]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/rcu/tasks.h
Merge tag 'for-linus-5.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rw...
[mirror_ubuntu-jammy-kernel.git] / kernel / rcu / tasks.h
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Task-based RCU implementations.
4 *
5 * Copyright (C) 2020 Paul E. McKenney
6 */
7
8 #ifdef CONFIG_TASKS_RCU_GENERIC
9
10 ////////////////////////////////////////////////////////////////////////
11 //
12 // Generic data structures.
13
14 struct rcu_tasks;
15 typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp);
16 typedef void (*pregp_func_t)(void);
17 typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop);
18 typedef void (*postscan_func_t)(struct list_head *hop);
19 typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp);
20 typedef void (*postgp_func_t)(struct rcu_tasks *rtp);
21
22 /**
23 * Definition for a Tasks-RCU-like mechanism.
24 * @cbs_head: Head of callback list.
25 * @cbs_tail: Tail pointer for callback list.
26 * @cbs_wq: Wait queue allowning new callback to get kthread's attention.
27 * @cbs_lock: Lock protecting callback list.
28 * @kthread_ptr: This flavor's grace-period/callback-invocation kthread.
29 * @gp_func: This flavor's grace-period-wait function.
30 * @gp_state: Grace period's most recent state transition (debugging).
31 * @gp_jiffies: Time of last @gp_state transition.
32 * @gp_start: Most recent grace-period start in jiffies.
33 * @n_gps: Number of grace periods completed since boot.
34 * @n_ipis: Number of IPIs sent to encourage grace periods to end.
35 * @n_ipis_fails: Number of IPI-send failures.
36 * @pregp_func: This flavor's pre-grace-period function (optional).
37 * @pertask_func: This flavor's per-task scan function (optional).
38 * @postscan_func: This flavor's post-task scan function (optional).
39 * @holdout_func: This flavor's holdout-list scan function (optional).
40 * @postgp_func: This flavor's post-grace-period function (optional).
41 * @call_func: This flavor's call_rcu()-equivalent function.
42 * @name: This flavor's textual name.
43 * @kname: This flavor's kthread name.
44 */
45 struct rcu_tasks {
46 struct rcu_head *cbs_head;
47 struct rcu_head **cbs_tail;
48 struct wait_queue_head cbs_wq;
49 raw_spinlock_t cbs_lock;
50 int gp_state;
51 unsigned long gp_jiffies;
52 unsigned long gp_start;
53 unsigned long n_gps;
54 unsigned long n_ipis;
55 unsigned long n_ipis_fails;
56 struct task_struct *kthread_ptr;
57 rcu_tasks_gp_func_t gp_func;
58 pregp_func_t pregp_func;
59 pertask_func_t pertask_func;
60 postscan_func_t postscan_func;
61 holdouts_func_t holdouts_func;
62 postgp_func_t postgp_func;
63 call_rcu_func_t call_func;
64 char *name;
65 char *kname;
66 };
67
68 #define DEFINE_RCU_TASKS(rt_name, gp, call, n) \
69 static struct rcu_tasks rt_name = \
70 { \
71 .cbs_tail = &rt_name.cbs_head, \
72 .cbs_wq = __WAIT_QUEUE_HEAD_INITIALIZER(rt_name.cbs_wq), \
73 .cbs_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_lock), \
74 .gp_func = gp, \
75 .call_func = call, \
76 .name = n, \
77 .kname = #rt_name, \
78 }
79
80 /* Track exiting tasks in order to allow them to be waited for. */
81 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
82
83 /* Avoid IPIing CPUs early in the grace period. */
84 #define RCU_TASK_IPI_DELAY (HZ / 2)
85 static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY;
86 module_param(rcu_task_ipi_delay, int, 0644);
87
88 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */
89 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
90 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
91 module_param(rcu_task_stall_timeout, int, 0644);
92
93 /* RCU tasks grace-period state for debugging. */
94 #define RTGS_INIT 0
95 #define RTGS_WAIT_WAIT_CBS 1
96 #define RTGS_WAIT_GP 2
97 #define RTGS_PRE_WAIT_GP 3
98 #define RTGS_SCAN_TASKLIST 4
99 #define RTGS_POST_SCAN_TASKLIST 5
100 #define RTGS_WAIT_SCAN_HOLDOUTS 6
101 #define RTGS_SCAN_HOLDOUTS 7
102 #define RTGS_POST_GP 8
103 #define RTGS_WAIT_READERS 9
104 #define RTGS_INVOKE_CBS 10
105 #define RTGS_WAIT_CBS 11
106 #ifndef CONFIG_TINY_RCU
107 static const char * const rcu_tasks_gp_state_names[] = {
108 "RTGS_INIT",
109 "RTGS_WAIT_WAIT_CBS",
110 "RTGS_WAIT_GP",
111 "RTGS_PRE_WAIT_GP",
112 "RTGS_SCAN_TASKLIST",
113 "RTGS_POST_SCAN_TASKLIST",
114 "RTGS_WAIT_SCAN_HOLDOUTS",
115 "RTGS_SCAN_HOLDOUTS",
116 "RTGS_POST_GP",
117 "RTGS_WAIT_READERS",
118 "RTGS_INVOKE_CBS",
119 "RTGS_WAIT_CBS",
120 };
121 #endif /* #ifndef CONFIG_TINY_RCU */
122
123 ////////////////////////////////////////////////////////////////////////
124 //
125 // Generic code.
