CHECK_DELAY 5
408 * Start an SRCU grace period.
410 static void srcu_gp_start(struct srcu_struct
*sp
)
412 struct srcu_data
*sdp
= this_cpu_ptr(sp
->sda
);
415 lockdep_assert_held(&sp
->lock
);
416 WARN_ON_ONCE(ULONG_CMP_GE(sp
->srcu_gp_seq
, sp
->srcu_gp_seq_needed
));
417 rcu_segcblist_advance(&sdp
->srcu_cblist
,
418 rcu_seq_current(&sp
->srcu_gp_seq
));
419 (void)rcu_segcblist_accelerate(&sdp
->srcu_cblist
,
420 rcu_seq_snap(&sp
->srcu_gp_seq
));
421 smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */
422 rcu_seq_start(&sp
->srcu_gp_seq
);
423 state
= rcu_seq_state(READ_ONCE(sp
->srcu_gp_seq
));
424 WARN_ON_ONCE(state
!= SRCU_STATE_SCAN1
);
428 * Track online CPUs to guide callback workqueue placement.
430 DEFINE_PER_CPU(bool, srcu_online
);
432 void srcu_online_cpu(unsigned int cpu
)
434 WRITE_ONCE(per_cpu(srcu_online
, cpu
), true);
437 void srcu_offline_cpu(unsigned int cpu
)
439 WRITE_ONCE(per_cpu(srcu_online
, cpu
), false);
443 * Place the workqueue handler on the specified CPU if online, otherwise
444 * just run it whereever. This is useful for placing workqueue handlers
445 * that are to invoke the specified CPU's callbacks.
447 static bool srcu_queue_delayed_work_on(int cpu
, struct workqueue_struct
*wq
,
448 struct delayed_work
*dwork
,
454 if (READ_ONCE(per_cpu(srcu_online
, cpu
)))
455 ret
= queue_delayed_work_on(cpu
, wq
, dwork
, delay
);
457 ret
= queue_delayed_work(wq
, dwork
, delay
);
463 * Schedule callback invocation for the specified srcu_data structure,
464 * if possible, on the corresponding CPU.
466 static void srcu_schedule_cbs_sdp(struct srcu_data
*sdp
, unsigned long delay
)
468 srcu_queue_delayed_work_on(sdp
->cpu
, system_power_efficient_wq
,
473 * Schedule callback invocation for all srcu_data structures associated
474 * with the specified srcu_node structure that have callbacks for the
475 * just-completed grace period, the one corresponding to idx. If possible,
476 * schedule this invocation on the corresponding CPUs.
478 static void srcu_schedule_cbs_snp(struct srcu_struct
*sp
, struct srcu_node
*snp
,
479 unsigned long mask
, unsigned long delay
)
483 for (cpu
= snp
->grplo
; cpu
<= snp
->grphi
; cpu
++) {
484 if (!(mask
& (1 << (cpu
- snp
->grplo
))))
486 srcu_schedule_cbs_sdp(per_cpu_ptr(sp
->sda
, cpu
), delay
);
491 * Note the end of an SRCU grace period. Initiates callback invocation
492 * and starts a new grace period if needed.
494 * The ->srcu_cb_mutex acquisition does not protect any data, but
495 * instead prevents more than one grace period from starting while we
496 * are initiating callback invocation. This allows the ->srcu_have_cbs[]
497 * array to have a finite number of elements.
