]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - kernel/rcu/tree.c
Merge remote-tracking branches 'asoc/topic/ac97', 'asoc/topic/ac97-mfd', 'asoc/topic...
[mirror_ubuntu-focal-kernel.git] / kernel / rcu / tree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate_wait.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/sched/debug.h>
39 #include <linux/nmi.h>
40 #include <linux/atomic.h>
41 #include <linux/bitops.h>
42 #include <linux/export.h>
43 #include <linux/completion.h>
44 #include <linux/moduleparam.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <uapi/linux/sched/types.h>
54 #include <linux/prefetch.h>
55 #include <linux/delay.h>
56 #include <linux/stop_machine.h>
57 #include <linux/random.h>
58 #include <linux/trace_events.h>
59 #include <linux/suspend.h>
60 #include <linux/ftrace.h>
61
62 #include "tree.h"
63 #include "rcu.h"
64
65 #ifdef MODULE_PARAM_PREFIX
66 #undef MODULE_PARAM_PREFIX
67 #endif
68 #define MODULE_PARAM_PREFIX "rcutree."
69
70 /* Data structures. */
71
72 /*
73 * In order to export the rcu_state name to the tracing tools, it
74 * needs to be added in the __tracepoint_string section.
75 * This requires defining a separate variable tp_<sname>_varname
76 * that points to the string being used, and this will allow
77 * the tracing userspace tools to be able to decipher the string
78 * address to the matching string.
79 */
80 #ifdef CONFIG_TRACING
81 # define DEFINE_RCU_TPS(sname) \
82 static char sname##_varname[] = #sname; \
83 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
84 # define RCU_STATE_NAME(sname) sname##_varname
85 #else
86 # define DEFINE_RCU_TPS(sname)
87 # define RCU_STATE_NAME(sname) __stringify(sname)
88 #endif
89
90 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
91 DEFINE_RCU_TPS(sname) \
92 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
93 struct rcu_state sname##_state = { \
94 .level = { &sname##_state.node[0] }, \
95 .rda = &sname##_data, \
96 .call = cr, \
97 .gp_state = RCU_GP_IDLE, \
98 .gpnum = 0UL - 300UL, \
99 .completed = 0UL - 300UL, \
100 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
101 .name = RCU_STATE_NAME(sname), \
102 .abbr = sabbr, \
103 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
104 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
105 }
106
107 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
108 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
109
110 static struct rcu_state *const rcu_state_p;
111 LIST_HEAD(rcu_struct_flavors);
112
113 /* Dump rcu_node combining tree at boot to verify correct setup. */
114 static bool dump_tree;
115 module_param(dump_tree, bool, 0444);
116 /* Control rcu_node-tree auto-balancing at boot time. */
117 static bool rcu_fanout_exact;
118 module_param(rcu_fanout_exact, bool, 0444);
119 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
120 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
121 module_param(rcu_fanout_leaf, int, 0444);
122 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
123 /* Number of rcu_nodes at specified level. */
124 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
125 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
126 /* panic() on RCU Stall sysctl. */
127 int sysctl_panic_on_rcu_stall __read_mostly;
128
129 /*
130 * The rcu_scheduler_active variable is initialized to the value
131 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
132 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
133 * RCU can assume that there is but one task, allowing RCU to (for example)
134 * optimize synchronize_rcu() to a simple barrier(). When this variable
135 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
136 * to detect real grace periods. This variable is also used to suppress
137 * boot-time false positives from lockdep-RCU error checking. Finally, it
138 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
139 * is fully initialized, including all of its kthreads having been spawned.
140 */
141 int rcu_scheduler_active __read_mostly;
142 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
143
144 /*
145 * The rcu_scheduler_fully_active variable transitions from zero to one
146 * during the early_initcall() processing, which is after the scheduler
147 * is capable of creating new tasks. So RCU processing (for example,
148 * creating tasks for RCU priority boosting) must be delayed until after
149 * rcu_scheduler_fully_active transitions from zero to one. We also
150 * currently delay invocation of any RCU callbacks until after this point.
151 *
152 * It might later prove better for people registering RCU callbacks during
153 * early boot to take responsibility for these callbacks, but one step at
154 * a time.
155 */
156 static int rcu_scheduler_fully_active __read_mostly;
157
158 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
159 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
160 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
161 static void invoke_rcu_core(void);
162 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
163 static void rcu_report_exp_rdp(struct rcu_state *rsp,
164 struct rcu_data *rdp, bool wake);
165 static void sync_sched_exp_online_cleanup(int cpu);
166
167 /* rcuc/rcub kthread realtime priority */
168 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
169 module_param(kthread_prio, int, 0644);
170
171 /* Delay in jiffies for grace-period initialization delays, debug only. */
172
173 static int gp_preinit_delay;
174 module_param(gp_preinit_delay, int, 0444);
175 static int gp_init_delay;
176 module_param(gp_init_delay, int, 0444);
177 static int gp_cleanup_delay;
178 module_param(gp_cleanup_delay, int, 0444);
179
180 /*
181 * Number of grace periods between delays, normalized by the duration of
182 * the delay. The longer the delay, the more the grace periods between
183 * each delay. The reason for this normalization is that it means that,
184 * for non-zero delays, the overall slowdown of grace periods is constant
185 * regardless of the duration of the delay. This arrangement balances
186 * the need for long delays to increase some race probabilities with the
187 * need for fast grace periods to increase other race probabilities.
188 */
189 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
190
191 /*
192 * Track the rcutorture test sequence number and the update version
193 * number within a given test. The rcutorture_testseq is incremented
194 * on every rcutorture module load and unload, so has an odd value
195 * when a test is running. The rcutorture_vernum is set to zero
196 * when rcutorture starts and is incremented on each rcutorture update.
197 * These variables enable correlating rcutorture output with the
198 * RCU tracing information.
199 */
200 unsigned long rcutorture_testseq;
201 unsigned long rcutorture_vernum;
202
203 /*
204 * Compute the mask of online CPUs for the specified rcu_node structure.
205 * This will not be stable unless the rcu_node structure's ->lock is
206 * held, but the bit corresponding to the current CPU will be stable
207 * in most contexts.
208 */
209 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
210 {
211 return READ_ONCE(rnp->qsmaskinitnext);
212 }
213
214 /*
215 * Return true if an RCU grace period is in progress. The READ_ONCE()s
216 * permit this function to be invoked without holding the root rcu_node
217 * structure's ->lock, but of course results can be subject to change.
218 */
219 static int rcu_gp_in_progress(struct rcu_state *rsp)
220 {
221 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
222 }
223
224 /*
225 * Note a quiescent state. Because we do not need to know
226 * how many quiescent states passed, just if there was at least
227 * one since the start of the grace period, this just sets a flag.
228 * The caller must have disabled preemption.
229 */
230 void rcu_sched_qs(void)
231 {
232 RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!");
233 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
234 return;
235 trace_rcu_grace_period(TPS("rcu_sched"),
236 __this_cpu_read(rcu_sched_data.gpnum),
237 TPS("cpuqs"));
238 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
239 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
240 return;
241 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
242 rcu_report_exp_rdp(&rcu_sched_state,
243 this_cpu_ptr(&rcu_sched_data), true);
244 }
245
246 void rcu_bh_qs(void)
247 {
248 RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!");
249 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
250 trace_rcu_grace_period(TPS("rcu_bh"),
251 __this_cpu_read(rcu_bh_data.gpnum),
252 TPS("cpuqs"));
253 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
254 }
255 }
256
257 /*
258 * Steal a bit from the bottom of ->dynticks for idle entry/exit
259 * control. Initially this is for TLB flushing.
260 */
261 #define RCU_DYNTICK_CTRL_MASK 0x1
262 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
263 #ifndef rcu_eqs_special_exit
264 #define rcu_eqs_special_exit() do { } while (0)
265 #endif
266
267 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
268 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
269 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
270 };
271
272 /*
273 * There's a few places, currently just in the tracing infrastructure,
274 * that uses rcu_irq_enter() to make sure RCU is watching. But there's
275 * a small location where that will not even work. In those cases
276 * rcu_irq_enter_disabled() needs to be checked to make sure rcu_irq_enter()
277 * can be called.
278 */
279 static DEFINE_PER_CPU(bool, disable_rcu_irq_enter);
280
281 bool rcu_irq_enter_disabled(void)
282 {
283 return this_cpu_read(disable_rcu_irq_enter);
284 }
285
286 /*
287 * Record entry into an extended quiescent state. This is only to be
288 * called when not already in an extended quiescent state.
289 */
290 static void rcu_dynticks_eqs_enter(void)
291 {
292 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
293 int seq;
294
295 /*
296 * CPUs seeing atomic_add_return() must see prior RCU read-side
297 * critical sections, and we also must force ordering with the
298 * next idle sojourn.
299 */
300 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
301 /* Better be in an extended quiescent state! */
302 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
303 (seq & RCU_DYNTICK_CTRL_CTR));
304 /* Better not have special action (TLB flush) pending! */
305 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
306 (seq & RCU_DYNTICK_CTRL_MASK));
307 }
308
309 /*
310 * Record exit from an extended quiescent state. This is only to be
311 * called from an extended quiescent state.
312 */
313 static void rcu_dynticks_eqs_exit(void)
314 {
315 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
316 int seq;
317
318 /*
319 * CPUs seeing atomic_add_return() must see prior idle sojourns,
320 * and we also must force ordering with the next RCU read-side
321 * critical section.
322 */
323 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
324 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
325 !(seq & RCU_DYNTICK_CTRL_CTR));
326 if (seq & RCU_DYNTICK_CTRL_MASK) {
327 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
328 smp_mb__after_atomic(); /* _exit after clearing mask. */
329 /* Prefer duplicate flushes to losing a flush. */
330 rcu_eqs_special_exit();
331 }
332 }
333
334 /*
335 * Reset the current CPU's ->dynticks counter to indicate that the
336 * newly onlined CPU is no longer in an extended quiescent state.
337 * This will either leave the counter unchanged, or increment it
338 * to the next non-quiescent value.
339 *
340 * The non-atomic test/increment sequence works because the upper bits
341 * of the ->dynticks counter are manipulated only by the corresponding CPU,
342 * or when the corresponding CPU is offline.
343 */
344 static void rcu_dynticks_eqs_online(void)
345 {
346 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
347
348 if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
349 return;
350 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
351 }
352
353 /*
354 * Is the current CPU in an extended quiescent state?
355 *
356 * No ordering, as we are sampling CPU-local information.
357 */
358 bool rcu_dynticks_curr_cpu_in_eqs(void)
359 {
360 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
361
362 return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
363 }
364
365 /*
366 * Snapshot the ->dynticks counter with full ordering so as to allow
367 * stable comparison of this counter with past and future snapshots.
368 */
369 int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
370 {
371 int snap = atomic_add_return(0, &rdtp->dynticks);
372
373 return snap & ~RCU_DYNTICK_CTRL_MASK;
374 }
375
376 /*
377 * Return true if the snapshot returned from rcu_dynticks_snap()
378 * indicates that RCU is in an extended quiescent state.
379 */
380 static bool rcu_dynticks_in_eqs(int snap)
381 {
382 return !(snap & RCU_DYNTICK_CTRL_CTR);
383 }
384
385 /*
386 * Return true if the CPU corresponding to the specified rcu_dynticks
387 * structure has spent some time in an extended quiescent state since
388 * rcu_dynticks_snap() returned the specified snapshot.
389 */
390 static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
391 {
392 return snap != rcu_dynticks_snap(rdtp);
393 }
394
395 /*
396 * Do a double-increment of the ->dynticks counter to emulate a
397 * momentary idle-CPU quiescent state.
398 */
399 static void rcu_dynticks_momentary_idle(void)
400 {
401 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
402 int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
403 &rdtp->dynticks);
404
405 /* It is illegal to call this from idle state. */
406 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
407 }
408
409 /*
410 * Set the special (bottom) bit of the specified CPU so that it
411 * will take special action (such as flushing its TLB) on the
412 * next exit from an extended quiescent state. Returns true if
413 * the bit was successfully set, or false if the CPU was not in
414 * an extended quiescent state.
415 */
416 bool rcu_eqs_special_set(int cpu)
417 {
418 int old;
419 int new;
420 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
421
422 do {
423 old = atomic_read(&rdtp->dynticks);
424 if (old & RCU_DYNTICK_CTRL_CTR)
425 return false;
426 new = old | RCU_DYNTICK_CTRL_MASK;
427 } while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
428 return true;
429 }
430
431 /*
432 * Let the RCU core know that this CPU has gone through the scheduler,
433 * which is a quiescent state. This is called when the need for a
434 * quiescent state is urgent, so we burn an atomic operation and full
435 * memory barriers to let the RCU core know about it, regardless of what
436 * this CPU might (or might not) do in the near future.
437 *
438 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
439 *
440 * The caller must have disabled interrupts.
441 */
442 static void rcu_momentary_dyntick_idle(void)
443 {
444 raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
445 rcu_dynticks_momentary_idle();
446 }
447
448 /*
449 * Note a context switch. This is a quiescent state for RCU-sched,
450 * and requires special handling for preemptible RCU.
451 * The caller must have disabled interrupts.
452 */
453 void rcu_note_context_switch(bool preempt)
454 {
455 barrier(); /* Avoid RCU read-side critical sections leaking down. */
456 trace_rcu_utilization(TPS("Start context switch"));
457 rcu_sched_qs();
458 rcu_preempt_note_context_switch(preempt);
459 /* Load rcu_urgent_qs before other flags. */
460 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
461 goto out;
462 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
463 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
464 rcu_momentary_dyntick_idle();
465 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
466 if (!preempt)
467 rcu_note_voluntary_context_switch_lite(current);
468 out:
469 trace_rcu_utilization(TPS("End context switch"));
470 barrier(); /* Avoid RCU read-side critical sections leaking up. */
471 }
472 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
473
474 /*
475 * Register a quiescent state for all RCU flavors. If there is an
476 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
477 * dyntick-idle quiescent state visible to other CPUs (but only for those
478 * RCU flavors in desperate need of a quiescent state, which will normally
479 * be none of them). Either way, do a lightweight quiescent state for
480 * all RCU flavors.
481 *
482 * The barrier() calls are redundant in the common case when this is
483 * called externally, but just in case this is called from within this
484 * file.
485 *
486 */
487 void rcu_all_qs(void)
488 {
489 unsigned long flags;
490
491 if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
492 return;
493 preempt_disable();
494 /* Load rcu_urgent_qs before other flags. */
495 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
496 preempt_enable();
497 return;
498 }
499 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
500 barrier(); /* Avoid RCU read-side critical sections leaking down. */
501 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
502 local_irq_save(flags);
503 rcu_momentary_dyntick_idle();
504 local_irq_restore(flags);
505 }
506 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
507 rcu_sched_qs();
508 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
509 barrier(); /* Avoid RCU read-side critical sections leaking up. */
510 preempt_enable();
511 }
512 EXPORT_SYMBOL_GPL(rcu_all_qs);
513
514 #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */
515 static long blimit = DEFAULT_RCU_BLIMIT;
516 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
517 static long qhimark = DEFAULT_RCU_QHIMARK;
518 #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */
519 static long qlowmark = DEFAULT_RCU_QLOMARK;
520
521 module_param(blimit, long, 0444);
522 module_param(qhimark, long, 0444);
523 module_param(qlowmark, long, 0444);
524
525 static ulong jiffies_till_first_fqs = ULONG_MAX;
526 static ulong jiffies_till_next_fqs = ULONG_MAX;
527 static bool rcu_kick_kthreads;
528
529 module_param(jiffies_till_first_fqs, ulong, 0644);
530 module_param(jiffies_till_next_fqs, ulong, 0644);
531 module_param(rcu_kick_kthreads, bool, 0644);
532
533 /*
534 * How long the grace period must be before we start recruiting
535 * quiescent-state help from rcu_note_context_switch().
536 */
537 static ulong jiffies_till_sched_qs = HZ / 20;
538 module_param(jiffies_till_sched_qs, ulong, 0644);
539
540 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
541 struct rcu_data *rdp);
542 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp));
543 static void force_quiescent_state(struct rcu_state *rsp);
544 static int rcu_pending(void);
545
546 /*
547 * Return the number of RCU batches started thus far for debug & stats.
548 */
549 unsigned long rcu_batches_started(void)
550 {
551 return rcu_state_p->gpnum;
552 }
553 EXPORT_SYMBOL_GPL(rcu_batches_started);
554
555 /*
556 * Return the number of RCU-sched batches started thus far for debug & stats.
557 */
558 unsigned long rcu_batches_started_sched(void)
559 {
560 return rcu_sched_state.gpnum;
561 }
562 EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
563
564 /*
565 * Return the number of RCU BH batches started thus far for debug & stats.
566 */
567 unsigned long rcu_batches_started_bh(void)
568 {
569 return rcu_bh_state.gpnum;
570 }
571 EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
572
573 /*
574 * Return the number of RCU batches completed thus far for debug & stats.