126
127 /* Record grace-period phase and time. */
128 static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate)
129 {
130 rtp->gp_state = newstate;
131 rtp->gp_jiffies = jiffies;
132 }
133
134 #ifndef CONFIG_TINY_RCU
135 /* Return state name. */
136 static const char *tasks_gp_state_getname(struct rcu_tasks *rtp)
137 {
138 int i = data_race(rtp->gp_state); // Let KCSAN detect update races
139 int j = READ_ONCE(i); // Prevent the compiler from reading twice
140
141 if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names))
142 return "???";
143 return rcu_tasks_gp_state_names[j];
144 }
145 #endif /* #ifndef CONFIG_TINY_RCU */
146
147 // Enqueue a callback for the specified flavor of Tasks RCU.
148 static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func,
149 struct rcu_tasks *rtp)
150 {
151 unsigned long flags;
152 bool needwake;
153
154 rhp->next = NULL;
155 rhp->func = func;
156 raw_spin_lock_irqsave(&rtp->cbs_lock, flags);
157 needwake = !rtp->cbs_head;
158 WRITE_ONCE(*rtp->cbs_tail, rhp);
159 rtp->cbs_tail = &rhp->next;
160 raw_spin_unlock_irqrestore(&rtp->cbs_lock, flags);
161 /* We can't create the thread unless interrupts are enabled. */
162 if (needwake && READ_ONCE(rtp->kthread_ptr))
163 wake_up(&rtp->cbs_wq);
164 }
165
166 // Wait for a grace period for the specified flavor of Tasks RCU.
167 static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp)
168 {
169 /* Complain if the scheduler has not started. */
170 RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
171 "synchronize_rcu_tasks called too soon");
172
173 /* Wait for the grace period. */
174 wait_rcu_gp(rtp->call_func);
175 }
176
177 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */
178 static int __noreturn rcu_tasks_kthread(void *arg)
179 {
180 unsigned long flags;
181 struct rcu_head *list;
182 struct rcu_head *next;
183 struct rcu_tasks *rtp = arg;
184
185 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */
186 housekeeping_affine(current, HK_FLAG_RCU);
187 WRITE_ONCE(rtp->kthread_ptr, current); // Let GPs start!
188
189 /*
190 * Each pass through the following loop makes one check for
191 * newly arrived callbacks, and, if there are some, waits for
192 * one RCU-tasks grace period and then invokes the callbacks.
193 * This loop is terminated by the system going down. ;-)
194 */
195 for (;;) {
196
197 /* Pick up any new callbacks. */
198 raw_spin_lock_irqsave(&rtp->cbs_lock, flags);
199 smp_mb__after_spinlock(); // Order updates vs. GP.
200 list = rtp->cbs_head;
201 rtp->cbs_head = NULL;
202 rtp->cbs_tail = &rtp->cbs_head;
203 raw_spin_unlock_irqrestore(&rtp->cbs_lock, flags);
204
205 /* If there were none, wait a bit and start over. */
206 if (!list) {
207 wait_event_interruptible(rtp->cbs_wq,
208 READ_ONCE(rtp->cbs_head));
209 if (!rtp->cbs_head) {
210 WARN_ON(signal_pending(current));
211 set_tasks_gp_state(rtp, RTGS_WAIT_WAIT_CBS);
212 schedule_timeout_idle(HZ/10);
213 }
214 continue;
215 }
216
217 // Wait for one grace period.
218 set_tasks_gp_state(rtp, RTGS_WAIT_GP);
219 rtp->gp_start = jiffies;
220 rtp->gp_func(rtp);
221 rtp->n_gps++;
222
223 /* Invoke the callbacks. */
224 set_tasks_gp_state(rtp, RTGS_INVOKE_CBS);
225 while (list) {
226 next = list->next;
227 local_bh_disable();
228 list->func(list);
229 local_bh_enable();
230 list = next;
231 cond_resched();
232 }
233 /* Paranoid sleep to keep this from entering a tight loop */
234 schedule_timeout_idle(HZ/10);
235
236 set_tasks_gp_state(rtp, RTGS_WAIT_CBS);
237 }
238 }
239
240 /* Spawn RCU-tasks grace-period kthread, e.g., at core_initcall() time. */
241 static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp)
242 {
243 struct task_struct *t;
244
245 t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname);
246 if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name))
247 return;
248 smp_mb(); /* Ensure others see full kthread. */
249 }
250
251 #ifndef CONFIG_TINY_RCU
252
253 /*
254 * Print any non-default Tasks RCU settings.
255 */
256 static void __init rcu_tasks_bootup_oddness(void)
257 {
258 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
259 if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
260 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
261 #endif /* #ifdef CONFIG_TASKS_RCU */
262 #ifdef CONFIG_TASKS_RCU
263 pr_info("\tTrampoline variant of Tasks RCU enabled.\n");
264 #endif /* #ifdef CONFIG_TASKS_RCU */
265 #ifdef CONFIG_TASKS_RUDE_RCU
266 pr_info("\tRude variant of Tasks RCU enabled.\n");
267 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
268 #ifdef CONFIG_TASKS_TRACE_RCU
269 pr_info("\tTracing variant of Tasks RCU enabled.\n");
270 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
271 }
272
273 #endif /* #ifndef CONFIG_TINY_RCU */
274
275 #ifndef CONFIG_TINY_RCU
276 /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */
277 static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s)
278 {
279 pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c %s\n",
280 rtp->kname,
281 tasks_gp_state_getname(rtp), data_race(rtp->gp_state),
282 jiffies - data_race(rtp->gp_jiffies),
283 data_race(rtp->n_gps),
284 data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis),
285 ".k"[!!data_race(rtp->kthread_ptr)],
286 ".C"[!!data_race(rtp->cbs_head)],
287 s);
288 }
289 #endif /* #ifndef CONFIG_TINY_RCU */
290
291 static void exit_tasks_rcu_finish_trace(struct task_struct *t);
292
293 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
294
295 ////////////////////////////////////////////////////////////////////////
296 //
297 // Shared code between task-list-scanning variants of Tasks RCU.