499 static void srcu_gp_end(struct srcu_struct
*sp
)
501 unsigned long cbdelay
;
509 struct srcu_data
*sdp
;
510 struct srcu_node
*snp
;
512 /* Prevent more than one additional grace period. */
513 mutex_lock(&sp
->srcu_cb_mutex
);
515 /* End the current grace period. */
516 raw_spin_lock_irq_rcu_node(sp
);
517 idx
= rcu_seq_state(sp
->srcu_gp_seq
);
518 WARN_ON_ONCE(idx
!= SRCU_STATE_SCAN2
);
519 cbdelay
= srcu_get_delay(sp
);
520 sp
->srcu_last_gp_end
= ktime_get_mono_fast_ns();
521 rcu_seq_end(&sp
->srcu_gp_seq
);
522 gpseq
= rcu_seq_current(&sp
->srcu_gp_seq
);
523 if (ULONG_CMP_LT(sp
->srcu_gp_seq_needed_exp
, gpseq
))
524 sp
->srcu_gp_seq_needed_exp
= gpseq
;
525 raw_spin_unlock_irq_rcu_node(sp
);
526 mutex_unlock(&sp
->srcu_gp_mutex
);
527 /* A new grace period can start at this point. But only one. */
529 /* Initiate callback invocation as needed. */
530 idx
= rcu_seq_ctr(gpseq
) % ARRAY_SIZE(snp
->srcu_have_cbs
);
531 idxnext
= (idx
+ 1) % ARRAY_SIZE(snp
->srcu_have_cbs
);
532 rcu_for_each_node_breadth_first(sp
, snp
) {
533 raw_spin_lock_irq_rcu_node(snp
);
535 if (snp
>= sp
->level
[rcu_num_lvls
- 1])
536 cbs
= snp
->srcu_have_cbs
[idx
] == gpseq
;
537 snp
->srcu_have_cbs
[idx
] = gpseq
;
538 rcu_seq_set_state(&snp
->srcu_have_cbs
[idx
], 1);
539 if (ULONG_CMP_LT(snp
->srcu_gp_seq_needed_exp
, gpseq
))
540 snp
->srcu_gp_seq_needed_exp
= gpseq
;
541 mask
= snp
->srcu_data_have_cbs
[idx
];
542 snp
->srcu_data_have_cbs
[idx
] = 0;
543 raw_spin_unlock_irq_rcu_node(snp
);
545 srcu_schedule_cbs_snp(sp
, snp
, mask
, cbdelay
);
547 /* Occasionally prevent srcu_data counter wrap. */
548 if (!(gpseq
& counter_wrap_check
))
549 for (cpu
= snp
->grplo
; cpu
<= snp
->grphi
; cpu
++) {
550 sdp
= per_cpu_ptr(sp
->sda
, cpu
);
551 raw_spin_lock_irqsave_rcu_node(sdp
, flags
);
552 if (ULONG_CMP_GE(gpseq
,
553 sdp
->srcu_gp_seq_needed
+ 100))
554 sdp
->srcu_gp_seq_needed
= gpseq
;
555 raw_spin_unlock_irqrestore_rcu_node(sdp
, flags
);
559 /* Callback initiation done, allow grace periods after next. */
560 mutex_unlock(&sp
->srcu_cb_mutex
);
562 /* Start a new grace period if needed. */
563 raw_spin_lock_irq_rcu_node(sp
);
564 gpseq
= rcu_seq_current(&sp
->srcu_gp_seq
);
565 if (!rcu_seq_state(gpseq
) &&
566 ULONG_CMP_LT(gpseq
, sp
->srcu_gp_seq_needed
)) {
568 raw_spin_unlock_irq_rcu_node(sp
);
569 /* Throttle expedited grace periods: Should be rare! */
570 srcu_reschedule(sp
, rcu_seq_ctr(gpseq
) & 0x3ff
571 ? 0 : SRCU_INTERVAL
);
573 raw_spin_unlock_irq_rcu_node(sp
);
578 * Funnel-locking scheme to scalably mediate many concurrent expedited
579 * grace-period requests. This function is invoked for the first known
580 * expedited request for a grace period that has already been requested,
581 * but without expediting. To start a completely new grace period,
582 * whether expedited or not, use srcu_funnel_gp_start() instead.
584 static void srcu_funnel_exp_start(struct srcu_struct
*sp
, struct srcu_node
*snp
,
589 for (; snp
!= NULL
; snp
= snp
->srcu_parent
) {
590 if (rcu_seq_done(&sp
->srcu_gp_seq
, s
) ||
591 ULONG_CMP_GE(READ_ONCE(snp
->srcu_gp_seq_needed_exp
), s
))
593 raw_spin_lock_irqsave_rcu_node(snp
, flags
);
594 if (ULONG_CMP_GE(snp
->srcu_gp_seq_needed_exp
, s
)) {
595 raw_spin_unlock_irqrestore_rcu_node(snp
, flags
);
598 WRITE_ONCE(snp
->srcu_gp_seq_needed_exp
, s
);
599 raw_spin_unlock_irqrestore_rcu_node(snp
, flags
);
601 raw_spin_lock_irqsave_rcu_node(sp
, flags
);
602 if (!ULONG_CMP_LT(sp
->srcu_gp_seq_needed_exp
, s
))
603 sp
->srcu_gp_seq_needed_exp
= s
;
604 raw_spin_unlock_irqrestore_rcu_node(sp
, flags
);
608 * Funnel-locking scheme to scalably mediate many concurrent grace-period
609 * requests. The winner has to do the work of actually starting grace
610 * period s. Losers must either ensure that their desired grace-period
611 * number is recorded on at least their leaf srcu_node structure, or they
612 * must take steps to invoke their own callbacks.