575 */
576 unsigned long rcu_batches_completed(void)
577 {
578 return rcu_state_p->completed;
579 }
580 EXPORT_SYMBOL_GPL(rcu_batches_completed);
581
582 /*
583 * Return the number of RCU-sched batches completed thus far for debug & stats.
584 */
585 unsigned long rcu_batches_completed_sched(void)
586 {
587 return rcu_sched_state.completed;
588 }
589 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
590
591 /*
592 * Return the number of RCU BH batches completed thus far for debug & stats.
593 */
594 unsigned long rcu_batches_completed_bh(void)
595 {
596 return rcu_bh_state.completed;
597 }
598 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
599
600 /*
601 * Return the number of RCU expedited batches completed thus far for
602 * debug & stats. Odd numbers mean that a batch is in progress, even
603 * numbers mean idle. The value returned will thus be roughly double
604 * the cumulative batches since boot.
605 */
606 unsigned long rcu_exp_batches_completed(void)
607 {
608 return rcu_state_p->expedited_sequence;
609 }
610 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
611
612 /*
613 * Return the number of RCU-sched expedited batches completed thus far
614 * for debug & stats. Similar to rcu_exp_batches_completed().
615 */
616 unsigned long rcu_exp_batches_completed_sched(void)
617 {
618 return rcu_sched_state.expedited_sequence;
619 }
620 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
621
622 /*
623 * Force a quiescent state.
624 */
625 void rcu_force_quiescent_state(void)
626 {
627 force_quiescent_state(rcu_state_p);
628 }
629 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
630
631 /*
632 * Force a quiescent state for RCU BH.
633 */
634 void rcu_bh_force_quiescent_state(void)
635 {
636 force_quiescent_state(&rcu_bh_state);
637 }
638 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
639
640 /*
641 * Force a quiescent state for RCU-sched.
642 */
643 void rcu_sched_force_quiescent_state(void)
644 {
645 force_quiescent_state(&rcu_sched_state);
646 }
647 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
648
649 /*
650 * Show the state of the grace-period kthreads.
651 */
652 void show_rcu_gp_kthreads(void)
653 {
654 struct rcu_state *rsp;
655
656 for_each_rcu_flavor(rsp) {
657 pr_info("%s: wait state: %d ->state: %#lx\n",
658 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
659 /* sched_show_task(rsp->gp_kthread); */
660 }
661 }
662 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
663
664 /*
665 * Record the number of times rcutorture tests have been initiated and
666 * terminated. This information allows the debugfs tracing stats to be
667 * correlated to the rcutorture messages, even when the rcutorture module
668 * is being repeatedly loaded and unloaded. In other words, we cannot
669 * store this state in rcutorture itself.
670 */
671 void rcutorture_record_test_transition(void)
672 {
673 rcutorture_testseq++;
674 rcutorture_vernum = 0;
675 }
676 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
677
678 /*
679 * Send along grace-period-related data for rcutorture diagnostics.
680 */
681 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
682 unsigned long *gpnum, unsigned long *completed)
683 {
684 struct rcu_state *rsp = NULL;
685
686 switch (test_type) {
687 case RCU_FLAVOR:
688 rsp = rcu_state_p;
689 break;
690 case RCU_BH_FLAVOR:
691 rsp = &rcu_bh_state;
692 break;
693 case RCU_SCHED_FLAVOR:
694 rsp = &rcu_sched_state;
695 break;
696 default:
697 break;
698 }
699 if (rsp == NULL)
700 return;
701 *flags = READ_ONCE(rsp->gp_flags);
702 *gpnum = READ_ONCE(rsp->gpnum);
703 *completed = READ_ONCE(rsp->completed);
704 }
705 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
706
707 /*
708 * Record the number of writer passes through the current rcutorture test.
709 * This is also used to correlate debugfs tracing stats with the rcutorture
710 * messages.
711 */
712 void rcutorture_record_progress(unsigned long vernum)
713 {
714 rcutorture_vernum++;
715 }
716 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
717
718 /*
719 * Return the root node of the specified rcu_state structure.
720 */
721 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
722 {
723 return &rsp->node[0];
724 }
725
726 /*
727 * Is there any need for future grace periods?
728 * Interrupts must be disabled. If the caller does not hold the root
729 * rnp_node structure's ->lock, the results are advisory only.
730 */
731 static int rcu_future_needs_gp(struct rcu_state *rsp)
732 {
733 struct rcu_node *rnp = rcu_get_root(rsp);
734 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
735 int *fp = &rnp->need_future_gp[idx];
736
737 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_future_needs_gp() invoked with irqs enabled!!!");
738 return READ_ONCE(*fp);
739 }
740
741 /*
742 * Does the current CPU require a not-yet-started grace period?
743 * The caller must have disabled interrupts to prevent races with
744 * normal callback registry.
745 */
746 static bool
747 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
748 {
749 RCU_LOCKDEP_WARN(!irqs_disabled(), "cpu_needs_another_gp() invoked with irqs enabled!!!");
750 if (rcu_gp_in_progress(rsp))
751 return false; /* No, a grace period is already in progress. */
752 if (rcu_future_needs_gp(rsp))
753 return true; /* Yes, a no-CBs CPU needs one. */
754 if (!rcu_segcblist_is_enabled(&rdp->cblist))
755 return false; /* No, this is a no-CBs (or offline) CPU. */
756 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
757 return true; /* Yes, CPU has newly registered callbacks. */
758 if (rcu_segcblist_future_gp_needed(&rdp->cblist,
759 READ_ONCE(rsp->completed)))
760 return true; /* Yes, CBs for future grace period. */
761 return false; /* No grace period needed. */
762 }
763
764 /*
765 * rcu_eqs_enter_common - current CPU is entering an extended quiescent state
766 *
767 * Enter idle, doing appropriate accounting. The caller must have
768 * disabled interrupts.
769 */
770 static void rcu_eqs_enter_common(bool user)
771 {
772 struct rcu_state *rsp;
773 struct rcu_data *rdp;
774 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
775
776 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_eqs_enter_common() invoked with irqs enabled!!!");
777 trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0);
778 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
779 !user && !is_idle_task(current)) {
780 struct task_struct *idle __maybe_unused =
781 idle_task(smp_processor_id());
782
783 trace_rcu_dyntick(TPS("Error on entry: not idle task"), rdtp->dynticks_nesting, 0);
784 rcu_ftrace_dump(DUMP_ORIG);
785 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
786 current->pid, current->comm,
787 idle->pid, idle->comm); /* must be idle task! */
788 }
789 for_each_rcu_flavor(rsp) {
790 rdp = this_cpu_ptr(rsp->rda);
791 do_nocb_deferred_wakeup(rdp);
792 }
793 rcu_prepare_for_idle();
794 __this_cpu_inc(disable_rcu_irq_enter);
795 rdtp->dynticks_nesting = 0; /* Breaks tracing momentarily. */
796 rcu_dynticks_eqs_enter(); /* After this, tracing works again. */
797 __this_cpu_dec(disable_rcu_irq_enter);
798 rcu_dynticks_task_enter();
799
800 /*
801 * It is illegal to enter an extended quiescent state while
802 * in an RCU read-side critical section.
803 */
804 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
805 "Illegal idle entry in RCU read-side critical section.");
806 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
807 "Illegal idle entry in RCU-bh read-side critical section.");
808 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
809 "Illegal idle entry in RCU-sched read-side critical section.");
810 }
811
812 /*
813 * Enter an RCU extended quiescent state, which can be either the
814 * idle loop or adaptive-tickless usermode execution.
815 */
816 static void rcu_eqs_enter(bool user)
817 {
818 struct rcu_dynticks *rdtp;
819
820 rdtp = this_cpu_ptr(&rcu_dynticks);
821 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
822 (rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == 0);
823 if ((rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
824 rcu_eqs_enter_common(user);
825 else
826 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
827 }
828
829 /**
830 * rcu_idle_enter - inform RCU that current CPU is entering idle
831 *
832 * Enter idle mode, in other words, -leave- the mode in which RCU
833 * read-side critical sections can occur. (Though RCU read-side
834 * critical sections can occur in irq handlers in idle, a possibility
835 * handled by irq_enter() and irq_exit().)
836 *
837 * We crowbar the ->dynticks_nesting field to zero to allow for
838 * the possibility of usermode upcalls having messed up our count
839 * of interrupt nesting level during the prior busy period.
840 */
841 void rcu_idle_enter(void)
842 {
843 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_idle_enter() invoked with irqs enabled!!!");
844 rcu_eqs_enter(false);
845 }
846
847 #ifdef CONFIG_NO_HZ_FULL
848 /**
849 * rcu_user_enter - inform RCU that we are resuming userspace.
850 *
851 * Enter RCU idle mode right before resuming userspace. No use of RCU
852 * is permitted between this call and rcu_user_exit(). This way the
853 * CPU doesn't need to maintain the tick for RCU maintenance purposes
854 * when the CPU runs in userspace.
855 */
856 void rcu_user_enter(void)
857 {
858 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_user_enter() invoked with irqs enabled!!!");
859 rcu_eqs_enter(true);
860 }
861 #endif /* CONFIG_NO_HZ_FULL */
862
863 /**
864 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
865 *
866 * Exit from an interrupt handler, which might possibly result in entering
867 * idle mode, in other words, leaving the mode in which read-side critical
868 * sections can occur. The caller must have disabled interrupts.
869 *
870 * This code assumes that the idle loop never does anything that might
871 * result in unbalanced calls to irq_enter() and irq_exit(). If your
872 * architecture violates this assumption, RCU will give you what you
873 * deserve, good and hard. But very infrequently and irreproducibly.
874 *
875 * Use things like work queues to work around this limitation.
876 *
877 * You have been warned.
878 */
879 void rcu_irq_exit(void)
880 {
881 struct rcu_dynticks *rdtp;
882
883 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
884 rdtp = this_cpu_ptr(&rcu_dynticks);
885
886 /* Page faults can happen in NMI handlers, so check... */
887 if (rdtp->dynticks_nmi_nesting)
888 return;
889
890 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
891 rdtp->dynticks_nesting < 1);
892 if (rdtp->dynticks_nesting <= 1) {
893 rcu_eqs_enter_common(true);
894 } else {
895 trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nesting, rdtp->dynticks_nesting - 1);
896 rdtp->dynticks_nesting--;
897 }
898 }
899
900 /*
901 * Wrapper for rcu_irq_exit() where interrupts are enabled.
902 */
903 void rcu_irq_exit_irqson(void)
904 {
905 unsigned long flags;
906
907 local_irq_save(flags);
908 rcu_irq_exit();
909 local_irq_restore(flags);
910 }
911
912 /*
913 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
914 *
915 * If the new value of the ->dynticks_nesting counter was previously zero,
916 * we really have exited idle, and must do the appropriate accounting.
917 * The caller must have disabled interrupts.
918 */
919 static void rcu_eqs_exit_common(long long oldval, int user)
920 {
921 RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
922
923 rcu_dynticks_task_exit();
924 rcu_dynticks_eqs_exit();
925 rcu_cleanup_after_idle();
926 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
927 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
928 !user && !is_idle_task(current)) {
929 struct task_struct *idle __maybe_unused =
930 idle_task(smp_processor_id());
931
932 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
933 oldval, rdtp->dynticks_nesting);
934 rcu_ftrace_dump(DUMP_ORIG);
935 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
936 current->pid, current->comm,
937 idle->pid, idle->comm); /* must be idle task! */
938 }
939 }
940
941 /*
942 * Exit an RCU extended quiescent state, which can be either the
943 * idle loop or adaptive-tickless usermode execution.
944 */
945 static void rcu_eqs_exit(bool user)
946 {
947 struct rcu_dynticks *rdtp;
948 long long oldval;
949
950 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_eqs_exit() invoked with irqs enabled!!!");
951 rdtp = this_cpu_ptr(&rcu_dynticks);
952 oldval = rdtp->dynticks_nesting;
953 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
954 if (oldval & DYNTICK_TASK_NEST_MASK) {
955 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
956 } else {
957 __this_cpu_inc(disable_rcu_irq_enter);
958 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
959 rcu_eqs_exit_common(oldval, user);
960 __this_cpu_dec(disable_rcu_irq_enter);
961 }
962 }
963
964 /**
965 * rcu_idle_exit - inform RCU that current CPU is leaving idle
966 *
967 * Exit idle mode, in other words, -enter- the mode in which RCU
968 * read-side critical sections can occur.
969 *
970 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
971 * allow for the possibility of usermode upcalls messing up our count
972 * of interrupt nesting level during the busy period that is just
973 * now starting.
974 */
975 void rcu_idle_exit(void)
976 {
977 unsigned long flags;
978
979 local_irq_save(flags);
980 rcu_eqs_exit(false);
981 local_irq_restore(flags);
982 }
983
984 #ifdef CONFIG_NO_HZ_FULL
985 /**
986 * rcu_user_exit - inform RCU that we are exiting userspace.
987 *
988 * Exit RCU idle mode while entering the kernel because it can
989 * run a RCU read side critical section anytime.
990 */
991 void rcu_user_exit(void)
992 {
993 rcu_eqs_exit(1);
994 }
995 #endif /* CONFIG_NO_HZ_FULL */
996
997 /**
998 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
999 *
1000 * Enter an interrupt handler, which might possibly result in exiting
1001 * idle mode, in other words, entering the mode in which read-side critical
1002 * sections can occur. The caller must have disabled interrupts.
1003 *
1004 * Note that the Linux kernel is fully capable of entering an interrupt
1005 * handler that it never exits, for example when doing upcalls to
1006 * user mode! This code assumes that the idle loop never does upcalls to
1007 * user mode. If your architecture does do upcalls from the idle loop (or
1008 * does anything else that results in unbalanced calls to the irq_enter()
1009 * and irq_exit() functions), RCU will give you what you deserve, good
1010 * and hard. But very infrequently and irreproducibly.
1011 *
1012 * Use things like work queues to work around this limitation.
1013 *
1014 * You have been warned.
1015 */
1016 void rcu_irq_enter(void)
1017 {
1018 struct rcu_dynticks *rdtp;
1019 long long oldval;
1020
1021 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
1022 rdtp = this_cpu_ptr(&rcu_dynticks);
1023
1024 /* Page faults can happen in NMI handlers, so check... */
1025 if (rdtp->dynticks_nmi_nesting)
1026 return;
1027
1028 oldval = rdtp->dynticks_nesting;
1029 rdtp->dynticks_nesting++;
1030 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
1031 rdtp->dynticks_nesting == 0);
1032 if (oldval)
1033 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
1034 else
1035 rcu_eqs_exit_common(oldval, true);
1036 }
1037
1038 /*
1039 * Wrapper for rcu_irq_enter() where interrupts are enabled.
1040 */
1041 void rcu_irq_enter_irqson(void)
1042 {
1043 unsigned long flags;
1044
1045 local_irq_save(flags);
1046 rcu_irq_enter();
1047 local_irq_restore(flags);
1048 }
1049
1050 /**
1051 * rcu_nmi_enter - inform RCU of entry to NMI context
1052 *
1053 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
1054 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
1055 * that the CPU is active. This implementation permits nested NMIs, as
1056 * long as the nesting level does not overflow an int. (You will probably
1057 * run out of stack space first.)
1058 */
1059 void rcu_nmi_enter(void)
1060 {
1061 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1062 int incby = 2;
1063
1064 /* Complain about underflow. */
1065 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
1066
1067 /*
1068 * If idle from RCU viewpoint, atomically increment ->dynticks
1069 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
1070 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
1071 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
1072 * to be in the outermost NMI handler that interrupted an RCU-idle
1073 * period (observation due to Andy Lutomirski).
1074 */
1075 if (rcu_dynticks_curr_cpu_in_eqs()) {
1076 rcu_dynticks_eqs_exit();
1077 incby = 1;
1078 }
1079 rdtp->dynticks_nmi_nesting += incby;
1080 barrier();
1081 }
1082
1083 /**
1084 * rcu_nmi_exit - inform RCU of exit from NMI context
1085 *
1086 * If we are returning from the outermost NMI handler that interrupted an
1087 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
1088 * to let the RCU grace-period handling know that the CPU is back to
1089 * being RCU-idle.
1090 */
1091 void rcu_nmi_exit(void)
1092 {
1093 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1094
1095 /*
1096 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1097 * (We are exiting an NMI handler, so RCU better be paying attention
1098 * to us!)
1099 */
1100 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
1101 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
1102
1103 /*
1104 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1105 * leave it in non-RCU-idle state.
1106 */
1107 if (rdtp->dynticks_nmi_nesting != 1) {
1108 rdtp->dynticks_nmi_nesting -= 2;
1109 return;
1110 }
1111
1112 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1113 rdtp->dynticks_nmi_nesting = 0;
1114 rcu_dynticks_eqs_enter();
1115 }
1116
1117 /**
1118 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1119 *
1120 * Return true if RCU is watching the running CPU, which means that this
1121 * CPU can safely enter RCU read-side critical sections. In other words,
1122 * if the current CPU is in its idle loop and is neither in an interrupt
1123 * or NMI handler, return true.
