]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/rcu/tree.c
treewide: make "nr_cpu_ids" unsigned
[mirror_ubuntu-bionic-kernel.git] / kernel / rcu / tree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate_wait.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/sched/debug.h>
39 #include <linux/nmi.h>
40 #include <linux/atomic.h>
41 #include <linux/bitops.h>
42 #include <linux/export.h>
43 #include <linux/completion.h>
44 #include <linux/moduleparam.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <uapi/linux/sched/types.h>
54 #include <linux/prefetch.h>
55 #include <linux/delay.h>
56 #include <linux/stop_machine.h>
57 #include <linux/random.h>
58 #include <linux/trace_events.h>
59 #include <linux/suspend.h>
60 #include <linux/ftrace.h>
61
62 #include "tree.h"
63 #include "rcu.h"
64
65 #ifdef MODULE_PARAM_PREFIX
66 #undef MODULE_PARAM_PREFIX
67 #endif
68 #define MODULE_PARAM_PREFIX "rcutree."
69
70 /* Data structures. */
71
72 /*
73 * In order to export the rcu_state name to the tracing tools, it
74 * needs to be added in the __tracepoint_string section.
75 * This requires defining a separate variable tp_<sname>_varname
76 * that points to the string being used, and this will allow
77 * the tracing userspace tools to be able to decipher the string
78 * address to the matching string.
79 */
80 #ifdef CONFIG_TRACING
81 # define DEFINE_RCU_TPS(sname) \
82 static char sname##_varname[] = #sname; \
83 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
84 # define RCU_STATE_NAME(sname) sname##_varname
85 #else
86 # define DEFINE_RCU_TPS(sname)
87 # define RCU_STATE_NAME(sname) __stringify(sname)
88 #endif
89
90 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
91 DEFINE_RCU_TPS(sname) \
92 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
93 struct rcu_state sname##_state = { \
94 .level = { &sname##_state.node[0] }, \
95 .rda = &sname##_data, \
96 .call = cr, \
97 .gp_state = RCU_GP_IDLE, \
98 .gpnum = 0UL - 300UL, \
99 .completed = 0UL - 300UL, \
100 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
101 .name = RCU_STATE_NAME(sname), \
102 .abbr = sabbr, \
103 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
104 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
105 }
106
107 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
108 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
109
110 static struct rcu_state *const rcu_state_p;
111 LIST_HEAD(rcu_struct_flavors);
112
113 /* Dump rcu_node combining tree at boot to verify correct setup. */
114 static bool dump_tree;
115 module_param(dump_tree, bool, 0444);
116 /* Control rcu_node-tree auto-balancing at boot time. */
117 static bool rcu_fanout_exact;
118 module_param(rcu_fanout_exact, bool, 0444);
119 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
120 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
121 module_param(rcu_fanout_leaf, int, 0444);
122 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
123 /* Number of rcu_nodes at specified level. */
124 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
125 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
126 /* panic() on RCU Stall sysctl. */
127 int sysctl_panic_on_rcu_stall __read_mostly;
128
129 /*
130 * The rcu_scheduler_active variable is initialized to the value
131 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
132 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
133 * RCU can assume that there is but one task, allowing RCU to (for example)
134 * optimize synchronize_rcu() to a simple barrier(). When this variable
135 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
136 * to detect real grace periods. This variable is also used to suppress
137 * boot-time false positives from lockdep-RCU error checking. Finally, it
138 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
139 * is fully initialized, including all of its kthreads having been spawned.
140 */
141 int rcu_scheduler_active __read_mostly;
142 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
143
144 /*
145 * The rcu_scheduler_fully_active variable transitions from zero to one
146 * during the early_initcall() processing, which is after the scheduler
147 * is capable of creating new tasks. So RCU processing (for example,
148 * creating tasks for RCU priority boosting) must be delayed until after
149 * rcu_scheduler_fully_active transitions from zero to one. We also
150 * currently delay invocation of any RCU callbacks until after this point.
151 *
152 * It might later prove better for people registering RCU callbacks during
153 * early boot to take responsibility for these callbacks, but one step at
154 * a time.
155 */
156 static int rcu_scheduler_fully_active __read_mostly;
157
158 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
159 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
160 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
161 static void invoke_rcu_core(void);
162 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
163 static void rcu_report_exp_rdp(struct rcu_state *rsp,
164 struct rcu_data *rdp, bool wake);
165 static void sync_sched_exp_online_cleanup(int cpu);
166
167 /* rcuc/rcub kthread realtime priority */
168 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
169 module_param(kthread_prio, int, 0644);
170
171 /* Delay in jiffies for grace-period initialization delays, debug only. */
172
173 static int gp_preinit_delay;
174 module_param(gp_preinit_delay, int, 0444);
175 static int gp_init_delay;
176 module_param(gp_init_delay, int, 0444);
177 static int gp_cleanup_delay;
178 module_param(gp_cleanup_delay, int, 0444);
179
180 /*
181 * Number of grace periods between delays, normalized by the duration of
182 * the delay. The longer the delay, the more the grace periods between
183 * each delay. The reason for this normalization is that it means that,
184 * for non-zero delays, the overall slowdown of grace periods is constant
185 * regardless of the duration of the delay. This arrangement balances
186 * the need for long delays to increase some race probabilities with the
187 * need for fast grace periods to increase other race probabilities.
188 */
189 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
190
191 /*
192 * Track the rcutorture test sequence number and the update version
193 * number within a given test. The rcutorture_testseq is incremented
194 * on every rcutorture module load and unload, so has an odd value
195 * when a test is running. The rcutorture_vernum is set to zero
196 * when rcutorture starts and is incremented on each rcutorture update.
197 * These variables enable correlating rcutorture output with the
198 * RCU tracing information.
199 */
200 unsigned long rcutorture_testseq;
201 unsigned long rcutorture_vernum;
202
203 /*
204 * Compute the mask of online CPUs for the specified rcu_node structure.
205 * This will not be stable unless the rcu_node structure's ->lock is
206 * held, but the bit corresponding to the current CPU will be stable
207 * in most contexts.
208 */
209 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
210 {
211 return READ_ONCE(rnp->qsmaskinitnext);
212 }
213
214 /*
215 * Return true if an RCU grace period is in progress. The READ_ONCE()s
216 * permit this function to be invoked without holding the root rcu_node
217 * structure's ->lock, but of course results can be subject to change.
218 */
219 static int rcu_gp_in_progress(struct rcu_state *rsp)
220 {
221 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
222 }
223
224 /*
225 * Note a quiescent state. Because we do not need to know
226 * how many quiescent states passed, just if there was at least
227 * one since the start of the grace period, this just sets a flag.
228 * The caller must have disabled preemption.
229 */
230 void rcu_sched_qs(void)
231 {
232 RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!");
233 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
234 return;
235 trace_rcu_grace_period(TPS("rcu_sched"),
236 __this_cpu_read(rcu_sched_data.gpnum),
237 TPS("cpuqs"));
238 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
239 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
240 return;
241 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
242 rcu_report_exp_rdp(&rcu_sched_state,
243 this_cpu_ptr(&rcu_sched_data), true);
244 }
245
246 void rcu_bh_qs(void)
247 {
248 RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!");
249 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
250 trace_rcu_grace_period(TPS("rcu_bh"),
251 __this_cpu_read(rcu_bh_data.gpnum),
252 TPS("cpuqs"));
253 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
254 }
255 }
256
257 /*
258 * Steal a bit from the bottom of ->dynticks for idle entry/exit
259 * control. Initially this is for TLB flushing.
260 */
261 #define RCU_DYNTICK_CTRL_MASK 0x1
262 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
263 #ifndef rcu_eqs_special_exit
264 #define rcu_eqs_special_exit() do { } while (0)
265 #endif
266
267 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
268 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
269 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
270 };
271
272 /*
273 * There's a few places, currently just in the tracing infrastructure,
274 * that uses rcu_irq_enter() to make sure RCU is watching. But there's
275 * a small location where that will not even work. In those cases
276 * rcu_irq_enter_disabled() needs to be checked to make sure rcu_irq_enter()
277 * can be called.
278 */
279 static DEFINE_PER_CPU(bool, disable_rcu_irq_enter);
280
281 bool rcu_irq_enter_disabled(void)
282 {
283 return this_cpu_read(disable_rcu_irq_enter);
284 }
285
286 /*
287 * Record entry into an extended quiescent state. This is only to be
288 * called when not already in an extended quiescent state.
289 */
290 static void rcu_dynticks_eqs_enter(void)
291 {
292 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
293 int seq;
294
295 /*
296 * CPUs seeing atomic_add_return() must see prior RCU read-side
297 * critical sections, and we also must force ordering with the
298 * next idle sojourn.
299 */
300 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
301 /* Better be in an extended quiescent state! */
302 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
303 (seq & RCU_DYNTICK_CTRL_CTR));
304 /* Better not have special action (TLB flush) pending! */
305 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
306 (seq & RCU_DYNTICK_CTRL_MASK));
307 }
308
309 /*
310 * Record exit from an extended quiescent state. This is only to be
311 * called from an extended quiescent state.
312 */
313 static void rcu_dynticks_eqs_exit(void)
314 {
315 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
316 int seq;
317
318 /*
319 * CPUs seeing atomic_add_return() must see prior idle sojourns,
320 * and we also must force ordering with the next RCU read-side
321 * critical section.
322 */
323 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
324 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
325 !(seq & RCU_DYNTICK_CTRL_CTR));
326 if (seq & RCU_DYNTICK_CTRL_MASK) {
327 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
328 smp_mb__after_atomic(); /* _exit after clearing mask. */
329 /* Prefer duplicate flushes to losing a flush. */
330 rcu_eqs_special_exit();
331 }
332 }
333
334 /*
335 * Reset the current CPU's ->dynticks counter to indicate that the
336 * newly onlined CPU is no longer in an extended quiescent state.
337 * This will either leave the counter unchanged, or increment it
338 * to the next non-quiescent value.
339 *
340 * The non-atomic test/increment sequence works because the upper bits
341 * of the ->dynticks counter are manipulated only by the corresponding CPU,
342 * or when the corresponding CPU is offline.
343 */
344 static void rcu_dynticks_eqs_online(void)
345 {
346 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
347
348 if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
349 return;
350 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
351 }
352
353 /*
354 * Is the current CPU in an extended quiescent state?
355 *
356 * No ordering, as we are sampling CPU-local information.
357 */
358 bool rcu_dynticks_curr_cpu_in_eqs(void)
359 {
360 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
361
362 return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
363 }
364
365 /*
366 * Snapshot the ->dynticks counter with full ordering so as to allow
367 * stable comparison of this counter with past and future snapshots.
368 */
369 int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
370 {
371 int snap = atomic_add_return(0, &rdtp->dynticks);
372
373 return snap & ~RCU_DYNTICK_CTRL_MASK;
374 }
375
376 /*
377 * Return true if the snapshot returned from rcu_dynticks_snap()
378 * indicates that RCU is in an extended quiescent state.
379 */
380 static bool rcu_dynticks_in_eqs(int snap)
381 {
382 return !(snap & RCU_DYNTICK_CTRL_CTR);
383 }
384
385 /*
386 * Return true if the CPU corresponding to the specified rcu_dynticks
387 * structure has spent some time in an extended quiescent state since
388 * rcu_dynticks_snap() returned the specified snapshot.
389 */
390 static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
391 {
392 return snap != rcu_dynticks_snap(rdtp);
393 }
394
395 /*
396 * Do a double-increment of the ->dynticks counter to emulate a
397 * momentary idle-CPU quiescent state.
398 */
399 static void rcu_dynticks_momentary_idle(void)
400 {
401 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
402 int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
403 &rdtp->dynticks);
404
405 /* It is illegal to call this from idle state. */
406 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
407 }
408
409 /*
410 * Set the special (bottom) bit of the specified CPU so that it
411 * will take special action (such as flushing its TLB) on the
412 * next exit from an extended quiescent state. Returns true if
413 * the bit was successfully set, or false if the CPU was not in
414 * an extended quiescent state.
415 */
416 bool rcu_eqs_special_set(int cpu)
417 {
418 int old;
419 int new;
420 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
421
422 do {
423 old = atomic_read(&rdtp->dynticks);
424 if (old & RCU_DYNTICK_CTRL_CTR)
425 return false;
426 new = old | RCU_DYNTICK_CTRL_MASK;
427 } while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
428 return true;
429 }
430
431 /*
432 * Let the RCU core know that this CPU has gone through the scheduler,
433 * which is a quiescent state. This is called when the need for a
434 * quiescent state is urgent, so we burn an atomic operation and full
435 * memory barriers to let the RCU core know about it, regardless of what
436 * this CPU might (or might not) do in the near future.
437 *
438 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
439 *
440 * The caller must have disabled interrupts.
441 */
442 static void rcu_momentary_dyntick_idle(void)
443 {
444 raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
445 rcu_dynticks_momentary_idle();
446 }
447
448 /*
449 * Note a context switch. This is a quiescent state for RCU-sched,
450 * and requires special handling for preemptible RCU.
451 * The caller must have disabled interrupts.
452 */
453 void rcu_note_context_switch(bool preempt)
454 {
455 barrier(); /* Avoid RCU read-side critical sections leaking down. */
456 trace_rcu_utilization(TPS("Start context switch"));
457 rcu_sched_qs();
458 rcu_preempt_note_context_switch(preempt);
459 /* Load rcu_urgent_qs before other flags. */
460 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
461 goto out;
462 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
463 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
464 rcu_momentary_dyntick_idle();
465 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
466 if (!preempt)
467 rcu_note_voluntary_context_switch_lite(current);
468 out:
469 trace_rcu_utilization(TPS("End context switch"));
470 barrier(); /* Avoid RCU read-side critical sections leaking up. */
471 }
472 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
473
474 /*
475 * Register a quiescent state for all RCU flavors. If there is an
476 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
477 * dyntick-idle quiescent state visible to other CPUs (but only for those
478 * RCU flavors in desperate need of a quiescent state, which will normally
479 * be none of them). Either way, do a lightweight quiescent state for
480 * all RCU flavors.
481 *
482 * The barrier() calls are redundant in the common case when this is
483 * called externally, but just in case this is called from within this
484 * file.
485 *
486 */
487 void rcu_all_qs(void)
488 {
489 unsigned long flags;
490
491 if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
492 return;
493 preempt_disable();
494 /* Load rcu_urgent_qs before other flags. */
495 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
496 preempt_enable();
497 return;
498 }
499 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
500 barrier(); /* Avoid RCU read-side critical sections leaking down. */
501 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
502 local_irq_save(flags);
503 rcu_momentary_dyntick_idle();
504 local_irq_restore(flags);
505 }
506 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
507 rcu_sched_qs();
508 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
509 barrier(); /* Avoid RCU read-side critical sections leaking up. */
510 preempt_enable();
511 }
512 EXPORT_SYMBOL_GPL(rcu_all_qs);
513
514 #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */
515 static long blimit = DEFAULT_RCU_BLIMIT;
516 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
517 static long qhimark = DEFAULT_RCU_QHIMARK;
518 #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */
519 static long qlowmark = DEFAULT_RCU_QLOMARK;
520
521 module_param(blimit, long, 0444);
522 module_param(qhimark, long, 0444);
523 module_param(qlowmark, long, 0444);
524
525 static ulong jiffies_till_first_fqs = ULONG_MAX;
526 static ulong jiffies_till_next_fqs = ULONG_MAX;
527 static bool rcu_kick_kthreads;
528
529 module_param(jiffies_till_first_fqs, ulong, 0644);
530 module_param(jiffies_till_next_fqs, ulong, 0644);
531 module_param(rcu_kick_kthreads, bool, 0644);
532
533 /*
534 * How long the grace period must be before we start recruiting
535 * quiescent-state help from rcu_note_context_switch().
536 */
537 static ulong jiffies_till_sched_qs = HZ / 20;
538 module_param(jiffies_till_sched_qs, ulong, 0644);
539
540 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
541 struct rcu_data *rdp);
542 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp));
543 static void force_quiescent_state(struct rcu_state *rsp);
544 static int rcu_pending(void);
545
546 /*
547 * Return the number of RCU batches started thus far for debug & stats.
548 */
549 unsigned long rcu_batches_started(void)
550 {
551 return rcu_state_p->gpnum;
552 }
553 EXPORT_SYMBOL_GPL(rcu_batches_started);
554
555 /*
556 * Return the number of RCU-sched batches started thus far for debug & stats.
557 */
558 unsigned long rcu_batches_started_sched(void)
559 {
560 return rcu_sched_state.gpnum;
561 }
562 EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
563
564 /*
565 * Return the number of RCU BH batches started thus far for debug & stats.
566 */
567 unsigned long rcu_batches_started_bh(void)
568 {
569 return rcu_bh_state.gpnum;
570 }
571 EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
572
573 /*
574 * Return the number of RCU batches completed thus far for debug & stats.