614 static void srcu_funnel_gp_start(struct srcu_struct
*sp
, struct srcu_data
*sdp
,
615 unsigned long s
, bool do_norm
)
618 int idx
= rcu_seq_ctr(s
) % ARRAY_SIZE(sdp
->mynode
->srcu_have_cbs
);
619 struct srcu_node
*snp
= sdp
->mynode
;
620 unsigned long snp_seq
;
622 /* Each pass through the loop does one level of the srcu_node tree. */
623 for (; snp
!= NULL
; snp
= snp
->srcu_parent
) {
624 if (rcu_seq_done(&sp
->srcu_gp_seq
, s
) && snp
!= sdp
->mynode
)
625 return; /* GP already done and CBs recorded. */
626 raw_spin_lock_irqsave_rcu_node(snp
, flags
);
627 if (ULONG_CMP_GE(snp
->srcu_have_cbs
[idx
], s
)) {
628 snp_seq
= snp
->srcu_have_cbs
[idx
];
629 if (snp
== sdp
->mynode
&& snp_seq
== s
)
630 snp
->srcu_data_have_cbs
[idx
] |= sdp
->grpmask
;
631 raw_spin_unlock_irqrestore_rcu_node(snp
, flags
);
632 if (snp
== sdp
->mynode
&& snp_seq
!= s
) {
633 srcu_schedule_cbs_sdp(sdp
, do_norm
639 srcu_funnel_exp_start(sp
, snp
, s
);
642 snp
->srcu_have_cbs
[idx
] = s
;
643 if (snp
== sdp
->mynode
)
644 snp
->srcu_data_have_cbs
[idx
] |= sdp
->grpmask
;
645 if (!do_norm
&& ULONG_CMP_LT(snp
->srcu_gp_seq_needed_exp
, s
))
646 snp
->srcu_gp_seq_needed_exp
= s
;
647 raw_spin_unlock_irqrestore_rcu_node(snp
, flags
);
650 /* Top of tree, must ensure the grace period will be started. */
651 raw_spin_lock_irqsave_rcu_node(sp
, flags
);
652 if (ULONG_CMP_LT(sp
->srcu_gp_seq_needed
, s
)) {
654 * Record need for grace period s. Pair with load
655 * acquire setting up for initialization.
657 smp_store_release(&sp
->srcu_gp_seq_needed
, s
); /*^^^*/
659 if (!do_norm
&& ULONG_CMP_LT(sp
->srcu_gp_seq_needed_exp
, s
))
660 sp
->srcu_gp_seq_needed_exp
= s
;
662 /* If grace period not already done and none in progress, start it. */
663 if (!rcu_seq_done(&sp
->srcu_gp_seq
, s
) &&
664 rcu_seq_state(sp
->srcu_gp_seq
) == SRCU_STATE_IDLE
) {
665 WARN_ON_ONCE(ULONG_CMP_GE(sp
->srcu_gp_seq
, sp
->srcu_gp_seq_needed
));
667 queue_delayed_work(system_power_efficient_wq
, &sp
->work
,
670 raw_spin_unlock_irqrestore_rcu_node(sp
, flags
);
674 * Wait until all readers counted by array index idx complete, but
675 * loop an additional time if there is an expedited grace period pending.
676 * The caller must ensure that ->srcu_idx is not changed while checking.
678 static bool try_check_zero(struct srcu_struct
*sp
, int idx
, int trycount
)
681 if (srcu_readers_active_idx_check(sp
, idx
))
683 if (--trycount
+ !srcu_get_delay(sp
) <= 0)
685 udelay(SRCU_RETRY_CHECK_DELAY
);
690 * Increment the ->srcu_idx counter so that future SRCU readers will
691 * use the other rank of the ->srcu_(un)lock_count[] arrays. This allows
692 * us to wait for pre-existing readers in a starvation-free manner.
694 static void srcu_flip(struct srcu_struct
*sp
)
697 * Ensure that if this updater saw a given reader's increment
698 * from __srcu_read_lock(), that reader was using an old value
699 * of ->srcu_idx. Also ensure that if a given reader sees the
700 * new value of ->srcu_idx, this updater's earlier scans cannot
701 * have seen that reader's increments (which is OK, because this
702 * grace period need not wait on that reader).
704 smp_mb(); /* E */ /* Pairs with B and C. */
706 WRITE_ONCE(sp
->srcu_idx
, sp
->srcu_idx
+ 1);
709 * Ensure that if the updater misses an __srcu_read_unlock()
710 * increment, that task's next __srcu_read_lock() will see the
711 * above counter update. Note that both this memory barrier
712 * and the one in srcu_readers_active_idx_check() provide the
713 * guarantee for __srcu_read_lock().