1124 */
1125 bool notrace rcu_is_watching(void)
1126 {
1127 bool ret;
1128
1129 preempt_disable_notrace();
1130 ret = !rcu_dynticks_curr_cpu_in_eqs();
1131 preempt_enable_notrace();
1132 return ret;
1133 }
1134 EXPORT_SYMBOL_GPL(rcu_is_watching);
1135
1136 /*
1137 * If a holdout task is actually running, request an urgent quiescent
1138 * state from its CPU. This is unsynchronized, so migrations can cause
1139 * the request to go to the wrong CPU. Which is OK, all that will happen
1140 * is that the CPU's next context switch will be a bit slower and next
1141 * time around this task will generate another request.
1142 */
1143 void rcu_request_urgent_qs_task(struct task_struct *t)
1144 {
1145 int cpu;
1146
1147 barrier();
1148 cpu = task_cpu(t);
1149 if (!task_curr(t))
1150 return; /* This task is not running on that CPU. */
1151 smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true);
1152 }
1153
1154 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1155
1156 /*
1157 * Is the current CPU online? Disable preemption to avoid false positives
1158 * that could otherwise happen due to the current CPU number being sampled,
1159 * this task being preempted, its old CPU being taken offline, resuming
1160 * on some other CPU, then determining that its old CPU is now offline.
1161 * It is OK to use RCU on an offline processor during initial boot, hence
1162 * the check for rcu_scheduler_fully_active. Note also that it is OK
1163 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1164 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1165 * offline to continue to use RCU for one jiffy after marking itself
1166 * offline in the cpu_online_mask. This leniency is necessary given the
1167 * non-atomic nature of the online and offline processing, for example,
1168 * the fact that a CPU enters the scheduler after completing the teardown
1169 * of the CPU.
1170 *
1171 * This is also why RCU internally marks CPUs online during in the
1172 * preparation phase and offline after the CPU has been taken down.
1173 *
1174 * Disable checking if in an NMI handler because we cannot safely report
1175 * errors from NMI handlers anyway.
1176 */
1177 bool rcu_lockdep_current_cpu_online(void)
1178 {
1179 struct rcu_data *rdp;
1180 struct rcu_node *rnp;
1181 bool ret;
1182
1183 if (in_nmi())
1184 return true;
1185 preempt_disable();
1186 rdp = this_cpu_ptr(&rcu_sched_data);
1187 rnp = rdp->mynode;
1188 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1189 !rcu_scheduler_fully_active;
1190 preempt_enable();
1191 return ret;
1192 }
1193 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1194
1195 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1196
1197 /**
1198 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1199 *
1200 * If the current CPU is idle or running at a first-level (not nested)
1201 * interrupt from idle, return true. The caller must have at least
1202 * disabled preemption.
1203 */
1204 static int rcu_is_cpu_rrupt_from_idle(void)
1205 {
1206 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1207 }
1208
1209 /*
1210 * Snapshot the specified CPU's dynticks counter so that we can later
1211 * credit them with an implicit quiescent state. Return 1 if this CPU
1212 * is in dynticks idle mode, which is an extended quiescent state.
1213 */
1214 static int dyntick_save_progress_counter(struct rcu_data *rdp)
1215 {
1216 rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
1217 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1218 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1219 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1220 rdp->mynode->gpnum))
1221 WRITE_ONCE(rdp->gpwrap, true);
1222 return 1;
1223 }
1224 return 0;
1225 }
1226
1227 /*
1228 * Return true if the specified CPU has passed through a quiescent
1229 * state by virtue of being in or having passed through an dynticks
1230 * idle state since the last call to dyntick_save_progress_counter()
1231 * for this same CPU, or by virtue of having been offline.
1232 */
1233 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1234 {
1235 unsigned long jtsq;
1236 bool *rnhqp;
1237 bool *ruqp;
1238 unsigned long rjtsc;
1239 struct rcu_node *rnp;
1240
1241 /*
1242 * If the CPU passed through or entered a dynticks idle phase with
1243 * no active irq/NMI handlers, then we can safely pretend that the CPU
1244 * already acknowledged the request to pass through a quiescent
1245 * state. Either way, that CPU cannot possibly be in an RCU
1246 * read-side critical section that started before the beginning
1247 * of the current RCU grace period.
1248 */
1249 if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
1250 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1251 rdp->dynticks_fqs++;
1252 return 1;
1253 }
1254
1255 /* Compute and saturate jiffies_till_sched_qs. */
1256 jtsq = jiffies_till_sched_qs;
1257 rjtsc = rcu_jiffies_till_stall_check();
1258 if (jtsq > rjtsc / 2) {
1259 WRITE_ONCE(jiffies_till_sched_qs, rjtsc);
1260 jtsq = rjtsc / 2;
1261 } else if (jtsq < 1) {
1262 WRITE_ONCE(jiffies_till_sched_qs, 1);
1263 jtsq = 1;
1264 }
1265
1266 /*
1267 * Has this CPU encountered a cond_resched_rcu_qs() since the
1268 * beginning of the grace period? For this to be the case,
1269 * the CPU has to have noticed the current grace period. This
1270 * might not be the case for nohz_full CPUs looping in the kernel.
1271 */
1272 rnp = rdp->mynode;
1273 ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
1274 if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
1275 READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
1276 READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
1277 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
1278 return 1;
1279 } else {
1280 /* Load rcu_qs_ctr before store to rcu_urgent_qs. */
1281 smp_store_release(ruqp, true);
1282 }
1283
1284 /* Check for the CPU being offline. */
1285 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
1286 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1287 rdp->offline_fqs++;
1288 return 1;
1289 }
1290
1291 /*
1292 * A CPU running for an extended time within the kernel can
1293 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1294 * even context-switching back and forth between a pair of
1295 * in-kernel CPU-bound tasks cannot advance grace periods.
1296 * So if the grace period is old enough, make the CPU pay attention.
1297 * Note that the unsynchronized assignments to the per-CPU
1298 * rcu_need_heavy_qs variable are safe. Yes, setting of
1299 * bits can be lost, but they will be set again on the next
1300 * force-quiescent-state pass. So lost bit sets do not result
1301 * in incorrect behavior, merely in a grace period lasting
1302 * a few jiffies longer than it might otherwise. Because
1303 * there are at most four threads involved, and because the
1304 * updates are only once every few jiffies, the probability of
1305 * lossage (and thus of slight grace-period extension) is
1306 * quite low.
1307 *
1308 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1309 * is set too high, we override with half of the RCU CPU stall
1310 * warning delay.
1311 */
1312 rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
1313 if (!READ_ONCE(*rnhqp) &&
1314 (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
1315 time_after(jiffies, rdp->rsp->jiffies_resched))) {
1316 WRITE_ONCE(*rnhqp, true);
1317 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1318 smp_store_release(ruqp, true);
1319 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1320 }
1321
1322 /*
1323 * If more than halfway to RCU CPU stall-warning time, do
1324 * a resched_cpu() to try to loosen things up a bit.
1325 */
1326 if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2)
1327 resched_cpu(rdp->cpu);
1328
1329 return 0;
1330 }
1331
1332 static void record_gp_stall_check_time(struct rcu_state *rsp)
1333 {
1334 unsigned long j = jiffies;
1335 unsigned long j1;
1336
1337 rsp->gp_start = j;
1338 smp_wmb(); /* Record start time before stall time. */
1339 j1 = rcu_jiffies_till_stall_check();
1340 WRITE_ONCE(rsp->jiffies_stall, j + j1);
1341 rsp->jiffies_resched = j + j1 / 2;
1342 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1343 }
1344
1345 /*
1346 * Convert a ->gp_state value to a character string.
1347 */
1348 static const char *gp_state_getname(short gs)
1349 {
1350 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1351 return "???";
1352 return gp_state_names[gs];
1353 }
1354
1355 /*
1356 * Complain about starvation of grace-period kthread.
1357 */
1358 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1359 {
1360 unsigned long gpa;
1361 unsigned long j;
1362
1363 j = jiffies;
1364 gpa = READ_ONCE(rsp->gp_activity);
1365 if (j - gpa > 2 * HZ) {
1366 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx ->cpu=%d\n",
1367 rsp->name, j - gpa,
1368 rsp->gpnum, rsp->completed,
1369 rsp->gp_flags,
1370 gp_state_getname(rsp->gp_state), rsp->gp_state,
1371 rsp->gp_kthread ? rsp->gp_kthread->state : ~0,
1372 rsp->gp_kthread ? task_cpu(rsp->gp_kthread) : -1);
1373 if (rsp->gp_kthread) {
1374 sched_show_task(rsp->gp_kthread);
1375 wake_up_process(rsp->gp_kthread);
1376 }
1377 }
1378 }
1379
1380 /*
1381 * Dump stacks of all tasks running on stalled CPUs. First try using
1382 * NMIs, but fall back to manual remote stack tracing on architectures
1383 * that don't support NMI-based stack dumps. The NMI-triggered stack
1384 * traces are more accurate because they are printed by the target CPU.
1385 */
1386 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1387 {
1388 int cpu;
1389 unsigned long flags;
1390 struct rcu_node *rnp;
1391
1392 rcu_for_each_leaf_node(rsp, rnp) {
1393 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1394 for_each_leaf_node_possible_cpu(rnp, cpu)
1395 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1396 if (!trigger_single_cpu_backtrace(cpu))
1397 dump_cpu_task(cpu);
1398 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1399 }
1400 }
1401
1402 /*
1403 * If too much time has passed in the current grace period, and if
1404 * so configured, go kick the relevant kthreads.
1405 */
1406 static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1407 {
1408 unsigned long j;
1409
1410 if (!rcu_kick_kthreads)
1411 return;
1412 j = READ_ONCE(rsp->jiffies_kick_kthreads);
1413 if (time_after(jiffies, j) && rsp->gp_kthread &&
1414 (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
1415 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1416 rcu_ftrace_dump(DUMP_ALL);
1417 wake_up_process(rsp->gp_kthread);
1418 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1419 }
1420 }
1421
1422 static inline void panic_on_rcu_stall(void)
1423 {
1424 if (sysctl_panic_on_rcu_stall)
1425 panic("RCU Stall\n");
1426 }
1427
1428 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1429 {
1430 int cpu;
1431 long delta;
1432 unsigned long flags;
1433 unsigned long gpa;
1434 unsigned long j;
1435 int ndetected = 0;
1436 struct rcu_node *rnp = rcu_get_root(rsp);
1437 long totqlen = 0;
1438
1439 /* Kick and suppress, if so configured. */
1440 rcu_stall_kick_kthreads(rsp);
1441 if (rcu_cpu_stall_suppress)
1442 return;
1443
1444 /* Only let one CPU complain about others per time interval. */
1445
1446 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1447 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1448 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1449 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1450 return;
1451 }
1452 WRITE_ONCE(rsp->jiffies_stall,
1453 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1454 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1455
1456 /*
1457 * OK, time to rat on our buddy...
1458 * See Documentation/RCU/stallwarn.txt for info on how to debug
1459 * RCU CPU stall warnings.
1460 */
1461 pr_err("INFO: %s detected stalls on CPUs/tasks:",
1462 rsp->name);
1463 print_cpu_stall_info_begin();
1464 rcu_for_each_leaf_node(rsp, rnp) {
1465 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1466 ndetected += rcu_print_task_stall(rnp);
1467 if (rnp->qsmask != 0) {
1468 for_each_leaf_node_possible_cpu(rnp, cpu)
1469 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1470 print_cpu_stall_info(rsp, cpu);
1471 ndetected++;
1472 }
1473 }
1474 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1475 }
1476
1477 print_cpu_stall_info_end();
1478 for_each_possible_cpu(cpu)
1479 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1480 cpu)->cblist);
1481 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1482 smp_processor_id(), (long)(jiffies - rsp->gp_start),
1483 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1484 if (ndetected) {
1485 rcu_dump_cpu_stacks(rsp);
1486
1487 /* Complain about tasks blocking the grace period. */
1488 rcu_print_detail_task_stall(rsp);
1489 } else {
1490 if (READ_ONCE(rsp->gpnum) != gpnum ||
1491 READ_ONCE(rsp->completed) == gpnum) {
1492 pr_err("INFO: Stall ended before state dump start\n");
1493 } else {
1494 j = jiffies;
1495 gpa = READ_ONCE(rsp->gp_activity);
1496 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1497 rsp->name, j - gpa, j, gpa,
1498 jiffies_till_next_fqs,
1499 rcu_get_root(rsp)->qsmask);
1500 /* In this case, the current CPU might be at fault. */
1501 sched_show_task(current);
1502 }
1503 }
1504
1505 rcu_check_gp_kthread_starvation(rsp);
1506
1507 panic_on_rcu_stall();
1508
1509 force_quiescent_state(rsp); /* Kick them all. */
1510 }
1511
1512 static void print_cpu_stall(struct rcu_state *rsp)
1513 {
1514 int cpu;
1515 unsigned long flags;
1516 struct rcu_node *rnp = rcu_get_root(rsp);
1517 long totqlen = 0;
1518
1519 /* Kick and suppress, if so configured. */
1520 rcu_stall_kick_kthreads(rsp);
1521 if (rcu_cpu_stall_suppress)
1522 return;
1523
1524 /*
1525 * OK, time to rat on ourselves...
1526 * See Documentation/RCU/stallwarn.txt for info on how to debug
1527 * RCU CPU stall warnings.
1528 */
1529 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1530 print_cpu_stall_info_begin();
1531 print_cpu_stall_info(rsp, smp_processor_id());
1532 print_cpu_stall_info_end();
1533 for_each_possible_cpu(cpu)
1534 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1535 cpu)->cblist);
1536 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1537 jiffies - rsp->gp_start,
1538 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1539
1540 rcu_check_gp_kthread_starvation(rsp);
1541
1542 rcu_dump_cpu_stacks(rsp);
1543
1544 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1545 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1546 WRITE_ONCE(rsp->jiffies_stall,
1547 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1548 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1549
1550 panic_on_rcu_stall();
1551
1552 /*
1553 * Attempt to revive the RCU machinery by forcing a context switch.
1554 *
1555 * A context switch would normally allow the RCU state machine to make
1556 * progress and it could be we're stuck in kernel space without context
1557 * switches for an entirely unreasonable amount of time.
1558 */
1559 resched_cpu(smp_processor_id());
1560 }
1561
1562 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1563 {
1564 unsigned long completed;
1565 unsigned long gpnum;
1566 unsigned long gps;
1567 unsigned long j;
1568 unsigned long js;
1569 struct rcu_node *rnp;
1570
1571 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1572 !rcu_gp_in_progress(rsp))
1573 return;
1574 rcu_stall_kick_kthreads(rsp);
1575 j = jiffies;
1576
1577 /*
1578 * Lots of memory barriers to reject false positives.
1579 *
1580 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1581 * then rsp->gp_start, and finally rsp->completed. These values
1582 * are updated in the opposite order with memory barriers (or
1583 * equivalent) during grace-period initialization and cleanup.
1584 * Now, a false positive can occur if we get an new value of
1585 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1586 * the memory barriers, the only way that this can happen is if one
1587 * grace period ends and another starts between these two fetches.
1588 * Detect this by comparing rsp->completed with the previous fetch
1589 * from rsp->gpnum.
1590 *
1591 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1592 * and rsp->gp_start suffice to forestall false positives.
1593 */
1594 gpnum = READ_ONCE(rsp->gpnum);
1595 smp_rmb(); /* Pick up ->gpnum first... */
1596 js = READ_ONCE(rsp->jiffies_stall);
1597 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1598 gps = READ_ONCE(rsp->gp_start);
1599 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1600 completed = READ_ONCE(rsp->completed);
1601 if (ULONG_CMP_GE(completed, gpnum) ||
1602 ULONG_CMP_LT(j, js) ||
1603 ULONG_CMP_GE(gps, js))
1604 return; /* No stall or GP completed since entering function. */
1605 rnp = rdp->mynode;
1606 if (rcu_gp_in_progress(rsp) &&
1607 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1608
1609 /* We haven't checked in, so go dump stack. */
1610 print_cpu_stall(rsp);
1611
1612 } else if (rcu_gp_in_progress(rsp) &&
1613 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1614
1615 /* They had a few time units to dump stack, so complain. */
1616 print_other_cpu_stall(rsp, gpnum);
1617 }
1618 }
1619
1620 /**
1621 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1622 *
1623 * Set the stall-warning timeout way off into the future, thus preventing
1624 * any RCU CPU stall-warning messages from appearing in the current set of
1625 * RCU grace periods.
1626 *
1627 * The caller must disable hard irqs.
1628 */
1629 void rcu_cpu_stall_reset(void)
1630 {
1631 struct rcu_state *rsp;
1632
1633 for_each_rcu_flavor(rsp)
1634 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1635 }
1636
1637 /*
1638 * Determine the value that ->completed will have at the end of the
1639 * next subsequent grace period. This is used to tag callbacks so that
1640 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1641 * been dyntick-idle for an extended period with callbacks under the
1642 * influence of RCU_FAST_NO_HZ.