575 */
576 unsigned long rcu_batches_completed(void)
577 {
578 return rcu_state_p->completed;
579 }
580 EXPORT_SYMBOL_GPL(rcu_batches_completed);
581
582 /*
583 * Return the number of RCU-sched batches completed thus far for debug & stats.
584 */
585 unsigned long rcu_batches_completed_sched(void)
586 {
587 return rcu_sched_state.completed;
588 }
589 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
590
591 /*
592 * Return the number of RCU BH batches completed thus far for debug & stats.
593 */
594 unsigned long rcu_batches_completed_bh(void)
595 {
596 return rcu_bh_state.completed;
597 }
598 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
599
600 /*
601 * Return the number of RCU expedited batches completed thus far for
602 * debug & stats. Odd numbers mean that a batch is in progress, even
603 * numbers mean idle. The value returned will thus be roughly double
604 * the cumulative batches since boot.
605 */
606 unsigned long rcu_exp_batches_completed(void)
607 {
608 return rcu_state_p->expedited_sequence;
609 }
610 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
611
612 /*
613 * Return the number of RCU-sched expedited batches completed thus far
614 * for debug & stats. Similar to rcu_exp_batches_completed().
615 */
616 unsigned long rcu_exp_batches_completed_sched(void)
617 {
618 return rcu_sched_state.expedited_sequence;
619 }
620 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
621
622 /*
623 * Force a quiescent state.
624 */
625 void rcu_force_quiescent_state(void)
626 {
627 force_quiescent_state(rcu_state_p);
628 }
629 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
630
631 /*
632 * Force a quiescent state for RCU BH.
633 */
634 void rcu_bh_force_quiescent_state(void)
635 {
636 force_quiescent_state(&rcu_bh_state);
637 }
638 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
639
640 /*
641 * Force a quiescent state for RCU-sched.
642 */
643 void rcu_sched_force_quiescent_state(void)
644 {
645 force_quiescent_state(&rcu_sched_state);
646 }
647 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
648
649 /*
650 * Show the state of the grace-period kthreads.
651 */
652 void show_rcu_gp_kthreads(void)
653 {
654 struct rcu_state *rsp;
655
656 for_each_rcu_flavor(rsp) {
657 pr_info("%s: wait state: %d ->state: %#lx\n",
658 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
659 /* sched_show_task(rsp->gp_kthread); */
660 }
661 }
662 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
663
664 /*
665 * Record the number of times rcutorture tests have been initiated and
666 * terminated. This information allows the debugfs tracing stats to be
667 * correlated to the rcutorture messages, even when the rcutorture module
668 * is being repeatedly loaded and unloaded. In other words, we cannot
669 * store this state in rcutorture itself.
670 */
671 void rcutorture_record_test_transition(void)
672 {
673 rcutorture_testseq++;
674 rcutorture_vernum = 0;
675 }
676 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
677
678 /*
679 * Send along grace-period-related data for rcutorture diagnostics.
680 */
681 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
682 unsigned long *gpnum, unsigned long *completed)
683 {
684 struct rcu_state *rsp = NULL;
685
686 switch (test_type) {
687 case RCU_FLAVOR:
688 rsp = rcu_state_p;
689 break;
690 case RCU_BH_FLAVOR:
691 rsp = &rcu_bh_state;
692 break;
693 case RCU_SCHED_FLAVOR:
694 rsp = &rcu_sched_state;
695 break;
696 default:
697 break;
698 }
699 if (rsp == NULL)
700 return;
701 *flags = READ_ONCE(rsp->gp_flags);
702 *gpnum = READ_ONCE(rsp->gpnum);
703 *completed = READ_ONCE(rsp->completed);
704 }
705 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
706
707 /*
708 * Record the number of writer passes through the current rcutorture test.
709 * This is also used to correlate debugfs tracing stats with the rcutorture
710 * messages.
711 */
712 void rcutorture_record_progress(unsigned long vernum)
713 {
714 rcutorture_vernum++;
715 }
716 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
717
718 /*
719 * Return the root node of the specified rcu_state structure.
720 */
721 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
722 {
723 return &rsp->node[0];
724 }
725
726 /*
727 * Is there any need for future grace periods?
728 * Interrupts must be disabled. If the caller does not hold the root
729 * rnp_node structure's ->lock, the results are advisory only.
730 */
731 static int rcu_future_needs_gp(struct rcu_state *rsp)
732 {
733 struct rcu_node *rnp = rcu_get_root(rsp);
734 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
735 int *fp = &rnp->need_future_gp[idx];
736
737 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_future_needs_gp() invoked with irqs enabled!!!");
738 return READ_ONCE(*fp);
739 }
740
741 /*
742 * Does the current CPU require a not-yet-started grace period?
743 * The caller must have disabled interrupts to prevent races with
744 * normal callback registry.
745 */
746 static bool
747 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
748 {
749 RCU_LOCKDEP_WARN(!irqs_disabled(), "cpu_needs_another_gp() invoked with irqs enabled!!!");
750 if (rcu_gp_in_progress(rsp))
751 return false; /* No, a grace period is already in progress. */
752 if (rcu_future_needs_gp(rsp))
753 return true; /* Yes, a no-CBs CPU needs one. */
754 if (!rcu_segcblist_is_enabled(&rdp->cblist))
755 return false; /* No, this is a no-CBs (or offline) CPU. */
756 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
757 return true; /* Yes, CPU has newly registered callbacks. */
758 if (rcu_segcblist_future_gp_needed(&rdp->cblist,
759 READ_ONCE(rsp->completed)))
760 return true; /* Yes, CBs for future grace period. */
761 return false; /* No grace period needed. */
762 }
763
764 /*
765 * rcu_eqs_enter_common - current CPU is entering an extended quiescent state
766 *
767 * Enter idle, doing appropriate accounting. The caller must have
768 * disabled interrupts.
769 */
770 static void rcu_eqs_enter_common(bool user)
771 {
772 struct rcu_state *rsp;
773 struct rcu_data *rdp;
774 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
775
776 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_eqs_enter_common() invoked with irqs enabled!!!");
777 trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0);
778 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
779 !user && !is_idle_task(current)) {
780 struct task_struct *idle __maybe_unused =
781 idle_task(smp_processor_id());
782
783 trace_rcu_dyntick(TPS("Error on entry: not idle task"), rdtp->dynticks_nesting, 0);
784 rcu_ftrace_dump(DUMP_ORIG);
785 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
786 current->pid, current->comm,
787 idle->pid, idle->comm); /* must be idle task! */
788 }
789 for_each_rcu_flavor(rsp) {
790 rdp = this_cpu_ptr(rsp->rda);
791 do_nocb_deferred_wakeup(rdp);
792 }
793 rcu_prepare_for_idle();
794 __this_cpu_inc(disable_rcu_irq_enter);
795 rdtp->dynticks_nesting = 0; /* Breaks tracing momentarily. */
796 rcu_dynticks_eqs_enter(); /* After this, tracing works again. */
797 __this_cpu_dec(disable_rcu_irq_enter);
798 rcu_dynticks_task_enter();
799
800 /*
801 * It is illegal to enter an extended quiescent state while
802 * in an RCU read-side critical section.
803 */
804 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
805 "Illegal idle entry in RCU read-side critical section.");
806 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
807 "Illegal idle entry in RCU-bh read-side critical section.");
808 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
809 "Illegal idle entry in RCU-sched read-side critical section.");
810 }
811
812 /*
813 * Enter an RCU extended quiescent state, which can be either the
814 * idle loop or adaptive-tickless usermode execution.
815 */
816 static void rcu_eqs_enter(bool user)
817 {
818 struct rcu_dynticks *rdtp;
819
820 rdtp = this_cpu_ptr(&rcu_dynticks);
821 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
822 (rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == 0);
823 if ((rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
824 rcu_eqs_enter_common(user);
825 else
826 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
827 }
828
829 /**
830 * rcu_idle_enter - inform RCU that current CPU is entering idle
831 *
832 * Enter idle mode, in other words, -leave- the mode in which RCU
833 * read-side critical sections can occur. (Though RCU read-side
834 * critical sections can occur in irq handlers in idle, a possibility
835 * handled by irq_enter() and irq_exit().)
836 *
837 * We crowbar the ->dynticks_nesting field to zero to allow for
838 * the possibility of usermode upcalls having messed up our count
839 * of interrupt nesting level during the prior busy period.
840 */
841 void rcu_idle_enter(void)
842 {
843 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_idle_enter() invoked with irqs enabled!!!");
844 rcu_eqs_enter(false);
845 }
846
847 #ifdef CONFIG_NO_HZ_FULL
848 /**
849 * rcu_user_enter - inform RCU that we are resuming userspace.
850 *
851 * Enter RCU idle mode right before resuming userspace. No use of RCU
852 * is permitted between this call and rcu_user_exit(). This way the
853 * CPU doesn't need to maintain the tick for RCU maintenance purposes
854 * when the CPU runs in userspace.
855 */
856 void rcu_user_enter(void)
857 {
858 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_user_enter() invoked with irqs enabled!!!");
859 rcu_eqs_enter(true);
860 }
861 #endif /* CONFIG_NO_HZ_FULL */
862
863 /**
864 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
865 *
866 * Exit from an interrupt handler, which might possibly result in entering
867 * idle mode, in other words, leaving the mode in which read-side critical
868 * sections can occur. The caller must have disabled interrupts.
869 *
870 * This code assumes that the idle loop never does anything that might
871 * result in unbalanced calls to irq_enter() and irq_exit(). If your
872 * architecture violates this assumption, RCU will give you what you
873 * deserve, good and hard. But very infrequently and irreproducibly.
874 *
875 * Use things like work queues to work around this limitation.
876 *
877 * You have been warned.
878 */
879 void rcu_irq_exit(void)
880 {
881 struct rcu_dynticks *rdtp;
882
883 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
884 rdtp = this_cpu_ptr(&rcu_dynticks);
885 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
886 rdtp->dynticks_nesting < 1);
887 if (rdtp->dynticks_nesting <= 1) {
888 rcu_eqs_enter_common(true);
889 } else {
890 trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nesting, rdtp->dynticks_nesting - 1);
891 rdtp->dynticks_nesting--;
892 }
893 }
894
895 /*
896 * Wrapper for rcu_irq_exit() where interrupts are enabled.
897 */
898 void rcu_irq_exit_irqson(void)
899 {
900 unsigned long flags;
901
902 local_irq_save(flags);
903 rcu_irq_exit();
904 local_irq_restore(flags);
905 }
906
907 /*
908 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
909 *
910 * If the new value of the ->dynticks_nesting counter was previously zero,
911 * we really have exited idle, and must do the appropriate accounting.
912 * The caller must have disabled interrupts.
913 */
914 static void rcu_eqs_exit_common(long long oldval, int user)
915 {
916 RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
917
918 rcu_dynticks_task_exit();
919 rcu_dynticks_eqs_exit();
920 rcu_cleanup_after_idle();
921 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
922 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
923 !user && !is_idle_task(current)) {
924 struct task_struct *idle __maybe_unused =
925 idle_task(smp_processor_id());
926
927 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
928 oldval, rdtp->dynticks_nesting);
929 rcu_ftrace_dump(DUMP_ORIG);
930 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
931 current->pid, current->comm,
932 idle->pid, idle->comm); /* must be idle task! */
933 }
934 }
935
936 /*
937 * Exit an RCU extended quiescent state, which can be either the
938 * idle loop or adaptive-tickless usermode execution.
939 */
940 static void rcu_eqs_exit(bool user)
941 {
942 struct rcu_dynticks *rdtp;
943 long long oldval;
944
945 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_eqs_exit() invoked with irqs enabled!!!");
946 rdtp = this_cpu_ptr(&rcu_dynticks);
947 oldval = rdtp->dynticks_nesting;
948 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
949 if (oldval & DYNTICK_TASK_NEST_MASK) {
950 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
951 } else {
952 __this_cpu_inc(disable_rcu_irq_enter);
953 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
954 rcu_eqs_exit_common(oldval, user);
955 __this_cpu_dec(disable_rcu_irq_enter);
956 }
957 }
958
959 /**
960 * rcu_idle_exit - inform RCU that current CPU is leaving idle
961 *
962 * Exit idle mode, in other words, -enter- the mode in which RCU
963 * read-side critical sections can occur.
964 *
965 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
966 * allow for the possibility of usermode upcalls messing up our count
967 * of interrupt nesting level during the busy period that is just
968 * now starting.
969 */
970 void rcu_idle_exit(void)
971 {
972 unsigned long flags;
973
974 local_irq_save(flags);
975 rcu_eqs_exit(false);
976 local_irq_restore(flags);
977 }
978
979 #ifdef CONFIG_NO_HZ_FULL
980 /**
981 * rcu_user_exit - inform RCU that we are exiting userspace.
982 *
983 * Exit RCU idle mode while entering the kernel because it can
984 * run a RCU read side critical section anytime.
985 */
986 void rcu_user_exit(void)
987 {
988 rcu_eqs_exit(1);
989 }
990 #endif /* CONFIG_NO_HZ_FULL */
991
992 /**
993 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
994 *
995 * Enter an interrupt handler, which might possibly result in exiting
996 * idle mode, in other words, entering the mode in which read-side critical
997 * sections can occur. The caller must have disabled interrupts.
998 *
999 * Note that the Linux kernel is fully capable of entering an interrupt
1000 * handler that it never exits, for example when doing upcalls to
1001 * user mode! This code assumes that the idle loop never does upcalls to
1002 * user mode. If your architecture does do upcalls from the idle loop (or
1003 * does anything else that results in unbalanced calls to the irq_enter()
1004 * and irq_exit() functions), RCU will give you what you deserve, good
1005 * and hard. But very infrequently and irreproducibly.
1006 *
1007 * Use things like work queues to work around this limitation.
1008 *
1009 * You have been warned.
1010 */
1011 void rcu_irq_enter(void)
1012 {
1013 struct rcu_dynticks *rdtp;
1014 long long oldval;
1015
1016 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
1017 rdtp = this_cpu_ptr(&rcu_dynticks);
1018 oldval = rdtp->dynticks_nesting;
1019 rdtp->dynticks_nesting++;
1020 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
1021 rdtp->dynticks_nesting == 0);
1022 if (oldval)
1023 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
1024 else
1025 rcu_eqs_exit_common(oldval, true);
1026 }
1027
1028 /*
1029 * Wrapper for rcu_irq_enter() where interrupts are enabled.
1030 */
1031 void rcu_irq_enter_irqson(void)
1032 {
1033 unsigned long flags;
1034
1035 local_irq_save(flags);
1036 rcu_irq_enter();
1037 local_irq_restore(flags);
1038 }
1039
1040 /**
1041 * rcu_nmi_enter - inform RCU of entry to NMI context
1042 *
1043 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
1044 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
1045 * that the CPU is active. This implementation permits nested NMIs, as
1046 * long as the nesting level does not overflow an int. (You will probably
1047 * run out of stack space first.)
1048 */
1049 void rcu_nmi_enter(void)
1050 {
1051 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1052 int incby = 2;
1053
1054 /* Complain about underflow. */
1055 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
1056
1057 /*
1058 * If idle from RCU viewpoint, atomically increment ->dynticks
1059 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
1060 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
1061 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
1062 * to be in the outermost NMI handler that interrupted an RCU-idle
1063 * period (observation due to Andy Lutomirski).
1064 */
1065 if (rcu_dynticks_curr_cpu_in_eqs()) {
1066 rcu_dynticks_eqs_exit();
1067 incby = 1;
1068 }
1069 rdtp->dynticks_nmi_nesting += incby;
1070 barrier();
1071 }
1072
1073 /**
1074 * rcu_nmi_exit - inform RCU of exit from NMI context
1075 *
1076 * If we are returning from the outermost NMI handler that interrupted an
1077 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
1078 * to let the RCU grace-period handling know that the CPU is back to
1079 * being RCU-idle.
1080 */
1081 void rcu_nmi_exit(void)
1082 {
1083 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1084
1085 /*
1086 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1087 * (We are exiting an NMI handler, so RCU better be paying attention
1088 * to us!)
1089 */
1090 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
1091 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
1092
1093 /*
1094 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1095 * leave it in non-RCU-idle state.
1096 */
1097 if (rdtp->dynticks_nmi_nesting != 1) {
1098 rdtp->dynticks_nmi_nesting -= 2;
1099 return;
1100 }
1101
1102 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1103 rdtp->dynticks_nmi_nesting = 0;
1104 rcu_dynticks_eqs_enter();
1105 }
1106
1107 /**
1108 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1109 *
1110 * Return true if RCU is watching the running CPU, which means that this
1111 * CPU can safely enter RCU read-side critical sections. In other words,
1112 * if the current CPU is in its idle loop and is neither in an interrupt
1113 * or NMI handler, return true.