715 smp_mb(); /* D */ /* Pairs with C. */
719 * If SRCU is likely idle, return true, otherwise return false.
721 * Note that it is OK for several current from-idle requests for a new
722 * grace period from idle to specify expediting because they will all end
723 * up requesting the same grace period anyhow. So no loss.
725 * Note also that if any CPU (including the current one) is still invoking
726 * callbacks, this function will nevertheless say "idle". This is not
727 * ideal, but the overhead of checking all CPUs' callback lists is even
728 * less ideal, especially on large systems. Furthermore, the wakeup
729 * can happen before the callback is fully removed, so we have no choice
730 * but to accept this type of error.
732 * This function is also subject to counter-wrap errors, but let's face
733 * it, if this function was preempted for enough time for the counters
734 * to wrap, it really doesn't matter whether or not we expedite the grace
735 * period. The extra overhead of a needlessly expedited grace period is
736 * negligible when amoritized over that time period, and the extra latency
737 * of a needlessly non-expedited grace period is similarly negligible.
739 static bool srcu_might_be_idle(struct srcu_struct
*sp
)
741 unsigned long curseq
;
743 struct srcu_data
*sdp
;
746 /* If the local srcu_data structure has callbacks, not idle. */
747 local_irq_save(flags
);
748 sdp
= this_cpu_ptr(sp
->sda
);
749 if (rcu_segcblist_pend_cbs(&sdp
->srcu_cblist
)) {
750 local_irq_restore(flags
);
751 return false; /* Callbacks already present, so not idle. */
753 local_irq_restore(flags
);
756 * No local callbacks, so probabalistically probe global state.
757 * Exact information would require acquiring locks, which would
758 * kill scalability, hence the probabalistic nature of the probe.
761 /* First, see if enough time has passed since the last GP. */
762 t
= ktime_get_mono_fast_ns();
763 if (exp_holdoff
== 0 ||
764 time_in_range_open(t
, sp
->srcu_last_gp_end
,
765 sp
->srcu_last_gp_end
+ exp_holdoff
))
766 return false; /* Too soon after last GP. */
768 /* Next, check for probable idleness. */
769 curseq
= rcu_seq_current(&sp
->srcu_gp_seq
);
770 smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */
771 if (ULONG_CMP_LT(curseq
, READ_ONCE(sp
->srcu_gp_seq_needed
)))
772 return false; /* Grace period in progress, so not idle. */
773 smp_mb(); /* Order ->srcu_gp_seq with prior access. */
774 if (curseq
!= rcu_seq_current(&sp
->srcu_gp_seq
))
775 return false; /* GP # changed, so not idle. */
776 return true; /* With reasonable probability, idle! */
780 * SRCU callback function to leak a callback.
782 static void srcu_leak_callback(struct rcu_head
*rhp
)
787 * Enqueue an SRCU callback on the srcu_data structure associated with
788 * the current CPU and the specified srcu_struct structure, initiating
789 * grace-period processing if it is not already running.
791 * Note that all CPUs must agree that the grace period extended beyond
792 * all pre-existing SRCU read-side critical section. On systems with
793 * more than one CPU, this means that when "func()" is invoked, each CPU
794 * is guaranteed to have executed a full memory barrier since the end of
795 * its last corresponding SRCU read-side critical section whose beginning
796 * preceded the call to call_rcu(). It also means that each CPU executing
797 * an SRCU read-side critical section that continues beyond the start of
798 * "func()" must have executed a memory barrier after the call_rcu()
799 * but before the beginning of that SRCU read-side critical section.
800 * Note that these guarantees include CPUs that are offline, idle, or
801 * executing in user mode, as well as CPUs that are executing in the kernel.
803 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
804 * resulting SRCU callback function "func()", then both CPU A and CPU
805 * B are guaranteed to execute a full memory barrier during the time
806 * interval between the call to call_rcu() and the invocation of "func()".
807 * This guarantee applies even if CPU A and CPU B are the same CPU (but
808 * again only if the system has more than one CPU).
810 * Of course, these guarantees apply only for invocations of call_srcu(),
811 * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
812 * srcu_struct structure.