1643 *
1644 * The caller must hold rnp->lock with interrupts disabled.
1645 */
1646 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1647 struct rcu_node *rnp)
1648 {
1649 lockdep_assert_held(&rnp->lock);
1650
1651 /*
1652 * If RCU is idle, we just wait for the next grace period.
1653 * But we can only be sure that RCU is idle if we are looking
1654 * at the root rcu_node structure -- otherwise, a new grace
1655 * period might have started, but just not yet gotten around
1656 * to initializing the current non-root rcu_node structure.
1657 */
1658 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1659 return rnp->completed + 1;
1660
1661 /*
1662 * Otherwise, wait for a possible partial grace period and
1663 * then the subsequent full grace period.
1664 */
1665 return rnp->completed + 2;
1666 }
1667
1668 /*
1669 * Trace-event helper function for rcu_start_future_gp() and
1670 * rcu_nocb_wait_gp().
1671 */
1672 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1673 unsigned long c, const char *s)
1674 {
1675 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1676 rnp->completed, c, rnp->level,
1677 rnp->grplo, rnp->grphi, s);
1678 }
1679
1680 /*
1681 * Start some future grace period, as needed to handle newly arrived
1682 * callbacks. The required future grace periods are recorded in each
1683 * rcu_node structure's ->need_future_gp field. Returns true if there
1684 * is reason to awaken the grace-period kthread.
1685 *
1686 * The caller must hold the specified rcu_node structure's ->lock.
1687 */
1688 static bool __maybe_unused
1689 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1690 unsigned long *c_out)
1691 {
1692 unsigned long c;
1693 bool ret = false;
1694 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1695
1696 lockdep_assert_held(&rnp->lock);
1697
1698 /*
1699 * Pick up grace-period number for new callbacks. If this
1700 * grace period is already marked as needed, return to the caller.
1701 */
1702 c = rcu_cbs_completed(rdp->rsp, rnp);
1703 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1704 if (rnp->need_future_gp[c & 0x1]) {
1705 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1706 goto out;
1707 }
1708
1709 /*
1710 * If either this rcu_node structure or the root rcu_node structure
1711 * believe that a grace period is in progress, then we must wait
1712 * for the one following, which is in "c". Because our request
1713 * will be noticed at the end of the current grace period, we don't
1714 * need to explicitly start one. We only do the lockless check
1715 * of rnp_root's fields if the current rcu_node structure thinks
1716 * there is no grace period in flight, and because we hold rnp->lock,
1717 * the only possible change is when rnp_root's two fields are
1718 * equal, in which case rnp_root->gpnum might be concurrently
1719 * incremented. But that is OK, as it will just result in our
1720 * doing some extra useless work.
1721 */
1722 if (rnp->gpnum != rnp->completed ||
1723 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1724 rnp->need_future_gp[c & 0x1]++;
1725 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1726 goto out;
1727 }
1728
1729 /*
1730 * There might be no grace period in progress. If we don't already
1731 * hold it, acquire the root rcu_node structure's lock in order to
1732 * start one (if needed).
1733 */
1734 if (rnp != rnp_root)
1735 raw_spin_lock_rcu_node(rnp_root);
1736
1737 /*
1738 * Get a new grace-period number. If there really is no grace
1739 * period in progress, it will be smaller than the one we obtained
1740 * earlier. Adjust callbacks as needed.
1741 */
1742 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1743 if (!rcu_is_nocb_cpu(rdp->cpu))
1744 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1745
1746 /*
1747 * If the needed for the required grace period is already
1748 * recorded, trace and leave.
1749 */
1750 if (rnp_root->need_future_gp[c & 0x1]) {
1751 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1752 goto unlock_out;
1753 }
1754
1755 /* Record the need for the future grace period. */
1756 rnp_root->need_future_gp[c & 0x1]++;
1757
1758 /* If a grace period is not already in progress, start one. */
1759 if (rnp_root->gpnum != rnp_root->completed) {
1760 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1761 } else {
1762 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1763 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1764 }
1765 unlock_out:
1766 if (rnp != rnp_root)
1767 raw_spin_unlock_rcu_node(rnp_root);
1768 out:
1769 if (c_out != NULL)
1770 *c_out = c;
1771 return ret;
1772 }
1773
1774 /*
1775 * Clean up any old requests for the just-ended grace period. Also return
1776 * whether any additional grace periods have been requested.
1777 */
1778 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1779 {
1780 int c = rnp->completed;
1781 int needmore;
1782 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1783
1784 rnp->need_future_gp[c & 0x1] = 0;
1785 needmore = rnp->need_future_gp[(c + 1) & 0x1];
1786 trace_rcu_future_gp(rnp, rdp, c,
1787 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1788 return needmore;
1789 }
1790
1791 /*
1792 * Awaken the grace-period kthread for the specified flavor of RCU.
1793 * Don't do a self-awaken, and don't bother awakening when there is
1794 * nothing for the grace-period kthread to do (as in several CPUs
1795 * raced to awaken, and we lost), and finally don't try to awaken
1796 * a kthread that has not yet been created.
1797 */
1798 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1799 {
1800 if (current == rsp->gp_kthread ||
1801 !READ_ONCE(rsp->gp_flags) ||
1802 !rsp->gp_kthread)
1803 return;
1804 swake_up(&rsp->gp_wq);
1805 }
1806
1807 /*
1808 * If there is room, assign a ->completed number to any callbacks on
1809 * this CPU that have not already been assigned. Also accelerate any
1810 * callbacks that were previously assigned a ->completed number that has
1811 * since proven to be too conservative, which can happen if callbacks get
1812 * assigned a ->completed number while RCU is idle, but with reference to
1813 * a non-root rcu_node structure. This function is idempotent, so it does
1814 * not hurt to call it repeatedly. Returns an flag saying that we should
1815 * awaken the RCU grace-period kthread.
1816 *
1817 * The caller must hold rnp->lock with interrupts disabled.
1818 */
1819 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1820 struct rcu_data *rdp)
1821 {
1822 bool ret = false;
1823
1824 lockdep_assert_held(&rnp->lock);
1825
1826 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1827 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1828 return false;
1829
1830 /*
1831 * Callbacks are often registered with incomplete grace-period
1832 * information. Something about the fact that getting exact
1833 * information requires acquiring a global lock... RCU therefore
1834 * makes a conservative estimate of the grace period number at which
1835 * a given callback will become ready to invoke. The following
1836 * code checks this estimate and improves it when possible, thus
1837 * accelerating callback invocation to an earlier grace-period
1838 * number.
1839 */
1840 if (rcu_segcblist_accelerate(&rdp->cblist, rcu_cbs_completed(rsp, rnp)))
1841 ret = rcu_start_future_gp(rnp, rdp, NULL);
1842
1843 /* Trace depending on how much we were able to accelerate. */
1844 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1845 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1846 else
1847 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1848 return ret;
1849 }
1850
1851 /*
1852 * Move any callbacks whose grace period has completed to the
1853 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1854 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1855 * sublist. This function is idempotent, so it does not hurt to
1856 * invoke it repeatedly. As long as it is not invoked -too- often...
1857 * Returns true if the RCU grace-period kthread needs to be awakened.
1858 *
1859 * The caller must hold rnp->lock with interrupts disabled.
1860 */
1861 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1862 struct rcu_data *rdp)
1863 {
1864 lockdep_assert_held(&rnp->lock);
1865
1866 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1867 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1868 return false;
1869
1870 /*
1871 * Find all callbacks whose ->completed numbers indicate that they
1872 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1873 */
1874 rcu_segcblist_advance(&rdp->cblist, rnp->completed);
1875
1876 /* Classify any remaining callbacks. */
1877 return rcu_accelerate_cbs(rsp, rnp, rdp);
1878 }
1879
1880 /*
1881 * Update CPU-local rcu_data state to record the beginnings and ends of
1882 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1883 * structure corresponding to the current CPU, and must have irqs disabled.
1884 * Returns true if the grace-period kthread needs to be awakened.
1885 */
1886 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1887 struct rcu_data *rdp)
1888 {
1889 bool ret;
1890 bool need_gp;
1891
1892 lockdep_assert_held(&rnp->lock);
1893
1894 /* Handle the ends of any preceding grace periods first. */
1895 if (rdp->completed == rnp->completed &&
1896 !unlikely(READ_ONCE(rdp->gpwrap))) {
1897
1898 /* No grace period end, so just accelerate recent callbacks. */
1899 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1900
1901 } else {
1902
1903 /* Advance callbacks. */
1904 ret = rcu_advance_cbs(rsp, rnp, rdp);
1905
1906 /* Remember that we saw this grace-period completion. */
1907 rdp->completed = rnp->completed;
1908 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1909 }
1910
1911 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1912 /*
1913 * If the current grace period is waiting for this CPU,
1914 * set up to detect a quiescent state, otherwise don't
1915 * go looking for one.
1916 */
1917 rdp->gpnum = rnp->gpnum;
1918 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1919 need_gp = !!(rnp->qsmask & rdp->grpmask);
1920 rdp->cpu_no_qs.b.norm = need_gp;
1921 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
1922 rdp->core_needs_qs = need_gp;
1923 zero_cpu_stall_ticks(rdp);
1924 WRITE_ONCE(rdp->gpwrap, false);
1925 }
1926 return ret;
1927 }
1928
1929 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1930 {
1931 unsigned long flags;
1932 bool needwake;
1933 struct rcu_node *rnp;
1934
1935 local_irq_save(flags);
1936 rnp = rdp->mynode;
1937 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1938 rdp->completed == READ_ONCE(rnp->completed) &&
1939 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1940 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1941 local_irq_restore(flags);
1942 return;
1943 }
1944 needwake = __note_gp_changes(rsp, rnp, rdp);
1945 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1946 if (needwake)
1947 rcu_gp_kthread_wake(rsp);
1948 }
1949
1950 static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1951 {
1952 if (delay > 0 &&
1953 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1954 schedule_timeout_uninterruptible(delay);
1955 }
1956
1957 /*
1958 * Initialize a new grace period. Return false if no grace period required.
1959 */
1960 static bool rcu_gp_init(struct rcu_state *rsp)
1961 {
1962 unsigned long oldmask;
1963 struct rcu_data *rdp;
1964 struct rcu_node *rnp = rcu_get_root(rsp);
1965
1966 WRITE_ONCE(rsp->gp_activity, jiffies);
1967 raw_spin_lock_irq_rcu_node(rnp);
1968 if (!READ_ONCE(rsp->gp_flags)) {
1969 /* Spurious wakeup, tell caller to go back to sleep. */
1970 raw_spin_unlock_irq_rcu_node(rnp);
1971 return false;
1972 }
1973 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1974
1975 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1976 /*
1977 * Grace period already in progress, don't start another.
1978 * Not supposed to be able to happen.
1979 */
1980 raw_spin_unlock_irq_rcu_node(rnp);
1981 return false;
1982 }
1983
1984 /* Advance to a new grace period and initialize state. */
1985 record_gp_stall_check_time(rsp);
1986 /* Record GP times before starting GP, hence smp_store_release(). */
1987 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1988 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1989 raw_spin_unlock_irq_rcu_node(rnp);
1990
1991 /*
1992 * Apply per-leaf buffered online and offline operations to the
1993 * rcu_node tree. Note that this new grace period need not wait
1994 * for subsequent online CPUs, and that quiescent-state forcing
1995 * will handle subsequent offline CPUs.
1996 */
1997 rcu_for_each_leaf_node(rsp, rnp) {
1998 rcu_gp_slow(rsp, gp_preinit_delay);
1999 raw_spin_lock_irq_rcu_node(rnp);
2000 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
2001 !rnp->wait_blkd_tasks) {
2002 /* Nothing to do on this leaf rcu_node structure. */
2003 raw_spin_unlock_irq_rcu_node(rnp);
2004 continue;
2005 }
2006
2007 /* Record old state, apply changes to ->qsmaskinit field. */
2008 oldmask = rnp->qsmaskinit;
2009 rnp->qsmaskinit = rnp->qsmaskinitnext;
2010
2011 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
2012 if (!oldmask != !rnp->qsmaskinit) {
2013 if (!oldmask) /* First online CPU for this rcu_node. */
2014 rcu_init_new_rnp(rnp);
2015 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
2016 rnp->wait_blkd_tasks = true;
2017 else /* Last offline CPU and can propagate. */
2018 rcu_cleanup_dead_rnp(rnp);
2019 }
2020
2021 /*
2022 * If all waited-on tasks from prior grace period are
2023 * done, and if all this rcu_node structure's CPUs are
2024 * still offline, propagate up the rcu_node tree and
2025 * clear ->wait_blkd_tasks. Otherwise, if one of this
2026 * rcu_node structure's CPUs has since come back online,
2027 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
2028 * checks for this, so just call it unconditionally).
2029 */
2030 if (rnp->wait_blkd_tasks &&
2031 (!rcu_preempt_has_tasks(rnp) ||
2032 rnp->qsmaskinit)) {
2033 rnp->wait_blkd_tasks = false;
2034 rcu_cleanup_dead_rnp(rnp);
2035 }
2036
2037 raw_spin_unlock_irq_rcu_node(rnp);
2038 }
2039
2040 /*
2041 * Set the quiescent-state-needed bits in all the rcu_node
2042 * structures for all currently online CPUs in breadth-first order,
2043 * starting from the root rcu_node structure, relying on the layout
2044 * of the tree within the rsp->node[] array. Note that other CPUs
2045 * will access only the leaves of the hierarchy, thus seeing that no
2046 * grace period is in progress, at least until the corresponding
2047 * leaf node has been initialized.
2048 *
2049 * The grace period cannot complete until the initialization
2050 * process finishes, because this kthread handles both.
2051 */
2052 rcu_for_each_node_breadth_first(rsp, rnp) {
2053 rcu_gp_slow(rsp, gp_init_delay);
2054 raw_spin_lock_irq_rcu_node(rnp);
2055 rdp = this_cpu_ptr(rsp->rda);
2056 rcu_preempt_check_blocked_tasks(rnp);
2057 rnp->qsmask = rnp->qsmaskinit;
2058 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2059 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2060 WRITE_ONCE(rnp->completed, rsp->completed);
2061 if (rnp == rdp->mynode)
2062 (void)__note_gp_changes(rsp, rnp, rdp);
2063 rcu_preempt_boost_start_gp(rnp);
2064 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2065 rnp->level, rnp->grplo,
2066 rnp->grphi, rnp->qsmask);
2067 raw_spin_unlock_irq_rcu_node(rnp);
2068 cond_resched_rcu_qs();
2069 WRITE_ONCE(rsp->gp_activity, jiffies);
2070 }
2071
2072 return true;
2073 }
2074
2075 /*
2076 * Helper function for swait_event_idle() wakeup at force-quiescent-state
2077 * time.
2078 */
2079 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2080 {
2081 struct rcu_node *rnp = rcu_get_root(rsp);
2082
2083 /* Someone like call_rcu() requested a force-quiescent-state scan. */
2084 *gfp = READ_ONCE(rsp->gp_flags);
2085 if (*gfp & RCU_GP_FLAG_FQS)
2086 return true;
2087
2088 /* The current grace period has completed. */
2089 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2090 return true;
2091
2092 return false;
2093 }
2094
2095 /*
2096 * Do one round of quiescent-state forcing.
2097 */
2098 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2099 {
2100 struct rcu_node *rnp = rcu_get_root(rsp);
2101
2102 WRITE_ONCE(rsp->gp_activity, jiffies);
2103 rsp->n_force_qs++;
2104 if (first_time) {
2105 /* Collect dyntick-idle snapshots. */
2106 force_qs_rnp(rsp, dyntick_save_progress_counter);
2107 } else {
2108 /* Handle dyntick-idle and offline CPUs. */
2109 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
2110 }
2111 /* Clear flag to prevent immediate re-entry. */
2112 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2113 raw_spin_lock_irq_rcu_node(rnp);
2114 WRITE_ONCE(rsp->gp_flags,
2115 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
2116 raw_spin_unlock_irq_rcu_node(rnp);
2117 }
2118 }
2119
2120 /*
2121 * Clean up after the old grace period.
2122 */
2123 static void rcu_gp_cleanup(struct rcu_state *rsp)
2124 {
2125 unsigned long gp_duration;
2126 bool needgp = false;
2127 int nocb = 0;
2128 struct rcu_data *rdp;
2129 struct rcu_node *rnp = rcu_get_root(rsp);
2130 struct swait_queue_head *sq;
2131
2132 WRITE_ONCE(rsp->gp_activity, jiffies);
2133 raw_spin_lock_irq_rcu_node(rnp);
2134 gp_duration = jiffies - rsp->gp_start;
2135 if (gp_duration > rsp->gp_max)
2136 rsp->gp_max = gp_duration;
2137
2138 /*
2139 * We know the grace period is complete, but to everyone else
2140 * it appears to still be ongoing. But it is also the case
2141 * that to everyone else it looks like there is nothing that
2142 * they can do to advance the grace period. It is therefore
2143 * safe for us to drop the lock in order to mark the grace
2144 * period as completed in all of the rcu_node structures.