298
299 /* Wait for one RCU-tasks grace period. */
300 static void rcu_tasks_wait_gp(struct rcu_tasks *rtp)
301 {
302 struct task_struct *g, *t;
303 unsigned long lastreport;
304 LIST_HEAD(holdouts);
305 int fract;
306
307 set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP);
308 rtp->pregp_func();
309
310 /*
311 * There were callbacks, so we need to wait for an RCU-tasks
312 * grace period. Start off by scanning the task list for tasks
313 * that are not already voluntarily blocked. Mark these tasks
314 * and make a list of them in holdouts.
315 */
316 set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST);
317 rcu_read_lock();
318 for_each_process_thread(g, t)
319 rtp->pertask_func(t, &holdouts);
320 rcu_read_unlock();
321
322 set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST);
323 rtp->postscan_func(&holdouts);
324
325 /*
326 * Each pass through the following loop scans the list of holdout
327 * tasks, removing any that are no longer holdouts. When the list
328 * is empty, we are done.
329 */
330 lastreport = jiffies;
331
332 /* Start off with HZ/10 wait and slowly back off to 1 HZ wait. */
333 fract = 10;
334
335 for (;;) {
336 bool firstreport;
337 bool needreport;
338 int rtst;
339
340 if (list_empty(&holdouts))
341 break;
342
343 /* Slowly back off waiting for holdouts */
344 set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS);
345 schedule_timeout_idle(HZ/fract);
346
347 if (fract > 1)
348 fract--;
349
350 rtst = READ_ONCE(rcu_task_stall_timeout);
351 needreport = rtst > 0 && time_after(jiffies, lastreport + rtst);
352 if (needreport)
353 lastreport = jiffies;
354 firstreport = true;
355 WARN_ON(signal_pending(current));
356 set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS);
357 rtp->holdouts_func(&holdouts, needreport, &firstreport);
358 }
359
360 set_tasks_gp_state(rtp, RTGS_POST_GP);
361 rtp->postgp_func(rtp);
362 }
363
364 #endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */
365
366 #ifdef CONFIG_TASKS_RCU
367
368 ////////////////////////////////////////////////////////////////////////
369 //
370 // Simple variant of RCU whose quiescent states are voluntary context
371 // switch, cond_resched_rcu_qs(), user-space execution, and idle.
372 // As such, grace periods can take one good long time. There are no
373 // read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
374 // because this implementation is intended to get the system into a safe
375 // state for some of the manipulations involved in tracing and the like.
376 // Finally, this implementation does not support high call_rcu_tasks()
377 // rates from multiple CPUs. If this is required, per-CPU callback lists
378 // will be needed.
379
380 /* Pre-grace-period preparation. */
381 static void rcu_tasks_pregp_step(void)
382 {
383 /*
384 * Wait for all pre-existing t->on_rq and t->nvcsw transitions
385 * to complete. Invoking synchronize_rcu() suffices because all
386 * these transitions occur with interrupts disabled. Without this
387 * synchronize_rcu(), a read-side critical section that started
388 * before the grace period might be incorrectly seen as having
389 * started after the grace period.
390 *
391 * This synchronize_rcu() also dispenses with the need for a
392 * memory barrier on the first store to t->rcu_tasks_holdout,
393 * as it forces the store to happen after the beginning of the
394 * grace period.
395 */
396 synchronize_rcu();
397 }
398
399 /* Per-task initial processing. */
400 static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop)
401 {
402 if (t != current && READ_ONCE(t->on_rq) && !is_idle_task(t)) {
403 get_task_struct(t);
404 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
405 WRITE_ONCE(t->rcu_tasks_holdout, true);
406 list_add(&t->rcu_tasks_holdout_list, hop);
407 }
408 }
409
410 /* Processing between scanning taskslist and draining the holdout list. */
411 static void rcu_tasks_postscan(struct list_head *hop)
412 {
413 /*
414 * Wait for tasks that are in the process of exiting. This
415 * does only part of the job, ensuring that all tasks that were
416 * previously exiting reach the point where they have disabled
417 * preemption, allowing the later synchronize_rcu() to finish
418 * the job.
419 */
420 synchronize_srcu(&tasks_rcu_exit_srcu);
421 }
422
423 /* See if tasks are still holding out, complain if so. */
424 static void check_holdout_task(struct task_struct *t,
425 bool needreport, bool *firstreport)
426 {
427 int cpu;
428
429 if (!READ_ONCE(t->rcu_tasks_holdout) ||
430 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
431 !READ_ONCE(t->on_rq) ||
432 (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
433 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
434 WRITE_ONCE(t->rcu_tasks_holdout, false);
435 list_del_init(&t->rcu_tasks_holdout_list);
436 put_task_struct(t);
437 return;
438 }
439 rcu_request_urgent_qs_task(t);
440 if (!needreport)
441 return;
442 if (*firstreport) {
443 pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
444 *firstreport = false;
445 }
446 cpu = task_cpu(t);
447 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
448 t, ".I"[is_idle_task(t)],
449 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
450 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
451 t->rcu_tasks_idle_cpu, cpu);
452 sched_show_task(t);
453 }
454
455 /* Scan the holdout lists for tasks no longer holding out. */
456 static void check_all_holdout_tasks(struct list_head *hop,
457 bool needreport, bool *firstreport)
458 {
459 struct task_struct *t, *t1;
460
461 list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) {
462 check_holdout_task(t, needreport, firstreport);
463 cond_resched();
464 }
465 }
466
467 /* Finish off the Tasks-RCU grace period. */
468 static void rcu_tasks_postgp(struct rcu_tasks *rtp)
469 {
470 /*
471 * Because ->on_rq and ->nvcsw are not guaranteed to have a full
472 * memory barriers prior to them in the schedule() path, memory
473 * reordering on other CPUs could cause their RCU-tasks read-side
474 * critical sections to extend past the end of the grace period.