814 void __call_srcu(struct srcu_struct
*sp
, struct rcu_head
*rhp
,
815 rcu_callback_t func
, bool do_norm
)
818 bool needexp
= false;
821 struct srcu_data
*sdp
;
823 check_init_srcu_struct(sp
);
824 if (debug_rcu_head_queue(rhp
)) {
825 /* Probable double call_srcu(), so leak the callback. */
826 WRITE_ONCE(rhp
->func
, srcu_leak_callback
);
827 WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n");
831 local_irq_save(flags
);
832 sdp
= this_cpu_ptr(sp
->sda
);
833 raw_spin_lock_rcu_node(sdp
);
834 rcu_segcblist_enqueue(&sdp
->srcu_cblist
, rhp
, false);
835 rcu_segcblist_advance(&sdp
->srcu_cblist
,
836 rcu_seq_current(&sp
->srcu_gp_seq
));
837 s
= rcu_seq_snap(&sp
->srcu_gp_seq
);
838 (void)rcu_segcblist_accelerate(&sdp
->srcu_cblist
, s
);
839 if (ULONG_CMP_LT(sdp
->srcu_gp_seq_needed
, s
)) {
840 sdp
->srcu_gp_seq_needed
= s
;
843 if (!do_norm
&& ULONG_CMP_LT(sdp
->srcu_gp_seq_needed_exp
, s
)) {
844 sdp
->srcu_gp_seq_needed_exp
= s
;
847 raw_spin_unlock_irqrestore_rcu_node(sdp
, flags
);
849 srcu_funnel_gp_start(sp
, sdp
, s
, do_norm
);
851 srcu_funnel_exp_start(sp
, sdp
->mynode
, s
);
855 * call_srcu() - Queue a callback for invocation after an SRCU grace period
856 * @sp: srcu_struct in queue the callback
857 * @head: structure to be used for queueing the SRCU callback.
858 * @func: function to be invoked after the SRCU grace period
860 * The callback function will be invoked some time after a full SRCU
861 * grace period elapses, in other words after all pre-existing SRCU
862 * read-side critical sections have completed. However, the callback
863 * function might well execute concurrently with other SRCU read-side
864 * critical sections that started after call_srcu() was invoked. SRCU
865 * read-side critical sections are delimited by srcu_read_lock() and
866 * srcu_read_unlock(), and may be nested.
868 * The callback will be invoked from process context, but must nevertheless
869 * be fast and must not block.
871 void call_srcu(struct srcu_struct
*sp
, struct rcu_head
*rhp
,
874 __call_srcu(sp
, rhp
, func
, true);
876 EXPORT_SYMBOL_GPL(call_srcu
);
879 * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
881 static void __synchronize_srcu(struct srcu_struct
*sp
, bool do_norm
)
883 struct rcu_synchronize rcu
;
885 RCU_LOCKDEP_WARN(lock_is_held(&sp
->dep_map
) ||
886 lock_is_held(&rcu_bh_lock_map
) ||
887 lock_is_held(&rcu_lock_map
) ||
888 lock_is_held(&rcu_sched_lock_map
),
889 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
891 if (rcu_scheduler_active
== RCU_SCHEDULER_INACTIVE
)
894 check_init_srcu_struct(sp
);
895 init_completion(&rcu
.completion
);
896 init_rcu_head_on_stack(&rcu
.head
);
897 __call_srcu(sp
, &rcu
.head
, wakeme_after_rcu
, do_norm
);
898 wait_for_completion(&rcu
.completion
);
899 destroy_rcu_head_on_stack(&rcu
.head
);
902 * Make sure that later code is ordered after the SRCU grace
903 * period. This pairs with the raw_spin_lock_irq_rcu_node()
904 * in srcu_invoke_callbacks(). Unlike Tree RCU, this is needed
905 * because the current CPU might have been totally uninvolved with
906 * (and thus unordered against) that grace period.
912 * synchronize_srcu_expedited - Brute-force SRCU grace period
913 * @sp: srcu_struct with which to synchronize.
915 * Wait for an SRCU grace period to elapse, but be more aggressive about
916 * spinning rather than blocking when waiting.
918 * Note that synchronize_srcu_expedited() has the same deadlock and
919 * memory-ordering properties as does synchronize_srcu().
921 void synchronize_srcu_expedited(struct srcu_struct
*sp
)
923 __synchronize_srcu(sp
, rcu_gp_is_normal());
925 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited
);
928 * synchronize_srcu - wait for prior SRCU read-side critical-section completion
929 * @sp: srcu_struct with which to synchronize.
931 * Wait for the count to drain to zero of both indexes. To avoid the
932 * possible starvation of synchronize_srcu(), it waits for the count of
933 * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first,
934 * and then flip the srcu_idx and wait for the count of the other index.
936 * Can block; must be called from process context.
938 * Note that it is illegal to call synchronize_srcu() from the corresponding
939 * SRCU read-side critical section; doing so will result in deadlock.
940 * However, it is perfectly legal to call synchronize_srcu() on one
941 * srcu_struct from some other srcu_struct's read-side critical section,
942 * as long as the resulting graph of srcu_structs is acyclic.