2145 */
2146 raw_spin_unlock_irq_rcu_node(rnp);
2147
2148 /*
2149 * Propagate new ->completed value to rcu_node structures so
2150 * that other CPUs don't have to wait until the start of the next
2151 * grace period to process their callbacks. This also avoids
2152 * some nasty RCU grace-period initialization races by forcing
2153 * the end of the current grace period to be completely recorded in
2154 * all of the rcu_node structures before the beginning of the next
2155 * grace period is recorded in any of the rcu_node structures.
2156 */
2157 rcu_for_each_node_breadth_first(rsp, rnp) {
2158 raw_spin_lock_irq_rcu_node(rnp);
2159 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2160 WARN_ON_ONCE(rnp->qsmask);
2161 WRITE_ONCE(rnp->completed, rsp->gpnum);
2162 rdp = this_cpu_ptr(rsp->rda);
2163 if (rnp == rdp->mynode)
2164 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2165 /* smp_mb() provided by prior unlock-lock pair. */
2166 nocb += rcu_future_gp_cleanup(rsp, rnp);
2167 sq = rcu_nocb_gp_get(rnp);
2168 raw_spin_unlock_irq_rcu_node(rnp);
2169 rcu_nocb_gp_cleanup(sq);
2170 cond_resched_rcu_qs();
2171 WRITE_ONCE(rsp->gp_activity, jiffies);
2172 rcu_gp_slow(rsp, gp_cleanup_delay);
2173 }
2174 rnp = rcu_get_root(rsp);
2175 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2176 rcu_nocb_gp_set(rnp, nocb);
2177
2178 /* Declare grace period done. */
2179 WRITE_ONCE(rsp->completed, rsp->gpnum);
2180 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2181 rsp->gp_state = RCU_GP_IDLE;
2182 rdp = this_cpu_ptr(rsp->rda);
2183 /* Advance CBs to reduce false positives below. */
2184 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2185 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2186 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2187 trace_rcu_grace_period(rsp->name,
2188 READ_ONCE(rsp->gpnum),
2189 TPS("newreq"));
2190 }
2191 raw_spin_unlock_irq_rcu_node(rnp);
2192 }
2193
2194 /*
2195 * Body of kthread that handles grace periods.
2196 */
2197 static int __noreturn rcu_gp_kthread(void *arg)
2198 {
2199 bool first_gp_fqs;
2200 int gf;
2201 unsigned long j;
2202 int ret;
2203 struct rcu_state *rsp = arg;
2204 struct rcu_node *rnp = rcu_get_root(rsp);
2205
2206 rcu_bind_gp_kthread();
2207 for (;;) {
2208
2209 /* Handle grace-period start. */
2210 for (;;) {
2211 trace_rcu_grace_period(rsp->name,
2212 READ_ONCE(rsp->gpnum),
2213 TPS("reqwait"));
2214 rsp->gp_state = RCU_GP_WAIT_GPS;
2215 swait_event_idle(rsp->gp_wq, READ_ONCE(rsp->gp_flags) &
2216 RCU_GP_FLAG_INIT);
2217 rsp->gp_state = RCU_GP_DONE_GPS;
2218 /* Locking provides needed memory barrier. */
2219 if (rcu_gp_init(rsp))
2220 break;
2221 cond_resched_rcu_qs();
2222 WRITE_ONCE(rsp->gp_activity, jiffies);
2223 WARN_ON(signal_pending(current));
2224 trace_rcu_grace_period(rsp->name,
2225 READ_ONCE(rsp->gpnum),
2226 TPS("reqwaitsig"));
2227 }
2228
2229 /* Handle quiescent-state forcing. */
2230 first_gp_fqs = true;
2231 j = jiffies_till_first_fqs;
2232 if (j > HZ) {
2233 j = HZ;
2234 jiffies_till_first_fqs = HZ;
2235 }
2236 ret = 0;
2237 for (;;) {
2238 if (!ret) {
2239 rsp->jiffies_force_qs = jiffies + j;
2240 WRITE_ONCE(rsp->jiffies_kick_kthreads,
2241 jiffies + 3 * j);
2242 }
2243 trace_rcu_grace_period(rsp->name,
2244 READ_ONCE(rsp->gpnum),
2245 TPS("fqswait"));
2246 rsp->gp_state = RCU_GP_WAIT_FQS;
2247 ret = swait_event_idle_timeout(rsp->gp_wq,
2248 rcu_gp_fqs_check_wake(rsp, &gf), j);
2249 rsp->gp_state = RCU_GP_DOING_FQS;
2250 /* Locking provides needed memory barriers. */
2251 /* If grace period done, leave loop. */
2252 if (!READ_ONCE(rnp->qsmask) &&
2253 !rcu_preempt_blocked_readers_cgp(rnp))
2254 break;
2255 /* If time for quiescent-state forcing, do it. */
2256 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2257 (gf & RCU_GP_FLAG_FQS)) {
2258 trace_rcu_grace_period(rsp->name,
2259 READ_ONCE(rsp->gpnum),
2260 TPS("fqsstart"));
2261 rcu_gp_fqs(rsp, first_gp_fqs);
2262 first_gp_fqs = false;
2263 trace_rcu_grace_period(rsp->name,
2264 READ_ONCE(rsp->gpnum),
2265 TPS("fqsend"));
2266 cond_resched_rcu_qs();
2267 WRITE_ONCE(rsp->gp_activity, jiffies);
2268 ret = 0; /* Force full wait till next FQS. */
2269 j = jiffies_till_next_fqs;
2270 if (j > HZ) {
2271 j = HZ;
2272 jiffies_till_next_fqs = HZ;
2273 } else if (j < 1) {
2274 j = 1;
2275 jiffies_till_next_fqs = 1;
2276 }
2277 } else {
2278 /* Deal with stray signal. */
2279 cond_resched_rcu_qs();
2280 WRITE_ONCE(rsp->gp_activity, jiffies);
2281 WARN_ON(signal_pending(current));
2282 trace_rcu_grace_period(rsp->name,
2283 READ_ONCE(rsp->gpnum),
2284 TPS("fqswaitsig"));
2285 ret = 1; /* Keep old FQS timing. */
2286 j = jiffies;
2287 if (time_after(jiffies, rsp->jiffies_force_qs))
2288 j = 1;
2289 else
2290 j = rsp->jiffies_force_qs - j;
2291 }
2292 }
2293
2294 /* Handle grace-period end. */
2295 rsp->gp_state = RCU_GP_CLEANUP;
2296 rcu_gp_cleanup(rsp);
2297 rsp->gp_state = RCU_GP_CLEANED;
2298 }
2299 }
2300
2301 /*
2302 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2303 * in preparation for detecting the next grace period. The caller must hold
2304 * the root node's ->lock and hard irqs must be disabled.
2305 *
2306 * Note that it is legal for a dying CPU (which is marked as offline) to
2307 * invoke this function. This can happen when the dying CPU reports its
2308 * quiescent state.
2309 *
2310 * Returns true if the grace-period kthread must be awakened.
2311 */
2312 static bool
2313 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2314 struct rcu_data *rdp)
2315 {
2316 lockdep_assert_held(&rnp->lock);
2317 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2318 /*
2319 * Either we have not yet spawned the grace-period
2320 * task, this CPU does not need another grace period,
2321 * or a grace period is already in progress.
2322 * Either way, don't start a new grace period.
2323 */
2324 return false;
2325 }
2326 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2327 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2328 TPS("newreq"));
2329
2330 /*
2331 * We can't do wakeups while holding the rnp->lock, as that
2332 * could cause possible deadlocks with the rq->lock. Defer
2333 * the wakeup to our caller.
2334 */
2335 return true;
2336 }
2337
2338 /*
2339 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2340 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2341 * is invoked indirectly from rcu_advance_cbs(), which would result in
2342 * endless recursion -- or would do so if it wasn't for the self-deadlock
2343 * that is encountered beforehand.
2344 *
2345 * Returns true if the grace-period kthread needs to be awakened.
2346 */
2347 static bool rcu_start_gp(struct rcu_state *rsp)
2348 {
2349 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2350 struct rcu_node *rnp = rcu_get_root(rsp);
2351 bool ret = false;
2352
2353 /*
2354 * If there is no grace period in progress right now, any
2355 * callbacks we have up to this point will be satisfied by the
2356 * next grace period. Also, advancing the callbacks reduces the
2357 * probability of false positives from cpu_needs_another_gp()
2358 * resulting in pointless grace periods. So, advance callbacks
2359 * then start the grace period!
2360 */
2361 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2362 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2363 return ret;
2364 }
2365
2366 /*
2367 * Report a full set of quiescent states to the specified rcu_state data
2368 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2369 * kthread if another grace period is required. Whether we wake
2370 * the grace-period kthread or it awakens itself for the next round
2371 * of quiescent-state forcing, that kthread will clean up after the
2372 * just-completed grace period. Note that the caller must hold rnp->lock,
2373 * which is released before return.
2374 */
2375 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2376 __releases(rcu_get_root(rsp)->lock)
2377 {
2378 lockdep_assert_held(&rcu_get_root(rsp)->lock);
2379 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2380 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2381 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2382 rcu_gp_kthread_wake(rsp);
2383 }
2384
2385 /*
2386 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2387 * Allows quiescent states for a group of CPUs to be reported at one go
2388 * to the specified rcu_node structure, though all the CPUs in the group
2389 * must be represented by the same rcu_node structure (which need not be a
2390 * leaf rcu_node structure, though it often will be). The gps parameter
2391 * is the grace-period snapshot, which means that the quiescent states
2392 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2393 * must be held upon entry, and it is released before return.
2394 */
2395 static void
2396 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2397 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2398 __releases(rnp->lock)
2399 {
2400 unsigned long oldmask = 0;
2401 struct rcu_node *rnp_c;
2402
2403 lockdep_assert_held(&rnp->lock);
2404
2405 /* Walk up the rcu_node hierarchy. */
2406 for (;;) {
2407 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2408
2409 /*
2410 * Our bit has already been cleared, or the
2411 * relevant grace period is already over, so done.
2412 */
2413 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2414 return;
2415 }
2416 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2417 WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1 &&
2418 rcu_preempt_blocked_readers_cgp(rnp));
2419 rnp->qsmask &= ~mask;
2420 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2421 mask, rnp->qsmask, rnp->level,
2422 rnp->grplo, rnp->grphi,
2423 !!rnp->gp_tasks);
2424 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2425
2426 /* Other bits still set at this level, so done. */
2427 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2428 return;
2429 }
2430 mask = rnp->grpmask;
2431 if (rnp->parent == NULL) {
2432
2433 /* No more levels. Exit loop holding root lock. */
2434
2435 break;
2436 }
2437 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2438 rnp_c = rnp;
2439 rnp = rnp->parent;
2440 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2441 oldmask = rnp_c->qsmask;
2442 }
2443
2444 /*
2445 * Get here if we are the last CPU to pass through a quiescent
2446 * state for this grace period. Invoke rcu_report_qs_rsp()
2447 * to clean up and start the next grace period if one is needed.
2448 */
2449 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2450 }
2451
2452 /*
2453 * Record a quiescent state for all tasks that were previously queued
2454 * on the specified rcu_node structure and that were blocking the current
2455 * RCU grace period. The caller must hold the specified rnp->lock with
2456 * irqs disabled, and this lock is released upon return, but irqs remain
2457 * disabled.
2458 */
2459 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2460 struct rcu_node *rnp, unsigned long flags)
2461 __releases(rnp->lock)
2462 {
2463 unsigned long gps;
2464 unsigned long mask;
2465 struct rcu_node *rnp_p;
2466
2467 lockdep_assert_held(&rnp->lock);
2468 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2469 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2470 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2471 return; /* Still need more quiescent states! */
2472 }
2473
2474 rnp_p = rnp->parent;
2475 if (rnp_p == NULL) {
2476 /*
2477 * Only one rcu_node structure in the tree, so don't
2478 * try to report up to its nonexistent parent!
2479 */
2480 rcu_report_qs_rsp(rsp, flags);
2481 return;
2482 }
2483
2484 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2485 gps = rnp->gpnum;
2486 mask = rnp->grpmask;
2487 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2488 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
2489 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2490 }
2491
2492 /*
2493 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2494 * structure. This must be called from the specified CPU.
2495 */
2496 static void
2497 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2498 {
2499 unsigned long flags;
2500 unsigned long mask;
2501 bool needwake;
2502 struct rcu_node *rnp;
2503
2504 rnp = rdp->mynode;
2505 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2506 if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
2507 rnp->completed == rnp->gpnum || rdp->gpwrap) {
2508
2509 /*
2510 * The grace period in which this quiescent state was
2511 * recorded has ended, so don't report it upwards.
2512 * We will instead need a new quiescent state that lies
2513 * within the current grace period.
2514 */
2515 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
2516 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
2517 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2518 return;
2519 }
2520 mask = rdp->grpmask;
2521 if ((rnp->qsmask & mask) == 0) {
2522 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2523 } else {
2524 rdp->core_needs_qs = false;
2525
2526 /*
2527 * This GP can't end until cpu checks in, so all of our
2528 * callbacks can be processed during the next GP.
2529 */
2530 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2531
2532 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2533 /* ^^^ Released rnp->lock */
2534 if (needwake)
2535 rcu_gp_kthread_wake(rsp);
2536 }
2537 }
2538
2539 /*
2540 * Check to see if there is a new grace period of which this CPU
2541 * is not yet aware, and if so, set up local rcu_data state for it.
2542 * Otherwise, see if this CPU has just passed through its first
2543 * quiescent state for this grace period, and record that fact if so.
2544 */
2545 static void
2546 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2547 {
2548 /* Check for grace-period ends and beginnings. */
2549 note_gp_changes(rsp, rdp);
2550
2551 /*
2552 * Does this CPU still need to do its part for current grace period?
2553 * If no, return and let the other CPUs do their part as well.
2554 */
2555 if (!rdp->core_needs_qs)
2556 return;
2557
2558 /*
2559 * Was there a quiescent state since the beginning of the grace
2560 * period? If no, then exit and wait for the next call.
2561 */
2562 if (rdp->cpu_no_qs.b.norm)
2563 return;
2564
2565 /*
2566 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2567 * judge of that).
2568 */
2569 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2570 }
2571
2572 /*
2573 * Trace the fact that this CPU is going offline.
2574 */
2575 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2576 {
2577 RCU_TRACE(unsigned long mask;)
2578 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
2579 RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
2580
2581 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2582 return;
2583
2584 RCU_TRACE(mask = rdp->grpmask;)
2585 trace_rcu_grace_period(rsp->name,
2586 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2587 TPS("cpuofl"));
2588 }
2589
2590 /*
2591 * All CPUs for the specified rcu_node structure have gone offline,
2592 * and all tasks that were preempted within an RCU read-side critical
2593 * section while running on one of those CPUs have since exited their RCU
2594 * read-side critical section. Some other CPU is reporting this fact with
2595 * the specified rcu_node structure's ->lock held and interrupts disabled.
2596 * This function therefore goes up the tree of rcu_node structures,
2597 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2598 * the leaf rcu_node structure's ->qsmaskinit field has already been
2599 * updated
2600 *
2601 * This function does check that the specified rcu_node structure has
2602 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2603 * prematurely. That said, invoking it after the fact will cost you
2604 * a needless lock acquisition. So once it has done its work, don't
2605 * invoke it again.
2606 */
2607 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2608 {
2609 long mask;
2610 struct rcu_node *rnp = rnp_leaf;
2611
2612 lockdep_assert_held(&rnp->lock);
2613 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2614 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2615 return;
2616 for (;;) {
2617 mask = rnp->grpmask;
2618 rnp = rnp->parent;
2619 if (!rnp)
2620 break;
2621 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2622 rnp->qsmaskinit &= ~mask;
2623 rnp->qsmask &= ~mask;
2624 if (rnp->qsmaskinit) {
2625 raw_spin_unlock_rcu_node(rnp);
2626 /* irqs remain disabled. */
2627 return;
2628 }
2629 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2630 }
2631 }
2632
2633 /*
2634 * The CPU has been completely removed, and some other CPU is reporting
2635 * this fact from process context. Do the remainder of the cleanup.
2636 * There can only be one CPU hotplug operation at a time, so no need for
2637 * explicit locking.
2638 */
2639 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2640 {
2641 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2642 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2643
2644 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2645 return;
2646
2647 /* Adjust any no-longer-needed kthreads. */
2648 rcu_boost_kthread_setaffinity(rnp, -1);
2649 }
2650
2651 /*
2652 * Invoke any RCU callbacks that have made it to the end of their grace
2653 * period. Thottle as specified by rdp->blimit.