1114 */
1115 bool notrace rcu_is_watching(void)
1116 {
1117 bool ret;
1118
1119 preempt_disable_notrace();
1120 ret = !rcu_dynticks_curr_cpu_in_eqs();
1121 preempt_enable_notrace();
1122 return ret;
1123 }
1124 EXPORT_SYMBOL_GPL(rcu_is_watching);
1125
1126 /*
1127 * If a holdout task is actually running, request an urgent quiescent
1128 * state from its CPU. This is unsynchronized, so migrations can cause
1129 * the request to go to the wrong CPU. Which is OK, all that will happen
1130 * is that the CPU's next context switch will be a bit slower and next
1131 * time around this task will generate another request.
1132 */
1133 void rcu_request_urgent_qs_task(struct task_struct *t)
1134 {
1135 int cpu;
1136
1137 barrier();
1138 cpu = task_cpu(t);
1139 if (!task_curr(t))
1140 return; /* This task is not running on that CPU. */
1141 smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true);
1142 }
1143
1144 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1145
1146 /*
1147 * Is the current CPU online? Disable preemption to avoid false positives
1148 * that could otherwise happen due to the current CPU number being sampled,
1149 * this task being preempted, its old CPU being taken offline, resuming
1150 * on some other CPU, then determining that its old CPU is now offline.
1151 * It is OK to use RCU on an offline processor during initial boot, hence
1152 * the check for rcu_scheduler_fully_active. Note also that it is OK
1153 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1154 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1155 * offline to continue to use RCU for one jiffy after marking itself
1156 * offline in the cpu_online_mask. This leniency is necessary given the
1157 * non-atomic nature of the online and offline processing, for example,
1158 * the fact that a CPU enters the scheduler after completing the teardown
1159 * of the CPU.
1160 *
1161 * This is also why RCU internally marks CPUs online during in the
1162 * preparation phase and offline after the CPU has been taken down.
1163 *
1164 * Disable checking if in an NMI handler because we cannot safely report
1165 * errors from NMI handlers anyway.
1166 */
1167 bool rcu_lockdep_current_cpu_online(void)
1168 {
1169 struct rcu_data *rdp;
1170 struct rcu_node *rnp;
1171 bool ret;
1172
1173 if (in_nmi())
1174 return true;
1175 preempt_disable();
1176 rdp = this_cpu_ptr(&rcu_sched_data);
1177 rnp = rdp->mynode;
1178 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1179 !rcu_scheduler_fully_active;
1180 preempt_enable();
1181 return ret;
1182 }
1183 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1184
1185 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1186
1187 /**
1188 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1189 *
1190 * If the current CPU is idle or running at a first-level (not nested)
1191 * interrupt from idle, return true. The caller must have at least
1192 * disabled preemption.
1193 */
1194 static int rcu_is_cpu_rrupt_from_idle(void)
1195 {
1196 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1197 }
1198
1199 /*
1200 * Snapshot the specified CPU's dynticks counter so that we can later
1201 * credit them with an implicit quiescent state. Return 1 if this CPU
1202 * is in dynticks idle mode, which is an extended quiescent state.
1203 */
1204 static int dyntick_save_progress_counter(struct rcu_data *rdp)
1205 {
1206 rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
1207 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1208 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1209 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1210 rdp->mynode->gpnum))
1211 WRITE_ONCE(rdp->gpwrap, true);
1212 return 1;
1213 }
1214 return 0;
1215 }
1216
1217 /*
1218 * Return true if the specified CPU has passed through a quiescent
1219 * state by virtue of being in or having passed through an dynticks
1220 * idle state since the last call to dyntick_save_progress_counter()
1221 * for this same CPU, or by virtue of having been offline.
1222 */
1223 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1224 {
1225 unsigned long jtsq;
1226 bool *rnhqp;
1227 bool *ruqp;
1228 unsigned long rjtsc;
1229 struct rcu_node *rnp;
1230
1231 /*
1232 * If the CPU passed through or entered a dynticks idle phase with
1233 * no active irq/NMI handlers, then we can safely pretend that the CPU
1234 * already acknowledged the request to pass through a quiescent
1235 * state. Either way, that CPU cannot possibly be in an RCU
1236 * read-side critical section that started before the beginning
1237 * of the current RCU grace period.
1238 */
1239 if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
1240 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1241 rdp->dynticks_fqs++;
1242 return 1;
1243 }
1244
1245 /* Compute and saturate jiffies_till_sched_qs. */
1246 jtsq = jiffies_till_sched_qs;
1247 rjtsc = rcu_jiffies_till_stall_check();
1248 if (jtsq > rjtsc / 2) {
1249 WRITE_ONCE(jiffies_till_sched_qs, rjtsc);
1250 jtsq = rjtsc / 2;
1251 } else if (jtsq < 1) {
1252 WRITE_ONCE(jiffies_till_sched_qs, 1);
1253 jtsq = 1;
1254 }
1255
1256 /*
1257 * Has this CPU encountered a cond_resched_rcu_qs() since the
1258 * beginning of the grace period? For this to be the case,
1259 * the CPU has to have noticed the current grace period. This
1260 * might not be the case for nohz_full CPUs looping in the kernel.
1261 */
1262 rnp = rdp->mynode;
1263 ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
1264 if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
1265 READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
1266 READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
1267 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
1268 return 1;
1269 } else {
1270 /* Load rcu_qs_ctr before store to rcu_urgent_qs. */
1271 smp_store_release(ruqp, true);
1272 }
1273
1274 /* Check for the CPU being offline. */
1275 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
1276 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1277 rdp->offline_fqs++;
1278 return 1;
1279 }
1280
1281 /*
1282 * A CPU running for an extended time within the kernel can
1283 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1284 * even context-switching back and forth between a pair of
1285 * in-kernel CPU-bound tasks cannot advance grace periods.
1286 * So if the grace period is old enough, make the CPU pay attention.
1287 * Note that the unsynchronized assignments to the per-CPU
1288 * rcu_need_heavy_qs variable are safe. Yes, setting of
1289 * bits can be lost, but they will be set again on the next
1290 * force-quiescent-state pass. So lost bit sets do not result
1291 * in incorrect behavior, merely in a grace period lasting
1292 * a few jiffies longer than it might otherwise. Because
1293 * there are at most four threads involved, and because the
1294 * updates are only once every few jiffies, the probability of
1295 * lossage (and thus of slight grace-period extension) is
1296 * quite low.
1297 *
1298 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1299 * is set too high, we override with half of the RCU CPU stall
1300 * warning delay.
1301 */
1302 rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
1303 if (!READ_ONCE(*rnhqp) &&
1304 (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
1305 time_after(jiffies, rdp->rsp->jiffies_resched))) {
1306 WRITE_ONCE(*rnhqp, true);
1307 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1308 smp_store_release(ruqp, true);
1309 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1310 }
1311
1312 /*
1313 * If more than halfway to RCU CPU stall-warning time, do
1314 * a resched_cpu() to try to loosen things up a bit.
1315 */
1316 if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2)
1317 resched_cpu(rdp->cpu);
1318
1319 return 0;
1320 }
1321
1322 static void record_gp_stall_check_time(struct rcu_state *rsp)
1323 {
1324 unsigned long j = jiffies;
1325 unsigned long j1;
1326
1327 rsp->gp_start = j;
1328 smp_wmb(); /* Record start time before stall time. */
1329 j1 = rcu_jiffies_till_stall_check();
1330 WRITE_ONCE(rsp->jiffies_stall, j + j1);
1331 rsp->jiffies_resched = j + j1 / 2;
1332 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1333 }
1334
1335 /*
1336 * Convert a ->gp_state value to a character string.
1337 */
1338 static const char *gp_state_getname(short gs)
1339 {
1340 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1341 return "???";
1342 return gp_state_names[gs];
1343 }
1344
1345 /*
1346 * Complain about starvation of grace-period kthread.
1347 */
1348 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1349 {
1350 unsigned long gpa;
1351 unsigned long j;
1352
1353 j = jiffies;
1354 gpa = READ_ONCE(rsp->gp_activity);
1355 if (j - gpa > 2 * HZ) {
1356 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx ->cpu=%d\n",
1357 rsp->name, j - gpa,
1358 rsp->gpnum, rsp->completed,
1359 rsp->gp_flags,
1360 gp_state_getname(rsp->gp_state), rsp->gp_state,
1361 rsp->gp_kthread ? rsp->gp_kthread->state : ~0,
1362 rsp->gp_kthread ? task_cpu(rsp->gp_kthread) : -1);
1363 if (rsp->gp_kthread) {
1364 sched_show_task(rsp->gp_kthread);
1365 wake_up_process(rsp->gp_kthread);
1366 }
1367 }
1368 }
1369
1370 /*
1371 * Dump stacks of all tasks running on stalled CPUs. First try using
1372 * NMIs, but fall back to manual remote stack tracing on architectures
1373 * that don't support NMI-based stack dumps. The NMI-triggered stack
1374 * traces are more accurate because they are printed by the target CPU.
1375 */
1376 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1377 {
1378 int cpu;
1379 unsigned long flags;
1380 struct rcu_node *rnp;
1381
1382 rcu_for_each_leaf_node(rsp, rnp) {
1383 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1384 for_each_leaf_node_possible_cpu(rnp, cpu)
1385 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1386 if (!trigger_single_cpu_backtrace(cpu))
1387 dump_cpu_task(cpu);
1388 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1389 }
1390 }
1391
1392 /*
1393 * If too much time has passed in the current grace period, and if
1394 * so configured, go kick the relevant kthreads.
1395 */
1396 static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1397 {
1398 unsigned long j;
1399
1400 if (!rcu_kick_kthreads)
1401 return;
1402 j = READ_ONCE(rsp->jiffies_kick_kthreads);
1403 if (time_after(jiffies, j) && rsp->gp_kthread &&
1404 (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
1405 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1406 rcu_ftrace_dump(DUMP_ALL);
1407 wake_up_process(rsp->gp_kthread);
1408 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1409 }
1410 }
1411
1412 static inline void panic_on_rcu_stall(void)
1413 {
1414 if (sysctl_panic_on_rcu_stall)
1415 panic("RCU Stall\n");
1416 }
1417
1418 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1419 {
1420 int cpu;
1421 long delta;
1422 unsigned long flags;
1423 unsigned long gpa;
1424 unsigned long j;
1425 int ndetected = 0;
1426 struct rcu_node *rnp = rcu_get_root(rsp);
1427 long totqlen = 0;
1428
1429 /* Kick and suppress, if so configured. */
1430 rcu_stall_kick_kthreads(rsp);
1431 if (rcu_cpu_stall_suppress)
1432 return;
1433
1434 /* Only let one CPU complain about others per time interval. */
1435
1436 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1437 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1438 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1439 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1440 return;
1441 }
1442 WRITE_ONCE(rsp->jiffies_stall,
1443 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1444 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1445
1446 /*
1447 * OK, time to rat on our buddy...
1448 * See Documentation/RCU/stallwarn.txt for info on how to debug
1449 * RCU CPU stall warnings.
1450 */
1451 pr_err("INFO: %s detected stalls on CPUs/tasks:",
1452 rsp->name);
1453 print_cpu_stall_info_begin();
1454 rcu_for_each_leaf_node(rsp, rnp) {
1455 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1456 ndetected += rcu_print_task_stall(rnp);
1457 if (rnp->qsmask != 0) {
1458 for_each_leaf_node_possible_cpu(rnp, cpu)
1459 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1460 print_cpu_stall_info(rsp, cpu);
1461 ndetected++;
1462 }
1463 }
1464 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1465 }
1466
1467 print_cpu_stall_info_end();
1468 for_each_possible_cpu(cpu)
1469 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1470 cpu)->cblist);
1471 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1472 smp_processor_id(), (long)(jiffies - rsp->gp_start),
1473 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1474 if (ndetected) {
1475 rcu_dump_cpu_stacks(rsp);
1476
1477 /* Complain about tasks blocking the grace period. */
1478 rcu_print_detail_task_stall(rsp);
1479 } else {
1480 if (READ_ONCE(rsp->gpnum) != gpnum ||
1481 READ_ONCE(rsp->completed) == gpnum) {
1482 pr_err("INFO: Stall ended before state dump start\n");
1483 } else {
1484 j = jiffies;
1485 gpa = READ_ONCE(rsp->gp_activity);
1486 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1487 rsp->name, j - gpa, j, gpa,
1488 jiffies_till_next_fqs,
1489 rcu_get_root(rsp)->qsmask);
1490 /* In this case, the current CPU might be at fault. */
1491 sched_show_task(current);
1492 }
1493 }
1494
1495 rcu_check_gp_kthread_starvation(rsp);
1496
1497 panic_on_rcu_stall();
1498
1499 force_quiescent_state(rsp); /* Kick them all. */
1500 }
1501
1502 static void print_cpu_stall(struct rcu_state *rsp)
1503 {
1504 int cpu;
1505 unsigned long flags;
1506 struct rcu_node *rnp = rcu_get_root(rsp);
1507 long totqlen = 0;
1508
1509 /* Kick and suppress, if so configured. */
1510 rcu_stall_kick_kthreads(rsp);
1511 if (rcu_cpu_stall_suppress)
1512 return;
1513
1514 /*
1515 * OK, time to rat on ourselves...
1516 * See Documentation/RCU/stallwarn.txt for info on how to debug
1517 * RCU CPU stall warnings.
1518 */
1519 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1520 print_cpu_stall_info_begin();
1521 print_cpu_stall_info(rsp, smp_processor_id());
1522 print_cpu_stall_info_end();
1523 for_each_possible_cpu(cpu)
1524 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1525 cpu)->cblist);
1526 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1527 jiffies - rsp->gp_start,
1528 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1529
1530 rcu_check_gp_kthread_starvation(rsp);
1531
1532 rcu_dump_cpu_stacks(rsp);
1533
1534 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1535 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1536 WRITE_ONCE(rsp->jiffies_stall,
1537 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1538 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1539
1540 panic_on_rcu_stall();
1541
1542 /*
1543 * Attempt to revive the RCU machinery by forcing a context switch.
1544 *
1545 * A context switch would normally allow the RCU state machine to make
1546 * progress and it could be we're stuck in kernel space without context
1547 * switches for an entirely unreasonable amount of time.
1548 */
1549 resched_cpu(smp_processor_id());
1550 }
1551
1552 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1553 {
1554 unsigned long completed;
1555 unsigned long gpnum;
1556 unsigned long gps;
1557 unsigned long j;
1558 unsigned long js;
1559 struct rcu_node *rnp;
1560
1561 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1562 !rcu_gp_in_progress(rsp))
1563 return;
1564 rcu_stall_kick_kthreads(rsp);
1565 j = jiffies;
1566
1567 /*
1568 * Lots of memory barriers to reject false positives.
1569 *
1570 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1571 * then rsp->gp_start, and finally rsp->completed. These values
1572 * are updated in the opposite order with memory barriers (or
1573 * equivalent) during grace-period initialization and cleanup.
1574 * Now, a false positive can occur if we get an new value of
1575 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1576 * the memory barriers, the only way that this can happen is if one
1577 * grace period ends and another starts between these two fetches.
1578 * Detect this by comparing rsp->completed with the previous fetch
1579 * from rsp->gpnum.
1580 *
1581 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1582 * and rsp->gp_start suffice to forestall false positives.
1583 */
1584 gpnum = READ_ONCE(rsp->gpnum);
1585 smp_rmb(); /* Pick up ->gpnum first... */
1586 js = READ_ONCE(rsp->jiffies_stall);
1587 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1588 gps = READ_ONCE(rsp->gp_start);
1589 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1590 completed = READ_ONCE(rsp->completed);
1591 if (ULONG_CMP_GE(completed, gpnum) ||
1592 ULONG_CMP_LT(j, js) ||
1593 ULONG_CMP_GE(gps, js))
1594 return; /* No stall or GP completed since entering function. */
1595 rnp = rdp->mynode;
1596 if (rcu_gp_in_progress(rsp) &&
1597 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1598
1599 /* We haven't checked in, so go dump stack. */
1600 print_cpu_stall(rsp);
1601
1602 } else if (rcu_gp_in_progress(rsp) &&
1603 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1604
1605 /* They had a few time units to dump stack, so complain. */
1606 print_other_cpu_stall(rsp, gpnum);
1607 }
1608 }
1609
1610 /**
1611 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1612 *
1613 * Set the stall-warning timeout way off into the future, thus preventing
1614 * any RCU CPU stall-warning messages from appearing in the current set of
1615 * RCU grace periods.
1616 *
1617 * The caller must disable hard irqs.
1618 */
1619 void rcu_cpu_stall_reset(void)
1620 {
1621 struct rcu_state *rsp;
1622
1623 for_each_rcu_flavor(rsp)
1624 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1625 }
1626
1627 /*
1628 * Determine the value that ->completed will have at the end of the
1629 * next subsequent grace period. This is used to tag callbacks so that
1630 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1631 * been dyntick-idle for an extended period with callbacks under the
1632 * influence of RCU_FAST_NO_HZ.
1633 *
1634 * The caller must hold rnp->lock with interrupts disabled.