944 * There are memory-ordering constraints implied by synchronize_srcu().
945 * On systems with more than one CPU, when synchronize_srcu() returns,
946 * each CPU is guaranteed to have executed a full memory barrier since
947 * the end of its last corresponding SRCU-sched read-side critical section
948 * whose beginning preceded the call to synchronize_srcu(). In addition,
949 * each CPU having an SRCU read-side critical section that extends beyond
950 * the return from synchronize_srcu() is guaranteed to have executed a
951 * full memory barrier after the beginning of synchronize_srcu() and before
952 * the beginning of that SRCU read-side critical section. Note that these
953 * guarantees include CPUs that are offline, idle, or executing in user mode,
954 * as well as CPUs that are executing in the kernel.
956 * Furthermore, if CPU A invoked synchronize_srcu(), which returned
957 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
958 * to have executed a full memory barrier during the execution of
959 * synchronize_srcu(). This guarantee applies even if CPU A and CPU B
960 * are the same CPU, but again only if the system has more than one CPU.
962 * Of course, these memory-ordering guarantees apply only when
963 * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
964 * passed the same srcu_struct structure.
966 * If SRCU is likely idle, expedite the first request. This semantic
967 * was provided by Classic SRCU, and is relied upon by its users, so TREE
968 * SRCU must also provide it. Note that detecting idleness is heuristic
969 * and subject to both false positives and negatives.
971 void synchronize_srcu(struct srcu_struct
*sp
)
973 if (srcu_might_be_idle(sp
) || rcu_gp_is_expedited())
974 synchronize_srcu_expedited(sp
);
976 __synchronize_srcu(sp
, true);
978 EXPORT_SYMBOL_GPL(synchronize_srcu
);
981 * Callback function for srcu_barrier() use.
983 static void srcu_barrier_cb(struct rcu_head
*rhp
)
985 struct srcu_data
*sdp
;
986 struct srcu_struct
*sp
;
988 sdp
= container_of(rhp
, struct srcu_data
, srcu_barrier_head
);
990 if (atomic_dec_and_test(&sp
->srcu_barrier_cpu_cnt
))
991 complete(&sp
->srcu_barrier_completion
);
995 * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
996 * @sp: srcu_struct on which to wait for in-flight callbacks.
998 void srcu_barrier(struct srcu_struct
*sp
)
1001 struct srcu_data
*sdp
;
1002 unsigned long s
= rcu_seq_snap(&sp
->srcu_barrier_seq
);
1004 check_init_srcu_struct(sp
);
1005 mutex_lock(&sp
->srcu_barrier_mutex
);
1006 if (rcu_seq_done(&sp
->srcu_barrier_seq
, s
)) {
1007 smp_mb(); /* Force ordering following return. */
1008 mutex_unlock(&sp
->srcu_barrier_mutex
);
1009 return; /* Someone else did our work for us. */
1011 rcu_seq_start(&sp
->srcu_barrier_seq
);
1012 init_completion(&sp
->srcu_barrier_completion
);
1014 /* Initial count prevents reaching zero until all CBs are posted. */
1015 atomic_set(&sp
->srcu_barrier_cpu_cnt
, 1);
1018 * Each pass through this loop enqueues a callback, but only
1019 * on CPUs already having callbacks enqueued. Note that if
1020 * a CPU already has callbacks enqueue, it must have already
1021 * registered the need for a future grace period, so all we
1022 * need do is enqueue a callback that will use the same
1023 * grace period as the last callback already in the queue.
1025 for_each_possible_cpu(cpu
) {
1026 sdp
= per_cpu_ptr(sp
->sda
, cpu
);
1027 raw_spin_lock_irq_rcu_node(sdp
);
1028 atomic_inc(&sp
->srcu_barrier_cpu_cnt
);
1029 sdp
->srcu_barrier_head
.func
= srcu_barrier_cb
;
1030 debug_rcu_head_queue(&sdp
->srcu_barrier_head
);
1031 if (!rcu_segcblist_entrain(&sdp
->srcu_cblist
,
1032 &sdp
->srcu_barrier_head
, 0)) {
1033 debug_rcu_head_unqueue(&sdp
->srcu_barrier_head
);
1034 atomic_dec(&sp
->srcu_barrier_cpu_cnt
);
1036 raw_spin_unlock_irq_rcu_node(sdp
);
1039 /* Remove the initial count, at which point reaching zero can happen. */
1040 if (atomic_dec_and_test(&sp
->srcu_barrier_cpu_cnt
))
1041 complete(&sp
->srcu_barrier_completion
);
1042 wait_for_completion(&sp
->srcu_barrier_completion
);
1044 rcu_seq_end(&sp
->srcu_barrier_seq
);
1045 mutex_unlock(&sp
->srcu_barrier_mutex
);
1047 EXPORT_SYMBOL_GPL(srcu_barrier
);
1050 * srcu_batches_completed - return batches completed.