2654 */
2655 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2656 {
2657 unsigned long flags;
2658 struct rcu_head *rhp;
2659 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2660 long bl, count;
2661
2662 /* If no callbacks are ready, just return. */
2663 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2664 trace_rcu_batch_start(rsp->name,
2665 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2666 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2667 trace_rcu_batch_end(rsp->name, 0,
2668 !rcu_segcblist_empty(&rdp->cblist),
2669 need_resched(), is_idle_task(current),
2670 rcu_is_callbacks_kthread());
2671 return;
2672 }
2673
2674 /*
2675 * Extract the list of ready callbacks, disabling to prevent
2676 * races with call_rcu() from interrupt handlers. Leave the
2677 * callback counts, as rcu_barrier() needs to be conservative.
2678 */
2679 local_irq_save(flags);
2680 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2681 bl = rdp->blimit;
2682 trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2683 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2684 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2685 local_irq_restore(flags);
2686
2687 /* Invoke callbacks. */
2688 rhp = rcu_cblist_dequeue(&rcl);
2689 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2690 debug_rcu_head_unqueue(rhp);
2691 if (__rcu_reclaim(rsp->name, rhp))
2692 rcu_cblist_dequeued_lazy(&rcl);
2693 /*
2694 * Stop only if limit reached and CPU has something to do.
2695 * Note: The rcl structure counts down from zero.
2696 */
2697 if (-rcl.len >= bl &&
2698 (need_resched() ||
2699 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2700 break;
2701 }
2702
2703 local_irq_save(flags);
2704 count = -rcl.len;
2705 trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(),
2706 is_idle_task(current), rcu_is_callbacks_kthread());
2707
2708 /* Update counts and requeue any remaining callbacks. */
2709 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2710 smp_mb(); /* List handling before counting for rcu_barrier(). */
2711 rdp->n_cbs_invoked += count;
2712 rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2713
2714 /* Reinstate batch limit if we have worked down the excess. */
2715 count = rcu_segcblist_n_cbs(&rdp->cblist);
2716 if (rdp->blimit == LONG_MAX && count <= qlowmark)
2717 rdp->blimit = blimit;
2718
2719 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2720 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2721 rdp->qlen_last_fqs_check = 0;
2722 rdp->n_force_qs_snap = rsp->n_force_qs;
2723 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2724 rdp->qlen_last_fqs_check = count;
2725 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
2726
2727 local_irq_restore(flags);
2728
2729 /* Re-invoke RCU core processing if there are callbacks remaining. */
2730 if (rcu_segcblist_ready_cbs(&rdp->cblist))
2731 invoke_rcu_core();
2732 }
2733
2734 /*
2735 * Check to see if this CPU is in a non-context-switch quiescent state
2736 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2737 * Also schedule RCU core processing.
2738 *
2739 * This function must be called from hardirq context. It is normally
2740 * invoked from the scheduling-clock interrupt.
2741 */
2742 void rcu_check_callbacks(int user)
2743 {
2744 trace_rcu_utilization(TPS("Start scheduler-tick"));
2745 increment_cpu_stall_ticks();
2746 if (user || rcu_is_cpu_rrupt_from_idle()) {
2747
2748 /*
2749 * Get here if this CPU took its interrupt from user
2750 * mode or from the idle loop, and if this is not a
2751 * nested interrupt. In this case, the CPU is in
2752 * a quiescent state, so note it.
2753 *
2754 * No memory barrier is required here because both
2755 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2756 * variables that other CPUs neither access nor modify,
2757 * at least not while the corresponding CPU is online.
2758 */
2759
2760 rcu_sched_qs();
2761 rcu_bh_qs();
2762
2763 } else if (!in_softirq()) {
2764
2765 /*
2766 * Get here if this CPU did not take its interrupt from
2767 * softirq, in other words, if it is not interrupting
2768 * a rcu_bh read-side critical section. This is an _bh
2769 * critical section, so note it.
2770 */
2771
2772 rcu_bh_qs();
2773 }
2774 rcu_preempt_check_callbacks();
2775 if (rcu_pending())
2776 invoke_rcu_core();
2777 if (user)
2778 rcu_note_voluntary_context_switch(current);
2779 trace_rcu_utilization(TPS("End scheduler-tick"));
2780 }
2781
2782 /*
2783 * Scan the leaf rcu_node structures, processing dyntick state for any that
2784 * have not yet encountered a quiescent state, using the function specified.
2785 * Also initiate boosting for any threads blocked on the root rcu_node.
2786 *
2787 * The caller must have suppressed start of new grace periods.
2788 */
2789 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp))
2790 {
2791 int cpu;
2792 unsigned long flags;
2793 unsigned long mask;
2794 struct rcu_node *rnp;
2795
2796 rcu_for_each_leaf_node(rsp, rnp) {
2797 cond_resched_rcu_qs();
2798 mask = 0;
2799 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2800 if (rnp->qsmask == 0) {
2801 if (rcu_state_p == &rcu_sched_state ||
2802 rsp != rcu_state_p ||
2803 rcu_preempt_blocked_readers_cgp(rnp)) {
2804 /*
2805 * No point in scanning bits because they
2806 * are all zero. But we might need to
2807 * priority-boost blocked readers.
2808 */
2809 rcu_initiate_boost(rnp, flags);
2810 /* rcu_initiate_boost() releases rnp->lock */
2811 continue;
2812 }
2813 if (rnp->parent &&
2814 (rnp->parent->qsmask & rnp->grpmask)) {
2815 /*
2816 * Race between grace-period
2817 * initialization and task exiting RCU
2818 * read-side critical section: Report.
2819 */
2820 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2821 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2822 continue;
2823 }
2824 }
2825 for_each_leaf_node_possible_cpu(rnp, cpu) {
2826 unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2827 if ((rnp->qsmask & bit) != 0) {
2828 if (f(per_cpu_ptr(rsp->rda, cpu)))
2829 mask |= bit;
2830 }
2831 }
2832 if (mask != 0) {
2833 /* Idle/offline CPUs, report (releases rnp->lock. */
2834 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2835 } else {
2836 /* Nothing to do here, so just drop the lock. */
2837 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2838 }
2839 }
2840 }
2841
2842 /*
2843 * Force quiescent states on reluctant CPUs, and also detect which
2844 * CPUs are in dyntick-idle mode.
2845 */
2846 static void force_quiescent_state(struct rcu_state *rsp)
2847 {
2848 unsigned long flags;
2849 bool ret;
2850 struct rcu_node *rnp;
2851 struct rcu_node *rnp_old = NULL;
2852
2853 /* Funnel through hierarchy to reduce memory contention. */
2854 rnp = __this_cpu_read(rsp->rda->mynode);
2855 for (; rnp != NULL; rnp = rnp->parent) {
2856 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2857 !raw_spin_trylock(&rnp->fqslock);
2858 if (rnp_old != NULL)
2859 raw_spin_unlock(&rnp_old->fqslock);
2860 if (ret) {
2861 rsp->n_force_qs_lh++;
2862 return;
2863 }
2864 rnp_old = rnp;
2865 }
2866 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2867
2868 /* Reached the root of the rcu_node tree, acquire lock. */
2869 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2870 raw_spin_unlock(&rnp_old->fqslock);
2871 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2872 rsp->n_force_qs_lh++;
2873 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2874 return; /* Someone beat us to it. */
2875 }
2876 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2877 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2878 rcu_gp_kthread_wake(rsp);
2879 }
2880
2881 /*
2882 * This does the RCU core processing work for the specified rcu_state
2883 * and rcu_data structures. This may be called only from the CPU to
2884 * whom the rdp belongs.
2885 */
2886 static void
2887 __rcu_process_callbacks(struct rcu_state *rsp)
2888 {
2889 unsigned long flags;
2890 bool needwake;
2891 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2892
2893 WARN_ON_ONCE(!rdp->beenonline);
2894
2895 /* Update RCU state based on any recent quiescent states. */
2896 rcu_check_quiescent_state(rsp, rdp);
2897
2898 /* Does this CPU require a not-yet-started grace period? */
2899 local_irq_save(flags);
2900 if (cpu_needs_another_gp(rsp, rdp)) {
2901 raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
2902 needwake = rcu_start_gp(rsp);
2903 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2904 if (needwake)
2905 rcu_gp_kthread_wake(rsp);
2906 } else {
2907 local_irq_restore(flags);
2908 }
2909
2910 /* If there are callbacks ready, invoke them. */
2911 if (rcu_segcblist_ready_cbs(&rdp->cblist))
2912 invoke_rcu_callbacks(rsp, rdp);
2913
2914 /* Do any needed deferred wakeups of rcuo kthreads. */
2915 do_nocb_deferred_wakeup(rdp);
2916 }
2917
2918 /*
2919 * Do RCU core processing for the current CPU.
2920 */
2921 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
2922 {
2923 struct rcu_state *rsp;
2924
2925 if (cpu_is_offline(smp_processor_id()))
2926 return;
2927 trace_rcu_utilization(TPS("Start RCU core"));
2928 for_each_rcu_flavor(rsp)
2929 __rcu_process_callbacks(rsp);
2930 trace_rcu_utilization(TPS("End RCU core"));
2931 }
2932
2933 /*
2934 * Schedule RCU callback invocation. If the specified type of RCU
2935 * does not support RCU priority boosting, just do a direct call,
2936 * otherwise wake up the per-CPU kernel kthread. Note that because we
2937 * are running on the current CPU with softirqs disabled, the
2938 * rcu_cpu_kthread_task cannot disappear out from under us.
2939 */
2940 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2941 {
2942 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2943 return;
2944 if (likely(!rsp->boost)) {
2945 rcu_do_batch(rsp, rdp);
2946 return;
2947 }
2948 invoke_rcu_callbacks_kthread();
2949 }
2950
2951 static void invoke_rcu_core(void)
2952 {
2953 if (cpu_online(smp_processor_id()))
2954 raise_softirq(RCU_SOFTIRQ);
2955 }
2956
2957 /*
2958 * Handle any core-RCU processing required by a call_rcu() invocation.
2959 */
2960 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2961 struct rcu_head *head, unsigned long flags)
2962 {
2963 bool needwake;
2964
2965 /*
2966 * If called from an extended quiescent state, invoke the RCU
2967 * core in order to force a re-evaluation of RCU's idleness.
2968 */
2969 if (!rcu_is_watching())
2970 invoke_rcu_core();
2971
2972 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2973 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2974 return;
2975
2976 /*
2977 * Force the grace period if too many callbacks or too long waiting.
2978 * Enforce hysteresis, and don't invoke force_quiescent_state()
2979 * if some other CPU has recently done so. Also, don't bother
2980 * invoking force_quiescent_state() if the newly enqueued callback
2981 * is the only one waiting for a grace period to complete.
2982 */
2983 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2984 rdp->qlen_last_fqs_check + qhimark)) {
2985
2986 /* Are we ignoring a completed grace period? */
2987 note_gp_changes(rsp, rdp);
2988
2989 /* Start a new grace period if one not already started. */
2990 if (!rcu_gp_in_progress(rsp)) {
2991 struct rcu_node *rnp_root = rcu_get_root(rsp);
2992
2993 raw_spin_lock_rcu_node(rnp_root);
2994 needwake = rcu_start_gp(rsp);
2995 raw_spin_unlock_rcu_node(rnp_root);
2996 if (needwake)
2997 rcu_gp_kthread_wake(rsp);
2998 } else {
2999 /* Give the grace period a kick. */
3000 rdp->blimit = LONG_MAX;
3001 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3002 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
3003 force_quiescent_state(rsp);
3004 rdp->n_force_qs_snap = rsp->n_force_qs;
3005 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
3006 }
3007 }
3008 }
3009
3010 /*
3011 * RCU callback function to leak a callback.
3012 */
3013 static void rcu_leak_callback(struct rcu_head *rhp)
3014 {
3015 }
3016
3017 /*
3018 * Helper function for call_rcu() and friends. The cpu argument will
3019 * normally be -1, indicating "currently running CPU". It may specify
3020 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3021 * is expected to specify a CPU.
3022 */
3023 static void
3024 __call_rcu(struct rcu_head *head, rcu_callback_t func,
3025 struct rcu_state *rsp, int cpu, bool lazy)
3026 {
3027 unsigned long flags;
3028 struct rcu_data *rdp;
3029
3030 /* Misaligned rcu_head! */
3031 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3032
3033 if (debug_rcu_head_queue(head)) {
3034 /*
3035 * Probable double call_rcu(), so leak the callback.
3036 * Use rcu:rcu_callback trace event to find the previous
3037 * time callback was passed to __call_rcu().
3038 */
3039 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
3040 head, head->func);
3041 WRITE_ONCE(head->func, rcu_leak_callback);
3042 return;
3043 }
3044 head->func = func;
3045 head->next = NULL;
3046 local_irq_save(flags);
3047 rdp = this_cpu_ptr(rsp->rda);
3048
3049 /* Add the callback to our list. */
3050 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
3051 int offline;
3052
3053 if (cpu != -1)
3054 rdp = per_cpu_ptr(rsp->rda, cpu);
3055 if (likely(rdp->mynode)) {
3056 /* Post-boot, so this should be for a no-CBs CPU. */
3057 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3058 WARN_ON_ONCE(offline);
3059 /* Offline CPU, _call_rcu() illegal, leak callback. */
3060 local_irq_restore(flags);
3061 return;
3062 }
3063 /*
3064 * Very early boot, before rcu_init(). Initialize if needed
3065 * and then drop through to queue the callback.
3066 */
3067 BUG_ON(cpu != -1);
3068 WARN_ON_ONCE(!rcu_is_watching());
3069 if (rcu_segcblist_empty(&rdp->cblist))
3070 rcu_segcblist_init(&rdp->cblist);
3071 }
3072 rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
3073 if (!lazy)
3074 rcu_idle_count_callbacks_posted();
3075
3076 if (__is_kfree_rcu_offset((unsigned long)func))
3077 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3078 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3079 rcu_segcblist_n_cbs(&rdp->cblist));
3080 else
3081 trace_rcu_callback(rsp->name, head,
3082 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3083 rcu_segcblist_n_cbs(&rdp->cblist));
3084
3085 /* Go handle any RCU core processing required. */
3086 __call_rcu_core(rsp, rdp, head, flags);
3087 local_irq_restore(flags);
3088 }
3089
3090 /**
3091 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
3092 * @head: structure to be used for queueing the RCU updates.
3093 * @func: actual callback function to be invoked after the grace period
3094 *
3095 * The callback function will be invoked some time after a full grace
3096 * period elapses, in other words after all currently executing RCU
3097 * read-side critical sections have completed. call_rcu_sched() assumes
3098 * that the read-side critical sections end on enabling of preemption
3099 * or on voluntary preemption.
3100 * RCU read-side critical sections are delimited by:
3101 *
3102 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR
3103 * - anything that disables preemption.
3104 *
3105 * These may be nested.
3106 *
3107 * See the description of call_rcu() for more detailed information on
3108 * memory ordering guarantees.
3109 */
3110 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3111 {
3112 __call_rcu(head, func, &rcu_sched_state, -1, 0);
3113 }
3114 EXPORT_SYMBOL_GPL(call_rcu_sched);
3115
3116 /**
3117 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
3118 * @head: structure to be used for queueing the RCU updates.
3119 * @func: actual callback function to be invoked after the grace period
3120 *
3121 * The callback function will be invoked some time after a full grace
3122 * period elapses, in other words after all currently executing RCU
3123 * read-side critical sections have completed. call_rcu_bh() assumes
3124 * that the read-side critical sections end on completion of a softirq
3125 * handler. This means that read-side critical sections in process
3126 * context must not be interrupted by softirqs. This interface is to be
3127 * used when most of the read-side critical sections are in softirq context.
3128 * RCU read-side critical sections are delimited by:
3129 *
3130 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context, OR
3131 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
3132 *
3133 * These may be nested.
3134 *
3135 * See the description of call_rcu() for more detailed information on
3136 * memory ordering guarantees.
3137 */
3138 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3139 {
3140 __call_rcu(head, func, &rcu_bh_state, -1, 0);
3141 }
3142 EXPORT_SYMBOL_GPL(call_rcu_bh);
3143
3144 /*
3145 * Queue an RCU callback for lazy invocation after a grace period.
3146 * This will likely be later named something like "call_rcu_lazy()",
3147 * but this change will require some way of tagging the lazy RCU
3148 * callbacks in the list of pending callbacks. Until then, this
3149 * function may only be called from __kfree_rcu().
3150 */
3151 void kfree_call_rcu(struct rcu_head *head,
3152 rcu_callback_t func)
3153 {
3154 __call_rcu(head, func, rcu_state_p, -1, 1);
3155 }
3156 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3157
3158 /*
3159 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3160 * any blocking grace-period wait automatically implies a grace period
3161 * if there is only one CPU online at any point time during execution
3162 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3163 * occasionally incorrectly indicate that there are multiple CPUs online
3164 * when there was in fact only one the whole time, as this just adds
3165 * some overhead: RCU still operates correctly.