475 * However, because these ->nvcsw updates are carried out with
476 * interrupts disabled, we can use synchronize_rcu() to force the
477 * needed ordering on all such CPUs.
478 *
479 * This synchronize_rcu() also confines all ->rcu_tasks_holdout
480 * accesses to be within the grace period, avoiding the need for
481 * memory barriers for ->rcu_tasks_holdout accesses.
482 *
483 * In addition, this synchronize_rcu() waits for exiting tasks
484 * to complete their final preempt_disable() region of execution,
485 * cleaning up after the synchronize_srcu() above.
486 */
487 synchronize_rcu();
488 }
489
490 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func);
491 DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks");
492
493 /**
494 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
495 * @rhp: structure to be used for queueing the RCU updates.
496 * @func: actual callback function to be invoked after the grace period
497 *
498 * The callback function will be invoked some time after a full grace
499 * period elapses, in other words after all currently executing RCU
500 * read-side critical sections have completed. call_rcu_tasks() assumes
501 * that the read-side critical sections end at a voluntary context
502 * switch (not a preemption!), cond_resched_rcu_qs(), entry into idle,
503 * or transition to usermode execution. As such, there are no read-side
504 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
505 * this primitive is intended to determine that all tasks have passed
506 * through a safe state, not so much for data-strcuture synchronization.
507 *
508 * See the description of call_rcu() for more detailed information on
509 * memory ordering guarantees.
510 */
511 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
512 {
513 call_rcu_tasks_generic(rhp, func, &rcu_tasks);
514 }
515 EXPORT_SYMBOL_GPL(call_rcu_tasks);
516
517 /**
518 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
519 *
520 * Control will return to the caller some time after a full rcu-tasks
521 * grace period has elapsed, in other words after all currently
522 * executing rcu-tasks read-side critical sections have elapsed. These
523 * read-side critical sections are delimited by calls to schedule(),
524 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
525 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
526 *
527 * This is a very specialized primitive, intended only for a few uses in
528 * tracing and other situations requiring manipulation of function
529 * preambles and profiling hooks. The synchronize_rcu_tasks() function
530 * is not (yet) intended for heavy use from multiple CPUs.
531 *
532 * See the description of synchronize_rcu() for more detailed information
533 * on memory ordering guarantees.
534 */
535 void synchronize_rcu_tasks(void)
536 {
537 synchronize_rcu_tasks_generic(&rcu_tasks);
538 }
539 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
540
541 /**
542 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
543 *
544 * Although the current implementation is guaranteed to wait, it is not
545 * obligated to, for example, if there are no pending callbacks.
546 */
547 void rcu_barrier_tasks(void)
548 {
549 /* There is only one callback queue, so this is easy. ;-) */
550 synchronize_rcu_tasks();
551 }
552 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
553
554 static int __init rcu_spawn_tasks_kthread(void)
555 {
556 rcu_tasks.pregp_func = rcu_tasks_pregp_step;
557 rcu_tasks.pertask_func = rcu_tasks_pertask;
558 rcu_tasks.postscan_func = rcu_tasks_postscan;
559 rcu_tasks.holdouts_func = check_all_holdout_tasks;
560 rcu_tasks.postgp_func = rcu_tasks_postgp;
561 rcu_spawn_tasks_kthread_generic(&rcu_tasks);
562 return 0;
563 }
564 core_initcall(rcu_spawn_tasks_kthread);
565
566 #ifndef CONFIG_TINY_RCU
567 static void show_rcu_tasks_classic_gp_kthread(void)
568 {
569 show_rcu_tasks_generic_gp_kthread(&rcu_tasks, "");
570 }
571 #endif /* #ifndef CONFIG_TINY_RCU */
572
573 /* Do the srcu_read_lock() for the above synchronize_srcu(). */
574 void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu)
575 {
576 preempt_disable();
577 current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
578 preempt_enable();
579 }
580
581 /* Do the srcu_read_unlock() for the above synchronize_srcu(). */
582 void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu)
583 {
584 struct task_struct *t = current;
585
586 preempt_disable();
587 __srcu_read_unlock(&tasks_rcu_exit_srcu, t->rcu_tasks_idx);
588 preempt_enable();
589 exit_tasks_rcu_finish_trace(t);
590 }
591
592 #else /* #ifdef CONFIG_TASKS_RCU */
593 static void show_rcu_tasks_classic_gp_kthread(void) { }
594 void exit_tasks_rcu_start(void) { }
595 void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); }
596 #endif /* #else #ifdef CONFIG_TASKS_RCU */
597
598 #ifdef CONFIG_TASKS_RUDE_RCU
599
600 ////////////////////////////////////////////////////////////////////////
601 //
602 // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of
603 // passing an empty function to schedule_on_each_cpu(). This approach
604 // provides an asynchronous call_rcu_tasks_rude() API and batching
605 // of concurrent calls to the synchronous synchronize_rcu_rude() API.
606 // This sends IPIs far and wide and induces otherwise unnecessary context
607 // switches on all online CPUs, whether idle or not.
608
609 // Empty function to allow workqueues to force a context switch.
610 static void rcu_tasks_be_rude(struct work_struct *work)
611 {
612 }
613
614 // Wait for one rude RCU-tasks grace period.
615 static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp)
616 {
617 rtp->n_ipis += cpumask_weight(cpu_online_mask);
618 schedule_on_each_cpu(rcu_tasks_be_rude);
619 }
620
621 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func);
622 DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude,
623 "RCU Tasks Rude");
624
625 /**
626 * call_rcu_tasks_rude() - Queue a callback rude task-based grace period
627 * @rhp: structure to be used for queueing the RCU updates.