1051 * @sp: srcu_struct on which to report batch completion.
1053 * Report the number of batches, correlated with, but not necessarily
1054 * precisely the same as, the number of grace periods that have elapsed.
1056 unsigned long srcu_batches_completed(struct srcu_struct
*sp
)
1058 return sp
->srcu_idx
;
1060 EXPORT_SYMBOL_GPL(srcu_batches_completed
);
1063 * Core SRCU state machine. Push state bits of ->srcu_gp_seq
1064 * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has
1065 * completed in that state.
1067 static void srcu_advance_state(struct srcu_struct
*sp
)
1071 mutex_lock(&sp
->srcu_gp_mutex
);
1074 * Because readers might be delayed for an extended period after
1075 * fetching ->srcu_idx for their index, at any point in time there
1076 * might well be readers using both idx=0 and idx=1. We therefore
1077 * need to wait for readers to clear from both index values before
1078 * invoking a callback.
1080 * The load-acquire ensures that we see the accesses performed
1081 * by the prior grace period.
1083 idx
= rcu_seq_state(smp_load_acquire(&sp
->srcu_gp_seq
)); /* ^^^ */
1084 if (idx
== SRCU_STATE_IDLE
) {
1085 raw_spin_lock_irq_rcu_node(sp
);
1086 if (ULONG_CMP_GE(sp
->srcu_gp_seq
, sp
->srcu_gp_seq_needed
)) {
1087 WARN_ON_ONCE(rcu_seq_state(sp
->srcu_gp_seq
));
1088 raw_spin_unlock_irq_rcu_node(sp
);
1089 mutex_unlock(&sp
->srcu_gp_mutex
);
1092 idx
= rcu_seq_state(READ_ONCE(sp
->srcu_gp_seq
));
1093 if (idx
== SRCU_STATE_IDLE
)
1095 raw_spin_unlock_irq_rcu_node(sp
);
1096 if (idx
!= SRCU_STATE_IDLE
) {
1097 mutex_unlock(&sp
->srcu_gp_mutex
);
1098 return; /* Someone else started the grace period. */
1102 if (rcu_seq_state(READ_ONCE(sp
->srcu_gp_seq
)) == SRCU_STATE_SCAN1
) {
1103 idx
= 1 ^ (sp
->srcu_idx
& 1);
1104 if (!try_check_zero(sp
, idx
, 1)) {
1105 mutex_unlock(&sp
->srcu_gp_mutex
);
1106 return; /* readers present, retry later. */
1109 rcu_seq_set_state(&sp
->srcu_gp_seq
, SRCU_STATE_SCAN2
);
1112 if (rcu_seq_state(READ_ONCE(sp
->srcu_gp_seq
)) == SRCU_STATE_SCAN2
) {
1115 * SRCU read-side critical sections are normally short,
1116 * so check at least twice in quick succession after a flip.
1118 idx
= 1 ^ (sp
->srcu_idx
& 1);
1119 if (!try_check_zero(sp
, idx
, 2)) {
1120 mutex_unlock(&sp
->srcu_gp_mutex
);
1121 return; /* readers present, retry later. */
1123 srcu_gp_end(sp
); /* Releases ->srcu_gp_mutex. */
1128 * Invoke a limited number of SRCU callbacks that have passed through
1129 * their grace period. If there are more to do, SRCU will reschedule
1130 * the workqueue. Note that needed memory barriers have been executed
1131 * in this task's context by srcu_readers_active_idx_check().
1133 static void srcu_invoke_callbacks(struct work_struct
*work
)
1136 struct rcu_cblist ready_cbs
;
1137 struct rcu_head
*rhp
;
1138 struct srcu_data
*sdp
;
1139 struct srcu_struct
*sp
;
1141 sdp
= container_of(work
, struct srcu_data
, work
.work
);
1143 rcu_cblist_init(&ready_cbs
);
1144 raw_spin_lock_irq_rcu_node(sdp
);
1145 rcu_segcblist_advance(&sdp
->srcu_cblist
,
1146 rcu_seq_current(&sp
->srcu_gp_seq
));
1147 if (sdp
->srcu_cblist_invoking
||
1148 !rcu_segcblist_ready_cbs(&sdp
->srcu_cblist
)) {
1149 raw_spin_unlock_irq_rcu_node(sdp
);
1150 return; /* Someone else on the job or nothing to do. */
1153 /* We are on the job! Extract and invoke ready callbacks. */
1154 sdp
->srcu_cblist_invoking
= true;
1155 rcu_segcblist_extract_done_cbs(&sdp
->srcu_cblist
, &ready_cbs
);
1156 raw_spin_unlock_irq_rcu_node(sdp
);
1157 rhp
= rcu_cblist_dequeue(&ready_cbs
);
1158 for (; rhp
!= NULL
; rhp
= rcu_cblist_dequeue(&ready_cbs
)) {
1159 debug_rcu_head_unqueue(rhp
);
1166 * Update counts, accelerate new callbacks, and if needed,
1167 * schedule another round of callback invocation.