3166 */
3167 static inline int rcu_blocking_is_gp(void)
3168 {
3169 int ret;
3170
3171 might_sleep(); /* Check for RCU read-side critical section. */
3172 preempt_disable();
3173 ret = num_online_cpus() <= 1;
3174 preempt_enable();
3175 return ret;
3176 }
3177
3178 /**
3179 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3180 *
3181 * Control will return to the caller some time after a full rcu-sched
3182 * grace period has elapsed, in other words after all currently executing
3183 * rcu-sched read-side critical sections have completed. These read-side
3184 * critical sections are delimited by rcu_read_lock_sched() and
3185 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3186 * local_irq_disable(), and so on may be used in place of
3187 * rcu_read_lock_sched().
3188 *
3189 * This means that all preempt_disable code sequences, including NMI and
3190 * non-threaded hardware-interrupt handlers, in progress on entry will
3191 * have completed before this primitive returns. However, this does not
3192 * guarantee that softirq handlers will have completed, since in some
3193 * kernels, these handlers can run in process context, and can block.
3194 *
3195 * Note that this guarantee implies further memory-ordering guarantees.
3196 * On systems with more than one CPU, when synchronize_sched() returns,
3197 * each CPU is guaranteed to have executed a full memory barrier since the
3198 * end of its last RCU-sched read-side critical section whose beginning
3199 * preceded the call to synchronize_sched(). In addition, each CPU having
3200 * an RCU read-side critical section that extends beyond the return from
3201 * synchronize_sched() is guaranteed to have executed a full memory barrier
3202 * after the beginning of synchronize_sched() and before the beginning of
3203 * that RCU read-side critical section. Note that these guarantees include
3204 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3205 * that are executing in the kernel.
3206 *
3207 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3208 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3209 * to have executed a full memory barrier during the execution of
3210 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3211 * again only if the system has more than one CPU).
3212 */
3213 void synchronize_sched(void)
3214 {
3215 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3216 lock_is_held(&rcu_lock_map) ||
3217 lock_is_held(&rcu_sched_lock_map),
3218 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3219 if (rcu_blocking_is_gp())
3220 return;
3221 if (rcu_gp_is_expedited())
3222 synchronize_sched_expedited();
3223 else
3224 wait_rcu_gp(call_rcu_sched);
3225 }
3226 EXPORT_SYMBOL_GPL(synchronize_sched);
3227
3228 /**
3229 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3230 *
3231 * Control will return to the caller some time after a full rcu_bh grace
3232 * period has elapsed, in other words after all currently executing rcu_bh
3233 * read-side critical sections have completed. RCU read-side critical
3234 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3235 * and may be nested.
3236 *
3237 * See the description of synchronize_sched() for more detailed information
3238 * on memory ordering guarantees.
3239 */
3240 void synchronize_rcu_bh(void)
3241 {
3242 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3243 lock_is_held(&rcu_lock_map) ||
3244 lock_is_held(&rcu_sched_lock_map),
3245 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3246 if (rcu_blocking_is_gp())
3247 return;
3248 if (rcu_gp_is_expedited())
3249 synchronize_rcu_bh_expedited();
3250 else
3251 wait_rcu_gp(call_rcu_bh);
3252 }
3253 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3254
3255 /**
3256 * get_state_synchronize_rcu - Snapshot current RCU state
3257 *
3258 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3259 * to determine whether or not a full grace period has elapsed in the
3260 * meantime.
3261 */
3262 unsigned long get_state_synchronize_rcu(void)
3263 {
3264 /*
3265 * Any prior manipulation of RCU-protected data must happen
3266 * before the load from ->gpnum.
3267 */
3268 smp_mb(); /* ^^^ */
3269
3270 /*
3271 * Make sure this load happens before the purportedly
3272 * time-consuming work between get_state_synchronize_rcu()
3273 * and cond_synchronize_rcu().
3274 */
3275 return smp_load_acquire(&rcu_state_p->gpnum);
3276 }
3277 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3278
3279 /**
3280 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3281 *
3282 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3283 *
3284 * If a full RCU grace period has elapsed since the earlier call to
3285 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3286 * synchronize_rcu() to wait for a full grace period.
3287 *
3288 * Yes, this function does not take counter wrap into account. But
3289 * counter wrap is harmless. If the counter wraps, we have waited for
3290 * more than 2 billion grace periods (and way more on a 64-bit system!),
3291 * so waiting for one additional grace period should be just fine.
3292 */
3293 void cond_synchronize_rcu(unsigned long oldstate)
3294 {
3295 unsigned long newstate;
3296
3297 /*
3298 * Ensure that this load happens before any RCU-destructive
3299 * actions the caller might carry out after we return.
3300 */
3301 newstate = smp_load_acquire(&rcu_state_p->completed);
3302 if (ULONG_CMP_GE(oldstate, newstate))
3303 synchronize_rcu();
3304 }
3305 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3306
3307 /**
3308 * get_state_synchronize_sched - Snapshot current RCU-sched state
3309 *
3310 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3311 * to determine whether or not a full grace period has elapsed in the
3312 * meantime.
3313 */
3314 unsigned long get_state_synchronize_sched(void)
3315 {
3316 /*
3317 * Any prior manipulation of RCU-protected data must happen
3318 * before the load from ->gpnum.
3319 */
3320 smp_mb(); /* ^^^ */
3321
3322 /*
3323 * Make sure this load happens before the purportedly
3324 * time-consuming work between get_state_synchronize_sched()
3325 * and cond_synchronize_sched().
3326 */
3327 return smp_load_acquire(&rcu_sched_state.gpnum);
3328 }
3329 EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3330
3331 /**
3332 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3333 *
3334 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3335 *
3336 * If a full RCU-sched grace period has elapsed since the earlier call to
3337 * get_state_synchronize_sched(), just return. Otherwise, invoke
3338 * synchronize_sched() to wait for a full grace period.
3339 *
3340 * Yes, this function does not take counter wrap into account. But
3341 * counter wrap is harmless. If the counter wraps, we have waited for
3342 * more than 2 billion grace periods (and way more on a 64-bit system!),
3343 * so waiting for one additional grace period should be just fine.
3344 */
3345 void cond_synchronize_sched(unsigned long oldstate)
3346 {
3347 unsigned long newstate;
3348
3349 /*
3350 * Ensure that this load happens before any RCU-destructive
3351 * actions the caller might carry out after we return.
3352 */
3353 newstate = smp_load_acquire(&rcu_sched_state.completed);
3354 if (ULONG_CMP_GE(oldstate, newstate))
3355 synchronize_sched();
3356 }
3357 EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3358
3359 /*
3360 * Check to see if there is any immediate RCU-related work to be done
3361 * by the current CPU, for the specified type of RCU, returning 1 if so.
3362 * The checks are in order of increasing expense: checks that can be
3363 * carried out against CPU-local state are performed first. However,
3364 * we must check for CPU stalls first, else we might not get a chance.
3365 */
3366 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3367 {
3368 struct rcu_node *rnp = rdp->mynode;
3369
3370 rdp->n_rcu_pending++;
3371
3372 /* Check for CPU stalls, if enabled. */
3373 check_cpu_stall(rsp, rdp);
3374
3375 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3376 if (rcu_nohz_full_cpu(rsp))
3377 return 0;
3378
3379 /* Is the RCU core waiting for a quiescent state from this CPU? */
3380 if (rcu_scheduler_fully_active &&
3381 rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3382 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_dynticks.rcu_qs_ctr)) {
3383 rdp->n_rp_core_needs_qs++;
3384 } else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) {
3385 rdp->n_rp_report_qs++;
3386 return 1;
3387 }
3388
3389 /* Does this CPU have callbacks ready to invoke? */
3390 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
3391 rdp->n_rp_cb_ready++;
3392 return 1;
3393 }
3394
3395 /* Has RCU gone idle with this CPU needing another grace period? */
3396 if (cpu_needs_another_gp(rsp, rdp)) {
3397 rdp->n_rp_cpu_needs_gp++;
3398 return 1;
3399 }
3400
3401 /* Has another RCU grace period completed? */
3402 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3403 rdp->n_rp_gp_completed++;
3404 return 1;
3405 }
3406
3407 /* Has a new RCU grace period started? */
3408 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3409 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3410 rdp->n_rp_gp_started++;
3411 return 1;
3412 }
3413
3414 /* Does this CPU need a deferred NOCB wakeup? */
3415 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3416 rdp->n_rp_nocb_defer_wakeup++;
3417 return 1;
3418 }
3419
3420 /* nothing to do */
3421 rdp->n_rp_need_nothing++;
3422 return 0;
3423 }
3424
3425 /*
3426 * Check to see if there is any immediate RCU-related work to be done
3427 * by the current CPU, returning 1 if so. This function is part of the
3428 * RCU implementation; it is -not- an exported member of the RCU API.
3429 */
3430 static int rcu_pending(void)
3431 {
3432 struct rcu_state *rsp;
3433
3434 for_each_rcu_flavor(rsp)
3435 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3436 return 1;
3437 return 0;
3438 }
3439
3440 /*
3441 * Return true if the specified CPU has any callback. If all_lazy is
3442 * non-NULL, store an indication of whether all callbacks are lazy.
3443 * (If there are no callbacks, all of them are deemed to be lazy.)
3444 */
3445 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3446 {
3447 bool al = true;
3448 bool hc = false;
3449 struct rcu_data *rdp;
3450 struct rcu_state *rsp;
3451
3452 for_each_rcu_flavor(rsp) {
3453 rdp = this_cpu_ptr(rsp->rda);
3454 if (rcu_segcblist_empty(&rdp->cblist))
3455 continue;
3456 hc = true;
3457 if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
3458 al = false;
3459 break;
3460 }
3461 }
3462 if (all_lazy)
3463 *all_lazy = al;
3464 return hc;
3465 }
3466
3467 /*
3468 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3469 * the compiler is expected to optimize this away.
3470 */
3471 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3472 int cpu, unsigned long done)
3473 {
3474 trace_rcu_barrier(rsp->name, s, cpu,
3475 atomic_read(&rsp->barrier_cpu_count), done);
3476 }
3477
3478 /*
3479 * RCU callback function for _rcu_barrier(). If we are last, wake
3480 * up the task executing _rcu_barrier().
3481 */
3482 static void rcu_barrier_callback(struct rcu_head *rhp)
3483 {
3484 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3485 struct rcu_state *rsp = rdp->rsp;
3486
3487 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3488 _rcu_barrier_trace(rsp, TPS("LastCB"), -1,
3489 rsp->barrier_sequence);
3490 complete(&rsp->barrier_completion);
3491 } else {
3492 _rcu_barrier_trace(rsp, TPS("CB"), -1, rsp->barrier_sequence);
3493 }
3494 }
3495
3496 /*
3497 * Called with preemption disabled, and from cross-cpu IRQ context.
3498 */
3499 static void rcu_barrier_func(void *type)
3500 {
3501 struct rcu_state *rsp = type;
3502 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3503
3504 _rcu_barrier_trace(rsp, TPS("IRQ"), -1, rsp->barrier_sequence);
3505 rdp->barrier_head.func = rcu_barrier_callback;
3506 debug_rcu_head_queue(&rdp->barrier_head);
3507 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
3508 atomic_inc(&rsp->barrier_cpu_count);
3509 } else {
3510 debug_rcu_head_unqueue(&rdp->barrier_head);
3511 _rcu_barrier_trace(rsp, TPS("IRQNQ"), -1,
3512 rsp->barrier_sequence);
3513 }
3514 }
3515
3516 /*
3517 * Orchestrate the specified type of RCU barrier, waiting for all
3518 * RCU callbacks of the specified type to complete.
3519 */
3520 static void _rcu_barrier(struct rcu_state *rsp)
3521 {
3522 int cpu;
3523 struct rcu_data *rdp;
3524 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3525
3526 _rcu_barrier_trace(rsp, TPS("Begin"), -1, s);
3527
3528 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3529 mutex_lock(&rsp->barrier_mutex);
3530
3531 /* Did someone else do our work for us? */
3532 if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3533 _rcu_barrier_trace(rsp, TPS("EarlyExit"), -1,
3534 rsp->barrier_sequence);
3535 smp_mb(); /* caller's subsequent code after above check. */
3536 mutex_unlock(&rsp->barrier_mutex);
3537 return;
3538 }
3539
3540 /* Mark the start of the barrier operation. */
3541 rcu_seq_start(&rsp->barrier_sequence);
3542 _rcu_barrier_trace(rsp, TPS("Inc1"), -1, rsp->barrier_sequence);
3543
3544 /*
3545 * Initialize the count to one rather than to zero in order to
3546 * avoid a too-soon return to zero in case of a short grace period
3547 * (or preemption of this task). Exclude CPU-hotplug operations
3548 * to ensure that no offline CPU has callbacks queued.
3549 */
3550 init_completion(&rsp->barrier_completion);
3551 atomic_set(&rsp->barrier_cpu_count, 1);
3552 get_online_cpus();
3553
3554 /*
3555 * Force each CPU with callbacks to register a new callback.
3556 * When that callback is invoked, we will know that all of the
3557 * corresponding CPU's preceding callbacks have been invoked.
3558 */
3559 for_each_possible_cpu(cpu) {
3560 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3561 continue;
3562 rdp = per_cpu_ptr(rsp->rda, cpu);
3563 if (rcu_is_nocb_cpu(cpu)) {
3564 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3565 _rcu_barrier_trace(rsp, TPS("OfflineNoCB"), cpu,
3566 rsp->barrier_sequence);
3567 } else {
3568 _rcu_barrier_trace(rsp, TPS("OnlineNoCB"), cpu,
3569 rsp->barrier_sequence);
3570 smp_mb__before_atomic();
3571 atomic_inc(&rsp->barrier_cpu_count);
3572 __call_rcu(&rdp->barrier_head,
3573 rcu_barrier_callback, rsp, cpu, 0);
3574 }
3575 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
3576 _rcu_barrier_trace(rsp, TPS("OnlineQ"), cpu,
3577 rsp->barrier_sequence);
3578 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3579 } else {
3580 _rcu_barrier_trace(rsp, TPS("OnlineNQ"), cpu,
3581 rsp->barrier_sequence);
3582 }
3583 }
3584 put_online_cpus();
3585
3586 /*
3587 * Now that we have an rcu_barrier_callback() callback on each
3588 * CPU, and thus each counted, remove the initial count.
3589 */
3590 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3591 complete(&rsp->barrier_completion);
3592
3593 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3594 wait_for_completion(&rsp->barrier_completion);
3595
3596 /* Mark the end of the barrier operation. */
3597 _rcu_barrier_trace(rsp, TPS("Inc2"), -1, rsp->barrier_sequence);
3598 rcu_seq_end(&rsp->barrier_sequence);
3599
3600 /* Other rcu_barrier() invocations can now safely proceed. */
3601 mutex_unlock(&rsp->barrier_mutex);
3602 }
3603
3604 /**
3605 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3606 */
3607 void rcu_barrier_bh(void)
3608 {
3609 _rcu_barrier(&rcu_bh_state);
3610 }
3611 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3612
3613 /**
3614 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3615 */
3616 void rcu_barrier_sched(void)
3617 {
3618 _rcu_barrier(&rcu_sched_state);
3619 }
3620 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3621
3622 /*
3623 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3624 * first CPU in a given leaf rcu_node structure coming online. The caller
3625 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3626 * disabled.
3627 */
3628 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3629 {
3630 long mask;
3631 struct rcu_node *rnp = rnp_leaf;
3632
3633 lockdep_assert_held(&rnp->lock);
3634 for (;;) {
3635 mask = rnp->grpmask;
3636 rnp = rnp->parent;
3637 if (rnp == NULL)
3638 return;
3639 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3640 rnp->qsmaskinit |= mask;
3641 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3642 }
3643 }
3644
3645 /*
3646 * Do boot-time initialization of a CPU's per-CPU RCU data.
3647 */
3648 static void __init
3649 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3650 {
3651 unsigned long flags;
3652 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3653 struct rcu_node *rnp = rcu_get_root(rsp);
3654
3655 /* Set up local state, ensuring consistent view of global state. */
3656 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3657 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3658 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3659 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3660 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
3661 rdp->cpu = cpu;
3662 rdp->rsp = rsp;
3663 rcu_boot_init_nocb_percpu_data(rdp);
3664 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3665 }
3666
3667 /*
3668 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3669 * offline event can be happening at a given time. Note also that we
3670 * can accept some slop in the rsp->completed access due to the fact
3671 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3672 */
3673 static void
3674 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3675 {
3676 unsigned long flags;
3677 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3678 struct rcu_node *rnp = rcu_get_root(rsp);
3679
3680 /* Set up local state, ensuring consistent view of global state. */
3681 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3682 rdp->qlen_last_fqs_check = 0;
3683 rdp->n_force_qs_snap = rsp->n_force_qs;
3684 rdp->blimit = blimit;
3685 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3686 !init_nocb_callback_list(rdp))
3687 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
3688 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3689 rcu_dynticks_eqs_online();
3690 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
3691
3692 /*
3693 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3694 * propagation up the rcu_node tree will happen at the beginning
3695 * of the next grace period.