628 * @func: actual callback function to be invoked after the grace period
629 *
630 * The callback function will be invoked some time after a full grace
631 * period elapses, in other words after all currently executing RCU
632 * read-side critical sections have completed. call_rcu_tasks_rude()
633 * assumes that the read-side critical sections end at context switch,
634 * cond_resched_rcu_qs(), or transition to usermode execution. As such,
635 * there are no read-side primitives analogous to rcu_read_lock() and
636 * rcu_read_unlock() because this primitive is intended to determine
637 * that all tasks have passed through a safe state, not so much for
638 * data-strcuture synchronization.
639 *
640 * See the description of call_rcu() for more detailed information on
641 * memory ordering guarantees.
642 */
643 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func)
644 {
645 call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude);
646 }
647 EXPORT_SYMBOL_GPL(call_rcu_tasks_rude);
648
649 /**
650 * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period
651 *
652 * Control will return to the caller some time after a rude rcu-tasks
653 * grace period has elapsed, in other words after all currently
654 * executing rcu-tasks read-side critical sections have elapsed. These
655 * read-side critical sections are delimited by calls to schedule(),
656 * cond_resched_tasks_rcu_qs(), userspace execution, and (in theory,
657 * anyway) cond_resched().
658 *
659 * This is a very specialized primitive, intended only for a few uses in
660 * tracing and other situations requiring manipulation of function preambles
661 * and profiling hooks. The synchronize_rcu_tasks_rude() function is not
662 * (yet) intended for heavy use from multiple CPUs.
663 *
664 * See the description of synchronize_rcu() for more detailed information
665 * on memory ordering guarantees.
666 */
667 void synchronize_rcu_tasks_rude(void)
668 {
669 synchronize_rcu_tasks_generic(&rcu_tasks_rude);
670 }
671 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude);
672
673 /**
674 * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks.
675 *
676 * Although the current implementation is guaranteed to wait, it is not
677 * obligated to, for example, if there are no pending callbacks.
678 */
679 void rcu_barrier_tasks_rude(void)
680 {
681 /* There is only one callback queue, so this is easy. ;-) */
682 synchronize_rcu_tasks_rude();
683 }
684 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude);
685
686 static int __init rcu_spawn_tasks_rude_kthread(void)
687 {
688 rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude);
689 return 0;
690 }
691 core_initcall(rcu_spawn_tasks_rude_kthread);
692
693 #ifndef CONFIG_TINY_RCU
694 static void show_rcu_tasks_rude_gp_kthread(void)
695 {
696 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, "");
697 }
698 #endif /* #ifndef CONFIG_TINY_RCU */
699
700 #else /* #ifdef CONFIG_TASKS_RUDE_RCU */
701 static void show_rcu_tasks_rude_gp_kthread(void) {}
702 #endif /* #else #ifdef CONFIG_TASKS_RUDE_RCU */
703
704 ////////////////////////////////////////////////////////////////////////
705 //
706 // Tracing variant of Tasks RCU. This variant is designed to be used
707 // to protect tracing hooks, including those of BPF. This variant
708 // therefore:
709 //
710 // 1. Has explicit read-side markers to allow finite grace periods
711 // in the face of in-kernel loops for PREEMPT=n builds.
712 //
713 // 2. Protects code in the idle loop, exception entry/exit, and
714 // CPU-hotplug code paths, similar to the capabilities of SRCU.
715 //
716 // 3. Avoids expensive read-side instruction, having overhead similar
717 // to that of Preemptible RCU.
718 //
719 // There are of course downsides. The grace-period code can send IPIs to
720 // CPUs, even when those CPUs are in the idle loop or in nohz_full userspace.
721 // It is necessary to scan the full tasklist, much as for Tasks RCU. There
722 // is a single callback queue guarded by a single lock, again, much as for
723 // Tasks RCU. If needed, these downsides can be at least partially remedied.
724 //
725 // Perhaps most important, this variant of RCU does not affect the vanilla
726 // flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace
727 // readers can operate from idle, offline, and exception entry/exit in no
728 // way allows rcu_preempt and rcu_sched readers to also do so.
729
730 // The lockdep state must be outside of #ifdef to be useful.
731 #ifdef CONFIG_DEBUG_LOCK_ALLOC
732 static struct lock_class_key rcu_lock_trace_key;
733 struct lockdep_map rcu_trace_lock_map =
734 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key);
735 EXPORT_SYMBOL_GPL(rcu_trace_lock_map);
736 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
737
738 #ifdef CONFIG_TASKS_TRACE_RCU
739
740 static atomic_t trc_n_readers_need_end; // Number of waited-for readers.
741 static DECLARE_WAIT_QUEUE_HEAD(trc_wait); // List of holdout tasks.
742
743 // Record outstanding IPIs to each CPU. No point in sending two...
744 static DEFINE_PER_CPU(bool, trc_ipi_to_cpu);
745
746 // The number of detections of task quiescent state relying on
747 // heavyweight readers executing explicit memory barriers.
748 unsigned long n_heavy_reader_attempts;
749 unsigned long n_heavy_reader_updates;
750 unsigned long n_heavy_reader_ofl_updates;
751
752 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func);
753 DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace,
754 "RCU Tasks Trace");
755
756 /*
757 * This irq_work handler allows rcu_read_unlock_trace() to be invoked
758 * while the scheduler locks are held.
759 */
760 static void rcu_read_unlock_iw(struct irq_work *iwp)
761 {
762 wake_up(&trc_wait);
763 }
764 static DEFINE_IRQ_WORK(rcu_tasks_trace_iw, rcu_read_unlock_iw);
765
766 /* If we are the last reader, wake up the grace-period kthread. */
767 void rcu_read_unlock_trace_special(struct task_struct *t, int nesting)
768 {
769 int nq = t->trc_reader_special.b.need_qs;
770
771 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) &&
772 t->trc_reader_special.b.need_mb)
773 smp_mb(); // Pairs with update-side barriers.