1635 */
1636 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1637 struct rcu_node *rnp)
1638 {
1639 lockdep_assert_held(&rnp->lock);
1640
1641 /*
1642 * If RCU is idle, we just wait for the next grace period.
1643 * But we can only be sure that RCU is idle if we are looking
1644 * at the root rcu_node structure -- otherwise, a new grace
1645 * period might have started, but just not yet gotten around
1646 * to initializing the current non-root rcu_node structure.
1647 */
1648 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1649 return rnp->completed + 1;
1650
1651 /*
1652 * Otherwise, wait for a possible partial grace period and
1653 * then the subsequent full grace period.
1654 */
1655 return rnp->completed + 2;
1656 }
1657
1658 /*
1659 * Trace-event helper function for rcu_start_future_gp() and
1660 * rcu_nocb_wait_gp().
1661 */
1662 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1663 unsigned long c, const char *s)
1664 {
1665 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1666 rnp->completed, c, rnp->level,
1667 rnp->grplo, rnp->grphi, s);
1668 }
1669
1670 /*
1671 * Start some future grace period, as needed to handle newly arrived
1672 * callbacks. The required future grace periods are recorded in each
1673 * rcu_node structure's ->need_future_gp field. Returns true if there
1674 * is reason to awaken the grace-period kthread.
1675 *
1676 * The caller must hold the specified rcu_node structure's ->lock.
1677 */
1678 static bool __maybe_unused
1679 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1680 unsigned long *c_out)
1681 {
1682 unsigned long c;
1683 bool ret = false;
1684 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1685
1686 lockdep_assert_held(&rnp->lock);
1687
1688 /*
1689 * Pick up grace-period number for new callbacks. If this
1690 * grace period is already marked as needed, return to the caller.
1691 */
1692 c = rcu_cbs_completed(rdp->rsp, rnp);
1693 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1694 if (rnp->need_future_gp[c & 0x1]) {
1695 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1696 goto out;
1697 }
1698
1699 /*
1700 * If either this rcu_node structure or the root rcu_node structure
1701 * believe that a grace period is in progress, then we must wait
1702 * for the one following, which is in "c". Because our request
1703 * will be noticed at the end of the current grace period, we don't
1704 * need to explicitly start one. We only do the lockless check
1705 * of rnp_root's fields if the current rcu_node structure thinks
1706 * there is no grace period in flight, and because we hold rnp->lock,
1707 * the only possible change is when rnp_root's two fields are
1708 * equal, in which case rnp_root->gpnum might be concurrently
1709 * incremented. But that is OK, as it will just result in our
1710 * doing some extra useless work.
1711 */
1712 if (rnp->gpnum != rnp->completed ||
1713 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1714 rnp->need_future_gp[c & 0x1]++;
1715 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1716 goto out;
1717 }
1718
1719 /*
1720 * There might be no grace period in progress. If we don't already
1721 * hold it, acquire the root rcu_node structure's lock in order to
1722 * start one (if needed).
1723 */
1724 if (rnp != rnp_root)
1725 raw_spin_lock_rcu_node(rnp_root);
1726
1727 /*
1728 * Get a new grace-period number. If there really is no grace
1729 * period in progress, it will be smaller than the one we obtained
1730 * earlier. Adjust callbacks as needed.
1731 */
1732 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1733 if (!rcu_is_nocb_cpu(rdp->cpu))
1734 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1735
1736 /*
1737 * If the needed for the required grace period is already
1738 * recorded, trace and leave.
1739 */
1740 if (rnp_root->need_future_gp[c & 0x1]) {
1741 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1742 goto unlock_out;
1743 }
1744
1745 /* Record the need for the future grace period. */
1746 rnp_root->need_future_gp[c & 0x1]++;
1747
1748 /* If a grace period is not already in progress, start one. */
1749 if (rnp_root->gpnum != rnp_root->completed) {
1750 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1751 } else {
1752 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1753 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1754 }
1755 unlock_out:
1756 if (rnp != rnp_root)
1757 raw_spin_unlock_rcu_node(rnp_root);
1758 out:
1759 if (c_out != NULL)
1760 *c_out = c;
1761 return ret;
1762 }
1763
1764 /*
1765 * Clean up any old requests for the just-ended grace period. Also return
1766 * whether any additional grace periods have been requested.
1767 */
1768 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1769 {
1770 int c = rnp->completed;
1771 int needmore;
1772 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1773
1774 rnp->need_future_gp[c & 0x1] = 0;
1775 needmore = rnp->need_future_gp[(c + 1) & 0x1];
1776 trace_rcu_future_gp(rnp, rdp, c,
1777 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1778 return needmore;
1779 }
1780
1781 /*
1782 * Awaken the grace-period kthread for the specified flavor of RCU.
1783 * Don't do a self-awaken, and don't bother awakening when there is
1784 * nothing for the grace-period kthread to do (as in several CPUs
1785 * raced to awaken, and we lost), and finally don't try to awaken
1786 * a kthread that has not yet been created.
1787 */
1788 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1789 {
1790 if (current == rsp->gp_kthread ||
1791 !READ_ONCE(rsp->gp_flags) ||
1792 !rsp->gp_kthread)
1793 return;
1794 swake_up(&rsp->gp_wq);
1795 }
1796
1797 /*
1798 * If there is room, assign a ->completed number to any callbacks on
1799 * this CPU that have not already been assigned. Also accelerate any
1800 * callbacks that were previously assigned a ->completed number that has
1801 * since proven to be too conservative, which can happen if callbacks get
1802 * assigned a ->completed number while RCU is idle, but with reference to
1803 * a non-root rcu_node structure. This function is idempotent, so it does
1804 * not hurt to call it repeatedly. Returns an flag saying that we should
1805 * awaken the RCU grace-period kthread.
1806 *
1807 * The caller must hold rnp->lock with interrupts disabled.
1808 */
1809 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1810 struct rcu_data *rdp)
1811 {
1812 bool ret = false;
1813
1814 lockdep_assert_held(&rnp->lock);
1815
1816 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1817 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1818 return false;
1819
1820 /*
1821 * Callbacks are often registered with incomplete grace-period
1822 * information. Something about the fact that getting exact
1823 * information requires acquiring a global lock... RCU therefore
1824 * makes a conservative estimate of the grace period number at which
1825 * a given callback will become ready to invoke. The following
1826 * code checks this estimate and improves it when possible, thus
1827 * accelerating callback invocation to an earlier grace-period
1828 * number.
1829 */
1830 if (rcu_segcblist_accelerate(&rdp->cblist, rcu_cbs_completed(rsp, rnp)))
1831 ret = rcu_start_future_gp(rnp, rdp, NULL);
1832
1833 /* Trace depending on how much we were able to accelerate. */
1834 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1835 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1836 else
1837 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1838 return ret;
1839 }
1840
1841 /*
1842 * Move any callbacks whose grace period has completed to the
1843 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1844 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1845 * sublist. This function is idempotent, so it does not hurt to
1846 * invoke it repeatedly. As long as it is not invoked -too- often...
1847 * Returns true if the RCU grace-period kthread needs to be awakened.
1848 *
1849 * The caller must hold rnp->lock with interrupts disabled.
1850 */
1851 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1852 struct rcu_data *rdp)
1853 {
1854 lockdep_assert_held(&rnp->lock);
1855
1856 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1857 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1858 return false;
1859
1860 /*
1861 * Find all callbacks whose ->completed numbers indicate that they
1862 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1863 */
1864 rcu_segcblist_advance(&rdp->cblist, rnp->completed);
1865
1866 /* Classify any remaining callbacks. */
1867 return rcu_accelerate_cbs(rsp, rnp, rdp);
1868 }
1869
1870 /*
1871 * Update CPU-local rcu_data state to record the beginnings and ends of
1872 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1873 * structure corresponding to the current CPU, and must have irqs disabled.
1874 * Returns true if the grace-period kthread needs to be awakened.
1875 */
1876 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1877 struct rcu_data *rdp)
1878 {
1879 bool ret;
1880 bool need_gp;
1881
1882 lockdep_assert_held(&rnp->lock);
1883
1884 /* Handle the ends of any preceding grace periods first. */
1885 if (rdp->completed == rnp->completed &&
1886 !unlikely(READ_ONCE(rdp->gpwrap))) {
1887
1888 /* No grace period end, so just accelerate recent callbacks. */
1889 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1890
1891 } else {
1892
1893 /* Advance callbacks. */
1894 ret = rcu_advance_cbs(rsp, rnp, rdp);
1895
1896 /* Remember that we saw this grace-period completion. */
1897 rdp->completed = rnp->completed;
1898 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1899 }
1900
1901 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1902 /*
1903 * If the current grace period is waiting for this CPU,
1904 * set up to detect a quiescent state, otherwise don't
1905 * go looking for one.
1906 */
1907 rdp->gpnum = rnp->gpnum;
1908 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1909 need_gp = !!(rnp->qsmask & rdp->grpmask);
1910 rdp->cpu_no_qs.b.norm = need_gp;
1911 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
1912 rdp->core_needs_qs = need_gp;
1913 zero_cpu_stall_ticks(rdp);
1914 WRITE_ONCE(rdp->gpwrap, false);
1915 }
1916 return ret;
1917 }
1918
1919 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1920 {
1921 unsigned long flags;
1922 bool needwake;
1923 struct rcu_node *rnp;
1924
1925 local_irq_save(flags);
1926 rnp = rdp->mynode;
1927 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1928 rdp->completed == READ_ONCE(rnp->completed) &&
1929 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1930 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1931 local_irq_restore(flags);
1932 return;
1933 }
1934 needwake = __note_gp_changes(rsp, rnp, rdp);
1935 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1936 if (needwake)
1937 rcu_gp_kthread_wake(rsp);
1938 }
1939
1940 static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1941 {
1942 if (delay > 0 &&
1943 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1944 schedule_timeout_uninterruptible(delay);
1945 }
1946
1947 /*
1948 * Initialize a new grace period. Return false if no grace period required.
1949 */
1950 static bool rcu_gp_init(struct rcu_state *rsp)
1951 {
1952 unsigned long oldmask;
1953 struct rcu_data *rdp;
1954 struct rcu_node *rnp = rcu_get_root(rsp);
1955
1956 WRITE_ONCE(rsp->gp_activity, jiffies);
1957 raw_spin_lock_irq_rcu_node(rnp);
1958 if (!READ_ONCE(rsp->gp_flags)) {
1959 /* Spurious wakeup, tell caller to go back to sleep. */
1960 raw_spin_unlock_irq_rcu_node(rnp);
1961 return false;
1962 }
1963 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1964
1965 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1966 /*
1967 * Grace period already in progress, don't start another.
1968 * Not supposed to be able to happen.
1969 */
1970 raw_spin_unlock_irq_rcu_node(rnp);
1971 return false;
1972 }
1973
1974 /* Advance to a new grace period and initialize state. */
1975 record_gp_stall_check_time(rsp);
1976 /* Record GP times before starting GP, hence smp_store_release(). */
1977 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1978 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1979 raw_spin_unlock_irq_rcu_node(rnp);
1980
1981 /*
1982 * Apply per-leaf buffered online and offline operations to the
1983 * rcu_node tree. Note that this new grace period need not wait
1984 * for subsequent online CPUs, and that quiescent-state forcing
1985 * will handle subsequent offline CPUs.
1986 */
1987 rcu_for_each_leaf_node(rsp, rnp) {
1988 rcu_gp_slow(rsp, gp_preinit_delay);
1989 raw_spin_lock_irq_rcu_node(rnp);
1990 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1991 !rnp->wait_blkd_tasks) {
1992 /* Nothing to do on this leaf rcu_node structure. */
1993 raw_spin_unlock_irq_rcu_node(rnp);
1994 continue;
1995 }
1996
1997 /* Record old state, apply changes to ->qsmaskinit field. */
1998 oldmask = rnp->qsmaskinit;
1999 rnp->qsmaskinit = rnp->qsmaskinitnext;
2000
2001 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
2002 if (!oldmask != !rnp->qsmaskinit) {
2003 if (!oldmask) /* First online CPU for this rcu_node. */
2004 rcu_init_new_rnp(rnp);
2005 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
2006 rnp->wait_blkd_tasks = true;
2007 else /* Last offline CPU and can propagate. */
2008 rcu_cleanup_dead_rnp(rnp);
2009 }
2010
2011 /*
2012 * If all waited-on tasks from prior grace period are
2013 * done, and if all this rcu_node structure's CPUs are
2014 * still offline, propagate up the rcu_node tree and
2015 * clear ->wait_blkd_tasks. Otherwise, if one of this
2016 * rcu_node structure's CPUs has since come back online,
2017 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
2018 * checks for this, so just call it unconditionally).
2019 */
2020 if (rnp->wait_blkd_tasks &&
2021 (!rcu_preempt_has_tasks(rnp) ||
2022 rnp->qsmaskinit)) {
2023 rnp->wait_blkd_tasks = false;
2024 rcu_cleanup_dead_rnp(rnp);
2025 }
2026
2027 raw_spin_unlock_irq_rcu_node(rnp);
2028 }
2029
2030 /*
2031 * Set the quiescent-state-needed bits in all the rcu_node
2032 * structures for all currently online CPUs in breadth-first order,
2033 * starting from the root rcu_node structure, relying on the layout
2034 * of the tree within the rsp->node[] array. Note that other CPUs
2035 * will access only the leaves of the hierarchy, thus seeing that no
2036 * grace period is in progress, at least until the corresponding
2037 * leaf node has been initialized.
2038 *
2039 * The grace period cannot complete until the initialization
2040 * process finishes, because this kthread handles both.
2041 */
2042 rcu_for_each_node_breadth_first(rsp, rnp) {
2043 rcu_gp_slow(rsp, gp_init_delay);
2044 raw_spin_lock_irq_rcu_node(rnp);
2045 rdp = this_cpu_ptr(rsp->rda);
2046 rcu_preempt_check_blocked_tasks(rnp);
2047 rnp->qsmask = rnp->qsmaskinit;
2048 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2049 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2050 WRITE_ONCE(rnp->completed, rsp->completed);
2051 if (rnp == rdp->mynode)
2052 (void)__note_gp_changes(rsp, rnp, rdp);
2053 rcu_preempt_boost_start_gp(rnp);
2054 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2055 rnp->level, rnp->grplo,
2056 rnp->grphi, rnp->qsmask);
2057 raw_spin_unlock_irq_rcu_node(rnp);
2058 cond_resched_rcu_qs();
2059 WRITE_ONCE(rsp->gp_activity, jiffies);
2060 }
2061
2062 return true;
2063 }
2064
2065 /*
2066 * Helper function for swait_event_idle() wakeup at force-quiescent-state
2067 * time.
2068 */
2069 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2070 {
2071 struct rcu_node *rnp = rcu_get_root(rsp);
2072
2073 /* Someone like call_rcu() requested a force-quiescent-state scan. */
2074 *gfp = READ_ONCE(rsp->gp_flags);
2075 if (*gfp & RCU_GP_FLAG_FQS)
2076 return true;
2077
2078 /* The current grace period has completed. */
2079 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2080 return true;
2081
2082 return false;
2083 }
2084
2085 /*
2086 * Do one round of quiescent-state forcing.
2087 */
2088 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2089 {
2090 struct rcu_node *rnp = rcu_get_root(rsp);
2091
2092 WRITE_ONCE(rsp->gp_activity, jiffies);
2093 rsp->n_force_qs++;
2094 if (first_time) {
2095 /* Collect dyntick-idle snapshots. */
2096 force_qs_rnp(rsp, dyntick_save_progress_counter);
2097 } else {
2098 /* Handle dyntick-idle and offline CPUs. */
2099 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
2100 }
2101 /* Clear flag to prevent immediate re-entry. */
2102 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2103 raw_spin_lock_irq_rcu_node(rnp);
2104 WRITE_ONCE(rsp->gp_flags,
2105 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
2106 raw_spin_unlock_irq_rcu_node(rnp);
2107 }
2108 }
2109
2110 /*
2111 * Clean up after the old grace period.
2112 */
2113 static void rcu_gp_cleanup(struct rcu_state *rsp)
2114 {
2115 unsigned long gp_duration;
2116 bool needgp = false;
2117 int nocb = 0;
2118 struct rcu_data *rdp;
2119 struct rcu_node *rnp = rcu_get_root(rsp);
2120 struct swait_queue_head *sq;
2121
2122 WRITE_ONCE(rsp->gp_activity, jiffies);
2123 raw_spin_lock_irq_rcu_node(rnp);
2124 gp_duration = jiffies - rsp->gp_start;
2125 if (gp_duration > rsp->gp_max)
2126 rsp->gp_max = gp_duration;
2127
2128 /*
2129 * We know the grace period is complete, but to everyone else
2130 * it appears to still be ongoing. But it is also the case
2131 * that to everyone else it looks like there is nothing that
2132 * they can do to advance the grace period. It is therefore
2133 * safe for us to drop the lock in order to mark the grace
2134 * period as completed in all of the rcu_node structures.