1169 raw_spin_lock_irq_rcu_node(sdp
);
1170 rcu_segcblist_insert_count(&sdp
->srcu_cblist
, &ready_cbs
);
1171 (void)rcu_segcblist_accelerate(&sdp
->srcu_cblist
,
1172 rcu_seq_snap(&sp
->srcu_gp_seq
));
1173 sdp
->srcu_cblist_invoking
= false;
1174 more
= rcu_segcblist_ready_cbs(&sdp
->srcu_cblist
);
1175 raw_spin_unlock_irq_rcu_node(sdp
);
1177 srcu_schedule_cbs_sdp(sdp
, 0);
1181 * Finished one round of SRCU grace period. Start another if there are
1182 * more SRCU callbacks queued, otherwise put SRCU into not-running state.
1184 static void srcu_reschedule(struct srcu_struct
*sp
, unsigned long delay
)
1188 raw_spin_lock_irq_rcu_node(sp
);
1189 if (ULONG_CMP_GE(sp
->srcu_gp_seq
, sp
->srcu_gp_seq_needed
)) {
1190 if (!WARN_ON_ONCE(rcu_seq_state(sp
->srcu_gp_seq
))) {
1191 /* All requests fulfilled, time to go idle. */
1194 } else if (!rcu_seq_state(sp
->srcu_gp_seq
)) {
1195 /* Outstanding request and no GP. Start one. */
1198 raw_spin_unlock_irq_rcu_node(sp
);
1201 queue_delayed_work(system_power_efficient_wq
, &sp
->work
, delay
);
1205 * This is the work-queue function that handles SRCU grace periods.
1207 static void process_srcu(struct work_struct
*work
)
1209 struct srcu_struct
*sp
;
1211 sp
= container_of(work
, struct srcu_struct
, work
.work
);
1213 srcu_advance_state(sp
);
1214 srcu_reschedule(sp
, srcu_get_delay(sp
));
1217 void srcutorture_get_gp_data(enum rcutorture_type test_type
,
1218 struct srcu_struct
*sp
, int *flags
,
1219 unsigned long *gpnum
, unsigned long *completed
)
1221 if (test_type
!= SRCU_FLAVOR
)
1224 *completed
= rcu_seq_ctr(sp
->srcu_gp_seq
);
1225 *gpnum
= rcu_seq_ctr(sp
->srcu_gp_seq_needed
);
1227 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data
);
1229 void srcu_torture_stats_print(struct srcu_struct
*sp
, char *tt
, char *tf
)
1233 unsigned long s0
= 0, s1
= 0;
1235 idx
= sp
->srcu_idx
& 0x1;
1236 pr_alert("%s%s Tree SRCU per-CPU(idx=%d):", tt
, tf
, idx
);
1237 for_each_possible_cpu(cpu
) {
1238 unsigned long l0
, l1
;
1239 unsigned long u0
, u1
;
1241 struct srcu_data
*counts
;
1243 counts
= per_cpu_ptr(sp
->sda
, cpu
);
1244 u0
= counts
->srcu_unlock_count
[!idx
];
1245 u1
= counts
->srcu_unlock_count
[idx
];
1248 * Make sure that a lock is always counted if the corresponding
1249 * unlock is counted.
1253 l0
= counts
->srcu_lock_count
[!idx
];
1254 l1
= counts
->srcu_lock_count
[idx
];
1258 pr_cont(" %d(%ld,%ld)", cpu
, c0
, c1
);
1262 pr_cont(" T(%ld,%ld)\n", s0
, s1
);
1264 EXPORT_SYMBOL_GPL(srcu_torture_stats_print
);
1266 static int __init
srcu_bootup_announce(void)
1268 pr_info("Hierarchical SRCU implementation.\n");
1269 if (exp_holdoff
!= DEFAULT_SRCU_EXP_HOLDOFF
)
1270 pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff
);
1273 early_initcall(srcu_bootup_announce
);