774 // Update .need_qs before ->trc_reader_nesting for irq/NMI handlers.
775 if (nq)
776 WRITE_ONCE(t->trc_reader_special.b.need_qs, false);
777 WRITE_ONCE(t->trc_reader_nesting, nesting);
778 if (nq && atomic_dec_and_test(&trc_n_readers_need_end))
779 irq_work_queue(&rcu_tasks_trace_iw);
780 }
781 EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special);
782
783 /* Add a task to the holdout list, if it is not already on the list. */
784 static void trc_add_holdout(struct task_struct *t, struct list_head *bhp)
785 {
786 if (list_empty(&t->trc_holdout_list)) {
787 get_task_struct(t);
788 list_add(&t->trc_holdout_list, bhp);
789 }
790 }
791
792 /* Remove a task from the holdout list, if it is in fact present. */
793 static void trc_del_holdout(struct task_struct *t)
794 {
795 if (!list_empty(&t->trc_holdout_list)) {
796 list_del_init(&t->trc_holdout_list);
797 put_task_struct(t);
798 }
799 }
800
801 /* IPI handler to check task state. */
802 static void trc_read_check_handler(void *t_in)
803 {
804 struct task_struct *t = current;
805 struct task_struct *texp = t_in;
806
807 // If the task is no longer running on this CPU, leave.
808 if (unlikely(texp != t)) {
809 if (WARN_ON_ONCE(atomic_dec_and_test(&trc_n_readers_need_end)))
810 wake_up(&trc_wait);
811 goto reset_ipi; // Already on holdout list, so will check later.
812 }
813
814 // If the task is not in a read-side critical section, and
815 // if this is the last reader, awaken the grace-period kthread.
816 if (likely(!t->trc_reader_nesting)) {
817 if (WARN_ON_ONCE(atomic_dec_and_test(&trc_n_readers_need_end)))
818 wake_up(&trc_wait);
819 // Mark as checked after decrement to avoid false
820 // positives on the above WARN_ON_ONCE().
821 WRITE_ONCE(t->trc_reader_checked, true);
822 goto reset_ipi;
823 }
824 WRITE_ONCE(t->trc_reader_checked, true);
825
826 // Get here if the task is in a read-side critical section. Set
827 // its state so that it will awaken the grace-period kthread upon
828 // exit from that critical section.
829 WARN_ON_ONCE(t->trc_reader_special.b.need_qs);
830 WRITE_ONCE(t->trc_reader_special.b.need_qs, true);
831
832 reset_ipi:
833 // Allow future IPIs to be sent on CPU and for task.
834 // Also order this IPI handler against any later manipulations of
835 // the intended task.
836 smp_store_release(&per_cpu(trc_ipi_to_cpu, smp_processor_id()), false); // ^^^
837 smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^
838 }
839
840 /* Callback function for scheduler to check locked-down task. */
841 static bool trc_inspect_reader(struct task_struct *t, void *arg)
842 {
843 int cpu = task_cpu(t);
844 bool in_qs = false;
845 bool ofl = cpu_is_offline(cpu);
846
847 if (task_curr(t)) {
848 WARN_ON_ONCE(ofl && !is_idle_task(t));
849
850 // If no chance of heavyweight readers, do it the hard way.
851 if (!ofl && !IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
852 return false;
853
854 // If heavyweight readers are enabled on the remote task,
855 // we can inspect its state despite its currently running.
856 // However, we cannot safely change its state.
857 n_heavy_reader_attempts++;
858 if (!ofl && // Check for "running" idle tasks on offline CPUs.
859 !rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting))
860 return false; // No quiescent state, do it the hard way.
861 n_heavy_reader_updates++;
862 if (ofl)
863 n_heavy_reader_ofl_updates++;
864 in_qs = true;
865 } else {
866 in_qs = likely(!t->trc_reader_nesting);
867 }
868
869 // Mark as checked. Because this is called from the grace-period
870 // kthread, also remove the task from the holdout list.
871 t->trc_reader_checked = true;
872 trc_del_holdout(t);
873
874 if (in_qs)
875 return true; // Already in quiescent state, done!!!
876
877 // The task is in a read-side critical section, so set up its
878 // state so that it will awaken the grace-period kthread upon exit
879 // from that critical section.
880 atomic_inc(&trc_n_readers_need_end); // One more to wait on.
881 WARN_ON_ONCE(t->trc_reader_special.b.need_qs);
882 WRITE_ONCE(t->trc_reader_special.b.need_qs, true);
883 return true;
884 }
885
886 /* Attempt to extract the state for the specified task. */
887 static void trc_wait_for_one_reader(struct task_struct *t,
888 struct list_head *bhp)
889 {
890 int cpu;
891
892 // If a previous IPI is still in flight, let it complete.
893 if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI
894 return;
895
896 // The current task had better be in a quiescent state.
897 if (t == current) {
898 t->trc_reader_checked = true;
899 trc_del_holdout(t);
900 WARN_ON_ONCE(t->trc_reader_nesting);
901 return;
902 }
903
904 // Attempt to nail down the task for inspection.
905 get_task_struct(t);
906 if (try_invoke_on_locked_down_task(t, trc_inspect_reader, NULL)) {
907 put_task_struct(t);
908 return;
909 }
910 put_task_struct(t);
911
912 // If currently running, send an IPI, either way, add to list.
913 trc_add_holdout(t, bhp);
914 if (task_curr(t) && time_after(jiffies, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) {
915 // The task is currently running, so try IPIing it.
916 cpu = task_cpu(t);
917
918 // If there is already an IPI outstanding, let it happen.