2135 */
2136 raw_spin_unlock_irq_rcu_node(rnp);
2137
2138 /*
2139 * Propagate new ->completed value to rcu_node structures so
2140 * that other CPUs don't have to wait until the start of the next
2141 * grace period to process their callbacks. This also avoids
2142 * some nasty RCU grace-period initialization races by forcing
2143 * the end of the current grace period to be completely recorded in
2144 * all of the rcu_node structures before the beginning of the next
2145 * grace period is recorded in any of the rcu_node structures.
2146 */
2147 rcu_for_each_node_breadth_first(rsp, rnp) {
2148 raw_spin_lock_irq_rcu_node(rnp);
2149 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2150 WARN_ON_ONCE(rnp->qsmask);
2151 WRITE_ONCE(rnp->completed, rsp->gpnum);
2152 rdp = this_cpu_ptr(rsp->rda);
2153 if (rnp == rdp->mynode)
2154 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2155 /* smp_mb() provided by prior unlock-lock pair. */
2156 nocb += rcu_future_gp_cleanup(rsp, rnp);
2157 sq = rcu_nocb_gp_get(rnp);
2158 raw_spin_unlock_irq_rcu_node(rnp);
2159 rcu_nocb_gp_cleanup(sq);
2160 cond_resched_rcu_qs();
2161 WRITE_ONCE(rsp->gp_activity, jiffies);
2162 rcu_gp_slow(rsp, gp_cleanup_delay);
2163 }
2164 rnp = rcu_get_root(rsp);
2165 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2166 rcu_nocb_gp_set(rnp, nocb);
2167
2168 /* Declare grace period done. */
2169 WRITE_ONCE(rsp->completed, rsp->gpnum);
2170 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2171 rsp->gp_state = RCU_GP_IDLE;
2172 rdp = this_cpu_ptr(rsp->rda);
2173 /* Advance CBs to reduce false positives below. */
2174 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2175 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2176 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2177 trace_rcu_grace_period(rsp->name,
2178 READ_ONCE(rsp->gpnum),
2179 TPS("newreq"));
2180 }
2181 raw_spin_unlock_irq_rcu_node(rnp);
2182 }
2183
2184 /*
2185 * Body of kthread that handles grace periods.
2186 */
2187 static int __noreturn rcu_gp_kthread(void *arg)
2188 {
2189 bool first_gp_fqs;
2190 int gf;
2191 unsigned long j;
2192 int ret;
2193 struct rcu_state *rsp = arg;
2194 struct rcu_node *rnp = rcu_get_root(rsp);
2195
2196 rcu_bind_gp_kthread();
2197 for (;;) {
2198
2199 /* Handle grace-period start. */
2200 for (;;) {
2201 trace_rcu_grace_period(rsp->name,
2202 READ_ONCE(rsp->gpnum),
2203 TPS("reqwait"));
2204 rsp->gp_state = RCU_GP_WAIT_GPS;
2205 swait_event_idle(rsp->gp_wq, READ_ONCE(rsp->gp_flags) &
2206 RCU_GP_FLAG_INIT);
2207 rsp->gp_state = RCU_GP_DONE_GPS;
2208 /* Locking provides needed memory barrier. */
2209 if (rcu_gp_init(rsp))
2210 break;
2211 cond_resched_rcu_qs();
2212 WRITE_ONCE(rsp->gp_activity, jiffies);
2213 WARN_ON(signal_pending(current));
2214 trace_rcu_grace_period(rsp->name,
2215 READ_ONCE(rsp->gpnum),
2216 TPS("reqwaitsig"));
2217 }
2218
2219 /* Handle quiescent-state forcing. */
2220 first_gp_fqs = true;
2221 j = jiffies_till_first_fqs;
2222 if (j > HZ) {
2223 j = HZ;
2224 jiffies_till_first_fqs = HZ;
2225 }
2226 ret = 0;
2227 for (;;) {
2228 if (!ret) {
2229 rsp->jiffies_force_qs = jiffies + j;
2230 WRITE_ONCE(rsp->jiffies_kick_kthreads,
2231 jiffies + 3 * j);
2232 }
2233 trace_rcu_grace_period(rsp->name,
2234 READ_ONCE(rsp->gpnum),
2235 TPS("fqswait"));
2236 rsp->gp_state = RCU_GP_WAIT_FQS;
2237 ret = swait_event_idle_timeout(rsp->gp_wq,
2238 rcu_gp_fqs_check_wake(rsp, &gf), j);
2239 rsp->gp_state = RCU_GP_DOING_FQS;
2240 /* Locking provides needed memory barriers. */
2241 /* If grace period done, leave loop. */
2242 if (!READ_ONCE(rnp->qsmask) &&
2243 !rcu_preempt_blocked_readers_cgp(rnp))
2244 break;
2245 /* If time for quiescent-state forcing, do it. */
2246 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2247 (gf & RCU_GP_FLAG_FQS)) {
2248 trace_rcu_grace_period(rsp->name,
2249 READ_ONCE(rsp->gpnum),
2250 TPS("fqsstart"));
2251 rcu_gp_fqs(rsp, first_gp_fqs);
2252 first_gp_fqs = false;
2253 trace_rcu_grace_period(rsp->name,
2254 READ_ONCE(rsp->gpnum),
2255 TPS("fqsend"));
2256 cond_resched_rcu_qs();
2257 WRITE_ONCE(rsp->gp_activity, jiffies);
2258 ret = 0; /* Force full wait till next FQS. */
2259 j = jiffies_till_next_fqs;
2260 if (j > HZ) {
2261 j = HZ;
2262 jiffies_till_next_fqs = HZ;
2263 } else if (j < 1) {
2264 j = 1;
2265 jiffies_till_next_fqs = 1;
2266 }
2267 } else {
2268 /* Deal with stray signal. */
2269 cond_resched_rcu_qs();
2270 WRITE_ONCE(rsp->gp_activity, jiffies);
2271 WARN_ON(signal_pending(current));
2272 trace_rcu_grace_period(rsp->name,
2273 READ_ONCE(rsp->gpnum),
2274 TPS("fqswaitsig"));
2275 ret = 1; /* Keep old FQS timing. */
2276 j = jiffies;
2277 if (time_after(jiffies, rsp->jiffies_force_qs))
2278 j = 1;
2279 else
2280 j = rsp->jiffies_force_qs - j;
2281 }
2282 }
2283
2284 /* Handle grace-period end. */
2285 rsp->gp_state = RCU_GP_CLEANUP;
2286 rcu_gp_cleanup(rsp);
2287 rsp->gp_state = RCU_GP_CLEANED;
2288 }
2289 }
2290
2291 /*
2292 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2293 * in preparation for detecting the next grace period. The caller must hold
2294 * the root node's ->lock and hard irqs must be disabled.
2295 *
2296 * Note that it is legal for a dying CPU (which is marked as offline) to
2297 * invoke this function. This can happen when the dying CPU reports its
2298 * quiescent state.
2299 *
2300 * Returns true if the grace-period kthread must be awakened.
2301 */
2302 static bool
2303 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2304 struct rcu_data *rdp)
2305 {
2306 lockdep_assert_held(&rnp->lock);
2307 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2308 /*
2309 * Either we have not yet spawned the grace-period
2310 * task, this CPU does not need another grace period,
2311 * or a grace period is already in progress.
2312 * Either way, don't start a new grace period.
2313 */
2314 return false;
2315 }
2316 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2317 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2318 TPS("newreq"));
2319
2320 /*
2321 * We can't do wakeups while holding the rnp->lock, as that
2322 * could cause possible deadlocks with the rq->lock. Defer
2323 * the wakeup to our caller.
2324 */
2325 return true;
2326 }
2327
2328 /*
2329 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2330 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2331 * is invoked indirectly from rcu_advance_cbs(), which would result in
2332 * endless recursion -- or would do so if it wasn't for the self-deadlock
2333 * that is encountered beforehand.
2334 *
2335 * Returns true if the grace-period kthread needs to be awakened.
2336 */
2337 static bool rcu_start_gp(struct rcu_state *rsp)
2338 {
2339 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2340 struct rcu_node *rnp = rcu_get_root(rsp);
2341 bool ret = false;
2342
2343 /*
2344 * If there is no grace period in progress right now, any
2345 * callbacks we have up to this point will be satisfied by the
2346 * next grace period. Also, advancing the callbacks reduces the
2347 * probability of false positives from cpu_needs_another_gp()
2348 * resulting in pointless grace periods. So, advance callbacks
2349 * then start the grace period!
2350 */
2351 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2352 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2353 return ret;
2354 }
2355
2356 /*
2357 * Report a full set of quiescent states to the specified rcu_state data
2358 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2359 * kthread if another grace period is required. Whether we wake
2360 * the grace-period kthread or it awakens itself for the next round
2361 * of quiescent-state forcing, that kthread will clean up after the
2362 * just-completed grace period. Note that the caller must hold rnp->lock,
2363 * which is released before return.
2364 */
2365 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2366 __releases(rcu_get_root(rsp)->lock)
2367 {
2368 lockdep_assert_held(&rcu_get_root(rsp)->lock);
2369 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2370 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2371 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2372 rcu_gp_kthread_wake(rsp);
2373 }
2374
2375 /*
2376 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2377 * Allows quiescent states for a group of CPUs to be reported at one go
2378 * to the specified rcu_node structure, though all the CPUs in the group
2379 * must be represented by the same rcu_node structure (which need not be a
2380 * leaf rcu_node structure, though it often will be). The gps parameter
2381 * is the grace-period snapshot, which means that the quiescent states
2382 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2383 * must be held upon entry, and it is released before return.
2384 */
2385 static void
2386 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2387 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2388 __releases(rnp->lock)
2389 {
2390 unsigned long oldmask = 0;
2391 struct rcu_node *rnp_c;
2392
2393 lockdep_assert_held(&rnp->lock);
2394
2395 /* Walk up the rcu_node hierarchy. */
2396 for (;;) {
2397 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2398
2399 /*
2400 * Our bit has already been cleared, or the
2401 * relevant grace period is already over, so done.
2402 */
2403 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2404 return;
2405 }
2406 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2407 WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1 &&
2408 rcu_preempt_blocked_readers_cgp(rnp));
2409 rnp->qsmask &= ~mask;
2410 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2411 mask, rnp->qsmask, rnp->level,
2412 rnp->grplo, rnp->grphi,
2413 !!rnp->gp_tasks);
2414 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2415
2416 /* Other bits still set at this level, so done. */
2417 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2418 return;
2419 }
2420 mask = rnp->grpmask;
2421 if (rnp->parent == NULL) {
2422
2423 /* No more levels. Exit loop holding root lock. */
2424
2425 break;
2426 }
2427 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2428 rnp_c = rnp;
2429 rnp = rnp->parent;
2430 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2431 oldmask = rnp_c->qsmask;
2432 }
2433
2434 /*
2435 * Get here if we are the last CPU to pass through a quiescent
2436 * state for this grace period. Invoke rcu_report_qs_rsp()
2437 * to clean up and start the next grace period if one is needed.
2438 */
2439 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2440 }
2441
2442 /*
2443 * Record a quiescent state for all tasks that were previously queued
2444 * on the specified rcu_node structure and that were blocking the current
2445 * RCU grace period. The caller must hold the specified rnp->lock with
2446 * irqs disabled, and this lock is released upon return, but irqs remain
2447 * disabled.
2448 */
2449 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2450 struct rcu_node *rnp, unsigned long flags)
2451 __releases(rnp->lock)
2452 {
2453 unsigned long gps;
2454 unsigned long mask;
2455 struct rcu_node *rnp_p;
2456
2457 lockdep_assert_held(&rnp->lock);
2458 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2459 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2460 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2461 return; /* Still need more quiescent states! */
2462 }
2463
2464 rnp_p = rnp->parent;
2465 if (rnp_p == NULL) {
2466 /*
2467 * Only one rcu_node structure in the tree, so don't
2468 * try to report up to its nonexistent parent!
2469 */
2470 rcu_report_qs_rsp(rsp, flags);
2471 return;
2472 }
2473
2474 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2475 gps = rnp->gpnum;
2476 mask = rnp->grpmask;
2477 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2478 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
2479 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2480 }
2481
2482 /*
2483 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2484 * structure. This must be called from the specified CPU.
2485 */
2486 static void
2487 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2488 {
2489 unsigned long flags;
2490 unsigned long mask;
2491 bool needwake;
2492 struct rcu_node *rnp;
2493
2494 rnp = rdp->mynode;
2495 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2496 if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
2497 rnp->completed == rnp->gpnum || rdp->gpwrap) {
2498
2499 /*
2500 * The grace period in which this quiescent state was
2501 * recorded has ended, so don't report it upwards.
2502 * We will instead need a new quiescent state that lies
2503 * within the current grace period.
2504 */
2505 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
2506 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
2507 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2508 return;
2509 }
2510 mask = rdp->grpmask;
2511 if ((rnp->qsmask & mask) == 0) {
2512 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2513 } else {
2514 rdp->core_needs_qs = false;
2515
2516 /*
2517 * This GP can't end until cpu checks in, so all of our
2518 * callbacks can be processed during the next GP.
2519 */
2520 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2521
2522 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2523 /* ^^^ Released rnp->lock */
2524 if (needwake)
2525 rcu_gp_kthread_wake(rsp);
2526 }
2527 }
2528
2529 /*
2530 * Check to see if there is a new grace period of which this CPU
2531 * is not yet aware, and if so, set up local rcu_data state for it.
2532 * Otherwise, see if this CPU has just passed through its first
2533 * quiescent state for this grace period, and record that fact if so.
2534 */
2535 static void
2536 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2537 {
2538 /* Check for grace-period ends and beginnings. */
2539 note_gp_changes(rsp, rdp);
2540
2541 /*
2542 * Does this CPU still need to do its part for current grace period?
2543 * If no, return and let the other CPUs do their part as well.
2544 */
2545 if (!rdp->core_needs_qs)
2546 return;
2547
2548 /*
2549 * Was there a quiescent state since the beginning of the grace
2550 * period? If no, then exit and wait for the next call.
2551 */
2552 if (rdp->cpu_no_qs.b.norm)
2553 return;
2554
2555 /*
2556 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2557 * judge of that).
2558 */
2559 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2560 }
2561
2562 /*
2563 * Trace the fact that this CPU is going offline.
2564 */
2565 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2566 {
2567 RCU_TRACE(unsigned long mask;)
2568 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
2569 RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
2570
2571 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2572 return;
2573
2574 RCU_TRACE(mask = rdp->grpmask;)
2575 trace_rcu_grace_period(rsp->name,
2576 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2577 TPS("cpuofl"));
2578 }
2579
2580 /*
2581 * All CPUs for the specified rcu_node structure have gone offline,
2582 * and all tasks that were preempted within an RCU read-side critical
2583 * section while running on one of those CPUs have since exited their RCU
2584 * read-side critical section. Some other CPU is reporting this fact with
2585 * the specified rcu_node structure's ->lock held and interrupts disabled.
2586 * This function therefore goes up the tree of rcu_node structures,
2587 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2588 * the leaf rcu_node structure's ->qsmaskinit field has already been
2589 * updated
2590 *
2591 * This function does check that the specified rcu_node structure has
2592 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2593 * prematurely. That said, invoking it after the fact will cost you
2594 * a needless lock acquisition. So once it has done its work, don't
2595 * invoke it again.
2596 */
2597 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2598 {
2599 long mask;
2600 struct rcu_node *rnp = rnp_leaf;
2601
2602 lockdep_assert_held(&rnp->lock);
2603 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2604 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2605 return;
2606 for (;;) {
2607 mask = rnp->grpmask;
2608 rnp = rnp->parent;
2609 if (!rnp)
2610 break;
2611 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2612 rnp->qsmaskinit &= ~mask;
2613 rnp->qsmask &= ~mask;
2614 if (rnp->qsmaskinit) {
2615 raw_spin_unlock_rcu_node(rnp);
2616 /* irqs remain disabled. */
2617 return;
2618 }
2619 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2620 }
2621 }
2622
2623 /*
2624 * The CPU has been completely removed, and some other CPU is reporting
2625 * this fact from process context. Do the remainder of the cleanup.
2626 * There can only be one CPU hotplug operation at a time, so no need for
2627 * explicit locking.
2628 */
2629 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2630 {
2631 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2632 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2633
2634 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2635 return;
2636
2637 /* Adjust any no-longer-needed kthreads. */
2638 rcu_boost_kthread_setaffinity(rnp, -1);
2639 }
2640
2641 /*
2642 * Invoke any RCU callbacks that have made it to the end of their grace
2643 * period. Thottle as specified by rdp->blimit.
2644 */
2645 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2646 {
2647 unsigned long flags;
2648 struct rcu_head *rhp;
2649 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2650 long bl, count;
2651
2652 /* If no callbacks are ready, just return. */
2653 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2654 trace_rcu_batch_start(rsp->name,
2655 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2656 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2657 trace_rcu_batch_end(rsp->name, 0,
2658 !rcu_segcblist_empty(&rdp->cblist),
2659 need_resched(), is_idle_task(current),
2660 rcu_is_callbacks_kthread());
2661 return;
2662 }
2663
2664 /*
2665 * Extract the list of ready callbacks, disabling to prevent
2666 * races with call_rcu() from interrupt handlers. Leave the
2667 * callback counts, as rcu_barrier() needs to be conservative.
2668 */
2669 local_irq_save(flags);
2670 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2671 bl = rdp->blimit;
2672 trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2673 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2674 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2675 local_irq_restore(flags);
2676
2677 /* Invoke callbacks. */
2678 rhp = rcu_cblist_dequeue(&rcl);
2679 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2680 debug_rcu_head_unqueue(rhp);
2681 if (__rcu_reclaim(rsp->name, rhp))
2682 rcu_cblist_dequeued_lazy(&rcl);
2683 /*
2684 * Stop only if limit reached and CPU has something to do.
2685 * Note: The rcl structure counts down from zero.
2686 */
2687 if (-rcl.len >= bl &&
2688 (need_resched() ||
2689 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2690 break;
2691 }
2692
2693 local_irq_save(flags);
2694 count = -rcl.len;
2695 trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(),
2696 is_idle_task(current), rcu_is_callbacks_kthread());
2697
2698 /* Update counts and requeue any remaining callbacks. */
2699 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2700 smp_mb(); /* List handling before counting for rcu_barrier(). */
2701 rdp->n_cbs_invoked += count;
2702 rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2703
2704 /* Reinstate batch limit if we have worked down the excess. */
2705 count = rcu_segcblist_n_cbs(&rdp->cblist);
2706 if (rdp->blimit == LONG_MAX && count <= qlowmark)
2707 rdp->blimit = blimit;
2708
2709 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2710 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2711 rdp->qlen_last_fqs_check = 0;
2712 rdp->n_force_qs_snap = rsp->n_force_qs;
2713 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2714 rdp->qlen_last_fqs_check = count;
2715 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
2716
2717 local_irq_restore(flags);
2718
2719 /* Re-invoke RCU core processing if there are callbacks remaining. */
2720 if (rcu_segcblist_ready_cbs(&rdp->cblist))
2721 invoke_rcu_core();
2722 }
2723
2724 /*
2725 * Check to see if this CPU is in a non-context-switch quiescent state
2726 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2727 * Also schedule RCU core processing.
2728 *
2729 * This function must be called from hardirq context. It is normally
2730 * invoked from the scheduling-clock interrupt.
2731 */
2732 void rcu_check_callbacks(int user)
2733 {
2734 trace_rcu_utilization(TPS("Start scheduler-tick"));
2735 increment_cpu_stall_ticks();
2736 if (user || rcu_is_cpu_rrupt_from_idle()) {
2737
2738 /*
2739 * Get here if this CPU took its interrupt from user
2740 * mode or from the idle loop, and if this is not a
2741 * nested interrupt. In this case, the CPU is in
2742 * a quiescent state, so note it.
2743 *
2744 * No memory barrier is required here because both
2745 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2746 * variables that other CPUs neither access nor modify,
2747 * at least not while the corresponding CPU is online.
2748 */
2749
2750 rcu_sched_qs();
2751 rcu_bh_qs();
2752
2753 } else if (!in_softirq()) {
2754
2755 /*
2756 * Get here if this CPU did not take its interrupt from
2757 * softirq, in other words, if it is not interrupting
2758 * a rcu_bh read-side critical section. This is an _bh
2759 * critical section, so note it.
2760 */
2761
2762 rcu_bh_qs();
2763 }
2764 rcu_preempt_check_callbacks();
2765 if (rcu_pending())
2766 invoke_rcu_core();
2767 if (user)
2768 rcu_note_voluntary_context_switch(current);
2769 trace_rcu_utilization(TPS("End scheduler-tick"));
2770 }
2771
2772 /*
2773 * Scan the leaf rcu_node structures, processing dyntick state for any that
2774 * have not yet encountered a quiescent state, using the function specified.
2775 * Also initiate boosting for any threads blocked on the root rcu_node.
2776 *
2777 * The caller must have suppressed start of new grace periods.
2778 */
2779 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp))
2780 {
2781 int cpu;
2782 unsigned long flags;
2783 unsigned long mask;
2784 struct rcu_node *rnp;
2785
2786 rcu_for_each_leaf_node(rsp, rnp) {
2787 cond_resched_rcu_qs();
2788 mask = 0;
2789 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2790 if (rnp->qsmask == 0) {
2791 if (rcu_state_p == &rcu_sched_state ||
2792 rsp != rcu_state_p ||
2793 rcu_preempt_blocked_readers_cgp(rnp)) {
2794 /*
2795 * No point in scanning bits because they
2796 * are all zero. But we might need to
2797 * priority-boost blocked readers.
2798 */
2799 rcu_initiate_boost(rnp, flags);
2800 /* rcu_initiate_boost() releases rnp->lock */
2801 continue;
2802 }
2803 if (rnp->parent &&
2804 (rnp->parent->qsmask & rnp->grpmask)) {
2805 /*
2806 * Race between grace-period
2807 * initialization and task exiting RCU
2808 * read-side critical section: Report.
2809 */
2810 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2811 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2812 continue;
2813 }
2814 }
2815 for_each_leaf_node_possible_cpu(rnp, cpu) {
2816 unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2817 if ((rnp->qsmask & bit) != 0) {
2818 if (f(per_cpu_ptr(rsp->rda, cpu)))
2819 mask |= bit;
2820 }
2821 }
2822 if (mask != 0) {
2823 /* Idle/offline CPUs, report (releases rnp->lock. */
2824 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2825 } else {
2826 /* Nothing to do here, so just drop the lock. */
2827 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2828 }
2829 }
2830 }
2831
2832 /*
2833 * Force quiescent states on reluctant CPUs, and also detect which
2834 * CPUs are in dyntick-idle mode.
2835 */
2836 static void force_quiescent_state(struct rcu_state *rsp)
2837 {
2838 unsigned long flags;
2839 bool ret;
2840 struct rcu_node *rnp;
2841 struct rcu_node *rnp_old = NULL;
2842
2843 /* Funnel through hierarchy to reduce memory contention. */
2844 rnp = __this_cpu_read(rsp->rda->mynode);
2845 for (; rnp != NULL; rnp = rnp->parent) {
2846 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2847 !raw_spin_trylock(&rnp->fqslock);
2848 if (rnp_old != NULL)
2849 raw_spin_unlock(&rnp_old->fqslock);
2850 if (ret) {
2851 rsp->n_force_qs_lh++;
2852 return;
2853 }
2854 rnp_old = rnp;
2855 }
2856 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2857
2858 /* Reached the root of the rcu_node tree, acquire lock. */
2859 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2860 raw_spin_unlock(&rnp_old->fqslock);
2861 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2862 rsp->n_force_qs_lh++;
2863 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2864 return; /* Someone beat us to it. */
2865 }
2866 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2867 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2868 rcu_gp_kthread_wake(rsp);
2869 }
2870
2871 /*
2872 * This does the RCU core processing work for the specified rcu_state
2873 * and rcu_data structures. This may be called only from the CPU to
2874 * whom the rdp belongs.
2875 */
2876 static void
2877 __rcu_process_callbacks(struct rcu_state *rsp)
2878 {
2879 unsigned long flags;
2880 bool needwake;
2881 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2882
2883 WARN_ON_ONCE(!rdp->beenonline);
2884
2885 /* Update RCU state based on any recent quiescent states. */
2886 rcu_check_quiescent_state(rsp, rdp);
2887
2888 /* Does this CPU require a not-yet-started grace period? */
2889 local_irq_save(flags);
2890 if (cpu_needs_another_gp(rsp, rdp)) {
2891 raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
2892 needwake = rcu_start_gp(rsp);
2893 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2894 if (needwake)
2895 rcu_gp_kthread_wake(rsp);
2896 } else {
2897 local_irq_restore(flags);
2898 }
2899
2900 /* If there are callbacks ready, invoke them. */
2901 if (rcu_segcblist_ready_cbs(&rdp->cblist))
2902 invoke_rcu_callbacks(rsp, rdp);
2903
2904 /* Do any needed deferred wakeups of rcuo kthreads. */
2905 do_nocb_deferred_wakeup(rdp);
2906 }
2907
2908 /*
2909 * Do RCU core processing for the current CPU.
2910 */
2911 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
2912 {
2913 struct rcu_state *rsp;
2914
2915 if (cpu_is_offline(smp_processor_id()))
2916 return;
2917 trace_rcu_utilization(TPS("Start RCU core"));
2918 for_each_rcu_flavor(rsp)
2919 __rcu_process_callbacks(rsp);
2920 trace_rcu_utilization(TPS("End RCU core"));
2921 }
2922
2923 /*
2924 * Schedule RCU callback invocation. If the specified type of RCU
2925 * does not support RCU priority boosting, just do a direct call,
2926 * otherwise wake up the per-CPU kernel kthread. Note that because we
2927 * are running on the current CPU with softirqs disabled, the
2928 * rcu_cpu_kthread_task cannot disappear out from under us.
2929 */
2930 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2931 {
2932 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2933 return;
2934 if (likely(!rsp->boost)) {
2935 rcu_do_batch(rsp, rdp);
2936 return;
2937 }
2938 invoke_rcu_callbacks_kthread();
2939 }
2940
2941 static void invoke_rcu_core(void)
2942 {
2943 if (cpu_online(smp_processor_id()))
2944 raise_softirq(RCU_SOFTIRQ);
2945 }
2946
2947 /*
2948 * Handle any core-RCU processing required by a call_rcu() invocation.
2949 */
2950 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2951 struct rcu_head *head, unsigned long flags)
2952 {
2953 bool needwake;
2954
2955 /*
2956 * If called from an extended quiescent state, invoke the RCU
2957 * core in order to force a re-evaluation of RCU's idleness.
2958 */
2959 if (!rcu_is_watching())
2960 invoke_rcu_core();
2961
2962 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2963 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2964 return;
2965
2966 /*
2967 * Force the grace period if too many callbacks or too long waiting.
2968 * Enforce hysteresis, and don't invoke force_quiescent_state()
2969 * if some other CPU has recently done so. Also, don't bother
2970 * invoking force_quiescent_state() if the newly enqueued callback
2971 * is the only one waiting for a grace period to complete.
2972 */
2973 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2974 rdp->qlen_last_fqs_check + qhimark)) {
2975
2976 /* Are we ignoring a completed grace period? */
2977 note_gp_changes(rsp, rdp);
2978
2979 /* Start a new grace period if one not already started. */
2980 if (!rcu_gp_in_progress(rsp)) {
2981 struct rcu_node *rnp_root = rcu_get_root(rsp);
2982
2983 raw_spin_lock_rcu_node(rnp_root);
2984 needwake = rcu_start_gp(rsp);
2985 raw_spin_unlock_rcu_node(rnp_root);
2986 if (needwake)
2987 rcu_gp_kthread_wake(rsp);
2988 } else {
2989 /* Give the grace period a kick. */
2990 rdp->blimit = LONG_MAX;
2991 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2992 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2993 force_quiescent_state(rsp);
2994 rdp->n_force_qs_snap = rsp->n_force_qs;
2995 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2996 }
2997 }
2998 }
2999
3000 /*
3001 * RCU callback function to leak a callback.
3002 */
3003 static void rcu_leak_callback(struct rcu_head *rhp)
3004 {
3005 }
3006
3007 /*
3008 * Helper function for call_rcu() and friends. The cpu argument will
3009 * normally be -1, indicating "currently running CPU". It may specify
3010 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3011 * is expected to specify a CPU.
3012 */
3013 static void
3014 __call_rcu(struct rcu_head *head, rcu_callback_t func,
3015 struct rcu_state *rsp, int cpu, bool lazy)
3016 {
3017 unsigned long flags;
3018 struct rcu_data *rdp;
3019
3020 /* Misaligned rcu_head! */
3021 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3022
3023 if (debug_rcu_head_queue(head)) {
3024 /*
3025 * Probable double call_rcu(), so leak the callback.
3026 * Use rcu:rcu_callback trace event to find the previous
3027 * time callback was passed to __call_rcu().
3028 */
3029 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
3030 head, head->func);
3031 WRITE_ONCE(head->func, rcu_leak_callback);
3032 return;
3033 }
3034 head->func = func;
3035 head->next = NULL;
3036 local_irq_save(flags);
3037 rdp = this_cpu_ptr(rsp->rda);
3038
3039 /* Add the callback to our list. */
3040 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
3041 int offline;
3042
3043 if (cpu != -1)
3044 rdp = per_cpu_ptr(rsp->rda, cpu);
3045 if (likely(rdp->mynode)) {
3046 /* Post-boot, so this should be for a no-CBs CPU. */
3047 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3048 WARN_ON_ONCE(offline);
3049 /* Offline CPU, _call_rcu() illegal, leak callback. */
3050 local_irq_restore(flags);
3051 return;
3052 }
3053 /*
3054 * Very early boot, before rcu_init(). Initialize if needed
3055 * and then drop through to queue the callback.
3056 */
3057 BUG_ON(cpu != -1);
3058 WARN_ON_ONCE(!rcu_is_watching());
3059 if (rcu_segcblist_empty(&rdp->cblist))
3060 rcu_segcblist_init(&rdp->cblist);
3061 }
3062 rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
3063 if (!lazy)
3064 rcu_idle_count_callbacks_posted();
3065
3066 if (__is_kfree_rcu_offset((unsigned long)func))
3067 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3068 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3069 rcu_segcblist_n_cbs(&rdp->cblist));
3070 else
3071 trace_rcu_callback(rsp->name, head,
3072 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3073 rcu_segcblist_n_cbs(&rdp->cblist));
3074
3075 /* Go handle any RCU core processing required. */
3076 __call_rcu_core(rsp, rdp, head, flags);
3077 local_irq_restore(flags);
3078 }
3079
3080 /**
3081 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
3082 * @head: structure to be used for queueing the RCU updates.
3083 * @func: actual callback function to be invoked after the grace period
3084 *
3085 * The callback function will be invoked some time after a full grace
3086 * period elapses, in other words after all currently executing RCU
3087 * read-side critical sections have completed. call_rcu_sched() assumes
3088 * that the read-side critical sections end on enabling of preemption
3089 * or on voluntary preemption.
3090 * RCU read-side critical sections are delimited by :
3091 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR
3092 * - anything that disables preemption.
3093 *
3094 * These may be nested.
3095 *
3096 * See the description of call_rcu() for more detailed information on
3097 * memory ordering guarantees.
3098 */
3099 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3100 {
3101 __call_rcu(head, func, &rcu_sched_state, -1, 0);
3102 }
3103 EXPORT_SYMBOL_GPL(call_rcu_sched);
3104
3105 /**
3106 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
3107 * @head: structure to be used for queueing the RCU updates.
3108 * @func: actual callback function to be invoked after the grace period
3109 *
3110 * The callback function will be invoked some time after a full grace
3111 * period elapses, in other words after all currently executing RCU
3112 * read-side critical sections have completed. call_rcu_bh() assumes
3113 * that the read-side critical sections end on completion of a softirq
3114 * handler. This means that read-side critical sections in process
3115 * context must not be interrupted by softirqs. This interface is to be
3116 * used when most of the read-side critical sections are in softirq context.
3117 * RCU read-side critical sections are delimited by :
3118 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context.
3119 * OR
3120 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
3121 * These may be nested.
3122 *
3123 * See the description of call_rcu() for more detailed information on
3124 * memory ordering guarantees.
3125 */
3126 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3127 {
3128 __call_rcu(head, func, &rcu_bh_state, -1, 0);
3129 }
3130 EXPORT_SYMBOL_GPL(call_rcu_bh);
3131
3132 /*
3133 * Queue an RCU callback for lazy invocation after a grace period.
3134 * This will likely be later named something like "call_rcu_lazy()",
3135 * but this change will require some way of tagging the lazy RCU
3136 * callbacks in the list of pending callbacks. Until then, this
3137 * function may only be called from __kfree_rcu().
3138 */
3139 void kfree_call_rcu(struct rcu_head *head,
3140 rcu_callback_t func)
3141 {
3142 __call_rcu(head, func, rcu_state_p, -1, 1);
3143 }
3144 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3145
3146 /*
3147 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3148 * any blocking grace-period wait automatically implies a grace period
3149 * if there is only one CPU online at any point time during execution
3150 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3151 * occasionally incorrectly indicate that there are multiple CPUs online
3152 * when there was in fact only one the whole time, as this just adds
3153 * some overhead: RCU still operates correctly.