3696 */
3697 rnp = rdp->mynode;
3698 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
3699 rdp->beenonline = true; /* We have now been online. */
3700 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3701 rdp->completed = rnp->completed;
3702 rdp->cpu_no_qs.b.norm = true;
3703 rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
3704 rdp->core_needs_qs = false;
3705 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3706 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3707 }
3708
3709 /*
3710 * Invoked early in the CPU-online process, when pretty much all
3711 * services are available. The incoming CPU is not present.
3712 */
3713 int rcutree_prepare_cpu(unsigned int cpu)
3714 {
3715 struct rcu_state *rsp;
3716
3717 for_each_rcu_flavor(rsp)
3718 rcu_init_percpu_data(cpu, rsp);
3719
3720 rcu_prepare_kthreads(cpu);
3721 rcu_spawn_all_nocb_kthreads(cpu);
3722
3723 return 0;
3724 }
3725
3726 /*
3727 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3728 */
3729 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3730 {
3731 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3732
3733 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3734 }
3735
3736 /*
3737 * Near the end of the CPU-online process. Pretty much all services
3738 * enabled, and the CPU is now very much alive.
3739 */
3740 int rcutree_online_cpu(unsigned int cpu)
3741 {
3742 sync_sched_exp_online_cleanup(cpu);
3743 rcutree_affinity_setting(cpu, -1);
3744 if (IS_ENABLED(CONFIG_TREE_SRCU))
3745 srcu_online_cpu(cpu);
3746 return 0;
3747 }
3748
3749 /*
3750 * Near the beginning of the process. The CPU is still very much alive
3751 * with pretty much all services enabled.
3752 */
3753 int rcutree_offline_cpu(unsigned int cpu)
3754 {
3755 rcutree_affinity_setting(cpu, cpu);
3756 if (IS_ENABLED(CONFIG_TREE_SRCU))
3757 srcu_offline_cpu(cpu);
3758 return 0;
3759 }
3760
3761 /*
3762 * Near the end of the offline process. We do only tracing here.
3763 */
3764 int rcutree_dying_cpu(unsigned int cpu)
3765 {
3766 struct rcu_state *rsp;
3767
3768 for_each_rcu_flavor(rsp)
3769 rcu_cleanup_dying_cpu(rsp);
3770 return 0;
3771 }
3772
3773 /*
3774 * The outgoing CPU is gone and we are running elsewhere.
3775 */
3776 int rcutree_dead_cpu(unsigned int cpu)
3777 {
3778 struct rcu_state *rsp;
3779
3780 for_each_rcu_flavor(rsp) {
3781 rcu_cleanup_dead_cpu(cpu, rsp);
3782 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3783 }
3784 return 0;
3785 }
3786
3787 /*
3788 * Mark the specified CPU as being online so that subsequent grace periods
3789 * (both expedited and normal) will wait on it. Note that this means that
3790 * incoming CPUs are not allowed to use RCU read-side critical sections
3791 * until this function is called. Failing to observe this restriction
3792 * will result in lockdep splats.
3793 *
3794 * Note that this function is special in that it is invoked directly
3795 * from the incoming CPU rather than from the cpuhp_step mechanism.
3796 * This is because this function must be invoked at a precise location.
3797 */
3798 void rcu_cpu_starting(unsigned int cpu)
3799 {
3800 unsigned long flags;
3801 unsigned long mask;
3802 int nbits;
3803 unsigned long oldmask;
3804 struct rcu_data *rdp;
3805 struct rcu_node *rnp;
3806 struct rcu_state *rsp;
3807
3808 for_each_rcu_flavor(rsp) {
3809 rdp = per_cpu_ptr(rsp->rda, cpu);
3810 rnp = rdp->mynode;
3811 mask = rdp->grpmask;
3812 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3813 rnp->qsmaskinitnext |= mask;
3814 oldmask = rnp->expmaskinitnext;
3815 rnp->expmaskinitnext |= mask;
3816 oldmask ^= rnp->expmaskinitnext;
3817 nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3818 /* Allow lockless access for expedited grace periods. */
3819 smp_store_release(&rsp->ncpus, rsp->ncpus + nbits); /* ^^^ */
3820 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3821 }
3822 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
3823 }
3824
3825 #ifdef CONFIG_HOTPLUG_CPU
3826 /*
3827 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3828 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3829 * bit masks.
3830 */
3831 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3832 {
3833 unsigned long flags;
3834 unsigned long mask;
3835 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3836 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3837
3838 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3839 mask = rdp->grpmask;
3840 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3841 rnp->qsmaskinitnext &= ~mask;
3842 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3843 }
3844
3845 /*
3846 * The outgoing function has no further need of RCU, so remove it from
3847 * the list of CPUs that RCU must track.
3848 *
3849 * Note that this function is special in that it is invoked directly
3850 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3851 * This is because this function must be invoked at a precise location.
3852 */
3853 void rcu_report_dead(unsigned int cpu)
3854 {
3855 struct rcu_state *rsp;
3856
3857 /* QS for any half-done expedited RCU-sched GP. */
3858 preempt_disable();
3859 rcu_report_exp_rdp(&rcu_sched_state,
3860 this_cpu_ptr(rcu_sched_state.rda), true);
3861 preempt_enable();
3862 for_each_rcu_flavor(rsp)
3863 rcu_cleanup_dying_idle_cpu(cpu, rsp);
3864 }
3865
3866 /* Migrate the dead CPU's callbacks to the current CPU. */
3867 static void rcu_migrate_callbacks(int cpu, struct rcu_state *rsp)
3868 {
3869 unsigned long flags;
3870 struct rcu_data *my_rdp;
3871 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3872 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
3873
3874 if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist))
3875 return; /* No callbacks to migrate. */
3876
3877 local_irq_save(flags);
3878 my_rdp = this_cpu_ptr(rsp->rda);
3879 if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
3880 local_irq_restore(flags);
3881 return;
3882 }
3883 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
3884 rcu_advance_cbs(rsp, rnp_root, rdp); /* Leverage recent GPs. */
3885 rcu_advance_cbs(rsp, rnp_root, my_rdp); /* Assign GP to pending CBs. */
3886 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
3887 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3888 !rcu_segcblist_n_cbs(&my_rdp->cblist));
3889 raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
3890 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3891 !rcu_segcblist_empty(&rdp->cblist),
3892 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3893 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3894 rcu_segcblist_first_cb(&rdp->cblist));
3895 }
3896
3897 /*
3898 * The outgoing CPU has just passed through the dying-idle state,
3899 * and we are being invoked from the CPU that was IPIed to continue the
3900 * offline operation. We need to migrate the outgoing CPU's callbacks.
3901 */
3902 void rcutree_migrate_callbacks(int cpu)
3903 {
3904 struct rcu_state *rsp;
3905
3906 for_each_rcu_flavor(rsp)
3907 rcu_migrate_callbacks(cpu, rsp);
3908 }
3909 #endif
3910
3911 /*
3912 * On non-huge systems, use expedited RCU grace periods to make suspend
3913 * and hibernation run faster.
3914 */
3915 static int rcu_pm_notify(struct notifier_block *self,
3916 unsigned long action, void *hcpu)
3917 {
3918 switch (action) {
3919 case PM_HIBERNATION_PREPARE:
3920 case PM_SUSPEND_PREPARE:
3921 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3922 rcu_expedite_gp();
3923 break;
3924 case PM_POST_HIBERNATION:
3925 case PM_POST_SUSPEND:
3926 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3927 rcu_unexpedite_gp();
3928 break;
3929 default:
3930 break;
3931 }
3932 return NOTIFY_OK;
3933 }
3934
3935 /*
3936 * Spawn the kthreads that handle each RCU flavor's grace periods.
3937 */
3938 static int __init rcu_spawn_gp_kthread(void)
3939 {
3940 unsigned long flags;
3941 int kthread_prio_in = kthread_prio;
3942 struct rcu_node *rnp;
3943 struct rcu_state *rsp;
3944 struct sched_param sp;
3945 struct task_struct *t;
3946
3947 /* Force priority into range. */
3948 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3949 kthread_prio = 1;
3950 else if (kthread_prio < 0)
3951 kthread_prio = 0;
3952 else if (kthread_prio > 99)
3953 kthread_prio = 99;
3954 if (kthread_prio != kthread_prio_in)
3955 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3956 kthread_prio, kthread_prio_in);
3957
3958 rcu_scheduler_fully_active = 1;
3959 for_each_rcu_flavor(rsp) {
3960 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3961 BUG_ON(IS_ERR(t));
3962 rnp = rcu_get_root(rsp);
3963 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3964 rsp->gp_kthread = t;
3965 if (kthread_prio) {
3966 sp.sched_priority = kthread_prio;
3967 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3968 }
3969 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3970 wake_up_process(t);
3971 }
3972 rcu_spawn_nocb_kthreads();
3973 rcu_spawn_boost_kthreads();
3974 return 0;
3975 }
3976 early_initcall(rcu_spawn_gp_kthread);
3977
3978 /*
3979 * This function is invoked towards the end of the scheduler's
3980 * initialization process. Before this is called, the idle task might
3981 * contain synchronous grace-period primitives (during which time, this idle
3982 * task is booting the system, and such primitives are no-ops). After this
3983 * function is called, any synchronous grace-period primitives are run as
3984 * expedited, with the requesting task driving the grace period forward.
3985 * A later core_initcall() rcu_set_runtime_mode() will switch to full
3986 * runtime RCU functionality.
3987 */
3988 void rcu_scheduler_starting(void)
3989 {
3990 WARN_ON(num_online_cpus() != 1);
3991 WARN_ON(nr_context_switches() > 0);
3992 rcu_test_sync_prims();
3993 rcu_scheduler_active = RCU_SCHEDULER_INIT;
3994 rcu_test_sync_prims();
3995 }
3996
3997 /*
3998 * Helper function for rcu_init() that initializes one rcu_state structure.
3999 */
4000 static void __init rcu_init_one(struct rcu_state *rsp)
4001 {
4002 static const char * const buf[] = RCU_NODE_NAME_INIT;
4003 static const char * const fqs[] = RCU_FQS_NAME_INIT;
4004 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4005 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4006
4007 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
4008 int cpustride = 1;
4009 int i;
4010 int j;
4011 struct rcu_node *rnp;
4012
4013 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
4014
4015 /* Silence gcc 4.8 false positive about array index out of range. */
4016 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4017 panic("rcu_init_one: rcu_num_lvls out of range");
4018
4019 /* Initialize the level-tracking arrays. */
4020
4021 for (i = 1; i < rcu_num_lvls; i++)
4022 rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
4023 rcu_init_levelspread(levelspread, num_rcu_lvl);
4024
4025 /* Initialize the elements themselves, starting from the leaves. */
4026
4027 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4028 cpustride *= levelspread[i];
4029 rnp = rsp->level[i];
4030 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4031 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4032 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4033 &rcu_node_class[i], buf[i]);
4034 raw_spin_lock_init(&rnp->fqslock);
4035 lockdep_set_class_and_name(&rnp->fqslock,
4036 &rcu_fqs_class[i], fqs[i]);
4037 rnp->gpnum = rsp->gpnum;
4038 rnp->completed = rsp->completed;
4039 rnp->qsmask = 0;
4040 rnp->qsmaskinit = 0;
4041 rnp->grplo = j * cpustride;
4042 rnp->grphi = (j + 1) * cpustride - 1;
4043 if (rnp->grphi >= nr_cpu_ids)
4044 rnp->grphi = nr_cpu_ids - 1;
4045 if (i == 0) {
4046 rnp->grpnum = 0;
4047 rnp->grpmask = 0;
4048 rnp->parent = NULL;
4049 } else {
4050 rnp->grpnum = j % levelspread[i - 1];
4051 rnp->grpmask = 1UL << rnp->grpnum;
4052 rnp->parent = rsp->level[i - 1] +
4053 j / levelspread[i - 1];
4054 }
4055 rnp->level = i;
4056 INIT_LIST_HEAD(&rnp->blkd_tasks);
4057 rcu_init_one_nocb(rnp);
4058 init_waitqueue_head(&rnp->exp_wq[0]);
4059 init_waitqueue_head(&rnp->exp_wq[1]);
4060 init_waitqueue_head(&rnp->exp_wq[2]);
4061 init_waitqueue_head(&rnp->exp_wq[3]);
4062 spin_lock_init(&rnp->exp_lock);
4063 }
4064 }
4065
4066 init_swait_queue_head(&rsp->gp_wq);
4067 init_swait_queue_head(&rsp->expedited_wq);
4068 rnp = rsp->level[rcu_num_lvls - 1];
4069 for_each_possible_cpu(i) {
4070 while (i > rnp->grphi)
4071 rnp++;
4072 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4073 rcu_boot_init_percpu_data(i, rsp);
4074 }
4075 list_add(&rsp->flavors, &rcu_struct_flavors);
4076 }
4077
4078 /*
4079 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4080 * replace the definitions in tree.h because those are needed to size
4081 * the ->node array in the rcu_state structure.
4082 */
4083 static void __init rcu_init_geometry(void)
4084 {
4085 ulong d;
4086 int i;
4087 int rcu_capacity[RCU_NUM_LVLS];
4088
4089 /*
4090 * Initialize any unspecified boot parameters.
4091 * The default values of jiffies_till_first_fqs and
4092 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4093 * value, which is a function of HZ, then adding one for each
4094 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4095 */
4096 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4097 if (jiffies_till_first_fqs == ULONG_MAX)
4098 jiffies_till_first_fqs = d;
4099 if (jiffies_till_next_fqs == ULONG_MAX)
4100 jiffies_till_next_fqs = d;
4101
4102 /* If the compile-time values are accurate, just leave. */
4103 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4104 nr_cpu_ids == NR_CPUS)
4105 return;
4106 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4107 rcu_fanout_leaf, nr_cpu_ids);
4108
4109 /*
4110 * The boot-time rcu_fanout_leaf parameter must be at least two
4111 * and cannot exceed the number of bits in the rcu_node masks.
4112 * Complain and fall back to the compile-time values if this
4113 * limit is exceeded.
4114 */
4115 if (rcu_fanout_leaf < 2 ||
4116 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4117 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4118 WARN_ON(1);
4119 return;
4120 }
4121
4122 /*
4123 * Compute number of nodes that can be handled an rcu_node tree
4124 * with the given number of levels.
4125 */
4126 rcu_capacity[0] = rcu_fanout_leaf;
4127 for (i = 1; i < RCU_NUM_LVLS; i++)
4128 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4129
4130 /*
4131 * The tree must be able to accommodate the configured number of CPUs.
4132 * If this limit is exceeded, fall back to the compile-time values.
4133 */
4134 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4135 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4136 WARN_ON(1);
4137 return;
4138 }
4139
4140 /* Calculate the number of levels in the tree. */
4141 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4142 }
4143 rcu_num_lvls = i + 1;
4144
4145 /* Calculate the number of rcu_nodes at each level of the tree. */
4146 for (i = 0; i < rcu_num_lvls; i++) {
4147 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4148 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4149 }
4150
4151 /* Calculate the total number of rcu_node structures. */
4152 rcu_num_nodes = 0;
4153 for (i = 0; i < rcu_num_lvls; i++)
4154 rcu_num_nodes += num_rcu_lvl[i];
4155 }
4156
4157 /*
4158 * Dump out the structure of the rcu_node combining tree associated
4159 * with the rcu_state structure referenced by rsp.
4160 */
4161 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4162 {
4163 int level = 0;
4164 struct rcu_node *rnp;
4165
4166 pr_info("rcu_node tree layout dump\n");
4167 pr_info(" ");
4168 rcu_for_each_node_breadth_first(rsp, rnp) {
4169 if (rnp->level != level) {
4170 pr_cont("\n");
4171 pr_info(" ");
4172 level = rnp->level;
4173 }
4174 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4175 }
4176 pr_cont("\n");
4177 }
4178
4179 void __init rcu_init(void)
4180 {
4181 int cpu;
4182
4183 rcu_early_boot_tests();
4184
4185 rcu_bootup_announce();
4186 rcu_init_geometry();
4187 rcu_init_one(&rcu_bh_state);
4188 rcu_init_one(&rcu_sched_state);
4189 if (dump_tree)
4190 rcu_dump_rcu_node_tree(&rcu_sched_state);
4191 __rcu_init_preempt();
4192 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4193
4194 /*
4195 * We don't need protection against CPU-hotplug here because
4196 * this is called early in boot, before either interrupts
4197 * or the scheduler are operational.
4198 */
4199 pm_notifier(rcu_pm_notify, 0);
4200 for_each_online_cpu(cpu) {
4201 rcutree_prepare_cpu(cpu);
4202 rcu_cpu_starting(cpu);
4203 if (IS_ENABLED(CONFIG_TREE_SRCU))
4204 srcu_online_cpu(cpu);
4205 }
4206 }
4207
4208 #include "tree_exp.h"
4209 #include "tree_plugin.h"