919 if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0)
920 return;
921
922 atomic_inc(&trc_n_readers_need_end);
923 per_cpu(trc_ipi_to_cpu, cpu) = true;
924 t->trc_ipi_to_cpu = cpu;
925 rcu_tasks_trace.n_ipis++;
926 if (smp_call_function_single(cpu,
927 trc_read_check_handler, t, 0)) {
928 // Just in case there is some other reason for
929 // failure than the target CPU being offline.
930 rcu_tasks_trace.n_ipis_fails++;
931 per_cpu(trc_ipi_to_cpu, cpu) = false;
932 t->trc_ipi_to_cpu = cpu;
933 if (atomic_dec_and_test(&trc_n_readers_need_end)) {
934 WARN_ON_ONCE(1);
935 wake_up(&trc_wait);
936 }
937 }
938 }
939 }
940
941 /* Initialize for a new RCU-tasks-trace grace period. */
942 static void rcu_tasks_trace_pregp_step(void)
943 {
944 int cpu;
945
946 // Allow for fast-acting IPIs.
947 atomic_set(&trc_n_readers_need_end, 1);
948
949 // There shouldn't be any old IPIs, but...
950 for_each_possible_cpu(cpu)
951 WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu));
952
953 // Disable CPU hotplug across the tasklist scan.
954 // This also waits for all readers in CPU-hotplug code paths.
955 cpus_read_lock();
956 }
957
958 /* Do first-round processing for the specified task. */
959 static void rcu_tasks_trace_pertask(struct task_struct *t,
960 struct list_head *hop)
961 {
962 WRITE_ONCE(t->trc_reader_special.b.need_qs, false);
963 WRITE_ONCE(t->trc_reader_checked, false);
964 t->trc_ipi_to_cpu = -1;
965 trc_wait_for_one_reader(t, hop);
966 }
967
968 /*
969 * Do intermediate processing between task and holdout scans and
970 * pick up the idle tasks.
971 */
972 static void rcu_tasks_trace_postscan(struct list_head *hop)
973 {
974 int cpu;
975
976 for_each_possible_cpu(cpu)
977 rcu_tasks_trace_pertask(idle_task(cpu), hop);
978
979 // Re-enable CPU hotplug now that the tasklist scan has completed.
980 cpus_read_unlock();
981
982 // Wait for late-stage exiting tasks to finish exiting.
983 // These might have passed the call to exit_tasks_rcu_finish().
984 synchronize_rcu();
985 // Any tasks that exit after this point will set ->trc_reader_checked.
986 }
987
988 /* Show the state of a task stalling the current RCU tasks trace GP. */
989 static void show_stalled_task_trace(struct task_struct *t, bool *firstreport)
990 {
991 int cpu;
992
993 if (*firstreport) {
994 pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n");
995 *firstreport = false;
996 }
997 // FIXME: This should attempt to use try_invoke_on_nonrunning_task().
998 cpu = task_cpu(t);
999 pr_alert("P%d: %c%c%c nesting: %d%c cpu: %d\n",
1000 t->pid,
1001 ".I"[READ_ONCE(t->trc_ipi_to_cpu) > 0],
1002 ".i"[is_idle_task(t)],
1003 ".N"[cpu > 0 && tick_nohz_full_cpu(cpu)],
1004 t->trc_reader_nesting,
1005 " N"[!!t->trc_reader_special.b.need_qs],
1006 cpu);
1007 sched_show_task(t);
1008 }
1009
1010 /* List stalled IPIs for RCU tasks trace. */
1011 static void show_stalled_ipi_trace(void)
1012 {
1013 int cpu;
1014
1015 for_each_possible_cpu(cpu)
1016 if (per_cpu(trc_ipi_to_cpu, cpu))
1017 pr_alert("\tIPI outstanding to CPU %d\n", cpu);
1018 }
1019
1020 /* Do one scan of the holdout list. */
1021 static void check_all_holdout_tasks_trace(struct list_head *hop,
1022 bool needreport, bool *firstreport)
1023 {
1024 struct task_struct *g, *t;
1025
1026 // Disable CPU hotplug across the holdout list scan.
1027 cpus_read_lock();
1028
1029 list_for_each_entry_safe(t, g, hop, trc_holdout_list) {
1030 // If safe and needed, try to check the current task.
1031 if (READ_ONCE(t->trc_ipi_to_cpu) == -1 &&
1032 !READ_ONCE(t->trc_reader_checked))
1033 trc_wait_for_one_reader(t, hop);
1034
1035 // If check succeeded, remove this task from the list.
1036 if (READ_ONCE(t->trc_reader_checked))
1037 trc_del_holdout(t);
1038 else if (needreport)
1039 show_stalled_task_trace(t, firstreport);
1040 }
1041
1042 // Re-enable CPU hotplug now that the holdout list scan has completed.
1043 cpus_read_unlock();
1044
1045 if (needreport) {
1046 if (firstreport)
1047 pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n");
1048 show_stalled_ipi_trace();
1049 }
1050 }
1051
1052 /* Wait for grace period to complete and provide ordering. */
1053 static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp)
1054 {
1055 bool firstreport;
1056 struct task_struct *g, *t;
1057 LIST_HEAD(holdouts);
1058 long ret;
1059
1060 // Remove the safety count.
1061 smp_mb__before_atomic(); // Order vs. earlier atomics
1062 atomic_dec(&trc_n_readers_need_end);
1063 smp_mb__after_atomic(); // Order vs. later atomics
1064
1065 // Wait for readers.
1066 set_tasks_gp_state(rtp, RTGS_WAIT_READERS);
1067 for (;;) {
1068 ret = wait_event_idle_exclusive_timeout(
1069 trc_wait,
1070 atomic_read(&trc_n_readers_need_end) == 0,
1071 READ_ONCE(rcu_task_stall_timeout));
1072 if (ret)
1073 break; // Count reached zero.