3154 */
3155 static inline int rcu_blocking_is_gp(void)
3156 {
3157 int ret;
3158
3159 might_sleep(); /* Check for RCU read-side critical section. */
3160 preempt_disable();
3161 ret = num_online_cpus() <= 1;
3162 preempt_enable();
3163 return ret;
3164 }
3165
3166 /**
3167 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3168 *
3169 * Control will return to the caller some time after a full rcu-sched
3170 * grace period has elapsed, in other words after all currently executing
3171 * rcu-sched read-side critical sections have completed. These read-side
3172 * critical sections are delimited by rcu_read_lock_sched() and
3173 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3174 * local_irq_disable(), and so on may be used in place of
3175 * rcu_read_lock_sched().
3176 *
3177 * This means that all preempt_disable code sequences, including NMI and
3178 * non-threaded hardware-interrupt handlers, in progress on entry will
3179 * have completed before this primitive returns. However, this does not
3180 * guarantee that softirq handlers will have completed, since in some
3181 * kernels, these handlers can run in process context, and can block.
3182 *
3183 * Note that this guarantee implies further memory-ordering guarantees.
3184 * On systems with more than one CPU, when synchronize_sched() returns,
3185 * each CPU is guaranteed to have executed a full memory barrier since the
3186 * end of its last RCU-sched read-side critical section whose beginning
3187 * preceded the call to synchronize_sched(). In addition, each CPU having
3188 * an RCU read-side critical section that extends beyond the return from
3189 * synchronize_sched() is guaranteed to have executed a full memory barrier
3190 * after the beginning of synchronize_sched() and before the beginning of
3191 * that RCU read-side critical section. Note that these guarantees include
3192 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3193 * that are executing in the kernel.
3194 *
3195 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3196 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3197 * to have executed a full memory barrier during the execution of
3198 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3199 * again only if the system has more than one CPU).
3200 */
3201 void synchronize_sched(void)
3202 {
3203 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3204 lock_is_held(&rcu_lock_map) ||
3205 lock_is_held(&rcu_sched_lock_map),
3206 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3207 if (rcu_blocking_is_gp())
3208 return;
3209 if (rcu_gp_is_expedited())
3210 synchronize_sched_expedited();
3211 else
3212 wait_rcu_gp(call_rcu_sched);
3213 }
3214 EXPORT_SYMBOL_GPL(synchronize_sched);
3215
3216 /**
3217 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3218 *
3219 * Control will return to the caller some time after a full rcu_bh grace
3220 * period has elapsed, in other words after all currently executing rcu_bh
3221 * read-side critical sections have completed. RCU read-side critical
3222 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3223 * and may be nested.
3224 *
3225 * See the description of synchronize_sched() for more detailed information
3226 * on memory ordering guarantees.
3227 */
3228 void synchronize_rcu_bh(void)
3229 {
3230 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3231 lock_is_held(&rcu_lock_map) ||
3232 lock_is_held(&rcu_sched_lock_map),
3233 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3234 if (rcu_blocking_is_gp())
3235 return;
3236 if (rcu_gp_is_expedited())
3237 synchronize_rcu_bh_expedited();
3238 else
3239 wait_rcu_gp(call_rcu_bh);
3240 }
3241 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3242
3243 /**
3244 * get_state_synchronize_rcu - Snapshot current RCU state
3245 *
3246 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3247 * to determine whether or not a full grace period has elapsed in the
3248 * meantime.
3249 */
3250 unsigned long get_state_synchronize_rcu(void)
3251 {
3252 /*
3253 * Any prior manipulation of RCU-protected data must happen
3254 * before the load from ->gpnum.
3255 */
3256 smp_mb(); /* ^^^ */
3257
3258 /*
3259 * Make sure this load happens before the purportedly
3260 * time-consuming work between get_state_synchronize_rcu()
3261 * and cond_synchronize_rcu().
3262 */
3263 return smp_load_acquire(&rcu_state_p->gpnum);
3264 }
3265 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3266
3267 /**
3268 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3269 *
3270 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3271 *
3272 * If a full RCU grace period has elapsed since the earlier call to
3273 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3274 * synchronize_rcu() to wait for a full grace period.
3275 *
3276 * Yes, this function does not take counter wrap into account. But
3277 * counter wrap is harmless. If the counter wraps, we have waited for
3278 * more than 2 billion grace periods (and way more on a 64-bit system!),
3279 * so waiting for one additional grace period should be just fine.
3280 */
3281 void cond_synchronize_rcu(unsigned long oldstate)
3282 {
3283 unsigned long newstate;
3284
3285 /*
3286 * Ensure that this load happens before any RCU-destructive
3287 * actions the caller might carry out after we return.
3288 */
3289 newstate = smp_load_acquire(&rcu_state_p->completed);
3290 if (ULONG_CMP_GE(oldstate, newstate))
3291 synchronize_rcu();
3292 }
3293 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3294
3295 /**
3296 * get_state_synchronize_sched - Snapshot current RCU-sched state
3297 *
3298 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3299 * to determine whether or not a full grace period has elapsed in the
3300 * meantime.
3301 */
3302 unsigned long get_state_synchronize_sched(void)
3303 {
3304 /*
3305 * Any prior manipulation of RCU-protected data must happen
3306 * before the load from ->gpnum.
3307 */
3308 smp_mb(); /* ^^^ */
3309
3310 /*
3311 * Make sure this load happens before the purportedly
3312 * time-consuming work between get_state_synchronize_sched()
3313 * and cond_synchronize_sched().
3314 */
3315 return smp_load_acquire(&rcu_sched_state.gpnum);
3316 }
3317 EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3318
3319 /**
3320 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3321 *
3322 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3323 *
3324 * If a full RCU-sched grace period has elapsed since the earlier call to
3325 * get_state_synchronize_sched(), just return. Otherwise, invoke
3326 * synchronize_sched() to wait for a full grace period.
3327 *
3328 * Yes, this function does not take counter wrap into account. But
3329 * counter wrap is harmless. If the counter wraps, we have waited for
3330 * more than 2 billion grace periods (and way more on a 64-bit system!),
3331 * so waiting for one additional grace period should be just fine.
3332 */
3333 void cond_synchronize_sched(unsigned long oldstate)
3334 {
3335 unsigned long newstate;
3336
3337 /*
3338 * Ensure that this load happens before any RCU-destructive
3339 * actions the caller might carry out after we return.
3340 */
3341 newstate = smp_load_acquire(&rcu_sched_state.completed);
3342 if (ULONG_CMP_GE(oldstate, newstate))
3343 synchronize_sched();
3344 }
3345 EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3346
3347 /*
3348 * Check to see if there is any immediate RCU-related work to be done
3349 * by the current CPU, for the specified type of RCU, returning 1 if so.
3350 * The checks are in order of increasing expense: checks that can be
3351 * carried out against CPU-local state are performed first. However,
3352 * we must check for CPU stalls first, else we might not get a chance.
3353 */
3354 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3355 {
3356 struct rcu_node *rnp = rdp->mynode;
3357
3358 rdp->n_rcu_pending++;
3359
3360 /* Check for CPU stalls, if enabled. */
3361 check_cpu_stall(rsp, rdp);
3362
3363 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3364 if (rcu_nohz_full_cpu(rsp))
3365 return 0;
3366
3367 /* Is the RCU core waiting for a quiescent state from this CPU? */
3368 if (rcu_scheduler_fully_active &&
3369 rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3370 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_dynticks.rcu_qs_ctr)) {
3371 rdp->n_rp_core_needs_qs++;
3372 } else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) {
3373 rdp->n_rp_report_qs++;
3374 return 1;
3375 }
3376
3377 /* Does this CPU have callbacks ready to invoke? */
3378 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
3379 rdp->n_rp_cb_ready++;
3380 return 1;
3381 }
3382
3383 /* Has RCU gone idle with this CPU needing another grace period? */
3384 if (cpu_needs_another_gp(rsp, rdp)) {
3385 rdp->n_rp_cpu_needs_gp++;
3386 return 1;
3387 }
3388
3389 /* Has another RCU grace period completed? */
3390 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3391 rdp->n_rp_gp_completed++;
3392 return 1;
3393 }
3394
3395 /* Has a new RCU grace period started? */
3396 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3397 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3398 rdp->n_rp_gp_started++;
3399 return 1;
3400 }
3401
3402 /* Does this CPU need a deferred NOCB wakeup? */
3403 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3404 rdp->n_rp_nocb_defer_wakeup++;
3405 return 1;
3406 }
3407
3408 /* nothing to do */
3409 rdp->n_rp_need_nothing++;
3410 return 0;
3411 }
3412
3413 /*
3414 * Check to see if there is any immediate RCU-related work to be done
3415 * by the current CPU, returning 1 if so. This function is part of the
3416 * RCU implementation; it is -not- an exported member of the RCU API.
3417 */
3418 static int rcu_pending(void)
3419 {
3420 struct rcu_state *rsp;
3421
3422 for_each_rcu_flavor(rsp)
3423 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3424 return 1;
3425 return 0;
3426 }
3427
3428 /*
3429 * Return true if the specified CPU has any callback. If all_lazy is
3430 * non-NULL, store an indication of whether all callbacks are lazy.
3431 * (If there are no callbacks, all of them are deemed to be lazy.)
3432 */
3433 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3434 {
3435 bool al = true;
3436 bool hc = false;
3437 struct rcu_data *rdp;
3438 struct rcu_state *rsp;
3439
3440 for_each_rcu_flavor(rsp) {
3441 rdp = this_cpu_ptr(rsp->rda);
3442 if (rcu_segcblist_empty(&rdp->cblist))
3443 continue;
3444 hc = true;
3445 if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
3446 al = false;
3447 break;
3448 }
3449 }
3450 if (all_lazy)
3451 *all_lazy = al;
3452 return hc;
3453 }
3454
3455 /*
3456 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3457 * the compiler is expected to optimize this away.
3458 */
3459 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3460 int cpu, unsigned long done)
3461 {
3462 trace_rcu_barrier(rsp->name, s, cpu,
3463 atomic_read(&rsp->barrier_cpu_count), done);
3464 }
3465
3466 /*
3467 * RCU callback function for _rcu_barrier(). If we are last, wake
3468 * up the task executing _rcu_barrier().
3469 */
3470 static void rcu_barrier_callback(struct rcu_head *rhp)
3471 {
3472 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3473 struct rcu_state *rsp = rdp->rsp;
3474
3475 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3476 _rcu_barrier_trace(rsp, TPS("LastCB"), -1,
3477 rsp->barrier_sequence);
3478 complete(&rsp->barrier_completion);
3479 } else {
3480 _rcu_barrier_trace(rsp, TPS("CB"), -1, rsp->barrier_sequence);
3481 }
3482 }
3483
3484 /*
3485 * Called with preemption disabled, and from cross-cpu IRQ context.
3486 */
3487 static void rcu_barrier_func(void *type)
3488 {
3489 struct rcu_state *rsp = type;
3490 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3491
3492 _rcu_barrier_trace(rsp, TPS("IRQ"), -1, rsp->barrier_sequence);
3493 rdp->barrier_head.func = rcu_barrier_callback;
3494 debug_rcu_head_queue(&rdp->barrier_head);
3495 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
3496 atomic_inc(&rsp->barrier_cpu_count);
3497 } else {
3498 debug_rcu_head_unqueue(&rdp->barrier_head);
3499 _rcu_barrier_trace(rsp, TPS("IRQNQ"), -1,
3500 rsp->barrier_sequence);
3501 }
3502 }
3503
3504 /*
3505 * Orchestrate the specified type of RCU barrier, waiting for all
3506 * RCU callbacks of the specified type to complete.
3507 */
3508 static void _rcu_barrier(struct rcu_state *rsp)
3509 {
3510 int cpu;
3511 struct rcu_data *rdp;
3512 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3513
3514 _rcu_barrier_trace(rsp, TPS("Begin"), -1, s);
3515
3516 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3517 mutex_lock(&rsp->barrier_mutex);
3518
3519 /* Did someone else do our work for us? */
3520 if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3521 _rcu_barrier_trace(rsp, TPS("EarlyExit"), -1,
3522 rsp->barrier_sequence);
3523 smp_mb(); /* caller's subsequent code after above check. */
3524 mutex_unlock(&rsp->barrier_mutex);
3525 return;
3526 }
3527
3528 /* Mark the start of the barrier operation. */
3529 rcu_seq_start(&rsp->barrier_sequence);
3530 _rcu_barrier_trace(rsp, TPS("Inc1"), -1, rsp->barrier_sequence);
3531
3532 /*
3533 * Initialize the count to one rather than to zero in order to
3534 * avoid a too-soon return to zero in case of a short grace period
3535 * (or preemption of this task). Exclude CPU-hotplug operations
3536 * to ensure that no offline CPU has callbacks queued.
3537 */
3538 init_completion(&rsp->barrier_completion);
3539 atomic_set(&rsp->barrier_cpu_count, 1);
3540 get_online_cpus();
3541
3542 /*
3543 * Force each CPU with callbacks to register a new callback.
3544 * When that callback is invoked, we will know that all of the
3545 * corresponding CPU's preceding callbacks have been invoked.
3546 */
3547 for_each_possible_cpu(cpu) {
3548 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3549 continue;
3550 rdp = per_cpu_ptr(rsp->rda, cpu);
3551 if (rcu_is_nocb_cpu(cpu)) {
3552 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3553 _rcu_barrier_trace(rsp, TPS("OfflineNoCB"), cpu,
3554 rsp->barrier_sequence);
3555 } else {
3556 _rcu_barrier_trace(rsp, TPS("OnlineNoCB"), cpu,
3557 rsp->barrier_sequence);
3558 smp_mb__before_atomic();
3559 atomic_inc(&rsp->barrier_cpu_count);
3560 __call_rcu(&rdp->barrier_head,
3561 rcu_barrier_callback, rsp, cpu, 0);
3562 }
3563 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
3564 _rcu_barrier_trace(rsp, TPS("OnlineQ"), cpu,
3565 rsp->barrier_sequence);
3566 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3567 } else {
3568 _rcu_barrier_trace(rsp, TPS("OnlineNQ"), cpu,
3569 rsp->barrier_sequence);
3570 }
3571 }
3572 put_online_cpus();
3573
3574 /*
3575 * Now that we have an rcu_barrier_callback() callback on each
3576 * CPU, and thus each counted, remove the initial count.
3577 */
3578 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3579 complete(&rsp->barrier_completion);
3580
3581 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3582 wait_for_completion(&rsp->barrier_completion);
3583
3584 /* Mark the end of the barrier operation. */
3585 _rcu_barrier_trace(rsp, TPS("Inc2"), -1, rsp->barrier_sequence);
3586 rcu_seq_end(&rsp->barrier_sequence);
3587
3588 /* Other rcu_barrier() invocations can now safely proceed. */
3589 mutex_unlock(&rsp->barrier_mutex);
3590 }
3591
3592 /**
3593 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3594 */
3595 void rcu_barrier_bh(void)
3596 {
3597 _rcu_barrier(&rcu_bh_state);
3598 }
3599 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3600
3601 /**
3602 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3603 */
3604 void rcu_barrier_sched(void)
3605 {
3606 _rcu_barrier(&rcu_sched_state);
3607 }
3608 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3609
3610 /*
3611 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3612 * first CPU in a given leaf rcu_node structure coming online. The caller
3613 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3614 * disabled.
3615 */
3616 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3617 {
3618 long mask;
3619 struct rcu_node *rnp = rnp_leaf;
3620
3621 lockdep_assert_held(&rnp->lock);
3622 for (;;) {
3623 mask = rnp->grpmask;
3624 rnp = rnp->parent;
3625 if (rnp == NULL)
3626 return;
3627 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3628 rnp->qsmaskinit |= mask;
3629 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3630 }
3631 }
3632
3633 /*
3634 * Do boot-time initialization of a CPU's per-CPU RCU data.
3635 */
3636 static void __init
3637 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3638 {
3639 unsigned long flags;
3640 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3641 struct rcu_node *rnp = rcu_get_root(rsp);
3642
3643 /* Set up local state, ensuring consistent view of global state. */
3644 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3645 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3646 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3647 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3648 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
3649 rdp->cpu = cpu;
3650 rdp->rsp = rsp;
3651 rcu_boot_init_nocb_percpu_data(rdp);
3652 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3653 }
3654
3655 /*
3656 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3657 * offline event can be happening at a given time. Note also that we
3658 * can accept some slop in the rsp->completed access due to the fact
3659 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3660 */
3661 static void
3662 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3663 {
3664 unsigned long flags;
3665 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3666 struct rcu_node *rnp = rcu_get_root(rsp);
3667
3668 /* Set up local state, ensuring consistent view of global state. */
3669 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3670 rdp->qlen_last_fqs_check = 0;
3671 rdp->n_force_qs_snap = rsp->n_force_qs;
3672 rdp->blimit = blimit;
3673 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3674 !init_nocb_callback_list(rdp))
3675 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
3676 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3677 rcu_dynticks_eqs_online();
3678 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
3679
3680 /*
3681 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3682 * propagation up the rcu_node tree will happen at the beginning
3683 * of the next grace period.
3684 */
3685 rnp = rdp->mynode;
3686 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
3687 rdp->beenonline = true; /* We have now been online. */
3688 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3689 rdp->completed = rnp->completed;
3690 rdp->cpu_no_qs.b.norm = true;
3691 rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
3692 rdp->core_needs_qs = false;
3693 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3694 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3695 }
3696
3697 /*
3698 * Invoked early in the CPU-online process, when pretty much all
3699 * services are available. The incoming CPU is not present.
3700 */
3701 int rcutree_prepare_cpu(unsigned int cpu)
3702 {
3703 struct rcu_state *rsp;
3704
3705 for_each_rcu_flavor(rsp)
3706 rcu_init_percpu_data(cpu, rsp);
3707
3708 rcu_prepare_kthreads(cpu);
3709 rcu_spawn_all_nocb_kthreads(cpu);
3710
3711 return 0;
3712 }
3713
3714 /*
3715 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3716 */
3717 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3718 {
3719 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3720
3721 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3722 }
3723
3724 /*
3725 * Near the end of the CPU-online process. Pretty much all services
3726 * enabled, and the CPU is now very much alive.
3727 */
3728 int rcutree_online_cpu(unsigned int cpu)
3729 {
3730 sync_sched_exp_online_cleanup(cpu);
3731 rcutree_affinity_setting(cpu, -1);
3732 if (IS_ENABLED(CONFIG_TREE_SRCU))
3733 srcu_online_cpu(cpu);
3734 return 0;
3735 }
3736
3737 /*
3738 * Near the beginning of the process. The CPU is still very much alive
3739 * with pretty much all services enabled.
3740 */
3741 int rcutree_offline_cpu(unsigned int cpu)
3742 {
3743 rcutree_affinity_setting(cpu, cpu);
3744 if (IS_ENABLED(CONFIG_TREE_SRCU))
3745 srcu_offline_cpu(cpu);
3746 return 0;
3747 }
3748
3749 /*
3750 * Near the end of the offline process. We do only tracing here.
3751 */
3752 int rcutree_dying_cpu(unsigned int cpu)
3753 {
3754 struct rcu_state *rsp;
3755
3756 for_each_rcu_flavor(rsp)
3757 rcu_cleanup_dying_cpu(rsp);
3758 return 0;
3759 }
3760
3761 /*
3762 * The outgoing CPU is gone and we are running elsewhere.
3763 */
3764 int rcutree_dead_cpu(unsigned int cpu)
3765 {
3766 struct rcu_state *rsp;
3767
3768 for_each_rcu_flavor(rsp) {
3769 rcu_cleanup_dead_cpu(cpu, rsp);
3770 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3771 }
3772 return 0;
3773 }
3774
3775 /*
3776 * Mark the specified CPU as being online so that subsequent grace periods
3777 * (both expedited and normal) will wait on it. Note that this means that
3778 * incoming CPUs are not allowed to use RCU read-side critical sections
3779 * until this function is called. Failing to observe this restriction
3780 * will result in lockdep splats.
3781 *
3782 * Note that this function is special in that it is invoked directly
3783 * from the incoming CPU rather than from the cpuhp_step mechanism.
3784 * This is because this function must be invoked at a precise location.
3785 */
3786 void rcu_cpu_starting(unsigned int cpu)
3787 {
3788 unsigned long flags;
3789 unsigned long mask;
3790 int nbits;
3791 unsigned long oldmask;
3792 struct rcu_data *rdp;
3793 struct rcu_node *rnp;
3794 struct rcu_state *rsp;
3795
3796 for_each_rcu_flavor(rsp) {
3797 rdp = per_cpu_ptr(rsp->rda, cpu);
3798 rnp = rdp->mynode;
3799 mask = rdp->grpmask;
3800 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3801 rnp->qsmaskinitnext |= mask;
3802 oldmask = rnp->expmaskinitnext;
3803 rnp->expmaskinitnext |= mask;
3804 oldmask ^= rnp->expmaskinitnext;
3805 nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3806 /* Allow lockless access for expedited grace periods. */
3807 smp_store_release(&rsp->ncpus, rsp->ncpus + nbits); /* ^^^ */
3808 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3809 }
3810 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
3811 }
3812
3813 #ifdef CONFIG_HOTPLUG_CPU
3814 /*
3815 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3816 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3817 * bit masks.
3818 */
3819 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3820 {
3821 unsigned long flags;
3822 unsigned long mask;
3823 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3824 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3825
3826 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3827 mask = rdp->grpmask;
3828 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3829 rnp->qsmaskinitnext &= ~mask;
3830 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3831 }
3832
3833 /*
3834 * The outgoing function has no further need of RCU, so remove it from
3835 * the list of CPUs that RCU must track.
3836 *
3837 * Note that this function is special in that it is invoked directly
3838 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3839 * This is because this function must be invoked at a precise location.
3840 */
3841 void rcu_report_dead(unsigned int cpu)
3842 {
3843 struct rcu_state *rsp;
3844
3845 /* QS for any half-done expedited RCU-sched GP. */
3846 preempt_disable();
3847 rcu_report_exp_rdp(&rcu_sched_state,
3848 this_cpu_ptr(rcu_sched_state.rda), true);
3849 preempt_enable();
3850 for_each_rcu_flavor(rsp)
3851 rcu_cleanup_dying_idle_cpu(cpu, rsp);
3852 }
3853
3854 /* Migrate the dead CPU's callbacks to the current CPU. */
3855 static void rcu_migrate_callbacks(int cpu, struct rcu_state *rsp)
3856 {
3857 unsigned long flags;
3858 struct rcu_data *my_rdp;
3859 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3860 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
3861
3862 if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist))
3863 return; /* No callbacks to migrate. */
3864
3865 local_irq_save(flags);
3866 my_rdp = this_cpu_ptr(rsp->rda);
3867 if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
3868 local_irq_restore(flags);
3869 return;
3870 }
3871 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
3872 rcu_advance_cbs(rsp, rnp_root, rdp); /* Leverage recent GPs. */
3873 rcu_advance_cbs(rsp, rnp_root, my_rdp); /* Assign GP to pending CBs. */
3874 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
3875 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3876 !rcu_segcblist_n_cbs(&my_rdp->cblist));
3877 raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
3878 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3879 !rcu_segcblist_empty(&rdp->cblist),
3880 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3881 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3882 rcu_segcblist_first_cb(&rdp->cblist));
3883 }
3884
3885 /*
3886 * The outgoing CPU has just passed through the dying-idle state,
3887 * and we are being invoked from the CPU that was IPIed to continue the
3888 * offline operation. We need to migrate the outgoing CPU's callbacks.
3889 */
3890 void rcutree_migrate_callbacks(int cpu)
3891 {
3892 struct rcu_state *rsp;
3893
3894 for_each_rcu_flavor(rsp)
3895 rcu_migrate_callbacks(cpu, rsp);
3896 }
3897 #endif
3898
3899 /*
3900 * On non-huge systems, use expedited RCU grace periods to make suspend
3901 * and hibernation run faster.
3902 */
3903 static int rcu_pm_notify(struct notifier_block *self,
3904 unsigned long action, void *hcpu)
3905 {
3906 switch (action) {
3907 case PM_HIBERNATION_PREPARE:
3908 case PM_SUSPEND_PREPARE:
3909 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3910 rcu_expedite_gp();
3911 break;
3912 case PM_POST_HIBERNATION:
3913 case PM_POST_SUSPEND:
3914 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3915 rcu_unexpedite_gp();
3916 break;
3917 default:
3918 break;
3919 }
3920 return NOTIFY_OK;
3921 }
3922
3923 /*
3924 * Spawn the kthreads that handle each RCU flavor's grace periods.
3925 */
3926 static int __init rcu_spawn_gp_kthread(void)
3927 {
3928 unsigned long flags;
3929 int kthread_prio_in = kthread_prio;
3930 struct rcu_node *rnp;
3931 struct rcu_state *rsp;
3932 struct sched_param sp;
3933 struct task_struct *t;
3934
3935 /* Force priority into range. */
3936 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3937 kthread_prio = 1;
3938 else if (kthread_prio < 0)
3939 kthread_prio = 0;
3940 else if (kthread_prio > 99)
3941 kthread_prio = 99;
3942 if (kthread_prio != kthread_prio_in)
3943 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3944 kthread_prio, kthread_prio_in);
3945
3946 rcu_scheduler_fully_active = 1;
3947 for_each_rcu_flavor(rsp) {
3948 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3949 BUG_ON(IS_ERR(t));
3950 rnp = rcu_get_root(rsp);
3951 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3952 rsp->gp_kthread = t;
3953 if (kthread_prio) {
3954 sp.sched_priority = kthread_prio;
3955 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3956 }
3957 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3958 wake_up_process(t);
3959 }
3960 rcu_spawn_nocb_kthreads();
3961 rcu_spawn_boost_kthreads();
3962 return 0;
3963 }
3964 early_initcall(rcu_spawn_gp_kthread);
3965
3966 /*
3967 * This function is invoked towards the end of the scheduler's
3968 * initialization process. Before this is called, the idle task might
3969 * contain synchronous grace-period primitives (during which time, this idle
3970 * task is booting the system, and such primitives are no-ops). After this
3971 * function is called, any synchronous grace-period primitives are run as
3972 * expedited, with the requesting task driving the grace period forward.
3973 * A later core_initcall() rcu_set_runtime_mode() will switch to full
3974 * runtime RCU functionality.
3975 */
3976 void rcu_scheduler_starting(void)
3977 {
3978 WARN_ON(num_online_cpus() != 1);
3979 WARN_ON(nr_context_switches() > 0);
3980 rcu_test_sync_prims();
3981 rcu_scheduler_active = RCU_SCHEDULER_INIT;
3982 rcu_test_sync_prims();
3983 }
3984
3985 /*
3986 * Helper function for rcu_init() that initializes one rcu_state structure.
3987 */
3988 static void __init rcu_init_one(struct rcu_state *rsp)
3989 {
3990 static const char * const buf[] = RCU_NODE_NAME_INIT;
3991 static const char * const fqs[] = RCU_FQS_NAME_INIT;
3992 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
3993 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
3994
3995 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
3996 int cpustride = 1;
3997 int i;
3998 int j;
3999 struct rcu_node *rnp;
4000
4001 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
4002
4003 /* Silence gcc 4.8 false positive about array index out of range. */
4004 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4005 panic("rcu_init_one: rcu_num_lvls out of range");
4006
4007 /* Initialize the level-tracking arrays. */
4008
4009 for (i = 1; i < rcu_num_lvls; i++)
4010 rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
4011 rcu_init_levelspread(levelspread, num_rcu_lvl);
4012
4013 /* Initialize the elements themselves, starting from the leaves. */
4014
4015 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4016 cpustride *= levelspread[i];
4017 rnp = rsp->level[i];
4018 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4019 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4020 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4021 &rcu_node_class[i], buf[i]);
4022 raw_spin_lock_init(&rnp->fqslock);
4023 lockdep_set_class_and_name(&rnp->fqslock,
4024 &rcu_fqs_class[i], fqs[i]);
4025 rnp->gpnum = rsp->gpnum;
4026 rnp->completed = rsp->completed;
4027 rnp->qsmask = 0;
4028 rnp->qsmaskinit = 0;
4029 rnp->grplo = j * cpustride;
4030 rnp->grphi = (j + 1) * cpustride - 1;
4031 if (rnp->grphi >= nr_cpu_ids)
4032 rnp->grphi = nr_cpu_ids - 1;
4033 if (i == 0) {
4034 rnp->grpnum = 0;
4035 rnp->grpmask = 0;
4036 rnp->parent = NULL;
4037 } else {
4038 rnp->grpnum = j % levelspread[i - 1];
4039 rnp->grpmask = 1UL << rnp->grpnum;
4040 rnp->parent = rsp->level[i - 1] +
4041 j / levelspread[i - 1];
4042 }
4043 rnp->level = i;
4044 INIT_LIST_HEAD(&rnp->blkd_tasks);
4045 rcu_init_one_nocb(rnp);
4046 init_waitqueue_head(&rnp->exp_wq[0]);
4047 init_waitqueue_head(&rnp->exp_wq[1]);
4048 init_waitqueue_head(&rnp->exp_wq[2]);
4049 init_waitqueue_head(&rnp->exp_wq[3]);
4050 spin_lock_init(&rnp->exp_lock);
4051 }
4052 }
4053
4054 init_swait_queue_head(&rsp->gp_wq);
4055 init_swait_queue_head(&rsp->expedited_wq);
4056 rnp = rsp->level[rcu_num_lvls - 1];
4057 for_each_possible_cpu(i) {
4058 while (i > rnp->grphi)
4059 rnp++;
4060 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4061 rcu_boot_init_percpu_data(i, rsp);
4062 }
4063 list_add(&rsp->flavors, &rcu_struct_flavors);
4064 }
4065
4066 /*
4067 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4068 * replace the definitions in tree.h because those are needed to size
4069 * the ->node array in the rcu_state structure.
4070 */
4071 static void __init rcu_init_geometry(void)
4072 {
4073 ulong d;
4074 int i;
4075 int rcu_capacity[RCU_NUM_LVLS];
4076
4077 /*
4078 * Initialize any unspecified boot parameters.
4079 * The default values of jiffies_till_first_fqs and
4080 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4081 * value, which is a function of HZ, then adding one for each
4082 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4083 */
4084 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4085 if (jiffies_till_first_fqs == ULONG_MAX)
4086 jiffies_till_first_fqs = d;
4087 if (jiffies_till_next_fqs == ULONG_MAX)
4088 jiffies_till_next_fqs = d;
4089
4090 /* If the compile-time values are accurate, just leave. */
4091 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4092 nr_cpu_ids == NR_CPUS)
4093 return;
4094 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4095 rcu_fanout_leaf, nr_cpu_ids);
4096
4097 /*
4098 * The boot-time rcu_fanout_leaf parameter must be at least two
4099 * and cannot exceed the number of bits in the rcu_node masks.
4100 * Complain and fall back to the compile-time values if this
4101 * limit is exceeded.
4102 */
4103 if (rcu_fanout_leaf < 2 ||
4104 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4105 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4106 WARN_ON(1);
4107 return;
4108 }
4109
4110 /*
4111 * Compute number of nodes that can be handled an rcu_node tree
4112 * with the given number of levels.
4113 */
4114 rcu_capacity[0] = rcu_fanout_leaf;
4115 for (i = 1; i < RCU_NUM_LVLS; i++)
4116 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4117
4118 /*
4119 * The tree must be able to accommodate the configured number of CPUs.
4120 * If this limit is exceeded, fall back to the compile-time values.
4121 */
4122 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4123 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4124 WARN_ON(1);
4125 return;
4126 }
4127
4128 /* Calculate the number of levels in the tree. */
4129 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4130 }
4131 rcu_num_lvls = i + 1;
4132
4133 /* Calculate the number of rcu_nodes at each level of the tree. */
4134 for (i = 0; i < rcu_num_lvls; i++) {
4135 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4136 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4137 }
4138
4139 /* Calculate the total number of rcu_node structures. */
4140 rcu_num_nodes = 0;
4141 for (i = 0; i < rcu_num_lvls; i++)
4142 rcu_num_nodes += num_rcu_lvl[i];
4143 }
4144
4145 /*
4146 * Dump out the structure of the rcu_node combining tree associated
4147 * with the rcu_state structure referenced by rsp.
4148 */
4149 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4150 {
4151 int level = 0;
4152 struct rcu_node *rnp;
4153
4154 pr_info("rcu_node tree layout dump\n");
4155 pr_info(" ");
4156 rcu_for_each_node_breadth_first(rsp, rnp) {
4157 if (rnp->level != level) {
4158 pr_cont("\n");
4159 pr_info(" ");
4160 level = rnp->level;
4161 }
4162 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4163 }
4164 pr_cont("\n");
4165 }
4166
4167 void __init rcu_init(void)
4168 {
4169 int cpu;
4170
4171 rcu_early_boot_tests();
4172
4173 rcu_bootup_announce();
4174 rcu_init_geometry();
4175 rcu_init_one(&rcu_bh_state);
4176 rcu_init_one(&rcu_sched_state);
4177 if (dump_tree)
4178 rcu_dump_rcu_node_tree(&rcu_sched_state);
4179 __rcu_init_preempt();
4180 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4181
4182 /*
4183 * We don't need protection against CPU-hotplug here because
4184 * this is called early in boot, before either interrupts
4185 * or the scheduler are operational.
4186 */
4187 pm_notifier(rcu_pm_notify, 0);
4188 for_each_online_cpu(cpu) {
4189 rcutree_prepare_cpu(cpu);
4190 rcu_cpu_starting(cpu);
4191 if (IS_ENABLED(CONFIG_TREE_SRCU))
4192 srcu_online_cpu(cpu);
4193 }
4194 }
4195
4196 #include "tree_exp.h"
4197 #include "tree_plugin.h"