1074 // Stall warning time, so make a list of the offenders.
1075 for_each_process_thread(g, t)
1076 if (READ_ONCE(t->trc_reader_special.b.need_qs))
1077 trc_add_holdout(t, &holdouts);
1078 firstreport = true;
1079 list_for_each_entry_safe(t, g, &holdouts, trc_holdout_list)
1080 if (READ_ONCE(t->trc_reader_special.b.need_qs)) {
1081 show_stalled_task_trace(t, &firstreport);
1082 trc_del_holdout(t);
1083 }
1084 if (firstreport)
1085 pr_err("INFO: rcu_tasks_trace detected stalls? (Counter/taskslist mismatch?)\n");
1086 show_stalled_ipi_trace();
1087 pr_err("\t%d holdouts\n", atomic_read(&trc_n_readers_need_end));
1088 }
1089 smp_mb(); // Caller's code must be ordered after wakeup.
1090 // Pairs with pretty much every ordering primitive.
1091 }
1092
1093 /* Report any needed quiescent state for this exiting task. */
1094 static void exit_tasks_rcu_finish_trace(struct task_struct *t)
1095 {
1096 WRITE_ONCE(t->trc_reader_checked, true);
1097 WARN_ON_ONCE(t->trc_reader_nesting);
1098 WRITE_ONCE(t->trc_reader_nesting, 0);
1099 if (WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs)))
1100 rcu_read_unlock_trace_special(t, 0);
1101 }
1102
1103 /**
1104 * call_rcu_tasks_trace() - Queue a callback trace task-based grace period
1105 * @rhp: structure to be used for queueing the RCU updates.
1106 * @func: actual callback function to be invoked after the grace period
1107 *
1108 * The callback function will be invoked some time after a full grace
1109 * period elapses, in other words after all currently executing RCU
1110 * read-side critical sections have completed. call_rcu_tasks_trace()
1111 * assumes that the read-side critical sections end at context switch,
1112 * cond_resched_rcu_qs(), or transition to usermode execution. As such,
1113 * there are no read-side primitives analogous to rcu_read_lock() and
1114 * rcu_read_unlock() because this primitive is intended to determine
1115 * that all tasks have passed through a safe state, not so much for
1116 * data-strcuture synchronization.
1117 *
1118 * See the description of call_rcu() for more detailed information on
1119 * memory ordering guarantees.
1120 */
1121 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func)
1122 {
1123 call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace);
1124 }
1125 EXPORT_SYMBOL_GPL(call_rcu_tasks_trace);
1126
1127 /**
1128 * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period
1129 *
1130 * Control will return to the caller some time after a trace rcu-tasks
1131 * grace period has elapsed, in other words after all currently executing
1132 * rcu-tasks read-side critical sections have elapsed. These read-side
1133 * critical sections are delimited by calls to rcu_read_lock_trace()
1134 * and rcu_read_unlock_trace().
1135 *
1136 * This is a very specialized primitive, intended only for a few uses in
1137 * tracing and other situations requiring manipulation of function preambles
1138 * and profiling hooks. The synchronize_rcu_tasks_trace() function is not
1139 * (yet) intended for heavy use from multiple CPUs.
1140 *
1141 * See the description of synchronize_rcu() for more detailed information
1142 * on memory ordering guarantees.
1143 */
1144 void synchronize_rcu_tasks_trace(void)
1145 {
1146 RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section");
1147 synchronize_rcu_tasks_generic(&rcu_tasks_trace);
1148 }
1149 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace);
1150
1151 /**
1152 * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks.
1153 *
1154 * Although the current implementation is guaranteed to wait, it is not
1155 * obligated to, for example, if there are no pending callbacks.
1156 */
1157 void rcu_barrier_tasks_trace(void)
1158 {
1159 /* There is only one callback queue, so this is easy. ;-) */
1160 synchronize_rcu_tasks_trace();
1161 }
1162 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace);
1163
1164 static int __init rcu_spawn_tasks_trace_kthread(void)
1165 {
1166 rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step;
1167 rcu_tasks_trace.pertask_func = rcu_tasks_trace_pertask;
1168 rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan;
1169 rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace;
1170 rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp;
1171 rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace);
1172 return 0;
1173 }
1174 core_initcall(rcu_spawn_tasks_trace_kthread);
1175
1176 #ifndef CONFIG_TINY_RCU
1177 static void show_rcu_tasks_trace_gp_kthread(void)
1178 {
1179 char buf[64];
1180
1181 sprintf(buf, "N%d h:%lu/%lu/%lu", atomic_read(&trc_n_readers_need_end),
1182 data_race(n_heavy_reader_ofl_updates),
1183 data_race(n_heavy_reader_updates),
1184 data_race(n_heavy_reader_attempts));
1185 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf);
1186 }
1187 #endif /* #ifndef CONFIG_TINY_RCU */
1188
1189 #else /* #ifdef CONFIG_TASKS_TRACE_RCU */
1190 static void exit_tasks_rcu_finish_trace(struct task_struct *t) { }
1191 static inline void show_rcu_tasks_trace_gp_kthread(void) {}
1192 #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */
1193
1194 #ifndef CONFIG_TINY_RCU
1195 void show_rcu_tasks_gp_kthreads(void)
1196 {
1197 show_rcu_tasks_classic_gp_kthread();
1198 show_rcu_tasks_rude_gp_kthread();
1199 show_rcu_tasks_trace_gp_kthread();
1200 }
1201 #endif /* #ifndef CONFIG_TINY_RCU */
1202
1203 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
1204 static inline void rcu_tasks_bootup_oddness(void) {}
1205 void show_rcu_tasks_gp_kthreads(void) {}
1206 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */